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Abstract

Semantics of Behavioral Inheritance in Deductive Object-Oriented
Databases

Hasan M. Jamil, Ph.D.
Concordia University, 1996

We argue that powerful models for supporting next generation database and knowledge-
base applications can be built by extending semantic data models in the direction of
Object Oriented modeling. It is clear that modeling such new applications will re-
quire concepts like modularity, behavioral abstraction, derived schema components,
and database knowledge (e.g. constrainis). Most of the required concepts are already
present in these two seemingly parallel models in the form of the notions like ob-
ject identity, inheritance, encapsulation, methods, virtual objects and classes. but
have important differences. We present a conceptual Abstract Data Model called the
Object Relationship (OR) model which reconciles semantic and object-oriented data
models and extends the modeling capability with additional concepts like withdrawal,
stratified constraints, methods in relationships, and encapsulation.

We then propose a novel semantics for object-oriented deductive databases as a
formalization of the OR model in the direction of F-logic to logically account for befrar-
ioral inheritance, conflict resolution in multiple inheritance hierarchies, and overrid-
ing. We introduce the ideas of withdrawal, locality, and inheritability of propertics (i.c.,
methods and signatures). Exploiting these ideas, we develop a declarative semantics
of behavioral inheritance and overriding without having to resort to non-monotonic
reasoning. Conflict resolution in our framework can be achieved both via specification
and by detection. The possibility of specification based conflict resolution through
withdrawal allows users to state inheritance preference. We present a formal account
of the semantics of our language by defining a model theory, proof theory and a fix-
point theory. We also prove that the different characterizations of our language are

equivalent.
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We finally present an elegant technique to reduce inheritance to deduction based
on the idea of constrained deduction, called the i-completion. The reduction tech-
nique makes it possible to implemert object-oriented databases with inheritance,
overriding and conflict resolution in a purely deductive system. An ORLog prototype
implementation on Coral deductive database system is discussed based on this reduc-
tion technique. We are able to exploit the rich set of query optimization techniques

available in Coral since the implementation does not require meta-interpretation.
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Chapter 1

Introduction

1.1 Motivation

“Object orientation” is both a language feature and a design methodology. The
design methodology is likely to have evolved from the simulation approach that was
used in Simula [14]. Among others, an important characteristic of objects is that
they provide a uniform interface to all components of a system. In particular the
interactions between objects occur via a single and simple concept of message passing
independently of the size or structure of the objects.

Object-orierted systems also provide a form of modularity, independence, abstrac-
tion, scope for sharing, etc. These are the properties that are vital for the survival
and effectiveness of modern software systems. These systems also provide a “black
box™ capability by hiding implementation details which is useful for practical large
software development and their maintenance. Inspired by these ideas, several suc-
cessful procedural languages, such as loosely typed Smalltalk {16] and strongly typed
C+* [72], have emerged.

Motivated by the success of these languages, the logic programming community
has expended their best effort in devising an object-oriented logic programming lan-
guage in the recent years. Despite all the efforts, only limited success has been
achieved in this area. However, researchers have identified two major issues that
need to be addressed. The first issue is developing a logicnl characterization of in-
heritance in object-oriented systems. Although the idea of inheritance is simple, it

has been found to be one of the most difficult challenges towards the development



of an object-oriented logic programming language. The second issue is capturing en-
capsulation in the intended language and this has been found to be another difficult
concept to formalize. The concept of encapsulation. however. is in the heart of “ab-
stract data types” on which object-oriented systems rely. Together they, inheritance
and encapsulatic., form the backbone of object-oriented languages in general.

The investigation into object-oriented issues in a closely related field of logic pro
gramming, the deductive databases, is fairly recent. Traditionally, databases are
mostly concerned with persistence, storage management, concurrency, recovery and
ad hoc querying facility. In the recent years, researchers in the deductive database
community have successfully added declarative style of programming and querying,
the databases to this paradigm. In this declarative environment, users arc now frec
to design and query the database in any fashion without worrying about the cost or
efficiency of the system. This means that in deductive databases, this responsibility
is delegated t~ the system:.

Researchers in databases widely believe that next generation database systems
will require the data modeling capability of object-oriented systems, and they agree in
principle that an object-oriented database system must satisfy two criteria - it should
be a database management system and it should be an object-oriented system. The
second criterion translates into the following eight mandatory features that we need to
accommodate in databases - (i) complex structured objects, (ii) object identity, (iii)
encapsulation, (iv) types or classes, (v) inheritance, (vi) overriding and late binding,
(vii) extensibility, and (viii) computational completeness [9]. Clearly, a deductive
object-oriented database would also be required to accommodate all eight of these
features.

In this thesis we address the issue of the integration of object-orientation with
deductive databases. Clearly part of the challenge is to provide linguistic instruments
to capture the eight golden properties mentioned above in a declarative database
language. Fortunately, for deductive databases, there has been a commonly agreed
data model, namely first-order logic, that nicely maps on to the relational data model.
But unfortunately, there is no commonly agreed upon data model for object-oriented
databases. Hence, we are required to devise a data model that incorporates features
to support these golden properties. Furthermore, we will have to take up the issue of
inheritance and encapsulation as faced by the logic programming comrmunity, since

the problems are identical in these two paradigms.
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1.2 Scope of this Thesis

The broad scope of this thesis is to develop a loosely typed logic based object-oriented
query language for deductive databases. This loosely typed language would allow
static typing and type safety yet allow flexible programming a la Smalltalk.

The specific goal of this thesis, however, is to develop a query language called
ORLog and a logical semantics for the seven out of eight mandatory object-oriented
features, namely — complex objects, object identity, types or classes, inheritance,
overriding and late binding, extensibility and computational completeness. The only
component that is not covered by this work is encapsulation. We will, however, revisit
the issue of incorporating encapsulation in ORLog at the end of this thesis.

Although we develop ORLog to model the seven features outlined above, we pay
particular attention to inheritance, overriding and late binding, and completeness.
The other features are captured as a by-product.

But before we proceed with the development of ORLog, we must also develop a
data model that can be used as an underlying conceptual tool for ORLog schema
design and conceptual modeling. To that end, we develop a conceptual model, called
the OR model, that combines features from SDMs and object-oriented programming.
giving rise to the notion of abstract data models. Finally, we also present a prototype
implementation of ORLog into Coral deductive database system. To this end, we
first develop an encoding technique to translate ORLog to Coral and an inheritance

reduction technique to be able to implement inheritance in a purely deductive system.

1.8 Organization of this Thesis

We organize the presentation of this thesis as follows. We present a complete theme in
a single chapter. Since we address several unique issues that have distinct properties
and features, we delegate the discussion on their background and the related research
in that area in the corresponding chapters. Hence we do not include a separate
chapter on related works and motivations in this thesis. Whenever appropriate, we
include our comments at the end of a particular chapter.

Keeping the abovez in mind, in Chapter 2, we develop and present our abstract data
model called the Object Relationship model, or the OR model. Then in Chapter 3 we

present our language ORLog that embodies the semantics of all the seven mandatory



features, and behavioral inheritance in particular. ORLog is a logical formalization
of the OR abstract data model. We discuss a translation technique of ORLog to a
first order language in Chapter 4. In this chapter, we also present an inheritance
reduction technique based on completion that together with first-order translation
enables us to implement ORLog in an existing deductive database system, such as
Coral, as an object-oriented front-end. Finally we also report and discuss a prototype
implementation in Chapter 5 based on the reduction technique presented in Chapter
4, In Chapter 6 we present a critical review of contemporary research in logical
object-oriented paradigm in view of ORLog and discuss issues related to ORLog
implementation. We then summarize and give our conclusion in Chapter 7 and discuss

future research.
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Chapter 2

OR Model: An Abstract Data
Model

In this chapter we shall present our Object Relationship (OR) model. We will first
outline the broad objectives of this new data model. Then we will describe various
building blocks. or semantic constructs, we use in our model. While some of the
constructs are adapted from other semantic data models, several new ones are intro-
duced to increase the modeling capability of the OR model. We then discuss global
restrictions on the building blocks in order to be able to use these constructs in a
coherent manner for database schema design. We also propose a notion of admissible
databases which captures the intended semantics of a meaningful database by impos-
ing further restrictions on the semantic behavior of the model. We will also identify
its strengths and weaknesses by comparing it with contemporary data models as we
describe our model. But before we proceed, we present a survey of existing data

models for object-oriented databases.

2.1 Related Research and Motivation

Programming with taxonomically organized data which are encapsulated with op-
crations has led to object-oriented programming. The object-oriented programming
paradigm is not only able to handle and manage complex and hierarchically struc-
tured data, it is also able to express the dynamic aspects of data with the introduction

of the concept of behavior and methods. The notion of inheritance in object-oriented



programming is intimately related to re-usability and sharing. The notion of encap-
sulation brings modularity and implementation independence to this paradigm.

It is believed that combining object-oriented concepts with databases will result in
clear benefits [77]. There is currently significant interest in object-oriented database
systems. Much of the research on OODBs was sparked by the need to provide ad-
eguate database support for next generation database/knowledge-base applications
such as engineering design, software development, VLSI design, etc. In general, such
applications necessitate features such as complex objects, object identity, behavioral
aspects of objects, re-usability (of designs or software code), and modularity and
implementation independence of subparts of the (software) design objects.

With the advent of new database applications such as geographical, engineering
design, multi-database, office automation, etc., the database modeling requirenients
have dramatically changed. These modeling applications demand sophisticated ab-
straction mechanisms to capture complex organization of data, intricate inter-object
relationships, means for variety of constraint specifications, etc.

Similar to object-oriented systems, semantic data models! (SDM) are very power-
ful in specifying database structures and schema at varying levels of abstractions, and
hence have a strong potential to be the object-oriented data model. SDM features
have been found to be extremely useful in the modeling and development of data and
knowledge based systems, as a design technique and documentation tool. SDMs are
also very powerful in expressing the relationships among data and their semantics at
a higher level of abstraction. Several forms of constraints can also be expressed in
these models. As opposed to behavioral encapsulation in object-oriented paradigm,
semantic models tend to encapsulate structural aspects of objects. In a different way
they are also capable of modeling complex structures, derived schema components,
type constructors, inheritance, etc. SDMs tend to hide the implementation specific
details while focusing on the logical organization of the databases. In that way they
serve as a great conceptual design tool as required by the three level architecture of
databases.

Although current SDMs offer a rich set of modeling features, they lack some
of the desired properties for an object-oriented model. Since the object-oriented

paradigm already possess some of the useful features essential for next generation data

1See [63] for a detailed survey of SDMs. A detailed reading and a tutorial on SDMs may also be
found in [39).



and knowledge base applications, it is believed that semantically rich and expressive
conceptual models can be built for future applications by extending the functionality
of the SDMs in the direction of object-oriented programming. The resulting mo-el
would likely become similar to abstract data types giving rise to the concept of abstract
database models (ADM).

The idea of abstract data types (ADT) has been extensively used by the object-
oriented (OO0) programming and database community during the recent years. The
need for programming with taxonomically organized data that are encapsulated with
operations, and are arbitrarily complex structured has led to the concept of object-
oriented programming. The OO paradigm is not only able to manage complex and
hierarchically structured data, it is also able to express the dynamic aspects of data
with the introduction of the concept of behavior and methods. The notion of in-
heritance in OO programming made it possible to maximize sharing of objects and
re-usability. The notion of encapsulation has given this paradigm the strength of
modularity and implementation independence, and hence provided a higher level of
abstraction. The introduction of behavior and methods provided another dimen-
sion of logical independence and allowed the user to view objects in terms of the
characteristics exhibited through their interfaces. Inheritance in OO langus ges allow
sharing. and re-usability of software components, while specificity is facilitated by
the idea of overriding. While encapsulation of methods enhances the idea of physi-
cal independence by hiding the internal structure, data, behavioral implementation,
etc. from thke outside world, inhzritance provides implementation independence as an
orthogona! mechanism. In all, the ADT is the key to all these nice features.

We, among others, believe that combining OO concepts with databases will re-
sult in clear benefits. There is currently significant interest in various forms of 0O
database (OODB) systems. Researchers have made a significant stride during the
last few years in combining these two concepts. Among others, the works reported
in [38, 37, 27, 35, 5, 34, 17, 70] are some of the representative ones to which we will
focus our attention.

The Data and Knowledge (DK) model [38] attempts to extend the ER like mod-
els in the direction of OO paradigm and tries to capture dynamic behavior, meta-
knowledge about data and constraints on the data in a simple setting and appears to
be the right approach towards a rich modeling tool. But it lacks quite a few features

that are essential for the purpose of abstract database modeling. Namely, it only
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uses aggregation (2] type objects and is thus value based. Hence it lacks the strength
of modeling complex objects and obviously other important features. The DERDL
model [37) also captures a few features in our direction. Particularly, it proposed the
idea of dynamic objects and relationships, and similar other dynamic properties of
database that is close to the spirit of derived schema components in SDM [36, 63, 39].
Since the underlying concept is value based, it also has the shortcomings of the DK
model.

The OBJECTModeler presented in [27] attempts to capture user's view of the
data and takes an OO approach. Similar to ER model, it emphasizes on type con-
structors instead of attributes and functions. It uses aggregation and grouping as the
abstraction mechanism. However, it does not capture the true spirit of OO modeling
and the idea of object based entities. That is the underlying model is still value
based. It somehow comes close to the spirit of network data model. Although it
allows multi-valued attributes, it fails to capture data relationships in such attributes
(m-m relationships). Other shortcomings include the dynamic schema components,
parametric attributes, and other several QO features.

In [35], Object Behavior diagrams are proposed to model objects and their be-
haviors and mostly concerns itself with behavior specification of object models. The
schema representation in this model seems to suffer from similar draw backs as it was
in the case with OBJECTModeler. Overall, the model seems complex, and descrip-
tion of methods and its associated behavior seems to have no clear mapping.

The model proposed in (5] is heavily biased towards OO modeling, and concerns
mostly with constraint management, and so does [34]. We do not consider them
as general modeling tools since they do not capture several essential features we
deem necessary for an abstract database model. But they do introduce a rich set of
constraint specification and maintenance tools. The CASE based model proposed in
[17] is a semantic network based model developed specifically for the QO language O,
[53] and Morse. It has limitations, in our opinion, even as an OO modeling tool. It is
an example of DBMS dependent data model. It also proposes an automated design
procedure of QO database schema from abstract specifications of the models.

To model a wide range of future applications such as engineering design, biological
and geographic database, etc. a generalization of several data modeling tools that are
currently available is required. The model should also be capable of providing support

for modular schema design, and as an aside, should support schema evolution in a
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natural way. The experience with semantic and object-oriented data modeling and
the needs for future datzhase modeling applications suggests that an abstract data
mode] should particularly possess the folluwing properties: (i) it should be simple,
expressive and versatile, (ii) should serve as a schema specification, documentation
and communication tool'among various levels of users, (iii) it should be able to capture
user’s view of the enterprise data, (iv) it should naturally support a user-friendly
graphical user interface for schema description and query processing, (v) it should
have a simple but rich set of high level abstraction mechanisms, (vi) it should be
able to model abstract data types, inter-object relationships and their associated
constraints, (vii) encapsulation should include both the behavioral and structural
aspect of data, (viii) the model should emphasize on type constructors rather than
attributes for modeling inter-object relationships, (ix) should allow value as well as
and id based objects, etc.

The semantic models in their present form are capable of capturing structural en-
capsulation, notions of abstract objects, derived schema components, type constructors
e.g., set objects, relationships, complex objects, etc.), is-a hierarchy of object classes,
several forms of constraints, etc. The OO models on the other hand, support objects
of abstract types, and classes, methods. messages, object hierarchy, (non)monotonic
and multiple inheritance, behaviord encapsulation, etc. OO models also incorporate
a number of constraints similar to update constraints which are unique to OO models
(e.g. update dependency relationships). The similarity in the set of concepts in these
two class of models suggest that an integration of this two concepts is possible.

In the next sections, we present our OR model. We start by defining the goals of
this raodel that includes a balanced mix of the features available in SDMs and OO
models. It also incorporates a limited form of security features [12] in the form of
privatization of methods and attributes and the notion of legal access to objects and

methods.

2.2 Objectives of the OR Model

We extend the concepts of the current SDMs in the direction of OO paradigm to facil-
itate modeling of taxonomical and hierarchical data that are encapsulated with oper-

ations, and thus enrich SDMs with modeling features available in the 00 paradigm.



We incorporate the notions of objects (defined shortly), entities and relationships (in
extended ER sense), and values in our model as basic building blocks. We stress
type constructor based inter object associations (as in extended ER models) - called
relationships as opposed to attribute based associations (as in FDM) — called inver-
stons [36]. We extend the framework of inheritance in OO models by introducing
the notion of withdrawal which allows us to model several applications very naturally
that we could not model using current approaches. We adopt in our model a subclass
instance relationship scheme different from many others. In principle we do not orga-
nize classes of objects on the basis of their types, rather on the basis of the semantic
relationships of the classes as viewed by the user (user defined subclass relationships).
This is consistent with the applications in the O0 domains - such as engineering de-
sign, and biological databases, etc. This idea has its roots in the definition of SDM
classes. The existing notion of derived schema components in SDMs 1s extended to
incorporate the notion of methods and messages in OO paradigm. The notion of
encapsulation is also incorporated in our mode), and we give a clear definition of this
notion in the context of abstract modeling. The notion of constraints in SDMs is
extended by organizing them in strata (global, local, and inherited) that gives us a
clearer sernantic meaning of constraints. This also buys us the power of resolving
constraint conflicts, easier constraint enforcement and maintenance schemes.
Finally, it is our intention to make the model expressive with a rich set of con-
structs, constraints and knowledge modeling tools while keeping it simple and easy
to use. We take a diagrammnatic approach to support a user-friendly schema design
interface with a small number of constructs. We view our model as a documentadtion
and communication tool among people in an enterprise at different levels. We also
believe that our model is also capable of capturing user view of the data(base). Due
to this uniformity it eliminates the need for a mapping from the user view of the data

to the corresponding conceptual view.

2.3 Basic Constructs

In this section we describe the basic constructs we use in our model and give their

local semantics. In the next section we will then impose restrictions on the use of
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these constructs as well as define their global semantics to be able to design mean-
ingful database schema. Figure 1 shows a partial McDonnell Douglas Aircraft Design
Database schema using OR-diagrams. The features in the OR model are represented
using OR-diagrams, which play a role analogous to that played by ER-diagrams for
the ER model. The legends in Figure 1 shows the meanings of each of the symbols

used in the OR example.

2.3.1 Objects

An object is a distinct real world entity with a unique identity. All objects have
intrinsic characterizing properties. Properties of an object help distinguvish the object
from other objects. Anobject may be concreteor abstract. An object is concrete if the
object can be described solely by its own intrinsic properties. These objecis are the
so called printable objects in many semantic models and are strings of alphan:meric
characters. In OR model these objects are called the basic objects.

Abstract objects on the other hand, are entities that are characterized by proper-
ties described using other basic or abstract objects. A notable distinction is that such
an object is almost always an abstraction of the corresponding real world entity and
is thus incomplete, while it possibly represents the object adequately for modeling
purposes. Hence an abstract object can be viewed as a collection of representative
properties of the real world counterpart. For example, aircraft and seat are abstract
objects (types). Note that, in OR model a rectangle is used to denote an abstract
object. The name of the object is written inside the rectangle above the horizontal
line. Shortly we will see other types of objects.

We say that an object is value basedif a change in properties changes its identity.
In OR model we call them enfity. On the other hand an object is identity based or
object based if its identity is independent of its properties. Such objects are actually
identified by a surrogate, called an object id or oid. We call them semantic objects.
In most of the semantic models and object oriented models, it is one or the other
types of objects that are allowed - i.e., the entities or the semantic objects. In OR
model, we allow a free mixing of both kinds of objects, and will make no distinction
between them unless it is necessary. This uniformity in the OR model, gives us the
capability of modeling heterogeneous databases, and design applications that require

multi-model database integration.
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Figure 1: Partial McDonnell Douglas Aircraft Design Database Scheme.
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The characterizing properties of abstract objects are called attributes. As opposed
to the object-oriented practice, properties are grouped around objects and only se-
mantically relevant properties are attached to an object as is the case in relational
model. Objects store data in attributes in order to save their states, and respond to
instructions for carrying out specific operations on their attributes when a request
for an operation, a message, is received by an object. A message specification always
includes a context (i.e. a recipient) saying which object should receive and respond
to a message. The set of attributes that can be accessed or the set of operations that
can be performed on an object are determined by the object. Thus an object exhibits
its behaviorin terms of these attributes and operations. In the example of Figure 1,
aircraft, DC10-30, scat, etc. represent (classes of) objects. The physical identity of
an object is hidden from the user if the object is a semantic object. In case of entities.
a set of atomic attributes uniquely identifies an object in its class — a key and is thus
available to users. Semantic objects in OR model exhibit a duality — as a class and
as a simple object, called an instance. Similar kinds of objects may be grouped into
classes of semantic objects or entity sets of entities. Unlike other SDMs (e.g., [36]).
we do not distinguish between attributes that describe properties of class objects or

member objects. We will take up this two issues again later in this se 'on.

2.3.2 Types of Objects

Similar to other semantic data models, OR model also has the provision for direct
representation of object types distinct from their attributes and sub- or supertypes.
Concrete objects in OR model are said to have basic types and abstract objects have
constructed types. They both correspond to the atomic typesin SDMs. However,
we do not consider abstract types to be atomic, rather we view them as complez®
since they may have arbitrary nested structures. Qur model supports aggregation
type [39], and grouping (or association) type [39] constructors to create new types of
objects from the basic and constructed ones. An aggregation is a composite object
constructed from other objects in the database. For example, each object associated

with the aggregation type useseat in Figure 1, is an ordered triple of aircraft, seat and

2In this thesis we do not make a distinction between complex objects and composite objects,
and thus use these terms interchangeably. However, Kim et al. [48, 49] makes a clear distinction
between them by bringing in 1s-pari-of relationship between objects — a construct that we do not
incorporate.

13



classcategory type objects. Mathematically, an aggregation is an ordered n—tuple.
An instance of an aggregation type will be a subset of the Cartesian product of the
active domains assigned to the participating nodes in it. Note that the identity of an
aggregation object depends on the component values of the object. Also note that in
the sense of ER model, entities can be viewed as an aggregation of basic types, while
a relationship is an aggregation of at least two or more constructed types. We also
take the same view and treat relationship typesto be different from the entity types
and say that all entities are persistent objects while the objects in relationships are
not. It is easy to see that aggregation types (entities and relationships) in OR model
are value based. We denote semantic object types and entity types using a rectangle
in the OR model whereas the relationships are denoted by diamonds.

The grouping constructs allow us to model sets of objects of the same type. Math-
ematically speaking, a grouping is a finite set. An instance of a grouping type will
hold a finite subset of objects of the active domain of the node of the grouping type.
A grouping object always has exactly one child (fecility in seat). The identity of a
grouping object is determined completely by that set.

Most of the type constructors of OR model may be applied recursively and nu-
merous kinds of types can be constructed using these simple constructors. But soon
we will see that OR model only allows certain kinds of types by imposing a global set

of restrictions on the type of applications of the constructors.

2.3.3 Domains and Values

In the OR model, there are two types of values - basic values and construcled valucs.
Basic values are essentially basic ob jects and are atomic elementsof the corresponding
basic domains such as integer, real, string, etc. Many of the existing 00 models
(e.g., see O, model [53] and F-logic [47]) treat basic values also as objects, some
models (e.g., 02) even allow oids for basic values. We believe this is unnatural and
make a clear distinction between them. Basic values are just values, distinct from
other objects, without any surrogates or ids, and are naturally treated as just values.
Unlike objects they do not participate in any class hierarchy (described next). On
the other hand, abstract objects (their surrogates or ids) are values of constructed
types. Thus, the value that can be associated with an attribute may be basic, or

structured. For example, the value of engines in aircraft is basic. the value of the
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attribute weapons in the object strategichomber is set structured. the value of engine
in DC'10-30 refers to another ohject of type rollsroyce and thus is of constructed type.
while the attribute fireegp in object md10 is of multi-type constructed value. That
means each of the values of the attribute fireegp belongs simultaneously to the types

typel and heavyduty.

2.3.4 Attributes and Methods

Objects {except basic objects) are described using attributes which are essentially
named data items describing the properties of an object. For example, in Figure 1.
company in aircraft, and takeofflen in DC10-30 are atiributes. There are two kinds of
attributes in the OR model. The kind of attributes that store data explicitly in the
database are known as erfensional. Intensional attributes have a procedure associated
with them in order to compnte the value of the attribute at run time. The language of
implementation of intensional attributes in OR model is a rule based language (e.g..
first-order logic or predicate calculus) which has a clear syntax and formal semantics.
For example. in the object class aircraft. company is an extensional attribute. while
tseat is an intensional attribute. The latter represents the total number of seats in
an aircraft. This is dependent on the floor space left after placing the kitchens in
the aircraft and on the type of seats that are being used ir: different accommodation
classes in the aircraft. Since the values of intensional attributes are computed using
a procedure. in terms of funciionality they capture the concept of methods in OO
models and the derived schema components (derived attributes) in SDMs.

Methods have an underlying contert, which is the object where they are operative.
and a set of typed input arguments. Thus. a message should have a matching context
and a set of arguments in order to be accepted by a method. An accepted message
leads to a successful invocation of a method {procedure). The implementation of a
method is hidden in the object where it is defined. E.g.. tseat is a method in the
ohject class aircraft. In OR model it is not required that an attribute name be unique
in a family of classes as it is essential in some of the models (e.g.. [36]). This allows OR
mode] to capture the notion of method polymorphism that almost all the OO models
have. We. however in general. do require that the signature (described shortly) of
each method be unique in a family of classes that are related via inheritance or is-a

association. The value of an attribute may be null. a basic value, a constructed value.
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or a multi-typed value. An attribute can be either single valued or set valued.

Speaking differently, attributes are the means of relating two or more types of
objects. Hence, an attribute in the OR model is viewed as an n-argument partial
function from an n—tuple of types to another type, where n > 1. The object in which
the attribute is being defined is called the context and acts as the first argnment of
the n argument function. Unlike other semantic models, we impose a type restriction
on the domain and range types of these attribute functions. We allow only basic
and constructed types in the domain, and all but aggregation type are allowed in the
range. The function may be single valued or set valued. SDM supports a feature
called type attribute which is an attribute associated with grouping tvpe that keeps a
kind of count. or other statistics. on the grouping types (e.g., cardinality of the set).
We do not support this feature because we support other feature that may angment
the functionality of type attributes. We also do not anticipate any natural use for
such feature in our framework. Moreover. we do not allow grouping type database
objects in isolation other than as a value of attributes and methods.

As mentioned above, all attribute functions are said to have a type. The type
of an attribute function f is of the form 7; x ... x 7 — 1 if it is single valued, or
71 X ... x Tg—={t} i{ it is set valued. If the function is single valued, then each tuple in
the domain is assigned exactly one object in the range of the expected type, otherwise
it is assigned a set of objects from the active domain of the range type. It is also
possible to assign a type to f of the form 7 x ... x 7 — {{1,....tm}. where it means
that f is single valued but the object in the range must belong to a set of domains
{ti..... tm} simultaneously. Ideally, ¢; through ¢,, must be constructed types, becanse
a basic object can not belong to more that one dornain at a time. This is called a
multi-type single valued function. Similarly a multi-type set valued function has the
type of the form 7 x ... X 7= {t1,...,4m}. For example the attribute firceqgp in
md10 is such a function. It says fireegp is a multi-type set valued function of type
md10 — {typel, heavyduty}.

Hence, unlike :*her SDMs [36], we allow an attribute name to accept arguments
and thereby forming an aggregation of different types. In this way OR model sup-
ports relation valued attribute since these functions represents n + 1—ary relations
Alternatively. it is clear that there is a (luse relationsnip between a one-argument
attribute whose range is an aggregation type and an n—argument attribute. By al-

lowing constructed type in the range of an attribute function, OR model supports
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Figure 2: Alternative approaches to attribute based inter-object relationships.

complex ty ping (aggregation type) of objects.

Some niodels (e.g.. SDM, FDM, F-Logic, etc.) capture inter-object relationships
using object attributes based on the notions of inversion and matching [36]. Although
inversion and matching is possible in OR model, we do not view an attribute as a
relationshi > mechanism among objects or entities, and we do not emphasize inter-
object relationships using either of these primitives. In OR model we emphasize type
constructcr based inter-object relationships. The use of type constructors allows
informaticn to be associated directly with schema abstractions. As an illustration,
consider Figure 2 that uses standard SDM notations [36].

In Figire 2 (a) the relationship between aircraft, seat and classcategory is shown
using inve 'sion through the family of attributes [uses]. A version of uses is defined
in each of these objects to capture the ternary relationship. Consider the same re-
lationship implemented in Figure 1 using the aggregation type constructor — the
relationshi]» useseat. In models like OR, that stresses type constructors, relationships
between ty res are essentially viewed as types and thus they are allowed to have at-

tributes that further describe them [39]. In Figure 1, we have allowed attributes cost
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and section in useseat. Contrast this with its inversion counterpart in Figure 2 (a).
In this case a family of attributes [section] are needed to be defined in each of the
objects (shown partially). Similarly, to capture the relationship between cost, section
and others, a similar set of attributes has to be defined. This is a major obstacle
in models (e.g., SDM, FDM, F-logic, etc.) which stress inversion as inter-object re-
lationship mechanism. The users either have to decide on the types of anticipated
relationships or have to define all possible sets of inversions. Some models such as
SDM and SmallTalk do not support an explicit type constructor and hence have no
choice but to model inter-okject relationships using attribute inversions only. It also
implies that in such models, value based objects, or entities are not possible.

In [68] similar observations have been made which supports our view point of not
stressing inversion as a relationship primitive. In [68] it is argued that enforcement
of inversion and matching constraints are not efficient particularly if it is enforcea
using methods. This is because the constraint is spread over multiple objects and the
objects concerned must communicate through messages back and forth to enforce the
constraint or to take corrective measures in case the constraint is violated possibly
after a long chain of method invocations. Moreover, such constraints must be coded
outside the objects concerned to have a global view of the constraints or in the method
implementations sacrificing modularity and abstraction. This result supports our
position of not using inversion as an inter-object relationship primitive. Thus we stress
that attributes should only be used to describe the object’s intrinsic characteristics
(data and operations).

In Figure 2 (b), tseat is shown as a binary function from aircraft and classcategory
to integer which represents the method tseat in aircraft. Notice that it is not clear
where the method is defined, and it may be regarded as it is defined either in aircraft,
in classcategory, or in both. To make a distinction as to where a method is defined, we
use a notation derived from standard SDMs as shown in Figure 2 (c¢), where tseat is
viewed as an attribute of the aggregation of aircraft and classcategory objects. Note
that in such an aggregation, only one attribute is allowed (i.e., one outward solid
arrow) and the solid arrow from a type to the aggregation shows where the attribute
is defined. In Figure 2 (c), tseat if defined in aircraft. Note that the same attribute
tseat is represented in Figure 1 using an attribute in aircraft with arguments of type
classcategory and a range type of integer.

Again consider the attribute fireeqp of Figure 1. To represent a multi-typed range
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we introduce a multi-type constructor, again derived from standard SDMs, as shown
in Figure 2 (d) (a triangle inside a circle). Each child of these nodes must be of
abstract object types (triangles) for the reasons described earlier, and such nodes
may only be used in the range of an attribute or a grouping type.

In some models (e.g. [5]) attributes are not allowed to have objects as values (i.e.,
the range of the attribute function may not be an abstract type), and others do not
allow arguments in attributes (e.g. [5, 36]). This limits the application of these mod-
els, weakens their modeling capability considerably, and parametric methods become
impossible to capture. In the former case, the model lacks the strength of supporting
complex objects that is the main purpose of OO models and in the latter case the

methods become essentially an attribute computed only at run time.

2.3.5 Signatures

As discussed before, all attributes and methods (function) in an object have a type.
A type of an attribute specifies what type of value an attribute can take. A type
associated with a method, also called a signature, is a tuple of the types of its in-
put arguments and the type of the computed value, of the form 73 x ... X 7, — 1.
The types associated with the method tseat in aircraft are aircraft—integer. and
aircraft x classcategory—integer, where aircraft is the type of the context and is im-
plicit, classcategory is the explicit input argument type, and integer is the type of the
output value. Note that OR model allows multi-typing of methods and in this example
the same method has two distinct signatures. This is essential for supporting method
polymorphism described later. When a method tseat is invoked, which method type
will be activated will now depend on the specification of the message. The type of an
abstract object is, however, composed of its constituent property types — attribute
and method types. Hence the type of the object aircraft is <company : string, tseat
. integer, tseat(classcategory) : integer, range : integer, kitchens : integer, engines :

integer, cockpit : mitshubishi>.
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2.3.6 Classes and Instances

In OR model, objects (entities) are grouped into classes and classes are organized
in a specialization-generalization (SG) hierarchy®. In the spirit of the extended ER
model, this leads to specialization (in most of the cases) where the classes lower
in the SG hierarchy inherit the properties of those higher up. In our example of
Figure 1, class DC10-30 is a specialization of the class aircraft. Class DC10-30 has
all the properties® of the class uircraft, and some more. Classes have objects as their
instances, which may have specialized properties. The SG hierarchy naturally induces
(super)class/subclass associations among classes. For example, with respect to class
DC10-30, aircraft is a superclass and MD10 is a subclass. It is possible for an object
class or an object to be part of multiple (super)classes at the same time, if it shares
properties with each of these classes. In our example class MDJI0A is a subclass of
the classes cargoaircraft and MD10.

Note that in OR model we do not incorporate the object type called free [2], since
we do not impose the restriction that a superclass has to be defined before a subclass
(free) is defined. nor do we require that all the subclasses should be removed from
the database when a base class or the highest class is removed. In OR model each
class has its own existence. But we do require that a class should be well typed or
well structured. By well typing we mean that if an object has a property, it must
have a signature. Alternately an object can not have properties without a structure.
We, however, do not distinguish between class objects and an instance objects. An
instance object may be viewed as a (sub)class object, if it has some new properties
compared to its (super)class, some properties are withdrawn (described next) or it has
its own instances. This view point has advantages with respect to a logic based query
language design for the model, and with respect to the update semantics that we
will discuss later. This is also because of the reason that the object hierarchy in UK
model is not based on type inclusion semantics. This view point is justified because

the objects in semantic models are alstract anyway; that is their types are distinct

3We do not distinguish between specialization and generalization as in other semantic models
(e.g., IFO [2], SDM etc). Also note that the hierarchy is not based on the sub-type relationships as
it is in most of the OO and semantic models where a subclass inherits its superclass’ structure and
properties, and thus has a superset of properties of all its superclasses. The class hierarchy is defined
by the user and is decided by the application need. This gives OR model a definite advantage over
other models which we will discuss later in the section on update semantics.

4In this particular instance.
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from their attributes and sub- or supertypes [39], and their relationships with other
objects in the database, and their identity does not depend on their attribute values
or types. This uniform view point of classes and instances can be justified from yet
another perspective and we will take up this issue again in the next section and when

we discuss inheritance.

2.3.7 Inter-object Associations

In the OR model, inter object associations or relationships are of three kinds, namely -
aggregation, hierarchy, and relationship associations. Aggregation association results
when objects (oids) are used as values (in the range) of attributes or methods, thereby
forming an attribute to object association. Since the method has the handle on
the object through its id, it can now refer to its properties, and those properties
may arbitrarily refer to properties of other objects in turn, which are essentially
aggregations of properties. Using aggregation association, it is possible to have nested
data structures of any depth, even recursive structures. This is the counterpart of the
compostle objects in OO0 data models. In a later section we will see that the update
semantics of composite objects in the OR model is very different from that of those in
many OO models. An instance of aggregation in our example is refuelsys in the class
B 100 which refers to 2n object shell8 of constructed type shell (for want of space,
the type shell and its instance shell8 are not shown in Figure 1).

The second kind of association is the hierarchy or is-a association between objects
and classes, and between two classes, resulting from the SG hierarchy. Recall that
the SG hierarchy in OR model is somewhat different from the hierarchy definition in
other SDMs. We allow only one kind of is-a association and we do not incorporate the
generalization or exclusive subclass [73, 36] is-a in OR model. It is however possible
to capture these notions in OR model by specifying a constraint in the schema that
says that the domain of each of the subclasses of a generalized class is disjoint. This
will then imply that no multiple subclass relationships are possible among the classes
under the generalized class. The OR subclass relationship is based on a common
set® of attributes that the objects share among the classes rather than a subset-

superset relationship of attributes as required by many semantic and OO models.

3Loosely speaking. In some cases the intersection may be empty. This kind of situation in real
life is very unlikely to happen. which however may be attributed to as ill structured hierarchy or as
a consequence of bad schema design.
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This, surprisingly. is consistent with the SDM approach {36] in which classes can
have special attributes and these attributes are not inherited down the SG hierarchy.
That is class attributes are local to a class and are not shared by any subclass or
instance. Thus we may view the sets of attributes that are not common to pairs of
classes as class attributes. Note that we do not distinguish between class attributes
and member attributes. To avoid inheritance of unwanted attributes (e.g. class
attributes), we resort to a notion called withdrawal (described next). However, the
set of instances in the superclass is a super set of the set of instances in the subclass®.

The third kind of association is the relationship association among classes of ob-
jects (or entities). Relationships among classes of objects may be n-ary in general.
We contend that relationships have a character distinct from classes of objects and are
aggregations of constructed types. Thus they are relations involving different classes
of objects, and do not participate in any SG hierarchy. As ir the relational model,
the objects in the participating classes form the key of the relation. Relationships
can be one-one, one-many, or many-many. This is called the marimum cardinality of
the relationship. In our example in Figure 1, useseat is a 3-ary relationship involving
the classes aircraft, seat and classcategory, which says that an aircraft uses a type
of seat in possibly more than one accommodation class (first class, club class, etc.).
Relationships may have minimum cardinalities too. A minimum cardinality is shown
by a hash mark on the side of the participating object class. A minimum cardinality
specifies whether the objects of the class are required to take part in the relationships

or not.

2.3.8 Methods in Relationships

Many OO models do not support relationships (or aggregations) as a first class compo-
nent, and most of the models which do, do not support methods in the relationships.
In the OR model, relationships may have descriptive attributes/methods in exactly
the same way as objects. The only difference is that in the case of methods of objects,
the context is the object (or the class) and the type of the object/object class takes
part in the signature of the method. In the case of relationships, the context is the

key of the relationship and, hence, the type of this key takes part in the method

6This means that if an object o is a subclass of p then all instances of o are also instances of
p. So the subclass relationship is based on a monotonic set inclusion relationship of instances from
subclass to superclass.
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signature instead.

2.3.9 Inheritance

The objective of organizing objects in a hierarchy of classes is to share properties of
the objects in useful, economical, and meaningful ways. Properties of superclasses
can be inherited by their various subclasses. The notion of inheritance in OR model
is influenced by the viewpoint we take in respect to objects and classes. Recall that
we do not distinguish between class attributes and member attributes and allow sub-
classes to inherit methods and attributes from superclasses uniformly. This suggests
that there is no distinction between the way an instance of a class inherits structure
and properties from a class and a subclass inherits the same from the superclass.
Hence from the inheritance point of view subclasses and instances can be viewed uni-
formly. Hence keeping a distinction between class and instance objects do not serve
any useful purpose, and hence can be removed in OR model. This explains the dual
nature of objects in OR model - object as a class and object as an instance. Which
role an object takes at a given time now depends on how it is viewed. It is easy to
see that using the constructs provided in OR model. we can, however, nicely model
the conventional view of classes and instances.

The class DC'10-30 in our example inherits all the attributes in the class aircraft.
In other words, the attributes and methods that are available in aircraft are also
available in DC10-30. In this case, the inheritance is called monotonic. However.
it is possible that a subclass or instance may not inherit all the properties from a
superclass. because they do not rnake any sense in the subclass. For example, suppose
that the class MD10 is a redesigned version of DC10-30 with almost no changes in
the basic design of DC10-30, except perhaps a minor change in body structure and
a radio replaced by a computerized radar (see Figure 1). Due to the merger of
McDonnell and Douglas. the company name is changed to McDonnell Douglas. The
DC10-30s are still manufactured and maintained by the Douglas, but the MD family
belongs to the new company. Clearly the company name in the attribute comnpany
in aircraft is not applicable to MD10. Somehow, the inheritance of the attribute
company should be made ineffective in MD10. The way this situation is handled in the
OR model is by using a non-monotonic inheritance. There are three mechanisms for

achieving non-monotonic inheritance - inhibitance. blocking and overriding. Methods
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or attributes may be overridden in a subclass or instance object. If a subclass or
instance object redefines a method implementation or the value of an attribute, then
the corresponding method or attribute is not inherited and is said to be overridden
in the subclass object. That is more specific and recent definition takes effect. This
1s called specificity of properties. In our example, the value of company attribute
in DC10-30 is “Douglas™ while the value for this attribute in MD10 is “McDonnell
Douglas™. We say that company = “McDonnell Douglas” in MDI0overrides company
= “Douglas” in DC10-30.

In terms of method (intensional attribute) inheritance, we take the view that
the implementation of the method is inherited in the subclass, not the value that is
computed in the superclass. This implies that the procedure that implements the
method in the superclass will now be evaluated in the context of the subclass by
instantiating all self references in the procedure to the current class. It is important
to observe here that the overriding semantics for methods definitions in OR model
is different from logic based models such as F-logic [47]. In OR model. even if the
inherited procedure fails to compute anything in the subclass (null value), the subclass
will not inherit the corresponding method evaluation (value) in the superclass, i:
any. This is in agreement with the method inheritance principles in most of the Q0O
systems. A similar notion of inheritance is not available in SDMs.

An inherited method in a subclass can be withdrawn by inhibiting it. On the
other hand, inheritance of a method can be prevented by blocking it in the superclass.
Withdrawal of signature implies withdrawal of data corresponding to a method type,
but the converse is not true. Also, inhibition and blocking is symmetric and one
implies the other but in the opposite direction. For instance, in MD10 we inhibit or
withdraw the method ra.fio (which would otherwise be inherited) .rom the superclass
DC10-30. The methods radio and kitchens are selectively blocked in MD10A for
B100, while cockpit in MDI10A is blocked for all subclasses of MDI0A by qualifying
the method name with the intended class name. Re-introduction is a mechanism for
inheriting a method from an ancestral superclass as long as it is not blocked. In
MD10A, the radio from the ancestor DC10-30 is reintroduced as the communication
instrument in place of the costly radar system. Since an object class can be a sulclass
of multiple superclasses, multiple inheritance is possible. In that event the subclass

inherits properties from all its superclasses in a way described above.
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The notion of non-monotonic inheritance is not captured in any of the contempo-
rary SDMs. However in OO data models only overriding is supported. Withdrawal
is handy in models like F-logic, OR model, etc. where there is no distinction between
class attributes and instance attributes and classes and instances have no apparent
distinctions. Consider for example, the attribute averageprice in DC10-30. This is
meant to be a class property and does not make any sense in an instance object of
the class DC10-30. We have two choices - we may withdraw this method in DC10-30
by blocking it, or we may withdraw it in each instance by inhibiting the method as
described earlier. SDM on the other hand can handle this situation nicely by defining
the attribute averageprice as a class attribute and hence no instance will share it.
However, now a subclass in SDM has to redefine the same attribute if it needs it.
In OR model. a new definition is not necessary in a subclass in a similar situation,
and can be nicely modeled using withdrawal. Note that the notion of withdrawal is
unique to OR model.

Withdrawal is also useful to resolve schema conflicts in case of multiple inheritance.
In our example of Figure 1, in absence of withdrawal, AMDI10A would have inherited
cockpit : mitshubishi from MD10and cockpit : bombardier from cargoaircraft, resulting
in a clear conflict of types. To resolve the crisis in our example, object MD10A favors
the signature cockpit : bombardier from cargoaircraft by selectively inhibiting the
inheritance of signature cockpit : mitshubishi from MD10. This is a major problem in
a dynamically evolving database where schema and class membership is constantly

changing. and OR model can handle this kind of situation nicely.

2.3.10 Inheritance Conflict Resolution

Since we allow objects to be modeled as a subclass or instance of multiple superclasses,
inheritance conflicts may arise as discussed above. OR model incorporates a simple
conflict resolution rule to handle such conflicts by avoiding inconsistent schema design.
The first rule is, inheritance is allowed from a unique source (the point of definition) in
the SG hierarchy. If this condition is violated, inheritance of the property in conflict
is automatically inhibited in the class where it is in conflict. By defining suitable
inhibition and/or blocking of properties, the designers may resolve this conflict by
ensuring a unique source for the property. Hence, OR model supports two modes of

conflict resolution - (i) user specified conflict resolution, aud (ii) automatic or default
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conflict resolution.

2.3.11 Encapsulation

In the OR model the implementation of all the intensional attributes, or methods, is
private to the object/class or to the relationships where they are defined. Users only
see the interface to the objects or relationships, through which the set of methods ap-
plicable, as well as their signatures, are visible. It is possible to define some attributes
or methods to be private to the object/class or relationship. Private attributes and
methods are not visible from outside, and are only accessible by the object/class or
the relationship in which they are defined, for the implementation of other methods
in it. This provides a limited form of security addressed in some research works [12].
The concept of providing an interface to objects and relationships through which all
legal methods are visible, and of localizing the implementation of the methods to the
objects or relationships. is known as encapsulation. Encapsulation enhances imple-
mentation independence, modularity, and abstraction. In our example, the attributes
computer, weapons and bombs are private to the class strategichomber and are not
visible from outside. Suppose the method weapons makes use of the attribute airforce
to decide the set of weapons and bombs that the aircraft will carry. The methods
bombciunit and weapontransport in B100 then use the methods weapons, bombs
and missileunits to decide the kind of bomb transport and launching system to be
installed in the aircraft. Here the methods weapons, bomberunit and weapontrans-
port use several private methods to respond to a message. Although these attributes
and methods are inheritable, no other object or relationship can access these methods
except via inheritance.

Notice that the notion of encapsulation in OR model is somewhat different than in
semantic models and OO models. Essentially, SDMs ¢ncapsulate structural aspects of
objects, whereas OO models encapsulate behavioral aspects of objects which a:e the
method implementations. OR model extends the notion of encapsulation of structural
aspects of objects by allowing private attributes and methods that are invisible to the
users and to other objects. In OR model every attribute is visible by default unless
specified as private. In contrast, in most of the OO models, state variables are private

by default and methods have to defined to access them.
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2.3.12 Method Polymorphism

Methods in the OR model are polymorphic. Let us consider the family of methods
“tseat”. The method tseat in aircraft and in all its subclasses wherever it is applicable.
computes the total number of seats in the aircraft. Yet again, tseat(classcategory)
refines the method tseat, by overloading it by giving it the argument classcategory.
which then computes the total number of seats in certain classes in a given aircraft.
On the other hand, the method tseat in the class seat represents the total number
of seats that are in use in different aircraft, and, hence, has a completely different
meaning than the previous versions. All these forms of overloading of method names
are known as method polymorphism. Polymorphism 2ids refinement and -xtension of
behavior through overloading, and enhances re-usability. Redefinition is also possible
in the OR model. For example. in Figure 1, the attribute range in MDI0A is first
inhibited (withdrawn). and then redefined with a different type, i.e. real. In general.
redefinition only shares the attribute or method name in immediate superclasses.
It can completely change the type or the signature of the corresponding attribute or
method, as well as its implementation. Contrast this with a re-definition of signatures
using overriding. Note that if overriding is used, the data component of the method
will still be inherited (if not overridden), while if withdrawal is used, both signature

and data will be withdrawn if the signature is withdrawn.

2.3.13 Constraints

Type definition of attributes and signature of the methods can be viewed as con-
straints on the type of value that attributes can have and the type of input/output
arguments the methods may accept and return. Since the type of objects, or rela-
tionships, is the composite of their attribute types and method signatures, the type
constraints above also impose corresponding constraints on the scheme or type of the
objects or relationships. Other forms of constraints include integrity constraints (iC).
inclusion dependency, etc. Some ICs may only involve attributes/methods applicable
to a class or relationship, or only to classes participating in a relationship. E.g., func-
tional dependencies and referential ICs fit into this category. Other ICs may involve
several classes, methods, and relationships. For example, we may define the follow-
ing constraints: (i) a global constraint saying all aircraft should be able to cross the

Atlantic (range > width of the Atlantic); and a set of local constraints such as (ii)
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the total number of seats in aircraft should be more than 100, and (iil) no passenger
seats are allowed in a cargoaircraft. etc.

Similar to attributes and methods. the local constraints in objects get inherited
down the SG hierarchy. There can be conflicts among different constraints that the
objects and relationships must satisfy. For instance, if in our example we move
constraint (ii) to the global level, the cargo liners will not be able to satisfy that
constraint. In the example, constraint (ii) is meaningful for all passenger aircraft.
But since MD10A is basically a passenger aircraft that is being redesigned as a cargo
carrier, constraint (ii) does not make sense here. The situation can be more complex.
Constraint (iii) defined for cargo aircraft is in clear conflict with constraint (ii) if they
are both monotonically inherited in MD10A. Such conflicts are resolved by attaching
priority to constraints. In the OR model constraints are placed in different strata. The
lower the stratum the higher the priority. Global constraints are placed in striatum
0 and. hence, have the highest priority. The local constraints are in stratum 1 and
the inherited constraints in stratum 2. Thus, if an inherited constraint is in conflict
with the local one, the local one is given preference. E.g.. to solve the conflict in
our running example, we copy constraint (iii) from cargoaircraft to MD10A, which
makes it local. giving it a higher priority than constraint (ii). In the case of multiple
inheritance, conflicts may also arise between inherited attributes because of differences
in types. values. implementations or the semantic meaning. This form of conflict can
be effectively resolved using inhibition and blocking. In our example, the method
cockpit which is inherited from cargoaircraft and MD10 is in conflict in MDI0OA. So
we selectively inhibit MD10.cockpit (notice the prefixing of the class name in front of
the attribute name) in M D10A to favor the inheritance of cockpit from cargoaircraft.
Similarly. selective blocking shown in the class MD10A and discussed earlier, can also

be used to resclve such conflicts.

2.3.14 Virtual Objects and Relationships

An object in the OR model may be derived from the database contents. lts type
and values (or properties) may also be derived. Such an object is not stored in the
database. Only the rule that describes how to derive the object is stored. Constraints
may be specified on such objects. All the properties that might be needed to describe

the object are derived from other database contents. Since these objects are virtual.
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all their properties are also virtual. SDM supports virtual objects in the form of
derived schema components, but requires that the objects be of type free (discussed
earlier). We do not impose any such restrictions.

Virtual objects may be used to model user views of the database using classifica-
tion and association [19]. Classification is a form of abstraction in which a collection
of objects is considered a higher level obje.t class, and association is a relationship
between member objects that is considered as a higher level set object. OR model
captures these abstractions through an attribute of the virtual object in the former
case, and by populating a set of pertinent objects as the member of the virtual object
(class) in the latter case. Populating a virtual object (class) is a process that identifies
the set of instances of the class and require some rule evaluation. The set of instance
objects in the population may be ground or virtual. Except the fact that the virtual
object is derived, it has no distinction with a stored object. Such an object will be
only created using the rule when some reference is made to it, and will be removed
from tiic database after the reference is completed.

Similar to virtual objects, virtual relationships are also possible. The associations
between objects may now be derived at run time. Pumpingin tiie tuples of a virtual
relationship will also require a rule evaluation which will derive the associations be-
tween objects. It is also similar in every respect with the usual relationships. If in a
relationship. at least one of the participating object (class) is virtual and the object

participates in the key of the relationship, then the relationship must also be virtual.

2.4 Global considerations

In a broader perspective, we now discuss how we develop database schemes from
the local constructs and building blocks described in the previous section. First we
see the structural nature of OR schemas, that is we discuss how constructs can be
meaningfully combined to form database schemas. Then we investigate dynamic
aspects of the schema and consistency issues. We have already specified some of the
restrictions we impose on the local constructs of the OR model. We restate several
of them in this section from global perspective. Such restrictions are motivated by
the underlying philosophy of the model and its objectives.

We require that grouping objects be only used in attribute ranges because such
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objects are rarely of interest in isolation. Note that some models (e.g.. IFO. SDM. O,
etc.) allows such objects in the database to exist. We also do not allow aggregation or
grouping type objects in attribute domains, and aggregation type objects in attribute
ranges. Unlike IFO, SDM and O;. we do not allow complex objcts in the attribute
range, we use values in the range instead. Recall that a value may be basic or an
object id which represents an id based object. Although the underlying structure of an
object remains arbitrarily complex, the immediate structure is simple and is only one
level deep. This approach is close to the spirit of O, model. Note that aggregation
association is only defined for id based objects, not for value based objects. That
means. the navigation in value based objects are similar to relational model. Ve
also require that all the types mentioned in all tue attribute domain and ranges are
database objects except the basic types and grouping types.

The restrictions on ISA constructs are simple. Though it is not required all the
time. it is in general assumed that the database objects will be defined top-down.
That is certain base types will be defined first and then its subclasses, and so on.
We also require that the ISA relations be acyclic. Consider the ISA definition in
Figure 3 (a). The three classes form a cycle and intuitively implies that the types
are redundant, that is in every instance, the three types will contain the same set of
objects. Furthermore, none of them can be considered as the base type and hence the
underlying type of each of the objects are not deterministic. The definition of Figure
3 (b) is also not allowed if it is assumed that the domains of the superclass objects
aircraft and boat are disjoint. Howevei, if someobject is an amphibian aircraft, we
might want to lift the domain disjointness restriction and allow the definition. Value
based objects (entities) and id based objects (semantic objects) can not be mixed in a
subclass relationship. That is an entity class can not be a sub- or superclass of an id
based object class. If these restrictions are satisfied, it can be shown that every node
will have an unambiguous underlying type, no pair of nodes will be redundant, and
every node will be satisfiable in the sense that some instance will assign a nonempty
active domain to that node.

Furthermore. we require that the intended type of an object in the hierarchy be
type conflict safe after inheritance. By that we mean that, conflict free structure of
an object/class should be guaranteed if necessary by using the method of withdrawal.

Derived schema components are one of the fundamental mechanisms in semantic

models for data abstraction and encapsulation. Such a component has two elements:
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Figure 3: ISA restrictions.

a structural specification and a derivation rule. It thus allows to incorporate dynamic
information directly into the database schema. Known semantic models only allow
derived subtypes and attributes. In OR model we impose no restriction on the type
of derived schema components. That is all permissible components may be derived.
Derived components are readily identifiable in an OR schema. Such components are
represented using dashed symbols. The horizontal line ir each component separates
the structural specification and the derivation rule; the derivation rules are specified
in the lower half of the symbol. The rule part may also contain constraints relevant
to that component. The language for the derivation rule in OR model is first-order
predicate caleulus. In the next section we introduce the notion of legal access which

imposes a set of restrictions on the dynamic components of the database.

2.5 Accessibility

In the OR model the only way to reference the properties of the objects is by invoking
the attributes/methods using messages. The set of methods that are visible from
outside the objects are the only ones that can be invoked. There can be methods
in objects and relationships which are private to them, and thus are invisible from
the interface. Also, not all methods that are visible through the interface are always
available. We require that only relevant methods can be invoked. A method is
relevant if the objects or relationships involved are related. Two classes/objects are
related if they are involved in a hierarchy association, a relationship association, or
an aggregation association. For example. the object class B100 or its instances are

related to DC'10-30 through hierarchy association (but not to the specific instances of
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DC10-30). The class B1001is related to seat through relationship association usescat.
The attribute engine in DC10-30is of type rollsroyce (aggregation). hence DC10-30
and rollsroyce are related. The related objects or relationships are allowed to refer to
the public properties of each other, and such accesses are called legal accesses. The
notion of legal access is thus influenced by the notions of non-monotonic inheritance,

associations and encapsulation.

2.6 Update Semantics

In this section we will investigate the issue of update semantics in OR model. The
semantics is very intuitive, and we will take a very simplistic approach to describe it.
There can be several forms of updates, namely change in attribute values, change in
object schemas or types, change in method implementations, change in class mem-
berships. change in relationships among objects, change in constraints, change in
inheritance. addition/deletion of objects and classes, etc. Each of these changes has
consequences in the OR schema. We will explain them very briefly.

Change in attribute values are permitted if the value refers to a basic value, or
an existing database object at any time without any restriction. In some models
(e.g. Orion) composite objects have a ownership relation. For example, if object
cathy has an attribute called doctor with a value john meaning the object identificd
by the id johr is the family doctor of cathy, then it is regarded that cathy owns
object john. This is called a dependency relationship. In models like Orion, this
dependency means that if the object cathy is deleted, then the object john st
also be deleted. In OR model we do not ins’st on this dependency relationship.
Hence if the attribute value is changed, or the so called owner object is deleted.
the owned object will continue to persist in the database. This is also because of
the view we take with respect to the uniformity of the class and instance duality of
objects discussed earlier. If we incorporate the notion of dependency relationshiy: in
our model, then unwanted results may happen. For example, if the owned object is
removed then it is possible that all the instances and subclasses of the object has to
be removed due to type safety requirements discussed earlier (since we allow arbitrary
subtyping). If some other objects have references to any of the instance objects that

are removed then they wiil become dangling and result in an “inadmissible” database,
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However, if it is so desired, such dependency relationship may be implemented via a

suitable constraint specification. This approach gives us the flexibility of modeling
the database semantics at the users’ choice.

Change in object schema is not that simple, but is a lot more flexible than con-
temporary SDMs and OO systems. Since the class hierarchy is not based on types,
simple type changes and withdrawal can be accommodated with minor changes in
the schema and without the restructuring of the classes and instances provided the
database still remains well typed. Change in method implementations have no side
effects since it is local to the object where it is defined. Since the is-a semantics is
different than most of the SDMs and OO models, the semantics of hierarchy associa-
tion update is also quite different. Note that an object in OR model has a unique id
and has only one copy that is sliced in many different components. That means if an
object o is in class g and q is a subclass of p. 0 does not appear as an explicit instance
of p as it is of ¢, rather it is implicitly an instance of p. This is not the case in many
SDMs and OO models. Hence if o is removed from g it is implicitly removed from all
the superclasses of ¢ automatically. Similarly if o is an explicit instance of p and ¢
(multiple subclass), then it is the case that o is a single object as an instance of these
two classes by definition. This semantics also means that, if a property is deleted
from or added to o, o does not require to be relocated in a class in the hierarchy

where it fits best since the association is not type based.
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Chapter 3

ORLog: A Logic Based
Object-Oriented Language

3.1 Related Research and Motivation

In the recent years the database research community has made significant strides in
combining the declarative aspects of deductive databases and the superior model-
ing capabilities of the object-oriented paradigm. Although the appeal of a combined
model seems overwhelming. its logical rendition is not so easy. This is largely because
of the presence of the concepts such as inheritance of behaviors, code reuse and over-
riding that are related to non-monotonic reasoning. Although overriding complicates
the underitying theory to a great extent, it is a notion that makes the object-oriented
paradigm interesting and useful. The issue gets further complicated when we allow
multiple inheritance. We are th. -~ required to deal with inheritance conflicts and as a
consequence may have to settle for multiple minimal models at the declarative level,
e.g., as in [47]. Current solutions that are proposed in the literature are based on
non-monotonic reasoning [74]. stratification [22], program composition [20, 61, 62],
etc. These proposals have been criticized due to the skepticism about their feasibility
as an efficient computational platform.

Behavioral inheritance has been studied in deductive formalisms like the Ordercd
Theories of [50], in modular languages such as Contextual Logic Programming [61, 62]
and several others. However, the framework in which they accomplish this are quite

narrow compared to the needs of object-oriented databases and languages.
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Logic languages like LOGIN [3] and LIFE [4] incorporate structural inheritance
by means of an extended unification algorithm for 1-terms, complex typed structures
that are used for data representation. Kifer et al. [47] proposed an elegant logic.
called F-logic, as a logical foundation for object-oriented databases. Only structural
inheritan-eis captured in its semantics and proof theory, and for this component of the
language it was shown to be sound and complete. However, completeness is achieved
by taking a monotonic view of inheritance. Behavioral inheritance with overriding
in F-logic is captured indirectly by a pointwise iterated fixpoint construction. F-
logic directly accounts for ground molecules (corresponding to values computed from
method execution) being inherited down an is-a hierarchy. Code inheritance is left
outside the language and has to be simulated by the programmer using higher-order
features of the language and F-logic’s pointwisc overriding in a clever manner.

Dobbie and Topor [29, 30] have devcloped a lauguage called Gulog, inspired by
a restricted fragment of F-logic. Gulog is function-free. For a restricted class of
programs which are stratified with respect to inheritance and deduction, and where
scheina and data are separated, and the schema is predetermined, they propose a
sound and complete query evaluation procedure. They account for (conflict-free)
multiple inheritance with dynamic overriding, by forcing the is-a hierarchy to be
static. However, thev only account for value inheritance and do not capture behavioral
inheritance.

There are some proposals that address the issue of behavioral inheritance but rely
on a translation of an object-oriented logic program into a value-based conventional
logic program. In this approach the insight into the meaning of inheritance and its
interaction with deduction and overriding is lost. and there is little control on how the
translated program would behave. OOLP+ (25] and L& O (58] are two such proposals

which capture a few features of inheritance in a limited way.

3.2 Objectives of ORLog

The goal of this chapter is to develop a simple logical account of behavioral inheritance
(in the sense of code reuse) with overriding, providing for conflict resolution in the
event of multiple inheritance. This we achieve by enriching the syntax of the logic so

that the locality (i.e.. point of definition) and inheritability of properties (i.e., methods



and signatures) can be asserted and inferred. In addition, our language allows for
a syntactic instruction for withdrawing property definitions to prevent subclasses or
instances from inheriting them. A special aspect of this latter feature is that it allows
the programmer to influence the logic's inheritance mechanism to suit her preferred
needs.

The above features were first introduced in the context of ORLog (for Qbyect
Relationship Logic) [40]. In [40], we developed a declarative semantics for the higher-
order features of ORLog, not including inheritance. In a preliminary version of the
work contained in this chapter [42]. we presented a declarative characterization of
behavioral inheritance in ORLog and showed that conflict resolution in ORLog is
possible in a relatively simple way. In [22]. a stable model semantics for behavioral
inheritance was proposed using notions of locality and inheritability similar to those
proposed in [40]. By contrast. in the present discussion, we account for behavioral
inheritance within the logic, by capturing it within a sound and complete proof the-
orv. Ve also develop a model-theoretic and fixpoint semantics and establish the
equivalence of all three semantics.

Before closing this section. we note that a majority of the works oninheritance rely
on a form of non-monotonic reasoning. Of these, [29, 30, 47| capture value inheritance
while [50, 22, 18] handle a form of behavioral inheritance. While a non-monotonic
account of inheritance is natural and interesting. it relies on extra-logical features
to capture inheritance. In addition, most of these proposals incur a high cost for
query processing, which can be significant for database applications. In comparison, a
complete proof theoretic and declarative account of inheritanceis at once intellectually
more satisfying and offers a greater promise as an efficient computational platform.

Interested readers are, however, referred to [47] for a more detailed survey and an
eloquent discussion on the issues related to logic based object-oriented languages in
general.

The rest of this chapter is organized as follows. Insection 3.3 we present the syntax
and an informal semantics of inheritance. We then present a formal model-theoretic
semantics of ORLog in section 3.4, an Herbrand semantics in section 3.5, 2 proof
procedure in section 3.6, and finally a fixpoint semantics in section 3.7. In section
3.7 we also prove that (i) the fixpoint semantics and the model-theoretic semantics
are equivalent, and (ii) the proof theory is sound and complete with respect to this

sernantics.
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3.3 Overview of ORLog

In this section we discuss the salient features of ORLog, its syntax and inheritance
semantics using an example. We also discuss, on intuitive grounds, the concepts of

cleuse locality and inheritability that are unique to ORLog.

3.3.1 Syntax
The alphanet of the language £ of ORLog is a tuple (C,V.M,T.P), where (1) Cisa

denumerable set of constants playing the role of basic values and also object id’s, (2)
V is an infinite set of variables. (3) an infinite set of method symbols M for method
names. (4) 7 is an infinite set of symbols for type names, and finally (5) P is an
infinite set of predicate symbols. The set of terms Z, = C UV are called the id-terms.
A method denotation is an expression of the form m¥_ . where m is a method symbol.
kis a natural number and + is one of —,—»,=>. and =»!. It says that m is a
method of arity A& and it takes on the incarnation —,—»,=>, or =% as indicated by
—. Intuitively, — and —- are used to denote data expressions and = and =% are
used for type or signature expressions, just as in F-logic. Throughout the paper we
usc the uppercase letters for variables and lowercase letters for constants. We use

bold lowercase letters to denote arbitrary terms.

Atomic and Complex Formulas

There are nine types of atomic formulasin ORLog. If a;s. p and q are id-terms in Z,.
t,s are type names in T, r is a predicate symbol of arity n in P, and m¥, is a method
denotation as defined above, then the set of atomic formulas of ORLog is defined as

follows:
1. the id-atoms are of the form p[] which assert the existence of objects or types:

2. the is-a atoms are of the forms p : q and p :: q that state that object p is
an instance or subclass of object q. where : (::) means immediate (transitive)

instance/subclass;

s

"When a distinction is not important, we shall also use the notations —* and —¢ to stand for

an element in {=, =%} and {—, —} respectively.
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3. the data atoms or d-atoms are of the form p{m(a,..... ai) — a)or pmiay.....
a;)—-b] which means when method m is invoked in the context of obiect p
with arguments a,.....ax. it returns a functional output a. or similarly a set

valued? output of which b is a member:

4. the signature atoms or s-atoms are of the form p[m(ty,....t) = {t}...1;, } or
plm(ty,...,tx) =» {t}...t,}] which have a similar meaning as the d-atoms
when invoked in object p with argument types ¢y, ....tx, the method m returns

an output (functional or set valued) which simultaneously belongs to the types

{th...tth

5. the locality atomsor l-atoms are of the form p{m?* ] which states that the data
or signature (as determined by whether — is one of =, —» or one of =. =)

of method m whose (input) arity is & is locally defined in object p:

6. the inheritability atoms or i-atoms are of the form p[g@m?* | that specifies that

the object p may use (or inherit) the method m¥*, from object q;

. the participation atoms or r-atoms are of the form roty, ... 1, that states that

-1

r is a relationship (relation) involving object types t)... . t,.

8. the predicate atoms or pred-atoms are of the form r(a,.....a,) whose meaning

is exactly as in classical logic.

9. and finally. the vithdraval atoms® or w-atoms are of the form p[m*, bog] and
plm?%_ odq] that captures the fact that the inheritance of the method ks
blocked (o) from the object p to g, or is inhibited (o) in p from q. Blocking
is used when a superclass prevents an immediate subclass/instance from inher-
iting a property, whereas inhibition is used when a subclass/instance rejects the

inheritance of a property from an immediate superclass.

The formulas of £ are defined as usual. A literal is either an atom (A) or its

negation (—A). Every literal is a well formed formula. If 7 and G are well formed

Following F-logic, we also permit molecules as a syntactic abbreviation for conjunctions of

atoms. E.g., pimi(ay,...,ak) — bi; ... muler,. .., em) = bn] = plmi(ay,...,ar) = WA . A
plmaler.. .,cm) — bp). Similarly, p[ra(ay,...,ax)—{b ... ba}} = plm(a;, .., ar)—=b}Ar .7
plm(a;.. .., ar)—b,). A difference between a set valued method and a functional method 1s that

we enforce functionality requirement for the latter but not for the former.
3t turns out that one of blocking or inhibition 1s sufficient for our purposes However, we keep
both the constructs for data medeling convenience.
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formulas and X is a variable, then so are F A G. FV G, -F, (F), YX(F). IX(F).
and F « G. A formula that contains no variables is called a ground formula. We
follow the standard practice in logic programming and consider only the definite Horn
clause fragment of our language for the rest of the paper. Hence clauses in an OR Log
program are of the form A — By,..., B,,, where Ais called the head atom and B,s are
called the body literals. We assume that all the variables in a clause are universally
quantified. If the head atom A of a clause A « By,...,Bn is a d- or s-atom, then
we call it a d- or s-clause respectively. When convenient, we use the term property
as a neutral term which refers to data or signature of methods. Thus, a property-
clause (p-clause) is either a d-clause or an s-clause. Furthermore, in a p-clause of
the form o[m(ay,...,a;) — a] — B,....,Bn, werefer to o as the descriptor, or the
contcrt, of the p-clause. In an analogous way we define is-a, 1-. id-. i-, r-, pred- and
w-clauses based on the head atoms of the form is-4, I-. id-, i-. r-, pred- and w-atoms
respectively. Recall that variables and constants are written in upper and lowercase
strings respectively. \We use the letters 0, P. Q. R (respectively. 0.p.q.7 or 0,p. q.7)
for variables (respectively constants, or arbitrary terms) representing object ids; m.
s, t. u, v, etc. for method names. a,b.c.d.1,2,3 for constants and basic values:
1, X,Y.Z. etc. for variables; and so on.

Programs in ORLog specify objects. their structures and behaviors through signa-
ture and method definitions and organize objects in inheritance hierarchies through
is-a specifications. Relationships among objects are specified using the relationships

and predicates.

Definition 3.1 (Programs) An ORLog program P is a triple of the form (A. Y. Ii)

where,

e .lisa (possibly empty) set of is-a, |-, id-, and w-clauses where the body literals

are either is-a. 1-, id-, or w-atoms.

e T is a (possibly empty) set of i-clauses with body literals from is-a, 1-, id-,

w-atoms or i-atoms. and

e [l is a (possibly empty) set of p-. pred- and r-clauses whose body literals are

arbitrary atoms in L. O

Intuitively. the clauses in .1 define the is-a hierarchy of classes and instances, the

locality of clauses. objects. and the inheritance control information in the form of
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withdrawal definitions. The clausesin 7 define the inheritability of clauses and finally
the clauses in I define properties for objects. and relationships among classes of
objects. Note that in the above definition, we have introduced an implicit dependency
relation “—" suchthat T — A and IT — 7, which means that T depends on .1 and
I1 depends on Y. The relation — is actually a partial order. It should be clear
that we do not allow. in particular. the is-a hierarchy to depend on inheritability or
properties of objects. This restriction helps make the is-a hierarchy static and keep
the inheritability of properties deterministic. On the other hand, this still allows a

large class of meaningful programs.

3.3.2 Informal Semantics of Inheritance

The objects in our programs are described by a set of d-clauses and a matching set
of s-clauses. Here, s-clanses define method signature and d-clauses define method be-
havior. Objects also inherit and reuse these descriptions (of structures and hehaviors)
with other objects that are defined as their subclasses or instances. and they are sub-
ject to possil.le overriding by local definitions. Consequently, the state of an object
depends on the structure of the object hierarchy defined using the is-a definitions.
In our conceptual model, we identify two types of p-clauses - local and inhereted
clauses. Intuitively. a p-clause is local to an object o, if it is defined in 0. On the
other hand a p-clause defining a method (data or signature) is inherited in o from g,
if o does not define a similar p-clause and ¢is an ancestor of o such that ¢ defines the
p-clause, and thereis no other ancestor of o from which such a p-clause is inheritable

by 0. The following definitions make these notions precise:

Definition 3.2 (Locality) Let cl be a p-clause such that its descriptor is p, and
T1.q;. ... Tatq,, are all theis-a atoms* in its body. Then clis localto every object p

such that ,%q, holds for 1 € 7 < n. That is, plm!] — r,4q,,... raiq, holds. a

The notion of inherited clauses depends on the notion of inheritability of p-clauses,

defined next.

Definition 3.3 (Inheritability) Let S be a set of (ground) id-, I, w-, and is-a

atoms. m". be « method denotation, and o be an object. Then the inheritability of

AIn this definitvion and in the sequel of the paper ¢ stands for either =7 or *: " in plares where
the distinction between the twois unimportant.
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m*_in the object o is defined by the context function V as follows:

( if ofm*.] ¢ S and [3q such that o €
S, V(S, mk.,q) = p, plmk.] € § and (Vr, such that
oir € S, one of the following holds.
Gt = ||+ T(Smr) =rand rink] g or
o V(S,mt,r) =p,or o[mfodr]€S. or
, r[m*, poo] € §.)]
| 0. in all other cases. a

The operator V works as follows. Let o be any object and m®, any method denotation.
Then V(S.m*,0) = ponly if ojp and pjm*~.]. for some object p. Suppose v does not
have its own definition of method m*_. as indicated by the absence of an atom o[m,’i]
in S. Also suppose for some superclass p of o (i.e., oip € S), plmk.] € S. Then
V(S,mk..0) = p. provided o has an immediate superclass ¢ (which is possibly p)
which inherits m*. from p, and for every other inmediate superclass r of o satisfies
one of the conditions: (i) r inherits m¥*, from p (same source), (ii) 7 does not have a
local definition of m%, (r[m%.] ¢ §). neither does it inherit from any of its superclasses
as indicated by V(S.m*,,r) = r. or finally (iii) either o inhibits mk, fromr, or  blocks
m* foro. In allother cases. V(5,m*_,0) = o, indicating either o has a local definition
of m* and owerrides all other definitions of n* , or it cannot legitimately inherit m*,
from any of itssuperclasses. if at all they exist and define such a method. It is possible

to show that Vis a total function.

Definition 3.4 (Inherited Clauses) Let P =(A.7,I) be a program, cl = A ~
G € Il be a p-clause local to an object o, and let meth(.A) = mX, be a method
denotation. Let S be aset of ground is-a, l-, w- and id-atoms that are entailed by A°.
Then cl is inheritable in an object q if V(S, m¥,,q) = o. The inherited clause ¢/’ in
q is obtained by replacing every occurrence of oin ¢l by g, i.e., o' = (A « G)[o/q].

where [0/ q] denotes the replacement of the termo by g. 0

SFor our language, this set is always finite and entailment for this part is in the classical sense,
as will be seen in Section 3.5. This set can be determined using classical proof theory or fixpoint
theory. We present the notion of inheritance here rather than in a later section, to give an intuitive
feel for the semantics of inheritance, in advance.
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We remark that context switch captured by the term replacement of the form p =
{o// q} should not be confused with the usual substitutions (e.g.. § = { X/p}) where
only variables are replaced by terms. We next illustrate with couple of examples our
notion of behavioral inheritance (for code reuse) as well as indicate how the various

notions developed above play a role in shaping the semanticsof inheritance in ORLog.

Example 3.1 Consider an aircraft design database scheme in OR notation [40] (in-
troduced earlier in Chapter 2) in Figure 4. We use this example to intuitively under-
stand the underlying meaning of ORLog programs in terms of the introduced concepts
in this section in a close to real life application. Inthe next example we will explain

the working of ORLog in greater detail with a more abstract application.

tsear := firstclass + ecoclass
.'\\uear o m

-~ ..
N inheriance conflict m
inheru, P

(Jrctass =30 Y. (noeng =2

e —— ’
! _- " unherity
reject " (asaresult)
t overrides p_craft | P - c_craf
ez =73y [\ wfo -
_  EEERE e
S

. r_craft ‘

md10 dc1030 b747 h3ad

tseat := 325 if inherits code for tseat
tseat := 350 if inherits value for tseat

1370 hSo

Figure 4: An Aircraft Design Database Scheme.

In Figure 4. we abuse the OR notation and in most cases show the values and
codes corresponding to methods in the scheme instead of their signatures for brevity

and simplicity. The ORLog program P’ = (A", 7', II')® corresponding to this scheme

6We used molecular formula in this example a la [47] as follows p_craft(crew — 4, noeng —
2] = peraft[crew — 4] A pcraft[noeng — 2].
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15 given in Figure 5. In the diagram of Figure 4, p_craft. r_craft and c_craft refers to
passenger aircraft. rescue aircraft and cargo aircraft respectively.

In the diagram of Figure 4, the attribute firstclass in instance object md10 over-
rides the corresponding attribute value in its class p_craft. Hence, the value of tseat
(total seats) at the p_craft level is 350 while the value at md10 will be 325 since md10
inherits the code for tseat, not the value (350) from p.craft. But dc1030. for example.
will have 350 as the value for tseat since it inherits the value for firstclass and ecoclass
from p_craft and hence inheriting the code for tseat from p_craft does not make any
difference even when the code is evaluated at the dc1030 level. Furthermore, since
r_craft inhibits noeng from p.craft. noeng in c_craft can now be inherited in r_crafr

(and onward) since V([.{'].noeng?..r.craft) = c_craft.

(1) mdl0: p.craft.

(2) r_eraft:p_craft.

(3) r-craft:c_craft.

(4) h30:r.craft.
Ai=11(5) 1370 :r_erafi. =90

(6) h333:ccraft.

(T) dcl030: p_crafit.

(8) b747 : pcrafi.

(9) r-craftnoeng® odp_craft].

(10) p-crajtlecoclass — 300: firstclass — 50:

crew — 4:noeng — 2.

(11) p-craftitseat — T} « p_craft{ecoclass — E:

1= firstclass = F}.T = E + F.

(12) mdl0[firstclass — 25].
(13) c.craftinoeng — 4:tseat — 1.
(14) X[makeen — p&h] — X i ccraft.

Figure 5: Example program P’

Now the question is what P’ entails? Leaving the dctails to be explained in

example 3.2, we expect the following from program P’ among scveral others.
1. 150 :: ceraft
2. peraftftseat — 350]
3. mdi0fecoclass — 300] - inherited from p_cra ft.
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4. md10{tseat — 325] - using inherited tscat code in p_craft.
5. h30[{makeen — p&h] - by deduction.

It is interesting to observe how we expoct mdl0Q[tseat — 325] rather than
n«d10[tseat — 330 from program P’. Since V([.V}].tsecat®, . mdl0) = p_craft. the

code for tseat?. is inheritable in md10. Then we have the clause
md10[tseat — T] — mdl0[ecoclass — E: firstelass — F|.T = I 4+ I
by context switching from p_craft to md10 in rule 11 (i.c.. apply [pcra ftfmd10}) as

(pcraft{tseat = T) — p_craft[ecoclass — E: firstelass — F).
T = E 4+ F)[p.cra ft)/md10]

which now correctly vields mdl0[tseat — 325). o

Example 3.2 Consider the following program Py = (1,.7,.[1,) with objects o.p.g
and r. Usually. the I- and i-clauses are not specified by the users. Rather the users

implicitly assume the locality and inheritability of clauses according to the Delinitions
3.2 and 3.4

I\ ()71-——),"-—()_\-__,‘\’.
) o ) [,o[v ——’\f}}- | ]
I;; z[;];, (9) ofs — 5]
b= (%) p:o =0 I:= 8?; ;{E“:Q‘]{] —P:o
(;) ' P (12) p[f — (1},
oy o (13) q[t — .
(1) r[t%oxp]. T

Figure 6: Example program P,

From Definition 3.2 it follows that clauses (§' «nd (9) are local to object o only.
Similarly clauses (11) and (12) are local to p. and clause (13) is local to ¢ only.
However. clause (10) is local to p and ¢ since these are the two objects P in P, for
which P : o holds true. Note that (10) is not local to o since o : o never holds in
ORLog. In fact, it is local to only p and ¢. If we change P : o to P :: o in the body,

then (10) becomes local to all four objects in Py since :: is a partial order. Clanse
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(14) is clearly local to all four objects. This is simply because the descriptor of (14)
is a variable and is not constrained by any is-a literal in the body.

('lause (8) is inherited in p since p does not define m® = meth(olm — X]).
Similarly, (8) is inherited in ¢ and r. However, clause (9) is only inherited in ¢ since
q does not define s°, whereas p has a local definition for s, i.e., clause (11). It is
interesting to note that neither clause (11) nor clause (9) is inherited in r. This is
because r can access two distinct definitions of s°, - the one in 0 and the one in p
- via two non-overlapping paths. On the other hand, clause (13) is inherited in r
since the definition of 2, in p is inhibited by r through clause (7). and now there is
a unique ancestor g of r that defines t2..

The “intended” model of P;, formalized in section 3.5.3. is the one in which these
definitions of locality and inherited clauses are respected. Intuitively, (omitting some
obvious atoms) we expect the “intended” model of program P; to contain (among
others) the following ground atoms. The complete intended model for the program
P, can be found in Example 3.3.

{o] ].q] ).p : 0.q : 0,7 : p,r : q,.7 :: o(for 0 = 0.p.q.7),qlu = d}.o[m —
ol — gl.plm = 2].p[s = 2],p[t — a].plu — d].plr — g].q[m — 5]. ¢[s —

=)

It
o
B

all — ¢-ale = gl.rlt = dl.rle = gl}.

It is interesting to see how we expect pm — 2] in p. Since clause (8) is inherited
in p. it follows by Definition 3.4 that the inherited clause in p is (8') = (o[m — X] «
o[s = X].olv = g].)[o//p] = plm — X] « p[s = X].p[v — g]. Since we have p[s — 2]
in clause (11) and p[v — g] is an instance of clause (14), we now have p[m — 2]. In
contrast. (8) inherited in ¢ will become g[m — X] « g[s — X], q[v — g]. In a similar
way we can show that g[s — 5] follows from clause (9). Hence. we have g{m — 5]. This
is code reuse - the code for m?, in o is reused by p.q and 7 by dynamically interpreting
the context o as “self’. namely, the current context of the method. Nicely enough.
we have overriding built into the definition of inherited clauses. Notice that the code
for m°, is evaluated in p using the definition for s°, in p, not the definition of s°. in
0.

We are now also ablc to resolve conflicts in inheritance in two different ways - by
detection and by preference specification. Observe that clauses (9) and (11) define s%,
at both o and p. Let [A4,] denote the ground closure of .4;. According to the definition
of S°([.4;]. s%.. 7). r inherits neither since intuitively uniqueness of inheritance of s in

ris lost. Thus with respect to conflict resolution by detection. we take a conservative
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approach. In particular. even if p and ¢ (or o in this case) define identical values
for s%,, our semantics would reject both. This is a conservative approach and can
be justified by the following facts. Methods are usually defined using programs and
are computed. Since testing for equivalence of programs in general is undecidable,
we take the view that two definitions in different classes are potentially conflicting.
Hence we reject all. For the sake of uniformity, we also take a similar v iew to a ground
case, which is a special case of a method defined via a unit ground atom. However,
we go a step further to lend a hand to the users to indicate a preferred inheritance
from a particular superclass. In this way. users may resolve conflicts using withdrawal.
For example. although clauses (12) and (13) define method t2, at p and 4. r inherits
t%, from ¢ by inhibiting {?, from p through clause (7). This is conflict resolution by
preference specification. where the user has full control of how the conflict is to be

resolved. O

3.4 Interpretation Structures

A semantic structurc S of the language £ is a tuple of the form (D, <. <0, 14, Is. L.
C'—..WL.), where D is the domain of interpretation, <o is an irreflexive binary relation
among objects in D. <¢ is a partial order among objects in D which is induced by
&o. and Iy. I,. L..,C... W are interpretation functions that assign meaning to the
symbols in £. Intuitively. D includes the objects and basic values needed to interpret
the object identities and constants in £. The irreflexive relation <o is the semantic
counterpart of the immediate is-a association of objects. The partial order = is
induced by the <o relation since is-a associations are also non-trivially implied by
the immediate is-a relation. Note that, for every object 0 in D, 0 =< o trivially holds,
but 0 € o does not. Thus, <p is the reflective transitive closure of <.

Formally, the domain D of the semantic structure § includes (i) a set of objects
O, (ii) a set of elements B corresponding to basic values, and (iii) a set of elements,
one each corresponding to each type name 7 € T. TFor simplicity and clarity, we
suppose that the set (iv) above is T itself. Clearly, there is no loss of generality in
doing so. So we can suppose that D = BUOUT. Notice that D includes the domain
of elements D, corresponding to each type 7 € 7.

In order to keep the semantics first-order, we treat objects and classes as well
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as subclasses and instances in a uniform manner. Thus, an object could be viewed
as an instance of its superclass object as well as a subclass of instances below it in
the object hierarchy. This mirrors a standard trick in mathematical logic [31] which
is adopted here in order to provide a first-order semantics for a language which is
syntactically higher order. Models such as “Higher-Order” logic [57] and (earlier)
F-logic {47] follow a simnilar approach.

We now define the interpretation functions of S. The function I, interprets each

symbol in £ as follows:

e ], associates each object id 7 in Zp with a unique object in O.

e [, maps each constant c of sort 7 in C to an element of the corresponding basic

domain D,. i.e. I4(c) € D, C B.

e Each basic type name 7 in 7p is associated with a basic domain of the same type.
and each constructed (object) type name 7 is associated with 2u object 0 € O
that encodes the domain of objects of type 7 in O. That is, I(r) = D, C B
for 7 € Tp, and I(7) = 0 € O for 7 € Tp. where o is the semantic counterpart

of the object type® .

e Each symbol rin P of type 7, x ... x 7, is assigned a relation on D;, x ... X
D ie Iy(r)C Dy x ... x Dy..

e Each sy mbul m in M is associated with a set® of partial functions of the form
f i Dey x...Dsy x Dy .o X Dy~ [Dr U 2P7]0 where there is exactly
one such function in the set for a fixed type associated with m. That is,
Ia(m) C Uy, c0,[Dry X o Dspy X Dy X oo X Dy ~ [D; U 2P-]]. Here

7o, €ETo. 1=1,...,kand n€7T,l=0,...,j,and 7, € Tp.

7'0l

Note that the set of partial functions associated with m by I; relates m to a
unique function for each type associated with m. This helps us overload method

names and refine them by allowing them to accept any number of arguments. and

"Note that in what follows we use the notation [4 ~ B] and [4 — B] to denote the set of all
partial and total functions respe:tively from A to B.

8Note that we use object ids 7 € To € To to represent object types that are associated with
their semantic counterpart - the actual object o € O that the id 7 represents. It is useful to think
of 0 as a concise representation of the domain corresponding to all its instances in the structure 8§

®Recall that each method has a set of types associated with it.
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use different implementations for each type associated with the same method name.
Furthermore, we also allow one function per type. For example, we can define a
method child with a signa‘'nre person|child(year) = {person}] which refers to all
the children of a person in a given year, and another method child with a signature
person(child(spouse) = {person}] refers to the set of children with a given spouse.
(Here person is the context of the method.) Note that (i) for methods m defined in
objects the index £ =1 and D;,, refers to the implicit argument (the object acting
as the context for the method). (ii) for methods in relationships!®, & > 1 and in this
case D, x...D; refers to the (explicit) key of the relation r of types 7 x ... x 7.
In this case, the key acts as the context of the method. Also, note that a method
may return a single or a set structured value. depending on its signature.

We next consider the function /,.

I, acts as the identity function on each oid i € Zp, i.e. I,(2) =7 € Tp.

e Each constant c in C is associated with its intended type, i.e, I,(c) = 7. for

some tvpe 7 € Tg.

I, acts as the identity function on type names. i.e. I,(7) =71, VT € 7.

Each predicate symbol r € P is assigned its type, i.c, I,(r) € T, where k is

the arity of r.

Each symbol m in M is associated with a st of type tuples of the form < 7,,,

oo To,e Tlevs oy Thy {t1,...,tn} >, which represent the (function) type 7, x ... »

J
Toy X T %o X T = {t,...,ta}. Thatis, I(m) C U, ([T x T* x 27].

The functions L,.« and L,., associate with each symbol m € M a set of partial
functions of the form f : A ~ 29, where there is exactly one such function in
the set for a fixed arity associated with m, i.e., L. : M — [N ~ 29]. That is,
L_4(m)(k) C O, and similarly for L...(m)(k) € O. Here k is a natural number in
N C B and corresponds to an arity of wne method m. Intuitively, it means that a
method definition (similarly a method signature) of arity k is locally available at each
object o € L,_a(m)(k) (similarly, o € L_.{m)(k)).

1%1n ORLog. we allow relations to have methods. or virtual attributes, as rnuch the same way the
objects do. This follows from the underlying semantic data model, the OR model, on which ORLog
is based.
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The functions C_« and C.., associate with eact method symbol m € M of arity
k and object 0 € O. a unique object p € O. Formally C. : M — [N — [0 — O]].
where each n is associated with a total function A" — [O — O]. Intuitively, whenever
C.(m)(k)(0) = p, it says that object o may use the definition or signature of m of
arity k from the object p. We will later see that defining suitable additional properties
for these functions, it is possible to achieve conflict free inheritance of methods and
signatures in the object hierarchies and to capture the semantics of withdrawal in a
clean declarative manner.

Finally, the functions W_a and W,... associate with each method symbol m € M
of arity & and object 0 € @, a set of objects in O. Formally W : M — [A —
[O ~ 29]]. That is, whenever p € W'—(m)(k)(0), it means that method m (both data
and signature) if defined in the immediate superclass p of o. is withdrawn from o (for
inheritanre purposes). As a result o can not inherit this method from p.

A variable assignment v : V — D is a funciion that assigns each basic domain
variable .X¥ an element of B of appropriate sort, and assigns each id variable X an
object from . Variable assignments can be extended recursively to all formulas in
the obvious manner.

Let S be a semantic structure and v be a variable assignment. An atom A in
L is true under the semantic structure S with respect to the variable assignment v,
denoted § |=, A. iff S has an object. relationship, or a value with properties specified
in v(A). Formally:

o Foranis-aatorng::p, Sk, q : piff v(q) %o v(p). This says that object v(q)
is a subclass of object v(p), equivalently an instance of v(p), in the semantic

structure S,

e Foranis-aatomq:p, Sk, q:piff v(q) <o v(p). This says that object v(q)
is an immediate subclass of object v(p), equivalently an immediate instance of

v(p), in the semantic structure S.

e For a functional d-atom of the form p[m(ay,...,a,) = v}, S ., p[m(a,, ...
a,) — v] iff Li(m)(v(p), v(ai)...., v(a,)) = v(v). Similarly, foi a set-valued
d-atom of the form p[m(a,,...,a,)—={v1,...,v,}], S E, p[m(a1, ..., ay)—»

{vy..... vo}] iff {vy,... v} C Li(m)(v(p). v(ay),..., v(a,)).

' Recall the dual treatment of instances and subclasses. This is important for keeping the seman-
tics first-order.
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e For an s-atom of the form p{m(t;. ... t,)> {typer. ... typex}]. S . plm(ti.
o ) {typer. o typer}] iff < v(p).ty. oot {tuper.. ... tyuper} > €
I,(m).

e Forap-atomroty...., 1. S |, roty. ... t, iff ris arelation of type t, x.. . xt,.

e For an l-atom of the form p[mk ]. S k=, p[mk]iff v(p) € L.(m)(k).

o For an i-atom of the form plo@mF ], § k=, plo@mt,] if C(m)(k)(v(p)) =

v(o).

e For a w-atom of the form p[m* oqo] (or o[m* bopl), § k., p|mt odo]
(or S |5y o[m, bop)) iff v(0) € W (m)(k)(v(p)).

Satisfaction of complex formulas can be defined inductively in terms of atomic satis-

faction. Let ¢ and ¥ be any formulae. Then.
-SkE onyiff SE,¢9and S =, v
-SE.oVviffSkE,dor S k=, 1t
-SkE,0iff S, 0

-SkEve—oiff S, dorS =, v

- S . (YX)o if for every p that agrees with v everywhere, except possibly on X,

S E, o

- 8§ = (3X)o if for some u that agrees with v everywhere, except possibly on X,

S Eu ¢

Satisfaction of other formulae can be obviously derived from the above. If v
is a closed formula, its meaning is independent of a variable assignment, and its
satisfaction in & can be simply written as S | .

Since our goal is to account for inheritance directly into the semantic structures
of ORLog. we impose additional restrictions on our interpretation structures. It is
essential that every ORLog structure assign unique inheritability of properties in
the objects in the structure. We now define the concept of unique inheritability of

properties in ORLog structures in the light of Definition 3.3.
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Definition 3.5 An ORLog structure S satisfies unique inheritability property if the
following holds:

For every 0 € O, method symbol m of arity k, the following condition is satisfied:

ifog L.(m)(k)& 3gsuchthat otq& Ca(m)(k)(q) =p&p € L(m)(k) &
(for all other r € O : (ofr — (Ca(m)(k)(r) =1 &r ¢ L(m)(k)),V
Co.(m)(k)(r) = p, Vo € W..(m)(k)(r)))

then C.(m)(k)(0) = p.

In all other cases C.(m)(k)(0) = o. a

The above definition asserts that for every object o and method denotation m* . o

can inherit the code (the clasues that define the method m of arity k of the type )
from another object p iff p has a local definition for m%,, o does not locally define
m¥ .. some object ¢ (not necessarily distinct from p) which is a superclass of o inherits
m}, from p, and all other superclasses r of o (if exists) inherits m*, either from p. or
they do not inherit it from any object, or m*, is withdrawn from r and o. Otherwise.
o must use its own definition for m*,. The essence of this difinition is that there must
exist a unique path from an object o to a superclass object p for o to be able to inherit
a locally defined method m*, at p and no object ¢ has a local de.inition of the same
method that is a superclass of o but a subclass of p. Furthermore, all other paths to
any superclass r of o which has a local definition for the same method m*, are either
withdrawn (blocked or inhibited) or are blocked due to inheritance conflict.

The functions I and I, in ORLog structures assign meaning to each symbol in the
language independently of each other. Similarly the functions L., C.. and W,. assign
meaning to symbols in isolation. For example. the data concepts into which symbols
are interpreted by I; should be consistent with the types associated with these symbols
by /,. Hence we require that every ORLog structure satisfy s~me goodness property to
be a candidate for a meaningful structure. The following goocness properties enforce
this consistency!?. We say that an ORLog structure S is admissible if it satisfies the

following goodness properties.

e Iy and I, satisfy the following properties:

12Some of our goodness conditions are reminiscent of the well typing conditions of F-logic [47].
However, since our language and semantic structure are quite different from those of F-logic, there
are important differences between the two sets of weli typing conditions.
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~ For each constant ¢ in C, I(c) € I4(1,(c)), where 7 = I,(c) is the type of
c and I4(7) = D, is the domain of . That is. each constant is mapped to

an element of a domain of its intended type.

— For a method m. an object 0 € O, and elements py,...,p. € D, if
Iy(m)(o, p1,..., pi) is defined, then (i) there is a type tuple of the form
< ToyTiyevosThy {t1y.. ., 11} >, in I,(m), where 7, is the type of the context o
and 7; is the typeof p,. 1 = 1,...,k, and (ii) if m is a single valued method,
then the value I4(m)(o, p1...., px) belongs to all types in {t,,...,t,}, and
if m is a set-valued method, then all the values in I4(m)(o, p1v.... m)

belong to all types in {t1,....1,}.

— For each r in P, if the type of r is I,(r) =< 7m....,7 >, then
Ii{r) € D;, x...x Dy,.

o If a structure S satisfies a clause of the form p[m(a;....a;) — a] — rlq,, .
Tniqn. G, where G is “is-a free”, i.e., S |, plm(a;....ax) — a] — miq,. ...,

7.:q,,G then we require that S =, p[mk.] « r,4q,....,r.tq, also.

e For every object 0 € O and method denotation m¥,, C.. defines inheritabil-
ity of m*, in o and satisfies the unique inheritability property as defined in

Definition 3.5.
e For every o,m.k and p, o € W._.(m)(k)(p) implies 0 Ko p.

ORLog structures also satisfy clruses due to structural and behavioral inheritance in
a non-trivial and unique way. 1o this ead, we require that every admissible ORLog

structure also satisfy the following closure condition:

Definition 3.6 An admissible ORLog structure is inheritance closed, or i-closed, if

the following holds.

For any clause p[m(a.,...,a;) — a] — G,

if S &=, plm(as,...,ax) — a] « G and S k=, o[p@mk)],
then S k=, (p[m(a.,...,a;) — a] — G)[p/ o], where [p//o] is a clause-

wise context substitution that replaces every occurrence of p by 0. O



3.5 Model Theoretic Semantics

We now develop an Herbrand semantics for our language and introduce the notions
of satisfaction and moc 's. Given an ORLog language L, the Herbrand universe U
of £ is the set of all ground id-terms - in our case just the individual constants. The
Herbrand base H of L is the set of all ground atoms that can be built from & and the
vocabulary of £. Let H4 denote the set of id-, r-, I, is-a and w-atoms, Hy denote the
set of i-atoms, and finally Hp denote the set of pred-, r- and p-atoms (i.e., d-atoms
and s-atoms) in H such that H = H, U Hy UHp. An Herbrand structure H of L is
a triple (Hy.Hy,Hp). where Hy C H4, Hy C Hy, and Hp C Hp.

3.5.1 Canonical Models

Ground instances of formulas are defined as in the classical case. We define satisfac-

tion in a manner identical to the classical case.

Definition 3.7 (Herbrand Structures) Let H be an Herbrand structure. Then
e a ground atom. A. is true in H. denoted H = A, iff A € H'?;
e a ground negative literal. —A, is true in H, denoted H = -A. iff A ¢ H:

e a ground conjunction of literals is true in H, denoted H = By A ... A By, iff
HEB.i=1,....m:

e a ground clause ¢l is true in H. denoted HE A« G, if HE§ = H E A
and

e a clause ¢l is true in H iff all ground instances of ¢l are true in H. O

To account for the notion of inheritance outlined in the Example 3.2, we require that

every Herbrand structure be “proper” in the sense of Definition 3.8 below.

Definition 3.8 {Proper Structures) An Herbrand structure H of ORLog is called
proper iff it satisfies the following properties, where o. p, q, 7, ;s are arbiirary ground

id-terms. m is any method symbol.

BAn atom Ais in H iff A is either in H4. Hy or Hp.
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l.om*] € Hy = o0 0 € H,. Also p:o € Hy = o0 :: 0 € Hy. and
o:peHy=0:0¢€ Hj,.

2.0:qeHyandg:pe Hy=0::pe H,.

3. Whenever H satisfies a ground p-clause o[m(ty,....tx) — t] = riqi. ... 'l
G, where G is “is-a free”, we require that H also satisfy the ground l-clause

o[mk] — rizqi. ... Talgn.

4. o[mk . bop] € Hy = o[mk . bop] € Hy. Similarly, o[m*,,oqp] € Hy =
o[m* 4odp] € Hy.

5. Nothing else is in H 4.

6. Whenever (i) p[m*.] € Hy, (ii) for some 0. 0 :: p € H. and (iii) V(H .t o) =
p, we have o[p@m?* ] € Hy.

~1

. Whenever H satisfies a ground p-clause ¢/ = o[m(ty,...,tx) = 1] — G and
plo@mk] € Hy, we require that H also satisfy the ground p-clause
cl' = (o[m(t1....,tx) = t] — G)[o//p], which denotes the clause obtained from

cl by replacing every occurrence of o by p. (See also Definition 3.4.) 0

The purpose of a proper structure is intuitive and is a model-theoretic counterpart
of the informal semantics of inheritance we discussed earlier. Conditions (1)-(2) es-
tablish “:" as the reflexive transitive closure of “:”. Condition (3) says whenever H
satisfies a ground p-clause, it also asserts the locality of the p-clause. (4) and (5) say
signature withdrawal implies withdrawal of the corresponding method. (6) says the
inheritability as defined by the operator V (see Definition 3.3) must be respected.
(7) correctly enforces what it means for a structure to respect hehavioral inheritance.
This is accomplished by the context switch [0/ p].

In practice, as in the case of F-logic, we only want those models of a program where
the method data respects the signature definitions associated with that method. This
notion of “well-typing” is left outside the proof theory again as in F-logic, but can be
dealt with using an approach similar to that adopted in [47]). We do not elaborate on

this issue further here, as our main interest here is in inheritance.



Definition 3.9 (Proper Models) An Herbrand structure M is a proper model of
a program P iff it is proper and for every ground instance cl of any clause Cl € P,
M E el o

Definition 3.10 (Local Properness of Models) Let P be a program and M be
any model such that M = (M4, My,Mp). Then My is locally proper if it satisfies
conditions (1) through (5) of definition 3.8. Likewise, My and My are locally proper
if they satisfy condition (6) and (7) of definition 3.8 respectively. Furthermore, M is
proper, if M4, My, and Mp; are locally proper. ]

However, not every proper model is an “intended” model. An intended model must
respect certain consistency criteria. These are formalized below. In Definition 3.11

helow and the sequel, we treat equality as syntactic identity.

Definition 3.11 (I-consistent and Canonical Models) A proper structure M is

inhcritance consistent, or i-consistent, iff the following conditions are satisfied:
l.o::pe Myand p:: o€ My => 0= p-no cycles in object .ierarchy.
2. o[pamk] € My and o[m*.] € My = p = o - overriding is respected.

3. om(ay.....ax) — v] € My and o[m(ay..... a) = w] € Mg = v = uw -

functionality of methods is not violated.

4. olp@m?*,] € My and o[r@m!] € My = p = r - uniqueness of inheritability is

respected.

A canonical model of a program P is a model of P that is i-consistent as an Herbrand

structure. o

A program is i-conststent if it has a canonical model. In the sequel we only consider

i-consistent programs.

Example 3.3 The table below in Figure 3.3 shows a canonical model Mp of the pro-
gram P, of Example 3.2, where we use molecular abbreviations like o[m?,;s% ;2% ] =
o[m%L] A o[sZ] A o[vl], o[m — 5:s — 5] = o[m — 5] A ofs — 5], etc. The model Mp
below formally captures the ideas informally discussed in Example 3.2 concerning lo-
cality and inheritability. We shall see later in section 3.5.3 that MP1 above is indeed

the intended model of Py, in a sense to be made precise (see also Example 3.2).
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Object o Object p Object ¢ Object r

immediate is-a p:o g:o riporigq
transitive is-a o0:: 0 puppio g:q.q:o rror o
riiq.ro
locality o[m®%:s%: pls0 1% q[t%.: . rleY,
o, w00 v,
inheritability  0[o@m%; plo@m° ; qlo@m?; rloam?,;
0ds?; p@s% ;:pat?; 0@s0 ; q@t° qQit®;
0@1? ) p@ul,; p@vl qQu®, ;g0 ] rae? ]
withdrawal r(t9, o p]
data olm =5 pim—>25-2; ¢gm—-5s—=5 rft =«
s — 5 t—oau—-d t-ocu—d; v — g
v—ogl  v—y) v — g]

Figure 7: Intended model M, for the example program P;.

3.5.2 Correspondence between Herbrand Structures and
ORLog Structures

The correspondence between Herbrand structures and general ORLog structures can
be stated in a way similar to [47] as follows : Given a general structure for a set
of clauses S, the corresponding Herbrand structure is the set of ground atoms that
are true in the general structure. Conversely. for an Herbrand structure, H, the
corresponding general ORLog structure. Iy = (D.<o. =0 [y 14 L . C W), s

defined as follows:

o The domain D is identical to Y.

o The orderings <o and < are derived from the transitive and immediate is-a
assertions in H4: For all p.q € D, we assert ¢ Zpo piff g:: p € Hy, and ¢ <o p
iff g: p€ Hy.

{ {t} if o[m(ty, ..., ts 0 2t) € Hy,
k) =

undefined otherwise

t 1fo{m(t1,...,tk)—»t]€ Hy,
undefined otherwise

o Id(m)(O,tl.....tk) = {

. ]d(m)(o.t].. cey tk) =

{i} if O[m(tl,...,!k)—ﬁi] € Hy
undefined otherwise
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o L (m)k)={{o} | o[rnk.] € Hu}.
o C'_(m)(k)lo)={p|o[pamkt]eHy}
o W_(m)(k)(o) = {{p} | oimE. oap] € Hy or p[m’. boo] € H4}.

It is easy to see that Iy = (D. <o, =<0. Iy I4. L. C.. W) is well-defined and is in-
deed an ORLog structure. The following proposition. adapted from {47], follows from
the above correspondence between the two structures. The proof for this proposition

is similar to the corresponding proof in [47] and hence omitted.

Proposition 3.1 Let S be a set of clauses. Then S is unsatisfiable iff S has no
Herbrand model.

Proot It is easy to verifv that for every Herbrand structure H. the entailment H = S
takes place if and only if Iy = S. where Iy is the ORLog structure corresponding to
H a< defined above. O

3.5.3 Intended Models

We defire the declarative semantics of an ORLog program P as the least canonical
model Mp of P. An ordering elation C over Herbrand structures can be derived
fiom the partial order C (set inclusion) as in the classical case. For any program P.

if 1y= 1N 0, 4y, and I = ([, Iz, I2,;) are two structures. then
hChe<=1,Ch,.,, Cly,. h,Ch;,

Consequently, fur every program. the set of associated structures P(H) is a complete

lattice L with join and meet operators defined respectively as follows.

(jOiIl) ]1U[2 = (I]AU]gd.IlrUIQT,IanIgn)
(I]l(’(‘l) ]1\'_]12 = (]1‘1ﬂ]24.1170121.11n012n>

I, = (0.0.®) and I+ = (Hy. Hr.Hp) denote respectively the bottom and top ele-
ments of this lattice. It may be verified to be a proper model (see Definition 3.9) of
any i-consistent program. However, it is nc* necessarily an i-consistent model itself
(see Definition 3.11) and hence not canonical. Clearly. our interest is only in canoni-
cal models of programs. First we show that the model intersection property holds for

proper models.

-1
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Theorem 3.1 (Model Intersection Property) Let M, and M, be two proper
models of a program P. Then M; M M; is also a proper model of P.

Proof: e show that for any ground clause cl, if M; E ¢l and M, [ ¢f, then
M, MM; E cl. and that if M;M M, is not proper then either M, or M3 is not proper
as well. We prove this proposition in two steps.

M; MM, is a Model:

If ¢l is a unit clause, then it must be the case that ¢/ € (M; M M,) since M, k- ¢l =

cl € M,. for i = 1,2. Hence the claim follows immediately. If ¢/ is a clause of the
form A «- G, then the implications M, G = M, E A, fori = 1,2 hold true by
hypothesis. We then proceed by induction on the structure of .

Basis: If G is atomic,then M, = G = G € M,, for 7 = 1.2, and the proof is identical
as for the unit clause case.

Inductive Step: Assume that the claim holds true for any goal §. Consider now that
G' = G1.G,. and assume that M, = G’ holds for i = 1,2. Then by definition M, = G,
and M, k& G,. @ = 1,2. This implies that G, € M, and G, € M,. 1 = 1,2, Then by
inductive hypothesis (M; "M,) &= G, and (MMM, E G, = M, MM;) =G G..
Properness of M; N Ma:

Observe that a canonical model is always proper but the converse is not always

true. Hence a proper model M corresponding to a program P is not -equired to be
consistent. By definition 3.8, properness of M only ensures (i) the partial ordering
of the is-a hierarchy, (ii) locality of p-clauses, (iii) withdrawals implied by P, (iv)
minimality of M4, (v) exact inheritability of p-clauses implied by the program and
finally (vi) inheritance of p-clauses captured by the inheritability assertions in (iv).
Note that for any program P, and for any two proper models M; and M, of P.
M, , = M;, holds true by condition (5) of definition 3.8.

From the minimality of M 4. the property of inheritability function V, and the con-
dition (6) of proper structures, it follows that every proper model of P, My to be
precise, satisfies a minimum set of i-atoms depending on the My component of the
model that is common to every proper model of P.

Now since M, and M, are two proper models by hypothesis, then M;, = M,,. Let
us assume that M, M M, is not proper Then there are three possible cases: either
(i) M, N M2,, (ii) My, N My, or (iii) M, N Mz, is not locally proper.

Case (i): Assume (M; M M), = M;, N Mg, is not locally proper. Note that from
condition (3) of definition 3.8, M;, N M;, = M;, = M3,. It can now be verified
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that (M, MM;), satisfies each of the conditions (1) through (5) of definition 3.8. and
hence is locally proper.

Case (ii): Assume that (M; M M,)r = M;, N My, is not locally proper. Then it
must be the case that for some objects 0 and p, and a method denotation m¥, either
(i) V(M,,,m! ,0) = p, and o[pGm*,] € M,, but o[p@m? ] & My, N M, or (ii)
V(M,,.m¥ ,0) = p, and o[p@m* ] € My, but o[p@m?¥] ¢ My, N M,,. But this is
not possible since M;, = M,,, and for objects o and p, and method denotation mk_.
V(M,,.mk, o) = V(M,,,m*,,0) = p, and o[p@m*,] must be in both M;,. and Ma,.
hence in My, N My, making M;, N M2, a proper model. A contradiction.

Case (iii): Suppose (M, N M;)p = M;, N Mg, is not locally proper, i.e., it vio-
lates condition (7) of definition 3.8. So, let M, N M;,, satisfy a ground p-clause
cl = o[m(t..... {x) — t] « G and suppose that p[o@m*] € M;, N M,, but
M,, N M,, & cllof/p). This implies that M, = ¢/, and plo@m! ] € M,,. i = 1,2.
By the properness of M,, we also have M, E cl[o/p], i = 1.2. which implies
M,,, N M;,, k= cl]o//p}. contradicting the above. a

We have already seen that every program has at least one proper model. namely Ir.
In view of Theorem 3.1, we can conclude that every program P has also a least proper
model defined as Mp = M{M | M is a proper model of P}. But what can we say
about canonical models of P. since we would like to declare the intended meaning of

a programn as its least canonical model? The answer is given in Theorem 3.2.

Theorem 3.2 Let P be an i-consistent program and M be its least proper .aodel.
Then M is i-consistent. Furthermore, M is the least canonical model of P.

Proof: Let P be an i-consistent program, and M be its least proper model. First.
recall that every canonical model. by definition, is proper. This implies, for every
ground atom A € M, A is in every proper model of P, and hence in every canonical
model of P. Let N be any canonical model. The above argument shows that M C N.
This implies that M 1s canonical, since no superset of an i-inconsistent model can be
i-consistent. Since M is included in every canonical model, it follows that M is the

least canonical model of P. O

From Theorem 3.2, it follows that every i-consistent program P has a least canonical
model Mp. We call Mp the intended model of P and say that the declarative
semantics of a program is given by its intended model. It can be verified that the

canonical model Mp in Example 3.3 is the intended model of P;.
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Definition 3.12 (Logical Entailment) Let P be an ORLog program and 4 any
ground atom. We say that P logically implies A. denoted P = A, provided A is true
in every canonical model of A. We say that two ORLog programs Py and P, are

equivalent provided they have the same class of canonical models. a

3.6 Proof Theory

In this section, we develop a proof theory for ORLog and establish that it is sound
and complete with respect to the intended model semantics developed in Section 3.5.
Intuitively. our approach to proof theory is summarized by saying that we pre-compute
the “closure™ (see Definition 3.6.1 for a formal definition) of an ORLog program P
with respect to the set of all is-a. |-, w-, id- and i-atoms that are entailed by P in
the sense of Definition 3.12. The rationale for this approach is as follows. (1) We
can show that a program is equivalent to its closure. (2) Because of the separation
between the .1, 7 and IT components of a program, and the static nature of the is-a
hierarchy. the closure of an ORLog program can be ¢ffectively pre-computed. (3) This
approach makes the determination of inheritability simpler, and helps keep the proof
theory modular and cleaner. Besides. we are able to ensure that the inheritability is

deterministic.

3.6.1 Closure of a Program

Let P ={(A,Y,1I) be a definite ORLog program. We first define a pre-closure of
P* = (A", Y".IT") as follows. Recall that the locality of clauses is not usually supplicd
by the programmers. By taking the pre-closure, we account for the locality of clauses

in P. The pre-closure of a program P is the smallest set of clauses P” satisfying
P C P". and the conditions below.

1. ACA Y ="",11=1I".

2. Whenever a p-clause p[m(a,....,a;) — a] — 712q,....,7,2q,,G € II", where

G is “is-a free”, we have p[m*] — »)%q,, ..., Tnig, € A"
3. p[mk., bog] — G € A" = p|mk s bog] — G € A"

4. p[mk.,odq] — G € A" = p[m* sodq] — G € A",
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0 P e~ Plmk) e A~
6. Pu.P~P:QeA.
. PuPe—Q:Pe€A.
8. Pu:Q~P:RR:Q¢€ A"

For a set of clauses T, we let [L] denote its ground closure, which is the set of
ground atoms derivable in the classical sense from its Herbrand instantiation. Let
P* = (A", 7", 1I") be the closure of a program P and let P; = ([A7],[Y"], IT"). It
is important to note here that we do not require a ground closure of the component
II" of P, which presumably is the largest component of P*, We refer to P, as the
partial ground closure of P~.

Finally, the closure P. of a program P~ is obtained from P, by applying the

operator V as follows.
L =YY 2T ]and I, = IT".
2. for every ofmf] € A. and po€ A, V(A.mF . p) = 0 = plo@mt] e T..
3. Nothing else is in 7.

Theorem 3.3 below establishes that a program is equivalent to its closure.

Theorem 3.3 Let P be a program. P, be its closure. Then P and P. are logically
equivalent.
Proof: We show that an Herbrand structure is a proper model of P iff it is a proper
model of P. by showing that there is a one-one relationship between the conditions
that an Herbrand structure must satisfy to be proper and the axioms in the set
(P. - P).

Conditions (1) through (4) in definition 3.8 are satisfied by an Herbrand model
M of a program P iff M satisfies the rules (1) through (8) that are added to the pre-
closure of P. Rules (9) and (10) added to the closure of P exactly capture condition (6)
of definition 3.8. Since A and A" are logically equivalent, in the sense that considered
as programs by themselves, their classes of (classical) Herbrand models are the same,
the operator V behaves identically on .1 and A*. From this, it follows that P and P.

have the same classes of proper models. which implies the theorem. o
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3.6.2 Proof Rules

In this section we develop a goal directed sequent style proof system for ORLog
programs. We adopt this style along the lines of [59. 60]. In Figure 8 below, we
present fou r inference rules which define the properties of the proof predicate . We
use the notation P. 9 G to represent the fact that the goal G is derivable from
the closed program P. with a substitution'? 8, i.e., P. F G0. Following [60], the
structure of the proof rules are as shown below where we read them from bottom up.
Note that the application of a proof rule is contingent upon the satisfaction of the
conditions specified at the right hand side of eacn rule. The inference figures or proof
rules for ORLog are shown in Figures 8 and 9. We use 0, @, etc. to represent most
general unifiers, and € to represent the empty substitution. O denotes the empty
goal, which is always true. Our proof theory consists of four inference rules - EMPTY,
AND. DEDUCTION and INHERITANCE. For the sake of clarity, we present the first
three inference rules first and explain their intuition and our conventions. Then, we

present the last inference rule.

(EMPTY) P.+.0

P.+y G, P. ks G2[6]

(axp) P, Feo Gi £ G2
. . P+, Gl6] (=A~GeP,,
(DEDUCTION) PR A ( 8 = mgu(A. A)

Figure 8: Classical inference rules.

As in [39], a proof for P, F G# is a tree rooted at P. by G with internal nodes
that are instances of one of the four inference rules and with the leafl nodes that are
labelled with the figure EMPTY. The height of a proof is the maximum of the number
of nodes in all the branches in the proof tree, and the size of a proof is the number
of nodes in the proof tree.

The interpretation of the provability relation F is straightforward. The first three

rules capture the operational semantics of classical logic with the only difference that

14The classical notions of substitution and unification can be adapted to ORLog with minor
modifications.
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our language has a different syntax, and an elaborate set of atoms. The rule EMPTY
says that the empty goal can be proved with the empty substitution. The rule AND
for conjunctive go:l is intuitive: to prove Gy, G2, we have to prove G, and G, from left
to right as in Prolog. The rule DEDUCTION for logical inference (or back-chaining) is
as expected. To prove A, we need to prove the body G of a clause A" « G such that
A and A’ unify with . In this context, we would like to make the following remark
about the composition of substitutions in our proof rules.

Consider, for example, the deduction rule. Initially the lower sequent is P. F A
that states that A is derivable from P.. Now to prove A from the clause A’ « G. we
incur a substitution 6 on A through which A and A’ unify. Then we are left to prove
G0, since § should be applied to the body as well. To prove G we may similarly
incur another substitution o. Note that similar to classical logic it is customary that
A must inherit the substitutions that are applied to G at a later proof. Thus o
must be applied to A after we apply # since 6 was incurred first. This explains our
convention of right composing the substitutions in the proof rules. We denote by o
the composition of substitutions § with ¢ as uefined in {35].

Finally, the rule INHERITANCE in Figure 9 is unique to ORLog. This rule accounts
for the structural and behavioral inheritance in our language. The key idea is that to
prove a ground p-goal (a p-atom) of the form o{m(ay,...,ax) ~ a] via inheritance.
we must find a unit i-clause o[p@m¥.] in P, and a p-clause ¢/ such that ¢l defines m?,
at p. Then we apply a clause-wise term replacement {p//n} and prove the body of the
clause. Note that, the term replacement {p//o} captures the idea of contert switching
v hich is central to the realization of code reuse in ORLog. This is the basic idea.
However, it is cumbersome and inefficient to force inheritance to the ground level.
Consequently, our INHERITANCE inference rule in Figure 9 incorporates this idea on

general (non-ground) p-clauses, by using the context switch judiciously.

dipemt]er,
plm(ai,...,a})—a'l—Gell,

_ i P, . Glovof] ¢ = mgu(0,0'), ¥ = mgu(p'[¢}, p),
(INHERITANCE) P. Foyer O[m(a1,...,az) — a] o= {py/ody},
6 = mgu(< 0, a,,...,ar,a > [¢V],

<p,aj....,a;,d > [dg])

Figure 9: Inheritance rule of ORLog.
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Recall that ¢ = {pw’J06y'} is aterm replacement implementing context switching,
not a substitution. The way this inference rule works is as follows. Inorder to prove
a p-atom, determine by looking in the closure P. where the descriptor of the p-atom
is supposed to inherit the property from. Once this is established, locate any clause
defining this property at the source of ¢he inheritance, and prove the body of this
clause after performing the appropriate context switch (). All this is accomplished
modulo unification since we are dealing with non-ground clauses. Below is an example

of a proof using our proof theory.

Example 3.4 Revisit Example 3.2. Let us add the is-a definition k : p as clause
(15). & : pthen belongs in the component A; in program P, of Example 3.2. Let Py,
be the closure of P;. Now consider proving the goal k[m — W] from the program
P;. using the proof rules above. A proof tree corresponding to Py, F k[m — W] is
given below where p is the context switch as shown. The proof returns the answer
substitution {117/2}.

——— (EMPTY) ———— (EMPTY
Py F O (DEDUC) (14). Py k0 (INHERIT) (9),
Py Figmklr —gl | 0={Q/k) PiFixsay ks — X)) | 2= {p//k}
. AND)
Pi. F(@ruyxsay Kls = X, kv — g] (INHERITANCE) (8),
Pi. Fowyxp@rey(xyay klm — W) o1 = {o/fk}

3.7 Fixpoint Semantics

We now define a constructive way of defining the least model for a program P. Notice
that in any ORLog program P = (A, 7, IT), there is an implicit stratification among
its components. Namely, for a program P = (A,71,[T), the dependencies T — A,
and IT — 7 hold, as stated in Definition 3.1. Note that to compute inheritability
of property clauses, as required by the algorithm for V, we need to have a complete
knowledge of the object hierarchy and the locality of clauses defined in program P.
These observations and the depends on relation “—" suggest a way of constructing
a model for any program P in general. We can compute a “local model” M4 for the

component A, and then compute another local model for My for the component T
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from the “local program” TUM 4. This approach will give us the required knowledge
for computing inheritability of p-clauses. The closure P. of a program P embodies
the knowledge required for this purpose. Because of this and since P, is equivalent
to P, we base our fixpoint theory on the closed program P..

We have already established that every ORLog program P has a unique intended
model Mp which is obtained as the intersection of all proper models of P. Recall
that Mp is always canonical (see Theorem 3.1 and Theorem 3.2). We will show in
this section that it is possible to obtain the intended model Mp of a program P
(which by Theorem 3.2 is the same as the intended model Mp, of the closure P, of
P), by means of a bottom-up least fixpoint computation, based on the immediate

consequence operator Tp_, defined below-.

Definition 3.13 Let P, be the closure of a definite ORLog program and let
P, = (/1;,7”:,1/]2) be its Herbrand instantiation defined as usual. Let I be an Her-
brand structure for P.. We define Tp, to be theimmediate consequence operator that
transforms Herbrand structures to Herbrand structures. i.e.. Tp, : P(H) — P(H).

such that

Tp(l) = {om(ar....,ax) = dlofp}|om(ar,..., ax) - a) — Be IT..
plo@mt) € I.1EBofp}u {A|A«— BeIl..1k B}
Furthermore. since ORLog captures (multiple) inheritance with overriding, not sur-

prisingly, the operator T'p, is not monotone in general. as suggested by the following

example.

Example 3.5 Let P; = (4;,13, II;) be a program such that

(1) pup.
d2:=1(2) oo Lii=0 I:= ’ (4) plm— a].
(3) quq.

Now, consider two interpretations I, and 75 such that

I = {pup,o:oq:q,o:p}
I, = LUu{o:q)

While o{m = a] € Tp (I1).0o[m — o] ¢ Tp, (I). So. ingeneral, Tp, is not monotone.
o



Thus a fundamental challenge is. how can we build a “fixpoint semantics” using

an operator that is not monotone. The following lemma is important in this respect.

Lemma 3.1 Suppose I) C I, and furthermore, (i) (/1).4 = (I2).4. (ii) (Z1)r = (I2)r.
and (iii) both I; and I, satisfy all the clauses in (P.)4 U(P.)y. Then Tp () C
Tp.(l2).

Proof: The proof is almost identical to the classical case. The only observation
required are: (1) since I; and I, agree on their A and T-components and since they
satisfy the /1 and T-components of P, (a) the operator ¥ will behave identically with
respect to I; and Iz, and (b) all atoms in Tp_(I;) -1 (as also thosc in Tp ([;) — ;)
are p-, pred-, and r-atoms. (2) Whenever I} = Flofp], we have I E Flo//p| for any
formula F, since I E I,. 0

Remarks: Lemma 3.1 simply says that on the class of interpretations which satisfy
the is-a hierarchy and inheritability requirements of P. and are in agreement in this
regard, Tp, is indeed a monotone operator. This result is significant since Tp, T'= |
Tp, (Tp, 1°) = Tp_(0), satisfies all the A and Y -clauses in P, and furthermore V1 >
1:(Tp, T")4 = (Tp, 14 and (Tp, 1")r = (Tp, 1')r. The latter simply follows
from the definition of P, and of Tp,. This suggests the iterative applications of T'p,
on Tp, 1! will indeed produce a monotonically increasing sequence of interpretations
suggesting some hope of reaching a fixpoint.

The monotonicity of Tp, on the above class of interpretations guarantees the exis-
tence of a fixpoint. Now we have the following t heorems that establish the equivalence

of the model theoretic and the fixpoint theoretic semantics.

Proposition 3.2 Let I}, 1;,... be an infinite directed sequence of interpretations
such that Iy CTLC ... Then ifU%, 7, E G, then 3k Ix = G.

Proof: We proceed by inducing on the structure of the goal G.

Basis: If G is atomic, then U2, k= G if and only if G € UX, I,. Therefore, there
exists a k such that G € Iy and then I G.

Inductive step: Assume that the claim is true for any ground goal G. Now consider a
goal §' = G1, G By inductive hypothesis there exists k1 and k such that [y, = G,
and I, E G,. Now by choosing k = maz(ky, k2). it follows that 14 G, and Ik E G..
and therefore I} E G,.G2. O
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Theorem 3.4 Let P be a program, P, beits closure. and I be a structure such that
(P.)sC(I)4 and (P.)y C (I)y. Then [is a proper model of P iff Tp_(I)C /, and
I is proper as astructure,

Proof: We show implications in both directions.

=>: Suppose I is a proper model of P. Then by Theorem 3.3, I is a proper model
of P.. Since I, being proper, satisfies condition (7) of definition 3.2, it immediately
implies that Tp, (/) C I.

&: Suppose Tp(I) E I and I is a proper structure. Since (P.)s € (I)4 and
(P.)y C (I)y, Isatisfies the A and T-clauses in P,. That it also satisfies the p-, r-
and pred-clauses follows from the definition of Tp, and of satisfaction. Notice that
since (P.)s € (I)4 and (P.)y C (I)y. all the atoms in Tp,(I) are p-, r- and pred-
atoms. An inspection of the conditions (1) through (7) in definition 3.8 of proper

structures immediately reveals that T'p (/) is proper as long as [ is. g

The bottom-up fixpoint iteration of T'p,_ is defined as follows:

Tp, 1° = I,
Tp, 1" Tp (Tp 17)
Tp, 1% = UncTp. 1" .

Note that owing to the monotonicity of Tp, it has a least fixpoint { fp(Tp.) and
since ORLog is function-free, we trivially have {fp(Tp,) = Tp. T¥. One of our main
results is the following theorem, proved analogously to the classical case. The only

subtlety is handling clause inheritance via context switch.

Theorem 3.5 Let P be a program and P, be its closure. Then.
1. Mp = Mp, = Ifp(Tp,). where Mp = Mp,_ is the least proper model of P, and
2. Ifp(Tp_) can be computed in a finite number of bottom-up iterations.

Proof:

(1).

Mp, = ™I | Iis a proper Herbrand model of P},
by Theorem 3.1
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Note that whenever I is a (proper) model of P (and hence of P.). (P.)1 € (/)1 and

(Pc)r € (I)y. From this. we can see that

Mp, N{M | M is a proper model of P.}
N{M | Tp,(M)E M. M is proper and (P.)4 C (I).a. (P:)r € (I)r}.
by proposition 3.4

[fp(Tp,), by the monotonicity of T, on the class of P, satisfying the
conditions in Lemma 3.1, and Knaster-Tarski fixpoint theorem,

proving (1)

(2).
Since ORLog programs are function free, the least fixpoint above can be computed

in 2 finite number of steps, just as for Datalog, which proves (2). )

Observation 3.1 Let P be an i-consistent program and P, be its closure. Then
Mp = Mp, = Ifp(Tp,.) = Tp, T“ is the intended model of P. O

Theorem 3.5 establishes the equivalence between the declarative semantics base!
on intended models and the fixpoint sernantics based on the least fixpoint of the op-
erator Tp,. It remains to establish their equivalence to the proof-theoretic semantics
given in Section 3.6. As in the classical case, we accomplish this by relating the stage
of a ground atom A - the smallest number of iteration & such that A€ Tp, T* - to

the height of a proof tree for an atom more general than A.

Theorem 3.6 (Soundness) Let P. be a closed program, P. be the Herbrand in-
stantiation of P, § be an atcmic p-, - or pred-goal, and G beall the ground instances
of G. If P.F, G is provable then 3k such that Ga CTp, 1%

Proof: By induction on the height k of a proof tree. There are two cases, (i) p-goals
and (ii) non p-goals (pred and r-goals). Note inheritance only applies to p-goals.
Basis: Suppose the proof tree has height 1. Then there are two possible cases - (i)
either G is a p-clause local to some object, a pred-clause or an r-ciause, or it is an
inherited p-clause in some object from another object where it is local.

Case 1: There exists a unit clause A € P, such that mgu(g,A) = 0.

Case 2: There exist unit clauses A4,B € P, such that A is a unit p-clause of the form

m(aj,...,al) — a'] and B is a unit i-clause of the form o[p’@m* ], and G is of
p 1 k
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the form o[m(a,,...,a;) — a]. Then the inheritance rule must be applied. Hence
it must be the case that ¢ = mgu(o,0). ¥ = mgu(p'[d],p), ¢ = [Pv/oov] and
0 = mgu(< o0,a....,aa > [y, < p,aj,...,a,a > [Pg]).

Let @ = 6 for the first case and & = ¢10@ for the second case. Since Ga C P, in
hoth the cases, it follows from the definition of Tp, that Ga = Tp, 12.
Inductive step: Assume that the claim is true for any proof of height < k— 1 of a
goal of the form P. -, BA. Then we have again two cases.
Case (i): There must exist a clause of the form A4 « B € P, such that 8 = mgu(G, A),
and A =0 and we have a proof of height k for P, F, G where a = 87 and the root
node labelled DEDUCTION.
Case (ii): There must exist a p-clause A «— B € P, and a unit i-clause C € P,

such that A is of the form p[m(a},...,a;) — @] and C is of the form o[p’'@m})],
and @ is of the form o[m(a,,...,axr) — a]. Wecan now construct a proof tree of

height k for P. F, G such that the root node is labelled INHERITANCE, and ¢ =
mgu(0.0'), ¥ = mgu(p[é],p), 0 = {pvfody} and 6 = mgu(< o0,a,,...,ar.a >
[P ], <p.al,....a;,a' > [yp]). Also a = ¢128% and B = ¢ 0b.

By inductive hypothesis, Bfr = Tp, T%~! holds. Since Ga = APr in both
the cases. it follows from lemma 3.1 that AB% C Tp. 1* because either (i) Bj3rC
Tp. T or (ii) {B?r.a’[p’@’_w\ni]d'} C Tp, 7%, o'[p’@m*.] being unit clauses and
o’[p’@?ﬁ]u C o'[p”!@‘rm,’i,] C P.. Hence Ga T Tp, 1. o

Theorem 3.7 (Completeness) Let P, be a closed program and § be a ground p-.
r- or pred-atom. For any &, if G € Tp_ 1* then there is an atom A4 and a substitution
a. such that there exists a proof tree of height & for P. +, A, and G € Aa.

Proof: Again we proceed by induction on k.

Basis: Suppose ¢ € Tp, T'. Then there must exist a unit clause 4 € P. such
that either (i) § = mgu(g, A) and a = 8, or (ii) there exist unit clauses 4,B € P,
such that A4 is a unit p-clause of the form p[m(a},...,a}) — d'], B is a unit i-
clause of the form o’[p'@m%.], and G is of the form o[m(ay,. . .,as) — a] such that
¢ = mgu(o, o). = mgu(p'[d],p), 0 = {p¥// 0o¢?} and 6 = mgu(< 0,a,,...,ax,a >
[¢v]. < p,aj....,a;.a > [¢g]). Then there is a proof for P, -, A of height 1 which
is labelled either (i) by DEDUCTION where o = f, or (ii) by INHERITANCE where
a = ¢yf respectively. It immediately implies that § = Aa.

Inductive step: Assume that the claim holds true for & —1. From the definition of
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Tp,.if G € Tp, 1*. then there are two cases.

Case (i): There must exist a clause . « B € P, such that 6 = mgu(G. A). 0 = 4.
G = Ac, and Tp, 1%k Ba.

Case (ii): Thereexists a p-clause A — B € P, anda unit i-clause C € P, such that A
is of the form plm(a}....,a}) — '], C isof the form o’[p'@m*_]. and G is of the form
olm(ay,...,ax) ~ a] such that ¢ = mgu(o,0’). v = mgu(p'[o].p). 0 = {p¥foeu}
and 0 = mgu(<o,ay,...,ax,a > [¢¥], < p,a},....a,.a’ > [Vo]).

Since G € A (because § unifies with A) and G ¢ Tp_ 1*, by monotonicity of Tp,
it must be the case that Tp_ T¥-!k= B. Then by inductive hypothesis, we must have
a proof for P, F, B3 of height £ — 1. From this, we can then construct a proof for
P. F, A of height £ from this whose rcot node is labelled either (i) by DEDUCTION
where a = O and 3 = 0, or (ii) by INHERITANCE wherc a = ¢y and g = ¢y ol
respectively. It inmediately implies that G € Aa. o

As a corollary. we have the following equivalence between the intended model serman-

tics and the proof theory.

Theorem 3.8 Let P bea program. P, be its closure, Mp be the intended model for
P, and § be a ground goal. Then. we have that P.F, G is provable iff Mp E G.
Proof:

P.+,Gis provable <= G € Tp, T by Theorems 3.6 and 3.7
<= Mp, G from Theorem 3.5 0
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Chapter 4

Inheritance Reduction as an Aid

to Implementation of ORLog

Language designers are often faced with ¢ “uations where compromises must be made
between competing requircments that are polarized in some way. Commercial vi-
ability and practicality of the system also plays zn important role in the decision
process that shapes its functionalities and characteristics. In the case of deductive
object-oriented databases. the introduction of new features such as inheritance. ob-
jectidentity, encapsulation. signature, methods, etc. has increased the expressiveness.
modeling capability and functionality of the database systems while the paradigm is
now faced with seemingly unsurmountable compl.xity of the underlying semantics.
The impact of this dilemma on the development of deductive object-oriented database
systems has been undoubtably far reaching. This is evidenced by the multitude of
opinions on an acceptable data model on which a declarative language can be built
with semantic sufficiency.

As a consequence. there are several schools of though:s with respect to appiication.
theoretical rigor and implementation details of a declarative object-oriented language.
This can be broadly classified into two groups in two orthogonal axes. (i) A predom-
inant class of proposals attempt to capture object-criented featu es in a well-known
logical system such as Datalog or Prolog. In these approaches object-oriented features
are cuptured by giving a relational interpretation to object-oriented concepts. These
are the so called tranclation based approaches. (ii) The proponents of the other class

of languages advocate a more direct semantics that does not require a translation.
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These are the languages that have their own syntax and under'ying semantics. Within
each of these categories, they can be classified again into two classes. (a) Languages
that are given a partial logical semantics and rely on a non-logical, meta-logical, or
procedural semantics at varying deyrees for some of their features. (b) The second
class gives a complete logical interpretation to whatever features they embody in their

model. Figure 8 shows some of the languages and their classification according to this

scheme.
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Figure 10: Classification of Languages According to their Semantics and Approach.

It is our thesis that a deductive language should be given a direct semantics
which captures the actual logical meaning of most, if not all, of its features. In the
translational approach, on the other hand, the insight is lost, and there is no control on
how the translated program would behave. This results into a less than intuitive, and
at times a complicated semantics that is hard o grasp. A direct semantics is “readily
comprehensible” if the underlying model on which the language is based is so. This
approach also preserves the declarativeness of the language and eliminates possible
impedance mis-match, and has a greater appeal from a theoretical standpoint. Gur
contention is supported by a recent work by Kifer [46] wherc he argues that we
can take whatever approach we would like to develop and implement a logic based
language only after we fully understand the language from a logical standpoint and
what it entails.

As we have demonstrated in the previous chapter and in the Iigure 10 that

ORLog has a direct and full first-order declarative semantics. It also has a sound
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and complete proof theory with respect to its model and fixpoini theory. In this
chapter we, however, develop a technique to reduce inheritance to pure deduction.
We also develop a first-order encoding algorithm to show that ORLog is first-order
encodable. We prove that the encoding is sound and complete. This is not, in partic-
ular, indicative of a lack of semantics of the ORLog language itself in any way. This
exercise, however, is crucial in several respects. First, we are about to make a design
decision for the implementation of ORLog that requires us to investigate ways to im-
plement object-oriented features in deductive database systems by purely deductive
means. Secondly, it is essential that we show vhat ORLog has a first-order encoding
to convince the critics that although ORLog has a higher order syntax that boosts
its modeling capability, its semantics and expressibility are equivalent to first-order
logic. Finally, the reduction technique would benefit a large population of systems
that are proposed without a clear semantics of inheritance. Due to the non-menotonic
nature of inheritance and associated notions of overriding and late binding, most of
the translation based proposals do not address this issue or capture them procedu-
rally in a not so intuitive way outside the logic. Some advanced proposals ars based
on negation semantics, and thus associate a large cost on query answering. It is our
opinion that a technique similar to ours can be adapted in many systems that fall

short of capturing inheritance logically.

4.1 Related Research and Motivation

In this section we briefly discuss few representative systems that rely on a translational
semantics or capture features by non-logical means. The point we would like to stress
here is that these systems, like several others, depend on a translational semantics
and lack a logical interpretation of its features. Thereby they undermine their status
as a purely declarative language.

The suit of research in [1, 23, 71} extend Datalog like languages to incorporate
object-oriented features. Thesc :» oposals are conservative in that they exploit what
has been achieved in deductive systems and provide an object-oriented shell that
eventually make use of the deductive layer underneath. These proposals support
limited modeling facilities and provide a rather narrow vision of object-orientation.

Coral++ [71] is essentially an object-oriented interface to the deductive system
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Coral [66] in which C++ objects can be accessed from Coral using linguistic extensions
provided by Coral++. Clearly, this system introduces non-uniformity in the users
view of the applications leading to the so called impedance mismatch problem. 1QL+
(1} barely addresses the issue of inheritance. In particular, it does not cater for
multiple inheritance and behavioral inlieritance.

In contrast to the above proposals, OOLP+ [25], OIL [76]. Logical-objects [13].
and LLO [56], for example, rely on mappings to deductive systems to give a seman-
tics to their language and for defining an implementation strategy as well. OOLP+
provides a mapping to Prolog but lacks a clear semantics for inheritance. Overriding
seems to be a limiting factor for this language. Since it relies on Prolog, it is essen-
tially incapable of query optimization for which deductive systems are well-known.
OIL and Logical-objects are mapped to LDL. LLO is inspired by F-logic and HiLog,
and capitalizes on its higher-order syntax. LLO is built around th= data model of O,
and is also LDL translatable. Though inheritance is made part of this language, it
is not at all clear how inheritance is handled in this framework. All these systems
though appear to take a practical route, they suffer from complementary or similar
drawbacks as in the extended Datalog approach.

Another interesting approach can be witnessed in proposals like ROCK & ROLL
[10] and ConceptBase [45] where language integration is the key. ROCK & ROLL
is more akin to translation based approach where it provides means for procedural
(ROCK) as well as declarative (ROLL) specification of objects, methods, etc. The
language is based upon a data model called the OM [10] where the two sub languages
ROCK and ROLL, interact. ROCK allows schema declaration and data manipulation
facilities and is implemented in £ (extension of C++). ROLL is a function free
typed Horn clause language. This language is strongly typed and allovs mechanisms
for static type checking. Although it gains from the integration of procedural and
deductive languages through separation of logic and control, ROLL’s dependence on
ROCK is a real bottleneck. ConceptBase is based on the language Telos [45] and
also features a co-existence of deductive and object-oriented layers in a single system.
Very recently, the Peplom? [26] has also taken this language integration approach to

implementation.
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4.2 Reducing Inheritance to Deductions

Although all the above proposals have advantages, none is absolutely better than
the other. But the most striking distinction of ORLog with these languages is in
its simplicity and naturalness. In the following sections, we discuss an encoding
scheme of ORLog into first-order logic, and present a inechanism to reduce inheritance
to deductions. We also prove that the encoding, and subsequently claim that the
reduction, preserves the meaning of the original ORLog programs. This entails that
introduction of non-logical constructs or procedurality is not essential for ORLog and
a model for a program can still be computed by fixpoint computation of the reduced
programs. To distinguish between ORLog and the encoded and reduced ORLog, we
call them respectively ORLog and F-ORLog (for first-order ORLog). Notice that this
reduction is possible only because ORLog has a clearly understood logical semantics
of all its features.

We organize the rest of this chapter as follows. We first present an encoding
scheme of OKLog in first-order logic in section 4.2.1. Then in section 4.3 we present
the inheritance reduction technique relying on the idea of inheritance completion.
or t-completion and show its equivalence by relating the intended model of ORLog
programs to perfect models of reduced programs. We also give an algorithm for
translating ORLog programs to Coral deductive database language. We defer our

discussion on the design choices and decisions until after this chapter.

4.2.1 Encoding ORLog in Predicate Logic

Although ORLog enjoys a richer syntax than its predicate logic counterpart, it turns
out that ORLog is no more expressive thar predicate logic. In fact they are equivalent
in terms of their expressive power. However, it is the case that ORLog syntax allows
us to model and specify our domain of discourse in a very convenient way. Note that.
in general higher-order syntax [24, 47] has been found to be useful to model complex
objects and to reason about them.

In this section we develop an encoding algorithm to show that ORLog is first-order
encodable, and the semantics of the encoded program is equivalent to the original
program. This observation immediately indicates iliat it is possible to use a first-order

language to implement ORLog as a viable alternative to a more direct implementation.
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First we present the encoding scheme as follows.

Given an ORLog language £ = (C.V, .M, T.P), we define L3 = (C.V, M.T.
P.F) to be a language in predicate logic such that P is a set of predicate symbols
that includes {object,, local,, withdraws, parent,, isa;, usess, property,, participate,,
relation,} and F is a distinct set of function symbols apply,,+; one for each n > 1.
Given an ORLog formula ¢, its encoding into predicate logic, ¢°, is given as the
following recursive transformation rules. In the following rules encode, is a transfor-
mation that encodes ORLog atoms, and encode, encodes ORLog terms appearing in

atomic ORLog formulas.
e encode,(X) = X, for each variable X € V;
e encode;(c) = c. for each constants ¢ € C:
e encode,(s) = s for each symbol s e MUT UPU p:
e encode,( AV B) = encode,(A) V encode, (B);
e encode,(A A B) = encode,(.A) A encode,(B):
e encode,(—.A) = —encode,(A);
e encode,((QX)A) = (QX)encode,(A), where Q is either 3 or V.
¢ Encoding of atomic formulas are given case by case as follows:

— encode,(p[]) = object(encode,(p)):

— encode,(p : q) = parent(encode,(p).encode,(q));

(
encode,(p :: ¢) = isa(encode,(p), encode,(q)}):
~ encode,(p[m*.]) = local(encode,(p), m. k, type)';
(

[
— encode,(p[mF,0<dq]) = withdraw(encode,(p), encode,(q), m, k, typc);
pim!

encode,(p[m.. bogq|) == withdraw(encode,(q), encode,(p), m, k. typc);

encode,(p[q@m}~.]) = uses(encode,(p), encode,(q), m, &, typc);

1Here and in what follows, type is mapped to one of the constants in { func.val, func_sig, sel_val,
set_sig} depending on ~—, where — mapsto func_val, — mapsto sel_val. = mapsto func.s1y. and
finally =+ mapsto sef_sig.
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— encode,(r oty,...,t,) = participate(encode,(r), apply,(encode,(t1), ...,
encode,(1,)));

~ encode,(r(ay,...,a,)) = relation(encode,(r), apply,(encodey(a,), ...,

encode(a,)));

— encode,(p[m(a,,...,ar) — a]) = property(encode;(p), m, k, type,

apply,(encode;(a,), ..., encode;(ax)), encode;(a)).

Given an ORLog (Herbrand) Structure H = (H4,Hy,Hyy) with its Herbrand uni-
verse Y and Herbrand base H, the corresponding predicate logic structure,

encode(M) =< U, Ip >, is defined as follows:
o Ip(s) = s for every logical symbol s € U.
e < encode,(p) >€ Ip(object) «= H k p|].
e < encode,(p).encode,(q) >€ Ip(parent) <= H = p:q.

< encode(p). encode,(q) >€ Ip(isa) <= H = p :: q.

e < encodey(p).m, k,type >€ Ip(local) <= H = p[mk ].

< encode(p), encode,(q). m, k,type >€ Ip(withdraw) <= H k= p[mk oqq] v
g[mk, bop].

o < encode,(r).apply,(encode,(t,)....,encodel(t,)) >€ Ip(participate) <=
H"—‘T‘Otl....,tn.

e < encode(r).apply,(encode(a,)..... encode;(a,)) >€ Ip(relation) <=
H '= 7‘((11, N ,an).

o < encode,(p). enccde,(q).m, k.type >€ Ip(uses) <= H = p[g@m* ).

< encode,(p). m, k, type. apply.(encodea,), ..., encode,(ay)), encode;(a) >€
Ip(property) <= H = p[m(a,....,ax) — al).

\We can now state che following encoding theorem (adapted from [24]) that establishes

the equivalence of the encoded program and the original ORLog program.
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Theorem 4.1 Let P be any ORLog program and ¢ be an ORLog formula. Let M
be any Herbrand structure. encode(..’) be the semantic structure corresponding to

the language £57°°% and v be a variable assignment function. Then
M k&, ¢ «= encode(M!) =, encode, (o)

Proof. By a case by case structural induction of atom A. r(A) = r(encode,(A)).
By definition, encode,(A) = pred(.A)(encode,(1(A))). where pred(A) is a function
that maps to the corresponding predicate symbol of A in L5 and {(.A) is the list
of arguments for pred(.A) constructed from the atom A according to the encoding

algorithm. Therefore

ME,A < v(encode(t(A))) € Ip(pred(A))
< encode(M) k=, pred(A)(encode,({(A))
<= encode(M) =, encode,(A)

It is now easy to show that the equivalence holds for arbitrary formula ¢ by induction

on the structure of the formula. 0

4.3 Reduction by Completion

As we discussed earlier, mapping object-uriented languages to a deductive language
is an effective means to give a logical semantics to the source language. Although.
the idea is simple, achieving completeness and capturing the intended features are
not. Of the languages we have discussed at the outset of this chapter, most of them
do not address the issue of inheritance. This is partly because the source langnages
do not have a semantics of their own, hence it becomes difficult to capture it in the
target language.

The encoded databases, however, have a relational interpretation where probably
every object is viewed as a theory consisting of a collection of Horn clauses. Messages
are viewed as sub-goals which succeed iff they are entailed by the theory associated
with the receiving objects. However, in a deductive setting. capturing inheritance i

it stands, is a real challenge. because deductive systems are not equipped with the
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notion of inheritance and hence must be simulated. The question we need to ask is
that is it possible to model inheritance in the form of deduction since all first-order
systems are only capable of deduction? To put it another way, since inheritance
is almost always deterministic, why not first compute inheritability of clauses and
then compute the model by restricting evaluation of the rules based on computed
inheritability in a purely deductive way?

Fortunately, the answers to these questions are favorable in the case of ORLog. As
we shall see in the sequel of this chapter that the translation scheme of ORLog relies
on the key idea of reducing inheritance to deduction using complet.on. The reduction
enables us to implement ORLog on top of an existing deductive database systern,
namely Coral. We shall present the idea of i-completion that is the center point of
the reduction technique. But first, we take a closure of ORLog programs. called the
[-closure, to account for clause locality right in the closed programs. This is different
from the closure discussed in section 3.6.1. The l-closure is essentia! since our goal is to
implement ORLog on a deductive system that lacks the capability of detecting locality
of clauses in programs in addition to its inability to handle inheritance. Finally we
discuss a translation algorithm of i-completed ORLog programs into CORAL, called
the F-ORLog programs and show that the F-ORLog programs preserve the semantics
of every original ORLog program.

4.3.1 L-closure of Programs

Let P =(A.T.1I) be a definite ORLog program. We first define an l-closure
P = (AT 11') of P as follows. Recall that the locality of clauses is not usually
supplied by the programmers. By taking the 1-closure, we account for the locality of
clauses in P. The I-closure of a program P is the smallest set of clauses P' satisfying

P C P', and the conditions below.
e ICATY=T1I=1.

Whenever a p-clause p(m(a;.....ax) — a] « r14q;,...,7:4q,,G € II' we have

p[mt] — T1igy. ..., Triq, € AL

plmt. boq) — G € N = q[mF.oqp] — G € A,

plmtodaq] — G € .\ = q[m* bop] — G € .1\,
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plmk.pog] — G € A = p[m* ,poq] — G € ..

v p[mk.,odq] — G € A = p[m* 40aq] — G € .1

P:PePl]e A

P:Qe~P:RR:Qe.l.
o plmt] —Ge A = p[]e 1"
¢ plgimt ] —Ge A= p[] € A

The l-closure above exposes the properties of a program hidden in the definitions of
clause locality. It also captures the meaning of withdrawal in its operational sense.
Furthermore. the l-closure now explicitly captures the idea of is-a transitivity and
reflexivity of objects in any program P. It is now a matter of simple exercise to show
that the l-closed programs and the their corresponding ORLog programs admit the

same class of canonical models and hence are equivalent.

4.3.2 I-completion

We now present the notion of inheritance completion. called the i-completion, of a
program to capture inheritance in the form of constrained deduction. The idea is to
constrain property clause evaluation such that the clauses are only fired in an object
when the object is legitimately allowed to usc the clause. Intuitively, given a program
P~. for every p-clause in I1' we replace the descriptor of the clause with a variable,
and restrict the instantiation of the variable in a controlled and deterministic way.
The idea of inheritability is the key. Recall that for a given program P~ and a given
p-clause C!l € II', its inheritability is known. That is the set of objects in P* that
can inherit C/ is known. Only thing we have to do is restrict the instantiation of
the replaced variable to the set of allowed objects. The following definition formally

captures the idea of i-comp!~tion,

Definition 4.1 (I-completion) Let P* = (A", Y [T") be an l-closed program. Then

its i-completion, denoted P, = (4,,7,, II,), is a minimal program defined as follows.

o1, =0. A, =Aand 7, =7"
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o for every p-clause Cl = p[m(t,,....t,) = t] « B € [I' = (p[m(ty,...,tx) =
t]) — B)[p/V].V[p@m*,] € M, where V is a distinguished variable not occur-
ring in Cl, and {p//V'} is a term replacement. =

The intention of the i-completion is clear and intuitive. We replace every self-reference
in the clause to a variable V and decide evaluation of the clause in an object V in
terms of its inheritability. If V is an instance or subclass of the object p where
the clause was originally defined, and V can legitimately inherit m*, from p (i.e.,
V[p@m¥ ] is true), then the clause evaluation is allowed. As discussed before, this is
consis.ent. with respect to the idea of code reuse and our notion of inheritance.

The i-completed p-clauses may be viewed as new kind of is-a constrained p-clauses.
This is because for every such clause, V[p@mF ] is true only if V :: p holds true. We
can now rely solely upon deduction provided we are able to compute the set of i-atoms
of the form p[g@mk,] for P. Again. we can show that an i-completed program admits
an identical class of canonical models with respect to its origival ORLog program.
and hence are equivalent. Let us turn to our running exz nple to see how i-completion

works,

Example 4.1 Consider pregram P; in Example 3.2. The i-completion of P; is as

follows where 77, = 0:

6 ol el
2) rl]. X[]e=X:o (12) V[m - X] « V[s — X].
3) Q. r:p. Vv = g], Vjo@m2].
(4) r:q. gq:0. p:o. (13) Vs — 5] « V[o@s°].
(5) rlt%oap). p[t% por]. (14) Viu—=d] « Vo,
A=| (6) XX — X[ I, = V{Pew .
(M) XY X:Z2Z:2Y. (15) V[s—2] « V[p@s? ).
(8) P[ul] « P:o. (16) V[t — o] « V[pQt2].
(9) o[m%]. o[s%]. (17T) V[t = ] « V[q@t%].
(10) 2] Pl (18) V[o— g] — VQ@r?).
(11) plt2].  Q[2).



4.3.3 Computing Inheritability of Clauses using V

Recall that our goal is to encode ORLog programs into a first-order language and use
a bottom-up evaluator to compute the encoded intended model of the program. Siuce
first-order bottom-up evaluators are only capable of deductions, we need to provide
a means to compute the set of encoded i-atoms so that the evaluator can use them to
evaluate the i-completed p-clauses that are encoded. So far, we have only provided a
means to compute the locality of p-clauses and to derive the partial order of the is-a
hierarchy through l-closure. Finally, by taking the i-completion we accounted for a

transformation of clause inheritance into constrained deductions.

1. uses(Object. Object, Name, Arity, Method_type) —
local(Object, Name, Arity, Method_type).

2. uses(Source, Object, Name, Arity, Method_type) —
possible(Source, Object, Name, Arity, Method_type),
-local(Object, Name, Arity, Method.type),
local(Source. Name, Arity. Method_type), SourceZObject.

3. possible(Source, Object, Name, Arity, Method_type) ~
par~nt(Object, Some_object), Object#Some_object,
uses(Source, Some._object, Name. Arity, Method_type),
—withdraw(Object, Some_ob ject, Name, Arity, Method.type),
—conflict(Source, Object, Some_object, Name, Arity, Method_type).

4. conflict(Source, Object, Some.object, Name, Arity, Method.type) —
parent(Object, Another.object), Object#Another_object,
uses(Another_source, Another_object, Name, Arity, Method_type),
-.withdraw(Object, Another_object, Name, Arity, Method_type),
Some.object#Another_object, Another_source#Source.

Figure 11: Implementation of V using a stratified predicate logic program Po.

Now, to be able to compute inheritability as stipulated in the definition of the V
function (Definition 3.3), we present the following set of encoded rules Py in Figure
11. Note that the rules involve negation and are locally stratifiable [67] since the un-
derlying is-a hierarchy is acyclic by assumption. Observe the dependency relation of
predicates in Py and in encode(A,) as depicted in Figure 12. Intuitively. it is casy to

see that the parent relation supplies new tuples to the rules for con flict and possible.
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The rules for uses, possible and con flict traverse these tuples to decide inheritability.
Hence a possible violation of local stratification will occur in the Herbrand instan-
tiation of Py if the object hierarchy graph is cyclic. But since P. and hence P, is
assumed to be i-consistent, the hierarchy graph is acyclic. Hence P, must be locally
stratified for every consistent ORLog program. Also note that the encoded ORLog
program is still definite. The idea is to define a pcrfect model for the reduced program
P,. which is the union of the encoded program and the set of axioms in Py, i.e., P,
= encode(P,) U Py.

Although the i-completed programs are conventional first-order definite programs,
the reduced programs are normal Horn programs. Notice that the reduced program
has all the machineries needed to compute a perfect model for P.. Also note that
the depends on relation “—” for ORLog programs still hold in P,. Our definitions
of local stratification and perfect models coincide with [64] and hence are identical.
Note that the structure of P, = (A,.7,,II,) partly suggests 2 stratification in a
broad sense where [T, < 7, < A,. The goal of the stratification is to decompose *he
ground extension of a program P, into different strata P!,..., P" such that [P,] can
be obtained as the disjoint union of these strata. The encoded intended models of
reduced programs can now be computed by computing their perfect models using ihe

standard recipes available for normal programs [7. 6].

local uses poss:ble conﬂtct wuhdraw parem
+

Figure 12: Dependency relation of predicates in Py.

4.3.4 ORLog to Coral Translation Algorithm

We now present an algorithm that can be used to translate ORLog programs into
F-ORLog programs that can be evaluated in Coral deductive database system using
Coral query evaluator. Note that the actual implementation details are not an issue
here, only the translation is.

The translation algorithm is presented in Figure 13. Its termination and correct-

ness are indirectly captured in the discussion that precedes this section. We present
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a complete encoding of the i-completed program of Example 3.2 in Example 1.2,

Algorithm Translation;
Input: An ORLog program P;
Output: A reduced F-ORLog program

L%

begin

—

. Compute the l-ciosure P, of P;

o)

. Compute i-completion P, of P,

I

. Encode P, into P,;
4. Obtain P, as P, U Py:

end.

Figure 13: ORLog to Coral translation algorithm.

Example 4.2 Consider the i-completed program Py in Example 1.1. The encoding

encode(P, ) is the following first-order program.
(1) object(o).

(2) object(p).

(3) object(q).

(r).

(4) object(r

(5) object(.X) « parent(X, o).
(6) object(Q).

(7) parent(r, p).

(8) parent(r,q)

(9) parent(q, o).

(10) parent(p, o).

(11) withdraw(r,p,t,0. funcval).
(12) withdraw(p,r,t,0, funcva'.
(13) isa(X.X) « object(X).

(14) isa(X,Y") « parent(X, Z).isa(Z.1").
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(15) local(P.u.0, func_val) «— parent(P, o).

(16) local(o, m,0. func_val).

(17) local(o, s,0. func_val).

(18) local(q t,0, funcval).

(19) local(p, s,0, func.val).

(20) local(p, t,0, func.val).

(21) local(@,v,0, funcval).

(22) property(V,m,0, funcval, apply(), X) — property(1',s,0, funcval, apply(). X).
property(V,v.0, funcval, apply(). g), uses(V,0,m,0, func.val).

(23) property(V,s,0, funcval,apply(),5) «— uses(V, 0,s,0, func_val).

(24) property(V,u,0, func.val,apply().d) «— parent(1’,0),uses(V’, P, u,0, func_val).

(25) property(V,s.0, func.val. apply().2) — uses(V,p.s.0, func_val).

(26) property(V.t.0, func.val. apply(),a) « uses(V, p.1,0, func_val).

(27) property(V.t,0, funcval,apply().c) «— uses(V.q,1,0, func_val).

(28) property(V. 2.0, funcval,apply(),g) — uses(V,Q.v.0, func_val).

4.4 Implementability of ORLog

We conclude this section with the following remarks on the implementability of OR-
Log. It is clear from the encoding theorem 4.1 and the intuitive equivalence of reduc-
tion that for every i-consistent ORLog program P, there exists a perfect model for the
corresponding reduced F-ORLog program P, in the first-order predicate logic iff P
has an intended model in ORLog. Furthermore, the encoding of the intended model
is identical to the perfect model of the corresponding reduced program and vice-versa.
This makes it possible to implement ORLog in any first-order database system that
is capable of computing perfect models of programs. As it will be clear that no
meta-interpretation is necessary to compute perfect models of reduced programs.

In [41], we explored the possibility of using LDL [32] as the host database system
on which we built an ORLog interface. But its inability to support computation of
perfect models based on local stratification was a major disadvantage. Since CORAL
incorporates perfect model semantics as part of its negation semantics, we are inclined
to use Coral at this point to maximize our design goals. In the next chapter we discuss

issues pertinent to the implementation of ORLog in Coral.

85



Chapter 5

Design and Implementation of
ORLog

Although the research into deductive object-oriented database systems are relatively
new, experimental prototypes heve already started to emerge. Again due to lack
of a common data model. every system that came into existence have their unique
characteristics. However, the approach to implementation can be classified into four
distinct groups. (i) Implementation based on rewriting or translation into Datalog like
languages. (ii) implementation based on extension to existing Datalog like languages,
(iii) hybrid implementation, and (iv) systems based on direct implementation. In
the first category some of the systems that are known to have been implemented are
OOLP+ [25], OIL [76). Logical-objects [13]. LLO [56]. In the second category are
the systems CORAL++ [71]. LDC + + [69]. Logres [23]), IQL+ [1]. among many
others. ROCK & ROLL [10] and ConceptBase |45] are two systems that belong
to the third category. We are not aware of any deductive object-oriented database
systems that has been implemented directly that qualify as a member of the fourth
category. We already briefly discussed about these systems in the previous chapter
from a theoretical standpoint.

The development of ORLog was motivated by the need for a solid formal ba-
sis and a mathematical foundation for deductive object-or.ented databases so that
a commercially viable prototype can be built to meet the industrial demand for ad-
vanced database systems. It was also the goal that the language and the data model

on which the language is built should be as natural and intuitive as possible. Except
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for few technical aspects we believe that we met these requirements. In practice.
users of ORLog need not worry about these technical issues which were needed for

the mathematical development of the language.

5.1 Related Research and Motivation

The number of deluctive object-oriented database systems that emerged from the
multitude of reszarch done in this area is very small. We briefly discuss one represen-
tative system from each of the first three categories described above that are available
in the literature. The goal of this discussion is to bring out the distinctions between
the implementation approaches that are currently reported and practised and give
a flavour of each of these styles. We hope that this discussion will also bring out
few advantages and disadvantages of each of these alternatives approaches. It should
be clear from the discussion that follows that every approach has their strengths
and weaknesses and there is no absolute yardstick against which we can brand one

approach to be the best.

5.1.1 CORAL+4+

Coral++ [71] is an integration of Coral with C++. The goal is to use an existing,
object model and perhaps an existing imperative language with its associated type
system to extend the functionality of the Coral system. This allows Coral++ to
exploit features in C++ and vice versa. Note that Coral is implemented in C44,
hence an integration of the two is natural and practical.

Coral++ separates querying from creating, deleting and updating databases by
providing separate sub-languages for the latter. It also relies on C++ for maintaining
type safety, inheritance, encapsulation, and most other object-oriented features of
the language. The overall goal is to use Coral run time system as much as possible
and automatically invoke codes that handle object-oriented aspects of the language
internally that are treated as external functions. Users need to define class definitions,
methods. etc. in a C++ style sub-language, and can write C++ expressions in the
rule bodies.

A database in Coral++ is required to be compiled along with the class definitions

and basic Coral++ system so that the augmented Coral++ system becomes aware
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of the new user defined classes. Then a translation is applied to so that (i) for each
method invocation and attribute access in Coral++ rule, external C++ predicates
can be generated by the preprocessor that perform the relevant task at run-time.
and (ii) that every method invocation can be replaced by these external predicates.
Finally, the translated program is evaluated using the Coral interpreter. Note that
the issues related to inheritance, encapsulation, etc. are resolved by C++ during

compilation and translation, while Coral is responsible for deductions only.

5.1.2 OOLP+

The goal of this work is to implement an object-oriented logic programming language
using only existing technologies. namely Prolog. The main idea is to define a suitable
translation procedure for an object-oriented language. called the OOLP+ (25]. into
Prolog. Hence, objects are clearly viewed as predicates or relations in the target lan-
guage. OOLP+ provides constructs to define classes, objects and instances, methods.
etc. in a key-word based language. In this language superclasses. instance objects.
instance and class variables. and methods for an object class can be defined. Methods
are defined using an extended syntax of Horn clauses. Limited amount of method
ordering is possible in a specificational way. Method overriding is possible also in a
limited way using Prolog cut.

Then given an OOLP+ program. the translation is applied and a Prolog program
is obtained that captures the intended meaning of the OOLP+ program. The trans-
lated program is then evaluated in Prolog. Encapsulation appears to be not covered
in this framework. and overriding seems to be limited. Persistence is not supported by
OOLP+. Dynamic updating of instances and classes is possible vis-a-vis Prolog, and
hence methods with side-effects are supported too. However, unlike many conven-
tional object-oriented languages, OOLP+ does not allow invoking a specific method
from a specific class, partly due to the translational approach to implementation.

It is, however, obvious from this discussion that this approach is the simplest and
probably the cheapest. Whether the approach is desired in terms of flexibility, design.

execution cost, etc. that remains an open question.



5.1.3 ROCK & ROLL

ROCK & ROLL [10]combines the capability of an imperative database programming
language (ROCK) and a logic based first-order query language (ROLL). The im-
perative programming language is used for defining objects and classes, for writing
method codes and as sole means of updating and changing the states of databases.
The query language ROLL can be used to define rules and to express queries over
extensional databases defined using ROCK. These two languages interact with and
complement each other in a synergistic way. The fundamental principle behind its
design is to use conventional language components judicicusly and intelligently in
complementary areas through language integration that does not require any exten-
sion of the components individually. It should be clear that Coral++ is a coupling
between two languages through compilation and translation, while ROCK & ROLL
1s an integration of two languages.

Type system mismatch in this system is reduced since both the component lan-
guages are based on a common data model called the OM that makes it possible to
perform strong type checking. Also since the data values accessed by one component
can be accessed directly by the other. any special treatment or preprocessing of the
data across platforms are not needed that further reduces the mismatch problen.

A particular strength of this system is that users can write programs in which
ROLL may invoke any ROCK method as long as it is side-effect free, without auy
need for additional syntax. Whether a method call has a side-effect or not can he
detected at compile time. In a complementary way, ROLL methods can be invoked
in ROCK even with different binding patterns for their arguments. Overriding and
overloading of ROLL methods are allowed and the process of (late) binding of a call
to an implementation is handled in a way analogous to that for ROCK methods.
Finally, the implementation includes a ROLL front-end for ROCK in which declara
tive component of programs can be defined, tested, type checked and compiled. In
way, it can be said that this system is based on implementation of a deductive query

language over an object-oriented database.

89




5.2 Objectives of the Interface

Several well-known deductive object-oriented database systems and research proto-
types are h.nown to have been built using other existing systems as back-ends. For
example OOLP+ [25], OIL [76], Logical-objects [13], LLO {56]. Iollowing the same
direction, we propose a scheme for implementing ORLog in Coral [65] using a trans-
lational approach. Although a direct implementation of ORLog is obviously possible.
we chose to follow the translational approach for the following reasons. Since the
idea in a logic based language is to allow the user to program in a declarative way,
query optimization then becomes a system level concern. However, the research into
query optimization in deductive object-oriented databases is still in its infancy. While
sophisticated optimization techniques are being researched. we try to take advantage
of what has been successfully utilized in deductive databases for query optimization.
This motivates our translation based approach where users perceive their applica-
tions naturally in an object-oriented way and never go through the mental exercise
of mapping them into a non-object-oriented model. But still take advantage of the
superior query optimization techniques available in the deductive paradigm.

We make use of the reduction technique we have developed in the previous chap-
ter by customizing it for the Coral environment. We develop an user interface and
command interpreter for ORLog. The interface can be viewed as an object-oriented
front-end for Coral. For the moment, we only concentrate on the query processing

aspect of the language and leave out persistence for simplicity.

5.3 Implementation of the ORLog System

In this section we discuss the design and prototype implementation of ORLog using
Coral deductive database system as a back-end. We will first present an overview
of the system, outline the system architecture, and discuss design considerations.

Finally we review its performance and future enhancements.

5.3.1 Overview of the Interface

The primary goal of this prototype is (i) to provide a complete programming en-

vironment in ORLog that will reduce every ORLog program and answer queries by
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executing the reduced program in Coral, and (ii) to use Coral deductive database sys-
tem as the backbone inference engine maintaining a complete transparency of Coral to
the users of the interface. By making Coral user-transparent, we relieve the users from
the burden of knowing Coral before being able to use ORLog. It has been designed to
serve as an online interactive command interpretor as well as an ORLog interpretor.
It allows users to write programs in ORLog, interpret them and answer queries. It
also provides basic system services like viewing, editing and | rinting program files,
saving in-memory programs, running a stored program, etc.

It is also one of our goals to let the users eventually exploit some of the program-
ming features available in Coral. For example, execution tailoring through high level
meta-annotations, modules, various query evaluation strategies (top-down, bottom-
up. etc.). negation, persistent objects through Exodus storage manager, etc., and of
course to take advantage of relational query optimization techniques, until we under-
stand more about such issues in a purely object-oriented logic in general. We intend
to support a subset of these features in our system by seamless integration of ours

with Coral in a user-transparent way.

5.3.2 Systems Architecture

In Figure 14. the architecture of the system and its components are shown. The wusecr
interface module is an interactive shell and a command interpreter. Users are expected
to interact with the system through this interface. At the command prompt users
may request services, write programs interactively, or both. ASCII stored prograins
can also be brought into memory and executed using the consult command facility.
Every clause that is part of a consulted file, or that was entered interactively, is parsed
and translated into Coral by the parser and the translator modules respectively. The
translator also determines the locality of each property clause and adds corresponding
locality clauses to the program in real time. It also makes the user program clauses
atomnic!. Only syntactically correct clauses are accepted as active rules that are
added to a system buffer by the ORLog program buffer module. A translated version
is simultaneously maintained by the translated Coral program module. Users always

see and refer to the program in the ORLog program buffer area.

1Recall that similar to F-logic [47], we also allow the users to write molecular formulas as a
syntactic sugar. However, the molecules are broken down to atoms by the atomizer module, and
subsequently all atomized clauses are converted to the usual clausal formn (if not already)
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Figure 14: ORLog systems architecture.

Clauses can be added, or removed from the buffer area using the service and
help module from command prompt. Queries (translated) are processed by the Coral
query optimizer and the Coral query evaluation system. All queries are treated as
ad hoc and processed the moment they are posed. The Coral query optimizer takes
the translated program in the translated Coral program buffer, adds the set of rules
(axioms) in the inheritance engine module to account for inheritability of properties,
and then sends the optimized program to the Coral query evaluation system. Answers
are then forwarded to the user interface by the Coral query evaluator as a set of
bindings to the free variables in the query. Note that working in concert, the Coral
query optimizer, Coral query evaluation system and the ORLog inheritance engine

act as the ORLog Inference Engine.

5.3.3 Design Issues

Since the reduction is user-transparent, we maintain two versions of a program - one
is in the input version to which the user refers, and the other is the translated version
which is sent to Coral for execution. They are stored in two ASCII text files and are
maintained by the program buffer and translated buffer modules respectively. Coral
is invoked on the event of a user query as a system call from the interface and the

encoded i-completed program is passed to it as an input parameter. Coral then adds
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the inheritability axioms from its inheritance engine and evaluates the query.
Completion and encoding take place interactively and instantly in the interface.
This saves time. Since clauses can be added or taken away interactively, maintain-
ing the set of locality information in the completed set is a bit involved. However,
factoring out the inheritability computation in inheritance engine is viewed both as
a convenience and saving. It also now lets us compute only the relevant part of the

inheritability we need in order to answer a query.

5.3.4 Efficiency Issues

A considerable amount of time is being spent by the interface every time it calls
Coral to evaluate a single query. The program files are being closed and opened
several times, Coral environment is being created, data structures are built for the sole
purpose of a single query and destroyed subsequently. Another source of inefliciency
in our system is the modular stratification in Coral owing to our use of negation
in implementing the inheritability function V as a set of axioms in the inheritance
engine. These axioms account for inheritance in Coral, and we found that the use of

negation in the implementation of V function is unavoidable.
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Chapter 6

Comparison with Contemporary

Research

In this chapter we compare ORLog with contemporary approaches to object-oriented
logics in the literature. We show that overall ORLog has superior modeling capabil-
ities compared to all representative logics. and it assigns meanings to every ORLog
program which is not true for most other logics. We also show that, the concepts of
locality. withdrawal and inheritability are useful in their own rights and they play a
significant role in shaping the underlying semantics of inheritance in ORLog. Fur-
thermore. we demonstrate that the use of point of definition (locality of clauses) based
overriding gives us the edge over deduction based overriding in other logics. specially
when implementation of logics are concerned. Besides, most procedural languages.
e.g. C++. adopt definition based overriding approach such as ours. Finally. we

discuss issues related to the ORLog interface to Coral.

6.1 Current Approaches to Behavioral Inheritance

There are several important differences between our language and others’. Behavioral
inheritance has been studied in the context of Ordered Theories [50], Contextual
Logic Programming [61, 62], artificial intelligence, non-monotonic reasoning, and a
few others such as [20, 22], to name a few. Research in artificial intelligence and non-
monotonic reasoning is mainly concerned with inheritance of properties and conflicts.

and do not consider behaviors and structures of objects. Some of the proposals also
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sacrifice completeness. or are highly non-deterministic.

The proposals in [20. 50, 61. 62] are essentially modular languages that define
collection of predicates in named modules. Inheritance is then captured by algebraic
operations, called program composition, on the mcdules, to obtain new modules that
inherit the predicates from a super module. In SelfLog [20]. inheritance with over
riding is captured by statically defining an ordering among the modules and using
program composition to define inheritance. A similar approach is taken in [50, 61].
Although behavioral inheritance is captured in the semantics, program composition
in itself is very costly in the context of object-oriented databases, where number of
method definitions in the modules could be large and number of objects in prac-
tical databases may be much more than the static number of modules considered
in these proposals. Besides. they achieve their functionality by giving up multiple
inheritance and by avoiding the difficult issue of conflict resolution. Also the class
of programs they allow is much smaller than a language such as F-logic [47], Gulog
(29, 30]. ORLog. etc.

The i-stratification in Gulog {29, 30] and the stable model for inheritance pro-
posed in [22] are based on a preferred mode!l construction. Clearly a framework such
as ours. which captures behavioral inheritance within a sound and complete proof
theory. has a greater intellectual appeal. Also, the approaches above have a very high
computational complexity. In addition Gulog does not deal with inheritance conflicts
and disallows programs with conflicts. On the other hand [22] does not recognize con-
flicts since it takes a relational approach to methods by treating them as set valued
methods.

In the following sections we will take a closer look at the traditional approach to
behavioral inheritance based on first-order (predicate) logic in artificial intelligence
and knowledge representation and witness the difference with ORLog. We also ex-
amine a typical translation based logic such as OOLP+ {25] in the light of our logic.
Finally. we compare our logic with best known logic in object-oriented paradigm, the
F-logic [47).
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6.1.1 Research in Artificial Intelligence and Knowledge Rep-

resentation

We ronsider the canonical Tweety problem in this area. The logic program in Figure
15 states that (i) every bird flies, (ii) penguins do not fly, (iii) every penguin is a
bird, and finally (iv) Tweety is a penguin. The issue is to decide whether the answer
to the query fly(tweety) is true or false, i.e., does Tweety fly? The answer to this
query is not known. since the program does not have any model. In other words, we
can prove hoth, fly(twecety) and —fly(tweety) by appropriately selecting the order

of firing the rules in an attempt to prove fly(tweety).

r o fly(X) « bird(X).
rg + —fly(X) « penguin(X).
ra @ bird(X) « penguin(X).

ry : penguin(tweety).
7 fly(tweety).

Figure 15: The Tuweety problem in predicate logic.

It is easy to observe that the problems with this approach are that (i) implication
(«) is being used to model “is-a” as well as classical deduction, and (ii) negation (-)
is being used to model exceptions or overriding. Hence the distinction between impli-
cation and is-a specification is lost. There is no constructs to specify is-a specificity
and hence the intended rule ordering is also lost. Some researchers have proposed
complicated extensions to this approach to achieve the desired rule ordering [28, 75].
But this ad hoc fixes makes it hard to use this approach to model object-oriented
applications in general since these solutions are mostly application dependent.

As pointed out by Kifer [46], it is easier and perhaps desirable to develop a new
language altogether for object-oriented data modeling by extending the current tech-
nology with special constructs to capture objects, methods, classes and instances, is-a
hierarchy, overriding, etc. We now show that, with appropriate adaptation, we can
easily give a semantics to the Tweety program above,

Consider the ORLog representation of the Tweety program of Figure 15 in Figure

16. The answer to the queries tweet y[locomotion — fly] and tweetyllocomotion — X
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are shown. As can be seen that ORLog correctly assigns the intended meaning of the

program and correctly computes the answers.

ry : bird{locomotion — fly].

ry ¢ penguinflocomotion — walk).
ry : penguin : bird.

ry : tweety : penguin.

? tweety[locomotion — fly).

false

? tweety[locomotion -+ X|.
X = walk

Figure 16: The ORLog representation of the Tweely program.

It is easy to see that the structures present in ORLog (and other object-oriented
languages such as F-logic [47]. Gulog [29, 30], etc.) made it possible to capture
the intended behavior of the program in Figure 16. Specially. the concepts such as
locality, and inheritability plaved ir important role in deciding which definition of
locomotion the object Tweety will inherit. Although. F-logic and Gulog will assign
the same meaning to this particular program, they do so at a very high computational
cost since they take a model selection approach. Moreover, they are not able to assign

meanings to every program, as we shall see later.

6.1.2 Semantics Based on Translation

We now take an OOLP+ [25] representation in Figure 17 of the Tweety program in
Figure 15. OOLP+ is a language which does not have its own semantics and proof
procedure. Instead, it relies on rewriting every OOLP+ program into Prolog and
giving a relational interpretaticn to the source programs in OOLP+.

When rewritten in Prolog, the translated program looks like one in Figure 13,
During translation, (i) every super class definition of the form class a has su-
per_class b is translated into a Prolog clause of the form b(X) « a(X). (ii) every

method definition of the form class a has methods p(Y) « body is translated into
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class bird has
methods transport-mode(fly).

class wingless-bird has
super._class bira
methodso transport-mode(walk).

instance chipper
is-a bird.

instance tweely
is-a wingless-bird.

? tweety <K transport-mode(fly).

7 tweety < transport-mode(X).

Figure 17: An OOLP+ representation of the Tweety program.

(N Y) — a(XN).body. (iii) every overridden method definition of the form class
« has methodso p(Y) « body is translated into a pair of clauses of the form
pXY) — a(N)Lp'(Y) and p'(Y) «— body. and finally (iv) every instance decla-
ration of the form instance a is-a t translates simply into b(a). A message call
of the form target < p(X). however, translates as p(target, X) where target is an
object id.

An override method of a class overrides any other methods of the same name from
the superclasses. The translation and assertion of an override method is identical to
the method translation scheme. except that a cut (!) is inserted in the body of the
clause after the first sub-goal (which tests for class membership). The semantics of
Prolog cut achieves the desired effect of overriding. The answers to the queries are
also given in Figure 18.

The OOLP+ language uses keywords to override methods, and can not override
class or instance variables. Hence it can not assign default values to instances. Fur-
thermore. overriding is modelled via keywords and left as the responsibility of the
users and hence is open to errors. Furthermore. it is not suitable for bott.\m-up

computation due to the presence of the cut in overridden methods.
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ri ¢ bird(X) «— wingl_ss-bird(Y).

ro : transport-mrde( X, fly) «— bird(X').

r3 @ transpurt-mode(XN.Y) — wingless-bird(X).! transport-mode’(Y').
r4 : transport-mode’(walk).

rs @ bird(chipper).

re : wingless-bird(tweety).

7 transport-mode(tweety. fly).
false

? transport-mode(tweety. X).

X =wal
Figure 18: Prolog representation of the Tweety program in GOLP+.

6.1.3 Comparison with ¥F-logic

F-logic does not directly capture behavioral inheritance as in code reuse. The only
way to realize it is by simulating it via F-logic’s pointwise overriding and deduction.
But then. this makes it the programmer’s responsibility. Consider Example 3.2. In
our case clause (8) produces p[m — 2] by code reuse (as discussed in Example 3.2).
while F-logic (for the program as it is in Example 3.2) will inherit the ground data
expression o[m — 3] from o to produce p[m — 5} which is not behavioral inheritance
as in code reuse. Furthermore, due to clauses (12) and (13), F-logic will have two
minimal models - in one model it will inherit (12} in r and override (13); and in
another model it will inherit (13) in r and override (12). By contrast, in ORLog we
have only one model in which we inherit neither. By analogy with the literature on
negation {33], we can say that F-logic's approach to multipleinheritance is brave while
ours is cautious. Rather than debate on which is better, we would like to remark that
a brave semantics for multiple inheritance destroys any hopes of a comnplete proof
theory!. Besides. a nice feature of our {ramework is the ability to simulate the brave
semantics at a “local” level, to a limited extent. This can be accomplished by using

the withdrawal atoms. E.g., in Example 3.2. clause (7) withdraws method (%, defined

I'Thar is not to say, a complete proof theory for the cautious semantics is straightforward. as can
be seen from this paper.
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in p from being inherited in r. Since t° is also defined in g, r can now inherit {9,
from the unique source g.

A second difference with F-logic is that in F-logic a necessarily munotonic signa-
ture inheritance is built into the logic. There are situations where a signature defined
in a superclass may have to be withdrawn from a (not necessarily immediate) subclass.
F-logic’s inheritable and non-inheritable method expressions help solve this problem
to a limited extent. However, consider the situation where a signature is defined in
o, and is inherited up to the class r, where r : ¢, ¢ : p, p: 0 and suppose it has to
be withdrawn from s. where s : r. It is not clear how this can be accomplished in
F-logic. In ORLog. this can be done rather easily by using an appropriate withdrawal
atom. Finally, we remark that the concepts of locality, inheritability, and withdrawal
of properties are quite useful in themselves and we are not aware of any other logic

where they are given a formal status.

6.2 Comments on Implementation Issues

Despite several of its efficiency related drawbacks, the ORLog system compares very
nicelv with contemporary research prototypes in its class. Most of the translation
based implementations have similar drawbacks. if not serious ones. It is easy to
make an important observation in almost all implementations other than ORLog.
Most languages take a success-failure based (deduction based) approach to overriding.
hence any implementation will have to rely heavily on negation. In fact, it can be
shown by taking a pathological case that to decide on the inheritability of any single
method. we will have to compute the whole database. Whereas, the point of definition
based approach to overriding as in ORLog makes it simple, intuitive, and efficient to
the greatest extent possible. This makes ORLog a viable candidate for a serious
implementation.

However, the ORLog experience offers guidelines for addressing several important
issues and suggests that enhancements are possible on the present system. First, the
time spent by the interface in Coral calls can be saved by managing to run Coral in a
dedicated mode and make Coral talk to the interface. In that way, we need to invoke
Coral only once from the interface, use shared memory space and data structures

between Cora! and the interface. and spend minimal amount of time in transferring
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control from the interface to Coral, and vice-versa. This can be improved in yet
another potentially involved way. We can change the Coral interface to accept ORLog
code, and then translate the code internally to Coral's native language.

Secondly, one of our goals is to eventually exploit Coral features such as modules,
execution control through meta-annotations, etc. This can be achieved very easily just
by adding a simple identity function in the translator and passing the declarations to
Coral. Finally, in its current form, ORLog dces not support persistent objects. This
essential functionality needs to be added. A possible way to add this feature would

require to extend Exodus storage manager used in Coral with object management

capabilities.
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Chapter 7
Conclusion and Future Research

The gow of this thesis was primarily to develop a log'..al account of behaviorai in-
heritance in deductive object-oriented databases. 1o understand wkat behavioral
inheritance means and how inheritance of behaviors work in a network of objects
organized in some specialization-generalization hierarchy. we first needed to develop
an abstract data model, called the OR model, for database schema design. OR model
was instrumental in visualizing thz semantics of inheritance at a higher level of ab-
straction. It thus laid the foundation of the logical query language ORLog and its
underlying semantics, which was the main focus of this work.

The OR model we presented in this thesis can be viewed as an extension of SDM
in the direction of OO models. It incorporates a balanced mix of features from the
two paradigms and enriched the model by intreducing the new concepts such as prop-
erty withdrawal and re-introduction, accessibility of properties, stratified constraints,
methods in relationships, inheritance conflict resolution, etc. It uses, to a large ex-
tent, widely used constructs from the well-known ER model and leading OO models
and combines object and value based modeling. It facilitates dynamic schema design
and incorporation of knowledge in the schema in the form of first-order rules in a way
similar to DERDL [37] and DK model [38] respectively but in a much more effective
and sophisticated way. The choice of stressing inter-object association based on type
constructors (e.g., relationships) provides flexibility and practicality in schema design
as opposed to models that stress inversion as the sole basis for defining associations
as in SDM (36, 63, 39], F-logic [47], etc. Finally, it guaranteed re-use of software com-
ponents by adopting a flexible notion of is-a hierarchy, where objects are organized

at users’ choice. but not based on types, or sub-superset relationships of property
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inclusion.

We then considered a simple and intuitive object-oriented logic called ORLog as a
counterpart of the OR model and developed an elegant model theoretic and fixpoint
theoretic characterization of the semantics of its definite clause fragment, accounting
for multiple behavior inheritance with conflict resolution and overriding. We also
provided a simple sound and complete proof theory. This was ackieved by keeping
the is-a hierarchy finite and static. While, compared to other logics such as F-logic.
our language has limited expressive power, we have exploited the restricted setting
and successfully captured the non-trivial concepts of multiple behavior inheritance
within the model theory and a sound and complete proof theory, to our knowledge.
for the first time. On the other hand, our simple setting still admits a large class
of practically useful programs. In addition, we have proposed the notions of locality,
inheritability. and withdrawal of methods and signatures, as first class concepts within
the logic. These are useful concepts in their own right, as demonstrated earlier.

We note that even though for the sake of simplicity. the proof theory was pre-
sented based on the closure of a program, in an actual implementation, it is really
not necessary to compute the entire closure of a program. More precisely, it may
be possible to compute only a small and relevant subset of the closure in order t.
prove a given goal. Similarly, the bottom-up fixpoint computation can be made more
efficient. by incorporating ideas similar to the well-known magic sets method [11].
We are currently investigating these and other optimization opportunitics. We have
completed a prototype implementation [43, 44] based on translation to Coral [65], and
are working on a direct implementation. We are also investigating relaxations to the
present restrictions on ORLog programs while still capturing behavioral inheritance
within the logic. Although ORLog does not account for encapsulation, we show later
in this chapter that encapsulation can be incorporated in ORLog as an orthogonal
extension to the current proposal.

We also developed a technique to reduce inheritance to pure deduction, and a
translation of reduced ORLog programs to first-order logic that can be exploited by
several other languages for which a translational approach is critical to define their
logical semantics and hence depends solely on this approach. This technique helped

us implement ORLog in a first-order deductive database system, such as Coral'. We

INote that Coral includes a few higher-order features too.
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utilized this idea and implemented ORLog in Coral deductive database system as an

object-oriented front-end.

7.1 Issues that are not Covered in this Thesis

Recall that the main focus of this thesis was to develop a logical semantics for be-
havioral inheritance, although we made provisions for other essential features of a
complete object-oriented language to be included at a later time as an orthogonal
extension. We will now discuss some of those missing features that we intend to carry
on as our future work.

Recall that in the OR model we introduced the idea of property re-introduction.
accessibility and stratified constraints. A formal definition of accessibility can be
found in {40). While we leave the issue of accessibility and stratified constraints as
open issues, we can incorporate re-introduction by simply adjusting the definition of
inheritability function V¥ as in Figure 7.1. Note that without developing a new syntax
for re-introduction. in Figure 7.1 we use i-atoms to achieve the same effect without
any loss.

The purpose of introducing the signature atoms was to utilize the signatures of
properties to enforce “tvpe safe” databases. We did not expand on this issue in this
work. We can proceed to define well-typing and typed models in a way similar to
F-logic [47]. We rext discuss few other issues that we are currently investigating as

our future work.

7.2 Future Work

Although ORLog has superior features compared to contemporary languages, it also
has weaknesses, and hence there remains opportunities for further extensions. In fact
the current formalization opened up a whole suit of new research issues that seem
promising. In the following sections, we outline few weaknesses of ORLog and discuss
several extensions that we have planned as our future work to remove some of its

deficiencies.
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if o[m* ] € S and [3g such that o: g€ S, V(S.m*.q) =
p. plmt] € S and (Vr, such that o :r € S, one of the
following holds.

p

o V'(S.mk . r)y=r.and r[m*) ¢ 8. or
o V'(S.mk . r) = p, oro[m* odr] € S, or r[mh, bor] €

S
V(S mk o) = 1 if o[mk ] ;¢ S a’?d o[q_@n,rf‘_,], EkS and {3g such t‘lmt o
g€ S, V(S.mi,q) =y, p'[mL]) €S and (Vr, such that
o:1 € 5, one of the following holds.

P o V(S.mr.r)y=r,and r[m*] €S, or

o o[mk odr] € S.or rjmk, por] € S. or
o V'(S,mF.r) = u, and v such that o : ¢ ¢

S. V(S mk ) = w.)]

0. 1n all other cases.

Figure 19: New definition of ¥ to incorporate re-introduction of properties.

7.2.1 Function Symbols in ORLog

One of the technical reason for not allowing function symbols in our language was
to ensure static computability of inheritability using ¥V at compile time. Although
inclusion of function symbols is desirable for the modeling of much more interesting
databases and dynamic creation of objects, it threatens static computation of inher-
itability since the object hierarchy may potentially become infinite, and termination
of ¥V can not be guaranteed anymore.

However, we believe function symbols can still be included in ORLog in a restricted
way. The idea is to define suitable properties for admissibility of clauses that create
new objects such that the depth and breadth of the object hierarchy still remain finite.
A partial solution to this effect is already at hand, while we are investigating a much

more general solution such that a larger class of programs can be made admissible,




7.2.2 Dynamic Object Hierarchies

Recall that we have assumed a static object hierarchy in every ORLog program pri-
marily by not allowing i- and p-atoms in the rule bodies of is-a clauses again to be able
to manage static computing of inheritability of clauses. If we relax this restriction.
static determination of inheritability would not be possible, and similar to Dobbie
and Topor [29], for example, we will have to adopt a model theoretic semantics based
on stratification as in negation in logic programs. In [21], we investigate the issue of
dynamic is-a hierarchy and define a stable rnodel semantics for behavioral inheritance.
The language there is similar, and we believe that the idea can be extended to ORLog
without much complication. One important consequence of allowing dynamic object
hierarchies is that we are no longer required to compute inheritability at compile
time. Hence, we may now safely allow function symbols in our language and make
it more expressive, since infiniteness of the hierarchy does not matter any more. An-
other consequence will be that instead of a least intended model, we will have several
minimal models for ORLog programs. A downside is that the high computational

complexity of stable models will be incurred in this case.

7.2.3 Encapsulation in ORLog

Another most fundamental and esseniial concept of object-orientation is encapsula-
tion. While this issue has been a subject of intense research in the logic programming
community for quite some time, researchers in object-oriented logic programming did
not address this issue seriously. Partly the reason may be issues like inheritance have
given priority and not much has been achieved until now.

Encapsulation is an essential software engineering technique which help define
objects with interfaces that restrict the access to the state of an object only through
the set of public methods of the object interface. As such, it frees the users from
the burden of knowing the internal structure and state of the objects by hiding all
unnecessary details. This mechanism is referred to as structural encapsulation as
opposed to the notion of behavioral encapsulation that refers to the concept of hiding
the implementation details of the methods in objects. Objects themselves, however,
can access their own properties irrespective of the state of the encapsulation status,
or the interface.

Although the ideas seem to be very simple, researchers could not agree on a logical
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account of these simple idea until recently. Much of the research were centred around
the context of modules in logic programming. Miller's theory of modules [59] was
instrumental in defining a limited account of encapsulation. Dynamic visibility has
been studied in [8] again in the context of modules. But all these proposals failed
to give an effective interface mechanism that can be used in objects. Recently, we
proposed an elegant solution to this problem in [21] which addresses the issue in an
object-oriented context. Although the language considered in [21] is slightly different
and more restricted, it provides a formal foundation based on which systems can be
developed and tailored for a particular application. We believethat theidea proposed
in [21] can be exploited to develop a formal account of encapsulation in ORLog. We

plan to incorporate encapsulation in ORLog along this guideline in future.

7.2.4 Enhancing the ORLog User Interface

The current prototype interface we have developed for Coral has several limnitations.
We have an elaborate plan to enhance this interface so that it beconies a practical
system building tool. Some of the enhancements that we are considering are as
follows.

We are now working on a more user-friendly graphical user interface for ORLog.
In this interface. users will be able to define database schema and objects, browse
database, execute queries, navigate through the object structures and develop appli-
cations, all in a graphical way. Another graphical tool is being developed to track
inheritance conflicts at compile timeso that such conflicts may be resolved, if desired.
by the users using the mechanisms provided in ORLog. We are also considering de-
veloping a method to ensure type safe databases in ORLog based type inference from
the signatures defined in ORLog programs.

In the current state, ORLog is a main memory database. We would like to include
persistence to ORLog objects. This will demand a significant amount of research and
development since the issue of object persistence raises new issues that are currently
being investigated by the database researchers. A particular issue that comes to ones
mind is that what are the new issues that need to be addressed in a framework like
ours where objects are viewed as relations since we take a translational approach to
implementation. This almost certainly has performance related implicatiors. Hence,

a natural next step would be to implement ORLog using a direct approach and use
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persistent objects instead of relations, as our experience grows.

7.2.5 Updates and Query Optimization

So far we have only considered retrieval queries and methods that are side- effect free.
To consider methods with side-effects would require a firm logical basis for updates. A
possible course of action would be to investigate adapting ideas similar to transaction
logic by Bonner and Kifer [15]. In [46], Kifer shows that such integration is possible
in a Jogical way in languages similar to F-logic.

A final open issue is query optimizationin ORLog. We believe that query opti-
mization can now be investigated since we have a clear semantics of inheritance which

most of the previous proposals lacked and rendered such study extremeiy hard.

7.2.6 Schema Integration and Evolution

We believe that OR model and ORLog can be used for schema integration ard evo-
lution applications. The notion of withdrawal proposed in OR model may hecome
handy in modeling such applications. Although we leave it asour future work, we can
cite works that are already using similar languages and models for such applications.
In [54], F-logic [17] has been used to query heterogeneous databases. Since ORLog
has strong similarity with F-logic, ORLog may also be used for such applications.
In fact, the language SchemaLog [51, 52] has been developed mainly for modeling
schema integration and evolution applications. Again, it turns out that ORLog is
able to simulate Schemalog to a limited extent. Unlike F-logic or ORLog, in which
functionalities needed for interoperability need to be simulated, SchemaLog allows for
constructs for direct and efficient interoperability. We intend to explore these issues

further in our future works.
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