- . b | - e _ . N , * e 5. -
) ' h ) ) ) " ‘- ~ . * - ! » g -~
W] Natonallibary - Bbliothéque nationate._- e A
of Canada~ . du Canada o ) _ o
Canadian Thesés Service\ervice‘ des theses canadiennes --- ¥ - 0 -
R . i M - " L )
. Ottawa, Canada . A " * ® ) .
~ KIA QN4 - . - - : S
N ) . b - e T . ‘
- - . . A b N
] L ¢ - ; [
. : .
- ’ 1 - > »
» . \\\\\ ) . -
\ . = N
» -
° X - . -~ r -
. . - 1Y et ’,
” R - N » : [}
N » ~ . * ) i
- NOTICE E . T e A\!lS RN

“The quality of this microfggms heavily dependent upon the
quelity of the original thesis submitted for microfilming.

« Every effort has-been made to ensure the highest quality of *
reproduction possible. )

i «If pages are missing, contact’thé university which granted .

" the gegree. : 0

. Some Fages may have indistinct print- especiglly if the
original pages were typed with a poor typewriter ricbon’or

if the university sent u inferior Phwtocopy.

Previously copyrighted materials (journal.articles, pub-
lished tests, etc.) are not filmed. :

;o

IS

" Reproduction in full or in part of this microform is g;)vérned
by the-Ganadian QOpyright Act, R.S.C. 1970, c. C-30. -

~a

.

g
‘

.-

La quaiité de cette microforme dépend grandement de Ja- - -
qualilé de la thése soymise au microfilmage. Nous avons
tout fait pour assurer une.qualité supérieure de reproduc-
tion, K o+ ‘ .

S'il manque des pages, veuillez communiquer avec
l'université qui a conféré fe grade N
La qualité d'impression de certaines péges peut laisser a
désirer, surtout sj les pages originales ent élé dactylogra-
.phiées & l'aide d'un ruban usé ou si l'unversité nous a tfail
parvenir une photocopie de qualté inférieure v
o . ¥’
Le$ documents-qui font déja l'objeét d'un dreit-d'auteur .
(articles de revue, tests publiés, etc.) ne 'sont pas -
microfilmés. ; :

La reproduiction'f‘ méme partig]le, de cette nﬁcroforr;\e esl '
soumise a la Loi canadienne sur le droit d'auteur, SRC ,
1970, ¢. C-30. . Loeel -

-~



A

“-. ‘ ) h 9 Y
: . ." i “ .. -\
i T~ . Y ' \
. M - ‘/, . .
Speeding up “the i
Skeletonizatdon of, Binary Patterns
’ . using the Homogeneous Multiprocessor
LD - S ' e -
- ’ Helmut Beffert )
. A Thesis ' ‘ e
_ . v . t \; ' ~ . ' ‘. ‘
: . in .
. .-, . - The Departme’n‘t
S . T
~ 1 ‘; - , o\f . . P :’
. ) ‘Acémputer Science .
< ) ' . . . p
‘ ' L4 L)
; ) T .
Presented in ILrtial Fulflllment of the Requlrements'
for the Degree of Master of Computer Science at
. Concordia University = »
Montréal, Québec, Canada - ‘
N N ' L
January 4888
. .
| ]
” © Helmut Beffert, 1988
* t—“—é— - .
N : ‘ ' A -
- \ - . ) -
- o ~ ' \ ‘n
, \

N
Yy -



Permisgsion’ hae been granted
‘to “the Natjonal Library of
Canada ¢t microfilm thi's
"thests and to.lend or sell
copies of the film. - .

The. author. (copyright owner)
has reserved
publication rights, and
neither the thesis or
extensive extracts frofi it
may be printed or otherwise
reproduced without his/her
written permission.

ISBN 0-315-41605-X

-

other

~ .
L'autorisation a été accordée

& Ya Bibliothéque nationale

du Canada 'de nmicrofilmer

'cette thése ét de préter -ou

de vendre des exemplaires du
film,

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;

ni 1la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou

autrement reproduits sana son
autorisation écrite. ‘

g

T -



v

Speeding up the

Skeletonization of Binary Patterns
using the Homogeneous Multipr¢cgd$or'
\‘ ' . . * ", ~ *

~— . Helmut Beffert o
4

‘A modification is proposed to spegd up thg~Safe Po;nt
Thlnnlng Algorlthm (sPTa), which was/already shown to_ be
faster than 14 other known skeletdnizatioﬁ algof&thms [24].

o

The' modified algbrithm has been implemented on a single

» ¢

processor. , It has also been implemented on a simulator for'

: : “ \ 3 .
the Homogeneous Multiprocessor Proper using two .techniques:

data decomposition/ and function decomposition.- Experimental
results show' that with our mcdiflcation and multiprocessor
implementatidns, the SPTA was speeded up by 66. 2 percent when

using eight procgssors; .
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N A ' .Chaptexj r v . .
; L " Introduction ’

The. .skeleton of a b'inary' x:;att_ern is a thinned 1line

7 drawing, which' ideally should preserve the connectedness and _ °

'shage !of the original ba&ttern [26]). Forl exah\ple, Figure I.1
.111ustrates a binary pattern and its skeleton. The sk eton, .
of a pattern is not ‘nece'ssarily unique. _As an example,
- Figure I. 2 shows two different ‘skeletons for the pattern of -
(\igure I.la. Ideally, the original \aattern should be thinned
' to its medial ,axis. 8ke1eton-ization reduces the memory space
,required for storing the essential structural information of
a pattern. It simplifies the data structures required in
-;rocessing the pattern [43. . Hany skeletonization algorithms
retain sufficient information about the -original pattern so
that an almost exact copy of the original pattern can be

»

reconstx:ucted.
o skeletonization algorithms can . be divided -into two\
general . classifications, which are referred to as, peelihg

I

algorithms and shelling algorithms. ~ .

.

-
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Peeling algorithms [24] consist of iterativelx deleting .
edge points (that is, changing dark points along the edges of
a pattern to white points) until the pattern is thinned to a
line drawing. To retain the connectedness and. shape ;: the
original pattern, we should taﬁe care that in deleting edge
p01nts ve 1) do not delete‘;nd points (informali&ﬁspeaking
end points are dark points at the openﬁ extremities of a

-8troke): 2) do not break the connectedness o; the pattern:

and 3) do not cause excessive erosion (for example, a stroke

is not Ttératively deleted). . ' ?5;
. Y .

v +

< TN

Shelling algorithms [23 consist of measuring the
distance that each dark point is from the edges of the
pattern. \The dark points farthest grom the edges of the
pattern are- kept :o form the skeleton (such points are
sometimes called local maxima).: To retain the connectedness
anqlshape of the origina:?i:ttern, 1) some points may need to
be added to the skeleton so as to connect the local maxima;

and 2f\some~points may‘need,to'be deleted where the selection

of local maxima created lines of’wiatn greater than one.

e
~

Peeling algorithms are far more popular than shelling
-algorithms. Peeling algorithms often reqnire more iterations
than shelling algorithms to .obtain the final skeleton.
However, this cost is offset by the relative simplicity ot“

the iterations as compared to those of the shelling

\ »
¢ -

-
~



| ;;Forithms. Peeling algdrithms’ are .thus more udeful for
t

LY

terns of i‘elatively thin lines such as those tound in’
optical character recognition algorithms, where the num‘ber of -
iterations will be small Shelling algorithms, which usyally -
require a fixed number of itefations‘ work better for image
‘analysis where the patterns tend to have’ thicker lines..

Furthefmore peeling algorithms are much easier to pqrallelize

,since they consist of, repeatedly performing similar

. operations on each point in the pattern. For this reason a

peeling based algorithm was chosen for. our muitiprocessor .

3 ——
8

implementation in this thesis. . v

™ N
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b
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‘(a)  a sample pattarn and (b) .its skeleton.
*+' is an original dark point; and.a '.' is an

original white point.

A. 'o’

A

is aﬂpoint that

is part of the skeleton; and a '-' is a point
that"was deleted from the original pattern.

a
!
)
-
A\
L IR
¢
.
,
~y
N *
‘ﬁ\
J}l
PR

14

'y

]



o.ooooout.ol.‘cooyocooocoo eesteoeesssvsesaidoasones
P A A ’ ! oo-o:--o.otot-c;oooo-O-o
......‘.’.'-.........“O"'.. ’ ' :.o.‘..-.'..........".O'-..'
...s.'..'-o-...‘ . u‘.-""".l...c-qoo.--o“'sc,o
ceTe=O=.... .  eemmO==iiitene =0t
N LT . ceemmO=iiieee e =0m0uns
c..“O;"..... -...--O'.....fo‘Ot’.....
e e ™0 e veeed = c- .:..."'O""._..-'O"......
.-‘TO.‘-,..... - . ......--O"j"o.-'O".....-\'
_.oo;oo-;-o,--'u—o;--o'oalt ' o.oo,-ﬂo ---HO.:-O,-O-ro‘.c':
ceescees™O0""0"ccsorsas ¢ eosssaes™0""0O",cs0ccse
.......,‘.--00-..-......, . ) ....-.....""‘OO"_.........
-.,onouuoo ';o--oooo-; -.‘-.......n""O"‘v-.......
ceserreene=00= = Veuihes . ’ ceceseteres==O=".iiitoess
vees s the. =O==0=""..00nn Cessieeese=m=0=0=T.ieaons
chereee =O==.=0==1asie. . S ik it - L UM

.;"......-O"‘.- “Tigeesnve | ' ’ N '.......'.-O’...--O"‘....-.
-.oaanc.-o--coo-ﬁuno.- B \"o‘oo-og’ --O'.;.."“‘_O"...-'.

Ceeteaa=O=ci. . BO-=.. .. \ e ee e m0m e e =m0
s eee s ™0™ seene=0O==,s, ’ ...,...—O-.......-"O"...'
e i ee e mOm it =TOm . ceteee™0=i0tee s ==0=".,
lo’-':_'.-o—'l.locu;oll-o—-'o eseee=0"cvceesses=0~,,
po0s a0, ces v o000 ™", \ ~o*o,ooo-°"-’c-o‘.oon-.-""-’oi
..:."O"’..............-. R L* L TR N AN
’-ﬁl:o-o-locccoouoo.o, o [N ,...-.'O-...............-‘.'
'o-o‘.o'--‘coo-:.-o-.-j.-o . R

ta) o : B

- . C ey

Figure I.2. Two different skeletons for the pattern shown

in Figure I.1s These skeletons were both’

. , obtained using the modifed SPTA described .in

‘ Chapter II. : ,The-differences, in the skeletons

" ' © are a’ result ' of varying the scanning

: sequences. The - ‘'skeleton marked (a) was

: : obtained, while scanning from left to right and

S ' the skeleton marked -(b) was obtained while
: scanning from rlght to left.
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1% 2_ . Why use the SPTA

Naccache ‘.and Shinghal' [24)] proposed a peeling based
skeletonization algorithm called sPTA (Safe Point Thinning

VAigori‘,thm) . They experimentally showed - that\thd SPTA was

faster than 14 other known ~sfkelet‘onization algorithms.

g

~

Further{nore, ‘the” SPTA produced skeletons ' that'/ “ had
recaggtructibility. - . ‘(7
\ QR -y . ,

Al

hY

.further speed it up,- without sacrificing reco‘nstructibility.

SP'I‘A,l as originally proposed (24)], worked ‘on a single
aproceeswr. In this 'thesis, , we also ‘propose two different
1mp1ementat10ns of the modified SPTA on the Homogeneous

Multiprocessor Proper [6] and [2{] The objective of these

~1mplementations was to examine the further speeding up of the :

_— . 4

SPTA. . e

In this the51s, we propose a modification to the SPTA to-

[

-
Lq,s
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, s
In this thesis, we presept a historical revigw of
skeletonization algorithms on both siﬁéle processor and
‘multiprotessor architecrures.‘ We then propose a modification
;fo the SPTA on a single"processor as well . as two
" mi tiprocessor ,implementétions of '£Qe SPTA. - All ,these
i;ZIementations are experimentally shown to improve the

perf&?mance.of the SPTA.

.
*

I

In ChapterfII, we review some thinnipg algorithms which'
have been 1mp1emented on single processor architectures. We
then review the SPTA and present our' modified SP;A. We also
present a formal description of the modified SPTA using

algorithmic pseudo code.

ﬂ In Chapter 1III, wQ, review some parallel thinning
algorithms which have beeﬁ proposed for multiprocessor
~arohiteotures. . We then discuss several actual multiprooessor
implementations including those *on the dLIP4 and PASM

multiprocessors. N

In chapter IV, we describe .the Homogeneous
‘Multiprocessor. We then show that our modified SPTA is-
suitable to run on this architecture. Finally, we present

our two miltiprocessor implementaéions, the function

LN
7
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decomposition implementation' arld the data decomposition
implementation. Once again we also present a formal

description of each of the implementations using algorithmic

pseudo code, ] . -

\ =

2 ' . N

¥In Chapter V; we present our experimental results.

_ aobtained from the original SPTA and our modified SPTA, as

will " as "the results of our two multiprocessor

implementations.

~ N ,
\ . .
In Chap€Er VI, we briefly descrine another

multiprocessor, the Connection _Machine. We then propose an
implementation of the SPTA for the Connection Machine and

discuss our expected results for this’ implementation.

o

Finally, in- Chapter .VII ‘be give our ‘conclusion and

-

discuss some possible future extensions to our research.
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Before we review some thinning algorithms, we establish .
. N
our notation required for the review. We present the

Chapter II,.

a

eview of Thinning Algorithns on a single Proceseor

notation required by both peeling and shelling based thinning

algorithms. )

In a pattern, the 8-neighbours of a point p are defined .

to be the -8 points adjacent to P (points ng to ny in Figure

II 1) Points no, ny, ng, and ng are called. the " 4-

neighbours of p. SN

4

e % .
An edgepoint is formally defined to be a dark point that

. has at least one white 4-n%ighbour: There are four kinds of

edgepoints: left; right, tdﬁ, and bottom. A left. (right)

edgepoint is defined to have its left (right) neighbpur 54 )

(ng) white. Similarly, a top -(bottom) edgepoint is defined

to have its top (bottom) neighbour nz (ng) white. Note that

an edgepoint may be of more than one kind. for instance, a

'dark point that has neighbours np and n4 white will be both a
. . e

left édgepoint and a top edgepoint.

t , 8 ) N <~

-
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In an B-éistance'tron%fofhation, each dark point in the
patterh is labelled by a number which indicates the length of
the shottest peth from.that :point to 'its- nearest white
neighbour (using any'. adjacent Q-neiéhbours( to generate the
path). Figure II.2 shows a sample pattern apd its
corresponding 8—d1stance transforhation. siﬁilofif,Kthe 4-
distance transformation of a point\p is the 1length of the
shortest path from the point p to its nearest white neighbour'

(using only adjacent 4-neighbours to generate the path)

L]

. Q ' .
~"A local maximum is a point-with a label which is either

equal to or greater than the labels of- all the points in its

4

' neighbourhood. The neighbourhood can be comprised of either -

the 'é—neighbours or only the: 4-neighbburs, and usually
corresﬁbnds-to‘the'type of distance transformation that was

aﬁoiied§to the pattern.‘ gigufe'iI.B.shows the local maxima

" of the pattern shown in Figure II.2. . -
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figﬁré IX.2. (a) a sample pattern, and (b) the s-distance
R transfomation of the sample pattern.’
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. 1I.2. Reviev of W ' . ~

6\;er the years, many ’thinning algorithms have been
implemented on éingi\e;p{dc‘essor architectures.” We feel t.:‘ha:t
an extensive reviéw of these algorithms is not necessary.
.severel go;bd fgviews of many of these algor'ithmg have alfeady

been written [ézj and [23). However a short review is
. L) ‘\

presented showing several typical and well-known algoritfms._

\

'
y . {

Pavli,dié [25)™Nand [26] proposed a peeling based thinning -
algorithm which tests for fou:.." different ic_inds_ of edgepoints
(left, ~r:igr;t, top, and bottom). ‘Each p&ss cons-j‘,sts of four
scans. During each scan only one ‘type of edgepom is
,tested. During a'ﬁass, a dark point is flagged‘ only if it
satisfies all of the following conditions:

-1) the point is an edgepoint

2). the point is not an end-point

'3) "the neighbourhood of the point does not match any

| ofﬂ the threeé windows shown in NF'igui'e II.4. ) -
The algorithm terminates when no dark points/ have ' been
flpgge’d during a given pass. _ PSS

Many algorithms similar to thenone illustrated above
h-ave been proposed and implement;d. The basic concepts .are
the same, but the’ windows {xslrd for detéfmining which

- N "-
edgepoints are to be flagged usually vary (5],(24], and [35].

14 ]
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Arcelli 12} and (3] propo\’\ed a shelling based thinning

~~ algorithm which requires only three passes to skeletonize a

patErn. First the 8- distance transformation is calculated

for each dark point in the pattern. Next all dark points\

which are symmetrically plqced within the. pattern, including

<~ all local maxima, are assigned to the skeleton. ™That isg, all

e

points that satisfy at least one of the three conditions
illustrated in Figure. II.5. Then all dark points p, which

“have 'a neighbour nk already in the skeleton and a value

- p—

greatet than that ny are. added to the skeleton- as long as

they satisfy at least one of the following two conditions,:
.a) ny id. a 4-neighbour of p !
" b) nyx is not a 4-neighbour of p, and‘ ) . .

‘neither of the 4-neighbours of p which are adjacent to

. nk have a value which is 'equal to the value of p;

Next all dark points that have all four of their 4-neighbours
in - the skeleton are also ,added to the 'skeleton. The

skeleton may now contain lines with a thickness greater t[i_an

‘one, so. .a one-pass thinning operation is performed.  See

R
Figure II.6 for details.

-~

"» Several other shelling .based thinning algorithms have
. = “» . R .

also been proposed [27], ([32], ([35], and [35) which also
skeletonize patterns in a fixed number of passes. ’Hog_ever

like' the algorithm shown above, their computations are also

15 .
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complicated making these aLgorithms lass delirabln for lmall

e patterns such as those in optical charactor recognitton thét

- @

we are usingr— Furthermore, the computations are very

: . _irregular, thus making it more difficult for a‘multiprocessor
< ' [ f;—:—({ “ .
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. e %},&ﬁ ‘A‘ v,
’ P . . —— .
P ¥ . “
. ! ) - n \ . ~
/ -« a K’\, . .
' . \ , -
\i
- - ’ . )
" - 13 3 *
o L3
‘ k
T e ’ .
. e i .
A ] ‘ v N v
h ]
Cas . M
2 © » 4 r ?
'/ E R - ~
,/ - ’




x|'% | x w * wlw]|w
wl|p wip
y § wlw|w w *
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Figure II.4.
1

For Pavlidis! algorithm, if the neighbourhood‘

of a right edgepoint p does not match any of
the three windows shown above then the point p
is flagged. For ¢top, 1left, and bottom
edgepoints, the above windows are rotated
counter clockwise by 90, 180, and 270 degrees
respective ly .

A %! indicates a dark point and a blank'

indicates a white point. A 'w', 'x', or a 'y'
indicates either a white point’ a dark point
as long as at least one 'x' and at least one

"'y' is 4 derk point.

.
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where qg9 =qy 'and rg =71 . ;
» and where‘ .
1 ifng=p-1 . .
. 0 otherwise
\
and .
1 ifink‘; P e
0 otherwise ‘ _ 1 ‘
’ ’ '& /
for k =1 to & : ’
a3 " . i}
'Eigure II.5. In Arcelli's. algbr;thm,"if a dark point
. ° gatisfies ‘any of the three conditions a, b,
? or ¢ shewn above, tlhien it is assigned to the
skeleton. C b - .
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~ where

) boo;eén expression 'was derived "'is given by Naccache e§~a1

II.3 Review of the SPTA

In eéssence, the SPTA consists of executing a few scans’x;mjﬁ
over . the pattern where in each scan some edge points are
flagged. If in a given scah, an "edgepoint is not tlaggedf
then it is declared to be a safepointl Figure 1II.7

illustrates the evalnétion‘of“a point p during a scan. The

_ scanning sequence may be either row-wise or column-wise at

the user's’ choijce. ‘We adopted the row-wise scanning
sequence. . B ¥
~ N e

There are two kinds of scans : a LR~scan (leff-right)

&

'and a TB-scan (top-botton) .
The LR-scan fiags the following,kinds of points:
[i] all left edgepoints whose boolqﬁﬁ}express;onts4 isr$RUE,
N :

S4 = ng ° (q; + Ny + ng + ny) (QZ<+ A3) * (ng + fig).
A boolean variable has the value TRUE when its corresponding - -
point is dark and 'unflagged, (that 1is, it is either an
original dark point,'of a safepoint) and it has the value -
FALSE otherwise, (that is, 4f the point is flagged or white.)
Tﬂe above boolean expressioﬂ was deriQed from the four
windows-shown in Figure II.8. The jusqificatiop fqor how this

N ’
(24 - ' S ST



['2] a;li right edgepoints whose boolean expression 8o is TRUE,
where L | ‘
. Sp=ng ° (n5‘+ ng + np + n3) ° (ng +‘ﬂ7) "¢ (np + Ry).
The TB-scan flags the following kinds of points:
~[1] all top edgepoints whose boolean expreSsionfsz\z is 'fRUﬁ,
where | ‘ N ‘
A . ~ .

S; =ng * (n7 + ng + ng +.ng) * (ng + f3) * (ng + Az)
[2) all bottom edgepoints wvhose boolean expression Sg -is
TRUE, where ,

S¢ = np * (n3 + ng + ng + 'nl,_) E (ng + fig) * (ng + fy) |
Tne LR-scan and the TB-scan are executed alternately. It is
the user's choice to commence skeleton:izing by -either first ‘“
executing the LR-scan or the TB-scan. Without 1loss of'
generality, . we have \ass“uni‘ed that th.e LR-scan _1s executed
first. Then a LR-scan fqllowed by-a TB-scan constitutes a

pass over the pattern.- Naccache et al\ explained why the

two scans per pass capnot be merfed into one scan.

All points flagged during a given pass a}e considered to
be deleted before-the next-pass begins. If no points are
flagged ‘during 'a pass, then the SPTA terminates. . ‘The
skeleton then consists of a11 points that were declared to be
safepoints during any of the passes, (that is, all points
with a label greeter than ZERO). Table II.1 illustrates all

_possible values that -a point can have using the Single
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The femina}:ibﬁ criterion as‘ ‘described above has one

[ ot

inefficient characteristic. Since in the last_pass,l thé SPTA
- . . . ;

flags" ho pbints, we can say that it is in ef't_aot a do-

-

.nothing pass. It would be more efficient if we. could avoid

exécuti_pg a do-ﬁothi'_ng pass as faz: as possible.' .
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go to the
next point

is p dark -
ie.nis P = 2ZERO | .

Yeé _ /

A

. is p an ehgepoint
ie. i n{j] < (1 - MAXINT)

No

‘Yes

is p. a safepoint
ie. does the neighbourhood
of p match any of the four
windews.

the point p is

v |. is labelled (i).

Yes

the point p.is declared

.flagged and is
-labelled - .
(i - MAKINT)

.
. 3

to be a safepoint and

r \
Figure II.7. The evaluation process for a point p. This'
. . process is performed. once for each point .

3

during every scan.
done using. the
- ¢« Technique (SILT).
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The four windows used to test whether a left -

edgepoint is to be . j

1) flagged, that is the neighbpurhood ‘of the -
point p does not match any of the four '
windows shown above; or - >

2) declared to be a safepoint, that is the
neighbourhood of the point p.matches with
at least one of the four windows shown
above. . .

The points' labelled by '*' indicate a ‘dark

point,.the points labelled by x 3&nd y may be’

either dark or white, and a point that is not
labelled ind;cates a white.point. ‘
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‘ . ' fable II.1.

When‘using SILT, a poiﬁt p can be in any one of the
following states. during pass number i. . .

N | w' Q

k

y \ )
‘| value of the point p descriptiaon
(- 'MAXINT) &' \ an original white point .1 oo
- v B . —1 . B4
less than . | 'a point that was deleted.
(1 - MAXINT) during a previous . pass
and greater than AT ,
(= MAXINT)
- Q -
(i - MAXINT) ‘ a point that was deleted : \

“during the current pass

o
- | ~

ZERO _ ‘| _4an original dark point

L4

a point declared to be a
safepoint during a previous
~pass . ¢

l<p«<i

P

i : ‘a point declared to be a Y
. . safepoint during the current
‘o pass  ° . : N

RN




- The modified SPTA is identical to the original SPTA

except for an enhancement to the termination criterion. This .-
S S

enhancement was made so as to avoid executing the ho-nothing
pass. We will therefore only present the new termination

criterion here, as well as the complete algorithnic pseudo

¥

code for the modified SPTA.

———

" Let us define a variable dy, whose value at the end of-
the kth (k21) scan is equal to the number of dark points that
’ ~

are neither flagged nor declared to be safepoints;

We propose below two criteria, named as criterionl and

L]

criterion2, to test for termination.

-~ 1) criterionl : If at the end of the xth scan, dx 1is equal

\ to ZERO then the algorithm terminates. This

M implies that the phttern contains only

-

flagged points or safepoihts. -

This criterion however fails when we have a configuration
~ '

such as-that shown in Figure II.9 (a dark point whose 4-

"neighbours are all saﬁepoints) Since safepoints are never

deleted,,the point p of Figure I1.9. will never be deleted

either. Therefore dy will never become ZERO. The
configuration shown in Figure 1II.9 ‘usually occurs at the
-~ _ ‘.I
II; » r. 26 A '
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intersection of strokes. See the example shown in Figuré

“11.10. So we néed criterion2, given below.
2) criterioﬁz : if at the end-of the kth scan, dy is equal
to/dk_z then the algorithm terminates. ‘That

— is to say that no new points were either
©  flagged or declared to be safepoints in the

elast two scans. When terminating under this

T . ‘,critefion, the aigo;ithm does execute a do-

%

ﬁoﬁiingqpass.~

To summarize, we say that at. the end of a scan, if

criterionl or criterion2 is TRUE, then the SPTA terminates.’ .

o

:Extensive experimentation has shown us that 95 percent of the
time the algoritﬁﬁ\germinated Shder criterionl,-thus.avoiding
a do-nothing‘pase. Hence it was only 5 percent of the time
that the algorithm performed the do-nothing pass. In)otper
words, , with our proposed terminating criteria the SPTA
pegformed approximately two fewer ecegsﬁ than the SPTA
originally proposed in [24j. To remove any ambiguity in our

informal description above, we present a formal description
’ ]

of the modified SPTA. -
' /
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Point p is/(;\\dark point which is neither
flagged nor a. safepoint; s's are safepoints,

X's nay be either dark or white points. 1If a

configuration sucdh as above exists, then
criterionl of Section 1II.4. .fails in
terminating the SPTA. : -
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‘The following -data structures are required for the
different implementations of the SPTA. They are all
presented here for completeness-sc that only one copy
of the declarations needs to be made. )

Declaration of types :

pat_type = array[l..MAXROW,1l..MAXCOLUMN] .of integer;
{ The data structure used for storing the pattern,
" where_ '
MAXROW - indéﬁate”s the total number of rows
in e pattern, and
MAXCOLUMN - indicates the total , number of
columns in the pattern. )
count_type := array{-1..MAXSCAN] of integer; g
{ The data structure used for storing the number of
dark points which h3ve neither been flagged nor
declared to be safepoints, remaining after the

completion of a scan. The first scan is numbered,

1.  For the terminating c¢riterion2, (d[(k] = d(k-2],
at theend of the first svan, k=1, we.need a value
for d[-1). Similarly, for the end of the second
scan, we need a value for d[0]. So d[~1] and 4[0]
are assumed to be ZERO. )

8-neighbours = array([0..7] of pointer;
{ The data structure used for referring to -the 8-
neighbours of the point p. )

direction = (right,left); ‘ '
' { The data structure used to define the direction
of flow of the data in. the pipeline for the
function decomposition implementation. )

border_type = (0,2,4,6); { (right,top,left,bottom) )

{ The data structure used to define which type of
..edgepoint is being tested for. )

Declaration of variables':
PATTERN : pat_type} { contains the pattern, where
. 0 - indicates a dark point, and
=MAXINT - indicates a white point. )

i Y integer; (. iteration number, or pass, nunber. ).

A
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"Algorithmic 'Pseudo COde for implementing the modifjed
SPTA on a single processbr.

L
} , procedure O‘NE___PROCESSOR_SPI'A'H(var PATTERN : pat_type);

var : )
j : integer; { indicates the type of scan,
j=0 for LR-scan,  and

A +j°’= 2 for TB-scan. }

k : Integer; { contains the scan number. )
d : count_type; { an array containing the number of dark
“ ~ points which have neither been flagged

. r, declared to be safepoints, remaining
. he pattern upon the eomplet10p of a

scan. )
begin ‘ ' v
i := 0; { Initialize the pass number. )
for k := -1. to MAXSCAN do ~
d[k]) := 0; { Initialize d to ZERO for each scan. }
k = Q; (‘Initial}ze the scan number. )} '
_repeat Y :
1 =41 4+ 1; { Increment the pass number by Qne; )
3 = 0; ( Set ‘scan type to left/right edgepoints. )
“ . k s=k + 1; ( Increment the scan number by one. )

SKELE’I‘ONIZE(PA‘I‘TERN j,1,MAXROW, de] ,
{ Execute the scan on the entire
pattern. ) -
“if (d[k]) <> 0) “and' (d[k] <> d[k-2]) then
{ If criterionl and criterion2 are FALSE,
then prepare for the next scan. }_ .
begin ’ .
Y 1= 23 { \\1{scan type to top/bottom edgepoints. )
D k t= k + 1; { Increment the scan number by one. }

SKELETONIZE(PATTERN j.1, MAXR w,d[k}): o
( Execute the scan oOn the entire
. - pattern. )

end,

until (d[k] = 0) or (d[k] = d[x-z]). '

{ Repeat .executing passes on the entire

- : pattern until criterionl or criterion2’ is

- TRUE. ) .
end; ) * v v
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procedure S

rYow :
column :
P . :
n

border : border_types:

-begin
for row :=
for col
begin
if

integer;

]

KELETONIZE(var PATTERN : pat_type;’ -

j,first_row,last_row : inteqor:
var 4 : integer);

-

integer;
pointer;’

point PATTERN{[row,
-neighbours;
( the variables n(P] - to n[7] -are used when
referring to the -neighbours of the point p. )

nl. ) -

e

{ Indicates \which( 4-neighbour caused the p61nt p
‘to become an epoint. )}

flrst .row to last row do
umn := 1 to MAXCOLUMN do

A

DARK(p) then

A3

{ a point is consdidered “to be DARK if it has the\
value ZERO. ie. it is not a safepoint. )

i
(

{

..e
g

end;
end;

f EDGEPOINT(n[j],n[j+4],border) then
test each dark . point to see if it is an
edgepoint.

begin '

if ,SAFEPOINT(n,border) then

Test each edgepoint to see whether it is a
‘'safepoint. If it is a safepoint, then the point
As labelled by the value i. Otherwise, the point

becomes a flagged point and is labelled by the ’

value (i - MAXINT). ) -
» p :=-i © { a safepoint )
else \ o '
p := i - MAXINT; ( a flagged point )
ADJUST(p,row,column) ;
The procedure ADJUST, will 'be used only by -the
data decomposition implementation., However it
has been included here so that only one version
of he procedure SKELETONIZE needs to be
presented. } '

end * ®
1se :

d :=d + 1;

The point is a_ dark point which is neither
flagged nor declared to be a safepoint, 80 we
increase our counter d. })

A

o s T Y
. M REARLWCY - M -

’

he variable p is used when referring to the °
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@z-



and

1)

2)

function EDGEPOINT(n[j] n[j+4] : pointer;

0

4
-

{ There are two. reasons for labelling ‘the flagged points
safepoints in the manner shown above.
~

The points flagged during ‘pass i -have the 1label ti-
MAXINT), which becomes a threshhold t. 1In pass (i+l)
all points with labels less than t are considered white.
Thus we do not need to travel through the entire pattern
deleting all flagged points to prepare for pass (i+l).
This hélps in speeding up the SPTA.

A safepoint declared during pass i has the 1abe1 i.

Since the skeleton consists of all the safepoints, the
label-on a point in the skeleton can help us reconstruct
the original pattern if needed. Naccache et al.' [24]
have described how “this reconstruction can be done.’
Therefore we are not describing it here. )}

™

!
- -
1
-

~

var border ¢ border type) : boolean'

{ A point p, is con51dered to be WHITE 'if i® satisfies -
the following condition : . ) . -

. (value of p) < (i - MAXINT).

That is, the point is an original white point, or it

is a point that was f;agged during a previous pass.

The wvariable border, returns the .value indicating
which boolean expression S[border] should be tested,
( where border = 0, 2, 4, ), to detect safepoints.

)

ol 3

begin
if WHITE(n[3]) then

( Test for either a rlght or top edgepoint. )
begin , . ,
border := j; 3
EDGEPOINT := TRUE; o v \
.end oL - -

else if WHITE(n[j+4]) then

s

else -

<gnd:

{ Test for either a left or bottom edgepoint. } ..
begin S
border := j+4;
EDGEPOINT := TRUE. ) NN

" end : R g ' i
W, . o | . ) h

EDGEPOINT := Fntsz:
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‘i funct1on SAFEPOINT(n : 8-neighbours; border : borderjtypu)

1 boolean:;

£

{ TThis . 'function nvalﬁat;s the appropriate safepoint
boolean' expression and /returns TRUE, if the point is a
safepoint and FALSE if it is not.

L . - .. An B-neighbour of the point p is evaluated to TRUE if |

it has a label that is greater than or equal to ZERO,
and it is evaluated to FALSE othervise. )

begin . o
case ‘border of /

0 : { Evaluate for a right safepoint. ) '
SAFEPOINT, := not(n[4] °* (n{5) + n(6) + n[z] + n[3
s _ (n[6]) + not(n[7])) * (n[2] + not(n[1

{ Evaluate for a top safepoint. )

SAFEPOINT := not(n(6] °* (n(7] + n[0] + n[4] + n[5
(n[0]° +- not(n{1]})) (n[4) + not(n[3

4 : ( Evaluate for a left safepoint. ') . :
"' SAFEPOINT := not(n{0]) * (n{1] + n(2] -+ n[6] + n[7
(n[2] + not(n[3]))) * (n{6] + not(n[b

*

):

N
[ 1]

-e *

)

]
]
]
)
] .
1))
)

]

)
)
)
)
)
)
) =
)

6 : { Evaluate for a bottbm safepoint§ )
. SAFEPOINT := not(n[2] * (n[3) + h[4] ¥ n[0] + n[1
(n{4] + not(n[S])) * (n[0) + not(n[7])):
, end; ( case ) . . ’
end; ‘ : .
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. « . Chapter IIX

.
k¥

‘Review of Thinning Algbfitlyns on Multiprocessors
. uc ammin s

3

¢
Py .

Multiprocessor archi!:ectures are becoming more and more
+ available. Mucl; of the multiprocessor work being dopé is
directly related to imagé processing .and. 'patte°rn recognition
\ applications; Several 'multiprdce'ssors have begn designed
'specifi:cally with these applications in mind [e;],[n],[iz],
and [30\].‘ . Furthermore, ‘several gen\eralk purpose
multiprocessors 'have been shown to work quite well for‘the‘se
types of applications [6] aan [14)]. )
" Multiprocessors hcan generally be divided into. several
classes : . _‘ , L
SIMD (Single Inst':ruction Multiple Data) gtreain combu‘ter’s
usua’\'l'ly‘consist of a. slngle central host computer which
broadéas?:s instructions to thousands of microprocessoz:s.
Each microproce,ssor‘ has its own memory. All the
mi_.croprocessofs_ rece\ive the same instructions‘ with each
’microprocesspr having the option to either sit idle or to
execute the instmctﬁ This ty1/>e of architecture is S?st

suited for problems “Where the same operations must be

o

performed in an independent fashioh on thousands of

.+ individual data items.

1
’
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MIMD (Multiple Instruction Multiple Data) stream

_ computerg\\xsualry consist of tens or hundreds of processors.

o LY
Each processor can execute its own instructions

independently of all other processors in the machine. }&MD
machines exist where there is only one central memory, or

a

where each processor has its own memory. st{l1l others offer

————— _ \ [ - e N °
a combination of the two, where each processor r%some

¢

memory of its own and groups of processots can share some

memory.

4

Although m&ch progress ha}s beenn made in multiprocessor

‘design, the area of progranmnming multiprocessoi‘s\ has lagged

behind. Recently however, work has increased in
.

multiprocessor software development due ’xto the commercial

viabillty of some of the multiprocessors [10}. In most
cases, software development on multiprocessors is very nuch
dependent on the type of multiprocessor being used.
g Y
In general, at'n' algor'ithm implemente\i on a multi-
processor ‘can be paralleiizedf\, in two 'ways [17] and [18): ~
1) function decomposition, in which tnﬂe algorithm is
decomposed into segments that are assidned to different
processors, each processor func_t-ioning on the full data,
as the data is pipelined through the\‘processors;

2) data_decomposition, fn which the data is decofhpoged into

segments that are assigned to different processors, each
/ .

36
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“an SIMD architecture. {

processor'exechting the full algorithm.

c"

Function decomposition usually works best on an MIMb

. 5 - : . - e
a{;hitecture, while data decomposition usually works best on

.

. | ¢

~
The tollo&ing two factors can have a significant impact
‘on the implemeﬁtation of -an algorithm [16] and [18]: |
1) ‘data granplarity, which indioates the size of the datum‘
that can be dealt with as a fundamental unit;
2) mogule gganularity, that- indicates the amount  of
n processing which can be done without thef’need for

synchronization.’ :
\'v‘; . ; . \‘ .

¢ .

Fine grain applications -usually perform better on STMD(

machﬁnes, while coarse ggfin applications perform better on

MIMD machines. £ | e -

37
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Shortly -after the, first thinning aXgorithms were
developed for single processdr computers, it was _realized'
, that the thinning procest was 'quife well suited for a -
pa|ra11el' implementation. *Iany of these \parallelt N

implementations ;[1],([25), and (28] were based on the
folloWing - definition: ‘

L 4

. the new value of ,a point at the ith pass can Dbe

detemiheq by its own Rz:l_ue and that of its 8-neighbours

at the (i-1)th gssr[av].

This aliows all poipnts to b;a evaluated in parallel within a

N \\

given pass.

L < ‘ ’ o
4

4, Sipce all deletable edge points are simultaneously

A *

remo{;'ed in one ‘pas\s,' the number passes re'quired to thin
the pattern should ideally be equal to half the maximum width
of the 'pattérn. However, lmost parallel thinning aigorithms
divide this task\into a number of scans, where two or more
s.car)ms reprc-::se‘nt one pass g[34]. Thu's the number of iterations

over the pattern ‘uéually becomes equal to the maximum width

» of the pattern.

¢ .
Many of these algorithms were never actually implemented .

on multiprocessor environments. It was noted by Hilditch

[13] that when some of these algorithms are actually

I 1

- 38
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implemented on multiprocessors, the quality of the skeletons
is not\always as good as would be expected. This is mainly
due to ‘more- than' one Iayer of edge points being evaluated and
deleted at the corners?pf a pattern during a single pass.
Hilditch thus proposed a refinement which stated that when a
pass is divided into multiple scans, that the criterion for.
deleting an edge point should be as follows: '
delefion. should be restrieted.to points that not only
satisfy the deletie'nJ criterion ,of theapette_rrx in its
current state, but also wou1d~‘save satisfied this
cegditisn at the start of the current pass. ,
Hilditch goes on to shoy that .without this re}inement,

_ parallel algorithmé will not produce proper skeletons since

they tend to delete too many points at the corners of the’

. . »
pattern. ’

*
AY

Howevér, the type of parallelism described above is not
.. always necessary. Only large SIMD 'based multiprocessors
€

could benfit from such an algorithm. Severaf actual

-

multiprocessor implementations have been proposed for MIMD;

architebtures‘ccﬁ;isting of only tens of processors. Such
algorithms' do not necessarilly require that eechlpoint‘in the
| pattern be evaluated in parallel. Next, we will present some
of the better known multiprocessors and some of the thinning .

" algorithms that have been implemented on them.
. . ’

>



(8], and [9]. -It consists of 1156 microproces‘sors. Tha
processors are connected in a 2-d‘imen_sional grid. As shown

in Fiqures III.l.and III.2, the processors can be connected

so that each processor has either 6 comnectipns (a hexagonal

grid) ‘or 8 connections (a square grid). . Thesé cohneét‘ions
conform‘ “to the 1local windows ,or neighbourhoods which are
often used while evaluat:mg a’ point during image processing
algorlthms. Each processor has its own memory. There is no

" shared memory between processors. A "PDP 11/10 was used as

the host computer. \ )

N Y

.

Hilditch [13] used the CLIP4 multiprocessor to test some
ex1st1ng parallel thinning algorlthms as well as to develop a
new parallel thinning algorithm. She compared a well known
peellng algorithm {1) with a shelling algorithm and found
that both types of algorlthms performed equally well on the
CLlP4 multiprocessor. However@no results were given on how

these impl'ementations compared with similar implementations

on a single processor. - ’
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Figure III.1.. A simplified view of the architecture of the
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' The PASM multiprocessor consists of 1024 microprocessors
- \ ; Y v !
{30) and [31]. Each processor is associated with its own

memory module. ‘Each nemory 'modulé contains two memory units,

thus allowin_g .a processor to access one memory unit while
z;"(ﬂ data is being loaded into the ;ther’memory .uniti There i.s no
shared niemqry between pr,ocessors, howe,v-er message passing
facilities are provided. The processors are connected in a
Gube network.:' F:igure IZII.S:' illugt.rates :a cube network
cgnnection for four and eight processors. .

»

¥

A
The main feature of the PASM multi\processor is tha't’it
A is a- partionable SIMD/MIMD system ‘(that is it c‘an» . be
structured as one or more independent -SIMD amd/or MIMD
machines). This feature allows for greater flexibilty in
a:_lgorithm désigﬁ. An algorithm written for PASM does not
need to conform to the structure imposed by either an SIMD or

an MIMD machine. .
, Y

©

As Figure III.4 illustré\ésé, the two main components of
PASM are the parallel computation .unit (PCU) and the host
computgz:. The PCU contains the 1024 processors as well as
the interconnection n;twork. The host computer is a PDP 11
which is. responsible for job scheduling and loading of the

, . memory modules. As /Figqure III.4 illustrates, the host

A f
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‘computer is connected. to all of the microprocessors through
a common bus. A prototype of the PASM multiprocenorg has

been developed and has been used for testing and implemcnting

o

various thinning algorithms. - '

Kﬁehn et al. [20] implemen‘teé three different thinning
algorithms on PASM. The firgt of <these’ vas a peeling
algorithm proposed by Arcelli [1]. -As shown in Figure III.S5,
this algorithm requires eight scans per pass. Next they

implemented a shelling algorithm proposed by ‘Rosenfeld et al.

[29] In this algorithm, the 4-distance transformation' of"

all dark points in the pattern is first calculated. The
skeleton then .consists of all points which satisfy at least
one of the two following condi;tions $
1) the point is a local maximum (that is' the value'of. the
point"is greater than or equal to the 'values of all of
. its 4-n;;ghbours), .

2) the deletion of the point will break the connectivity of
the original pattern (3 X 3 windo‘ws”similar to the ones
used by peeling based algorithms are used to test for

. connectivity).
. Finally a hybrid algorithm was /proposed which combined
the best features of _“both peeling and shelling  based
- algorithms. This hybrid \algor"ithm consists of first using a

simplified version of a shelling algorithm to delete most of

]
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* " the points Wt do not belong to_the skeleton in a fixed

nunber of passes. Then & peeling algorit

 the skeleton to a 1line drawing.

is used to thin

etaiils of this

\‘im'plementation' are not presented by" Kuehn %t al. [20]).

: ‘ \
However, results showed that this hybrid algorithm performed

sligh/tly better than edther the peeling o

algofithms aid alone.

-~

r shelling based
|
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Flgure III.3. ‘Diagram of a cubel network connection scheme
for (a) four processors and (b)° «eight.

3

processors. In a cube network containing 20 N

processors, each processor will have only n
connections. ' ’ . “ .
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Figure III.5. For the algorithm proposed by Arcelli [1], all
points and their neighbouthoods are
simultaneously compared with the window Al.
If the neighbourhood of a' point matches the
window, the point is deleted. This process is
repeated for windows Bl, A2, B2, A3, B3, A4,
and B4 in that order to form one pass. The
algorithm terminates when a pass is completed
where no points are deleted.

Points -labelled '*' and 'p' represent._ ’'dark .

. points, points labelled 'x' can be either dark

\ points or white points, and points not '
‘labelled r'e'prese,nt white points. :
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The FLIP multiprocessor has an MIMD architecture with 16
processors [11]. As illustrated in Figure III.6, the FLIP
multiprocessor consists, of two wmain components, the FIP

(l‘.‘lexible individual processor) and the PEP (peripheral data -

‘exchange processor). The PEP is used for fast I/0 between

‘the host c'omputer memory and the FIP. The FIP consists of 16
processors'.‘ Each p;oceséor is physically connected-to 911
the’other prqcessors thrc;ugh a common bus.' Each _processor
has two\input ports and one output port. There are 16 data
buses between (tﬁe PEP and the FIP. Each processor is
connected to two of these buses. Therefore, every twvo

processors share tyo buées between then. Eacﬁ processor has

. its own memory, which 'is divided into the following. two

\ components: 1) 50 bytes used for data only; and 2) 1024

bytes used for code only.
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Figure III.6. A simplified view of the architecture of the
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FLIP multiprocessor.
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Although the three multiprocessors described so far are

L]

all well kpown examples of workigé"multiupfocessors that have
\ .

been designed for pattern recognition applications in mind,

manye¢others are currently beiﬁg deve'lopéd or have already

!

) been proposed. Some of  thése ',include pipeline based

multiproceésors such as fhose described: by Sternberg [33] and

Naccache [23]. , Another multiprocessor designed specifically’

-

# for pattern récognition applications' is the ‘Template

=

Controlled Image 'Proce‘ssor (TIP) pfoposed by Hanaka et al.

! [12];\ The Homogeneous Multiprocessor proposed by Dimopoulos

s {6] and the Connection Machine proposed by‘Hillis [14‘] are
good. examples of general purpose multiprocessors which are

also well suited for these ‘types of applications.

X ' | N .
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Chapter IV

™
+ Our Multiprocessor Implementations
['4
IV.3 Descripti - the’ 1t4

The Homogeneous Mulfiprocessor consists df two parts:

/s . .
the Homogeneous Multiprocessor Proper (HMP) ald the H-network
{6] and [21]. Our implementations do not require the H-

) )
network, we will therefore only describe the HMP. A

‘simplif-i*ed view of the architecture of the HMP is shown in

\

Figure IV.1. ‘As F{gure IV.1 shdus, the HMP is composed of n
2 1 processors P;,Pp,...,Pp. Each processor Pj has its own
memory Mj that it'can access directly. Processors Pj.; and
Pj+1, if both exist, are called the neighbours of Pj. All
prscessors hazg twofneighbours, except proceséors P, and Pp.
The only neighbour of processor él is processor P, and the
only neighbour of processor P, 1is processor P;K1. s
processor P; can also access through switches the memories of

its neighbours. At any given time only one processor can

access a memory. Overall, the HMP has a MIMD architecture.

Ed



' Figure Iv.1.
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A simplified view of the arychitecture of the

The P's

are processors; the M's are memories. A

" processor can access its own memory and the

memories of its neighbours.
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: The Homogeneous Multiprocessor [6] was selectspd mainly

ber;:ause of the following three reasons: g
1) It was available to us through the use of a simulator

tzl]; This‘provided us with -a reliable working

L]
environment.

)

2) The availability of shared memory between adjacent’

y

&

\

processors. This is ideal for inmage &p\z'0cessing‘
L algorithms since most of “these algorithms\pnx\'form
only 1local operations on points within the pattern.
) TherefOret the architecture of the Homogeneous
. Multiprocessor is well suited for image processing
applications.

3) Results are obtained in machine cycles. This is
‘ gesxrable since a true indication of the perf rmance

of an npplication can be obtained. . -\

\ ' *
.-\ . N
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IV.3. Function Decomposition Implementation oo

-

>

In outline, each processor executes one scan _ on the

pattern as the pattern is pipelined through the HMP. After a |

processor Py has finished a scan, it checks for termination
of the modified SPTA. 1If processor Pj reports termination,
then the skeleton is available in memory Mj. Now we give

some specifics of the implémentation.

In the beginning, the pattern is stored ih memoryrﬁl.
Procesaof P; begins the first scan. As soon as it has
finished scannihg a roéw, the row is moved to memqrx M,. Once
memory M, has received the first two rows ?f.the pattern,
then‘pfocessbf P, begins the‘second'scan. Tﬁus p;océssorppz
will always be at least tﬁo rows behind processpr\Pl. Then
after processor P, ha; scanned a row, the row is moved to
memory M3. In general, processor Pj executes scan i, and
after scanning a row, it moves the row to memory Mj,;. As
process&r P scans row'k, processor Pj,3 scans row, k-2. As

rd
each processor finishes a scan, it checks for termination.

If the last processor P, has finished the nt? scan and
the algorithm has not yet terminated, then processor ‘%n
begins the n+1*R scan and starté moving the rows to memory

w

Mp.3, where processor Pp.; begins the n+2th gcan. Figure
| 55@
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IV.2 illustrates an example showing which gcans are executed L
by each processor. - , ’ ' \', :
’ . .
., In brief, the pattern is continuously pipelined to and ..
fro befween memory M;  and M, until one of the processors \
reports termination. : 1 '
¥ : . , . ‘ P
. ? > ‘ ® Y\‘ .
/ - \
A w ' - I
. ‘ / - ’ S
4 V * -
r ! -
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, . $ f
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i - ‘Proéqgsors / .
pp |- P2 |- P3 | P4
: scan 1 ' ; : ,
Scan numbers scan 2 S
executed ‘ s%n 3
‘by each scan 4
processor . scan 5
. scan 6 '
scan 7 .
/ !
i . (
\ iy \ S

Figure IV.Z/. Diagram showing which scans are to be executed

by, each of the processors for the function
decomposition implementation. This example
illustrates a pattern which requires seven
scans-to process and there are four processors
avajilable. Note that scan number four must be
completed by processor P4 prior to the start o

* of execution of scan number five.
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Algorithmgc Pseudo' Code for the Functfon Decomposition SPTA ) :
. . o ;>‘
Declaration of variables s . ‘ .
const

LASTPROC = the number of processors in the pipeline,

-

var

row,j,k : integer;
proc : integer:;

{ Contains the location number of the current processor
in the pipeline. This value is initially 2ERO for

all of the processors, except for the first one,’
where proc = 1. )

(<]
g

nex% ¢ direction;
dicates the direction of flow of the data in the
4§€peline. When the "variable next is used as a
+  subscript, it refers to- eithsz' the left or right
neighbour processor. )

\

received : 1nteger, — '
( The number of the last row that was received by the
* current processor. )}

,

terminate : boolean; |
{ The flag indicating that a processor has reported
termination of the SPTA. At this time, the other
processors are signalled that termination has beén

, reported, and the pattern is pipelined to the
‘ processor,numbered end_proc. }

end.proc : integer; )

{ The number of the processor at the end ,of the
pipeline. When the direction 'of the pipeline is to
the right, then end_proc has a value of LASTPROC, and N
when the direction of the pipeline is to the left,
then end_proc has a value of 1. )

T ¢
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progedure FUNCTION DgCOMPOSITION SPTA(var PATTERN : pat_type)
begin :
INITIALIZE FONCTION; A
{ 1Initialize so that the algorispm can begin. )

repeat
INIT_SCAN; - - ~
{ Prepare the next processor for another scan. )
: . 3

repeat
row := row + 1;
repeat . :

until (received > row): \

{ Wait until enough rows have been received. - The
number of rows received must always be at least one
greater than the row number currently being executed,
so that the complete neighbourhood of a point is
available. ) - - {

if terminate then W
terminatepaxt :=“TRUE

{ If termination has been reported, then signal the
next processor. Each processor will in turn signal
its next neighbour. There is now no more need to
skeletonize any rows. However rows e still moved
to the next processor so that the skeleton can be
assembled in the end processor. }

else
SKELETONIZE(PATTERN j,row,row,d(k]);
{ Execute the kth gcan on the current row. )

if (proc <> end_proc) then
begin ~ ~
MOVE (row, next) ; -
if (row = MAXROW) then
receivedpext := MAXROW + 1
else
receivedpayt <= row;
end;
{ It ﬂhe current processor is not the end processor
then move the row to the next processor and increment
the rows received counter of the next processor. }

until (row = MAXROW)3: "
,{ Repeat for each row in the pattern. )

CHECK_TERMINATE;
\ { The scan is completed so test for the terminating
criteria. -
until FOREVER;
end;

&
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' ¢
procedure INITIALIZE_FUNCTION;
/

.begin .
repeat 3 -
until (proc > 0);

( Wait until the
processor number

(proc = 1) then
begin

current processor has been given a
'5) L

-

-~

{ Initialize the first processor so that )

next := right;

i:=1;
J = 0;

k := 1;

{ the direction of flow is to the
right, )} .

{ the pass number = 1, )

¢ the scan type is for left and right
edgepoints, )

{ the scan number = 1, qnd )

received := MAXROW+1;.
{ the number of rows received is one greater than the
total number -of rows in the pattern. The extra row
‘is a blank row. , This is necessary so that the °
bottommost row of the pattern can be processed. )

end;

LN

if (proc <> LASTPROC) then
begin

p—

{ If the current processor is not the last processor,

then initialize

the next processor so that )

proc?ext t= proc + 1; { it has a processor number, )

rece
nextpext = next;

end;

terminate = FALSE;

end;

{ it has not yet received any
rows, and }

( ‘the direction of flow remains
the same, )} N

-

(. Set the terminate flag to FALSE. )

»”
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procedure INIT SCAN; .
begin ’

ra

-+

if (next = right) then ‘
ind_proc := LASTPROC a
el

nd_proc := 1,

{ - Determine which processor is the end processor of the
pipeline. ) .
N <
repeat »
until (received 2 1), ‘
(- Wait until at least one row has been received before

continuing. ) . . (N
row := 0; { Set the number of the current roq/;o:ggro. }

'
{ If the current brocessor is not the -end processor
then prepare to initialize the next processor for the
~ néxt scan. )

‘if (proc <> end_proc) then ; \
begin A .
if §-= 0 then - ‘ »

{ 1If the current scan is for left and right edgepoints,
then the next scan will' be for top and bottom
edgepoints with the pass number remaining the same. )
begin . v,

gnext i 2' -
next
end’ ‘. .
else ' . ) N
e : . ”

{ If the. current scan is for top and bottom edgepoints, .

then . the next scan will be for 1left and right
. edgepoints. - Since this is the first scan of the next
pass, the pass number must be incremented by 1. )

N

begin
* .. 3Jnext 0;
. end; 0

. nextnext tw next,{ Keep the direction ofj the flow in
. the same direction. )

Knext := k + 1; (' Increment the scan number by-one. }

.-

-
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" procedure CHECK TERMINATE;

begin ‘

{ If criterionl or criterion2 is TRUE, then set the
. terminate flag to TRUE. ) .

if (d[k] = 0) or (d[k] =.d[k=-2]) then
terminate t= TRUE;

{ If the current processor is thé end prodessor ‘and the
terminate flag is set to TRUE, then the algorithm has
been completed. )

'
, b

if (proc = end_proc) and terminate then
- STOP; Tm

{ Otherwise, if the processor is the end processor, but

the terminate flag is FALSE, then change the

direction of flow and begin the next scan. Note that

the end processor can execute consecutive scans:

‘ . one scan prior to testing " the terminating

criteria; and in case the terminating criteria fail,
the first scan for the new direction of flow. )

Ad v

if (proc = end_proc) then 3 N

begin ~
if (next = right) then
next := left ' :
else . '
.,next := right;
kK := k + 1;
i€ (3 = 0) then
j 1= 2
.  else
R begin ’
j == 0; .
1 =1+1; o :
end
end . ' . ' i
, else

{ The current processor is .not the end processor.

-However, it has.finished executing its scan on the

' pattern.. So set ‘the number of rows received to ZERO
and wait for the next scan to begin. )

. e
- )

begin _ / yan _
if terminate then v : s
terminatepgyt -i= TRUE; Pk
received := 0; ’ (“
end;
end; )

62
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- In outline, each processor. Pj exgcutes all scans on a‘

segment containing Rj; rows of the pattern.. To do this, the

top“. most R} rows of the pattern are processed 'by P1, the
next R, rows are processe& °by P, and so on. An attempt is
made that the number of rows is evenly distributed among'the
processors. . Suppose the number of processors, n, is e.qual to
4, and the number of rows in the pa:ttern is 26.  Then
processors P; and P, process 7 rows each, andlproégssor; Py
and P4 process 6 rows each. Thus extra rows, if any, are

distributed one extra row per processor starting at processor

Pl-

To process Rj rows by prpcessor" 'Pi, we stored the Rj
rows in memory Mj. _Moreover, memory M; contained one row -
above and one row below the segment of Rj rows, see Figure
IV.3. This is because to process a point, we need to examine
its 8-neighbours. Thus there is a certain amount of ovérlap
in the rows that were stored im the different memories. One
can argue that this overlap is not necessary, since any
processor can access the memory of its neighbours. But the
more times a processor accesses the memories of its

neighbours, the slower becomes the SPTA./
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By allowing this overlap of rows, the numbér 9!
ix}terprocess'or comn’unicati“onzs we're reduced, thus raduciné the
overhead. If 'howﬂevext a processor Pj flagged a point or
deéla;ed a poigt to be a s;fepoint in the topmost or
bottommost rows of Ry, en this was communicated to  the

ne{ghbouring processor. We found by e'xpérimentation that by

allowing overlapping of rows between memories, the SPTA was

speeded up by about 10 percent. o

& ;

}

The processors must be synchronized: processor Pj cannot

begin & pass until its neighboués Pj.y and Pj.; have fir:?éhed

_thé previdus pass. Every processor checks for termination at

the end of each pass. When all processors have reported
termination, :.he segments of thé skeleton are distributed in

oy
memories M; to M;,. These segments can then be assembled back

into memory M;.

K
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Réw 1

‘Row 7

Row 8

Figure IV.3.

*

M4

M2 M3

Row 7 " Row 14 Row 20 ',
Row 8 Row 15 Row 21

Row 14 Row 20 Row 26

Row 15 Row 21°

The allocation of the rows of the pattern to

the available memory modules for the data .,
decomposition implementation. This example
shows four memory modules and a pattern with a
total of 26 rows, _

< : , X

~N
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Algorithmic Pseudo Code for the Data becomposition.SPTA

Declaration. qf variables :

const .

var

LASTPROC = the number of processors in the network:;

s

j. k : integer;

proc ¢ integer; . . )

{ Contains the location number of the current processor
in the pipeline. This value is initially ZERO for

all of the processors, except for the first one, .
where proc = 1. -)

first_row : integer; " :

{ The first row of data that has been allotted to the
¢ current processor. ) AU :
last_row : integer:;

{ The last row of data that has been allotted to the
current processor )

e ‘ ¢

rows_keep : integer;

{ The number of rows that the current processor has
allotted for itself. )

done_flag : boolean; !

{_ The flag indicating that a processof in the pipeline
has received all the rows of the pattern from its
right neighbour. This flag is used when the pattern
is being moved back to the first processor. )

end_flag : boolean;

{ The flag indicating that a processor pay start moving
rows to its left neighbour;' that is,’ its right
neighbour has completed the algorithm on its segment
of the pattern, and has begun moving the pattern into
the current processor.. }

s
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procedure DATA _DECOMPOSITION SPTA(var PATTERN : pat_type);
begin ‘ '
INITIALIZE DATA;
___{ 1Initialize so that the algorithm can begin. )
repeat ~
i1 :=41+1; { Increment the pass number. }

' { Synchronize with the left neighbour. Wait until the
left neighbour has completed pass i-1. .
S
if (proc <> 1) then
repeat
until (i S ijeft):

{ Synchronize with the right neighbour. Wait until the
right neighbour has completed pass i-1.

/ if'(proc <> LASTPROC) then .
repeat : N

j 1= 0; { Set scan type to left/right edgepoint. )
k := k + 1; { {gcrement the scan. number. )

SKELETONIZE (PATTERN, j, firft_rew,last_row,d[k]):
{ Execute the kth scan on the rows that’ are
allotted to the current processor. )

if (d[(k] <> 0) and (d[k] <> d[k-2]) then
begin
J o= 2; { Set scan type to top/bottom edgepoint. )
k :t=k + 1; { Increment the scan number. })

£
SKELETONIZE (PATTE ,j,firgt_row,last_row,d[k]);
" { Execute the k' scan on the rows that are
allotted to the current processor. }
- end;
until (d[k] = 0) or (d[k] = d[k-2]), ’
{ Repeat executing passes on the entire
pattern until at least one ‘of the
¢ terminating criteria is TRUE. ) y

_ 1 := MAXINT; { The current processor has finished the
“ * - skeletonization process on its segment of
the pattern. The pass number is set to
\\. MAXINT, so that its neighbours can
execute more passes, if need be. )
TERMINATE ; ( The skeletdnization process is completed.
50 prepare to reassemble the entire
pattern in the first processor. ) T

end;

[

s b X



.
Fid

procedure INITIALIZE_DATA;
begin
repeat ‘ .
until (proc > 0); , SR
{ Wait until the current processor has been given a
processor number. ) .

if (proc = 1) then X , .

V' first_row := 1; - .

, { The first processor will contain a section ot the
pattern, starting with the first row, ie. row = 1.

{ rows_keep equals the ceiling of the number of rows
not yet allocated divided by the number of memories
that do not yet contain any rows. 3 ‘

rows_keep := ceiling((MAXRow - first_row - 1) / ~
s (LASTPROC - proc + 1)):

K
—

last_row := first_row + rows_keep - 1;

{ If the current processor is not the 1ast processor,
then  initialize the next processor. Set the
) processor number and the first row of the pattern to
' be allocated in the next processor. Then mave all not
yet allocated rows of the pattern, pdint by point to
the next processor, starting with the last column of
. the last row. )
if (prec <> LASTPROC) then
' begin '
. first _ToWrjght := first_row + rows_keep;
Procrjght 3= proc + 1;
for row t= MAXROW downto last_row do y
for column := MAXCOLUMN downto 1 do o
& PATTERNyjght [row,column] := PATTERN([row, column] ;
end;

( Initia;ize'all termination rlags to FALSE. )
-done_flag ;= FALSE; ) o .
end_flag := FALSE; . ) ’

i = 0; { Set the pass number to ZERO. )
k := 0; ( Set the scan number to ZERO. )} .

{ Initialize the number of dark points neither flagged
nor declared to be safepoints ‘to a value of ZERO for
all scans. ) -

N ,
for k := -1 to MAXSCAN do
d(k] := 0;

end:;.
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procedure ADJUST;
begin

{ If a point on a border row was either flagged or
dgclared to be a safepoint, then "the copy of this
point in the neighbouring processor must also be
either flagged or declared to be a safepoint. Note
this procedure is called from the procedure

 SKELETONIZE. ) N

{ Adjust for points in the left neighbour processor. ) .

if (row = first_row) and (proc <> 1) then
PATTERNj] gt [rOW, column] := p

{ Adjust for points in the right neidhbdhr processor. {

else if (row = last row) and (proc <> LASTPROC) then
PATTERNright [row,column] := p;

end;

! . 69
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. procedure TERMINATB.
| begin
"~ 1f (proc = 1) then
if (proc = LASTPROC) then

-

.8TOP ( If there is only one proceasor then STOP. )
else . :
begin .
repeat

until done_flag;
STOP; . { Otherwise only stop when the entire pattern
has been reassembled in the first
. processor. )}
ehd
else
begin

-

~ ° 7 7 v Tif(proc <> LASTPROC) ghen e
repeat ‘
until end_flag;

{ ‘Wait until the right neighbour has completed ”the
algorithm on its segment of the pattern, and has
started to move part of the pattern into the current

T‘~\\\\ processor. }

end_flagjefry ¢= TRUE; ‘ b

{ Set the end_flag in the left neighbour to TRUE, 80
that it can also start moving the pattern. )

{ Move all rows of the pattern, starting from the last
point in the last row, to the first point in the
current processor to the. left neighbour. The rows
are moved from bottom to top to allow the pattern to
be moved through the pipeline fn parallel. )}

for row := MAXROW downto (first_row + 1) do
for column := MAXCOLUMN downto 1 do .
PATTERN{ ¢ £t [TOW, column] t= PATTERN(row,column);

{ Once all these rows have been moved to the left
neighbour, then the current processor will simply
sit idle until such time that the entire pattern has
been reassembled in the first processor, and the
first processor has terminated the algorithm. )

done_gflagieft = TRUE; % _
repeat . . ' '

! - until FOREVER;. .
Ve ] end; : . , .. ' " °
end; , -
¥ ) )
}\
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In this section, we will informaliy show that the
modified SPTA satisfies the refinement proposed by Hilditch
[13), ie., that ou;" modified SPTA deletes exactly one layer
of border points per iteration. To do this it will be
s\;fficient to show‘ that our edgepoint ‘,(detection\ operation
satisfies this hrefinement. This condition is sufficient,
since only tﬁose point_s which are designated as edgepoints

are eligible for deletion. .. -

As was shown in Fiéure 'II.7, a. dark point p is .
deteimined to be an e;lgepoint if it satisfies the following
criterion: )

‘A dark point p is defined to be a left edgepoint if its

neighbour n[{0] has a value less than (i- MAXINT), where

- !

i is the current pass number.

Similar criteria define top, right, and bottom 'ed'gepoints

using neighbours'n[ZJ, n{4], and n[6] respectively.

As can be seen from Table II.1, . a point is only
considered to be an edgepoint if at 1least éne of its 4-
neighbours was either an original white point, or a point
that was deleted during a previous pass. Therefore all

points deéignated as edgepoints satisfy Hilditch's refinement

-

b



_since they were all edgepoints .at the beginning of the

’ cyrrent pass.

Although the SPTA is not a parallel algorithm in the
sense that the new value of a point at pass number i can be
determined entirely from the values obtained during pass
number i-1, it does sgtisfy"hilditch's refinement on a
multiprocessor imglementatigni ‘ Furthermore, " the skeletons
producedo;re of good quality, that is they are of unit width,‘
do ~not suffer from excessive erosion, preserve the
connectedﬂess of the original pattern, and cdntain\sufficient
information for the reconstruction of the original pattern.
For our particular iﬁplementations the algorithm is not
requiréd to be parallel since all points in the fattérn are

not processed in paralle].

For the function decomposition implementation, a
sequential thinning alga>1thm is sufficient, since each scan’

is still performed sequentially on each rov’bf the pattern.

For the data decomposition implementation, all points
within a given réw are still evaluated sequentially. However
it is possible that éoints in adjacent rows-are evaluated in
parallel. This results in éroducing skeletons which are not

necessarily unique as the number of processors varies.
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quality.

-

However, In each case the skeleton produced is of 'good

N -

However to show that the SPTA can’ be implemented as a
par‘allel algorithm, we have given in Chapter V1, a proposed
implementation on the Connection Machine. The 'Connection-

Machine has an ‘a\rchitegture that will allow each point in the

* pattern to be processed in parallel. A

/
-




Chapter V N

Experimental 'Results and Discussion

)
N

The one processor modified SPTA and the multiprocessor
implementations of the modified SPTA were tested on" a data
set of 216 patterns. The patterns were digitized from hand

written characters 'A' to 'Z' and '0' to '9'.‘ The avoraa‘a

size of a pattern .was 20 rows and 16 columns, with. the -

maximum size being 27 rows and 32 columns. The.characters
were hand printed by different students at Concordia

University, Montreal and weire qigit;ized by an ECRM 5200- auto

&

! »
reader. ’ ' _ ( , ‘ :

A simulator for the HMP {21] was available to us on a

VAX 11/780. - It simulated an, rm‘p lwith‘ the following

 resources: . 1) Up to 64 8MHz MCGBOdO processors, and 2) the

memory for each processor being limi%ted to 10K byte@ our

implementations of the SPTA on the. HMP’ were coded in 'MC68000
x;n/

asse language [19], the coding being intuitively as

-

efficient’as possible.

3



ts for the Modifie ’ ) | ,

: To begin with,}we. implemented. the SPTA on a single

@

rocessor as proposed by Naccache et al. [24] and the SPTA as
¢
v mgdified by us. The average number of scans t? skeletonlge a’
-~ \ — pattetn was 6.81 for the original SPTA and ~4.88 for our
N % modified SPTA. Thus on‘ averagé, the modified SPTA executes A
Lo ' - : : ‘ .
L ' b " -
' 1.93 fewer scans per pattern. fable V.1l shows the results
" . for the original SPTA and the modified SPTA. Méasuring time -
. " . -
-*  in machine cycles, we found our modified SPTA to be 25 )
pércent fa‘stef than the origi’nal."'SPTA. Thus in alMy further
N ,
dis;:ussions about results, when we* talk about the SPTA, we
4 - mean the modified, SPTA. ’
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Table V.1.
The average number of scans and passes required by the ’
& v original SPTA and the modified SPTA. The modified SPTA
) -~ " requires approximately®two fewer scans per pattern than ,
does the original SPTA. . . . e -
C the average the avera L
-, "Algorithm. | number of scans umber of pisses
\ . per pattern per pattern
' . & ’ / \
SPTA 6.81 " 3.69 ,
! : - ’
Modified SpTA . 4.88 . 2.71 ,
- .
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s :
Table V.2 shows the average time to process a single

pattern under the data decomposition and function
decomposition implementations with varying number of
processors. For visual clarity, the results from Table V.2

have been plo‘tted in Figure V.1.

Let us first consider the function decomposition
' A8

implementat’ion. We noticed that with two processors, the

.

algorithm slowed down l:y~ 14.7 percent as compared to one’

processor. This is mainly because the pattern oscillates

between the \memories of the first and second processors; each
oscillation increases the overhead as the end processor stops
the ‘pipelin'ing to reverse the direction of the pattern
movement. The function decomposition implementation
perforr:2d best with six processors when it was found to be 34

percent faster than the one processor SPTA. This kind of

§ implementation performs the fastest. when a pattern is

skeletonized in one pipeline movement froﬁ.\p():ocessor Pl to Pp
without hav1ng to reverse directions. When the number of
processors is larger than the number of scans required to
skeletonize a pattern, then the processors towards the end of
the pipeline are not required’ for the skeletonization.
Nevertheless, the pattern is pipelined through their

memories, causing increased overhead, and thus slowing down

&
A

-,
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the SPTA. This is confirmed by Figure V.1, where the
function ‘- decomposition SPTA slows down when the number of

processors increases beyond six.
’
We now considepthe daf;q decomposition implementation.
As Figure V.1 shows, the implementation became faster with an
increase in the number of processors: for example with 8
processors theée speed up is 66.2 percent when compared to one

processor. A larger' speed up was not obtained for the

I

following two reasons :

h a) the size of: the patterns is relatively small,
therefore ,the size of the .segments that each
processor was assigned did not significantly

.;‘ docrease as mor5~pr:cessors were added.

b) the overhead for.distributiqg the pattern from the

" first processor to the remaining processors increased

-ﬁs the number of pfgcessors increased. v
' ¥

The data décomposition is faster than the function
éecomposition mainly becamse the former requires less
moveme;t of the pattern from onL memory to zmot:he):.l -For the
same number of processors the data decomposition is about {5

‘percent “faster than the function detomposition.




Table V.2.

) ! ! ' .
Experimental results. The time for one processor was
197,414 machine cycles. ' ‘

Average Time in Machine Cycles per Pattern
Number of
_Processors | Data Decomposition | Function Decomposition
l Implementation Implementation
2 129,636 226,502
3 102,904 - - 185,547
4 88,334 . 160,960
5 79,738 ) 133,976
6 74,505 . 1303314 ¢
7 69,637 132,084
8 66,754 136,955 .
.9 - 65,400 ) 141,936 -~
~10 ’ 63,685 . - 146,862
11 62,612 151,811
12 - 61,865 . 156,705
13 . " 60,934 161,687
14- » 60,269 . 166,646 ) -
15 N 59,947 171,613
¢
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Figure V.1. Plots of the average time taken (in machine
cycles) per pattern versus the number of:
processors for the Data Decomposition (x's) -
and the Function Decomposition (+'s) -
- implementations of the SPTA. The time for the

one processor SPTA is also shown above.
x : {



1 4

e pr’obJ:em 'being solved). Thus a collection of processors can

)
+ Chapter V1 °

- Wplementation ‘on the Connection Machine

/f
P ) . *
VI.1l. Description of the Connection Machine
. ' o

computer, where each point in the pattern can be e\;aluateq in

parallel, we present an implementation of the SPTA on the

Connection Machine [14] and [15]. The Connection Mach.ine was
chqsen because it is an SIMD computer tr;a£ is well suited for
image processing- applications. It contains a host computer
and 64K procéssors. The host computer broadcasts
instructions and sen'él‘s data to all 64K 'processors. Each
processor has its ow;m memoyxy consisting of 512 bytes. Figure

;s . ‘ »
VI.1 shows a simplified view of the architecture of the«

Connection Machine. The processors are connected using an n-

cube architectuz;e. See F\igare III.3 for an illustration of
n-cubes of order 2 apd 3.: Thus each processor has 16'
connections. Conceptually however, the connections are
programmable (that 'is, from a progfanﬁnérs point of view, the
connections can be arranged to: meet the requirements of the

A

be conceptually viewed as a data structuré;
¥ v
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Figure VI.1.
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A simplified view of the architecture of the
Connection Machine.
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, ) : .
We here propose an implementation of the SPTA for the

-»

Connection Machine. ~ Each point in the pattern will be

assigned to a separate processor. The processors, will

conceptually be connected into a square grid, w:ltl_x1 each -

processor:' having access to its 8 neighbouring brocessorg.
Since each point is being evaltclated in parallel, a pass is
sub-divided into four scans. Each scans tests for one\type
of edgepoint. The algorithm. terminates when n passes have
been completed, where n is equal to the larger of Lo
‘1) half the height of the patf.ern, or

2) half the width of the pattern.

. 83
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Pseudo Code for the Connection: Machine Imp}ehentat{on.

procedure CONNECTION_MACHINE_SPTA(var PATTERN : pat_type):

const
MAXPASS = MAX (MAXROW/Z , MAXCOLUMN/2); -
{ Is the» maximum number of passes that would be
" required to skeletonize a pattern. )
, . !

begin

INIT_CONNECTION_MACHINE; '
{ Initialize ‘each processor so that‘'it contains only
one point of the pattern. )}

{ A maximum number of passes are executéd on the

pattern to guarantee that the terminating criteria
have been satisfied. )

for i := 1 to MAXPASS do
for border := 0 to 6 step 3 do

{ For each type of edgépoint, load the 8-neighbours
of the point p into local memory. The execute one , .
scan on the point p. )

{ Each type of edgepoint (right, top, left, and
bottom), must be processed independently since all
‘'points within the pattern are processed in
parallel. ) Y

begin '
GET_NEIGHBOURS; S
PROCESS (border) ;

end; .

end;

&
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rocedure GET_NEIGHBOURS; . /
egin : :

ok ) . ) .
) for k := 0 to 7 do “ N '

MOVE(p, k) ;
. ‘ ‘ ‘ o U . .

{ Move the value of the point p to the processor
containing the point n{k]. Each processor will
move the value of its own point to the 8 .
processors that contain the neighbours of p. Thus

N each processor will have the value of- its point p

and the values of its 8-neighbours. )

end;

procedure PROCESS (border : border_type):
begin .

{ If the point p is a dark point and an edgepoint,
then x is TRUE, o_therwise x is FALSE. ) .

X := DARK(p) and WHITE (n[border)):

: { If the point p is a safepoint, then y is TRUE,
g otherwise y is FALSE. } .

Yy := SAFEPOINT(n,border);

if x and y -~ :
then p :=1i (p is a safepoint )
‘else
b
if x ' . 2 ) /
400 then p := i - MAXINT; { p is"a flagged point } .
end;



vVI.3. xpected Results o

Implementation

Although we- did not have access to a Connection Machine
[14], we conjecture that our implementaflon on the Connection
‘Machine will éxecute in a time that is equal to fhe time
required to process a sinqle point times the numﬁer'of pas§93/
required to complete the algorithm.

|

Since the Connection. Machine is an SIMD computer, the
’ ¢
time required to process one complete pass over the entire
'pattern is approximately equal to the time required to

process one pass on a single point.

The maximum number of passes required is ideally equal
to one half the maximum width of the pattern (that is one
half of the largest diameter of any liﬁe segment \in the
pattern). Rather than spend time calculating this value, we
have chosen to usé an upper bound. Tﬁis upper bound is equal
to one half of the larger of either the height of the pattern
or the width of the p;tterdf(that is one half of the maximum
dimension of the pattern). Since this’ implementation
requires four scans per pass, the time required to execute
the aigorithm on a pattern will be proportional to four times

this upper bound. i
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Chapter VII

“ canluding Remarks

VII.1l. Conclusion

p

In tpis thésis, we proposed a modification to the SPTA.
With the modification, the SPTAf;gxecutes fewer scans to
skeletonize a pattern, thus speeding it up. We then reviewed
some thinning algorithms that have been implgmented on
multiprocessors. In order to further speed up the SPTA, we
adapted the modified SPTA to be implemented on the
Homogeneous Multiprocessor .Proper' using data deczypositionl
And - function decomposition. The data '~ decomposition
implementation achieved a speed up of 66 percenf as compared
with the single processor implementation. The data
decomposition implementation is also faster than the
function decomposition implementation. Since the Homogeneous
Multiprocessor is an MIMD machine with a maximum of 64
processors, a fully parallel algorithm where each point is
evaluated in parallel cannot be used. Thereforé in order to
~show that the SPTA can also be modified for such an
environment, we proposed an implementation on the cOnnecéion

Machine. We conjecture that the implementation on the

Connection  Machine will further speed up the SPTA.
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VII.2. Possible Future Work

‘When the actual hardware becomes availablé, our

4

implémentations of ‘the modified SPTA can be tested on a

prototype of the Homogenequs‘ Multiprocessor.' Thus .the.

results that “we have obtained through simulations éould be

»

verified.

o

’

Connection Machine could also be te gg;uon the actual

. hardware. Work could be done to reduce the number of scans

per pass from four to-two for this impleméntation‘to‘furéher

speed it up.

With the inpreasiqg availability of multiprocessers and

algorithms designed to better utilize them, the doors will '

be opeﬁéd up for many image processing applications which are

currently . not feasible. * Many of these applications will

reéuire a thinning algorf%hm. We believe that our modified

SPTA will be well suited for these types of implementations.

'

,The _ proposed \implementation loigtthe“SPTA on thé ’

" Work' could be done to incorporate the modified SPTA*intd such

" an environment. Furthermore, to increase its range of

' ! o = ¢
possible applications, the modified SPTA cé&@d be extended to.

handle multi-grey level patterns. g
/4 5 ’
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