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ABSTRACT

Simplifying the Knuth-Bendix Completion Procedure
for Equational Systems

Adam Steele

The Knuth-Bendix completion procedure takes a set of equations and attempts to
produce a set of convergent rewrite rules (oriented equations) that has the same
power with respect to provability as the original system of equations. We will
formulate the completion process as an equational inference system. and show how
this process may be associated with a rewriting relation on arbitrary mixed equa-
tional and rewrite proofs. The correctness of completion fcllows from our ability

to provide a well-founded ordering for this relation.

The efficiency of the completion process depends critically on the number of

rewrite rules generated. and this number may be reduced by the use of so called
critical-pair criteria. We will introduce a new generalization of a criterion called
compositeness, and show how the framework in which we prove its correctness,
proof normalization, will point the way towards techniques for theorem proving in

infinite systems of rewrite rules.
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Introduction

1. Equational Theories

Systems of equations have been used to define Abstract Data Types!® 33, inter-
. 29

preters for non-procedural programming languages=’ and even programs them-

selves!8. The advantage of this approach lies in the fact that equational systems

combine a high degree of expressive power with a clear, clean semantics (the logi-

cal consequences of the system of equations).

Let us consider the example of using a set of equations to define an abstract
data type (ADT). A data type is a collection of data domains. basic data ele-
ments, and operations such that all data items in the data domains may be gen-
erated from operations on the basic data items. An ADT is a class of data types
which is closed under the renaming of data domains, items, and operations. and

hence is independent cf representation.

The fact that an ADT can be defined by set of equations will allow us te
prove certain general properties about ADT's. but within the context of this thesis
"theorem proving" will have a more specific connotation. The theorems we are
attempting to prove are theorems concerning the equivalence of terms under the
equational theory (the congruence relation generated by a given system of equa-
tions). These equivalences are what will describe the properties of the ADT
defined by a set of equations. The most notable of these being the relation
between inputs and results that any mechanism implementing the ADT will have
to satisfy.

Before we consider the problem of theorem proving within systems of equa-
tions let us examine some examples of equational theories. These theories will

range in flavour from the mathematical to the computational. and the first theory

we will examine is the one gencrated by the three equations that define a group
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structure.

O+z=z
i(z)+z =0
(z+y)+z=z+(y +z)

The style of equational theorem proving that we are considering will allow us
prove theorems such as "(z +0) + ¢(z) =0 + z". We may also consider the fol-

lowing equations that define the functions factorial, and append.

fact(0) = s(0)

fact(s(z)) = times(s(z),fact(z))
times(z,0) = 0

times(z,s(y)) = plus(times r,y),r)
plus(z,0) =z

plus(z,s(y)) = s(plus(z,y))

The above set of equations is the standard definition for the factorial function in
terms of the successor function s(z). In this theory we will be able tc prove that
fact(s(s(s(0))) = s(s(s(s(s(s(0)))))). Hewever, in a computational context we
would be more interested in transforming the left-hand side of the equation (the
input) into the right-hand side (the result). We shall see how term-rewriting
theory very easily accomodates this notion of computation into the general theory

of equational theorem proving.

With systems of equations we are not restricted to arithmetic theories. but
are free to define theories that meet our particular needs; such as the set of equa-

tions below that define the reverse of a list built using the constructor cons(r,y).




append(nil,y) =y

append(cons(z_y),z) = cons(z,append(y,z))
reverse(nil) = nil

reverse(cons(z,y)) = append(reverse(y),cons(z,nil))
reverse(reverse(z)) == z

car(cons(z,y)) =z

cdr(cons(z,y)) =y

Despite their benefits, equational systems do, however, have come drawbacks
as a framework in which to do practical theorem proving. Equational systems.
because of the symmetric nature of their axioms are inherently non-terminating
(e.g. consider the sequence a=b=a=b= - - - ). Also theorem nroving in systems in
which the symmetric axiom holds is highly non-deterministic (e.g. in a PROLOG
program which has a rule expressing symmetry we may always apply this rule to
the current resolvent, opening up a branch of the proof tree that may not sati~fy

the query; in place of applying a rule which will get us closer to our goal).

In rewrite systems (systems in which term replacement is directed) any
sequence of replacements can be shown to terminate if it is possible to embed the
reduction ordering into an abstract ordering structure that is known to be well-
founded. And. in addition, if the reduction relation —p is confluent (roughly
speaking, the property that any rewriting sequence in which there are ambiguities
will reduce to the same term), then the normal form of a sequence of reductions
(which is guaranteed to exist in a terminating rewrite system) will be unique, and
the replacements required to reach this normal form can be carried out determin-

istically (i.e. without having to consider backtracking to undo failed rewritings).

This normal form generates a class of terms equivalent under interconverta-

bility (bi-directional rewriting); and will allow us to provide a decision proczdure



for the equivalence of terms in a given equational theory if there exists a finite
convergent (terminating and confluent) set of rewrite rules corresponding to the
original system of equations. We will also attempt to show how the framework
vhich we are using, proof normalization, will allow us to consider theorem proving
iz systems of equations for which the completion procedure does not terminate

(i.e. the process generates an infinite numnber of rewrite rules).

In general, when we are considering term rewriting theory as a computational
framework we are usually not interested in testing the equivalence of two arbi-
trary terms, but rather, in reducing an input term to its normal form. It is this
normal form which will define the result of the computation. As noted above,
term rewriting systems hava: the potential for achieving this reduction pr. ~ s in
an effective manner (with, as we shal: -ee, the potential for parallel execution),
and the additional advantage that the relation between input and result is exactly

that of the original equational system.

1.1. The Completion Process

The process of producing a term rewriting system from a system of equations.
such that the systems of equations and rewriting rules have the same power with
respect to provability is called completion. As we saw previously. we can guaran-
tee the termination of a rewriting system by attempting to order the rules of the

system with respect to a well-fcunded ordering.

In his seminal paper®* Knuth showed that the confluence of a rewriting sys-
tem could be guaranteed if a certain restricted set of rewriting ambiguities
(critical-pairs) were joinable (i.e. they rewrite to the same term). We can attempt
to complete non-confluent systems by selecting critical-pairs and attempting to
join them with respect to the existing rules of a system; if the pair is not joinable
then it is added to the svstem as a rule to repair confluence. Previous work=8: 3%

has shown that it is possible to identify ceriain joinable pairs without having 1o
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perform the (expensive) process of reducing them to their normal forms. The
framework within which we are describing the completion process allows us to
provide an elegant proof of the correctness of our extension to these so-called

critical-pair criteria.

After introducing some basic definitions iu the following section we will prove
the correctness of the completion process (including the simplification rules) in a
manner similar to that introduced by Bachmair Dershowitz and Hsians2. Using
these techniques we prove all the currently existing critical-pair criteria, and our
new more generalized criterion GCC, correct using the techniques provided by

Bachmair and Dershowitz?.

Proof normalization is more than just a proof technique for studying the
completion process. I fact, its true power is only realized when we consider it as
a theorem proving technique v ‘thin a particular equational theory. Theorem prov-
ing in finite, convergent rewriting systems (i.e. the completion process has ter-
minated successfully) is achieved by reducing terms to their normal forms with

respect to the rules of the system and then comparing these normal forms.

When we move to the case when the completion process does not terminate
then we have to consider theorem proving in infinite systems of rewrite rules. The
information available to us when we consider theorem proving as an attempt to
create a normal proof allows us not only to provide a semi-decision procedure for
equality (by attempting to generate a normal rewrite proof between two terms),
but in addition, if we consider the structure of the equational system generating
the set of rewrite rules, we may be able to determine whether any of the poten-
tially infinite set of equations (generated in the completion process) will be able to
produce a rule that will further reduce a given term. With this knowledge we
may be able to turn our theorem prover into a decision procedure, since if we have

reduced two terms to non-equivalent normal forms, and there are no potential



equations that will generate rules which may futher reduce these normal forms,
then we can consider the two original terms to be non-equivalent under the equa-
tional theory. Finally, we will examine our current state of implementation and

examine our future plans.

In our opinion the Knuth-Bendix procedure is important because it has the
potential of allowing us to do equational theorem proving in an effective (i.e. ter-
minating and deterministic) fashion. Proving universal theorems in systems of
equations corresponds to functional programming. \While if we can prove existen-
tial theorems (which we can achieve with a technique called narrowing in which
the left-hand sides of rewrite rules unify rather than match on to subterms of the

term being reduced), this corresponds to logic programming.

It is our conviction that term rewriting theory provides the simplest, and
most computationally interesting way of unifying these two important paradigms

of programming.



Definitions and Basic Concepts

2. Introduction

In this section we provide the basic definitions concerning equational and term
rewriting systems that we will be using throughout our exposition. We will start
with the basic objects of our theory, terms; and then move on to the congruence
relations that will define our notions of equivalence betwecn the terms in this
theory. The congruences that we will provide are generated from systems of equa-

tions, and systems of rewrite rules on terms and also on proofs. Finally we will

define and prove results concerning the two most important concepts of term

rewriting theory; termination and confluence.

2.1. Basic Definitions

We define the set of terms T(FUCUYV) over some (finite) set of operator symbols

F', constant symbols C, and variable symbols V by the following inductive

/ definition: 1) any variable v€ V is a term, any constant ¢ € C is also a term; 2) if
f €F is a operator of arity n, and t;,...,i, are terms in T(FUCUYV), then
[(ty, ..., t,)Is also a term.

We may also consider the set of terms as labelled trees whose leaf nodes have
labels which are elements of €' and V, and whose internal nodes have labels from
the set F'. If, from the context, it is clear what the sets F, C and V are, then we
denote the set of terms by T alone. We let the symbols f,g.h, - denote
operator symbols; the symbols a,b,c, - - - the constant symbols; the symbols
z,y,2, - - - denote the variables; and the symbols s,t,u, - - - denote terms.

A substitution ¢ is a mapping from the set V onto the set I'. We denote so
as the term s with all occurrences of its variables v, - - - v, uniformly replaced by
the terms ¢, - - - ¢, as defined by the substitution. With this notion of binding

values to variables with substitutions we can define the subsumption quasi-

-3
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ordering on terms as:

s>, tiffs=to

We write a term s containing subterm(s) ¢ as s[t], and we say that ¢ occurs at
position(s) in s (positions are often indicated by the indices of the tree representa-
tion of a term). If we wish to specify the term occurring at a position p in the
term s we denote this in the following way s@p. A subterm ¢ is called prope:r if
it is distinct from s. The term s{u/¢] denotes the result of replacing a particular
occurrence of ¢ by u. A relation R on terms is monotonic if sRt implies

u[s|Ru[t]. R isalso called stable if sRt implies soRto.

With the definitions above we are now in a position to define the relations
generated by a set of equations and rewrite rules. An equation is pair of terms
(s,t), written s=t. For any set of equations £ we let ++5 denote the smallest
symmetric relation containing £ that is both stable and monotonic; i.e. s«=zt iff
s =wluo] and ¢ = w[vo/uo] where u=v is in the set E. (Note: u=v denotes.
ambiguously, either u=v or v=u). The relation «-»E is the smallest stable

congruence that contains £; a congruence is, by definition. monotonic.

A rewrite rule is a pair of terms (/,r), written [—r. A set R of rewrite rules
generates a rewriling relation —p, which is the smallest stable, monotonic rela-
tion that contains R; l.e. s—pt (s rewritesto t)iff s = w{lo] and t = wiro/lo]
with {—r is in R. We say that the term [0 is a redexr and that it occurs at a

redezx position in the term so.

The symbols —g, —7 and «—p denote the reflexive-transitive, trunsitive,
and inverse of the rewriting relation; «>p and *-»,5 the symmetric closure and
reflexive, symmetric, and transitive closure of the rewriting relation and its
inverse, respectively. A term ¢ is in normal form with respect to R, if there is no

term u, such that t—pu. \Ve denote the normal forms of the term ¢t by NF(t);



if the normal form of ¢ is unique then we call it .

Let E be a set of equations and R be a set of rewrite rules. A proof of s=t
in EUR is a sequence (s, . . . , 8, ) such that sgis s and s, is ¢, and for 1<i<n,
one of s;_+>g S;, 5;_1=—*S; OF §;_;+—s; holds.

A proof step s+>gt is called and equality step; proof steps s —p ¢ and s+—p!
are called rewrite steps; and a proof of the form s+—pu-—pt is called a peak. If
we have a proof s«»>gt,«>g - - - t, where all the steps are equality steps we call
this proof an equality proof. A proof that uses both ++; and <> in its indivi-
dual proof steps is called a mized equational and rewrite proof, or just a mized
proof. If the proof only uses rewriting steps i.e. we have a proof of the form
s«+pt,+>p -+ - ¢ then this is called a rewrite or “zig-zag" proof. A special type of
rewriting proof is a proof of the form sy—psy+—gs,, this is called a normal
rewrite or normal proof. Note: we usually abbreviate a proof of the form
$i—*RSi+1 ' —RS; by s,-—-q;sj. A subproof of a proof (sq, .. .,$,) is any
proof (s;, ..., s;) where 0Xi<j<n. The notation P[P ] indicates that P isa

subproof of the proof P.

An elimination pattern is a pair of proof patterns, P=>F . Where a proof
pattern in an arbitrary EUR is a schema for a class of proofs that share a com-
mon structure. For example, s+t characterizes all one step equality proofs in
E; s—pt characterizes all single step rewrite proofs in E; s—pu+—pt character-
izes all rewrite proofs in R; and t+«—pu—>g ¢ all peaks. An instance of a pattern

is any specific proof with the corresponding structure.

If S is a set of elimination patterns then =>g is the smallest stable, mono-
tonic relation that contains S (=>g is a rewriting relation on proofs). The
binary relation =>g on proofs is monotonic if P =>g P implies

Q[P] =>5 Q[P /P]for all proofs @, P and P . The relation is stable if

-
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(8 yeses gesst) =>g (84000y 0,0t ) implies

(ws oy, wualyw(ta]) =>g (wlsal,...,wval,..wita])

for all terms s, ¢, v, v, and w and all substitutions o.

Following Bachmair, Dershowitz and Hsiang? we call the binary relation

=> on proofs a proof ordering, if => ¢ is contained in a well-founded ordering.

2.2. Termination Properties

Let R be a set of rewriting rules we say that a term rewriting system R is ter-
minating (noetherian) if and only if there are no infinite sequences of rewritings
§;—pSe—>p - ' . Proving that the rewriting relation —p is terminating is usu-
ally done by embedding the reduction ordering —p into an abstract ordering >
that is known to be well-founded (a well-founded ordering is a partial order in
which every decreasing sequence has a minimum element; if the well-founded ord-
ering is total we call it a well-ordering). We associate these two orderings by

requiring that for all terms s and ¢, and a given function f we have

Vst [s—pt D[ (s) > f(t)].

We prove this by showing that for all substitutions o on the rules {; — r, in the
set R, we have [;o > r;0; and that the monotonicity property

(Wst [s>t D wls] > w]t]]) holds for all term s. ¢ and w. The first property
implies that applying a reduction at a subterm of a term will reduce the order of
vhat subterm, while the second property guarantees that the reduction in order of
the subterm will decrease the order of of the original term. The well-foundedness
of > guarantees each reduction sequence will have a minimal element and hence

the rewriting process will terminatell,

Ou. interest in terminating (noetherian) rewriting relations stems from the

fact that the well-fouudedness of the reduction ordering allows us to perform
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transfinite induction over our term structure. We consider the following definition
of transfinite inductiontl®, Let > be a well-founded ordering on the set from

which s and ¢ are taken, and let P be a predicate over this set.

(TT) Vs [Vt [s>t S P(t)) DP(s)] D Vs [P(s)

If we apply this principle to term rewriting theory then it is usually called the
Principle of Noetherian Induction. Let P be any predicate on our set of terms T,

and let R be a terminating rewrite system, then for terms s and ¢ we have

(NI) s [Vt [s—Ft DP(t)) DP(s) D Vs [P(s))

It is easy to see that since Wst [s—Ft D s >t] the Principle of Noetherian Induc-
tion is an instance of Transfinite Induction, but has the advantage of not requir-
ing the construction of a well-founded ordering, using instead the reduction order-
ing itself (which is embedded in the well-founded ordering > to prove termina-

tion).

Well-founded Orderings

Well-founded orderings are the basic tool for proving termination in all manner of
rewriting systems. We will provide below the basic definition of a fairly common
scheme for well-ordering terms. Before this we must provide some background

definitions concerning multisets.

A multiset M is a collection of objects from a base set S in which we may
have repeated occurrences of a single object. If > is a partial ordering on the set
S, then the corresponding multiset extension >> of > is the smallest transitive

relation such that

+ Sometimes the principle of transfinite induction is restricted to well-orderings, and our
more general statement is sometimes called bar induction®.
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MU{z} >> MWy, .. -, 0 b
whenever n >0 and z>y,, for 1<i<n.

We can calculate the ordering >> either from the definition above, or by the fol-
lowing method. Let X={z,,z,..,z,,] and Y=[y,yo, . .., y,] (Where [} are the

braces enclosing multisets). If we order the elements of the sets X and Y such

that z; >z; - - - z; and y; >y, - Y, 2nd then compare lexicographically the
two terms I;7z; - Ij and Y ¥, - Yk, then XSSV if and only if
lexje P zjm >le1,' yklykz Y yk.‘

Higmanl® originally proved that the ordering >> on multisets is well-
founded if and only if the ordering > is well-founded (Higman originally called
this property vhe finite basis property), but it was Dershowitz and Manna? who
independently introduced this theorem and applied it to problems in computer sci-

ence e.g. proving termination of programs and systems of rewrite rules.

We now examine a notation of ordinal terms similar to that of ordinal terms
up to ¢wO (in the Fefermann-Schutte system of ordinal notations)3! and show
how we can order these terms. Our ability to order terms from any set

T(FuUCUYV) will follow from their close connection this notation.

Definition 2.1

Ordinal Terms
1. If ¢c€ C then ¢ is an ordinal term.

2. If ais an ordinal term, then so is (/ ,a), where f
is an operater from the set F.

3. Ifeq,...,a, areordinal terms, thensois a# - - - # ;.
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Definition of a=f

If a,B8€ C then o=, iff =08

(9,2)=(f ,3) iff f=¢ and o=8.

3. o, .. #a=R#, . #A T o, ol=(8), L By

fo—y

o

Definition of o> 3

1. If ofC and BE C then a>pf,
otherwise, if a,3€ C a>giff a> 8.

2 (9.0)>(/,0) iff
g>/ and (g,0)>8, or
g=f and a>pf, or

g </ and 0(/,3).
3. o, .., >0F#, L F L oy, L [5>(8 L By

We associate the above ordering structure with terms from our set 7' in the fol-
lowing way. If we have aterm f(¢,, ..., ¢t )€ T then the corresponding ordinal
term is (f ,t;#, . .., #t,); of course, this implies that there exists a partial ord-

ering on both the constant symbols and the operator symbols of 7.

Dershowitz and Okada!® have provided another well-founded ordering for
terms based on Ackermann's system of ordinal notation!. This larger more gen-
eral ordering structure is expected to reduce the frequency of failure in the comple-
tion process (cf. the next chapter), but there is much research to be done in actu-
ally implementing this ordering test. Depending on the parameters supplied
Ackermann's ordering ranges from the lexicographic path ordering®! on the one
hand to the recursive path ordering!® on the other. Getting the right mix
between these two orderings so that we may order a set of equations that neither
on their own may order may prove to be very computationally expensive (NP-
hard), and we must develop techniques in order to restrict the number of potential

orderings that we will have to try.

-
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The termination of the rewriting relation implies that every term has a nor-
mal form; what we will provide in the next section are the conditions that guaran-

tee that this normal form is unique.

2.3. Confluence Properties

.

What we will attempt to do in this section is to relate the notion of equivalence in
equational theories with that of term rewriting theory. In addition we will pro-
vide the sufficient conditions required to effectively use the notion of equivalence
in a term rewriting theory to decide equivalence in the equational system from
which the rewriting system was derived.

Our notion of equivalence for a given term rewriting system R is that of
tnterconvertability i.e. s«-»ét; and in the following theorem we will show this to

be equivalent to the definition of equivalence in the original equational system E.

Theorem 2.1

s «*Et iff s*—*bft where R is the rewriting system produced by orienting the

equations in E.

Proof

For the basis case 've have s«»pt iff s«»g ¢t for all axioms in both theories:

we proceed by induction on n the number of proofs steps in both the equa-

tional and rewrite proofs.

Definition 2.2

A rewrite system R is said to have the Church-Rosser property® if, for all
terms s and ¢ with s<=jt, there exists a term u such that s—pu+pt

(note: we often say that the term u joins s and ¢, and denote this by

8 lR t).
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What we will now provide are the sufficient conditions required to show that
a system has the Church-Rosser property, it is this property that allows us to
determine the equivalence of terms just by rewriting i.e. we wish to show that the
normal form of a term is unique and that it generates a class of terms equivalent

to the term from which the normal from was derived.

Definition 2.3
A rewrite system R is confluent iff

Wstv [(s—gpt AN s—gv) Dt iz v]

Figure 2.1 - Confluence

We are going to use this notion of confluence in the following lemma. It reduces
the test of term equivalence under interconvertability to that of the testing of the

equality of normal forms.

Lemma 2.1

If R is a confluent rewriting system. then \fst [s«>gt iff s {p t].

Proof
By induction on n, where n is the number of proof steps in s+>gt.

Thus, to prove that the system R has the Church-Rosser property it is sufficient
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to prove that R is confluent. What the confluence of the system R also implies is
that the reduction process is insensitive to the order in which reductions are
applied. This is important since it opens w; the opportunity for applying the

reductions in a highly parallel " ..hion.

What we will do now is reduce the question of confluence to that of local

confluence, a condition that requires that all single step ambiguities be joinable.

Definition 2.4
A rewrite system R is said to be locally confluent iff

Vivw [(t—rpv \ t —pw) D vlpw]

Figure 2.2 - Local Confluence

The following lemma is due originally to Newman®8, but is proved fuliowing

Huet !9,

Lemma 2.2

f R is a noetherian term rewriting system, then R is confluent iff it is locally

confluent,
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Proof

The "only if" portion of the proof is trivial. For the "if" portion of the proof

we want to show that if our rewrite system R is locally confluent then

Vivw [(t—pv Nt—gw)Dv Jpw] ie p [v—gp A w—spp]

We will prove this using noetherian induction.

Let ¢t rewrite to v in m steps i.e. t—>g'v and also let ¢ rewrite to w in n
steps i.e. t—g w;

(a) If m=0, we let p=w; if n=0, we let p=v.

(b) Otherwise, let t—pv,—zv and ¢t —pw,;—>p w; by local confluence,

—r{v,=>gr A\ w,—gr]. Now by the IH (assuming confluence at v;), we
have we have v |p r joinable by p, and again by the IH (at w,) we
have r | w joinable by ¢, now by the transitivity of reducibility we

have v lp w joinable by q (since v—gr), which completes our proof.

For relations that are not noetherian we require more restrictive local
hypotheses (such as left-linearityt to prove confluence within the whole sys-

tem).

Local confluence, although a stronger condition than conflucnce, is still too general
a condition because it requires the possibility of testing an infinite number of
terms for joinability. What we will do in the following lemma (due originally to
Knuth)* is reduce the confluence condition of joinability for all one step rewriting
ambiguities to that of joinability for an “essential” set of ambiguities called
critical-pairs. These critical-pairs determine the first possible positions at which
an ambiguity may occur. Knuth's original proof required that the rewrite system

R be noetherian, but the proof we give (again following Huet!?, lemma 3.1) will

+ A term rewriting system is left-linear if the left-hand sides of all the rules do not con-
tain more than one occurrence of a given variable.
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not require this restriction. While not requiring the termination of the system in
general Huet does, however, require termination of any rewriting on critical-pairs

since his proof requires that they be joinable.

Definition 2.5

Two rules s—t and [—r overlap on a term u if there subterms of u which
s and / match onto (i.e. we have u[so] and u [l 0]). The overlap is critical if
the left-hand side of one rule matchs onto a non-variable instance of the
other. If the overlap is at a variable instance, or is disjoint, then the overlap

is called non-critical.

Definition 2.8

Two rules s—¢ and [-—r determine a critical-pair <p,¢> if for some
minimal (most-general) substitution o there exists a non-variable instance of

the term sosuch that we have a critical overlap p+—p s olloj—>p ¢ with:

p = toand

g = sojraflo]

What the critical-pair <to,so{ro]> means is that the left-hand side of the
rule s —t may rewrite in two different ways i.e. we can have sollo}—pio
and so{lo]—g solro/lo]l. We call the term sojlo] the superposition of the
rules s —¢ and [—r. Note: we assume, without loss of generality that the

variables of these two rules are distinct, under renaming.
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sofl o]

to salr d

Figure 2.8 - A General Critical Pair Qverlap

For example, consider the following two rules A(f (a,z))=~>¢(z) and f(z,b)—b.
There exists a critical overlap A(f(a,b)) between them, giving rise to a critical-

pair <g(b),h(6)>.

h(f(a,b))

g(b) h(b)

Figure 2.4 - An Ezample Critical Pair Overlap

Lemma 2.3

A term rewriting system R is locally confluent iff for every critical-pair
<iosolra/lo]> € CP(R) we have to lg so[ro/lo]; where CP(R) is the

set of all critical-pairs between rules in R.



Proof

For the "on!v-if" portion of the proof, any critical-pair <to,sa{ra]> such

that so{lo]—ptc and soflo]—psofro/lo] is joinable by our hypothesis of

local confluence.

For the "if" part, we assume that for every critical-pair <to,so{lo]> we

have to lp solro/lo]. Now, for any arbitrary term wofso]{lo] with

w—p v, and w—>p vy, Where v;=wolt g/s0] and vo=wolro/lo]; we want to

show that we have v, lp v,. We consider the following cases:

(a) so and lo are disjoint instances. We let v,=wo{to/so]{lo] and

vo=wolso][rof/lo] we now have a new term ¢ =wolto/sad][ro/lo]

which, by the commutativity of reducibility, joins the terms v, and v,

In this case we assume, without loss of generality, that we have the

superposition soflo] i.e. the rule ! matches on to a subterm /o of so.

We have, again, two possible cases:

(i)

The term !o occurs at a variable position z in the term so. \We
consider a new substitution ¢ such that o’ =o for all variables
other than z; and we let zo’ =ro. Also, let v,=wolto/so} and
vo=wo[s o[r a/ld]] Since we have wo[so]—p woltg/sa] by stability
we also have wd [sd |—pwd [td [sd']. But
wolso{lo]|—gwo [td’ | since zo—pz0’ . Hence the terms v, and
¢- are joined by wo' [to |

The term [0 occurs at a non-variable position in the term so. e
have v,=w [t o] and v,=wo[so|ro/la]], but by our hypothesis there
exists a term v that joins to sofro], hence by monotonicity, we

have a term / =wofuo] such that ¥ joins v and v,.
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Corollary

All the non-critical overlaps of R are joinable in R.

Proof
Consider cases a and b(i) above.

What we have provided above are the sufficient conditions required for a term
rewriting system that guarantees that every term will have a unique normal form
with respect to the rules of the system. This normal form generates a class of

terms equivalent under the notion of equality for term rewriting systems.

Theorem 2.2

If a term rewriting system R is terminating znd contains no unjoinable
critical-pairs, then R is convergent, and hence we can decide equivalence in

the theory generated by R solely by constructing a normal rewrite proof.

Proof

By lemma 2.3 the system R is locally confluent. Local confluence and lemma
2.2 imply that R is confluent. Finally lemma 2.1 implies that we can deter-
mine an equivalence s*—’}; t by testing the equivalence of § and ¢ (both are

guaranteed to exist since R is terminating).

Corollary

If we have obtained R by orienting the equations from a set F, and R is
convergent, then by theorem 2.1 we can decide equivalence in the theory gen-

erated by E by constructing an normal rewrite proof in R.

What we will do in the next section is show how we can guarantee the conditions
for convergence (i.e. termination and confluence) in a given set of rewrite rules

that we derive from a arbitrary set of equations (perhaps by adding additional
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rewrite rules) in such a way that the rewrite rules still have the same power with
respect to provability as the original equational system. This rewrite system will
solve the word problem (the equational equivalence of ground (i.e variable free)
terms for an equational theory). As a (sad) final note however, the unsolvability
of the word problem in general implies,'that we will not always be able to find a

finite, convergent term rewriting system for an arbitrary equational theory.

We also may not be able to find a finite, convergent term rewriting system
for certain decidable equational theories because of the nature of their axioms (e.g.
the axioms have some essential associativity and commutativity). It is our belief
that equational systems for which the completion procedure produces a finite, con-
vergent rewriting system are the exception and not the rule, hence we need to pro-
vide techniques for theorem proving within these infinite systems, a topic which

we will examine i a later chapter.



The Correctness of Basic Completion

3. Introduction

The process of producing a convergent term rewriting system from a system of
equations such that the systems of equations and rewrite rules have the same
power with respect to provability is called completion. This process proceeds by
selecting equations to be oriented with respect to some well-founded ordering
structure; and then, in some kind of algorithmic fashion, (possibly) generating
new equations that will “repair” the power lost due to losing the symmetric pro-

perty of the original equations.

In this section we will introduce the Knuth-Bendiz completion procedure®*
(The version of the Knuth-Bendix procedure we will provide is that described by
Gerard Huet in his 1981 paper)®0 that attempts to produce a convergent system
R with the same power as the original set of equations F from which R was
derived. We will first introduce Huet's version of the Knuth-Bendix procedure,
and then formulate completion as an equational inference system, the objects of

which are the pairs (E;,R;) of equations E; and rewrite rules R;.

3.1. The Standard Completion Procedure

The initial data for the following procedure is: a set of equations £ and a well-

founded ordering >. Let Eg:=FE; Rg:=(J; { :=0; p :=0.

|
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loop
whlle E; #+ (do
select an equation s=t € E;
if 5 =¢ then
Eipy:=E; —{s=t}; 1 :=1i+1
else if s and ¢ are comparable then .
ifés>tthen! :=5;r:=telsel:=t;r:=3§
iet K be the set of rules w1th label k whose left-hand sides
are reducible by [—r to §,' and [ > or [>,I,
E'+1 = E — {S—t}U{lk =Tk I LEI{}
pi= P+
1= Uiy 7€ Up )
where rJ' is'a normal form of r; with respect to rules from R, U{l—r}
rule p is unmarked.
1 =141
else
exit(failure - incomparable terms)
endif
endwhile
Compute critical-pairs
if all rules marked exit(convergent)
select an unmarked rule with label £ from R;
let E; ., be the critical-pairs of R; between
rule £ and all rules with labels less than or equal to k
mark rule &
endloop

Figure 3.1 - Knuth-Bendix Completion Procedure

As noted previously, the unsolvability of the word problem, and the properties of
certain equational systems imply that we will not always be able to find a finite
convergent system of rewriting rules for an arbitrary equational theory. We have
three possible cases to consider. We can terminate without failure and hence have
a convergent system (the system has no critical-pairs and the reduction ordering is
contained within the well-founded ordering >). We can terminate with failure
(because the two sides of an equation are incomparable), little of interest may be
noted in this case except that the combined system of equations and rewrite rules
E;UR; has the same power as the original system E. In the case of failure the
only thing to be done is to restart the procedure with a new ordering that will
order the two sides of the problem equation. It is expected that the larger, more

general proof theoretic ordinals introduced by Dershowitz and Okadal? will reduce
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the frequency of failure of the completion process by reducing the number of

incomparable terms.

The final case we may encounter is that in which the completion process does
not terminate and we compute successive approximations R; of an infinite conver-
gent system R .. (Note: we will wait until the following secticns to define £, in

detail, and prove that it is convergent).

Currently, there are no techniques for dealing with these infinite convergent
systems but we will demonstrate in a later section that the framework of proof
normalization provides the possibility, if not for a decision procedure, then a
semi-decision procedure for equality within these infinite systems of rewriting

rules.

3.2. Standard Completion as an Inference System

We can formulate completion as the proof system C (for standard completion)
containing the inference rules listed below (let > be a well-founded term order-

ing):

1) Orienting an equation.

(EU{s=t},R)
(E,RU{s—t})

if s>t

2) Adding an equational consequence.

(E.R)
(EU{s=t},R)

if <s,t> € CP(R)




3) Simplifying an equation.

(E{s=t},R)
(EU{u=t}LR)

ifs—rRu

4) Deleting a trivial equation.

(EUu{s=s},R)
(E.R)

We also have to provide the following rules for the simplification of rewrite rules

(note: this is where Huet’s completion procedure differs from that originally pro-

vided by Knuth and Bendix).

5) Simplifying the right-hand side of a rewrite rule.

(E,RU{s—t})
(E,RU{s—u})

if t—>pu by l—r €ER

6) Simplifying the left-hand side of a rewrite rule.

(E,RU{s—t})
(E U{u =t }’R )

if s—pu by l—r € R with so>l0.0or s>,

We write (E,R) |~ (E' ,R" ) if (' ,R' ) can be obtained from (E,R) by an appli-
cation of an inference rule from C. A derivation is a (possibly infinite) sequence
(EwRo) b (ELRy) -+ . The limit of a derivation is the pair (E,Ro) where
E is the set U;»oN;>;E; of all persisting equations and R, is the set

Ui>oNj>i B, of all persisting rules.

The following lemma expresses the soundness of standard completion.
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Lemma 3.1

If (E,R) |~ (F ,R') then the congruence relations «>z g and ++5 g are

the same.

Proof

The proof is by cases considering the six inference rules of standard comple-
tion. For example, if we examine the third rule any proof that uses the equa-
tion s=t in (E,R) will use after the application of the inference rule the
compound step s —pu<+>pt in (E' ,R' ). Any proof that uses the equation

u=t in (£’ ,R" ) will use the step u+—ps+>pt in (E,R).
3.3. The Correctness of Standard Completion

Definition 3.1

A completion procedure C is correct if the limit system R, generated by C
is convergent; and s«>pt iff s++p t where E is the set of equations from

which R , is derived.

We will prove the correctness of standard completion in a manner similar to that
provided by Bachmair and Dershowitz!. Our proof will make use of the concept
of proof orderings (defined earlier) originally provided by Bachmair, Dershowitz
and Hsiang®.

The correctness of the Knuth-Bendix procedure (in the case when R, the
limit rewrite system, is infinite) was proved first by Huet®0, using a fairly compli-
cated argument using noetherian induction upon the reduction ordering. Basing
the proof of correctness on proof orderings not only provides a simpler proof of
correctness (for the infinite case), but also provides a framework in which the so
called critical-pair criteria (which will be introduced in the following chapter) may

be proved correct.
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The essential idea here is that standard completion and the rewrite systems
R; provide a rewriting relation on mixed equational and rewrite proofs. Each step
of the proof rewriting process transforms a mixed proof (by orienting equations,
and removing peaks and non-persisting rewrite steps) to a normal form that is a
persisting, normal rewrite proof. The correctness of this process follows from the
well-foundedness of the reduction ordering on proofs (under some assumptions of

fairness).

We give now, the set C of elimination patterns for standard completion:

1) Equality patterns
serpt => s—p't if s>t
sepl => s+ep't if t>s
serpt => s—pluerp't
serpt => serpl ue—p't

S+rps => §

2) Qverlap patteras
non-critical overlaps:

Se=pu—>plt => s—*éu«—-ist

critical overlaps (critical pair joinable in R ):
S—pu—+pt => s—»év«—,{t

critical overlaps (critical pair not joinable in R,
but existing as an equation in E'

Se—pu—rpt => s<->E' ¢



3) Simplification patterns
s=pt => s—p'uep't
sept => s—rp'ue=p't
s—pt => s—plverp't

s«-—Rt => .34—»5' v«—R't

In the simplification patterns the step s—pt¢ is by the the application of rule
l—r at some term [oin s; with s—sp’ v by application of the simplified rule
|— at the original lo; also the step s—p' v is by the rule / —+' at a position

! o with either o>V o' (by stability) or we have [o=! ¢’ with {>,! .

Lemma 3.2

Whenever (E,R) |- (E ,R' ) and P is a proof in EUR, then there exists a
proof P in E' UR',suchthat P =>/P .

Proof

The completion process corresponds to the application of the rewrite rules
above (the rewrite rules reflect the changes to the sets £ and R). Therefore.
if we apply the rules to all steps in P that use the equation or rule that has

changed in the completion step then we will have generated a new proof P .

We next prove .hat the ordering => # is well-founded. To do this we will embed
=>, in a well-founded ordering on multisets whose elements are the complexity

measure of each individual step in a proof.

Lemma 3.3

The ordering => # is a proof ordering.
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Proof

We will construct a well-founded ordering >; and prove that P=>,F
implies that P> o P , for all proofs P and P’ .
We first define the complexity of a single proof step c¢(s,t) as follows:

if s—pt by [—r at sub-term [0, then ¢(s,t)is ({s},la,l,t);

if s+=p t by [—r at sub-term /o, then c(s,t)is ({t}/o,l,s);

if s«»>gt then c(s,t) is ({s,t }y———).
Only the first component is relevant in the last case. The ordering > is
the lexicographic combination of the multiset extension >> of the abstract

ordering >, the abstract ordering >, the proper subsumption ordering >,

and the abstract ordering >1.

What remains to show is that the rewriting relation =>, on proofs is
contained in the abstract ordering >,. We will do this first by showing
that > orders all the elimination patterns in C, and later that we can
extend this to an ordering > into which we can embed the reduction order-

ing => . Consider the following equality patterns.

t In the original complexity measure of Bachmair and Dershowitz the second component
was the proper subterm ordering, and the objects ordered were the redex positions. We
have introduced this new ordering, in which the secend component is the redex term or-
dered by the abstract ordering >, in order that it be consistent with the components we
will add to the ordering we will introduce in the next chapter that will allow us fo prove
the correctness of our new critical-pair criteria.
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1) Equality patterns

(sespt) >o (s—p't),since [s,t]>>[t];

(s42pt) >¢ (s=g' ueg't,

since [s,t]>>[s] and [s,¢]>>[u,t];
(se*ps) >¢ (s),since [s,5]>>(.

2) Overlap patterns
(s—pu—pt) >¢ (s—pvrpt),

since all terms on the right-hand side are smaller than «;
(s+—gu—rpt) > (s+>g't), since [u]>>[s,t].

3) Simplification patterns

[({s)lal,t)) >> o (([s]lod,u)([t]),! & 0 u),

since t >u and s> ¢;

[([s],ld,l,t)] >>C [([t,U],—-,—,—),([S],lU,l ,'U)],
since s >t, s >u, and either o>V ¢ or >, ! .

Let P be the proof (sy, . ..,s,) and by M(P) let us denote the multiset
[c(s0s81), - - -, €(8,-1,5,)]. We now define the ordering >, in the following
fashion P > P ) if and only if M(P) >> o' M(P ), where >> o is the
multiset extension of the ordering > . Since the abstract ordering > is
well-founded, monotonic, and stable; and the proper subsumption ordering

>, is well-founded, we can conclude that > is a proof ordering.

We will now examine the function of each of the components in the complexity
measure. This is important because we will prove the correctness of our new

critical-pair criterion by extending the ordering >, with terms that have func-
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tions analogous to those in the original ordering.

The first component of the ordering (ordered by the multiset extension >>
of the abstract ordering >) handles all the cases of equality and overlap patterns.

The remaining three components handle the simplification patterns.

In the first case of the simplification patterns we have to show that the term
([s)sloyl,t) is greater than both ([s],lo,l,u) and ([t],! ¢ ,¢ ,u) since >> is a
multiset ordering. ([s],{o,{,t) is greater that ([t],f o’ ,/ ,u) because s is greater
than ¢ (because we are using a lexicographic ordering the first component has pre-
cedence over all others). The fourth component is required to order the terms
([s]toyl,t) and ([s],lo,l,u) since the first component, and the following two com-
ponents are the same (these are the components required to order the other

simplification patterns described below).

We will now consider the function of the second and third components in
showing that the tuple ([s],lo,l,t) is greater than both ([¢.u],—,——) and
([s],¢ o' ,f v). In the first case this is easy because both ¢ and u are smaller that
s. For the second case we consider first the case when s is reduced by a rule
! —r . If the reducticn occurs at a smaller term than o the second coniponent
is smaller, and if the reduction occurs at the term [o then we consider the sub-
sumption ordering between ! and ! to order the tuples using the third com-

ponent.

What the above lemma will show is that the inference system C can be used
to normalize arbitrary equational proofs by orienting equality steps s<+pt,
removing non-persistent rewrite rules and removing peaks s«—p u-—pt by either
showing that s and ¢ can be joined, or introducing a new equation that will join

them.

The peaks in an equational proof correspond to the one step rewriting ambi-

guities introduced in the previous section. As we saw in that section, lemma 2.3
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implied that all one step rewriting ambiguities may be shown joinable by showing
that a restricted set of these ambiguities called critical-pairs are joinable. In gen-
eral, it is to these critical-pairs that we will restrict our attention when consider-
ing the proof normalization process in its dual role as framework for theorem

proving and as a proof technique.

Since critical-pairs that are identified in the completion process are added to
equational system that we are attempting to complete, before we prove the
correctness of completion we need the following notion of fairness. This property
of fairness will guarantees that all critical pairs will eventually be considere. or

completion.

Definition 3.2
A derivation (EgRo)HELR ) -+ is fair if a) E=C; and b) the
critical-pairs of R; are a subset of U;E;, j20. A completion procedure is

fawr if 1t gives rise to a fair derivation.

This leads us amediately to the follov-ir g theorem.

Theorem 3.1
If the completion procedure C is fair, and does not faii for inputs E', R, and
supplied ordering > then any arbitrary proof P in E;u.l;, i20 may be
transformed into a normal rewrite proof @ in R, by the relation =>, i.e.

we have P=> Q.

Proof
The proof will be by transfinite induction on the well-founded ordering >,
i.e. for any proof P in E;UR;, { >0 we will show that if we assume for all P/
in E;UR;, 720 such that P>¢F , and P =>,Q where @ is a normal

rewrite proof in R, then P=>_.Q, where Q is a normal rewrite proof in
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We let P be a proof in E;UR;, and we will consider the four following cases.

1.

[$4

P contains a equality step using a non-persisting equation s=t i.e.
P =P+»g P, in E;UR;. In the example where the s=t has been
transformed into the rule s—¢ in R;. We have a proof
P =Py —qPy in EjUR;, j>i with P;=>;P/, and
P,=>_(P,' , (by repeated application of lemma 3.2). Since at least one
step in P is smaller than the corresponding step in P (F > F .
because >, is based upon a multiset ordering), by our induction
hypothesis P’ can be transformed in a normal rewrite proof @ in R,
and we have P=>}P => Q@ . We can make an exactly similar argu-
ment in the case when the equality step has been simplified, and/or
deleted. The second assumption in the fairness condition guarantees
that there will be no persisting equations, and hence no persisting equa-

tional steps.

P contains a rewrite step using 2 non-persisting rule i.e. P = P—p P,
in E;UR;, We have a proof P/ =P/ Py P, in E;UR;, > with
P=>(P , P;=>(P, , and —p=>;Pgs (by repeated application
of lemma 3.2), i.e. the rewrite step —p is removed by => because the
rule generating it has been simplified. Since at least one step in P is
smaller than the corresponding step in P, by our induction hypothesis
P can be transformed in a normal rewrite proof @ in R, and we
have P=>3&P =>.Q . Similarly for the proof P = P +«—p P, in
E;UR;.

P contains a peak generated from persisting rewrite rules i.e. we have

P =P«—pu—p P, in E;UR;, we have three possible cases for our
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proofs P in E; LJR,- and P in E;UR;.

3.1 P contains a non-critical overlap, hence we will have P=>3F
where P =P/ —»ﬁjv«-ﬁjPQ’ in E;UR;, j2¢, with
P,=>,P, , and Py=>_P,' , (by repeated application of lemma
3.2), at least one step in P’ is smaller than in P and by the induc-
tion hypothesis P can be transformed into a rewrite proof @ in
R .

3.2 P contains a critical overlap, but since it is generated by an overlap
between persisting rules, by the second assumption of the fairness
condition the critical pair <& ,f > that generates the critical over-
lap exists as an equation ¢ =¢' in some E;. If j>1¢ we will have
P=>¢P where P =P <Py with P=> 5P.1’ , and

o=>oPo' , (by repeated application of lemma 3.2), at least one
step in P is smaller than in P and hence P can be transformed
into a rewrite proof @ in R,,. If 7<¢ then will have a proof P4
linking ¢ and ¢ that will connect the critical overlap in E;UR;.
And we have P = P P3P, P is smaller than P, because Pj
connects s and ¢ below the peak u, and so P will eventually be

transformed into rewrite proof @ in R .

In all of the above cases we have shown that the proof P can be
transformed into some proof P’ such that P =>,Q where @ is a
proof in R .

4. Finally, if P is a persisting normal rewrite proof in R; then P will exists

as a normal rewrite proof in R ..

To recap. we have shown that an arbitrary proof P in E;UR; will either

exist as, or can be transformed into a normal rewrite proof @ in R,.
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Corollary

If C is fair then C is a correct completion procedure.

Proof

R, is convergent (by theorem 2.2) because it is terminating (—p_ is con-
tained in the well-founded abstract ordering >), and R, contains no unjoin-
able critical pairs (since any critical overlap will have a persisting normal
rewrite proof). And, finally, by lemma 3.1 R, has the same power with

respect to provability as E.

The above proof not only provides a simpler, more flexible proof of correctness for
standard completion (in the more general case when R, is not finite) than that
provided by Huet20; but if instead of considering proof normalization as a tech-
nique for demonstrating the correctness of completion by showing that an arbi-
trary proof may be transformed into a persisting normal rewrite proof; and.
instead, consider its application to a given proof. WWe have the potential for a

very powerful theorem proving technique.

Since we are dealing with a specific prcof we may use the information regard-
ing the current step which is being considered in order to select equations from the
set E;. Also. and perhaps more importantly, the specific proof step under con-
sideration will allow us to provide a substitution for an unorientable equation
that will allow us to turn it into a rule (ground terms can always be oriented
without failure) that can be successfully applied. We will consider proof normali-

zation as a theorem proving technique more completely in a later chapter.

3.4. An Example of Basic Completion

We will consider the following example of producing a convergent system of
rewrite rules for the standard set of three axioms for groups. We will group

together some of the actions that would be performed individually in the
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completion process in order to keep our example to a reasonable length.

Consider the following set of equations E.

E R
1. O4z=zx %)
2. i(z)+r=0
3. (z4y)+z=z+Hy+2)

We orient all the equations.

E R
%, 1. O+4z—z
2.  i(z)+z—0
3. (z4y)tz—ozHy+:)

There exists a critical overlap (i(z)+z)+z between rules 3 and 2 giving a critical-

pair <i(z)+z+z2),0+2z>. We add the equation i(z)+(z+y )=y to the system.

E R
1. i(z)Hz+y)=y 1. O+tz—z
2. i(z)+z—0
3. (z+4y)tz—r+Hy+2)

We orient this first equation, giving us a new rule 4.

E R

% 1. O4z—z
2. i(z)4z—0
3. (z+y)tz—zHy+2)
4. 2(1‘)+(I+y )—-»y

There exist the following overlaps; {(0)+{0+z) between rule 4 and rule 1, and
i(i(z))+(i(z)+z) between rule 4 and rule 2. These overlaps give rise to the
critical-pairs <z,i(0)+z)> and <z,i(i(z)+0> respectively. We add these to

the set E.



E
L asilps

We orient the two equations in E.

There is an overlap i(:(0))+¢(0)+z

rise to the critical-pair <z,i(¢(0))>.

consequence.
E
1.  z=i(i{0))+z
2.
3.
4.
5.
6.
We orient the first equation.
E
%, 1.
2.
3.
4.
5.
6.
7.

9910

P P 0319
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R

O+z—rz

i(z)+z—0

(z+y )tz —z+Hy+2)
1(z)Hz+y)—y

R

O+z—2z

i(z)+z—0

(z+y)+z—z+Hy+2)

tﬂ+@+1%ﬂ
0)+z—z

14)%”

between rule 5 and rule rule 4, which gives

We add this to the set F as an equational

04z —z

)+x—»0
y)+z—rz+(y+2)

+($+J)—~y

+Ir—z

(z))—z

~, v, sAN [
:\r% —~
CONC

R

O+z—z

t(z)+z—0
(z+y)+z—z+Hy+2)
$(2)Ha +y)—)
1{0)+z—z
t(¢(z))=—z
((¢{0))+z—z

There is an overlap i(i(0))+:(0) between rule 7 and rule 2, which gives us the

critical-pair <i(0),0>. We add this to the set of equations.



1. i(0)=0

AR ekl e

We orient this first equation.

e S 4 ol e

PNP G W

Rule 8 simplifies the left-hand sides of both rule 5

removed from R and two new equations

E

O+r=z
1(0)+z=x

| S

oo R W=
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R

0+z—z

i(z)+z—0

(z4y ) +z—z+(y+2)
1(z)Hz+y)—y
1(0)+z—z
i(i{z))—z
+(¢(0))+z—z

04z —rz

i(z)+z—0
(z+y)+z—z+Hy+z)
(z)+Hz+y)—y
1(0)+z—z

) igx))—-»x
(0))+z—z

)—0

-, 5, o
o=

.

R

O+z—r2z

i(z)+z—0

(z+y )z —z+H(y+2)
i(z)+Hz+y)—y
1(0)4+z—z

i1z )=z
i(1(0))+z—z
1(0)—0

—

and rule 7. These rules are

are added to E.

R

O+z—z

i(z)+z—0

g4y 2z +{y+2)
1 §22+S:c +y )=y
i(i(z))—z

1(0)—0

However, both equations can be reduced to the form s=s; equation 1 by rule 1,

and equation 2 by rule 8 and rule 1, hence they (the equations) may be removed.
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E R
%) 1. O4z—cz
2. i(z)+z—0
3. (z+y)tz—z+(y+2)
4.  i(z)Hz+y)—y
6. i(i(z))—z
8. i(0)—0

There is a critical overlap (:(¢(z)))+(i(¢(z))+0) between rule 6 and rule 4. This
generates the critical-pair <0,(i(¢(z)))+= > which we can orient and add to set

of rules as as a rule (skipping equational stage).

E R
%) 1. O+z—z
2. i(z)+r—0
3. (z+y)tz—z+(y+2)
4. 1 :1:2+S:z:+y)——>y
6. i(i(z))—=z
8. i(0)—0
9.  (i(t(z))+z—0

Rule number 4 overlaps on itself giving the overlap i(i(z))+{(¢(z)+(z+y)). this
generates the critical-pair <z-+y,i(¢(z))+y> (again, we bypass the equational

step and orient this equational consequence).

E R
%) 1. O+z—z
2. i(z)+z—0
3. (z4y)tz—z+(y+2)
4. i(z)Hz+y)—y
6. ¢ iex)g-—»:c
8. i(0)
9.  1(i(i(z)))+z—0
10. ¢(i(z)+y—z+y

Rule 10 reduces the left-hand side of rule 6 so we add r+0=r to the set £. Rule
9 can be reduced to the form s=s by rule 10 and rule 2 on the left-hand side,

hence this rule is removed and no equation is added.
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R

O+z—z

t(z)+z—0
(z+y)+z—z+(y+z)
t(z)Hz+y)—y
t(i(z))—z

1{0)—0

i(i 2}y —z-+y

R

0+z—z

i(z )4z —0
(z+y)+z—z+Hy+z)
: x2+ T+y)—y
i{1(z))—z

i(0)—0
i(z)+y—z+y
zH0—z

Rule 10 and rule 11 generate the critical overlap ¢(i(z))-+0 which gives rise to the

critical-pair <i(i(z)),z4+0>. reducing and orienting the equation, we add the rule

{(i{(z)—z to the system.

E
@)

R

O+z—z

i(z)+z—0
(z+y)+z—z+(y+2)
H(z)Hz+y )=y

i izx)S—nz

i(0)—0
i(t(z)+y—z+y
rH)—z

i(i(z)—z

Rule 12 reduces the left-hand side of rule 10 to produce the trivial equality, and

we remove it from the system. We have the following critical-pairs; <O,z4+i(z)>

between rule 12 and rule 2, <y,z+(¢(x)+y)> between rule 12 and rule 4. These

are not reducible so we orient them and add them to the system.
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O+z—2z
i(z)+z—0
(z+y)he —aHy+2)
i(z)Hz+y)—y
i(1(z))—z
1(0)—0
i(i(z)+y —z+y
z+0—z
i(i(z)—z
z+1(z)—0
z+(i(z)+y)—y

Rule 13 and rule 3 overlap to form the critical-pair <z+(y+i(z+y)),0>, we

orient it and add it to the system.

E
%)

R

O+z~z

t(z )+z—0
(2+y)+z—z+Hy+2)
t(z)+Hz+y)—y

t i?x) —>T
1(0)=—0

i(¢(z)+y —o+y
z4+0—z
i(i(z)—z
z+i(z)—0

+§ (z)+y )=y
zH(y+i(z+y))—0

Rule 15 overlaps with rule 4 to give the rule z+i(y+z)—i(y).

R

O+z —z
t(z)+c—0
(z+y)+z—z+(y+2)
t(z)Hz+y)—y

¢ iex)s-—»x

¢(0)—0

t(2(z)+y —z+y
z+0—z

t(¢(z)—z
1:+z(:c)-—->0

J’:+§ —y

z+ y+t(x+y)8
r+1(y+z)—i(y)
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Rule 16 and rule 13 reduce and delete rule 15. Rule 18 overlaps with rule 4 to

give the rule i(z+y)—4(y)+i(z), and we add this to the system.

E R
%, 1. O+z—z
2.  i(z)+z—0
3. (z+y)tz—z+(y+2)
4. i(z)Hz+y)—y
6. i(i(z))—z
8. 4(0)—0
10. i(i(z)+y—z+y
11. z+40—z
12. i(i(z)—z
13. z+4i(z)=—0
14. z4+(i(z)+y)—y
16. z+t(y+z)—i(y)
17.  i(z+y)—i(y)+i(z)

Rule 17 and rule 14 reduce and delete rule 16. We have no more critical-pairs to

orient so we have finally produced a convergent system.

E R
%, 1. O+4z—z

2. i(z)+z—0

3. (zty)tz—azHy+z)
4. i(z)Hz+y)—y

6. 1 izz) —z

8. i(0)—0

10.  i(i(z)Hy—z+y

11. z40—z

12, i(i(z)—z

13.  z+i(z)—0

4. z4+(e(z)+y)—y
17.  i(z+y )= (y)+i(z)

In the next chapter we will take a look at how we may introduce tests that will
remedy some of the mistakes made in the order in which we selected equations

from the set E.



A New More General Critical-Pair Criterion

4. Introduction

The efficiency of the completion procedure depends critically on the number of
rewrite rules and critical-pairs generated, because extra rules have the opportunity
to generate more critical-pairs, and also carry an overhead in any reduction
mechanism. The fundamental way in which we reduce this number is by normal-
izing the sides of an equation before orienting it to generate a rule. If we can
reduce the equation to its trivial form i.e. s=s, we can consider it to be
superfluous and hence we do not need to add its oriented form to the set of

rewrite rules.

Since we can only reduce a given equation with respect to rewrite rules that
have already been computed, the seuence in which we select equations for conver-
sion to rewriting rules is critical for the efficiency of the whole process. If an equa-
tion is selected "too early" i.e. the left and right-hand sides are potentially reduci-
ble by rules produced at a later stage in the completion process, we will have to

simplify the rule after we have produced the reducing equation.

Having to reduce the right-hand side of a rule is not as serious as reducing
the left-hand side since, if we reduce the left-hand side we have no guarantee that
it is larger (with respect to our ordering >) than the right-hand side, and hence
have to delete the rule and add the reduced form to the set of equations. Reduc-
ing the right hand-side maintains the decreasing property of the rule and hence we
can keep it in the rule set (although we may have to do some work in order to

update the redex replacement mechanism).

What we will provide in this chapter are tests which determine the redun-
dancy of an equation s=¢ by examining the structure of the critical overlap

s+—pu—pt that produced the original equation. WWe will characterise these cri-

44
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teria for determining redundancy, the so called critical-pair criteria, and the
correctness of these criteria will follow from the ability to provide a well-founded
ordering that is consistent with the ordering providel to prove the correctness of

the completion procedure in the previous chapter.

4.1. Basic Definitions Concerning CPC'’s
We will consider the definition and proof of correctness of three major critical-pair

criteria in this section. We will then provide our extension and generalisation of

the composite critical-pair criterion.

Definition 4.1

We say that a set CPC of elimination patterns of the form
s«-Ru—*Rt => SHEURt

specifies a critical-pair criterion, where the reduction ordering is contained in

the well-founded ordering >.

Although the above definition defines a rewriting relation that applies at general
peaks, lemma 2.3 implies that we can restrict our atteation to critical overlaps.
Thus, in general, we will define our critical-pair criteria in terms of these critical
overlaps.

By =>pc we denote the rewrite relation on proofs generated by the set of
elimination patterns CPC. CPC(E,R) is the set of all critical-pairs <s,t> in
CP(R) such that the eritical overlap ¢ oe—pso{loj—>psofro/lo] can be reduced
using  =>cpg;  l.e. there exists a  proof P  such  that
to—psoflol—psolra/io] =>cpe P. We consider the 1 irs in CPC(E,R) to

be superfluous.
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Definition 4.2

A derivation (Eq,Ro)F(E,R )" - is fair relative to a critical-pair cri-
terion CPC if a) E =), and b) CP(R)—U; CPC(E,,R;) is a subset of
U;E;, 5 20.
Note: if we consider the trivial criter:ion CPC, i.e. the set CPC(E,R) is always
empty, then this definition reduces the the definition of fairness supplied in the

previous chapter.

Definition 4.3

A critical-pair criterion CPC is correct, if for all unfailing derivations that
are fair relative to CPC, the limit rewrite system R, is convergent, and

s+rpt iff se>p_t.

This means that if we have a correct criterion CPC'. all the pairs in CPC(E.R)

can be ignored in the completion process.

The following lemma will establish the correctness of a CPC.

Lemma 4.1

If the ordering => ¢ U => cpc can be embedded in a well-founded ordering
>cpc and the correct completion procedure C is unfailing then any arbi-
trary proof P in E;UR;, 120 may transformed into an normal rewrite prcof
in R, by the vrelation =>;U=>¢ps. i.e. we have

P(=>cU=>cpc) Q.

Proof

The proof will be by transfinite induction on the well-founded ordering
> cpc i.e. for any proof P in E;UR;, i >0 we will show that if we assume for
all 7 in EJURJ, ]._>_0 such that P>Cp0P' . and P (=>Cu=>cpc)*(j

]

where @ is a normal rewrite proof in R, then P(=>,U=>:pc) Q.
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where Q is a normal rewrite proof in R . -

We let P be a proof in E;UR;, and we will consider the four following cases

(roughly the same four cases as considered in the proof of theorem 3.1).

1.

1o

P contains a equality step using a non-persisting equation s=t¢ li.e.
P =P+»p P, in E;UR;. In the example where the s=¢ has been
transformed into the rule s—¢ in R;. We have a proof
P =P/ —g Py inE;UR;, j>i with Py(=>cU=>cpg) Py , and
Po(=> cU=>cpc) Py , (by repeated application of lemma 3.2). Since
at least one step in P is smaller than the corresponding step in P
(P> cpc P , because > po is based upon a multiset ordering), by our
induction hypothesis F' can be transformed in a normal rewrite proof
Q in R, and we have P(=>oU=>cpo)tP (=>cU=>(cpc) @ .
We can make an exactly similar argument in the case when the equality
step has been simplified, and/or deleted. The first assumption in the
fairness condition guarantees that there will be no persisting equations,
and hence no persisting equational steps.

P contains a rewrite step using a non-persisting rule ie. P = P|—p P,
in E,UR;, We have a proof P/ =P/ Py P, in E;UR;, j>i with
Py(=>cU=>¢pc) Py, Py(=>cU=>¢pc) Py, and
— g, (=>cU=>¢pc)P3' (by repeated application of lemma 3.2), i.¢. the
rewrite step —rp is removed by => U=>cpc because the rule gen-
erating it has been simplified. Since at least one step in P is smaller
than the corresponding step in P, by our induction hypothesis P/ can
be transformed into a normal rewrite proof @ in R, and we have
P(=>cU=>cpc)TP (=>cU=>(cpo) @ . Similarly for the proof

v

P = P «p P, in E;UR;.
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P contains a peak generated from persisting rewrite rules i.e. we have

P =P+—pu—p P, in E;UR;. We have three possible cases for our

proofs P in E;UR; and P in E;UR;.

3.1 P

3.2

contains a non-critical overlap, hence we will have

P(=>oU=>cpc)tP where P =P/ —»é}v«—,{}Pg' in £,UR,,
]'22., with P1(=> CU=> CPC)‘PI, ’ and P2(=> CU=> Cpc)‘P.zl .
(by repeated application of lemma 3.2), at least one step in P is

smaller than in P and by the induction hypothesis 7 can be

transformed into a rewrite proof @ in R .

In the case when P contains a critical overlap we have twc possible

cases.

3.2.1The critical overlap is not joinable in R;, but it is a member of

the set CPC(E,,R;) then we will have P(=>U=>pc )" F
where P =P/ Pj P, in L UR;. j>i with
Py(=>cU=>cpc) Py, and Py(=>cU=>cpc) Py . (by
repeated application of lemma 3.2), and the proof P;' being
the proof (possibly further reduced) which replaced the eritical
overlap using => ;pc. At least one step in P is smaller than
in P and hence P can be transformed into rewrite proof 7

in R .

3.2.2The critical overlap is not joinable in R,, and is not a member

of the set CPC(E;,R,). Since it is generated by an overlnp
between persisting rules, by the second assumption ol the fair-
ness condivion (if the CPC condition does not apply at a larer
stage of ccmpletion) the critical p.ir <¢ ,¢ > that generatis

the critical overlap exists as an equation § ={ in some £,. If
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j>1 we will have P(=>,U=>gpc)tP  where
P =P/ e P/ with Py(=>cU=>¢cpc)’ P/, and
Po(=>cU=>cpc) Py , (by repeated application of lemma
3.2), at least one step in P is smaller than in P and hence P
can be transformed into a rewrite proof @ in R.. If j<i
then will have a proof P linking ¢ and ¢ that will connect
the critical overlap in E;UR;. And we have PP = P |P;P,,
P is smaller than P, because P connects s and ¢ below the
peak u. and so P/ will eventually be transformed into rewrite
proof @ in R..

In of the above cases we have shown that the proof P can be

.ransformed into some proof P such that P (=>cU=>¢pc) @

where @ is a proof in R .

4. Finally. if P is a persisting normal rewrite proof in R; then P will exists

as a normal rewrite proof in R ..

To recap. we have shown that an arbitrary proof P in E;UR; will either
exist as, or can be transformed into a normal rewrite proof @ in R, using

v

the relation (=> cU=> cp¢)” -

Corollary

If the critical pair criteria is correct then any correct completion procedure

using it will remain correct.

Proof

R is convergent (by theorem 2.2) because it is terminating, and R, con-
tains unjoinable critical pairs (since any critical overlap will have a persisting

normal rewrite proof). Since => -p, does not change the provability of R ..
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by lemma 3.1 R, has the same power with respect to provability as E.

A critical-pair criterion can decrease the number of critical-pairs generated during
the completion process?®. However, the efficiency gained by the criterion test.
may be offset by the cost of checking it against all the critical-pairs. By providing
a definition for soundness for critical-pair criteria below we can extend these tests

to testing the Church-Rosser property in arbitrary systems of rewrite rules.

Definition 4.4

A criterion CPC is sound if, for each rewrite system R contained in >, the
following property holds: R has the Church-Rosser property if and onlyv if

there exists a rewrite proof in R, for each critical-pair in

CP(R)—~CPC(QLE ).

A sound critical-pair criterion may be used for testing the Church-Rosser property

in finite systems or rewriting rules.

Lemma 4.2

Any correct criterion is sound.

Proof

By assumption all critical-pairs in CP(R)—CPC{{Z).R) are joinable. Any

critical-pair in CPC((J.R ) is joinable because our assumption of correctness

implies that there exists a normal rewrite proof in R for the zig-zag proof

generated by the critical-pair criterion CPC. Since all critical-pairs are join-
able, then by lemmata 2.1 to 2.3 the system R has the Church-Rosser pro-

perty.

4.2. The Unblocked Criterion - BCP

The first CPC we will examine is the unblocked critical-pair criterion. first intro-
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duced by Slagle®?; although it was applied to term rewriting theory by Lankford

and Ballantyne”.

Definition 4.5

Let R be a rewrite system, and let to—psollo}j—psojro/lc] be a critical
overlap between rules s—¢ and |—r in R. The critical pair <to,s0{ro/lo]
is called unblocked if any substituted variable occurrence zo in the overlap
sollo] is reduced by a rule  — in R, otherwise it is called blocked.
If the critical-pair <to.so[ro/loj> is unblocked, then we have ro—pw for
some variable z in s or [, and some term w. Let ¢ be the substitution for
which zois w, while ¢/ =¢ for variables other than z. This gives rise to the {ol-

lowing proof.

sofl d]
¥

SO’[I 0] SO'[I‘ O’

JANS

Figure 4.1 - An Unblocked Critical Overlap
We will define the unblocked (sometimes called blocking) critical-pair criterion
BCP as the following set of elimination patterns.
toe—psollal—psojro/lo] =
to—ptd «—pso —psd [rd [ld |«—pgsoira/ld]
with so—pso’ , and s—t, {—r, o and o’ as described above. The set

BCP(E ,R) contains all the unblocked critical-pairs in CP(R).



Lemma 4.3

The BCP critical-pair criterion is correct.

Proof

To prove correctness we have to show that =>g-p is contained in >.
This is trivial, since as we can see in figure 4.1 all elements of the right-hand
proof pattern are below the overlap soflo], and hence are dominated in the
first component of the ordering. Hence the ordering => gopU=> ( is well-

founded.

Consider the following, alternate description of the unblocked reduction of the

critical overlap.

solx ofl' '] solx ofl'

AN

so[x ofr' o] sofr o
Figure 4.2 - An Alternate View of an L'nblocked Ouverlap

This alternate view of an unblocked overlap gives rise to the following definition

for the unblocked critical-pair criterion BCF .
toe—psollol—gsolro/lo] =

to+—p solz 0}—p sojw [role—p solzoj—p solro/la]

We will wait to prove the correctness of the critical-pair criterion BCP'  after we

have introduced our new general compeosite criterion GC'C (the result will follow



as a simple corollary).

4.3. The Connectedness Criterion - CCP

The connected critical pair criteria are all based on a lemma introduced by M.H.A

)
Newman-=3,

Definition 4.5

Let R and E be a set of rewrite rules and equations respectively, and let R
be contained in the well-founded ordering >. Two terms s and { are con-

nected below u in FUR if there exists a proof s«>gp puy, ..., uy>pypt

with

sofl d]

Figure 4.3 - Two terms connected below u

We define the connected critical-pair criterion CCP as the set of all elimination

patterns

to—psojlol—psciroflo] =>
toegursoflolye ... u,+gypsoirof/ia]

with u; <sd{lo] for 1<i<n.
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Lemma 4.5

The criterion CCP is correct.

Proof

The term u is a larger (with respect to >) than the terms s, ¢, and
u;, 1<i<n, the first component of the complexity measures of the proof
s+—pu—>pt is larger than the first component of the complexity measure of
all the steps in s+ pu ., ++g pt. Hence the ordering

(=>cU=>¢cp)t is well-founded under the ordering > (.

The use of connectedness as a technique for reducing the number of critical-pairs
in a completion-like procedure was first applied to the construction of canonical
bases for polynomial ideals by Bruno Buchberger’:8. It was independently
applied to term-rewriting theory by both Wolfgang Kuchlin®® and Franz

Winkler35, and we describe some of their techniques below.

As we saw in the alternate view of the BCP if the overlap is reducible then
we can decompose the critical-pair into two smaller pairs that may either be non-
critical or may have been previously computed (both Kuchlin and Winkler's test
provided book-keeping mechanisms for keeping track of previously computed
critical-pairs, although Winkler's test restricted the position at which the overlap

could be reduced).

Connectedness. unfortunately, is too general a criterion to provide much
information concerning the potential joinability of critical-pairs that is
significantly different from that provided by the other existing tests (especially
when we consider our generalized criterion introduced below). In the composite
critical-pair criteria introduced below we will extend the notion of connected below

from the individual terms in a proof to the proof itself.
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4.4. The Composite Criteria - PCP and GCC

The restricted form of the composite criterion was introduced by Kapur, Musser

and Narendran23.

Definition 4.6

Let R be a rewrite system, and let t o+—pso{lo]—rzs0[ro] be a critical over-
lap between the two rule s—¢ and [—r in R. The critical pair
<to.solro]l> is considered to be composite if some proper subterm of [0 is

reducible by another rule / —/ in R.

soll ofl' o] soll ofl' o

VANVAN

sofl off o] soff o]

Figure 4.4 - The Composite Criterion PCP

Consider the following example from Bachmair and Dershowitzt. Suppose that
the set R contains the following rewrite rules: —(—z + y) — —y + —{—r),
z + —z — 0 and —(—z) — z. The first two rules define the following critical
overlap.

~(~(=2)) + ~(~2) =g ~(=z + ~(—x )} —0

The above overlap is composite since the subterm —(—z) of —(—r + —(—z)) is

reducible by the third rule in the set R. Definition 4.6 defines the following set of

elimination patterns PCP.
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toe—gpsollo—sgsolra/lo] =>

to—psoflolf o ||—gsollolr o JI o |—gsolloll & ||—gsolrd]

where ! applies at a position strictly below the position at which { applies in so.
The rewrite relation =>pcp can be used to eliminate the set of composite
critical-pairs PCP(E,R).

We will prove the correctness of the criterion PCP below in order that we

may later highlight the differences between it and our new criterion GCC.

Lemma 4.8

The composite critical-pair criterion PCP is correct?.

Proof

We will prove the correctness of PCP as a critical-pair criterion by construct-

ing a well-founded ordering > pop that contains both => p-p and => .

If we let P be the proof to«—pso{lo]—+gso[ro/lo] and P be the proof
tow—psolloll o ||—gsollald o [l o |Je—gpsollo]l o' |—pso|ro/lo] then
using the ordering >, from the previous chapter we cannot show that
P>F . In fact since ” contains the term so[lo[f o]] twice, whereas P
contains it only once, and we will actually have P >P. So that we may
order the proofs correctly we will introduce a fifth component into the com-
plexity measure ¢(s,t) that will reflect the amount of overlap between sucees-

sive proof steps. This will allow us to successfully show that P> pprp P .
Let P be a proof (sg, ....s,) and let p; be the position of the i-th
proof  step (s,—_l,sl). By M(P) we denote the multiset

[d(sges 1o P), . .., d(sy 1,8, P)], where d(s;_y,s;.P) is



57

([8i=1)y5i -1 @p; 1l 15, 48158 1 @p; 1)y if 5;y—>p 5; by [—r

where 5;_,@p;_,is —, if ¢ is 1);
1—1 i-1

({S,'],S,-@P,-,1,3;_1,8,',8,-@P,'+1), if Si—1%¥"R S by [—r

(where 5;@p, . is —, if i is n);
(I8i+8i—1—s=——), if si_1+>g s

The first four components are the same as those provided for the complexity
measure c(s,t). The fifth component added to the measure d(s,t) reflects
the amount of overlap between rewrite rule and its neighbouring proof step.
We let the ordering >pop’ be the lexicographic combination of the multiset
extension >> of the well-founded ordering >, the proper subterm ordering,
the proper subsumption ordering >,, the ordering >, and the proper sub-
term ordering.

We now consider the ordering >pcp defined in the following fashion
P>pepP i M(P)>>pep' M(P ). This ordering contains both the order-
ings =>» and => p.p and hence can be used to prove the correctness of the

criterion PCP 1.

4.4.1. The Generalized Composite Criterion - GCC

We will now consider how to generalize the ordering >pcp so that we may
remove the restriction that the cule / —/ which reduces the critical overlap

so{l o] be a proper subterm of the term [o.

+ The original ordering >, provided by Bachmair and Dershowitz used the proper sub-
term ordering to order the second component. This is consistent with our definition for
>, since our abstract orderiug > (which we use for the second component) has the sub-
term property.
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Definition 4.7

Let R be a rewrite system and to<«—so|lo]—so[ro/lo] be a critical overlap
between rules s—¢ and {—r in R. The critical pair <to,sofro/la]> is
called composite if the critical overlap so{lo] is reducible by another rule
! — alsoin R, and lo>! o, lo=l ¢ and >, , or lo=l &, |=!
and r>7¢ .

sofl olll’ o] sofl o[l

N /\

Figure 4.5 - The Composite Criterion (CC

Definition 4.7 defines the following elimination pattern GCC'; note: we indicate
the fact that the term /o' need not be a proper subterm of (o (in fact it may

occur anywhere in the term s o) by writing the critical overlap as soflc][ll o' | (cf

definition 4.8).
l o—s U[l O’]——»s o’[r o'/l o-] =>

toepgsollollf o l—psollo]l! & [ o |—psollalll o |—psairc/io]

Lemma 4.7

The composite criterion GCC' is correct.

Proof

In a fashion similar to the proof of lemma 4.6 we construct a well-founded
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ordering > goc that contains both => 500 and =>4.
Let P be a proof (sq, ...,s,), by M(P) we denote the multisst
[9(50s51), - - - » 9(8p—1,5, )] Where g(s,—_l,s,-) is

(si—pl oyl o 0 s;.0) if 5;_y—*ps; by —r and s;_;—ps;_s by I 1>
(where 7 o’ , !, and s;_, are — if i=1)
=2
(sisbolysi_y,l 0" W0 s540) if 5;_y4—ps; by l—r and s;—p 5y
yl —

(where I ¢’ , ! ,and s;,, are —if i=n)

The first four components are consistent with the complexity measure for
=>, and the last three reflect the amount of overlap between neighbouring
rewrite steps. We let the ordering > g’ be the lexicographic combination
of the multiset extension >> of the well-founded ordering >. the ordering
>, the proper subsumption ordering >,, the ordering >, the ordering >

again, the proper subsumption ordering >, and finally the ordering >.

We  consider  the ordering >goec a P>gecP iff
M(P)>>gec’ M(F' ). Since => is contained in => gg¢ (which is well-
founded) our criterion GCC is correct. We explain, in a manner similar to

the previous lemma, the reason for the last two components.

Let P be the overlap to«—psollo]—pso[ro/lo], and let P be equal to
toe—pgsailo|(l o |—gsalla|! o [I o |e=psoflo][l ¢ |—=psolra/ld]
where [o>F o', or lo=l! ¢ and [>,f. The two proof steps
sollal[l o |—sallo][F o /I o' ] are both smaller than sofloj—to and
s o[l o]=+s o[r o/l 0] because they are smaller in the second and third positions;
but if we just consider the first four components the we cannot have P >F

since both proofs contain sollo]—tc and sojlo]—sojral. The ordering
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GCC correctly handles this problem since when [0 is greater than f ¢ the
fifth component is larger in P than P', when [0 and ! ¢ are equal the
requirement that [ be greater than / under the subsumption ordering makes
the sixth component larger, and when [ and 7 are equal the seventh com-

ponent is larger.

This removes the -equirement (of both Bachmair and Kapur) that / ¢ be a
proper subterm of [o. Kapur et al. gave an example that showed the need for tpis
restriction on their definition of compositeness but we will now show that GCC

correctly handles their example.

Consider the following system of rewrite rules.

L. g(f(z.2) = i(z)
2. [(z,a(y)) — j(2)
3. [flalz)y) — j(a(z))

Kapur et al. argued that if the restriction of / ¢’ being a proper subterm of lo
was lifted the superposition between rule 1 and rule 3. ¢(f (a(z).e(z))) would be
considered composite; yet its critical pairs g(j(a(z))) and i(a(r)) are cquivalent
but not joinable. Under GCC this superposition is not considered composite
because the left-hand side of rule 3 is not greater than the left-hand side of rule 2
under the subsumption ordering. It is important to note that the position / ¢ is

not restricted to be a sub-position of o but may occur anvwhere within the term

sa.

We now consider the following example which shows how our extension of
the composite criterion, GCC, handles two cases not recognized by the previous
composite criterion, PCP. of Bachmair and Dershowitz. The first example
removes the requirement that [ be a proper subterm of [, where [—r and

another rule s—¢ form a composite overlap. The second example will remove the
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restriction that / be a subterm of {.

Consider the following system of rewrite rules.

1.  h(f(a,y))—g(a,y)
2. [(a,b)—b
3.  [(z,b)—c

In this systern we have a composite overlap between rule 1 and rule 2, and non-
composite overlaps betwszen rules 1 and 3. and rules 2 and 3. The critical pair
between rule 1 and rule 2, g(a.b)=h(d) can be considered to be superfluous
because it will be joinable once we have oriented the critical pairs between rules 1
and 2, and rules 2 and 3. We wculd still _rrive at the same final system if we had
used the PCP criterion but the rule derived from the critical pair between rules 1

and 2 would have been added and then removed during the completion process.

Consider now the following system of rewrite rules.

1. h(g(z)S (z,b))—h(z.b)
2.  g(a)—b
3. [(a)—c

We have (by our definition) a composite overlap between rule 1 and rule 2 {rule 2
matches with the cverlap A(g(a),f (¢)) and f(u)<g(a)). We can consider the
critical pair h{a)=b to be superfluous because it will be joinable once we have

computed the critical pair between rule 1 and rule 3.
Thus, our criterion GCC' is more general than the test PCP. The generality
of our test is expected to reduce the number of equations and rewrite rules gen-

erated and hence the cost of the completion procedure.



Current Implementation and Future Plans

In this section we will discuss the curi ‘nt stage of our implementation work. and
our plans for the future (both theoretical and practical). Currentiy we have
implemented a term rewriting system compiler (TRS compiler) based on the pro-
gram developed by Yoshihito Toyama of the NTT Basic Research Laboratories in
Tokyo®*, his program based. in turn. on the techniques developed by S. Kaplan

for a conditional term rewriting system compiler (CTRS compiler)*>.

In systems that interpret a set of rules that make up a term rewriting sys-
tem, the expression being reduced is usually considered as a tree. The left-hand
sides of rules are matched onto subtrees of this tree and the rewriting process is
effected by replacing the matched subtree with tree representing the right-hand

side of the rule (with the appropriate variable substitutions).

Pattern matching in trees is a slow process (the complexity is
o] |pattern | z# of patterns |erpression I)) It can be speeded up by pre-
processing the tree patterns to be matched into some form of tree walking auto-
matal? 30, Furthermore. the amount of work in locating redex positions may be
reduced by using information from previous searches to restrict the positions
within the expression at which we apply the matching process®®, Unfortunately,
often the gains in efliciency from faster matching do not make up for the added
cost of processing the rules. This is especially true in situations such as the
Knuth-Bendix compietion procedure where the rule set is constantly expanding

and contracting.

In our system v take a slightly diderent appreach to finding re-lex poritions
in the expression we are trying to reduce. Our approach is to turn the cperator
of an equational theory into functions. The result of applying the function to its
arsuments (whatever they may be in the expression) is the the appropriare

replacement term.
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The speed of our system is derived from the fact that matching is achieved
by function application; a relatively fast process because it uses the internal
mechanisms of the lisp system. Lisp is an obvious language in which to imple-
ment our compiler because it is very easy to build and manipulate lisp functions

- lisp data objects. Also, the fact that there is a standard order of evaluation for
us, functions allows us to provide more general conditions for confluence (e.g. no
overlaps on outermost function symbols) than in the case when the position of

rewriting is unrestricted.

An important question we will be examining is how to integrate built in func-
tions and data types into our systems of equations. Consider the example of fac-
torial function in the introduction section. It returns a normal form in terms of
the successor “unction s() (.e.g. fact(s(s(s(0)))) = s(s(s(s(s(s(0))))))). Term
rewriting systems perform their computations by manipulating the symbols
representing a value. If we wish to use actual values and built in functions that
nse these values we will have to define a suitable conversion process between an
object's value un.l i3 symbolic representation.

We will continue the ongoing work of implementing the Knuth-Bendix com-
pletion procedure for unconditional TRS's. We hope to use our completion pro-
cedure as an experimental platform with which to demonstrate the efficacy cf our
new more general critical-pair criterion in controlling the number of critical pairs

and superfluous rules generated in the mpletion process.

We have already extended our TRS compiler so that it will compile condi-
tional equations. Our future theoretical work will examine the process of comple-
tion as it is applied to conditional equational systems. Some exploratory workH
has already been done in extending the framework of Bachmair and Dershowitz to

conditional systems. and we hope to carry on with this work.
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In continuing our interest in the applications of term rewriting theory to the
practical problems of programming. We wish to examine method of defining con-
ditional equational systems as programming languages (with special reference to
integrating the narrowing technique into the reduction process so ihat we may
unify functional and logic programming). We also wish to pay special attention
to the problems of parameterizing and modularizing our equational theories, so

that they will be practical systems in which to develop software.

Finally, we will examine the proof normalization process as a framewocrk in
which to do equational theorem proving in equational systems that do not com-
plete to a finite set of rewrite rules. As noted previously, this technigue will rot
only orovide us with information that may make the process of selecting equn-
tions for completion more efficient, but may also allow us to turn the semi-

decision procedure for e¢ality in these systems into a decision procedure.

It is my belief, and the general philosophy of our team, that the theory of
term rewriting systems has a great number of potential applications to the fieid of
computer science. but its utility can only be realized if the practical systems still
remain firmly grounded in the mathematical theory Jrom which they were Jderived.
Maintaining the mathematical purity of the theory not only allows us to integrate
our results into the existing framework of mathematical logic; but aiso allows to
achieve gains in efliciency. not by ad hoc measures that restrict the power of our

svstems, but by providing better thecrems, or better proofs of existing theorems.
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Appendix

;3 TRS compiler - main program

"

;3 This section reads in the rules and functional forms and
:; compiles them to a set of functions that are then made
;; part of the lisp system.

1 ' R
:s The program then sets up a "read - eval" loop using these

;2 new functions to reduce and expression to its normal form.

1
:; The functions below define, and access the data structures
;+ in the program.

i+ Input rules - (11=rl1 12=r2 ...)

defun get-lhs-ir (input-rule) (car input-rule))
defun get-rhs-ir (input-rule) (caddr input-rule})
defun remaining-ir (input-rule) (cdddr input-rule))

i Rules - ((11 r1) {12 r2) ...)

defun mk-rule (lhs rhs) (list lhs rhs))
defun get-rhs-r (rule) (cadr rule))
defun get-fn-r (rule) (caar rule)
(defun get-args-r (rule) (cdar rule))

i Forms - ((fn vl v2 ..) (fn v1 v2..) ..0)

defun mk-forms (input-forms) input-forms)
defun get-fn-f (form) (car form)
defun ge.- vars-f (form) (edr form))

53 Ferules ((fn viv2 ) (11 r1) (12 12) ..0)
defun get-form-fr (f-rule) (car f-rule))

defun get-rules-fr (f-rule) (edr f-rule)
defun get-rulel-fr ({-rule) (cadr f-rule))
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;; Main program

L2
;3 The following two functions read in the rules, and set up
;; the read eval loop.

(defun trs ()
(let ((ax-file) (input) (rules) (forms))

terpr
terpr
princ ""Please type an axiom file name (trs)? ")
setq ax-file (concat (read) '.axm))
setq input (infile ax-file))
setq rules (mk-rules (read input)))
(setq forms (mk-forms (read input)))
trs-comp rules forms)
close input)
(trs-1)

(defun trs-1 ()
(prog (term)

loop
terpr
Eterpr
(princ ""Please enter a term as an s-expression (nil to end)")
terpr
terpr;
gprinc ">

(setq term (read))

(cond ((null term) (return nil)))
terpr

terpr

princ term)

princ " =
nf term

(go lcop



;3 This function computes the normal form of the supplied term.

(defun nf (term)
(let ((eval-term))
setq eval-term (eval (mk-term term)))
princ eval-term

)

;3 This function generates the internal representation of the
;; rewrite rules.

(defun mk-rules (input-rules)
(cond ((null input-rules) nil)
(t (cons (mk-rule (get-lhs-ir input-rules)
(get-rhs-ir input-rules))
(mKk-rules (remaining-ir input-rules)))

)
(defun terpr () (terpri))
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;; This section takes a set of rules and functional forms and

;; pairs the rules with the corresponding functional form to

;; produce an 'f-rule”. These f-rules are then compiled into

;; lisp procedures that are then made part of the system using
;; the function "putd".

(defun trs-comp (rules forms)
(mapcar 'compile (mk-f-rules forms rules))

(defun mk-f-rules (forms rules)
(cond {(null forms‘) nil)
(t (cons (m-f-rule {car forms) rules)
(mk-f-rules (cdr forms) rules)

)

(defun mk-f-rule (form rules)
(cons form
(mapcan
quote
Elambda (rule}
(cond ((eq (get-fn-1 form)
(get-fn-r rule)) (list rule))
(t nil)

rules



;; The following function takes an f-rule and depending on the
;; arity of the function generates lisp code that implements
;; the function.

(defun compile (f-rule)
(cond (%null (get-rules-fr f-rule)) (compile-external f-rule))
(t (cond ((null (get-vars-f (get-form-fr f-rule)))
(compile-arity-0 f~rule))
(t (compile-arity-n f-rule))

)
)

(defun compile-external (f-rule)
(let ((form (get-form-fr f-rule)))
mk-func (concat '$ (get-fn-f form))
(list 'lambda (get-vars-f form) (mk-default form))
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(defun compile-arity-0 (f-rule)
(mk-func (conczt '$ (get-fn-f (get-form-fr f-rule)))
(list "lambda () (mk-rhs (get-rhs-r (get-rulel-fr f-rule)})))

)

(defun compile-arity-n (f-rule)
(let ((form (get-form-fr f-rule))
vars (get-vars-f (get-form-fr f-rule)))
args-1 (mapcar 'get-args-r (get-rules-fr f-rule)))
rhs-1 (mapcar 'get-rhs-r (get-rules-fr f-rule)))

{mk-func (concat '$ (car form))
(list 'lambda
vars
(list "let
mapcar 'ncons (mapcar 'mk-var vars))
append '(cond)
(mapcar
quote
lambda (args rhs)
(list
mk-match args vars)
mk-rhs rhs)

|

args-l
rhs-1

(list (?ist 't (mk-default form)))



;; The following function converts a term into a form that is
;; suitable for reduction i.e. all operators have a '$' prepended
;; to them so that they may be reduced by the internal functions.

(defun mk-term (term)
(cond ((null term) nil)
(atom term) {list 'quote term))
t (cons (conc..” '$ (car term)) (mapcar 'mk-term (cdr term))))

)

;; The following function makes the lisp code that returns the
;; right-hand side of a rewrite rule.

(defun mk-rhs (term)
(cond ((null term) nil)
((var-p term) term)
atom term) (list 'quote term)
t (cons (concat '$ (car term)) (mapcar 'mk-rhs (cdr term))))

)

;3 This function returns the code that covers the case when no
;; match has been made.

(defun mk-defauls (form)
(cons 'list (cons (list 'quote (get-fn-f form)) (get-vars-{ form)))



;; This section takes the argument portion of the left hand sides of
;; rewrite rules and builds a 'cond’ term that will recognise it,
;; binding the functions variabies in the process.

(defun mk-match (p1 p2)
(let ((bound-vars))
cons 'and (mapcan 'mk-match-1 pl p2))

)

(defun mk-match-1 (pl p2)
(cond ((var-p pl) {cond ((member pl bound-vars)
(Iist (list "equal pl p2))

]
(t {lot
{setq bound-vars (cons pl bound-vars))
‘ zlist (list 'setq p1 p2))
)
)
)

(atom pi) (list (list "equal (list ‘quote p1) p2)))
t (list (append '(aud) (mk-match-1 (car pl)
(list 'safe-car p2))
(mk-match-1 (edr pl) (list "edr p2))

)

(defun safe-car (x) (cond ((listp x) (car x)) (t nil)))



;3 This function puts %ne built function into the lisp system.

(defur() mkifunc (name body)
iet
" (pr.d name body)

terpr)

print name)

terpr)

print body)

terpr)

)

(defun var-p (term)
(cond ((atom term)((tcopl()l ((eq '? (car (explode term))) t)
ni

\
(t nil)
)
)

(defun mk-var (name)
(concat '? name)

(trs)



