National Li
Bl oG

Canadian Theses Service Service des thdses canadiennes

du Canada

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependentupon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possibie.

It pages are missing, contact the universily which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in fuli or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r. 88/04) C

Bibliothéque nationale

AVIS

La qualité de cette microforme dépend grandement de la
qualiité de la thése soumise #u microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
funiversite qui a conféré le grade

La qualité dimpression de c-.1aines pages peut laisser A
désirer, surtout si les pages originales ont été dactylogra
phiées & l'aide d'un ruban usé ou si f'université nous a tai
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canadi

Search Algorithms for Primal Graphs

Sara M. A. Stairs

A Thesis

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

December 1988

© Sara M. A. Stairs, 1988

i

National Library
of Canada

Canadian Theses Service

du Canada

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

Bibliothéque nationale

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque na-
tionale du Canada de reproduire, préter, dis-
tribuer ou vendre des copies de sa thése de
quelque maniére at sous quelque forme que ce
s0it pour mettre des exemplaires de cette thése
a la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent &tre imprimés
ou autrement reproduits sans son autorisation.

ISBN 0-315-49069-1

Canadi

ABSTRACT

Search Algorithms for Primal Graphs

Sara M. A. Stairs

We say that a factorization of a eimple graph G is a non-isomorphic edge
decomposition of G, that is, a partition of the edges of G into subgraphs GI' G‘?.

, Gk which are mutually isomorphic. A primal graph is one whose only
factorization is the trivial one into G itself. The primal graphs were completely
known hitherto only for the graphs with no more than seven vertices; several
infinite families of primal graphs are also known. Using computer methods, we
have exhaustively searched several classes of graphs with 8 to 19 vertices to find
other primal graphs. This search shows that the only primal graphs with 8 or 9
vertices belong to known infinite families. We have also found 22 primal graphs
with 14 edges and 14 to 18 vertices, 17 of which were produced by the program.
Of these 22 graphs, two Lelong to known primal familiee and four have never been
published.

iii

Acknowledgements

I wish to express my deep gratitude to Dr. Eric Regener for the assistance,

advice and guidance given me throughout the last few years.

1 would also like to thank a very close friend, Bill Hayden, to whom this
work is dedicated.

Table of Contents

Introduction
Theoretical Results

Algorithms to Test Graphs for Primality

Algorithm 1: Primeality, first version
Lexical Ordering of Primal Graphs

Algorithm 2: Primality, recursive version

Algorithm 3: Primality, final version
Search Procedures
Search Procedure Algorithms
Algorithm SunSearch
Algorithm CrabSearch
Algorithm RSearch
Algorithm QSearch
Algorithm YSearch
Star Search Procedure
Algorithm StarSearch
K2N Search Procedure
Algorithmm K2NSearch
Implementation
Generation of Input Files
Performance of the Program
Conclusions
Appendix: Proof of Theorem 1
Bibliography

14
15
17
20
24
30
32
32
83
34
85
36

-~
{

38
39
40
41
41
42
46
60
62

List_of Tables

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

1.

6a.
6b.

~1

8a.
8b.

10.

Primal graphs on 14 edges which contain a cycle of
length 7.

Primal graphs on 14 edges which contain e cycle of
length 8.

A primal graph on 14 edges which contains & cycle of
length 9.

Primal graphs on 14 edges which contain a cycle of
length 6.

Primal graphs on 14 edges which contain a cycle of
length 6 and a cycle of length 3.

Files Tested for Primality.

Files Tested for Primality.

Summary of Computer Time spent on Vax 8500.
Summary of Computer Time spent on Micro-Vax.
Summary of Computer Time gpent on Micro-Vax.

Run Times for Different Lexical Orders for a file
consisting of 40161 graphs on 9 vertices.

Estimate of time required to complete some test cases.

vi

42
43
44

45

46
48

Section 1: Introduction

The idea of “primal graphs” wae introduced in 1970 by Dewdney [1], who
considered an analogy between certain factorings of graphs and bases for vector

spaces.

Finite simple graphs, like vectors, can be added.
Does there exist a set of graphs which behaves with
respect to other graphs like the besis of a vector
space? If certain abstract properties of a vector space
basis are considered in isolation regarding graphs, the
existence of such a basis (here called ‘Primul’) set can
be proved. This set also turns out te be unique.

Primal Graphs

The graph G is said to be the sum of the subgraphs Hl’ o0 Hn if every
edge of G lies in exactly one Hi' In this case, G = H1 + H2 + .. 0+ Hn is a
factorization of G with factors Hl’ H2, ey Hn' A trivial factorization of G is one

in which only a single Hi contains edges, or equivalently, G has only one factor,

namely itazelf.

A set of graphs T is said to be primal relative to the set of graphs 0 if:
Drca,
ii) each graph in Q factors into non-isomorphic elements of T, and

iii) graphs in T have only a trivial such factorization.

If H is a subgraph of G, then G — H denotes a graph obtained from G by
deleting the edges of H "and then deleting any resulting isolated vertices. There

may be several non-isomorphic graphe G — H, for any given G and H.

Throughout this work, all graphs considered are finite, without loops or
multiple edges. We assume each graph has no isolated vertices and at least one
edge. All factorizations considered in the following work are assumed to have
non-isomorphic factors.

Dewdney [1] proves the following:

Theorem_1: Let I‘n denote the set of all graphs with at most n vertices. Then

there is a unique set Iln of graphs that is primal relative to I‘n. sec appendix

Chinn et al. [2]), continued the work in 1984, determining all graphs on at
most 7 vertices along with several infinite families of primal graphs. They also

provided several conjectures and problems concerning primal graphs.
Let I1 denote the set of graphs primal relative to the set of all graphs. A
graph G is said to I primal if G € II. The set H7 of primal graphs on at most

seven vertices consists of the following graphs:

ILIIDXD©

Kl,l KI,Z 2K1,l K K
J-sun l-¢crab

Chinn et al. [2]), also show that the graphs o nﬁ,eonsiatingofacopiecof
the complete bipartite graph Kn, g ore primal for the following values of a, n, and
IR

-na=1, a-2r,ﬂ-2s,forallr,520. These graphs are known as stars.

-ne=2 a=2"8=2 foralr >0

ne2 a=12 f = 4.
-ne=2 a=178=2% foralls > 8.

Graphs of this form where n = 2 will be referred to as K2N's.

n7 contains the five stars Kl,l’ K1,2’ 2K1’1, K1’4 and 2K1'2, and the
two K2N's K22 and K24.

The 8-sun and 38-crab belong to two families known as guns and crabs,

respectively.

A k-sun consists of a cycle of length k with one edge extending from
sach vertex of the cycle. A k-crab consists of a cycle of length k with one
edge extending from all but one vertex of the cycle, plus a K1 1°

It is shown in [2] that the 7-sun and 7-crab are primal.

Pranmmanad)

7-sun 7-crao
Definitions

The content of K1 1 in the graph G, written ml(G). ie the maxdmum n

such that G 2 nKl,l‘

Similarly, the content of K1 2 in G, written mz(G), is the maximum n
such that G 2 nK1,2‘
Conjecture 1 [2): The k-sun and k-crab are primal if and only if k=2'-1 for i

> 2.

The graphs R, Q, and Y of l'l7 do not belong to known primal families,

and are referred to as sporadic primal graphs.
The problem of finding the complete set of primal graphs on 8 and 9
vertices by hand is too time-consuming. The purpose of this research is to

determine primal graphs by use of computer search.

This paper explains what is currently known about primal graphs and
describes the computer program designed to find primal graphs.

By searching all graphs with 8 and 9 vertices, we have established that
the only primal graphs in these sets are 2K2’2, 4K1,1, and K1,8‘ We have
also found 22 primal graphs on 14 edges and 14 to 17 vertices, of which only
two, the 7-sun and 7-crab, belong to known families. Five of these graphs
were determined primal by hand. These are the graphs V6-8 to V6-12,
inclusive. They were not shown to be primal by use of the program since
they were not contained in any of the input files used for testing primality.

Of all these, the graphs V6-5, V6-6, V6-9, V6-10 are hitherto unpublished.

[Y
V7-1: 7-sun V7-2: 7-crab
m— C— —
[o]
Pom———— P,
| =
V7-3 V7-4 V7-5

Table 1 - Primal graphs on 14 edges which contain a cycle of length 7.

(=]

v8-3 ve-4

Table 2 - Primal graphs on 14 sdges which contzin a cycle of length 8.

]

vVg-~1

Table 3 - A primal graph on 14 edges which contains u cycle of length 9.

e RS
e

V6-3 V6-4
[e
L
Lo L o
VE-5 V6-6
[d
< Y
[e J
S
V6-7 v6-8

Table 4 - Primal graphs on 14 edges which contain a cycle of length 6.

Waz Qad
Va- Az
A, N

VE-11 VE-12

Table 5 - Primal graphs on 14 edges which contain a cycle of length 6 and a

cycle of length 3.

Notation

Throughout this work the following notation will be used:
V(G) : vertices of the graph G.
E(G) : the set of edges of the graph G.
deg(v) : degree of the vertex v.
IF(G) : complete factorization of the graph G.
AG) : partial factorization of the graph G.
® : an empty graph (no edges).

P~M: P and M are isomorphic graphs.

Section 2: Theoretical Results

Let l'I0 be the set of primal graphs in I'I7 together with the infinite
families of stars and K2N’s. The problem of finding primal graphs on more
than 7 wvertices requires searching each graph for a factorization involving

graphs in II If an exhaustive search for a factorization of a graph G is

o
unsuccessful, then G must either be prima{ or contain a primal graph not in
IIO. There are two observations which can be made to reduce the searching
time for factorizations of graphs:

1) Odd_number of edges

Theorem 2(Chinn et al. [2]) : Each graph in [T - {K1 1} has an even number
of edges.

Proof: Order II by increasing nmumber of edges:

Pl’ P2, P3, s Pi’
ie. P1 = Kl,l’ P2 = 2K1,1, P3 = K1,2' ete...

Assume Pi is the firgst primal graph after Kl 1 with an odd number of

edges. Let G = Pi - K Obviously, G has an even number of edges.

1,1

Case 1. If G is primal, then Pi has the factorization {K G}, hence

1,1’
Pi is not primal.

Case 2. If G is not primal, then since |E(G)| is even and K, is the
only primal graph P with odd |[E(P)| and |[E(P)] < [E(G)|, G must have a
factorization involving only primal graphs P with even |E(P)|. Thus, Pi is not

primal, it has the factorization {Kl 1.l!“(G)}.

2) Containment

Lemma 1(Chinn et al. [2]) : If there is a P € Il such that P C G but P ¢
G — P, then G is not primal.

Proof: Case 1: ¥f G — P ig primal, then G is not primal, it has the

10

factorization {G-P, P}.
Case 2: If G — P is not primal then G = IF(G — P) + P, Since P

€ G - P, (G — P) cannot contain P, and G has the factorization

{IF(G-P), P}.

Lemma 2 : If G is primal and P € G then P € G - P, for any primal
graph P.
Proof: f P € G — P, then by Lemma 1 G is not primal.

Corollary 1:
Let AIG) = {Pl. P2, ey Px) be a partial factorization of G into primal graphs,

that is G = ?(G)+H,Pieﬂforalli,andPi:‘.'Pj'foriaéj. IfVPiE
e, Pi ¢ H, then G factors into elements of II.
Proof: Let IF(H) be any factorization of H. Since Pi Z H, Pi ¢ FEH.

Hence, G has the factorization AG) + IFH).

Corollary 2:
Let P be a primal graph contained in G, and G = P + F. If there exists a

factorization IF(H) of H such that P ¢ IF(H), then G is not primal.

Theorem 8: If G is primal then 3G is not primal.
Proof:

Case 1: If 2G is primal, then 8G has the factorization {G, 2G}.

Case 2: If 2G is not primal, then IF(2G) cannot have G as one of its
factors since 2G = G + G. By Corollary 2, since G ¢ IF(2G), 3G has the
factorization {G, F(2G)).

Theorem 4

If a graph, G, on sk-2 edges has K1 l’s and Klz’s as its only primal

k-1 k'2-1. then G is primal.

factors and ml(G) < 2071, mz(G) < 2

11

Proof

The primal graphs available as factors of G are;

k- . k-3
2K, 1, 4K} 11 o 2 2K1’1. K) g 2Ky g0 on 25K .
The total number of edges in these graphs is :
22 +4+ .. +25% a 41 v 2444+ ..+ 255,
422 .1y - 25 . 4 < |E@)| = 2K - 2.

Since G can have no non-trivial factorization into primal graphs, G must be

primal.

Richter [4] has proved the following:

Theorem 5

Let G be a graph with ml(G) + 2m2(G) < |E(@)|. Then {H; 3n, H ¢

or 2'K

nG} contains infinitely many primal graphs not of the form 2iK1 1 1.0

For example: the graph 7C6 + Kl 1 c 805 is primal (C5 is the b-cycle):

for this graph m; = 15, m, = 7, m. + 2m2 = 29 < |E| = 36.

1

The graph consisting of 25 disjoint copies of

contains at least 1 unknown primal graph (Richter). For this graph, m, -

10, m, = 4, |[E| = 21 > 18 = m, + 2m,.

2 1 2

The graphs on 14 edges given in Tables 1 to 5 all have m, = 7, m, -

8 (as is easily verified), so that m, + 2m, = 13 < 14 = |E|. The only

1 2
primal graphs in H7 which the graphs in Tables 1 to 6§ may contain are the
stars of degree < 4. These are 2K11, K12' 4K11 and 2K12, having a total

of 12 edges.

12

Examples of Factorizations

In general it is not true that if P is primal, 2P is also primal, e.g.:

A Factorization of 2Y
2Y = 2K1 > + K1 > + 4K1’1 + 2K1,1

] ?

As another example,

2K2, g are not.

A Factorization of 4K2 4

A

= + + 4K + 2K
Ky g = Kg ot Ky o BKy 5+ Ky o+ B8Ryt 4 e

the graph 2K2 4 is primal although 4K2 4 and

))))

A Second Factorization of 4K2 4

$009 .

Factorization of 2K

© O

’

L]

o

2,8

)))

)

))

]

14

Section 3: Algorithms to Test Graphs for Primality

In order to deterrnine primality of a8 graph efficiently by computer, we
must base our algorithm as strongly as possible on theoretical results.
Theorem 2 states that all graphs other than Kl,l with an odd number of
edges are not primal. Thus, when searching for primal graphs, we need not
concern ourselves with any graphs with an odd number of edges. Lemma 1
states that for a graph, G, and a primal graph, P, such that P C G, if we
can find a G — P such that P € G - P, then G is not primal. This
Lemma, along with Corollaries 1 and 2, may be used for certain graphs G to

prove non-primality without factorizing G completely.

We develop the algorithm in three steps. The first algorithm determines
if a graph, G, has a factorization involving a primal graph, P. The second
determineeg if G has a factorization involving any of the primal graphs in IIO.
Algorithm 3 is an expansion of algorithm 2. We include the procedures which
search for containment of primal graphs and we disregard any input graph
with one or more isolated vertices. Algorithm 8 is written so that it may be
easlly implemented on the computer and is the algorithm upon which the

program is based.

Initially, we give a simple algrrithm to determine by exhaustive search if
a given graph G is factorable using a given primal graph P, by using Lemma
1 and Corollary 2.
Two outcomes are poassible:

- G has a factorization involving P and thus is not primal.

- G cannot be factored using P.

15

Notation:
/* comment */
Config(G-P) : the set of all non-isomorphic graphs G-P.
status : a variable with the following possible values:
not-primal : G has a factorization involving P.

not-proved : G cannot be factored using P.

Alporithm i: Primality, first version

/* Search for a factorization of G involving the primal graph P. */
algorithm Primall (G,P)

P1. ¥ « Config (G-P)

P2. status ~ not-proved

P3. while ¥ # {} and status = not-proved do

P4, H « any member of ¥
Ps5. X X-{H)
P6. if P ¢ H then status «~ not-primal
P7. elgeif 3 IF(H), P ¢ F(H) then status « not-primal
endif
endwhile

P8. return

16

Algorithm 1 searches for a factorization of a graph, G, involving a
particular primal graph, P. To obtain the set Config (G-P) we delete the
edges of P and any resulting isolated vertices from G. This is done for each
possible way that P is contained in G. For each H € Config (G-P) and
while we have not found a solution we do the following. If P € H then G is
not primal by Lemma 1. If a complete factorization of H not involving P can
be found, then G has the factorization {P, IF(H)}. If all configurations have
been tested and we have not arrived at a solution then we conclude that G

does not have a factorization involving P.

Algorithm 1 asks “Does G have a factorization involving the primal graph
P?". This is not sufficient to determine whether G is or is not primal.
Algorithm 2 will address the question “Does G have a factorization involving
any of the graphs in a given set, II, of primal graphs?”. Algorithm 2 will
also provide an answer to the question in step P7, “Does H have a

factorization not involving P?".

In order to determine if G has a factorization involving any of the primal
graphs in II, we simply need to invoke the algorithm once for each P in II
such that |V(P)] < |V(G)|. This can be accomplished by lexically ordering the
primal graphs and searching for the primal graphs one by one. If G does not
have a factorization involving any of the graphs in II, then we may conclude
that G has & factorization involving a primal graph ¢ . To determine
whether H has a factorization not involving P, we may call the algorithm
recursively, searching for a factorization involving graphs in {IT — P}. Initially
we call the algorithm with IT = Ilo. the eet of all primal graphs in II7 along
with the families of stars and K2N’.

17

Lexical Ordering of Primal Graphs

We may look at a graph, G, and predict what a possible factorization
may be. Several {actorirzations may be tested in an ad hoc manner until a
factorization is found, all possible factorizations have been tried, or we simply
give up. For smaller graphs, with 7 vertices or less, it is not terribly difficult
or time-consuming for a person to perform the search. For larger graphs, if a
possible factorization is not immediate to the éye, the search for a factorization
may be lengthy. fSince the computer cannot make intuitive assumptions as to
which primal graphs may or may not be factors, there must be a systematic
approach to the search. This necessitates lexical ordering of the primal
graphs. The computer may then keep track of which factorizations have been

attempted and know which factorizations are to be tried next.
We now definz a lexical ordering of the graphs in l'lo.

The precedence operator, <, i8 used to indicate priority, ie, P < M

indicates that P is lexically prior to M.

To facilitate the ordering of the primal graphs, they are first divided into

classes:

Clz STARS - the graphs O'Kl,ﬁ where a = 21" B = 2" re >0

Cp: K2N'S - the graphs oK, , where a = 2', § = 2% rs 2 0;
for all r,s such that the resulting graph is primal,
ie., for g = 1,‘r >0, fors=2,r=12 for s >2, r =1

03: SUN - the 3-sun

C4: CRAB - the 8-crab

05: RSPORADIC - the sporadic graph R.

CG: QSPORADIC - the sporadic graph Q.

C7: YSPORADIC - the sporadic graph Y.

18

For classes containing several graphs, we order the graphs within their classes:

STARS and K2N's:

The stars, °K1 p and K2N's, aK2 g are ordered such that the larger the
degree £, the greater the priority, and for graphs with the same degree, the larger
the number of copies a, the larger the priority.

Formally, if G, H € Cl' G = aKl.ﬂ’ H = QKI,B"

or G, H eCz, G= °‘K2,ﬂ’ H = &'Kz’ﬁn
then G < Hif 8> f,or f = F and a > o'

The ordering of the classes has precedence over ‘he ordering of the graphs
within a given clags. ie. If Kind(P) < KindM), then P < M, where Kind(®)
indicates to which class P belongs. The lexical ordering is structured so that it
may be modified. The ordering of the graphe within their classes cannot be
modified easily but the ordering of the classes can be adjusted to suit the needs of
the program.

The following notation will be used throughcut the remainder of the text:
Firet(Il) : The graph in IIO which comes first in the lexical order.

0
Last(ﬂo) : The graph in HO which is last in the lexical order.
Next(P) : The graph in HO which follows P in the lexical order.
EMPTY: A “dummy” graph which precedes the first graph in the lexical order.
ie. First(Il)) = Next(EMPTY)
FULL: A “dummy” graph which follows the last graph in the lexical order.

ie. FULL = Next(Laat(Ho))

19

We now present Algorithm 2 which determines whether or not a graph, G, has
a factorization involving any of the primal graphs in II, a given set of primal
graphs. The algorithm is divided into two parts. The first part, Primal2,
determines if G0 has an odd number of edges, if so, GO is the primal graph Kl,l
or it is not primal by Theorem 2. Primal2 invokes the second part of the
algorithm, Factor, if G0 has an even number of edges. Factor ie the recursive
portion of the algorithm and performs the search for a factorization.
The modified algorithm returns one of the following resulis:

-- G is a primal graph € HO.
-- G has been proved not primal.

-- G ig primal or has a primal factor ¢ IIO.
Notation for algorithm 2.

G,

0’ the graph to be tested for primality.

?0 : a partial factorization of GO'
status : a variable which may have one of the following values :
notknown: the search is incomplete.
notprimal: G0 has been proved not primal.
knownprimal; G0 is a known primal graph.
unsolved: G0 is either primal or has a factorization involving a

primal graph ¢ HO.

To determine whether or not the graph G0 is primal, initialize 3’0 ~— {} and
call Primal(Go).

20

Algorithm 2: Primality, recursive version
algorithm Primal2(Go)

Pl. etatus ~ notknown

P2. if [EGp)| = 1 then status — knownprimal

P3. elgeif IE(GO)I is odd then status « notprimal

P4. else
P5. P — FIRST
Pé6. while P is not FULL and status is notknown do
P7. Factor(G,Next(P),)
endwhile
endif

P8. if status = notknown then status ~ unsolved

PY9. return (status)

21

algorithm Factor(G, P, ?o)

F1.
F2.
F3.
F4.
F5.

Fé6.
F7.

F8.

F10.

Fi1.

if P C G then
for each G = G — P

and while status = notknown do

?0 -— fo + P
6 =0
then
if ;0 = {P} then status « knownprimal *G =] %

else status « notprimal

endif
elseif VF € 7,, F € G then status «~ notprimal

i}
elecif V F € 75, F # G’ then Factor(G’, Next(P), 7
endif
if status = notknown then 70 - 3’0 - P

endwhile
endfor
endif

return (gtatus)

22

If G0 is the primal graph Kl,l' it is recognized in step P2. Other graphs
with an odd number of edges are not primal (Theorem 2) and are recognized as
such in step P3. Thus the factorizing routine, Factor, is invoked only for graphs
with an even number of edges. Factor is invoked once for each primal graph in
the lexical order until e solution is reached or until all primal graphs have been

tested.

Primal graphs are added to the list of factors removed from GO as they are
removed from the subgraph G. The case in which GO is a primal graph in II0 is
recognized in step F6. The case in which GO has a factorization involving P may
be solved in one of two places. Step F7 recognizes the situation in which GO has
been completely factored. Step F8 recognizes that GO is not primal before a

complete factorization occurs, using Coroliary 1.

Step F9 is included to avoid needless searching. If the subgraph G equals
any of the factors removed from G0 then we need not continue the search, since

our current factorization involves two isomorphic graphs.

The algorithm for the function Next(P) must consider a finite subset, I', of II,
which has infinite size. We insure that II' ig finite by checking for |V(P)| <
[V(G)|. Also we make sure that for each vertex, v,, in P such that deg(vl) > 1,
there is a corresponding vertex, Vo in G such that deg(v2) > deg(vl). For
example, if P is the 3-crab and the 8-sun is the immediate successor of the 8-crab
in the lexical order, then Factor will be called with Next(P) = 8-sun only if G

contains at least 6 vertices, 3 of which have degree > 3.

The problem of determining whether F € G for a given primal graph P € II0
and an arbitrary graph G is solved by writing a separate procedure for each class

Ci of graphs in II_ which searches for containment of graphs of class Ci in G

0
One search procedure is written for each of the 7 classes of primal graphs in IIO.

23

In this research, we assume that all graphs considered will have no isolated
vertices. To enforce this condition we disregard any input graph, GO’ which has

one or more isolated vertices.

Here is algorithm 3, which contains the above enhancements. It is the
algorithm upon which the program is based, and contains five major parts:

Main(Go) - recognizes all graphs with isolated vertices and all graphs with an
odd number of edges. Invokes Control for any graph with an even number of
edges and no isolated vertices.

Control(G,P,?O,nfacs) - searches the list of primal graphs in lexical order
beginning with the graph Next(P), looking for a factorization involving any one of
these graphs by invoking Search. 70 is the set of factors in the current partial
factorization of GO’ G is a configuration of G0 - ?0.
Search(G,P,?O,nfacs) - Invokes a particular search procedure depending upon the

and nfacs = |.‘r'0|.

class of the primal graph P.

GenericSearch(G,P,?'o,nfacs) - determines if P C G; if not returns to Control, if
so invokes ResumeSearch.

ResumeSearch(G,P,?O,nfacs) - adds P to the current partial factorization of GO
and resumes the search for a faciorization at the next level by invoking

Control(G-P,P,70+P,nfacs+1).

In the implementation of the algorithm the routine GenericSearch is replaced by
seven search procedures, one for each class of primal graphs in IIO. Each of these
procedures will invoke the procedure ResumeSearch if P C G, which will continue
the factorization at the next level. Each of the seven search procedures 1s different
beciuse each is searching for containment of a different primal graph. The
algorithms for these procedures are not provided in this eection in order to simplify

the description of the entire algorithm. They are provided in the following saction.

Notation
GO : the “original” input graph
status : a state variable with the following values:
notknown: status is unknown, the search is not yet complete.
notprimal: G0 is not a primal graph.
knownprimal: G0 is a known primal graph.

unsolved: G0 is either an unknown primal graph or has a factorization

involving an unknown primal graph.

Here is the algorithm:

Algorithm 3: Primality, final version

algorithm Ma.in(Go)
M1l. status «~ notknown
M2, if 3 v | deg(v) = O then status «— notprimal
M3. if |[E(G)| = 1 then status «~ knownprimal
M4, elseif |E(G)| is odd then status «— notprimal
Mb. else Control(GO. EMPTY, {}, 0)
endif
M6. if status = notkmown then status « unsolved
endif

M?7. finished: return

|

25

algorithm Control(G, P, ?o, nfacs)

/*

G: the graph which we are attempting to factorize.

P: the most recent primal graph considered to be a possible primal factor, this is
EMPTY on the first call.

?0: the partial factorization of the input graph GO’ this is {} on the first call.

nfacs: the number of factors in the set ?0.

*/

ClL.

C2.

Cs.

C5.

C6.

C7.

Cs.

Co.

ifG =0
then
if nfacse = 1 then status +~ knownprimal
elge status «— mnotprimal
endif
goto finished
gls_eg'VFefo.FQGﬂﬂstatus«-notprimal
elseif V F € 70, F+£G
then
while P # FULL do
Search (G, Next(P), 70, nfacs)
endwhile
endif

return

algorithm Search(G, P, 70, nfacs)

/*

G: the graph which we are attempting to factorize.

P: the primal graph currently being considered as a possible primal factor.
.70: the partial factorization of the input graph GO’

nfacs: the number of factors in the set ?0.

*/

S1. casge kind(P) of:

s2. STAR: StarSearch (G, P, #,, nfacs)

S3. K2N: K2NSearch (G, P, 70, nfacs)
S4. SUN: SunSearch (G, P, 7,, nfacs)
S5. CRAB: CrabSearch (G, P, 3’0, nfacs)
S6. RSPORADIC: RSearch (G, P, 7,, nfacs)
S7. QSPORADIC: QSearch (G, P, 7,, nfacs)
S8. YSPORADIC: YSearch (G, P, .To, nfacs)

eud case

return

27

algorithm GenericSearch(G, P, ?0. nfacs)
%
G: the graph now being factored.
P: the primal graph which is currently being considered as a possible factor.
.’r'o: the partial factorization of the input graph GO'
nfacs: the number of factors in the set 70.
Given that the original input graph G0 has the partial factorization ;0 + G, where
nfacs = |?0|, attempt to find a factorization of G using the primal graph P.
*/
Gl. fPC G
G2. then ResumeSearch (G, P, 3’0. nfacs)
endif

return

algorithm ResumeSearch(G, P, 3’0, nfacs)

/*

G: the graph now being factored.

P: the primal graph to be added to 70, the partial factorization of the input graph
Gy

nfacs: the number of factors in the set .70.
*/

Ri. H~G -~ P

R2. nfacs « nfacs + 1

Control (H, P, 70, nfacs)

2B

return

28

Proof of Aljyrorithm 3

- Any input graph with one or more isolated vertices is disregarded in step M2.

- The graph Kl,l is the only primal graph with an odd number of edges (Theorem
2j. This is recognized in step M3.

- All graphs other than Kl,l with an odd number of edges are not primal.
Recognized in step M4.

- All graphs € 11 are known to be primal, Step C2.

0
- Graphs which can be factored using the primal graphs in IIO are recognized by
Steps C3 and C5. Graphs which are completely factored by the algorithm are
recognized in Step C3, graphs which can be proved to be not primal by Corollary 1
are recognized in Step CS5.

- All remaining graphs are those which cannot be factored using the graphs in Ho.

These graphs are recognized as being “unsolved” in Step M6.

Procedure Control is first invoked with P = EMPTY. The search routine is
then called with the first primal graph, P, which may be contained in G0 (always
using the lexical order as defined). The algorithm will either find a complete
factorization of GO’ or a partial factorization of G0 sufficient to prove that G0 is
not primal by Corollary 1, or else it will find that GO does not have a factorization
involving P. In thie last case, a search is etarted for a factorization of GO
involving the primal graph Next(P). Note that a complete factorization results if
G0 is a primal graph in Ho, In this case the number of factors is one, and GO is

correctly identified as being a primal graph in IIO (step C2).

Step C6 insures that time is not spent attempting a useless factorization. If
G equals any of the factors in the partial factorization of GO, we have arrived at
an ieomorphic factorization. We must return to the previous level and try a

different factorization.

29

The list of primal graphs becomes exhausted, P = FULL, at the topmosat
invocation of Control if G0 does not have a factorization involving any of the primal
graphs in I'IO. The conclugion is that GO has a factorization involving a primal

graph ¢ IIO. possibly itself.

30

Section 4: Search Procedures

When designing the search procedures, it is necessary to know how the graphs
are to be represented in memory. The vertices of a graph, G, are labelled from 1
to N = |V(G)]. The graph G is stored as an array of N sets, where set Gli]
containg the neighbors of vertex Vi We write i for \f by abuse of notation. In

the following, lower-case letters VoV, 8 . B represent vertices.
|

7 .
e.g. The graph G = is stored as:
b 3

2, 7
1, 3
G383l = {2 4
G4l = { 8, 7
Gl5] = { 2, 6
G[6] = { 5, 7
Gl ={1 4

Constraints are placed upon the search procedures to avoid duplication of
searches. Before explaining the constraints used the following definition is provided:

Automorphism of a graph G:
A permutation a of V(G) such that {v,w} € E(Q) ~ {av), a(w)} € E@G).

The automorphisms form a group Aut(G).

The automorphisms induce an equivalence relation p on V(G) by:

v p w iff there is an automorphism a € Aut(G) such that a(v) = w.
The equivalence class of a vertex v under p is called the orbit or transitivity class
of v.
Following are two constraints which are used in the search procedure algorithms:
Equivalence Clasg Constraint

When searching for a primal graph, P, we wish to search only for one
isomorph, not all. To accomplish this, we require that all vertices in an

31

equivalence class should follow each other in ascending order.
e.g. When searching for the 8-sun = o

g P b e
the equivalence class constraint requires that a < b < c.

Q‘———os
When searching for the S-crab = ul

_ e ¢ b d
the equivalence class constraint requires that b < ¢, and f < g.

Order_Constraint

This constraint is a direct result of the equivalence class constraint. It is best
explained by the use of an eimnple. Take the above example of searching for a
8-sun. The equivalence class constraint requires that a < b < c¢. This results in
the order constraint which requires that a < N-2, b < N-1, where N = the
number of vertices in the graph G. Clearly, if we allow a > N-2, it is impossible

to find b and ¢ such that the equivalence class constraint will be satisfied.

32

Search Procedure Algorithms

algorithm SunSearch(G, P, 70, nfacs)

/*
Find a,b,c,d,e,f such that :
a<bc<ec
{alb)c} - Ka
{a,d}, {be}, {c,f} € EG)
*/

for each a € {v € V(G) | deg(v) > 8 and v < N-2 } do

for each b € {v € V(G) | deg(v) > 8 and a < v < N-1 and
{a,v} € E@G)} do

for each ¢ € {v € V(G) | deg(v) > 3 and b < v < N and
{a,v}, {b,v} € E(G)} do

for each d € {v € V(G) - {a,be} | {a,v} € E(Q } do
for each e € {v € V(G) - {ab,c,d} | {b,v} € E@G) } do
for each f € {v € V(@) - {abc,de} | {c,v} € EG } do
ResumeSearch(G, P, 7o+ nfacs)

return

33

algorithm CrabSearch(G, P, 3’0. nfacs)

/*
Find a,b.C,d.e,f,g such that :
b<e
{a.b,C} = Ks
. {b,d}, {c,e}, {f,g} € E(G)
/

for each a € {v € V(G) | deg(v) > 2 } do
for each b € {v € V(G) | deg(v) > 8 and v < N-1 and {a,v} € E@G) } do

for each ¢ € {v € V(G) | deg(v) > 3 and b < v < N and
{a,v}, (b,v} € E(G) } do

for each d € {v € V(G) - {a)b,c} | {b,v} € E(G) } do
for each e € {v € V(G — {abed} | {cv} € EG) } do
if FindaK11(f, g, V(G) - {a,becde) = FOUND
then
ResumeSearch(G, P, ?o, nfacs)

return

algorithm FindaKll (a, b, V)
/*
Find a,b € V such that {a,b} = K1 1
*/
status — NOT—FOUND
for each a € {v € V} do
for each b € {v € V | {v,b} € E(G)} do
status «— FOUND

return

84

algorithm RSearch(G, P, 70, nfacs)

/#
Find a,b,c,d,ef,g such that :

b<e

{a vbvc} = 1{3

o {a,d}, {d,e}, {f,;g} € E@G)

for each a € {v € V(G) | deg(v) 2 8 } do
for each b € {v € V(G) |deg(v) 2 2 and {a,v} € E(G)} do

for each ¢ € {v € V(G) | deg(v) 2 2 and {a,v}, {b,v} € E(G) and
b < v} do

for each d € {v € V(G) — {a,bc} | deglv) > 2 and
{a,v} € E(G) } do

for each e € {v € V(G) - {a,bc,d} | {d,v} € E(G) } do
if FindaK11(f, g, V(@) - {ab.cd,e}) = FOUND
then
ResumeSearch(G, P, 70, nfacs)

return

35

algorithm QSearch(G, P, ?0. nfacs)

*
é‘ind a,b,c,d,ef,g such that :

a<b«<e

a<d

a<e

{a,b,c,d,e} = C5 (a pentagon)
*/

for each a € {v € V(G) | deg(v) > 2 and v < N-4 } do

for each b € {v € V(G |deg(v) > 2 and a < v < N-1 and
{a,v} € E@G) } do

for each ¢ € {v € V(G | deg®) > 2and b <v £ N and
{a,v} € EG) } do

for each d € {v € V(G) — {a,b,c} | deg(v) > 2 and a < v £ N and
{,v} € EG } do

for eack. e € {v € V(G - {ab,c,d} | deg(v) > 2 and
a <v < N and {c,v}, {d,v} € E(G) } do

if FindaK11({, g, V(G) - {a,b,c,d,e}) = FOUND
then
ResumeSearch (G, P, 70, nfacs)
return

36

algorithm YSearch(G, P, ?'o, nfacs)

/*
Find a,b,cd,ef,g such that :

b<<d<«f

{a,b}, {a,d}, {a,f}, {b,c}, {de}, {f,g} € E@G)
*/

for each a € {v € V(G) | deglv) > 3 } do

for each b € {v € V(G) ~ {a} | deg(v) > 2 and v £ N-2 and
{a,v} € E(@G)} do

for each ¢ € {v € V(@) — {ab} | {b,v} € E(@} do

for each d € {v € V(G) — {ab,c} | deg(v) > 2 and b < v £ N-1
and {a,v} € E@ } do

for ea h e € {v € V(G) - {ab,c,d} | {d,v} € EG) } do

for each f € {v € V(G -~ {abecd,e} | deglv) > 2 and
d <v £ N and {a,v} € E(G)} do

for each g € {v € V(G) - {ab,cdef} |
{fv} € E@G) } do

ResumeSearch(G, P, ?O, nfacs)

87

Star Search Procedure

The following represents the star oK, o where o = 2, § = 2% re 2 0; A is the

central vertex of star j, and B) is the i"" neighbor of AJ.

3 -
4 ~ 4
G,a 1 6;. &2 81 S& g™ B8, g~
\ CJ_ , l)8 » ;‘. -
= - . /
4 ’ e} , / e
b ' //.‘ 3 ' / V3
\ / ' ' / '
4 1 1 - - - - - - - t
o] /’ \ A&‘. i N ﬁ& /
\ ’ \ /
v AY
- s ’ \\ - . /’ N ~ -

To insure that only one isomorphic copy of a particular star is found, we

include the isomorph rejection constraints A1 < A2 < .. < A* and

Bll<Blz<...<Blﬁfor1ia.

88
algorithm StarSearch(G, P, 70, nfacs)
/ltl
TrytoﬁndinGacopyofthestarP-aKlﬁ.
Variables:
a: the number of copies of the star
f: the degree of the star
center: the central vertex of one copy of the star
n: the number of copies of the star found so far
U: the set of vertices used so far in the search for aKl)
*/

a +« the number of copies of the star P
f +« the degree of the star P

nee2J0

center « 0

U~ ¢

Findastar (a, §, center, n, U)

return

algorithm Findastar (a, 8, center, n, U)
ifn=a

then ResumeSearch (G, P, 70, nfacs)

®
e

8e

for each a € V(G) ~ U | deg(a) > B and center < a < N do

for each by, by, ..., by € V@-U | {ab} € EG) V i and
1<b Sby<..Sby<Ngo

U~ U + {a, bl’ by, we bp}

Findastar (a, 8, a, n+l, U)

;

39

K2N_ Se:vch Procedure
The following represents the K2N aK2 8 where a = 2’. B - 28. and for 6 = 1, r

zo;fors-2,r-1,2;fors>2.r-1;AjandBjmtheoentralvertioeaof

the j* K2N, and o: is the i neighbor of both Al and B.

LS ca Co:_
Cy i
! A Y o ' o~
V2 =8 e
| |
1 t
1 L
‘ l
(N
)
¢y C.; e

To insure that only one isomorphic copy of a particular K2N is found, we

include the isomorph rejection constrainte A1 < B.‘l and A1 < A2 < ..< A% and

Ci1<C§a<...<Ci for 1 €1 <€ a.

8

40

algorithm K2NSearch(G, P, 70, nfacs)

/*
TrytoﬁndinGaoopyoftheK2NP-aK2ﬂ.
Variables:
a: the number of copies of the K2N
B: the degree of the K2N
center: the smallest of the two central vertices of one copy of the K2N
n: the number of copies of the K2N found so far
U: the set of vertices used so far in the search for aK2 8
*/

a « the number of copies of the K2N P
p +— the degree of the K2N P

n«~20

center — 0

U~¢§

FindaK2N (a, B, center, n, 1)

return

algorithm FindaK2N (a, B, center, n, U)
if n = a

then ResumeSearch (G, P, .?’O, nfacs)

else
for each a,b € V(G)~U | deg(a), deg) > B and center <a < b < N do
for each Cpr Cor oo °p € V(@3)-U | {a,ci}, {'b,ci} € E@ V i and

1<¢ <c¢ S...ScpsNdo

1 2
Uo—U+{a,b,c1,c,...,cﬁ}

FindaK2N (a, §, a, n+l, U)

;

41

Section 5: Implementation

The program was originally implemented in Pascal on the Vax 11/780 under
VMS. The program was later transferred to and run on a Vax 86500 and =&

Micro-Vax,
Generation of Input Files

The graphs used for primality testing were generated using a program written
by E. Regener, originally in connection with work in Ramsey theory [8]. This
program generates for n > 7 vertices all non-isomorphic graphs not contsining any
of a certain set K of graphs on six vertices. The set K can be defined by the
user to be any subset of the set G6 of all 156 graphs on six vertices. The
program generates graphs on m > 7 vertices from those on n — 1 vertices. The

starting set G6 — K is generated by a separate program.

Three different classes of graphs were generated for primality testing. The
first, called the “N-class”, contains all graphs on n vertices without restriction: the
set of forbidden graphs KN ie empty. The second, or “S~lass”, contains just those
graphs which have no vertex of degree > 3, and the third, or “T-cless”, contains
those graphs from the S-class which have no cycle of length < 6. In fact, we
restricted the finai runs to graphs in a “T’-class”, with no vertex of degree > 3 and

no cycle of length < 7.

Tables 6a and 6b give the pumber of graphs generated and tested in each
class for each number of v;rt,ices > 6, together with the number of graphs in each
category for which factorizations were not found. If the number generated is
followed by *, then this is the total number of graphs in its clags. If it is
followed by +, then this contains the total number of graphs in its class, but there

may be some duplications (the graphs generated in each computer run are

non-isomorphic, but on different runs there may be overlaps).

42

C #Verts Number Graphs Other graphs which
Generated in HO are non-factorable

L3

N 6 156 3: 2K1'2, 1{2’4, 38-sun 0
%
1044 4: 3crab, R, Q, Y 0
[
12346 2: 2K, 5, 4K, 0
9 274668 1K g 0
10 2982430*(35%) 2 Ky g 2K, 0
S 6 62])
»*
7 150 ; .
™
8 424]]
*
9 1165] .
®
10 3547 0 0
L 3
11 10946 0 0
*
12 86327 L 4K, , 0
-
13 124380 0 0
14 155858 (38%) O 1 V71
16 174292 (12%) O 3: V7-2, V81, V6-1

Table 6a - Files Tested for Primality

Of all graphs tested, roughly half were eliminated immediately since they had
an odd number of edges; in a given class Gn of graphs on n vertices, the set of
graphs with at least one isolated point is just the set of graphs on n — 1 vertices,
Gn—l’ and these could also be eliminated with no further testing.

Performance of the Program

In practice, the program spent most of the time searching for stars. This is
understandable considering that the primal graphs with the fewest edges are stars
and can be removed from a graph in several ways. The program was modified so
that if the time taken by a search exceeds a specified threshold value, the search

43

C #Verts Number Graphs Other graphs which
Generated in no are non-factorable
'™
T 6 20 - -
W
7 88 - .
W
8 83 - -
*®
9 183 - -
*
10 461 - -
*
11 1212 - -
*
12 3578 - -
*®
13 11207 - -
™
14 38208 0 1: See S-class
15 189375" 0 8: See S-class
16 146459 (30%) 1: 8K11 8: V7-8, V74, V8.2,
Vv8-3, V9-1, V6-2,
V6-3, V6-b
17 632187 (30%) 0 5: V7-b, V8.4, V6-4
vé6-6, V6-7
*
T 16 32866 See T-class : See T-class
17 972867 0 : See T-class

18 26801 (10%) 1: 2K
19 84368 (10%) O

1,8

o O O

Table 6b - Files Tested for Primality

is aborted and the graph written out on a file for later study.

Experimentation with the threshold value showed that most graphs took only a
few tenths of a second to solve, while a very small minority took time ranging
from 80 seconds to several minutes. Increasing the threshold time essentially
increased the running time in proportion. Thus we evolved the following way of
using the program: with a fairly low threshold value (about 1 minute), we
geparated the “difficult” graphs from the file. The program was run again on these

graphs, using a different lexical ordering. These two runs were usually sufficient to

44

gift from the file all graphs except primal graphs and a few exceptionally difficult
cases, which were easily solved by hand. It appears from the nature of the results
that the backtracking part of the program is the least efficient by at least an order
of magnitude, and if the program is to be run on very large cases this part must

be rewritten.

Tables 7, 8a, and 8b show the computer time spent generating the input files
and running the program to test for primality on these files. If the number of
graphs tested for primality exceeds the aumber of graphs generated, then some

graphs were tested more than once.

C w#Verts Number Time in Number of Time in
of Graphs seconds to Graphs Tested seconds to
Generated Generate for Primality Test
N 8 12346 254 12346 137
9 274668 7828 515638 9466
S 7 150 6 0 0
8 424 12 0 0
9 11656 44 0 0
10 8547 174 3547 34
11 10946 770 10946 102
12 36327 3439 86327 766
13 124380 13553 124380 8984
14 107232 14438 107232 2284
Totals: 571203 40518 810434 16773

Table 7: Summary of Computer Time spent on Vax 8500

45

C #Verts Number Time in Number of Time in
of Graphs seconds to Graphs Tested seconds to
Generated Generate for Primality Test

N 8 12346 798 0 0
9 105562 8802 0 0

10 2982430 419656 2828064 1217382

S 7 150 20 0 0
8 424 388 0 0

9 1165 140 0 0

10 8547 576 0 0

11 10946 24356 0 0

12 36327 108156 0 0

13 52369 24488 0 0

14 48626 31941 48629 8068

15 174292 151119 180778 29007
Totals: 3428184 650827 8057466 158807

Table 8a: Summary of Computer Time spent on Micro-Vax.
C #Verts Number Time in Number of Time in
of Graphs seconds to Graphs Tested seconde to
Generated Generate for Primality Test

Tand T 7 38 6 0 0
8 83 8 0 0

9 183 24 0 0

10 461 79 0 0

11 1212 316 0 0

12 3578 1205 0 0

13 11207 5271 0 0

14 38208 24634 88203 5390

15 1393756 120651 139375 9868

16 146459 302488 183228 78692

17 532187 722851 635053 828040

18 26801 28578 26814 19241

19 84368 113927 86937 106328

Totals: 984160 1320038 1008616 647669

Table 8b: Summary of Computer Time spent on Micro-Vax

46

Section 6: Conclusions

The algorithm is implemented in such a way that only a single line of code
needs to be altered to change the ordering of the classes. This allows testing the
various class orderings to see which is the most efficient. Table 9 shows some of
the class orders tested on a file of 40161 graphs on 9 vertices with the time spent
on each run. The timings of the different orderings suggest that it is best to
order the graphs with priority given those graphs with the most edges, the least
amount of symmetry, and no independent K’l,l’s' The extra Kl,l in Q, R, and
the 3-crab lengthens the search for these graphs since several Kl,l's may be found
for each occurence of P — Kl,l’ where P is the Q, R, or 3-crab. Corollary 1

Run Number Clags Order Run Time in Seconds
008 8-sun, Q, R, Y, 3-crab, K2N’s, Stars 459
010 3-sun, 8-crab, Q, R, Y, K2N’s, Stars 6565
005 Q, R, Y, 8-crab, 3-sun, K2N’s, Stars 629
006 K2N’s, Q, R, Y, 3-crab, 3-sun, Stars 907
002 R, Q, Y, 3-crab, 38-sun, K2N’s, Stars 1098
009 Y, 8-sun, Q, R, 3-crab, K2N’s, Stars aborted after 600

Table 9: Run Times for Different Lexical Orders for a file consisting of 40161
graphs on 9 vertices.

states that for a graph G, G AG) + H, where RG) is a partial factorization of
G, if VP € G, P ¢ H then G factors into elements of II. We were curious to
see if the time spent deciding if all graphs in the partial factorization were not
contained in H would be less than the time taken to ignore this step and simply
continue the factorization. We disabled the code corresponding io Corollary 1 and
re-tested run number 005, now called run 007. Run 007 required 1216 seconds,
nearly twice the time required by run 005, 629 seconds. This indicates that

47

corollary 1, when incorporated into the algorithm provides a significant savings in

) R b
wa@ time. PR TRRTW
VAN I 1 1
The search for a factorization of the graph G =
Tt \3 1§13

was aborted after 120.17 geconds. The lexical ordering of the primal graphs used
for this search gives priority to K2N's over stars. Since all K2N's have priority
over all stars, the program searches for a factorization involving both a 2K1.2 and
a K1,2' This graph cannot be factored using both a 2K1'2 and a K1,2 as factors.
If we were gearching for primal graphs with more edges first, then we would
search much sooner for 8 1,1 as a factor, whereupon the result would be

immediate by Lemma 1.

Our program has delivered a total of 17 primal graphe with 14 edges,
including the 7-sun and the 7-crab (see Tables 1-5). The graphs V6-8 to V6-12
inclusive were determined by hand. The graphs V6-9 to V6-12 could not be
produced by the program in class T since they contain triangles. The grcph V6-8
was not included in any of the runs. We produced these five graphs by hand
based upon the results generated by the program, they are visually very similar.
The graphs in Tables 1 to 5 include all primal graphs of 14 edges presently
known, of which graphs V6-5, V6-6, V6-9, and V6-10 appear here for the first
time. We have reason to believe that ihug iist of primal graphs on 14 edges is

complete.

Based on the tests run for this research, we can estimete the time needed to
complete the search for primal graphs on a given number of vertices with certain
restrictions. Table 10 shows our estimates in hours of computing on a Micro-Vax
for certain classes of graphs (numbers of graphs are estimated to 3 figures).

Possible Improvernents

Symmetry of GO: Each of the search procedure algorithms recognize the
symmetrical properties of the primal graphs by imposing constraints on the

48

Class of Number of Estimated Number Estimated Time
Graphs Vertices of Graphs in Hours
N-class 10 5558800 (65%) 279
S-class 14 254300 (62%) 59

16 1278100 (88%) 3867
T-class 16 341700 (70%) 247

17 1241800 (70%) 681
T -class 18 241200 (90%) 120

19 769300 (90%) 551

Table 10 - Estimate of time required to complete some test cases.

searching techniques. The symmetry of the input graph, GO’ is not recognized by
the program and for some graphs this results in eeveral redundant eearches being
performed. This inefficiency is best demonstrated by use of an example:

H =1 b

}
The graph G = can be factored only using stars and K2N's, If

the lexice.l orderingg givesl higher7 priority to the 3-sun than to the stars and K2N's
then much search time is wasted atempting to factor G using the 8-sun. The
3-sun is contained in this graph but each configuration of G — 8-sun yields another
3-sun. The program attempts to remove the 3-sun from the graph G 24 different
ways before concluding that G does not have a factorization using the 3-sun. If
the program recognized that vertices {2,3,4,5} and {6,7} each form a transitivity

class of V(G), then the conclusion that G does not have a factorization involving

the 8-sun would be reached =fter the first attempt at such a factorization.

The efficiency of the algorithm depends heavily on the lexical ordering of the
primal graphs. While the ordering of the classes is easily changed, the ordering of
the graphs within the classes of stars and K2N’s is not easily changed. It would
be beaeficial to change the lexical ordering so that it is independent of the classes.
This would allow us to search for the larger graphs first. The order of the stars
and K2N’s would be interspersed, we would not need to search for all K2N's before

49

searching for any star.

The results and the nature of the problem suggest that the search for primal
graphs may be best undertaken using files of graphs on a given number of edges

rather than on a given number of vertices.

50

Appendix: Proof of Theorem 1

A set of graphs I' is said to be primal relative to the set of graphs 0 if:
DT Ccq,
ii) each graph in Q1 factors into non-isomorphic elements of I', and
iii) graphs in T have only a trivial such factorization.

Theorem 1: (Dewdney [1])

Let I‘n denote the set of all graphs with at most n vertices. Then there is a
unique set IIn of graphs that is primal relative to I‘n.
Proof: (Dewdney [1))

The theorem is true in the case n = 1 for here r, = {a single point} = I,

and H1 is primal relative to l‘:l since iii) holds and ii) holds trivially.

Suppose the theorem is true for n = k — 1. Since rk—-l containg at most a

finite number of distinct graphs, let
Hk—l - {Pl, Py ooy Pm}

be the existing and unique set of graphs primal relative to rk—l' If Hk exists, it
must contain a subset H'k congisting of all graphs in Hk having one or more
isolated points. If G € I‘k and G has an isolated point, then G can be factored
into distinct graphs in H'k. Furthermore II’k has property iii) with respect to the
graphs in I‘k which contain at least one isolated point. Thus if exactly one
isolated point is removed from each graph in n’k, we obtain a set primal relative

to T By induction assumption, this set must be nk-—l' If IIk exists, we

k-1
must include the graphs P’l, P'2, s P’m obtained from Pl’ P2, v P m

respectively by adding exactly one isolated point to each. Let H'k = {F 1) PO

P’m}.

51

If every graph in T, can be factored into distinct graphs in n'k. we have
shown that nk(-n'k) existse and is unique. Otherwise let © = {Hl, Hz. .y H r) be
the set of graphs in I‘k which cannot be so factored. At least one of these graphs
must have the property that any proper subgraph can be factored into distinct
graphs in I'I’k. For if Hl' say, does not have this property, it contains a proper
subgraph K which cannot be so factored. Moreover K € © by definition. Applying
the same reasoning to K tells us either that K has the property in question or
that it has some proper subgraph € © which doesnt have the property. This
process cannot continue indefinitely. Without loss of generality we assume that any

proper subgraph of I-I1 can be factored into distinct graphs in H'k.

If IIk exists, it must contain Hl’ else H1 can be factored non-trivially into
distinct graphs of l'Ik and each of these factors would be proper gubgraphs of Hl

and therefore would lie in H'k. But H1 cannot be so factored by its definition.

let I, = I'I'k u {Hl} and let {H’l, H'2. e H's} be the set of graphs in T’

k k
which cannot be factored into distinct graphs in H"k. (If none such exist, the

argument below shows that II'k is the uniquely existing set primal relative to I‘k).
Arguing as before, we may assume that H'1 has the property that eny proper

if T, exsts.

subgraph can be so factored. As before we can show that H’1 € Hk. K

Enlarge H"k to H"’k by adjoining the graph H'1 and continue this process
until a set Hk is reached such that every graph in I‘k can be factored into distinct

graphe in -ﬁk' Hk has the property iii) relative to I‘k since this property was
preserved at each stage of the construction of Hk' Now Hk is a eet primal
relative to I‘k and is a set whose existence we have shown by construction. If Hk
containg a graph not in Ek’ it can be factored non-trivially into graphs in Hk <
I

and thus into graphs in II,, which is a contradiction. Thus the set I'Ik which

k k’
is primal relative to I‘k exists and is unique. This proves the theorem.

52

Bibliography

1. A. K. Dewdney, “Primal Graphs”, Aequationes Mathematicae 4(1970), 326-328.
2. P. Z. Chinn, R. B. Richter, P. A. Thoelecke, “Families of Primal Graphs”,
Humboldt State University, Arcata, California, 95521.

3. E. Regener, C. W, H. Lam, J. Opatrny, “Invariants for exhaustive searching in
Ramsey theory”, Sixteenth S.E. Int. Conf. on Combinatorics, Graph Theory, and
Computing, Feb. 1985. Congressus Numerantium, Vol. 49, pp. 147-160, 1985.

4. Robin J. Wilson, “Introduction to Graph Theory”, Edinburgh: Oliver & Boyd,
1972,

6. R. B. Richter, private communication.

