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ABSTRACT

Sound Transmission Loss Measurements

. by the Sound Intensity Technique

-

Ann De Mey - ' . :

The Sound Intensity Technique is used to measure Sound

Transmission Loss. A detailed measurement pgoceaure is:

-established and walidated. Consequently the transmission
- (

loss is measured as a functlon of the folIOW1ng parameters:

panel dlmen51on§, the ex;stence or absence of sills and
i - ¢ ;
reveals, and the l}ning of reveals with absorbent material‘ '
(J ' . ¢
of variable thickness.

In addition, because the intensity is a vector quantity,

’
LS

the acoustie power flow through partltlons can be traced.
Th1s,allows for the determlnatlon of the relatlve
contrlbutlons to the overall transmlssxon loss of the

VArious sections of the panel, and,thevlocalisaﬁion of,

construction faults.
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Yhe Sound Transmission Lodé of a panel or wall is a
-y N . !
p measure. of its ability to reduce.the transmission of sound
N " . .
from one space to another. Its evaluation is very important

1

in many noise control problenms.

- 1
[N
1 o N

Traditionally the sound transmission loss of a partition

has be®n measured using’;he'standard approach as described
S | -
by the ANSI/ASTM E90-75" [9]. It has been shown both

: experimentally and theoretically that it is dependent on
a * ’ - ' )
various bd\ndqry conditions. However, the numerous

A .
- . * ° - v

lngn/ﬁ )4 . contradittions between reported results based on the
standard method,” althéugﬁ,obtained under "ideal" laboratory

condit?bns,'iﬂdicatg the need for further investigation.

/

Morq,detailed‘guidelinesﬁﬁndt only concerning the ¢groom .
. ? ‘

’

parameter§, but including the méasurement technique and

- , yrocedJ? haye to be established. Iq‘addilion, special
A £4 \attegtion will have to be paid to the deéailing of spundy
i transmisébo$ paths, in particular, -undesirable paths such‘asl
- flanking,,céns£ruc£ion errors and material defects. ‘
~ ~ ! . ‘

. « The present measurement technique makes it difficult to
A isolatecthé varfou§ paraméters"influencinq the measurement
of -sound t?aﬁsmission loss and does not allow for fault

- ( -
' * gkericad National Standard [9]
RN , - ' o

. B .
o .




-

o ¢ ! N
. checking or finding. All elements constituting the system

under test are considered as one single system. The measured ///?

4 2

transmission loss is relative to.the system as a whole.

The recent develbpment of new technigues and tools now
(% : .
enables the‘direct measurement of the flow of energy, or

rather the' flow of energy per unit area,_ that 1is, the -

-

intensity. As opposed to pressure, intensity is a vector

q%jntity and therefore provides directional information.
So

rce identification and location, source ranking and the

determination of energy flow paths is now possible. With,

respect to the measurement of sound‘transmiss;on loss, " the

total acoustic powef transmitted through a partitidn can be -

w»
:

determined hy measuring the distribution of the intensity

. . i' i
hormal to the surface and integrating the results over the

whole panel area. - e
‘ Yy

I3
¢

M <
- ‘ *

This new method has several advantages, for example: the

o

transmitted intensity is measured directly across the test
R - : -

surface, thus eliminating the effect_ of* flanking
. ! A

transmission loss; it gives the transmission loss directly

v

without having to make corrections for the panel area and

)

the absorption characteristics of the reception room; no

stringent restrictions are placed‘ on its acoustic

‘properties, it neithef'has to be reverberant or anechoic

{({this fact eliminates the need for an actual transmission

loss suite, although currently the existence of at least ©one

M 3-

-
’
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r?ve;berant,chamﬁer is exploited); surface intehsiti

" patterns can be drawn and checked for irregularit{es, that
/ ' R B . .
is,  eventual faults, after which the relative contributions

s

L]

'to’ the sound transmission of different sections of the test

\
+ . .

panel.can be determined. \ :

[} B P

.

Standards for. the measurement of sound transmission loss
based on thgﬁfﬁtengity technique dOjnot-Yet eiistfand this

+ WoTk +dis intended to be 4 contribution towards their

’

establishment. With this purﬁose in mind a series of test
[ ~ e 5 .

[

) . o have® been: undertaken. The.objgcéive was three-fold :

& PR
. L , . - '
. . -
Lo ' . N . . .
. . -, . ‘ .
b . - '

IPRRE 'L) Validation of 'the ing%ns;ty technique by comparirg

its,reéulis to tﬁose obtained wusing the standard

i L]
. - P

approach.

: 2) Establishment of a detailed measurement érocedureﬁ.
3) Exploitation of its analytical capabilities.

3 a8

> . 7 ’ '
‘ . * "The sound transmission loss was measured as a function'of’
“ ' ” . . . . N ‘
. . . -'the fgllowing parameters:
' ‘ * "‘ ! - . - '
- .lining of the reveal with absorbent: material .of
. .\ N - © N B . e '
T : ~varying thickness. ’
' -0 - sills of different widths. '
. > ) ..
) - panel dimensions. LA o
A L o x - 1 . L '
- . / A
¢ -" " il . - <
' | Y
I' . . - )
e/ ‘ 4 .
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. ' -~ v . N . -
Surface intensity profiles were drawn in order to:

=, determine the relative contributions to the total
. & ! '

sound transmission of the panel's various sections

- locate a deliberately introduced fault. -

- 4

K

, The description®of this investigation starts with a

~

, literaturé surwvey on the soundfiransm1551on~loss and the

»

A

®

broblems assoéiated with its standard measurement

-

(éhéptef I). Chipter II deals with the measurement of sound

intensity in a general way as well as’ its application

towards the measurement of sound transmission loss. Chapter

'

IIT1 describes the experifiental test facility and measurement

procedure, including the preliminary study.necessary to its
establishment. Ohce validated the technigue is examined in

use, thé results of which are reported and discussed in

Chapter IV. Conclusions are presentéd in Chapter V together

L “y
with suggestions for further work. . .o
, ‘ . . )
) .. w L -
= . ¥
. NN ot , .
Xd*r ) ¢ M ~
o * v
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CHAPTER [ : SOUND TRANSMISSION LOSS AND ITS STANDARD
' _ MEASUREMENT

4 < - ' . -

El

1.1. Definition. , o .

The Sound Transmission Loss of a partition -is a measure

Al

~

of its performance to reduce the passage of acoustic energy
from one space to - another. Matﬁematically it is defined as :

-

'

3

TL = 10 log(Ij/I¢) "~ [aB] (1)
-‘-J -
where Ii and I, are respectively the incident and
Ezhhsmitted,intenéity {w/m2].

[y
¢

The,ratiO,It/Ii'is also known as the transmission

coefficient T, and equation (1) can also be written as :

4

¢
TL = 10 log(l7T) - {{aB1 T (2)

1.2. General Aspects of Sound Transmission Loss

A partition's radiation chagacteristics depend.on the

A

: 9 .
frequency of the incident sound wave. Generally speaking

o

four frequency regions are said to exist, as shown in Figure

1 [1]. - P
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Atgt&e very low frequency end the tranSmission loss is

stiffness controlled . Until the first resonance fréquenqy

(see belbw) each halving of the panel stiffness, or doubling

N

h)

oﬂ‘thg ffequency, will d8creasé the transmission loss by 6
dB per octave. However, in practice, in the case of finite
panels, this frequency rggion i§~very small, is likely to be
inkluenced by g'bapking roém, and'generally falls below tﬁe

lowest frequency of interest., ‘ A "

With increasing frgqueﬁcy resonances occpr. Their
frequencies depend on the panel characteristics such as
stiffness, mass, dimensions and boundary conditions. For

example, a panel with simply supported edges has resonance

frequencies diven by (Beranek [1]) :

B 12 2 n 2
. frlneny) = Lo LX)+ (P)y i ()
N -2 3 X - y

5 . B

where B-=.EMI/LY : bending stiffﬁess éer unit width of

panel [Nm]

E : Young's modulus [N/m2]

M7 : moment of inertia of panel [m%]

. .
Lx : panel length [m]

/ty/:'pé;\e—l width [m] s . B

’ Ps :.mass per unit area of panel [kg/m2]

ng ., ny :‘integers

The lowest resonance frequency is given for Ny = 2 1.
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SOUND PRESSURE LEVEL RATIO™ (DB)

-20 4 ' . .
FREQUENCY (HZ)
Sound Pressufs Ratio for o single :,g ponel of giass. .

Trckness 9.525mm, Density 2300 ky/m® Youngs Modulus -6.2 x'10°N/m?, internal Dampig 1 = 0 0O

*

Fig. 2: Multiple Resonance Panel (from Guy [2])
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Equation (3) predicts the presence of a resonance region

extending from onset and ‘throughout the frequency range;

Figure 2 ihdicates the amplitude of resonances when only the

internal energy, ld8ses of the plate itself are taken into

:

" account; this' suggests that Figureil is incorrect. In

practice however, as reported by Craick (31, energy losses
at the(pénel béundaries raise the Qélue af the loss factor
considerably at lower ffeqﬁen;ies. This re;ults in far lesg:
éronounced resonances and‘eventually:ﬁhey completely

disappear at high frequencies due to internal damping. The

transmission loss curve then tends to the classic, linear

-

“mass—}éw as described below. This frequency region is called

"mass controlled". BN

>
»

Within the "mass controlled" region the transmission
' o L ' /
loss decreases sharply about the coincidence frequency fc¢

also called critical frequency, thus giving its name to this

region.

Vi

The critical frequency is the frequengy at which the

wavelength of the bending waves in the panel equals the
wavelength of the airborne excitation. Both waves
‘coincide',’ thus increasing the panel "vibration and

decreasing its transmission loss. f. is given by [1] :

s

2 )
2= S (5 (h2] © (@)

.

.
.

~

v

;{..

. e
[ P i el - . , d .
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.

where ¢ is the .welocity ofAthe incident sound wave [m/s] ;

all other notations correspond to those mentioned above.

, k]
Beyond coincidence the transmission loss of the panel

increases again. At frequencies above coincidence, mass,

damping, and in particular the benﬁding stiffness are

L3R

important.

1.3. Theoretical Models

v
'I."he.object of th‘iis thesis is the measurepent of sound.
transm‘igsion« ioss,’ thus only trends con‘g\&rning‘ its
analytical modeling are reported here. In general,‘ the
stiffness controlled and the ba‘sic-resonance region will not

" be discussed because in many practical cases it is below the

loweéest frequency of interest.

1.3.1. - Mass Law

‘The sound transmission of an infinite partition forded

by a plane sound wave is given by the classical mass law for

’

frequencies below g¢oincidence. It is dependent on the -angle
of incidence of the sound wave. For normal incident waves

r

(angle of incidence equal to -0) we have (Beranek [1]) :

w p

L s
= — dB 5
TLo = 10 log(.l * e ) CaB] (5)

where w = 2nf :Yangular frequency of the sound wave [rad]

f : frequencw of the sound wave [Hz]

-~ ‘ . [y




N 1 . ) R v '
, | N

1

' S : pg : mass of the panel per unit area‘[kg/mzl

«

pc : characteristic impedance of the medium (air)

. . ~ {rayls]
. ’ i c ) ’ ’ . .
% R , . ) . , - A

According td this law the transmission loss of a partition
only depeﬁds on its mass.. Its, bending stiffness having been
‘ﬁeglected, equation (5) is not appiicabie'ih the'coiﬁciéence
region. At andlabove the critical freguency the bending
stiffness and energy losses of the panel\wil} have to be
taken into-account 'in addition to fg5, Calculations become

+

more difficult.

With respect to finite panels, the claésioél approach is
to use the formula for infinite panels but with the
introduction of a correction factor in order to broduéé

. closer agreement with experiments. Its érecise formulgtion,
‘varies from one author to another, but pecause of theif
infinite panel basis the angle of airborne incidence assumes
importande.-Beranek {13, for gxample,‘ suggests for

. E:equencies below coincidence: l
TL = TLy -~ 5 _ ' A tdB] . (6)
¢ . ' ' " i

»
°

where TLo is the transmission loss for normal incident waves
and TL the transmission loss under diffuse field conditions.
These classical laws are simple but they don't take into

account other parameters influenc¢ing the sound transmission

Y
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~
PO

. i
loss, such 2% panel size and shape, room dimensions and many

other bggddary conditions. : 0 \?;23;

¢;.3.2. ConéZ;porary Works

conditions and two approaches may be 1dentified.
[ .
The*flrst 1s based, on al] study by Maidapitk [4] who
, ;
4 .

demonstrated that, although colngcidence canno occur below
. R - .
‘the critical frequency, there is a resonance transmission

contribution due to edge effects in addition to the forced
» .

transmission according to the mass law. For resonance

transmissiom, according to Sewell [5)} and Crocker and Price

(6], transmission loss decreases as$ the area increases.
According to Sewelh, the forced transmission’ has the
opposite tendency, @hile r;}erence‘[GJ assumes it to be
‘indeperrdent of the panelﬁ‘size. Generally, forced

transmission prevails at low frequencies, the resonant

4 1

transmission being dominant for higher frequencies up to the
crittical frequency. Thus one may conclude that for' low

frequencies the sound transmission loss decreases with
. h ™~

increasing area, while th?%jpposite is truM;at, higher

' (" .
frequencies. Above coinciderde the transmission loss i

12

independent of panel dimensions. The: influence of the panel <

shape as determined by Sewell {[5] is of minor importance fobr .

/ 0

N

standard panel geometries.

With respect to the influence of panel edge conditions,

.

;

)

\

”
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Dboth reference 5] and (6] conclude that the transmission

~ .
/

loss of a panel with boundaries 'that are highly constrained,

that 1s clamped, 1s lower tnan in the case where they are .

simply supported.” Above the critical frequency, boundary

conditions tneore£1cal?y have no efrect. .
Statistical analysis also enabled Crockér and Price [6] * . ’L

to take room dimensions 1nto account. However, the influence.

of ‘this parameter i considered .to be of sggondary

Lmportance providea the room moda 1 density is such that

. ~

diffuse field conditions can be assumed.

~ . - ’

The secona of. the contemporary approaches is the mbdal~
theory analysis (Josse and Lamure,[ZH, Nilsson'[BJL This
approacn takes into account room volumes, .panel dimensions,

# .
panel damping, and in the case of reference [8], edge and

v

.

érffusxng conditi1ons as yel}. However,“due to the iarge .

numger of modes wh{ch have ta'be taken into consideration, ®

the method 1s quite‘complex. ) . ’ - /f

With respéct to panel dimensions, while gllssoh L8]

predicts thdt the transmission ioss decrerés with
A

. increasing panel si1ze below coincidence, reference (7] finds . .

the opposite is true. For both studies however, }he area

.
e

dependence is not vgyy strong and above coincidence the

effect K of this parameter becomes neglilgible. .
. .

Moreovér, 4&s reported earlier, room dimensions are .
. considered to be of secondary importamce and the influence

of the panel's edge condltions[T&ilssbq L8J) 1s also in

. .

- - .
‘ . s .
‘(A - ¥
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accordance ‘with the previous references._.

1
¢

Because so many parameters have to be taken.into
4 | \ ) -
account, those theoretical sound transmission loss models

. . ‘ ; , . .
are analyticallly very complex. Still, if proved correct,

.

they could be effectively used. Theit validation should ibe i

. \ . .
hbased on repeatable and consistent experiments- but
S 1

unfortunately, many conflicting results are reported.

a
1

& - -

1.4. Description'gg theJStSBdard Measurement Procedure (9]

‘The standard méthod of measaring the sound transmission -

Moss of a pagtition involves the use of 2 vibration-isolated
- : ) , : ' ~— ’

reverberation chambers, forming a transmission loss. suite,
. . . . Q .

3

which are separatedqpartially or completely by the partition
5 .

1

tQ be tested. The test panel is mounted 1n the dividingwall
between rooms. A steady sound is then produced in'one of the

rooms, the source room or trdnsmitting room,- the other

- [

chamber being called the receptidn or receiving room is used
to monitor the sound energy passing through the panel under

test-‘,’ ' o
% IR
e in both roams and

rBrov1ded the sound field is diffus
Al
that there is no flanking transmissiqn, the sound
¢ . ' C
transmission loss of the partition can be calculated frém

the measured space/time averaged sound pressure levels in

«
. Y
4 each of the rooms. The correction ‘factor can be deduced from
a knowledge of the absorption of the receiving room.
\ ° i /
e oo ’
Y - X v " \ ’

- - b g ———
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* been determmed according to %

in the case of‘a'parﬁiti n filling the whole'aﬁepture

A C
between the 2 chambers, the transmissiwg loss is given by
! ! .
3
ALy
o TL = Lpg - Lpy + 10log(S/Ay) Ldsy 457)

[

' i
/ A}
| .

I

where"/Lps and LPr are respectlvely the space averaged sournd
press re leveTB**dBJ 1n the source and- rece1v1ng room, Si{m2]
the partition's surface area and Ay [metric fablnSJ.the

sound absorption of the receiving room. %

~

“The %\]\ie af Af is obtainedZby measuring the d\ecay rate

of sound in.the receiving room:

° -
>, ’ cAp = 0.921-vdr/c o, [metric sabins] . (8)
/- B e
¢ ' »
/ “ . .
where ™W. : receiving room volume (m3]

c = speed of sound in air [m/s) = .

o

dy deca¥ rate [dB/s]

v

When the test panel is smaller than the aperture between

v
. -

‘the 2 rooms it is necessary to bulld a flller wall in order

, to accomodate ‘the partltlon. The transmission loss of the

~

test panel alone can be calculated when the transm1551ona

loss for oot'h tne flller wall and the comp051te wall has

.

A
&

o )

(@“1‘5'
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where the subscript ‘p'§tands'for'pane1: 'f'for .filler wall

and 'c¢' for coﬁposike wall. .

i
~ *

-

l.i. Exgerine&tal Work - The

, o, ‘ ‘
Effect of Some Physical

" parameters upon the Measured Transmission Loss
‘ ' ' 1
Various studie€ (Jones [10], Kihlman' and Nilsson [11])
inéicate the non—repéé}ability of sound tﬁansmission'loés
4me§sqreﬁents from one laboragory to another. Kihlman,and
Nilsson for example, in a round-robin compgrison‘of'é
laboratories, found”lérgevfluctuaﬁions; with differences up
. for 4 . N
to 10 {dB, despite the faé%étﬁ?%‘materialé and meésuring.
techniques were:carefully popérolleﬁ and all ihe test
: faci}ities weréranswerind thé'ISO i;qd{temepts. fhls'implies
tHat the measﬁred‘transm1551on losg is not only dependent on
the physieal'p;operties 5f the pénéf but aléd on various ;
‘boundary conditions. éased on’experimental resufés, thg'

influence attributed to some of the parameters is reported

below. Each effect is considered separately.

A

1.5.1. Mountin§ Condigioﬁs
7

Kihlman and Nilsson [11] found }pak-the transmission . .

Koss below coincidence is generally lower for alclamped'

panel ‘than for a simply suUpported che. Differences vary
* ’however. Above coincidence, mouynting conditions have only

M . . -
v "h \ .
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i

M . I [} o

llttle effect. . o . o ”

_ 4 These trends are 1in agreement. with tneoret1Cdl pred1ct1ons
’ . 86 ) , o oL

4 f LI ] “
Y, . o

Lewis [12], ‘on the other hand, found no.difference in

f : . .
transmission loss as a function of the edye conditions for

-

tests on a glass panel. l ' .

»
H

:

¢« . 51.5.2.”Panel Dimensions

ldlcnelsen‘L1247stud1ed the effect of s1ze for various
: : ' .

typical window constructions, the largest si1ze being double .

tne smallest one. square, as well as re;tanguldr shdpes
’-
were . tested. Generally speak1ng we can conclude that the

'

hxghest transmission loss is obtained for the smallest widow

e

_51ze.'except when hrnged windows, are, tested. The sguare
medium sized panel generally gives thfe lowest values. It 1s

{</‘ however difficult to rank the other results. The spread is

L]
£

C of the order of 3 dB. Above coincidence differences are -
négﬁ;giblevas exéecfed. .
A second teﬁdencquan be'obse;bed. Tne~tfansm15515n loss
T for a squére‘panél is usually lgwér than that of 3'
rectangular panel With the same surface area. This trend
confirms the hheoret;cai preaictions by Sewell (5]. -
Anotner study éone at the Centre for Bu;ldlng'StugleQ

{14] J1ves simi1lar confusing results as shown in Figures 3 a

_ , . . . ' -
. . and b. Three panei dimensions were tested, all of tnem

. - -

. . f ——
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floor to ceiling.

square. Foilthe single panels,' glass -and dyproc., the

results show that for the lower frequengcies the transmission

loss increases with increasing, panel area. At the highe{

frequencies however, the smallest panel gives the highest

transmission loss, the middle sized panel giving the lowest

. . e ' )
.values. These tendencies remain above coincidence. The

- differences- are generdally of the order of 2 to 3 dB.

In addition 1t is seen that the 'dip' at the coincidence

frequency increases with increasing panel dimensions.

' 1.5.3. Laboratory Design

Supporting his theoretical model, Kihlman [15]
. {‘ " u
.demonstrated experimentally that thewfound.transmission loss

‘of a wall sepdrating .the 2 rooms of a transmission loss

suite is lower when the rooms are e€qual than when .their’

dimensions are unequal. Diffgrences are sﬁown to be as high
as 7 dB.

Iq another'study'ﬁll] thg same author  finds that the
traﬁsmission~lbs§ ig higher when the partition is mounted ‘in
from

a” frame than when it extends from wall to wall and

i

e

Other experimental results by Bhattacharya and.Guy [16]

show that when the direction of transmission between 2 rooms,

v

of unequal ‘dimensions is changed, a difference of 5 to 6 dpB

. - ) . . - Ly
can ocgcur. Ths higher transmission losses are reported when

<

the source is in the smaller room. These results are uin

)!,‘

19
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contradiction with those found at the Center for Buildihg

Iy "

‘

Studies [147.

\

‘ \
1.5.4. Sills and Reveals

! .
For the clarity of this work, sills and-reveals are
considered to consist of equal depth projections around‘tﬁﬁ

perimeter of the test panel. The projection towards the
v ’ i -
source room is called a sill, whereas the projection towards

the receiving room is referred to as a reveal.

In one of the first reports treating this subject,

G#sele [17] notes that when a 0.5m sill is added to a flush’

mounted gypsum wall, the transmission loss of the panel

»

decreases b§ as much as 4 dB in the low frequency region.

~

e depth ‘of the reveal is however not specified and it is

thqrefore‘difficult to compare these résfdts with later

v
.

workers.

Kihlman.and Nilsson [11] on 'the other hand report that

v

siil‘or reveal configuration (not-both) give quite similar
results and tﬁe same ﬁolds for a symmetrically mounted sill
and reveal comparea to the no sill nor reveal conditioff. in
addition they show tha; the existence bf one-niéhe‘(éifher'
sill‘or‘reveal) increases the transmission loss
significantly with respéctﬂto the symmptricalry mounted

3

panel. The largést diffegenceé occur well below the critical

20



frequency with a maximum of 5 dB.

[
+

It has io‘be stresséd howgver that . the :results presented ln
this paper were obtained at different iaboratories.
f Tﬁe priviOusiy.mentioned trends are partially confirmed
by Lewis [12]. While his results alzg_show that below
¢oincidence the transmission loss increases considerably (up
to 7 dB)} in the presence of a sill or reveal compdared to the
symmetric sill and reveal cond1t10n, the dlfferences between
the 511l or rev\&l conditions are Bilghtlyﬁhngher. Above the

critical frequency the results are again very similar. -

Moreover, experimental work at the Center for Bu11d1ng

‘ Studles [39] also shows that the presence of a predominant

sill leads to higher transmission ioss values than a more

\ symmetric configuration. In addition,’ it was shown that the
l effeét decreases with increasing panel area. i

‘ : R

- Guy and Mulholland [18] investigated the effect ‘of 11n1ng

’ the 5111 and/of reveal w1th a?;érbent mater1al The sound

transmission ‘loss hncreased cons1derably in all cases

compared to the results for the bare sill and reyeal. The

optimum resﬁlté were obtained when both sill and reveal were

lined. Lining of the smaller sill gave the lowesgbincreases.

Below 250 Hz results were fairly irregular but above 500 Hz

.dlfferences remalned quite constant with a maximum of 10. dB

.

' R ¥ s ~ - - ' . )
' i . o - ¢

1mprovement in the optimum case. The irregular results at

21
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the low frequency end were ascribed to the low.absorption
characteristics of the lining material over that fregquency
range and eventually to the predominance of the axial

standing waves in the direction of the room depth.

1.6. Problems Associated with the Standard Measurement

3 N ¢

Technique
, 0
As reported above, many contradictions arise when trying

. N “
to establish the effect of certain physical payameters on
\

the sound transmission loss of a given partition.Humag
)

.negligence or error is of course never to be excluded, but

the problem seems to be of a more fundamental nature: the

method's limited capabilities and even its concepts.
. ' -

z

The method does not apply when flanking sound
transmission paths exist in aadition to the direct path
through the partition. Test ‘results will be jeopardized Dby
possible construction erfofs or material defects.

J
'Uhfortunate}y the measurement technique does not permit
active'checking of undesirable sound transmission paths.
Their detectioé solely dependé on the éxperimenters'
exp%rienée antd/or intégrity.

.Generally speaking, the measuring technique makes it
difficult to isolate the various parameters infiuencing the

sound transmission loss, whether they be panel dimensions,

room volumes or construction errors. All elements

22
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A}
constituting the system under test are considered as one
single system. The measured transmission loss 1s relative to

the system as a whole. '

Measurements fequlre a transmisslon loss suite for which
the sound field in both rooms is d&ffuse. Unfdrtundtely that
1s never éompletely tr;e, especlally at the lower
frequencies. The position of the speaker plays an 1important
role in determining which room modes will be excited, not
all of them equally. The location(s) of the microphone(s) on
the othez-nanq will determine which room modes'will be

, .

sensed. . - .

———
.

In addition to the. uncertalnty of the expeflmentdl
determination of the spaced ;veraéed sound pfgssurés and thé
reverberation time, other eryors exist. Once the.sound-source
has been switched off in the reception room (Mariner £191),
energy exchange between the two adjacent chambers tlakes
place. This coupling effect Dbetween éhe~two.chambers 1s
retlected 1in the @eqsured reverberation time but can not be
taken 1into aécoant. One may therefore question the
effectiveness of tne.room cdrrcctlon factor lOlog(S/}) whléh

1s based on the measurement of that parameter. This may

-1ndeed explailn the contradictory results when the room

orientation 1s varied.

The whole‘concepgng the room correction factor 1is
X

debatable: 1f it}ﬁi$

compensatinyg for tne influence of tne receiving room and the

to fulfill its purpose, that of.

@




T
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2.

panel ‘surface area, nO‘difgeredcés should be obta;néd when -

those. parameters are changed. - ' ‘ -
The problems mentioned above are very much inherent to
tite measgremedt‘procedure and partially due to the limrted

. M . .
capabilities of the conventional measurinyg devices.

Recent developments in instrumentation have provided us with

"a new approach to. determine the various factors 1nvolved 1n

the transmission of sound through panels. More specifically,

tne Sound Intenéity Measurement Tecnniqgue and 1ts use for
. S Y . . ; C

th%&aék¢wxll be explored in.the. following cLapters.
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CHAPTER II : SOUND TRANSMISSION LbSS MEASUREMENT BY THE

. v

. ' INTENSITY TECHNIQUE

.
.

2.1.The Heaéuxe-ent'gg Sound Intensity - General Principles

2.1.1. Definitions

As opposed to sound pressure, 1intensity 1s a vector

quantity and therefore provides directional information. In ~
. L]

a given direction it is definea as the average rate of flow

of energy through a unit area perbendicular to the'difection

@

1n guestlion. : P )

2.1.1.1. Diffuse Field Intensity.
Assuming dlfﬁ%se field conditions, that is providing’ e

"average energy density 1s the same throughout the entire

volume of the enclosure and all directions are'equa;ly

probaple”  20j, the sound intensity in any direction can

EdSLlY be expressed as- auvfunctlon of the space/time-

averaged sound_pressure 1in the encﬁbbure B (Pa}
r , T, ¢ .

laif = P2/Atc S o)

)
@

!

wnere P 1s the density of air Lkg/m3J) and c the velocity of’

sound in air tm/s].

fe
- .
1

0
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Thus in this instance intensity measurements can be made

using a single microphone.

2.1.1.2. Non-Diffuse Field Conditions

N

It can be shown [21] that, in a medium without flow the

three-dimensional intensity vyector 1 is equal to the time-

averaged product of the instantaneous sound pressure plt)

and the corresponding particle velocity v(t) at the same

point, that is : .
+T ‘ - )
- . ? - )
I = 1im 1,2 p(t).v(t) dt [W/m2]. (11)
Tro T7.7T. 7. i
- 7 '
'If the intensity vector's component in a given direction 'r'
is considered this becomes : - B
1 “% ) S 5
Ir = 1in" 77 TOP(t)ovp(t) dt [W/m2] {12)
| —?
The partlcle veloc1ty in the same dlrectxon can be
expressed in terms of the sound pressure [21] :
vooo - 2R ar | T 's] (13)
r = pjer’ 77 o {n/s .

-

where p is the density of air [kg/m3]. In‘praciice,.two

hicrophbnes separated by a distance 8r are used for.

‘ 3

intensity measureménts and hence the pressure gradient must

be approximated by a finite difference. Equation (13)
becomes [22] : . )

‘

(T

et i v st ol st Sols s g

" 26



p,(t) - pi(t) . 3 c
2 1 dt -
! i . -~ Im/s] (14)

L}

w
<
'

D =

N 1

This approxitation is valid as long as the separation Ar is .
small compared to the wavelength .
2

Equation (14) ;eigesents the particle velocity at a
- . .

point midway béQWee the midrophones. Similarly, the

-pressure at the same point is given by : . ) o

~
3

pi(t) + py(t) «
p(t) = = 5 [pal .© (15)

a

v . «

@ -

/o, .
The iptehsi Y . gan then be calculated by substituting
’ ‘

equations (14) and (15) in (li),thus giving the basic

relationship- on which' all intensity measudrements are

L)

founded. It is important to note that, because of the
existente of two time-dependant pressuret signals, the

intensity depends both on their a%gli;udes'and their phase
4

difference. -
o

t . \

Note : Unless stated otherwise all subsequent referrals to

the measurement of sound intensity concern the two-

13

microphone technique. g ) .

[ - SA’”'\T..

2.1.2. Instrument&tion for the Measurement 95 Sound

¢

Intensity

Theré are basically ¢wo important types of instruments

+ for the measurement of sound intensity: the Two Channel FFT

PR : - - -

o
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A

\ % . Vs
Analyzers, and those, based on Digital FSItering Techrjiques. .

Both types will be described@ in this sectiqg.
o

. )

e .

2¢1.2.1. g’cﬁannéi_ FFT (Fast Fourier  Transform)

S~ o " ., ) ‘Analyzers
Fourier . transformation g equations (14) and (15)

relates the intensity I to the cross-spectvél denéity

between the two measured pressures according to [22] :
“ : -

. 1
o

I = -Im{G13} fpuw. ar with kK.Ar <<< 1 (16)
-

. f

cross-spectral density between the 2 measur;d

yhere G112

pressures p; and p2

Dot .Im : imaginary part

F1

-p
« 0w ":"angular frequency [Hz]'
' ‘ . . .

“ . Ar : microphone spacing [m]

» -~

) 'k : wavd number . : ¥

. J ' t . ’- , ) o .
This is a commonly used method but it has certain .
- disadvantages. For example, the anhalysis is performed in
narrowbands. Although this can sometimes be advantageous,

‘additioral calculations will have to be made when ‘third

Octave or octave band reéulgs are required, Moreover the

)
¢

analysis is genarall%)not in'réal-time:

.
-

dens‘ty of air [kg/m3] : “ ; s
hY

o

- ., Py ~ 4 e ame
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2JJ2.2. Analyzers Based on Digital Filtering Techniques
The sound intensity is analysed throuét a?double digital
filter with, normalized +third octave or qctave bands,’

after which the necessary calculatipné are perforped

ccording to equations (14) agd'(15y substituted in (12).:

Th operatioh is gehenally real-time.

A sound intensity analyzer based on this principle is
S “ ‘
used for the experiments described below.

h | oy

. ' , I'd !
L4 In both cases mentioned above, two microphones separated

°

/ by a distance ;r'areﬂ;j d for the measurements. Different
. R ’ . ’ ) ,

microphoné conflguﬁéyﬁons are possible (see Figure 4)
although the most commonly -used 'are the side;by—side'and the

face~-to-face arrangements.

.

2.1.3. Limitations ahg Errors T o~

.The use of the 2 microphone technique to measure the
sound intensity introduces a certain number of grrors which

N ¢ ) '
limit the useful frequency range of the-system.

2.1.3.1. Optimum Frequency Range o
W, T .
- One of the errors is inherent in the approximation of

[

the;presgure gradient by a finite pressdfe difference.
Thompson and Tree [22] and Elliott {247 show that the
heasurement acéuracy is a function of k. Ar and Ar/R, where k

15 the wavenumbef, R the distance between source and

\ . 7 g
meagsurement point (center of microphone pair) ani .tr the

1 . M ’ » a

30 -
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r

a - I
microphone spacing. Generally finite difference errqfs can
’ i

be minimized by employimg the smallest possible vaiues of

£

. the two previously mentioned parameters. The range of the

'opcimum values decreases with increasing source complexity.

From a praétical point of view this sets the upper frequency
limit of the measurement system for a given microphone

sp7c1ng: ‘ ‘ l

On the other hand, at the‘gow frequepcy end and for

small microphone spacings, the actual physical gﬁase
* +
difference between the two signals becomes very small and

can eventually reach the order of magnitude of the accuracy

T

%ﬁ the instrumentation (instrumentation phase mismatch).

This in turn sets the lower frequency limit for practical

systems. . . :
J/ L ‘ \J pd ‘
The conditions on t#e minlmum mlicrophone-to-source

distance can easjly be met ([21],[24]).

-

v

2.1.3.2. Inétrumentqtion Phase Mlsmétch

As a conseqguence of the preceding section the error

introduced by ‘he Lnstrumentation phase mismatch causes much

® ,

" concern and has been well ddcumented (23],[241,[25]. It can

be limited by different techniques. One of them is to

’ « . . ~
mechanically switch the two m1cr092396§ or even the complete

circults involved. The disadvantage of this .method 1s that -

two - different medsurements (forward and reversed positions
; : ; p \ ]

R - PR . v

3]



"the lower frequency llmlt is shxfted towa;aé nigher

»

_of the microphones) have td Be pe}formed aﬁter~khich,t%e

‘méan' valuc has to be calculated. This 1s not pfacticéi for’

> t

routine measurements. The phasglerrors may.also be .estimated

-

by a separate calibration to determine the magnitude pf the
J . -

32

mlsmatth SO Lodgensatlon can be maJp for- ac in~£urthef

.

0

calculations. Ultimately the phase erfors can- be reduced

- » . ’.-n.. ‘, -
considerably by the use of éarefurly'métched mgcgothnES and

other‘elgctﬁdnic compohents. There is howévéiQalQaysia‘

- . ~ — U—..,_. .
.

"certain residual. 1nstrumentat10m phase mlsmatch 1eft wnlch

! v . x . . e - ») } . v, "
has. to be .taken into account. G A
* - - ‘ ’ ! - s - S v
+ i A N qh“_ . R 'r o~ ,¢'
- "y .- e AR e A T e .
Ng " : . . P, -
2.1.3.3. Phase Errors ™ . - . ﬂ..f“ T e
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hand the phase errors due -to the reactivity can be balanced
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by increasing the microphone spacing.
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