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ABSTRACT
SENSITIVITY CONSICERATIONS OF

SOME GROUNDED CAPACITOR ACTIVE CIRCULTS

An attempt has been t.ade'to investigate sane active circuits
with grounded capacitors with the view of obtaining low sensitivities
with respect to variations in elements. This objective was
achieved by analysis of a basic circuit model consisting of an
operational amplifier and an RC network with grounded capacitor.
Several variations of this model in cascaded form with zero, single and
multiple feedback were studied in order to derive low-pass and high-

- pass active circuits with high Q and low Q sensitivity. Detailed
‘énalyses of the circuits, together with calculations using the thin-
film circuit parameters, led to very useful circuit configurations

with Q's up to 100 appearing together with low Q-sensitivities.

29 Jun 71 D.R. Smyth
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CHAPTER 1

INTRODUCTION

In this dissertation an attempt has been made to investigate some
active circuits with grounded capacitors with the view of obtaining
low transfer function sensitivity with respect to variations in
elements. Moschytz [3] states that this problem of sensitivity mini-
mization is one of the major problems of active RC network synthesis
because of changes in camponents due to ambient conditions and
becauseof the conditional stability of active RC networks. Although
we do not use Moschytz's approach, we do use operational amplifiers
in a new circuit approach.

Use of operational amplifiers in active RC networks is not new,
as is seen from their use in References [3], [4], (8], [12], [15],
[20], and many other recent articles and books on network synthesis.
Two of the best and most practical source books on operational
amplifiers are Burr-Brown's two handbooks, References [8] and [9],
which contain numerous circuit configurations.

Use of state variables in circuit analysis appears to be a
recent technique borrowed from linear systems theory. Newcomb,
in a recent bock [15], states that use of the state varisble approach
provides three basic advantages: (1) minimal capacitors, (2) use

of operational amplifiers, and (3) reasonably low sensitivity.
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In another paper, Kerwin, Huelsman, and Newcamb [12] discuss a theory

for low sensitivity transfer function realization using state variable
flow graphs. Kerwin, Huelsman, and New~~:b also demonstrate a well-
known general second-order active network (Mitra [1]; Tow [7];Tow [14] )
which has a minimal nunber of capacitors. In particular, mention is |
made of a positive - gain grounded-capacitor integrator as shown in Fig.

1.1 (although no use is made of this specific integrator in realizing

second-order networks). AAA
TR
x W11 &
BE; c X AN\ o
- 1: R -
Fig. 1.1 - Positive-gain grounded-capacitor integrator.

Analysis of the circuit of Fig. 1.1 shows that the voltage transfer

function is given by

T(s) = Eo(s) .= 2K (1.1) -
Ei(s) (2 +KsCrR+ 4

where K is the closed-loop gain of the operational amplifier. Hence,
at low frequencies, the circuit ceases to behave as an integrator, which
is a serious limitation.

Washington, in a recent paper [5]1, evaluates various types of
active filters including a multiple feedback bandpass type. Washington
discusses his results of Q stability and frequency stability which
indicate that the multiple feedback circuit is best when these two
parameters must be controlled. Newcomb, Rao and Woodard [13] develop
a minimal capacitor synthesis technique for integrated circuits; however,
their approach is through use of gyrators rather £han operational

amplifiers.



Discussion of sensitivity occurs in almost all papers and books
on active P" networks. Mitra, in a recea® book [1) » has a very
extensive discussion of sensitivity definitions for quick reference.
Mitra also discusses methods of sensitivity function minimization
without maximizing loop gain which usually leads to stability problems.
Moschytz, in recent paper [2], discusses a new figure of merit for
hybrid integrated networks using single operational amplifiers. He
suggests that the gain-sensitivity product is a more meaningful
measure of Q stability than sensitivity alone. Geffe [19] , discusses
the dramatic fall of sensitivities in recent years due to active
network research. He refers to macroscopic or realistic sensitivity
versus differential sensitivity, the latter for which we must settle
in order that the sensitivity prcblem ke troctable mathematically,
ev::—:n though we are not dealing with purely differential quantities. -

Kerwin, Huelsman, and Newcomb [12] state that grounded capacitors
are best for integrated circuit devices. Since we are investigating
a new active RC circuit with grounded capacitors and also
study use of hybrid integrated circuits in achieving physically
realizable models of our network, we have thus heeded the remarks about
grounded capacitors mentioned above in a recent book edited by
Huelsman [16]. According to Huelsman [16], grounding of capacitors
simplifies J.e integrated circuit configuration by providing all
capacitors with a common isolation junction, thereby saving considerable

area.
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CHAPTER 2
CIRCUIT ANALYSIS OF ACTIVE CIRCUITS

Several variations of a basic active RC network are analyzed.
The basic network consists of an operational anplifier coupled directly
to an RC network with grounded capacitor. A description of operational
amplifiers is contained in Appendix A. All symbols used in the following
analyses are defined for quick reference in Appendix B.
2.1 Basic Circuit

The basic circuit is shown in Fig. 2.1. For ease in presentation,
the RC network is represented by the element shown in Fig. 2.2b with

terminal 3-3' grounded in all cases.

+ =1 K + 044% Jc +

E. E; E

1 _ J o

Fig. 2.1 - Basic Circuit.
1 AN~ ;L 2
1 G (s) 2
3 I ~
3--3!

Fig. 2.2a - RC network. A Fig. 2.2b - Equivalent network.

Using Mason's rule as stated in Kuo [18], the voltage transfer

function of the circuit in Fig. 2.1 is given by



T(s) = E_(s) = -KG (s) ' (2.1)
E, (s)
where
G(s) = 1 (2.2a)
1l +as
o = RC - (2.2b)
K = closed loop gain of amplifier (2.2c)
and |
s =0 + jw.

Use of the basic circuit of Fig. 2.1 in cascaded arrangements with
and without feedback loops leads to quadratic functions in both the
numerator and the denominator of the voltage transfer function as shown
below. In all circuits analyzed, it is assﬁmed that the input impedances
to amplifiers are infinite, and that output impedances are zero. A
sumary of signal flow graphs for Figs. 2.3 to 2.13 is found in Appendix
C.

2 .2 Variations of Basic Circuit

The first version of the basic circuit is that of Fig. 2.3 which

consists of two cascaded basic circuits with multiple feedback.

+
F _K‘ G, T
?i _ go
Fig. 2.3 ~- Cascaded basic circuit with multiple feed-

. back.
For the circuit of Fig. 2.3, the voltage transfer function is

given by



T; (s)

where -

ai

by

Cy

o3}
and

o2

Reversal

Eo(s) = 1
EiZET- a;s? + bys + ¢
K;K,
0o 4+ O3 (l - Kz)

K;K,
1 + K, (Ky — 1)

K Ko
rRCy :
R,Co .

(2.3)

(2.4a)

(2.4b)

(2.4c)

(2.44)

(2.4e)

of the input leads to the two operational amplifiers

of Fig. 2.3, that is, with the output voltage Ej feeding into the

negative input terminals of the amplifiers and thc input voltages E;

and E, feeding into the positive input terminals, leads to the circuit

of Fig. 2.4 with

T, (s)
where

ajz

b,
and

Cs

the voltage transfer function given by

Eo(s) = 1

E,(s) a,s? +bys +
0102

KKz

o2 +ay (1 +Kp)
K,

1+K2(K1 +l) .
KiK

(2.5)

(2.6a)

(2.6b)

(2.6C)



Note that equation (2.6a) is similar to equation (2.4a), but
that equations (2.6b) and (2.6c) differ from (2.4b) and (2.4c) by a

sign change.

¥+ E}/’ G133 G +

E, E B

i "2 _o

Fig. 2.4 - Circuit of Fig. 2.3 with reversal

of input leads.
The circuit of Fig. 2.5 is two cascaded basic circuits

without feedback.

; —K1 G1 —1K2 Gz
" + . +

s I

o]

Fig. 2.5 - Cascaded basic circuit without feedback.
The voltage transfer function for the circuit of Fig. 2.5
is given by

T3(s)

E (s) = 1 (2.7)
O

Eiis) ass? + bss + c3

where

as = Q102 (2.8a)
KiK>

ba = Q1 + C2 (2.8b)
' K1K>
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A

C3z = 1 . (2.8C)
KiKs

Reversal of the input leads to the two operational amplifiers in
the circuit of Fig. 2.5 does not change equations (2.7), (2.8a), (2.8h),
and (2.8c).

Another circuit variation is that of Fig. 2.3 with no feedback

to the second operational amplifier. This is the circuit of Fig. 2.6.

= G =K G
. r()/ 1 2

Fig. 2.6 — Cascaded basic circuit with single
feedback to Op Amp 1.

The voltage transfer function of the circuit of Fig. 2.6 is

given by
Ty (s) = Eo(s) = 1 (2.9)
Ei(S) a:;S2 + bys + ¢y
where
ay = _C_X.],Ol,z (2.10&)
KiK>
bq. = -(_l_l-i_o_l._z_ (Z.lOb)
K;K»
and
Cy = 14+ 1 . (2.10c)

KiKa>



Tha circuit of Fig. 2.7 alsc has 2 single feedback path,

this time to the second operational amplifier only.

+

—— Gi lKg G2

-+
E, | E

Fig. 2.7 — Cascaded basic circuit with single
feedback to Op Amp 2.

The voltage transfer function of the circuit of Fig. 2.7 is

given by
Ts(s) = Eo(s) = 1 (2.11)
Ei(sf ass? + bss + Cs
where
as = Q102 (2.1261)
KK,
bs = Q2 + Q1 (l—Kz) (2.l2b)
KiK;
and
Cs = 1-XK; . (2.12c)
KK,

The addition of an operational amplifier in the feecback paths of
the circuits of Figs. 2.3 and 2.4 provides additional control of the
coefficierts a, b, and ¢ of the voltage transfer functior. The circrit

of Fig. 2.8 is an example of this, as is the circuit of Fig. 2.9.
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G2

t 4

Fig. 2.8 = Circuit with additional amplifier
in feedback path.

The voltage transfer function of the circuit of Fig. 2.3 is

given by
Te (s) = Eo(s) = 1 (2.13)
E;TET ags?+ bgs + Cs
where
. — - I 1 /1-0
-~ WL L Nde @l ady
KiKz
be = oz + 01 (1 + Kp) : (2.14b)
KiK>
and
Cg = 1+ Ky (KjK3 + 1) o (2.14c)
Ki1K»

The second version consists of two additional operational

amplifiers in the feedback path, as shown in Fig. 2.9.
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Gz

+E§V/* G1

H o+

Fig. 2.9 - Two additional feedback amplifiers.

The voltage transfer function of the circuit of Fig. 2.9 is

given by
Ty (s) = Eo(s) = 1l (2.15)
E, (s) ass? + bys + ¢
where
az = Q102 (2.16a)
K;iK»
bz = oz + oy (KoKy + 1) (2.16b)
KiK>2
and
Cc7 = KoKy(K3Ks + 1) +1 (2.16c)
KKz

All the circuits of Figs. 2.3 to 2.9 inclusive are
low-pass active RC networks. Several other circuits were investigated,
using the same basic circuit of Fig. 2., in order to attempt the
realization of more general bicquad functions. The first of these circuits

.is that shown in Fig. 2.10.
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|+

i

Fig. 2.10 - Restricted bigquad realization.

The vbltage transfer function of the circuit of Fig. 2.10 is

given by

Te(s) = E_(s) = Ks . ass? + bss + Cs

Ei(s) a)s° + bis+ <

(2.17)

Note that the coefficients of the dencminator of equation (2.17) are

identical to those of the denominator of equation (2.3), and the

coefficients of the numerator of equation (2.17) are identical to

those of the denominator of equation (2.11).

The second circuit is that of Fig. 2.11 whose voltage trans-

fér function is given by

Ty (s) = Eo(s) = K3 . ags® +bgs +co
Ei(s) ' a;s? + bys + ¢
where
Qg = Q102
KK,
by = a1{l = K))+ a2(l - K;)
KiK;
and
Cgq = 1 +K; - K__Q_ .

KKz

(2.18)

(2.19a)

(2.19b)

(2.1%c)

Neither circuit can realize numerator and dencminator independently, and

are thus termed restricted biquad realizations.
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Gy K>

J#E—

Fig. 2.11 - Second version of restricted biquad.

The circuit of Fig. 2.12 is a variation of the circuit of Fig.

2.8 with input voltages to the three amplifiers reversed.

G

G2

+
E
e}

Fig. 2.1z - Circuit of rig. 2.8 with reversed inputs.

The voltage transfer function of the circuit of Fig. 2.12 is

given by

T ({s)

10

where

=3 )

b
and

Cio

E0 (s) = 1

Ei(S) él.]_os2 + bloS + Cip

o2 + a; (1L -K))
KK, -

l -+ Kz (K1K3 - l)
KK,

(2.20)

(2.21a)

(2.21b)

(2.21c)
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The circuit of Fig. 2.13 is a variation of the circuit of

Fig. 2.9 with input voltages to three amplifiers reversed as shown.

Gy _LE;/ G2 "
E

i o}

Fig. 2.13 - Circuit of Fig. 2.9 with reversed
inputs.

The voltage transfer function of the circuit of Fig. 2.13

is given by

Tii(s) = EO(S) = 1 (2.22)
Eiis) a1i1s + biis + ¢33
where
aii = Q102 (2.23a)
KiK,
bia = o2 + o3l - K2Ky) (2.23b)
KiK;
and
Ci1 = Kqu (K1K3 - l) + 1 . (2.23C)
Ki1K>
2.3 Summary

The eleven circuits shown in Figs. 2.3 to 2.13 provide nine low-
pass networks and two restricted biquads. Several of these are not
adequate in providihg suiteble means of varying or contrclling poly-
nomial coefficients by means of the closed-loop gains of the operational
amplifiers. The circuits of Figs. 2.5 and 2.6 fall in this category

because, on inspection of Table 2.1, coefficients b3 and by respectively
. as ay
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cannot be controlled by the closed-loop gains K; and K.

P

—_— - Those circuits which do provide control of the coefficients

-
are those of Figs. 2.3, 2.4, and 2.7 to 2.13.

Table 2.1 provides a quick view of the circuit analyses
carried out, whereas Table 2.2 provides a summary of the quality
factér Q for the numerator and denominator polynomials of the various
voltage transfer functions.

Note that a second-degree polynomial given ir the form

P(s) = as? +bs + c (2.24)

can be made equivalent to the following form

P(s) = a(s® + Bs + w;) (2.25)
where
B = b = bandwidth (2.26a)
a
and
woo= _\/E— = centre frequency. (2.26b)
a

The quality factor is thus defined as
= v ac . (2.27)

Table 2.3 provides a quick summary of the voltage transfer
function evaluated at w = w . For ease in writing equations, the

factor k is defined as

k = a2 . : : (2.28)
. Og .
. For the circuit of Fig. 2.1, the voltage transfer function

is
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T(S) = 1 N (2.29)
1+ as

which, when s =jw, is

T(Hw) = 1 . (2.30)

T+ juo
The magnitude of T(jw) when w = W, s the centre frequency, is given by
|7 (50) | = 1 (2.31)
T ATde
For the circuits of Figs. 2.3 to 2.9, 2.12, and 2.13, the

voltage transfer function is of the form

T(s) = 1 ' (2.32)

as? + bs + ¢

which, when s =jw, is

T(3w) = 1l/a . (2.33)

~w? + 3BW + w7

The magnitude of T(jw) when w w, is thus given by

1 . (2.34)

|7 (Gw) | = _1
w=w aBw b

n n c
a

For the circuits of Figs. 2.10 and 2.11, the voltage transfer
functions are of the form

T(s) = H. azs? + ais + ao (2.35)

bzs2 + bi1s + bo

When s = jw, equation (2.35) kecomes

N

. . _ - 2 S
[T (jw) |w=0‘ = 22}1 .omwt 4B+ W (2.36)
n

o

N

~w? + jBw  + W

o]
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where

B

N B are bandwidths,

W, W, are centre frequencies
and H is a constant.

Ehe magnitude of the transfer function T(s) in equation (2.35)
evaluated at w = W, is given by

=aH . . (2.37)
w 52
n by //(w; - w;)z + B;w;

T |
W=



TABLE 2.1

Fig.

2.1

2.3

38}
.
LN

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

18

— Circuit analyees.

c
2
K

14K, (.-.v\l —l)
KikKz

1+K, (Xy+1)

T(s) a b
1 0 3
bs+c K
1 oadz ozt (17Kp)
a1SZ+b1€rl~Cl K K2 K K,
1 0102 oa+o (1+Ks)
a,s’+bys+cs K;K» K;K;
1 o102 Q1402
ass?ibzstcy KK, KK,
1 0102 Qatla
ays?+bystcy XK, KiK,
1 01002 oa40y (1-K2)
ass +ss +Cs KiRz K1K;
1 0,02 az+cy (L¥K2)
a582+bss +Cp k3K, K1K,
1 o102 Qo+l (K2Kyt+1)
a7SZ+b7S 4+C7 KK, K]_Kz

a552+b55 +Cs

a152+b15 +C1

ay52+bgeS +Co

alsz+bls +Cq

As in Figs. 2.3 and 2.7

KK

1
K1K2

14K, (K1 K3+1)
KIKZ

KoKy (K 1K 3+l) +1
KK»

As in Fig. 2.3 for dendmina-or.

For numerator, below:

0,102

KiK2

1 0102
ajes?+byes +C10 KiKo
1 0102
a;s?4biis 111 KiKe

01 (1K,) +ap (1K)

KiK2

Og-HOy (1-K2)

1+K1—K2
K K

l+K2 (K 1K 3—1)

K Ko

O2+01 (l“KQ_KL})

¥31K2

l-Z—Kp_K:, (K 1Y\ 3—1)

KyK»

K1Ka2
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TABLE 2.2 - Quality factor Q.

Fig. Q (numerator) Q(denominator)
2.3 - - vk (1+K1K>-K2)
k+l - K>
2.4 - vk (l'l' K1K2+K2)
k +1 +K
2
2.5 - vk~
k +1
2.6 - vk (KiKz+ 1)
k +1
2.7 - vk (1 - K2)
kt+ 1 - K>
2.8 - vk (1 +K;K:K3+ K3)
o+l +¥2
2.9 - Yk (KiKoKaKy+Ko Ky +1)
k+ 1 +K2Ky
2.10 vk (1-K2) : vk (1 +K;K2- Kp)
k+ 1 - K k+ 1 - K2
2.11 vk 1+ K;-K2) vk (1 +K1K2~- K»)
1-K; + k (1 +K;) k+ 1 - K,
2.12 - vk (1 +K;K:K3~ K;)
k+]1 - K>
2.13 - vk (l +K1K2K3K,— Kqu)

k+1 - K2Ky
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TABLE 2.3 - T(s) value at w=w Or IT G ) |
Fig. [T (G, ) l
2.3 |T1(jwn)| = 1
ke 1 -K T3 K (G~ 1)
KiKa k
2.4 |T Gu) = 1
n ke T4+ K K+ KGRy O
K k
2.5 | T5 () | = 1
ki 1 1
Kle N k
2.6 ITQ (]wn) | = 1
k 4 1 ‘/.l. <+ K1K2
XK, K
2.7 |Ts (G ) | - 1
k -+ l - K2 /1 - K2
K5, X
2.8 [ s (Ju,) | = 1 e .
k+1"K2‘/—1+K2(K1K3+D—
K;K, k
2.9 [T Gy, | = 1
k + Kng 4 1 Ksz; (K1K3 + 1)+ f
K, X
2.10  |Tq () | - Rsag -
bl-/f_l‘_Kgi - si_)+_ c1
ai/f\as a a% a;
2.11 Ty () | - Kaay -
b;. /c3 (91 - 91_>[+E§_ <
a¥\as b,/ a2 a,
2.12 |'T‘10.’_jah)l = 1

k+1- 1{571 + Ko (KiKs — 1)
K1K2 k

1
kK + 1 - KK, /L + KoKy (FiK5 = L
K K, k

2.13 |T11(j0}1)'{’
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CHAPTER 3
SENSITIVITY ANALYSIS OF ACTIVE CIRCUITS

The sensitivity functions are first defined and then determined
for each of the circuits of Figs. 2.3 to 2.13.
3.1 Definitions

This dissertation is basically concerned with the sensitivity
functions pertaining to the quality factor Q of the circuits, the centre
frequency W and the bandwidth B. These three parameters have
previocusly been defined in equétions (2.27), (2.26b), and (2.26a)
respectively. | |

By definition, the Q-sensitivity is given by

s? - amp =200 3.1
x 9lnx ax/x '

where x is any active or passive element in a circuit. As a result
of manipulating equations (2.26a), (2.26b), and (2.27), the Q-

sensitivity can be expressed as

sg = 31ln (Vac/b )

dlnx
= xfal + S'_)' xb' (3.2)
. 2\a c b

where a', b', and c' are the first partial derivatives of a, b, ard
¢ respectively with respect to x.

The centre-frequency or W, - sensitiVity is given by
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(14}

sn
X

|
Q
|
E .
e

3in x (3.3)

il
N %
—~
O|()_

|
m‘q
h ——

The bandwidth or B-sensitivity is given by

s® = x(l_a_i_ - a') (3.4)

b a
3.2 Sensitivity Functions

Using the above definitions giyen by equations (3.2), (3.3),
and (3.4), the sensitivity functions of the circuits of Figs. 2.3 to
2.13 are now found. These are summarized in Table 3.1 for Sg, in
Table 3.2 for Sif, and in Table 3.3 for S for the parameters a, b,
c, 01 ,02, Ki, K2, Kz, and K. Since the voltage transfer function
is of the form of equation (2.32), the following sensitivity functions

are the same for all circuits under study, as shown by

Q _ 2 Q _ _ Q _ 12

Sa = 3 Sb = -1 SC = 3 (3.5)

W 1 w - (63) _ 1

San— 5 Sbn 0 Scn 5 (3.6)

-1 sP=1 s® =0 (3.7)

a b C

Note also that

w _ (§)) _ 2

Sp = Sp = "= (3.8)
and

0 _ _ 9

S(v2 = Sa1 (3.9)

for all circuits.
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TARIE 3.1 — continued

Fig. 2.8

Fig. 2.9

Fig. 2.10

Fig. 2,11

Fig. 2.12

£ -3 . K1 Ko Ks
3. 1+ KiKeKs + K
L -3 . k-1-KK;
et k+ 1+ KK,
O 7 r
£ =3 . __KKKK = s§
1 T+ KRR KRt KK, 3
s(lz =3 -3 . 1 + k+ 1
2 1+ KR KK+ 1) k+ 1+ KK
£ =3 .__KEKKK . - kK
4 KK KR + KK + 1 K+ KK+ L

s* , S% ’ SQ for dencminator are same as those for Fig.
ar’ KTk

2.3. For numerator, the Sg are same as those for Fig.
2.7.

For dencninator, the S?; are same as those for Fig. 2.3.

For numerator, the Sg are as follows:

et I-K + k(I+K)
S§=--%—%. 1l - K + 1 -K+k
s§=—%—-§. 1+ K, + 1+ k(L + Kp)
2 1+K1"'K2 l—K2+k(l+K1)
s§=%— 1-K  =3.k-1+K
1 k+1-K, k+1-K
2 -3-3._1-K
1 l+K2(K1K3—l)
s?(——%——%. 1 +  k+1
s? -3 K, K, K,

Ks T + K, (K;K; - 1)
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TABLE 3.1 - Continucd

%‘. k - 1 + KoKy

Fig. 2.13 §2
%2 K + 1 < KoKy

slcf = 3 . KKeKsKy = sg
1 T + KoKy (RaKs — 1) 8
SRS 1 + k+ 1
2 1 + KoKy (K1K3 - l) k¥ + 1 - KKy
2 - 1. KiKK:K, + KoK,

Ky T T KK, (1Ks = 1) K+ 1 - KKy
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wn
TABLE 3.2 = Summary of Sx .
Wno_ g K1K
i . 2-3 S = 3 . 1\2 -
r9 K1 ITT KK - K
S('Un L. KiK> - Kop
K2 1% KK, = K
n K
ig. 2.4 S 5 . Ki1K>
9 K1 1+ KKs + Ko
Mot . KK + K
Kz 1+ K1k + Ko
wn Wn _ .
Fig. 2.5 SK1 SK2 0
wn wn _ 1 l + _!;
1 :) S S = T2 . ; 2
Fig. 2.6 Ky Ko T
wn
Fig. 2.7 SKl 0
e S | +3
Kz 1 - K
n . 1o Ko + 1
i S 2 . 2
Fig- 2.5 X1 : 1 + K> (KiK3s + 1)
wn 1 1 1
S - 2 .
Kz ° 1 + K> (KiX3 + 1)
wn Q
SK3 SK3
i n - 3 -3 KKy + 1
43 S 2 . 20\
Fig. 2.9 SHE T+ KoKy (R1Kat 1)
wn 1 1 1
S - 2 .
K2 ° 1 + KKy (KiK3+ 1)
wn Q
SK3 SKa
Six: =3 . KiKoK3Ky + KoKy

1 + KoKy (KiKsz + 1)
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TABLE 3.2 -~ continued

Fig. 2.10 For numarator, the Sﬁn are same as those for Fig. 2.7.
For denominator, the Sim are samz as those for Fig. 2.3.

Fig. 2.11 For dencminator, the Sﬁn are sam2 as those for Fig. 2.3.

wn
For numsrator, the SX are as follows:

Ser=3-3 . __1-K
! T + K1 - Kg
w
SKI; = % - ‘];_3 . 1+ K,
1+ K1 - K
Fig. 2.12 s‘l*,’n =34+ 1 . K-1
1 1 + K2 (KhKs - 1)
wn =
Sey B3 . 1
1 + K> (K3Ks = 1)
wn _ 0
SK3 - SK3
Fig. 2.13 sﬁ“ =3+3 . KoKy — 1
1 1 + KoKy (K3Ks - 1)
w
SKZ’ =3-1 . !
1 + KzKy (K1K3 — 1)
wn _ o9
SKa - SK3
¥ -1 | KiKoKsKy — KoKy
Ky

1 + KoKy (KiK3 — 1)



TARLE 3.3 -

Fig. 2.3

Fig. 2.4

Fig. 2.5

Fig. 2.6

Fig. 2.7
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TABLE 3.3 -~ continuad
Fig. 2.7 S == ka1l 41
K3 k+ 1=K,
: B -
F.Lg. 2.8 SOL] = - ]\__"___
k+1+K,
ng == 1+K
K+ 1+K,
B B
SKl = SK3 =0
st - K
K2 T3 17 K, :
. B .
Flg. 2.9 SQLI == k
S8y = = _ 1+ KK,
k + 1+ KK,
s =sP . o
Ky K3
sB - s = K,K

S k + 1 + K)K,
Fig. 2.10 For numzrator, the Si are same as those for Fig. 2.7.
For denominator, the Si are sane as those for Fig. 2.3.
Fig. 2.11 For denominator, the Si are same as those for Fig. 2.3.

1 B
For nunerator, the Sx are as follows:

sB - - k (1 +K,)
et 1 -K,+ k(1 +K))
SB == - l b K2
&2 1 -K,+ k(I +K,)
sB .- l1-X, +k + 1
K I-K, + k(1 + &)
sE .- 1+k(0 +K,) + 1
Kz I-%K +kK{I + Ky
Fig. 2.12 R

“1 k¥ I1-K,



TABLE 3.3

Fig. 2.12

Fig. 2.13
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-  continued
sg - 1-K
2 k+ 1 - Ko
B B
SK1 0 = SKa
st =
~2 K+ 1-K
sg -k
1 K+ 1 - KoKy
32 - 1 -~ KKy
2 kK + 1 - KKy
B B
sKl 0 = sK3
B
SK2 - K2Ky

k+1 - KoKy

I

Ky
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3.3 Summary N

Inspaction of the sensitivity r>lationships deteimined above
indicates that many of these are small, that is, equal to 0, * %, or
+ 1. As for the remaindar, most can be made small by using the

following assumptions:

Ky > Kz >1 (3.10)

k = 1 (3.11)

KjKz > 1 . (3.12)
and

KoKy > 1 | (3.13)

Use of the above assumptions reduces all sensitivity functions in

Tables 3.1, 3.2 and 3.3 to within manageable quantities, as shown in

Mamdemne A il Aluarr~ mevmvmmende §mee e =V oo SO0
\—l-lvtrl\—\.—d_ ke Adddve LNV Lol A1 20 CRADW Sl g

as is also shown in Chapter 4.

Appendix A provides a further discussion of sensitivity
functions in considering operational amplifiers. All sensitivity
functions discussed so far in this chapter relate to the closed-
loop gains K, whereas Appendix A takes into account the relationship

with respect to open—loop gains A.
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CHAPTER 4

CALCULATIONS USING THIN-FILM COMPONENTS

The use of thin-film components is especially suitable for
constructing the circuits of Figs. 2.3 to 2.13 which have grounded
capacitors in all cases. Therefore, calculations of circuit para-
meters such as sensitivity, quality factor, and magnitude of transfer
functions are carried out below using typical thin-film component
values.

4.1 Thin-Film Parameters

Study of vacious produci bulletins such as (6, [1ui, [i1],
and [21] and sources such as Huelsman [16] and Whitney, Silis, and
Barber [18] indicates the following typical values for thin—film
components currently available: (1) resistors range from 10 ohms to
10 megohms; (2) capacitors range from 100 picofarads to 50 nanofarads.
The closed-loop gain of the operational amplifiers has been selected
to range up to 100. Use of the typical resistance and capacitance
values stated above leads to the factor o ranging from 107° sec up to
0.5 sec.

4.2 Assumptions
Four basic assumptions have previously been made in the last

chapter. These are:
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K;>K2>1 (3.10)

K=1. (3.11)

KiK3>1 . (3.12)
and

K2Ky>1 . ' (3.13)

Several other basic assumptions are now presented:

a) Since R;, Rz, Ci1, and C, are all made of homogeneous material,
then the sensitivities with respect to variations in o3 and a track
closely;

b) the closed-loop gains K;, Kz, K3, and K4 can be set initially
to within less than 1% [221 by the feedback and input resistors of the
operational amplifiers;

c) resistors can be set to within 0.1%;

d) the closed-loop gain can be controlled quite accurately by
one component only as seen by the circuit of Fig. A.6;

e) for realizable networks with transfer functions of the form
of equation (2.32), the following two conditions apply:

b>0, <c>0 . , (4.1)
4.3 Calculations

Typical values of Q and Q-sensitivity are calculated and
summarized in Table 4.1 for the circuits of Figs. 2.3 to 2.13.

Magnitudes of the transfer function for the various circu.ts are

calc;ulated and summarized in Table. 4.2.
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4.4 Sumary

Yavie 4.3 summarizes the findings of Tables 4.1 and 4.2 for hign
Q and corresponding lT(jwn)[ values.

A look at the results shown in Table 4.1 indicates that the main
sensitivity functionst:fsignificénce are 581' ng, and Siz. Since We
ﬁéve'assumed that all resistive and capacitive éomponents are made of
homogeneous material, then the two functions ng and ng, when added
togethér, result in a net reaction due to changes in R;, Rz, C;, and C;
of -zero. Therefore, we are left to consider ng, or the effect on Q of
variations in the closed-loop gain of operational amplifier 2, that is,
Kz. The results in Table 4.1 indicate that both Sﬁz and Q are increased
with increases in K,. This is especially eviaent for the circuits of
Eigs. 2.3, 2.7, 2.10, 2.11, and 2.12. This leaas us to assune that the
value of K, should perhaps be limited to ten or less, at least an order
of 10 less than K;. Iimiting K, however, tends to limit the circuit
gain [T(jwﬁ)l at the centre frequency_wn as shown in Table 4.2.

For high Q, low Sﬁz and reasonable |T(jwn)|, the circuits of
Figs. 2.3, 2.6, 2.8, 2.9 (marginally because of low lT(jmn)I), 2.10,
2.11, 2.12, and 2.13 (marginally because of low‘|T(jwn)|), are adequate
in meeting the prime objective of this dissertation. To be truly selective
about the various circuits, we would have to state that the circuits of
Figs. 2.6 and 2.12 meet our criteria of high Q with low ng, together
with adequate IT(jwn)|. The circuits of Figs. 2.7 and 2.9 are not
.adequate in that the lT(jwn)l is too low in both cases, that is,

approximately zero.
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Attempts to define SI%Z and IT(jwn)l in texms of Q through

.inspection of Tables 4.1, 4.2, and 4.3 indicate the following:
| a) ng is approximately zero for all circuits except that

of Fig. 2.3 ‘51%2 o Q/10), Fig. 2.6 (s§2<o.5), Figs. 2.12 and 2.13
(s2 o 0/100);

b) IT(joyﬁ) | varies directly with Q for the circuits of Figs.
2.3, 2.4, 2.5, and 2.6, is zero for those of Figs. 2.7 and 2.9, and
varies directly with Q/100 for those of Figs. 2.8, 2.12, and 2.13.

I{: is noted also in Table 4.1 that for the circuits of Figs.
2.10 and 2.11, the numerators of the transfer function camnot be set
independently of the denominators. Because of this, the biquadratic
cannot be fully realized.

A discussion of transfer function sensitivity is provided in
Appendix D. Also included therein are calculations of typical Sz(jm)

and S}'I;(jw) . 'The sensitivity of the transfer functions with respect

to open-loop gain for a circuit such as Fig. 2.12 is very low.



TARLE 4.1 - Summary of calculations of 2 and Sg .
Fig. k Ky Ko K3 Ky Q sgl sgz
2.3 1 1 1 0 0 1 .5 -.5
1 .01 .01 0 0 .5 0 0
1 100 1 0 0 10 .5 -.5
10 100 10 0 0 100 9.5 --9.5
100 100 100 0 0 1000 100 -100
2.4 1 1 1 0 0 .6 ~-.17 .17
1 100 1 0 0 3.3 -.17 .17
10 100 10 0 0 5 0 0
100 100 100 0 0 5 ] U
2.5 1 1 0 0 .5 0 0
10 1 1 0 0 .3 .5 -.5
.1 1 1 0 0 .3 =.5 .5
2.6 1 1 1 0 0 .7 0 0
1 100 1 0 0 5 0 0
100 100 100 0 0 10 .5 -.5

1

100

100

36

N

50

e

K1

.5

K2

1

1.5
9.5

100

.33

.17
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TARBLE 4.1 - continuad

> - r 17 Q Q 'Q Q
Fig. k K1 Ka K3 Xy Q S . S 5 S.Kl SK2

o o,
2.7 1 1 1 0 0 0 2.5 -2.5 0 0
1 1 .01 0 0 .5 .5 -.5 0 0
01 1 .01 0 0 .1 5 -.5 0 0
2.8 1 1 1 1 0 .6 -.17 17 .17 0
10 100 10 100 0 50 0 0 .5 0
1 100 1 100 0 33 -.17 .17 5 17
2.9 1 1 1 100 100 1 -.5 .5 .5 =5
1 100 1 100 100 10 -.5 .5 .5 =5
1 100 10 00 100 3.3 ~-.5 .5 .5 =.5
1 100 1 100 1 33 -.17 .17 5 .17
2.10 1 1 1 0 0 0 2.5 -2.5 0 e
(num.) 1 1 .01 0 0 .5 .5 -.5 0 0
.01 1 .01 0 0 .1 .5 -.5 0 0
2.10 1 1 1 0 0 1 5 0 =5 .5 1
(denom.) 1 .01 .OL 0 0 .5 0 0 0 0
1 100 1 0 0 10 .5 -.5 .5 1.5
10 100 10 0 0 100 9.5 -9.5 .5 9.5

100 100 100 0 0 1000 100 -100 .5 100



TABLE 4.1 - continued

Fig. Kk
2,11 1
( num. )

2,11 1

(denom. ) 1
1
10

100

2.12 1

10

2.13 1

X3

1

.01
100
100

100

100

100

100

K2

1

.01

10

100

10

K3

100

100

100

100

100
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10
100

1000

1000

100

10
100

-9.5

-100

o

100

10.5

1.5

1.5

1.5
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TABLE 4.2 - Calculation of |T(juw) |
Fig. k K3 K> K3 Ky
2.3 1 1l 1 1 0
1 .01 .01 0 0

1 100 1l 0 0

10 100 10 0 0

100 100 100 0 0

2.4 1 1 1 0 0
1 100 1 0 0

10 100 10 0 0

100 100 100 0 0

2.5 1 1 1 0 0
10 1 1l 0 0

Jd 1 1 0 0

2.6 1 1 1 0 0
1 100 1 0 0

100 100 100 0 0

2 100 100 0 0

2.7 1 1 1 0 0
1 1 .01 0 0

.01

.01

|'T (5w,) |

10
100

1000

.35

10

50
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TARBLE 4.2 - continued

Fig. k K, K, Ks Ky |T(jwn)|

2.8 1 1 1 1 0 .2

10 100 10 100 0 .5

1 100 1 100 0 .3

2.9 1 1 1 100 100 0

1 100 1 100 100 0

1 100 10 100 100 0

1 100 1 100 1 .3

2.10 1 1

10 10

100 100

2.11 1 1

10 : 10

100 100

2.12 1 1 1 1 0 1

10 100 10 100 0 10

1 100 1 100 0 1

2.13 1 1 1 100 1 .1

1 100 1 100 1 1
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TABIE 4.3 - Inferences drawn from Tables 4.1 and 4.2 .
Fig. Conditions For k and K's Then Q And T(jw,)
found as below is "is .

2.3 Kaogk+l K0 o>0.5 T(-0

k-+0 ©>100+ T -0
2.4 K22- (k+1) k>1 .

K121 0+5.0 |T|+5.0

K>l
2.5 =1 0*0.5 |T|=K1iK2/2

k<1, k>1 Q<0.

=0 Q=0 || >0

2.6 k>1 '

K1>l Q50 |T}>50

K2>1
2.7 Kagk+1 K12l 0*0.5 | T| e

Kao<1
2.8 21 0*50 [T]+.5
2.9 21 0>10 g
2.10 (num.) 0>0.5
|T|=K3

2.10 (denom.) K20 Q*0.5

k>0 o+10
2.11 (num.) Ko<Ka+1l 0»0.5

|T|=K3

2.11 (denom.) Kogk+l K2-0 o00.5

k>0 o>10
2.12 Kogk+1 21 0+1000 |T|>10

2.13 KoKygk+1 21 ©+100 |T]-1
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CHAPTER 5
~ CONCLUSIONS

The primary objective of using operational amplifiers and RC
networks with grounded capacitors in order to deri?e active RC circuits
with high quality factors and low sensitivity functions has been shown.
Use of a basic circuit such as Fig. 2.1 in various configurations,
Figs. 2.3 to 2.13, leads to high Q and’low SS when typical thin-film
conponents are used.

Two circuits in particular provide the two criteria stated
quite adequately. These are the circuits of Figs. 2.6 and 2.12 wherein
Q's of 50 and 100 respectively are obtained with very low ng's and
adequate |T(jw )|. With respect to [T(jwn)l, the circuit of Fig. 216
is even better than that of Fig. 2.12 because of a Q of 50 at a [T(jwn)[
of 50.

The use of operational amplifiers in differential input
confiqurations as shown in Appendix A (Fig. A.5 for example) leads to
an interecsting result. By ensuring that the forward path has negative
gains through each operational amplifier stage, which occucs in the
circuits of Figs. 2.3, 2.5 to 2.7, 2.10 to 2.13, a higher quality
factor is also ensured. Comparison of the Q for the circuits of Figs.
2.3 and 2.4, Figs. 2.8 and 2.12, and Figs. 2.9 and 2.13 indicates
directly that the Q's of the circuits of Figs. 2.3, 2.12, and 2.13 are

much higher than those of tha circuits of Figs. 2.4, 2.8 and 2.9.
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Use of the circuits of Figs. 2.3, 2.6, 2.12, and.2.l3 for low-
pass networks and the circuits of Figs. 2.10 and 2.11 for restricted
biquad networks with high Q and low Sg is recommended, using the
analytical formulas derived in this dissertation. The circuits of Figs.
2.10 and 2.11, though yielding biquads, are still ﬁot adequate in that
the nﬁmerator cannot be set arbitrarily, that is, ideperdently of the
denominator. The nature of the coefficients is such that changes to
the numerator affect the denominator and hence parameters such as Q
and Si. Purther work is justified in developing more generalized biquad
networks.

Calculation of transfer function sensitivities such as Si(jw),
that is, with respect to open-loop gains for the operational amplifiers
wae done for only one of the many circuits developed. 'lnis 1is discussed
in Appendix D (see Fig. D.1) for the circuit of Fig. 2.12. Appendix A
develops the background theory of operational amplifiers and indicates
that S§ is approximately equal to K/A. Since the open-loop gain can be
as large as 105, Si is very small. Therefore, calculation of typical
Si(jw) as shown in Appendix D indicates that these sensitivity functions
are also very small.

As stated above, further work is required on generalized biquads.
Another excellent project is the development of a general second-order
active RC circuit (with grounded capacitors) using the circuits of this

dissertation in the same way as Kerwin, Huelsman, and Newcorb [12].
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APPENDIX A
FUNDAMENTALS OF OPERATIONAL AMPLIFIERS

The following is a summary of fundamantals of operational
amplifiers taken mainly from a recent Burr-Brown hulletin [22].
Discussion of the sensitivity of the closed-loop gain with respect
to changes in the open-loop gain is also presented.

A.1 Basic Model ‘

The operational amplifier is a high-gain, dc - coupled
amplifier with either a differential or single input and usually
a single output. The basic amplifier model is shown in Fig. A.1l

with amplifier symbols shown in Figs. A.2a and A.2b.

~ | ,

1 | \ | Eq
- | Zi A(E,-E,) | -
E, = I - |
+ i :

||!——

Fig. A.l - Basic amplifier model.

in -— ) ( :
. A >——out in - out
in +7 7 ‘

Fig. A.2a - S}_m‘bol of Fig. A.2b - Symbol of single input
differential anplifier (inverting
amplifier. typa) .
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In the above Figs. A.1l, A.2a, A.2b, the synbols are defined

as follows:

By, B input voltages,
E; output voltages,
Zi input impedance,
Zo output impedance,
A open-loop gain.

A.2 Fundamzntal Inverting Circuit

The fundamental inverting circuit is given in Fig. A.3.

Ry
MV
R{ I,
W"/A\

+— + ;{///’ +
E:1 Iy E-é Eo

Fig. A.3 =~ Inverting circuit.

In the circuit of Fig. A.3, since Zi is assumed infinite,

I, = Io, (Aa.1)
or
I, =E;-E = E&E = I . (a.2)
R; Ry
Since
Eb = AES ' (a.3)

equation (n.2) becomes
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E1—{-"‘_I_EL = By - E, (A.4)
A A '
R, R,
or
Ey = K= - AK, (A.5)
B, K + A+ 1
where
X = R - (A.6)
Ry

If we now determine the sensitivity of the gain K with respect to

changes in the open-loop gain A, we find

S =KK =K+l . (.7)
3A/A R + A+ 1
Since
K << A, (A.8)
then
Sy = Ko+ 1 . (3.9)

A.3 Fundamental Non-Inverting Circuit

The fundamental non-inverting circuit is given in Fig. A.4.
Rl R
i

+
E, 1

Fig. A.4 - DNon-inverting circuit.
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In.the circuit of Fig. A.4, .
| I; =1Io 3 ' @a.1)
. :
Ey =LiRy = _EoRy (A.10)
Ri1+Ro
Since
E;, = A(E2-E1), (A.11)

if we conbine equations (A.10) and (A.11), we obtain

E = Eg +E . Ri . 1A,12)
A Ri1+Ro ‘
or
Eo = K =2K (A.13)
E> K +A
on
where
Kon = R1+Ro . (A.14)
Ri

If we now determine the sensitivity of the gain K with respect to

changes in the open-loop gain A, we find

K _ _ .
SAn = BK,‘.I/KI,1 = Kon . A{A.15)
9A/A Kon+A
Since
K <<A, (A.16)
then
Sgn—‘! Kon . (a.17)

g
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A.4 TFeedback Differential Amplifiexr

Tpe ~ircuit of Fig. A.5 is a typical feedback differential

amplifier.

R, EP Ro
T YWY AAA T
Ey In - Io
1 —{> .
Ey & I _1‘/13 Eo
+ — — -
AN AAA- ;
Rz E_ Ra -L-

Fig. A.5 - Feedback differential amplifier.

Since the amplifier draws no current in Fig. A.5, we find

that
I, = I,
[P

P
R; Rg
I, = En = B,
R3 R3;+R,

From cquation (A.20), we get

%~=Ep(_l_+2: - Ry E

R, R,/ R,
From Equation (A.21), we get

E =R, E, .
R3+R,

Noting that for A » o,
E =E
n P
and letting

R, = R,

(A.18)
(A.10)

(2.20)

(2.21)

(a.22)

(A.23)

(a.24)

(A.25a)
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and N
Rz = Ro (A.25b)
for convenience, we can combine equations (A.22) and (A.23) to get

Eo = Ro (E2-E1) . (A.26)

Ry

The feedback differential amplifier of Fig. A.5 is
advantageous because there is only one operational amplifier; however,
it has disadvantages in that (1) it is difficult to vary the gain
because both Roe's must be changed and (2) it has a low input
impedance because it is unbalanced to ground. A better differential
amplifier is shown by Fig. A.6 which has high input impedance and
facility in changing gain (simply by varying Ri). The only dis-

advantage of the circuit of Fig. A.5 is the need for three operational

Ro
amplifiers. — AN\
- Rs
A —AAN
+ g +
E1 RIRO
e +
Ez - R, Eo
—_— A L

Fig. A - Better differential amplifier.
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A.5 Specifications of Operational Amplifiers

The open-loop gain A of a compensated operational amplifier
is shown in Fig. A.7 which is a Bode plot. The closed-
loop gain K is also shown by a dashed line. The frequency response

of an open—-loop operational amplifier is given by

100 Open—loop gain A - slope
80 T 20dB/decade
=/
Gain  ©°
inGB 40 \ | | —Closed-loop gain K
20° == 'A"‘K | _3dB frequency fo
o — tglty eI<%xla3.nfcrossover
20 p= equency L.

10 10210%10%10°10%°107 Frequency in Hz
Fig. A.7 - Open-loop gain(compensated amplifier).

A(jw) = Ag (a.27)
1+ jw
Wo
where Ag is the gain at dc and wg is the 3dB attenuation frequency
in radians per second. Thus, for the inverting amplifier of Fig. A.3,

the closed-loop gain is given by

K = (—AOKU)/( +1+'j_u3). (A.28)
Ko+l Ko+l Wo

The gain-bandwidth relationship defined by foAo which is the unity-gain

bandwidth is a constant for any specific device.
Fig. A.8 indicates the phase response of a compensated

operational amplifier having the loop gain shown in Fig. A.7.
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-3 \\ ]
Phase =60
n ~90 N
degrees
-120 !
~150
-180

10 10210°10*10°10%107 Frequency in Hz

Fig. A.8. - Phase (compensated amplifier).

Uncompensated operational amplifiers have open-loop gains
which range from 10? to 10° at dc , with useful frequency ranges up
to 300 kHz and unity-gain bandwidths up to 15 MHz. Thus, for typical
A of 30000, the useful bandwidth is 500 Hz. For a typical closed-

loop gain of 100, the useful bandwidth is 150 kHz.
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APPENDIX B

KEY TO SYMBOLS USED

Coefficient of polynomial

n " n

Frequency

V=1

Factor, or ratio of o2 to o1 -
Camplex frequency variable
Circuit element or paranster
Open-loop gain of amplifier
Bandwidth

Capacitance

Voltage

RC - netvork transfer function
Constant

Closed~loop gain of amplifier
Polynomial

Quality factor

Resistance

Sensitivity of bandwidth with respect to x

O-sensitivity with respect to x

Sensitivity of centre frequency with respect to x
Voltage transfer function

" " " when s=jw
Time constant, RC
Real part of complex frequency variable s
Imaginary part of complex frecuency variable s

Centre frequency of network



Fig.

Fig.

Fig.

Fig.

Fig.
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APPENDIX C

SUMMARY OF SIGNAL FIOW GRAPHS

K2G2
Ki1G)
2.3 O— N O : —

2.4

2.5

2.6

2.7

E, -~ -KiGi Ez KeGe Eo
T (s) = _I_E_o_(s) = Ki1K>G1G2

Ei(—s_)— 1 + KiK2GiG2 - KaG2

-K1G3
-K2G2

O- > 0
Ei Ki1G E> KoGz Eo
T2(s) = Eo(s) = KiK2G1Gz

EJ. (s) 1+ KiKaGiGz + KaGe
O— > —O- > -O
Ei -Ki1G: E2 -K2G2 Eo
Ta(s) = Eo(s) =  KiK2G1Gz

E. (s)

i

O m&
EL - =K1 F)) -K2G2 Ep
Ty (s) = Eo(s) = KiK2G1G2

Ei (s) 1+ KiKaGi1Ge

0 e

O- > —O— Lo
Ei -Ki1G1 E2 -K2G2 Eo
Ts(s) = Eoe (s) = KiK2G1G2

E. (s) 1 - K2Gs
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APPENDIX C - Continued

Fig. 2.8 —K1K3G1
M
O~ O— v
1
Te (s) = Ey(s) = KiK. GGy :
E; (S) 1+ K1K2K3G1G2 + KzG
Fig. 2.9 —I<1K3I<1*G1
Af(///”_< “K2Go Ky
O > O o =
E  KG E KG E,
1
T,(s) = Ey(s) = KK GG
Ej (S) 1+ K1K21‘(3K1;G1G2 + K;}_Kx_*Gz
Fig. 2.10 K,
e e -
/ K, \\
E. -K]_ E1 Gl E2 "Kz E3 'Gz EL, —Kg EQ
1
Tg(s) = E, (s) = K3 (1 - K;Gy)
Ei(S) 1+ K1K2G1G2 - K,G;y
Fig. 2.11
K,
1 K
> O Q O 0
—Kl El G]_ Ez “K2 E3 G2 EL, Eo
_.K3
K,
To(s) = Egls) = Ki(l + K3G; — K3Gy)
E (s)

. 1l + KleGng - K2G2
1
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APPENDIY. C - Continued

Fig. 2.12 AM
O > ' - 5~ KaG2
i

E -K,G; E» - KoGo  Io
Tip(s) = Eo(s) = K1K»G1Go
Ei(S) 1+ K1 XKoK3Gi1Go -~ KaGe
Fig. 2.13 -K1K3KyG,
'/( KZKI}GZ

O > O > v

Ei ~K1G1 E> ~K2Ga Eg

T {s) = Eg(s) = K1K>G;G2

H E. (s) T + R1KoK3KyG1Go — RoKuGo
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APPENDIX D

DISCUSSION OF TRANSFER FUNCTION SENSITIVITY

Transfer function sensitivity is defined as

sT _ ginw(s) =ams)fr(s) . (0.1)
* 21ln x 0 xX/x

For voltage transfer functions of the form

T(s) = 1 , (D.2)
as® + bs + ¢

the various sensitivity functions can be determined to be

SZ(S) = =as’T(s) (D.3)

sT(8) | ps m(s) (D.4)
and

Sz s) = —-c T(s) . (D.5)

Consider the circuit of Fig. D.1l which is essentially the

circuit of Fig. 2.12 discussed in this dissertation.
Gy %{K\ G2

Fig. D.1 - Typical low-pass network.

ine voltage transfer function is given by

T(s) = E (s) = 1 (D.6)
E—OTE) as’+ bs + C
i



where
a =
b

and
C =

The gain is given by

IT(jwn)I =

The sensitivity functions with respect to the closed-loop

gains K;, Kz, and K; are given by

ot (s)
¥3
where
C
T (s)
K2
where
b,
and
Cz
and
gT (s)
K3

Q1Qio

Kl Kp_

= o+ 01 (L~ Kp)

KiKp

14 K, (KlKg -

1)
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K1Ks

k+1-Ks

I TILERR - 1V

KiKo

= as? + bs + &

as“ + bs + C

= l-K,

K1K,

= as? + bas + ¢

as® + bs + ¢

== Co + Q)

K1K2

Ks

+ bs + ¢

(D.7a,

(D.7b)

(D.7c¢)

iD.8)

(D.9)

(D.1.0)

(D.11)

(D.12a)

(D.17b)

(D.13)
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Note that the sensitivity function with respect to the open—

loop gain A is given by

S - @ s (D.14)
where S: for typical differential input amplifiers such as shown in
Appendix A (Fig. A.5) is approximately equal to K/A. Since the open-
loop gain has a range of values up to 105, the sensitivity of K with
respact to A can have values as small as 10—5.

Therefore, the sensitivity function with respect to A is

S . 107 O (D.15)
Using the circuit of Fig. D.1, with

k = K =1 (D.16a)

and

Ky ¥Ks; = 100, (D.16b)
we find that the Q-sensitivity functions are very low, the ]T(jwn)] is

approximately unity, and the sensitivity functions are

SE (Jw) ~ 1 (D.17a)
1
Si (Gw) . 4 (D.17b)
2
Si (Gw)  ~ _300 (D.17c)
3
so that
ST (jCL)) = ST (jw) ~ 10—5 (D. l8a)
A1 A
and
ST(J’») - _10—3 . (D.18b)
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Thus, the sensitivity functions with respect to the open-loop
gains are very low, indicating that variations in open~-loop gain will

not affect the circuit gains too much.
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