STATE SPACE ESTIMATION AND DISTRIBUTED
PREDICATE DETECTION

MARIA JANTO

A THLSIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER IN COMPUTER SCIENCE
CoONCHRDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JUNE 1996
(© MARIA JANTO, 1996

Bl o

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisttions et

Bibliographic Services Branch des services bibliographiques

395 Wellinglon Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welli ygton
Ottawa (Ontano)

Your lile Volre référence

Our tle Nolre rélérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protéege sa
thése. Ni la thése ni des exiraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18406-4

Canada

Abstract
State Space Estimation and Distributed Predicate Detection

Maria Janto

General predicate detection is a fundamental problem in the design, coding, testing

and debugging of distributed programs.

A distributed system formed of communicating sequential processes has a global state
space that grows exponentially with the degree of concurrency in the execution. This
makes program analysis and debugging difficult. A distributed predicate defined on
the local states of the processes is often useful in capturing the safety [correctness]
requirements of a given system. The complexity of detecting distributed predicates
is often linked with the size of the global state space. This thesis attempts to address
the issuc of size of global state space and the complexity of distributed predicate

detection, and proposes some strategies to deal with the problem in practice.

Algorithms for estimating the size of the global state space of an observed execu-
tion are proposed. Special cases where the size of the global state space is guaranteed

to be determinable ju polynomial time are identified.
In addition, a detection method is introduced for some simple form of distributed

predicates, and a useful strategy is proposed to deal with distributed predicate de-

tection in general. Some experimental results are also presented.

iii

THIS THESIS IS DEDICATED TO
MY HUSBAND,

ELMER CAESAR

v

A cknowledgments

[wish to express my sincere gratitude to my supervisor Dr. H.F. Li for his advise
and guidance given me throughout the last two years. He also helped me to acquire
the proper approach for problem solving. His support and patience were invaluable

in the preparation of this thesis.

I would like to confirm my appreciation within my close family here, to Chad Lo-
even and Melodie Sullivan for their example and encouragement during my studies

at Concordia.

[also like to take this opportunity to thank my friends, Judit Barki, Uyentrang
Hoang Nguyen, Joanna Sienkiewicz, and Kim Duong for their generous support and

encouragement.

Furthermore some other very special people in my life also supported and encouraged
me during the past two ycars. I would like to thank my sister Ilona Fekete for her

unconditional love, and John Nemeth and Giselle Baron for their sincere friendship.

Contents

List of Figures

List of Tables

1 Introduction

2 Background and Related work

2.1 Background on distributed predicate detection
2.1.1 Detection of distributed predicates
2.1.2 Some detection Strategies

22 Relatedworks L
2.2.1 Chandy-Lamport and Mattern: Distributed Snapshots
2.2.2 Cooper-Marzullo: General distributed predicate detection . . .
2.2.3 Vanketasan and Dathan
2.24 Garg-Waldecker, and Garg-Chase
2.2.5 Raynal: Inevitable global states
2.2.6 Haban-Weigel and Miller-Choi
2.2.7 H. Segel: Monitoring Distributed Systems
2.2.8 Babaouglu-Raynal: Specification and Verification of Dynamic

Properties e

2.3 The contribution of our work L.

24 Conclusion. e e e

3 Global State Space Estimation.

3.1 Introduction e e e

vi

ix

xi

10
11
11
13

13
14

17

3.2 Model of a Distributed Memory System

3.3 State Estimation o oo
3.3.1 Computing the Exact Number of States
3.3.2 Upper Bound Estimation.
3.3.3 Lower Bound Istimation

34 Summary e

Easy cases

4.1 Lincar Array. e e e e e

42 Ring e
421 SimpleRing
4.2.2 Chordal Ringofdegreed
4.2.3 Chordal Ringof degree4

43 Binary Tree e e e

44 Conclusion L e e

Distributed Predicate Detection.

5.1 Introduction.
5.1.1 Distributed predicates
512 Complexity

5.2 Application to Distributed Predicate Detection.
5.2.1 Direct Application
5.2.2 Direct application with reasonable complexity increase
5.2.3 Indirect Application

53 Summary e e e e

The design of the algorithms

6.1 Virtual time, global clock.
6.11 VectorClock
6.1.2 Using Vector Clockinour Model

6.2 Thealgorithms
6.2.1 The algorithm for global state counting
6.2.2 The algorithm for upper bound estimation
6.2.3 The algorithm for lower bound estimation

6.2.4 The algorithm for the detection of a simple predicate

vil

.....

.....

.....

.....

.....

.....

.....

21

&

21
29
32

38

39

40
41
41
41
41
44

45
45
46
47
49
49
52
54
57

6.3 Summary

7 Experimental results

.................................

7.1 The calculation of the value of II

7.2 Matrix factoring

7.3 The Hirschberg and Sinclair elective algorithm

7.4 Conclusion

8 Concluding Remarks
8.1 Conclusion

8.2 Suggested further work

Bibliography

.................................

.................................

viii

....................

.............

82
83
84
86
838

89
89
91

92

List of Figures

00 N & Ut oW =

B BN DD DD BN DN DD e e e et b e e s e e (O
(= T < 1 B - N o == VR o s B > S o) S U =]

Space - Time Diagram. 0 oo
Corresponding Consistency Diagram.

Cut satisfying ab’ede’.o o000
GiofGinFigure 3.

Regions in GG and the label forsy. . . 0. o o o oo o0 oo oL
Regionsin Ga. o o 0 e
Regionsin G3. o 0 i e
Regionsin Gy 0 o o o e
Original G. e
G’ with removal of edges crossing more than one levelin G.
G” with removal of edges crossing more than two levels in G.
Original G. e
Gistransformedinto G’. L oL oo
Irreplaceable s;j = siqakin G. . o o o o Lo oo
G’ is not a consistent graph.0 L
G’ augmented with an additional node.
Linear Array and SimpleRing.
Chordal Rings. i
Binary Tree with 31 nodes. (Possible edges are exemplified above.)

Systemwith 2% cuts.
Detectingab’ed oL L L
Detecting 2y =22 =a23=24=9.,
Detecting o1 + 22+ 23424 >10.o L oL
Detecting® =DP,VDP,. i e
Detecting ® = DP,V DP, = d'bedVabled.

ix

19

28

48

53

27
28
29
30
31
32
33
34
35

Vector clock values in a Consistency Diagram.0 Gl
T 65
Augmentation of GG,_; with edge (sikySpn). - v o o v o o oo o oo L 66
Gy (afteriteration 1).o o o o 69
Gy (afteriteration2). 70
Partitions in G,. v o o i e e e e e e 73
G e e e e e e e 76
Advancing prefix P after replacing edge (sm,sn). - o 00 o oo 7
G e e e 8

List of Tables

© P~ S LT e W N —

—_ -
N = O

Algorithm ExactStates. 0. 63
Algorithm Partition. o 0oL 64
Algorithm Augmentation. 75
Exact number of cuts for calculating IT. 84
Lower bound estimation for calculating IT. 84
Upper bound estimation for calculating IT. 84
Exact number of «ats for Matrix factoring. 85
Lower bound estimation for Matrix factoring. 86
Upper bound estimation for Matrix factoring. 86
Exact number of cuts computed for Election. 87
Lower bound estimation for Election. 87
Upper bound estimation for Election. 88

xi

Chapter 1

Introduction

1.1 Problem Context

In the development process, it is often required to know whether for a distributed
computation a certain property holds or not. Propertics are characterized as dis-

tributed predicates which are evaluated on global states.

The class of distributed systems considered here are those that are asynchronous
and communicate via messages with finitc but unpredictable delay. In this type of
systems, processes operate according to local clocks: a global version of time is not
available. Synchronization occurs through message passing rather than through the

use of shared memory.

An important application domain for global predicates is the ficld of testing and
debugging. Testing and debugging programs are more involved in distributed sys-
tems than in uniprocessor systems because of the presence of the communication

medium and the inherent concurrency.

Before debugging a program can proceed, it is necessary to discover an crror. A
program is considered to be in error when some state of the exccution violates the
safety requirements [correctness] of the system. When a state of the computation
violates safety requirements (expressed as general distributed predicates), then the

program is said to be in error. However, checking whether a general predicate is true

in a particular distributed execution may invoke exponential cost.

Generally, the difficulty dealing with distributed predicate detection stems from two

factors:

1. a distributed systemn has a global state space that grows exponentially with the

degree of concurrency in the execution, and
2. the nature of the distributed predicate involved.

These factors interact to make some cases truly difficult as discussed in this thesis.

Furthermore, it is a challenge to understand the behavior of a distributed program,
since there is a lack of adequate tools for the design and analysis. The reason ‘or this
is the complexity inherent to the causality structure, which leads to tool designs dom-
inated by efficiency considerations. Although there are some useful tools to help the
development process (e.g., vector clock mechanism to identify whether two actions in
a distributed computation are concurrent or causally dependent), there is a need for
more. For example, it would be useful in supporting the development of distributed
systems, to detect if the analysis could be handled within the practical space and
time constraint of the development environment. In other words, by knowing the size
of the state space, one could proceed to decide if distributed predicate detection is
practicable in a given situation. Tnerefore, in this thesis we provide a tool which

could help the user to estimate the size of the state space for a distributed program.

1.2 Organization of the thesis

In Chapter 2 we give a general view of the direction and the related problems of
distributed predicate detection. Also, the most common detection strategies are re-
viewed. In Chapter 3 we describe a model for a Distributed Memory. An algorithm
is presented to compute the size of the state space for an arbitrary distributed execu-
tion. Also an upper and a lower bound estimation strategy is proposed with different
accuracy-complexity level. Chapter 4 presents several cases (according to the topol-

ogy of communication between processes) where the exact number of states ca» be

computed ensily. In Chapter 5, we address the factors that complicate distributed

predicate detection in gencral and sorie means to deal with them in practice. Based
on these results, in Chapter 6, th2 design of the abstract algorithms are presented
for the computation of the number of global states for a disttibuted execution. Some
experimental results are demonstrated in Chapter 7. Conclusions and suggestions for

fr.rther work are presented in Chapter 8.

Chapter 2

Background and Related work

2.1 Background on distributed predicate detec-
tion

Researchers have shown that a distributed program execution can be analyzed and
they have raised questions relating to its correctness answered by using the notion of
distributed predicates. They can be used to check that certain ’good events’ occur

and that certain ’bad events’ do not take place.

In this chapter we give a general view of the direction of distributed predicate de-
tection. The majority of the work reviewed here focuses on the related problems of
detecting distributed predicates. As illustrated here, some of the work considers the
detection of general types of predicates, and others focus mainly on the detection of
some special type: of predicates. Also, some of the more often used detection strate-

gies are reviewed.

2.1.1 Detection of distributed predicates

A predicate is considered to be either stable or unstable depending on its persistence
once satisfied. For the detection of stable predicates researchers have already devel-

oped efficient techniques. The recent focus is on the detection of unstable predicates.

Stable predicates:

A predicate is considered to be stable if it is once true in a global state then it
remains true in all future global states. In other words, il a stable predicate is true
in some global state of the computation, then it must be true in all global states
reachable from it. The case where the predicate is stable leads to particularly simple
and efficient solutions based on distributed snapshots [CL85, Mat93]. Being stable,
the predicate evaluating to be true in the snapshot state is sufficient for concluding
that it has been detected. The properties which could be detected safely by taking

snapshots, for example, are termination and deadlock detection.

Unstable predicates:

The value of these types of predicates alternates between true and false. Detection
of unstable predicates cannot be based on snapshots, even when they are applied re-
peatedly [Mat93]. No matter how frequently taken, a sequence of snapshots may give
gaps that correspond to exactly those global states in which the (unstable) predicate
holds. For example, when debugging a system one may wish to monitor the length of
two queues, and notify the user if the sum of the lengths is larger than some thresh-
old. If both queues are dynamically changing, then the predicate corresponding to
the desired condition is not stable. Thus, an entirely different approach is required

for the detection of such predicates.

Some of the researchers took the bigger task of detection of general predicates [CM91,
Seg93, BR95]. However, each of them ended up with the state explosion problem
present in a distributed execution. In other words, due to concurrency between events,
there may be an exponential number of global states existing for a single execution.
(The number of global states arz exponential in the number of processes). If the pred-
icate being detected requires to check satisfaction in each such global state, then in a
large system, the computational complexity of the algorithm becomes impracticable.
Therefore, some researchers considered a smaller task in order to reduce complexity:
some of them restrict the global predicate to those that can be efficiently detected,
such as conjunr.ion and disjunction of local predicates [GW92, GW94, GC95, VD95,
linked predicates [MC88], simple sequences [GW92, HW88], and atomic sequences

[MHR93]. In some of these cases the construction of the whole state space may be
avoided. Others reduce the cost of state traversal through heuristics that are depen-

dent on the property being detected [FR94].

2.1.2 Some detection Strategies

A detection algorithm can be ecither on-line or off-line. On-line technique is attrac-
tive, because all predicates are evaluated on the fly and re-execution or post-mortem
analysis hecome unnecessary. lowever, on-line detection may require delaying the
exccution of processes and introduce an unbearable probe cfect which distorts the
syitem’s hehavior. In fact, by blocking some pro-esses when the predicate becomes
potentially true, we may affect the system state trajectory. A strategy that evaluates
predicates after the execution is called off-line evaluation. By observing the process
during execution, event-traces are collected and the detection algorithm is applied
later. In this approach, a detection algorithm could even make use of the space-time
diagram corresponding to the execution. However, off-line detection may not be suit-

able for some application programs (i.e., real-time distributed systems).

Detection algorithms can be centralized or distributed and similarly as above, dif-
ferent approaches are suited to different applications. For example, in testing and
debugging it can be assumed that a facility for deterministic re-execution is avail-
able as proposed in [LMCS87]. In this context, a centralized algorithmn might be the
simplest solution. For fault-tolerance applications however a distributed detection

algorithm is preferable to ensure that the detection itself is fault tolerant.

The lack of global clock in asynchronous distributed systems means that obtaining an
instantaneous global state of the system is not possible. Implementing a virtual time
mechanism with vector clock permits information to be gathered for the extraction
of global state. It also permits a relatively efficient i nplementation of the predicate-

detection strategies.

2.2 Related works

2.2.1 Chandy-Lamport and Mattern: Distributed Snapshots

The algorithm presented in [CL85] constructs consistent global states for a distributed
execution. It is often called a ’snapshot’ protocol, since a snapshot initiator process
"takes pictures’ of the individual process sates. The algorithm assumes FIFO message
delivery. It works as follows: A coloring scheme is used to dclincate the 'instant’ of
the snapshot - if an event occurs before the snapshot, it is defined as white, if after,
then it is defined as red. A process initiating a snapshot turns red, saves its current
local state, and sends warning messages on every outgoing channel. On receipt of a
warning message, a process stays red, if it is already red; if it is white, it turns red,
records its current local state and sends warning message on every outgoing channel.
When all nodes in the system are red, the algorithm terminates. The local states
that have been recorded are consistent (no messages have been reccived before they
are sent because of the assumption of well-ordered message delivery) and form a con-

sistent view of the distributed system state.

If a predicate is locally decidable - the value of the expression can be dec d on
the basis of the state of a single process - then the snapshot algorithm can capture a
global state in which the predicate holds. The deciding process initiates the algorithm
immediately after detecting the satisfaction of the predicate and before sending any
application messages. However, if the predicate is not locally decidable, then a dis-
tributed snapshot is not a good means for detecting. If a process initiates a snapshot
each time its local element holds then there can be no guarantee that the global state
obtained by the snapshot algorithm will be a state at which the predicate holds, if,
indeed, the predicate ever held.

Mattern [Mat93] extended this method for repeated snapshots where the channels
do not deliver messages in FIFO order. While this approach can detect stable prop-
erties effectively, it does not work for an unstable predicate which may turn true only
between two snapshots and not at the time when the snapshot is taken. No matter
how frequently taken, a sequence of snapshots may have gaps that correspond to

exactly those global states in which the unstable predicate holds.

2.2.2 Cooper-Marzullo: General distributed predicate de-

tection

They considered the set of all global states which could be generated by a distributed
computation and the sct of all possible sequential executions that can be associated
with this computation. These executions - usually called observations - structure the
set of all global states as a lattice. A path in the lattice is a sequence of global states
of increasing level, where the level between any two successive elements differs by
one. By construction, each such path corresponds to a possible sequence of ordered
observations. Thus the lattice of global states effectively represents the set of all
possible observations of the computation.

They defined a general predicate (®) over a set of observations as follows:

e Possibly(®): There exists a consistent observation O of the computation such
that @ holds in a global state of O.

e Definitely(®): For every consistent observations O of the computation, there

exists a global state of O in which @ holds.

In other words, if (®) represents an error condition, then Possibly(®) represents a
possible occurrence of an error. As for Definitely(®), (®)represents something good
that we desire to be true irrespective of the actual progress of the execution.
Note that the ahove definition of Possibly(®) and Defir.itely(®) have been called weak
and strong formulas, respectively by Garg and Waldecker in[GW92, GW34).

In the detection algorithms for Possibly(®) or Definitely(®) they built the lattice of
global states and then traversed it to look for one global state (in case of Possibly(®))
or one global state per observation (in case of Definitely(®)) satisfying the general
distributed predicate. They used an on-line construction of the lattice. However, as
in the worst case, the size of the lattice can be exponential in the number of processes,

so this approach can become infeasible in practice.

2.2.3 Vanketasan and Dathan

Vanketasan and Dathan [VD95] considered testing a given exccution for the pies-
ence of errors without explicitly considering each possible global states in the lattice.
They considered to dctect a class of distributed predicates, such as conjunctive form
of predicate. In addition to Possibly(®) and Definitely(®), they detect First(®) and
Last(®) too, where (®) is in the form & = LC; A ... ALC; A ... A LC,,. Similarly as
in [Seg93], they made use of the fact that a predicate value may hold over a subsct
of global state space, and there are two global states which are unique in this set:

where (@) becomes true in the first time, and where (@) becornes true in the last time.

Vanketasan and Dathan presented two distributed algorithms. One is for the de-
tection of Possibly(®), and the other for the detection of Definitely(®). Interestingly,
their algorithm fer Possibly(®) is able to detect First(®) too. They proposed that
the detection of Last(®) can make use of the algorithm for Possibly(®) with some
modifications. In the algorithms, they used the advantage of the conjunctive form
of predicates: that each process i can perform an independent evaluation of the sub-
expression LC; at every event in P, without communicating to any other process.
This gives a set of spectrum on each P; where LC, is true. Then they analyzed dis-
tributively the spectrum at all processes to check the distributed predicate. Their
algorithms are fully distributed, so all processes execute the same algorithm. How-
ever, message delivery is assumed to be FIFQ in order to make sure that the deduced

global states are consistent.

They have also give a description of an algorithm for the detection of Always(®).
They defined Always(®) to be true, if ® holds in every consistent cut. The algorithm
is as simple as follows: each process i evaluates LC. If after some event in process i
LC; is evaluated to false, then Always(®) is false; otherwise it is true. In this case ¢

may be an invariant.

2.2.4 Garg-Waldecker, and Garg-Chase

To avoid the problem of combinatorial explosion of the states, Garg and Waldecker
[GW92, GWY4] focused on detection of predicates belonging to a class that they be-
lieved captures a large subset of predicates interesting to the programmer. They con-
sidered Possibly(®) and Definitely(®) (they called them weak conjunctive predicates
and strong conjunctive predicates respectively) where (®) is restricted to conjunc-
tive predicates with each conjunct involving variables of no more than one process.
Their detection algorithms for Possibly(®) and Definitely(®) were centralized and
used vector clocks. Each participating process sends the vector clocks of its events
during which (®) is locally satisfied to a checher process. The checker process receives
the clock values of the events and finds a consistent cut where (®) holds. They per-

form an on-line evaluation of the predicates.

While Garg and Waldecker detected conjunctive predicates based on a centralized
checker process, in [GC95] a token based algorithm presented, which distributes the
computation and space requirements of the detection procedure. The main idea of
their algorithy : is as follows: The toiven carries in it a candidate global cut in which
the desired global predicate could be true. A global cut consists of states from each of
the processes such that local predicates are true in those states. If such a global state
is also consistent, then the predicate is true. This check of consistency is performed by
the process holding the token. If the process finds that the cut is consistent, then the
global predicate is detected; otherwise the token is sent to the process which violates
the consistency condition on the global cut. This process identifies a new candidate
cut by replacing the state from this process with a local successor. The process will
then check for consistency conditions again. To uniquely identify a state, a vector
clock mechanism is used. Their algorithm works in an on-line fashion.

They also presented another distributed algorithm which permits greater concurrency
in the algorithm for detection of a conjunctive distributed predicate, where multiple
tokens are used. This algorithm does not use vector clocks, instead, it uses direct
dependencies for identifying a desired state. Since the distribution of work is more
equitable than in the centralized algorithm, their algorithm is somewhat more effi-
cient than the previous algorithms presented in [GW92, GW94].

10

2.2.5 Raynal: Inevitable global states

In this work the cost of lattice traversal is avoided through heuristics that are depen-
dent on the property being detected. They detected the satisfaction of a predicate
by checking it in the so called inevitable global states. They called a global state
inevitable if it is shared by all the observations of the computation.

They defined the computation at some abstraction level: they called it 'predicate’ or
'user’s level’. At this abstraction level only relevant variables can be observed. Usirg
this abstraction they defined weak or strong precedence relations on local states as

the basis for identifying the necessary and sufficient conditions for a global state being

inevitable.

In this context, a distributed computation satisfies the property & il and only if
there exists an inevitable global state satislying ®. They provided an algorithm for
identifying these global states by using vector clock values of local states by adopting

one of the algorithms defined by Garg and Waldecker.

It should be noted that their algorithm does not detect Definitely(®), since with
incomplete explorations of the lattice structure (i.e, checking the satisfaction of the
predicate only in a state which is shared by all process), detection of Definitely ()

would take only probabilistic interpretations.

Although the applications where their work could be useful is limited, it is nseful
in checkpointing; since inevitable global states have necessarily been passed through

by the actual computation.

2.2.6 Haban-Weigel and Miller-Choi

While predicates, (stable or not) over a single global state arc able to capture many
interesting system properties they inherently lack notions of logical time or relative
order. In order to characterize dynamic properties and bchavioral patterns of dis-
tributed computations, predicate specifications must be extended to include a tem-

poral component. In other words, specifying and verifying dynami > properties require

11

reasoning about sequences, rather than single instances of global predicates. Such pro-
posal is due to Miller and Choi [MC88] and Haban and Weigel [HW88].

Miller and Choi [MC88] defined Simple and Disjunctive Predicates and Linked Sim-
ple Predicates. Algorithms based on the distributed snapshot algorithm are provided
for halting in a state at which a predicate holds. Conjunctive predicates are de-
fined, but no algorithms for their detection are provided. The significance of their
work is that they have introduced an algorithm to detect "linked predicates’ in which

the event ordering can be specified. Their algorithm can not detect concurrent events.

Based on the work in [MC88], in Haban and Weigel’s work [HW88] the goal was
to define distributed predicates, detect and halt. They defined the same types of
predicates that were considered by Miller and Choi, but somewhat in more detail.
For detection, the predicate is broken down over a binary tree, where the leaves of the
tree are Simple Predicates and the root is the value of the whole predicate expression.
Detection algorithms are provided as part of a complete debugger architecture. For
non-locally decidable predicates such as conjunctive predicates, a halting algorithm
is provided, but the authors recognized that yielding a state in which the predicate
holds, can not be guaranteed. To compensate for this, a local trace facility is provided

that records the local states in which Simple Predicates are held.

The work provided in [MHR93] is an extension of Miller-Choi’s and Haban-Weigel's
research work. The authors generalized the predicate to a little bit more general
form: atomic sequence of predicates. Here some events can be forbidden between
cach pair of consecutive relevant events. They described global properties by causal
composition of local predicates augmented with atomicity constraints. These con-
straints specify forbidden properties, whose occurrences invalidate causal sequences.
They propose a distributed algorithm to detect their occurrences. Their detection
algorithms are superimposed on the distributed computation and use a simple piggy-

backing technique to ensure consistency of the detection.

12

2.2.7 H. Segel: Monitoring Distributed Systems

In [Seg93] a predicate logic that permits the specification of relationships between
distributed predicates is proposed. In other words, a model is presented that permits
direct specification of fundamental safety operators; (an operator is considered fun-
damental if some safety property cannot be expressed without it). The significance
of their work is the idea of direct specification of safety properties which permits
monitoring of programs for satisfaction or violation of safety requirements, facilitat-
ing the detection of error in distributed program testing. The proposed logic also
permits the specification of safety primitives such as P unless Q in UNITY [CMS8§]

using distributed predicates.

They were treating unstable predicates as non-atomic events: the predicate may
hold over a number of states, where the minimal and the maximal prefix where the
predicate is satisfied is uniquely identified. These states are specifiable as part of a

breakpoint definition in the logic presented.

Two detection algorithms were also presented in this work. Detecting satisfaction
of a predicate ensures that the property that the predicate expresses has been satis-
fied (similar to as Definitely(%)). This approach may require detecting the predicate
in all possible global states in an execution. The other algorithm is about the de-
tection of violation (Possibly(®)). They provide an efficient algorithin for answering
the question: Is there one state in which the predicate is satisfied? The detection
proceeds by just looking for the firsst occurrence of a predicate (they call it minimal
prefix) without considering all (later) possible global states. Thus the complexity of

the detection is a linear function of the number of instances of local predicates.

2.2.8 Babaouglu-Raynal: Specification and Verification of

Dynamic Properties

Babaouglu and Raynal [BR95] have explored Cooper and Marz~1llo’s work [CM9I1] to
which their approach could be extended to capture larger classes of properties, such

as dynamic aspects of distributed computation.

13

"They introduced two global predicate classes called simple sequences and interval con-
strained sequences for specifying desirable states in some causality-preserving order
along with intervening undesirable states as was proposed in [MC83, HW88, MHR93].
They considered sequences of global predicates by composing instances of the class of
Simple Predicates, where the term Simple Predicate corresponds to a boolean expres-
sion defined over a single global state. They called this extension as Simple Sequences.
In other words a sequence of global predicates is satisfied if each of the component
predicates hold in distinct global states of the observation and each such component
must be observed in an order consistent with the syntactic position of its respective
component predicate. They also define another predicate class, the so called interval-
constrained sequences for detecting the notion of atomicity. For instance, in terms of
observations, atomicity of distributed actions can be expressed as transforming one
global state to another with no intermediate global states that are observable. In
other words, the state in which the atomic action is applied and the resulting state

must be adjacent to each other.

Their approach to dynamic property detection consists of two concurrent activities:
that of constructing the lattice of consistent global states by monitoring the compu-
tation and that of evaluating the formulas by traversing this lattice. Therefore, the
overhead is about the same as for the algorithms used for the lattice construction in
[CM91]. The verification takes place at a rnonitor internal to the system and con-
currently with the actual computation. In other words, the detection proceeds in an

‘on-line’ fashion.

2.3 The contribution of our work

The goal of this thesis is motivated by the difficulties in distributed program analysis

and debugging.

In this thesis, we attempt to address the size of the global state space and the com-

plexity of distributed predicate detection in general. We observe that the complexity

14

may be attributed to not only to the size of the global state space, but to the nature
of the distributed predicate also. For instance, even il the size of the state space is
relatively small, there could be some types of predicates (e.g. the number of terms
in the given predicate is exponential in terms of the number of processes) where the

detection procedure would be computationally expensive.

An algorithm for estimating the size of the global state space of an observed exe-
cution is proposed. Computing the size of the state space could be considered as a
tool in supporting the development of a distributed program. Inother words, it could
be useful in deciding if the analysis could be handied within the practical space and

time constraints of the development environment.

Although some distributed predicate detection may involve exponential cost, some
practical systems may not exhibit such an intolerable complexity. This could be due
to the synchronization design of the distributed system where processes tend to com-
municate locally in the form of clusters or processes are tightly synchronized. In the
former case, the size of the state space is likely to be easily determinable. In the
latter case, the size of the state space is likely to be smaller. Weidentily some special
cases where the size of the global state space is guaranteed to be determinable in
polynomial time. This knowledge may be useful in the design and debugging of a
distributed system.

In addition, a detection method is introduced for some simple form of distributed
predicates, and a useful strategy is proposed to deal with distributed predicate de-

tection in general.

2.4 Conclusion

Analyzing a distributed programn and checking it against hchavioral propertics are
difficult topics. Most properties useful to the computer scientists interested in dis-
tributed program analysis refer to global states of distributed computations. Usually,

behavioral properties are specified as distributed predicates. Detecting the existence

15

of global states of a distributed system which satisfy a distributed predicate has been

studied in the literature of the last decade.

Research efforts have produced efficient results for evaluating stable properties. While
detecting unstable properties is notably more difficult than the case of stable ones,
since their occurrences are transient, many interesting results have been obtained re-
cently by researchers. The detection of some special type of predicates (conjunctive,
disjunctive, linked predic: tes, simple sequences, and atomic sequences) can be done
with reasonable cost. However, the detection of general types of distributed predi-

cates still remains unsolvable in polynomial time and space.

16

T

Chapter 3

Global State Space Estimation.

3.1 Introduction

Distributed predicates can be used to express the safety properties of a distributed
computation. A predicate is satisfied if the: ~ is one or more global states where the

predicate evaluates to true during execution.

Predicate values are meaningful only when they are evaluated on consistent global
staies. Often, the global «tates are identified by considering the causality relation-
ships hetween the objects (events, local states) of the system. A fundamental problem
in distributed computing is to ensure that a global state constructed in this manner

is meaningful.

Searching for satisfaction - © a predicate is sometimes expensive when it involves check-
ing at each global state reachable in an execution. Due to concurrency between events,
there may be an exponential number of global states existing for a single execution
(i.e., the number of global states are exponential in thec number of processes). Thus,
it would be useful to know * the detection could be handled within the practical
space and time constraint of the system. In other words, the computation of the size
of the state space could help the user to decide if distributed predicate detection is

practicable in a given situation or not.

17

In this chapter, we begin with the description of a model for a Distributed Mem-
ory System. Also, a Consistency Diagram is described to represent such systems. In
section 2, a labeling method is presented where the size of the state space is com-
puted for an arbitrary Consistency Diagram. In the following sections two estimation
strategies are proposed: onc which estimates an upper bound of the number of global
stales; followed by another estimation technique, which computes a lower bound on

the global state size.

3.2 Model of a Distributed Memory System

A distributed system consists of a set of communicating processes each of which owns
its local variables. The local state of a process is given by the values of its local
variables. The local variables of all processes together form a distributed memory
and their values form the global state of the distributed memory system. Interprocess
communication is the medium through which processes synchronize in their change
of local states. A space-time view of the distributed memory system is shown in

Figure 1. An event in a process depicts one of three possibilities:
1. an internal change of state to s;; [the j'! state of process i,
2. a sending of a message, or
3. a receiving of a message.

In this model, the state of a channel is not part of the distributed memory state.
However, it is possible that the local state of a process also accounts for the sending
or receiving of messages. In such a case, the state of a channel is deducible from the
global state formed from the local states of the processes. For example, if the local
state of process 1 is after it has sent two messages to process 2 while that of process 2
is after it has received only one message from process 1, then there will be a message

in transit from process 1 to process 2.

The set of global states of a distribution computation represented by a space-time
diagram is given by the set of consistent cuts [CL85, Mat89], in the diagram. A

consistent cut partitions the space-time diagram into two parts such that no reverse

18

P
3
P,
Pl
Figure 1: Space - Time Diagram.
Sy Sy2
v @&—@
S,
P, @
S _--"7
P, ;@’
!

Figure 2: Corresponding Consistency Diagram.

19

[causal] edge is aliowed to point from the second [future] partition to the first [past]
partition [Mat89], for example, C; in Figure 1. An inconsistent cut is one where a re-
verse edge exists, depicting the causal dependence of some past event on some future
event yet to happen, as exemplified by C; in the Figure. The number of consistent

cuts in Figure 1 is equal to 10.

In this thesis, a slightly refined model is proposed to represent the distributed mem-
ory system. The space-time view representing explicit causal dependence between
events is replaced by a Consistency Diagram. Figure 2 represents the Consistency
Diagram corresponding to the space-time diagram in Figure 1. In a consistency dia-
gram, nodes represent local states and directed edges represent inconsistency between
the connected local states. Thus, the existence of a path from s;, to s;, means that
8,, and s,, are inconsistent local states: they cannot coexist in any global state of
the given system. In the corresponding space-time diagram, this would mean that a
later event than s;, causally happens before s;,; process i must have changed its local
state beyond s;, when process j reaches s,,. In the rest of this thesis, event and local

state are synonymous terms.

Formally, a Consistency Diagram is a directed acyclic graph G = (N,A) where N
= {s;; | s,; is the j** local state of process i}, and A = {(siu, Sju) | Siu has elapsed
in process i before s;, is reached in process j}. Usually, A is represented in the tran-
sitively reduced form, i.e., a path from s;, to sj, in G [written as s,, —* s;,,] also
depicts the same relation as a directed edge from s;, to sjy [, — 3ju]. A consistent
cut C in G is a subset of nodes in N which includes exactly one local state of each
process such that sy, s,, in C implies that neither s;, =~ sj, nor s;, —* s;, [written
as Siy || 8j»]- In other words, any two local states contained in C must be consistent.
As an example, the cut C in Figure 2 is consistent. The following property is imme-

diate from the definition:

Property of a Consistent Cut:

A consistent cut forms a consistent global state of the distributed memory system.

As an illustration of the application of consistency diagram to distributed predicate

detection, consider the simple example shown in Figure 3 where each process state is

20

a’

Figure 3: Cut satisfying ab’cde’.

represented by a single boolean variable. Suppose one wishes to detect the existence
of a global state in which the predicate ab’cde’ is true. This corresponds to finding
a consistent cut in the consistency diagram where the relevant processes are at local

states a, b’, c, d, and e’ respectively. C in Figure 3 is one such cut.

3.3 State Estimation

In this section, we explore an algorithm for computing the number of cuts in a given
consistency diagram, followed by an efficient algorithm for estimating an upper and
lower bound to the same number. By computing these numbers, a user may be guided

to choose among various alternatives in his development process.

3.3.1 Computing the Exact Number of States

The computation procedure presented here involves successive iterations of a sequence
of subgraphs of the given consistency diagram G = (N,A). In iteration i, the subgraph
G; = (N, A;) is used. In general, G; is the subgraph of G obtained by including the

21

l)

P,

P

[J
4
P
_——— P
Phalini ’
/]
\ N
\ AY
~ N
~~~~~ *~
@ -&
’
. -,

Figure 4: G; of G in Figure 3.

following subset of edges of G:
¢ edges linking the local states of each process;

e edges linking the local states of two processes provided one of them must be in

process 1 through i.

Lemmal C = (s1,...
n+1inG;.

For example, Gy and G of Figure 3 are shown in Figure 4 and Figure 5 respectively.
Observe that G, differs from G; in only a single additional edge emanating from
process 2. In general, G; differs from G;_; in exactly the same way: additional edges

introduced ir G; are those that
e start from or end at process i, AND
e end at or start from process j > i.

Suppose C = (S1,.- -, Siy.++,5a) is a cut where the local state of process j (j < n) is

given by s;. The following lemma is provable.

2 Sir-e.y8n) 15 @ cut in both Gi—y and G; iff s; || s; fori< j <

22




~e
 ©  C
1
P, ® @
—’ P e
——————— i
- ’
P . !
a é @
\ N
\ ~
‘\‘_ \\
P g @
3 e -
g ;
—————— ”’
I’ ,1‘
P, &
' '
I [}
! 7
' ,
4
P & D -
’ !
) )
L

Figure 5: G; of G.

Proof: From definition, G; differs from G,_, in only some additional edges that
start from or end at process i, and end at or start from process j > i. So Vj, where
i<j<n+1l:s | s;if and only if Vk, where 0 < bk < i 4 1: s; || s;. In other
words, there is no edge introduced in G; such that s —* s, or s, —* s; holds. Thus

the claim.
QED

In Figure 4 and Figure 5, C is a cut in both G} and Gy, but not C’ because of the

additional edge that leads from process 1 to process 3.

G; and Lemma 1 are crucial in the development of the results contained in this paper.
Consider G in Figure 6. There are two edges that connect process 1 to processes 3,
4, and 5. These two edges partition the events in processes 3, 4, and 5 into 4 regions
such that events from the same process in each region have the same consistency re-
lationship with respect to the rest of the world. In other words, cach region containg
one partition from process 3, process 4 and process 5. For example, one of the regions,
say region 71, is ({Sa1, 32, S33}, {541,842}, {851,852, 553, 554}). In this region, sy and
s42 have the same consistency relationship with respect to all other events, and the

same holds true for s3; through s33, and ss; through ss4. On the other hand, s3;, 841,

23



@ — & = - !
TSe Su !
- -0 |
{83 Sk |
9 .

st
4,0,7,1] (1,04,1] [1,0,4,1 [1,0, [1,0,4 1]
Sy 8y 8, Sis 517

Q—»Q———@——————»Q—-—-—»—

Regions in G1:

rl = ({s51, 852, 553, s54}, {s41,542}, {s31, s32,533})
12 = ( {s51, s52, s53, s54}, {s41, s42}, {s34, 535} )
13 = ({s51, 52,53, s54}, {s43}, {s31, s32,s33})

r4 = ({sS1, s52, 853, 554}, {s43}, {s34,535})

(labell(s21), label2(s21), label3(s21), labeld(s21)) = (4,0,7,1)

Figure 6: Regions in G, and the label for sq.

24




and ss; belongs to region r;, among others. We call (831, S41, $52) & partial cut through
region r; in (G;. The number of cuts containing this partial cut and some event, say
s21 in process 2, could be easily deduced and used as a label of s2,. Let labely(s31) be
the umber of cuts that contain sy, and a particular partial cut of region ry in (7.
For example, this is equivalent to asking the question: how many cvents in process |
are consistent with event s,; and events in ;. We proceed to answer this question by
analyzing the edges in Gy. Edge (s42, 515) eliminates {s;s, s16, 517} leaving four events
in process 1 to be consistent with 7, and s;. Thus labeli(sy1) = 4. Similarly, due
to edge (s13,522), label\(s32) = labeli(s23) = labely(s24) = labely(s25) = 1. A similar
calculation produces the labels of other events in process 2, as indicated also in the

Figure 6.

As one migrates to the next iteration involving G shown in Iigure 7, two addi-
tional edges are introduced: (sg3,s33) and (ss3,s24). Because of (ssy,824), events
in process 5 are partitioned into two subsets: {ss, ss2, 53}, and {ss4} respectively.
This leads to four regions in processes 4 and 5, as shown in Figure 7. The la-
bels of events in process 3 in G; can be computed using the labels of the events
in proce.; 2 computed in the earlier iteration on G,. For example, lahely(sy;) =
labels(s21) + labels(syz) + labels(s3) + labels(saq) = 19. This is because events in
region 2 and s3; in G, belong to region 3 in (), and the two additional edges intro-
duced in GG, eliminate sp5 as a possible consistent event with respect to region 2 in
(i>. In other words, region 2 and s3; together select the sub-label of events in process
2 to be used while the edges introduced in G, select the events in process 2 to be
used in the computation. The generalization of this idea is presented as a th-orem.
For convenience, we write s;; || rx to represent the consistency of s,, with respect to

events contained in ry.

Theorem 1
labelk(s(,+l)]-) = z labelk:(s,J,) (l)

3, |IrkinG,

where i+ in G,y include events in vy in G; and 3(it),.

Proof: Consider a particular partial cut through region k and event s(4,), in (.

The number of cuts in G; containing this partial cut is given by the extension of the

25



__________________________________________

E Ssy S5 Ss3 1 ) Ssy
Ps O, . S e e
EF Sa | [ Sa Su |
P, | @ -0 - ———=@ !
S33 Sy S33 \ 534 S3s
P o —o ~-® -9
7,19,8,23] 17,19,8,23] 10,£,0,2] [0,1,0,2]
S21 S22 S 25
P, e ——
(4,0,7,1] 1,0,4,1] [1,0,4,1] \[1,04,1] [1,0,4,1]
Sin Spp 8 S14 S;s 8 Sq7
P, ®—~o—~6————0———0—=0 =
Regions in G2:

rl = ({351, s52, s53}, {s41,542})
r2 = ({s51, s52, 853}, {s43})
3 = ({s54}, {s41, s42})

r4 = ({s54}, {s43})

label2(s32) = label3(s21) + label3(s22) + label3(s23) + label3(s24)

=T7T+4+4+4= 19

Figure 7: Regions in G,.

26




w
=

7]
"
(3]

]
17
D%

..............................

3 - (-] »Q
(15,1,2] {15,N2] [44,6,12] [44,6,12]
Sy S3p : S34 Sas
- —e®

[7,19,8,23] [7,19,8,23] [0/1,0,2] {0,1,0,2]

$3 S
o —— -

40711  [1,0,41] [1,04,1] \1,0,4,1] [1,0,4,1]

Su Sz § S
> P—-p——— P —Q —» - @

Regions in G3: rl = {s51}
r2 = {s52,s53}
3 = {s54}

Figure 8: Regions in Gj.

partial cut to processes 1 through i. From Lemma 1, all we need to consider are those

extensions that go through each s;;» which is consistent with events contained in ry.

Figure 8 and Figure 9 shows the application of the above labeling function in (/3 and

Corollary 1 labeli(sn;) gives the number of cuts passing through s,; in (i, where n

is the number of processes in G.

27




S5 Ss
—6
[118] [14]
S41 S4
& -
(15,1,2] [151,2]
Sa1 Sy
®—=o—
(7,19,8,23] [7,19,8,23]
Sy S22
o———-—»
[4,0,7,1] [1,04,41 [1,04,1] [1,0,4,1] [1,0,4,1]
Sn Spp 5

Figure 9: Regions in Gj.

28




Proof: G,-1 = G [by construction]. Thus the claim.
QLD

The exact number of global states of a given distributed execution can therefore be
computed using the labeling function defined. For the example illustrated in Figure 6

through Figure 9, the total number of global states [consistent cuts] is given by 118
+ 14 + 14 4+ 12 = 158.

The complexity of the labeling procedure grows with the sizes of the labels asso-
ciated with the events, and thus the number of regions in G,. The following lemma
gives an upper bound on the size of the label of event s;;. Let z, be the number of

edges in A; that either starts from or ends at process j.

Lemma 2 The size of the label associated urth event s(iyy); in G, is bounded by

II (=) +1] (2)

i>i+1
Procf: From construction, each edge from or to process j must come from or end at
some process k < ¢ + 1. These edges partition process j into (z,) + 1 subsets, leading

to the claim. QED

From Lemma 2, we observe that unfortunately computing the exact number of cuts
of a given execution may still invoke exponentizl cost. To make the task practicable,

an alternate approximation technique is therefore desirable.

3.3.2 Upper Bound Estimation

Since the complexity of state counting is dependent on z, in (;, we could proceed
with an approximation strategy that aims at minimizing the number of edges above
: + 1 in G; which would link processes beyond i+1 to those below i+1. We further
observe that for any two given consistency graphs, G=(N,A) and G’=(N,A’),it A’ is

a subset of A, then a cut in G is also a cut in G’. This is stated as a lemma.

29



Figure 10: Original G.

Lemma 3 (iven G=(N,A), G’=(N,A’) and A’ a subset of A, then a cut of G is also

¢ cut in G
Proof: This is immediate from definition; S; || S, in G => S, || S, in G’.
QED

From Lemma 2 and Lemma 3, effective complexity reduction can be obtained by
eliminating edges that span multiple process levels beyond process (i+1) in G,. As
an example, consider Figure 11. G; is obtained from G;_, by adding only those edges
that connect process i to either process i+1 or process i+2. Suppose y(i47) is the total
number of edges that connect process i and process i+2. Then the size of the label
associated with s(;41); in G is equal to y(iy,) + 1, since the events in process i+2 have
been partitioned into y(i42) + 1 subsets and those in process j > i+ 2 form a single
partition. The complexity of estimation is then bounded also by a simple polynomial

function of the number of events. In Figure 11, an upper bound is computed as shown.

30



Ps — S —rd—»

[56] [28) (28] 132] 13.]
P, o " p—— ® -9
{0,0] [14,06] [14,16] (14,16) (14,16]
P3 - —
(8] {4] (1 (] 12}
P, e
[4,1,2] / (4,1,2]
P, e ® ®
m i m

Figure 11: G’ with removal of edges crossing more than one level in G.

P, ® -0 —=Q—+®
{51 (3] 31 13} (13]
P, W} ®
[0,0,0] (51,31 [1,1,3] [1,1,8] 2,2,19)
P3
[3,1,2,6,2,4] {0,0,0,%1,2] IO.%J] p.0,00,p,11 [0,0,0,0,02])
P, \

[3,0,0,1,00,2,1,2] \ \J;O.O.I.O.O-Z'I.ZI
Pl ®

Figure 12: G” with removal of edges crossing more than two levels in G.

31




We could increase the accuracy of the estimation by allowing edges from more than
one process to cross process i+1 in G,. For the same example G in Figure 10, if we
allow edges from two processes above process i+1 to cross the latter to process i, then
the estimation is shown in Figure 12 and is a more accurate bound than the earlier

one, obtained at a slightly higher cost reflected by the size of the labels shown.

3.3.3 Lower Bound Estimation

In the upper bound estimation strategy we reduce complexity by eliminating edges
that span multiple process levels beyond process i+1 in G;. In this section we present
another approximation strategy where we replace each such edge with a chain of two

or more edges.

Let G = (N,A) and G’ = (N', A") be two Consistency Diagrams such that N is
a subset of N’ and A* (i.e. the transitive closure! of A) is also a subset of A™. In
other words, G’ is obtainable from G 'y an augmentation procedure that introduces

additional nodes and edges (which are transitively reduced afterwards to produce A’).

Lemma 4 FEvery consistent cut C = (s1,..., 8i,.-.,3n) in G’ containing only nodes

which are also found in G is a consistent cut in G as well.

Proof: Suppose otherwise. Then, there is at least a pair of nodes in C say, s; and s,
such that s; —* sx in G but not in G’. This immediately contradicts the assumption

that A* is a subset of A™. Thus the claim.
QED

Based on Lemma 4, we aim to transform a given G into a new G' whose state size
can be easily computed. The latter is then a lower bound of the state size of G. The

transformation strategy is presented below.

'The transitive closure of any A denoted by A* contains the pair (s;, s;) if and only if there is a
path in A such that s; —* s,.

32



Sk
PIM @ -

1+3
s i+2,h /
P ®
P / .

1]

Figure 13: Original G.

th

irl

Figure 14: G is transformed into G’.

33




From Lemma 2, stated in Section 3.3.1, we know that if the process-distance (ab-
breviated by p-distance) between two nodes connected by an edge is at most two
(i.e., edges do not cross more than one process), then the complexity for the compu-
tation of the state size is bounded by a simple polynomial function of the number of
events. So, in transforming G to G', we try to preserve this property, i.e., every pair

of nodes in G connected by an edge has a p-distance of at most 2.

A simple strategy to proceed in the augmentation process is to replace every edge
connecting two nodes whose p-distance is more than 2 by a sequence of edges such
that the nodes involved have p-distances of at most 2. This is possible, for example,
in Figure 13. The edge which crosses more than one process is replaced by some edges
which have p-distances of at most 2, as shown in Figure 14. The transformation leads
toa G’ that satisfies Lemma 4 and its state size serves as a lower bound to the original

G. The replacement procedure proceeds as follows:

Consider edge s;; — 8iy4,x in G in Figure 13 again. We look for an earliest event node
in process i+2, say Siy2,n, such that —(siy2n —=* 8i;) A =(Siya,k =" 5i42,) is true. We
now replace s5;; — Siy4,k by Si; — Siy2n and Siy25 — Sitak- This replacement leads
to a graph G’ whose relationship with G satisfies Lemma 4. This is stated as another

Lemma.

Lemma 5 Let G = (N, A) and G' = (N, A’) such that

A" = A — {(si)y Sitar)} U {(8ijs Siv2,0), (Siv2,n0 Sigak)}-

If ~(Sig2,h =" 8i5) A (Sigar = Sigan) 15 true in G, then G’ is also a consistent (i.e.,

acyclic) graph.

Proof: The difference between A and A’ is the additional edges from s;ysh to ik
and from s;; to s;42,,. Since the reverse does not exist in G in both cases, the resultant

graph G’ is still acyclic and it is a consistent graph.
QED

Unfortunately, this direct replacement is not always feasible. As it turns out, some-

times, no such event in process i+2 may be identifiable. Figure 15 and Figure 16

34



Sieak

) N
J\.

P
{+2
P /

"+l

S
P, y
Figure 15: Irreplaceable s;; — sjy4 in G.
slol’k
PIN
P|+3 //

P
i+2
i+l

Sy

Figure 16: G’ is not a consistent graph.

35




Sirak

Pi+4 -
P i+3 /
Sii2n
i+2 i ®
i+l
5
P . @

Figure 17: G' augmented with an additional node.

36




illustrates an example of this. In G’ a cycle is present since s,yo8 — Sitax and
Si+4k — Sip2,h- 90 G’ is not a consistent graph, which is clearly unacceptable. To
produce the desired new graph G’ under such a case, we introduce an additional node
in process i4-2 whose relationships with respect to s,, and siy4x satisfy the condition
in Lemma 5. An acceptable transformation of G is shown in Figure 17. An additional
node is denoted by an empty circle in the figure. It is always possible to perform such

an insertion uniquely at process i+2, as will be proved next.

Lemma 6 If no event in process i+2 satisfies the condition in Lemma 5, then the
earliest event in process i+2 reachable from s;y4) must come immediately after the
latest event in process i+2 that could reach s;;. Between these two events, a new event

could be inserted to satisfy the condition in Lemma 5.

Proof: Suppose si; — $itqx while no event in process i+2 satisfies the condition
stated in Lemmma 5. Let si;2 , be the latest event reachable to s;; and s;42,7 be the
earliest event reachable from s;1qx. Since si; — Siyq4, this implies that j' < j”,
otherwise, a cycle exists running through s;;. Moreover, j” = j' + 1, i.e., no event
exists between s;y2;» and s,42,,#; otherwise, we would have found an cvent in process
i+2 satisfying the condition in Lemma 5. Thus we cculd insert a new event between
Sit2,y and s;42,# and in the augmented graph, this event would satisfy the condition

it Lemma 5.
QED

When there is no more edge in G to be replaced, then the number of cuts in GG is
computed by the labeling procedure described in section 3.3.1 with a slight modifica-

tion. According to Lemma 1 we derive all consistent cuts in G which includes nodes

in G.
Similar to the upper bound estimation, we could increase accuracy of the lower hound
estimation by allowing edges to cross more than one process. It is straightforward,

therefore it is not elaborated further here.

Obviously, the cost of computing the lower bound comes from two factors: the cost

37



of the edge replacement followed by the cost of the labeling procedure. The complex-
ity of the edge replacement procedure grows with the number of edges connecting
different processes in the partial order which is bounded by &?, where & denotes the
number of events in the given Consistency Diagram. From Lemma 2 and G’ the cost

of the labeling procedure remains polynomial

3.4 Summary

In this chapter an algorithm is presented to compute the size of the state space when
an arbitrary Consistency Diagram is given. A labeling function is defined for the
computation of the exact number of global states by the successive iterations of a
sequence of G,. The labeling procedure grows with the size of the labels associated
with the events. The size of the label is the product of the number of edges located at
different processes, considering only those edges which cross process i+1 in G;. Asit
is implied, the labeling procedure may invoke exponential cost. Therefore, upper and
lower bound estimations are proposed. In the upper bound estimation strategy we
reduce complexity by eliminating edges that span multiple process levels beyond pro-
cess i+1 in G;. In the lower bound estimation we transform G into G', where no edge
crosses multiple process levels in G'. Then the computation of the number of cuts

in G’ — without considering additional events — is a lower bound of the state size of G.
As it is stated, in both strategies, the level of accuracy of the estimation proce-

dure is reflected by the size of the labels. It gives a certain flexibility to the user to

select the appropriate accuracy-complexity level for the given distributed execution.

38



Chapter 4
Kasy cases

As examined in the previous chapter, in some cascs the state space calculation re
quires exponential cost. However, in practical systems, it may not exhibit such an
intolerable complexity. This could be due to the synchronization design of the dis-
tributed system where processes tend to communicate locally in the form of clusters.
In other words, the topology of communication among processes could play an im-

portant role in terms of complexity.

Static Network topology is the most suitable for multiple computing nodes of a dis-
tributed system. Static networks are formed of point-to-point direct connections
which will not change during program execution. In general, a network is represented
by the graph of a finite number of nodes (processes) linked by undirected edges. The
number of edges (links or channels) incident on a node is called the node degree.
It is a worthwhile task to investigate, if there are systems among these, where the

identification of the state space can always be done in polynomial time.

According to the topology of communication between processes this section presents
several cases, where the exact number of states can be computed easily (within poly-
nomial bounded space and time). From the computation, then one could proceed to

decide whether distributed predicate detection is practicable in a given situation.

39



10 9

(a) Linear array (b) Simple Ring

Figure 18: Linear Array and Simple Ring.

4.1 Linear Array

Linear arrays are the simplest connection topology. Each internal node nas a degree
of 2, and a terminal node has degree of 1 as shown in Figure 18a. If the application
involves processes which communicate in the form of a linear array, then from Lemma
2, the size of a label in process i+1 in G; is exactly 1 (no edge crossing process i+1
in G;). Thus the cost of computing the exact number of states is at most quadratic

to the number of events in G.

4.2 Ring

Among the various possibilities, in this section we analyze the most well known types
of Ring topologies, in terms of complexity for the state space identification. Notice

that these types of rings differ only in their node degree.

41



4.2.1 Simple Ring

A ring is obtained by connecting the two terminal nodes of a linear array with one
extra link, as shown in Figure 18b. It is symmetric with a constant node degree of
2. If the processes operate iu the formn of a ring with m being the number of edges
connecting process 1 and process n, then the cost of computing the exact number of

state is bounded by m times that of the linear array, since the size of a label is at

most m.

4.2.2 Chordal Ring of degree 3

By increasing the node degree from 2 to 3, we obtain a chordal ring as shown in
Figure 19 /a. The chordal ring of this type is having links as (i, + 1) for 2 =
1,2,...,n—1, and (n, 1). Moreover, there are links (,7 + 3) where i < n — 1, and link
(n — 1,2). The size of the label is m®. Consider the possible inconsistencies for the
chordal ring shown in Figure 19a and G';. The three processes from which edges could
cross process i+1is n, n -1, and either 1 +2 or 7+ 3. Then, according to Lemma 2,
m x m x m = m®. Then the complexity of the labeling procedure is bounded by m?
times that of the simple ring.

4.2.3 Chordal Ring of degree 4

A chordal ring with node degree 4 is shown in Figure 19b. It has links as (i,z + 1)
fori =1,2,...,n—1, and (n,1). Moreover, there are links (i,7 + 4) where i <n — 3,
and links (n — 3,1), (n —2,2), (n -1, 3), and (n,4). The size of the label is m”, as
illustrated in the Figure.

It is evident that as we increase the node degree, we obtain a higher complexity in
the labeling procedure. As an example, if we increase the node degree from 4 to 5,
which is the well known Barrel shifter network topology, the size of the label is =

m'°, which is not shown.

4.3 Binary Tree

Suppose the processes in a binary tree are identified according to pre-order traversal

of tt e tree, where the node degree is 3. Then in Gj, at most two processes beyond

41



__‘

[
-

=

o

]

=
!

-

11

- N w A W~ om

(2) ChordalRingofdegree 3

sble
Legend: P
ikonusencies

. o

&

-

=

-
s

3
]

©

- W A WO e

(b) Chordal Ring of deggree 4
(same a3 [Iliac mesh)

Figure 19: Chordal Rings.

42




16

//X /<>\ AW

9 1n 13 15 17 19 21 27

>

l.egend:

possible
1 - mconsistency

Figure 20: Binary Tree with 31 nodes. (Possible edges are exemplified above.)

43



process i+1 would have edges connecting to process below i+1. Thus the complexity

of the computation is bounded by m?. Figure 20 illustrates this claim.

Similarly as to the ring, we could increase the node degree in the tree, however

the complexity of the labeling function increases as well.

4.4 Conclusion

In this chapter we investigated the types of network topologies, where the processes
tend to communicate locally in the form of clusters. In ail of the presented cases,
the computation procedure for identifying the states of the system is always done in

polynomial time and space. The significance of the above are twofold:

1. In systems where processes are arranged in one of the topologies discussed above,
at the detection stage, we only have to be conccrned with the complexitv which

comes from the nature of the distributed predicate.

2. In the design of a distributed system one could consider the above knowledge

to ease development cost, if the nature of the application allows us to do it.

44



Chapter 5

Distributed Predicate Detection.

5.1 Introduction.

Predicates are constructed so as to encode system properties of interest in terms of
state variables. When these variablcs are distributed among the processes, they be-
come distributed predicates. A predicate is satisfied if there are one or more giobal

states where the predicate evaluated to true during execution.

Distributed predicate detection is useful in many applications. In distributed de-
bugging, it is useful for the purpose of locating errors which reveal them::elves in
the form of erroneous states (states that satisfy some distributed predicate). A dis-
tributed program is considered to be in error when the execution has entered a state
which violates the safety requirements of the program. In general, safety violations

could arise as a consequence of design or programming errors.

The complexity of detecting distributed predicates is often linked with the size of
the global state space. As is well known, the size of the global state space in some
cases may be exponential in terms of the number of processes in the system [CM91].
However, the complexiiy of detection is affected by not 1y the size of the global

state space but also of the predicate to be detected.

This chapter attempts to address the problem of predicate detection in general. It

is demonstrated how the labeling method presented in Section 3.3.1 can be modified

45



to solve this problem. It is illustrated here that even if the size of the global state
space could he computed in polynomial time (as discussed in Chapter 4), predicate
detection may be expensive for certain types of predicates. Some strategy is proposed

to deal with this problem in practice.

5.1.1 Distributed predicates

A predicate is an assertion defined on the local variables of one or more processes. In
the Distributed Memory model, each variable is owned by a distinct process where it

resides.

Predicates can be constructed hierarchically. A local predicate (denoted by LP) is
a general boolean expression defined over the local variables of a process, whereas a
distributed predicate (denoted by DP) is defined on variables distributed over multi-

ple processes.

Two (lasses of basic distributed predicates emerge:

1. adistributed predicate formed by the conjunction/disjunction of local predicates
defined locally in the process, say LP; in process i.
For example, (LP; AND LP;) OR LP.

2. a distributed predicate involving non-boolean variables.

For example z; + ; > =z, where variable z; is located in process i.

These basic distributed predicates can recursively generate general (distributed) pred-

icates (denoted by @) using the following grammatical rules:

& =DP | [LF|DP AN(AND|OR|NOT) A LP,|DP)
where

DP = ((LP, A(AND|OR|NOT)ALP;}) | (z: A(< |>]=)A )

46



EXAMPLES:

1. Mutual exclusion problem: to check if process 1 and process 2 conld be in the
critical section at the 'same time: ® = LP, AND LP, where Li(i = 1,2)
denotes local predicate which is satisfied if and only if process i is in the critical

section.

2. Resourceallocation: z;425+,...,4+x, = C, where z; is a integer valued variable
located at process i denoting the number of units of resources held by the

process, and C is the toial number of units of the resources available.

3. During debugging the user may want to halt the exccution at a state when
® =3+ z; + 22 > 10 becomnes true.

4. Often 3-Phase commit protocol is used to commit a transaction (T) in a dis-
tributed database system.
Then the predicate [Commiltted,(T') V Committable,(T)) A [Committedy(T) V
Committabley(T)] A [Committedy(T) vV Committables(T)] may be checked to
ke true if one expects a transaction T, (executed on 3 sites) to commit in a

particular execution.

5.1.2 Complexity

Concurrency in a system often introduces complexity in analysis; sometimes the com-
plexity so generated can be 'tamed’ by skilful design of analysis algorithms [PL90,
GJ79]. But in some cases, the complexity is inherent and cannot be avoided. The
main reason behind the high complexity is the exponential growth of the number of
system states with concurrency. If examination of all states is inevitable, then the
cost of analysis will be expensive. Consider the following example shown in Figure 21:
there are n processes each with two local states and all local states not belonging to
the same process are consistent. The total number of cuts [and thus global states]
of the system is 2". Certainly with more events in cach process, the size will grow
even faster. Suppose there are k events at each process, then the size of the state
space is k". Indeed, the problem of detecting if a given distributed system has a state

satisfying the predicate specified in the following Lemma is NP-complete.

47



Sy Sa
P, e —e
sn-l s’n-l
Pn 1 & =
®
[ ]
Sy d s}
P, ®
®
[ )
S, ¢ s
P, @ -~

Figure 21: System with 2" cuts.

Theorem 2 The problem of detection if a given distributed system has a state satis-

fying a general predicate of the form Sy + Sz + ...+ Sn = B is NP-complete.

For the interested reader the proof is provided in [LJ96].

From Theorem 1 and Lemma 2 it is clear that in situations as illustrated in Fig-
ure 21, the size of the state space can be computed easily, even with a large number
of events. Pariicularly, if there are no edges between any events in the Consistency
diagram, the size of the label is equal to 1. Therefore the cost of identifying the
size of the state space is at most quadratic in terms of events. However, Theorem 2
implies, that even if the size of the state space can be identified in polynomial time,

the detection procedure may involve intractable complexity for some predicates.

48



5.2 Application to Distributed Predicate Detec-

tion

The labeling method presented in Section 3.3.1 could be used directly as well as in-

directly in detecting the occuirences of states that satis{y a distributed predicate.

In direct application, the labeling method is modified to evaluate the satisfaction
of the given predicate iteratively from G, until G,,—;. In this approach, it is assumed
that the size of the state space is identifiable with the labeling method in polynomial
time. The detection of a predicate may introduce additional complexity compared
to the cost of the labeling method. In some simple types of predicate detection the
complexity slightly increased (because of the time it takes to evaluate the local pred-
icates), in some other cases it may be increased substantially, but it is still remains

reasonable; and it may be intractable (as in Theorem 2).

In indirect application, the labeling method is used as a means to decide if the state
space is small enough to be examined somewhat exhaustively for a given predicate.
In this approach, it is assumed that the size of the state space can not be identified

in polynomial time that we have to deal with.

5.2.1 Direct Application

From the discussion in Section 5.1.2, it is evident that even if one could compute
the exact number of states of a given execution within polynomial time, because of
the nature of the given predicate, deciding whether there exists a cut satisfying the
predicate could involve exhaustive computation. On ihe othcr hand, it is possible to
detect some special predicates rather easily, such as a conjunctive predicate of the
form: DP=LP, AND LP, AND... AND LP,. The decision should be made:
if there exists a cut in the execution equal to (s1,...,8:,...,9,) which satisfies the
given DP. Here we will demonstrate how such a decision can be made by modifying
the labeling method.

The labeli(s;;) in Gi-1 is replaced by saty(s;;) where sati(s,,) denotes whether or not

49



Figure 22: Detecting ab’cd

there exists a cut including events in region k and s;; in G_1 whose local states in
processes 1 through i are given by (sy,...,s,). In other words, the partial cut satisties
the predicate partially, from S; up to S;. More precisely, sati(si,) contains the result
of the satisfaction of the partial predicate DP' = LA ALP, AND...AND LP,; on

the partial cut (sq, S, .. .,5i).

As the labeling migrates to G;, a new label in G; stated in Theorem 1 is computed
by
satk(si+1);) = ORs,lirsing, {sati(sij0)} (3)

where r in G-, include events in 7 in G; and s(i44);.

The complexity increased slightly in the modified labeling procedure since the con-
sistency comparison between each pair of events s; and s, is increased with the eval-
uation of local predicates and comparison of the value of the corresponding LFP; and
LP;. An example is illustrated in Figure 22 for detecting the conjunctive predicate
DP = abcd.

50



A TRUE value in the label of any event s,, in GG,-; indicates that the predicate is

satisfied by the execution. This is stated as a Lemma:

Lemma T ® is satisfied, if and only if there is an event Sny, whose label contains the
TRUF value.

Proof: A predicate could be evaluated either True or False. From Equation 3, as the
procedure migrates from G; to Giy, consistent cuts which yicld a False value to the
predicate are excluded. Therefore, at G,_;, DP is evaluated on the remaining cuts

at s,,, placing the True value into it’s label iff & is satisfied. Thus the claim.
QED

There are many other types of distributed predicate addition to the conjunctive form
of predicate, which is possible to be detected with the modified labeling method,

without any increase in the size of the label.

Consider the predicate ® = z; = z, = ... = 2, = C where C refers to a con-
stant. An example including 4 processes is illustrated in Figure 23 for the detection
of the predicate , = 3 = z3 = 24 = 9. Consider s, in process 2 in (7}, where
za = 9. There are two regions to be considered (see Section 3.3.1). T'hus the size
of the label is 2. The partial predicate to be evaluated in Gy is z; = @3 = 9. At
event sz, there is one cut including events in region ? and event sy;. Thus, there is
one partial state including process 1 and process 2, such as (s1;, so;). Therefore, the
partial predicate is evaluated on the corresponding values of z, and 3. z, = 24 = 9,
therefore the partial p.edicate is true. The second element of the label is conducted
similarly. Note that the sign ’[-]' in the label refers to the situation when there is no

cut found to be cons.dered t¢ evaluate the predicate at that event.

Obviously, in each case, once satx(s,;) is evaluated as false, then there is no need
to continue keeping and using that in later iterations, leading to an actual reduction

in complexity. An example of that is shown in the next section.

Predicates of the form z; + z2 + ... + 2, > C can also be casily detected using

the modified labeling algorithm directly. Figure 24 illustrates this scenario. The

51



detection strategy is similar to as above, except the labels are slightly changed to

hecome:

labelk(s(,-+,)j) = NIAX%,”,.“"G' {l(tbelk:(s,Jl)} (4)

where rp in G, include events in 7 in G, and S(i41);-

Here <ach local state s;, refers to the value of the corresponding z;. The labeli(s,;)
contains the maximum partial sum of the predicate elements (s;+s2+...4s;), involv-
ing culs that include events in region k and s;, in G,-; whose local states in process
1 through i is (s1,892,...,8;). For example, in Figure 24 consider the first event at
process 2. The value of the label contains 8: M AX[(3+2),(3+0),(3+3),(3+5)] = 8.
Obviously the predicate is satistied if there is an event found whose label contains a

value that is greater than the given constant C (as in the first two events in process 4).

This technique could be extended to predicates that involve multiple terms instead
of a single conjunctive term, or more complex than those which were considered here.

It will be demonstrated further in the next section.

5.2.2 Direct application with reasonable complexity increase

In the preceding section we modified the labels of an event so that it contains only
True/False values. But the size of each label is not increased when compared with
that in computing the size of the global state space. In this section, we consider
some other types of predicates, whose detection can still be done in polynomial time.
However, the size of the label of an event may be increased compar. 1 with that in

computing the size of the state space for a distributed execution.

Consider predicate ® = DP, OR DP, V... OR DP,, where each DPF; is a con-
junctive global predicate of the form LP, AND LP, AND... AND LP,. So, ®

contains r such conjunctive predicates.

Figure 25 illustrates an example of the detection of predicate ® = DP, OR DP;,

where DP, and DP; are single conjunctive predicates shown in the figure. From the

52



(s41) (s42) (s43) (s44) (345
P X4=9 Xdud x4=1 x4=9 X4=3
4 ® ® ® ® -9
[T} (K] ¥} IT) L]
X3=5(s31) x3=9(s32)
P, ® -®
[F,F,F] {T,T,T]
P X2=9 (s21) X2=2 fs22) X2=9 (521 X2=4(s24)
2 @ —> &—8
(T,T} {¥,F} [-T] ¥, K]
x1=9(s11) x1=0} (s12) x1=3 {s13) X1=9 (s14)
P, ® ® -@
Figure 23: Detectingzy = w9 =23 =24 = 9.
[T} (T] [¥] (¥] (F|
x4=1 x4=4 x4=1 x4=0 xd=1
P, e— @ - - ————@
[14] [17] {10] ) 18)
X3=5 x3=0 x3=1
P ® o
[13,4] [8,6] 9,71
x2=3 x2=0 X2=2 X2=] X2=4
P, ® ® — e-—-@
(8] (s} (71 {6} 191
x1=2 x1=0 x1=3 x1=5
P ® -® - @

Figure 24: Detecting x, + z2 + 23 + x4 > 10.

93




discussion in Section 5.2.1 and Lemma 2, the size of the label is equal to 2 for one
of the single conjunctive term in ®. However, we have to detect two such terms,
therefore the size of the label is doubled as shown in the figure. Thus, we could state
that the complexity for the detection of a disjunction of r conjunctive terms increases

r times as the dctection of a single conjunctive predicate discussed in Section 5.2.1.

As was mentioned in the previous section, we could further reduce complexity if we
do not consider keeping the value of the label when sati(s;;) is evaluated as false. As

an illustration of this, in Figure 26 shown the detection for the same ® as in Figure 25.

From the above discussion it is evident that the labeling method could be modi-
fied to handle the detection of more general predicates in some cases. But as we
move into more complex types of predicates, the size of the label increases accord-

ingly, even if the size of the state space is identifiable in polynomial time.

5.2.3 Indirect Application

The modified labeling algorithm for detecting distributed predicates works well in
cases where the distributed predicates are of specific types, such as those exemplified
in the preceding section. But for some other predicates, such as those used in the
NP-completeness proof of Theorem 2, the theorem already implies the exponential
cost, of detection, i.c., the label of the events would grow exponentially independently
of the consistent graph topology. However, for such predicates, we may still wish to
tackle them when the state space is small. This is where the upper bound estimation

algorithm could be used.

The upper bound estimation of the state size can be performed for a given execution.
This is guaranteed to be computable in polynomial bounded time. If the state size
has an actual number which is manageable within the practical constraint of the given
system, for example, there are one million states and the system is capable of travers-
ing a state in one-tenth of a millisecond, then checking an arbitrary predicate meay
be performed in 100 seconds and may be deemed acceptable in a practical debugging

session. In that case despite the complexity introduced by the arbitrary predicate,

o4



d d d
® - @
{THF] [F)iF] [F]IF]
GP1 GP2 GP1 GP2 GP1 GP2
c c
@
[F,F[F,F] [T,F][T,F]
GP1| GP2 GP1 GP2
b b b
@ ® -®
(F,TIF,F] \ [F,THT,T] [F,T][T,T] [I5,F)| 1K)
GP1 GP2 \GP1 GP2 GP1 GP2 GP1 GP2
a ! a a'
® - @
GP1 =a’bcd
GP2=ab’cd’

Figure 25: Detecting ® = DP, vV DP,.

29




d d
® ~®
[TIF] [FI(F) [FI{F]
GP1 GP2 GP1 GP2 GP1 GP2
c’ c
(¥l (T,FI[T,F]
GP1 GP1 GP2
b b b'
@ ® - -
[F,TIF] [F,TI(T,T] [F,TI[T,T] (FI[F]
GP1 GP2 GP1 GP2

GP1 GP2 GP1 GP2

Figure 26: Detecting ® = DP, V DP; = a'bed V ab'cd’.

56




the system can still provide the needed service to the user.

5.3 Summary

In this chapter we demonstrated how the labeling method presented in Section 3.3.1
can be modified to detect distributed predicates. This method could be used quite
efficiently for relatively simple types of predicate detection such as simple conjunctive
predicates, for predicates in the form z; =z, = ... = z, = C, or for predicates of
the form 2, + 22 + ... 4 2, > C. As we consider more general (e.g. by adding more
terms) predicates, the size of the label might grow accordingly. However, in some
cases, such as for the detection of a predicate in the form of a disjunction of some

conjunctive predicates, complexity still remains reasonable.

Nevertheless, there are cases where: either the identification of the state space are
expensive, or the type of predicate to be detected involves very high increase in com-
plexity; or both. In this case, using the upper bound estimation may help the user

to decide if the detection is still reasonable with the state traversal technique.

57



Chapter 6
The design of the algorithms

In Chapter 3, theoretical results are presented for the calculation of the state space
size in a Distributed Memory System. From those results, in this chapter we present
descriptions of algorithms to compute of the exact niizaber of states, its upper bound
estimation as well as it lower bound estimation. The algorithms make use of vector
clocks to keep track of consistency relationships among nodes ¢’ a given Consistency

Diagrarn.

6.1 Virtual time, global clock

Given a distributed computation in the form of a space-time diagrain, the concurrency
among its events can be maintained by means of a couple of virtual time methods.
In particular, Lamport’s logical clock [Lam78] labels events in such a way that if an
event precedes another event then the label of the former is smaller then that of the
latter. The vector clock meci.anism proposed in [Mat89] labels events more strictly

and reflects the precedence relationship exactly.

in Lamport’s logical clock method, each process p; maintains a local variable LC that
maps events to the positive natural numbers. The value of the logical clock when
event e, is executed by process p; is denoted by LC(e;). The following update rules

define how the logical clock is 1a0dified by p; with the occurrence of each new event e;:

58




LC +1: . s an i nal or : - ] .
LC(ei) := { +1; if e, is an internal or a send event of process i

maz{LC;TS(m)} +1; if €;is a receive event receiving message m.

where TS(m): Time Stamp of the message m indicates the logical clock of the corre-
sponding send event.

In other words, when a receive event is executed, the logical clock is updated to
be greater than both: the previous local value, and the timestamp of the incoming
message. Otherwise, the logical clock is simply incremented. It :5 easy to verify that
for any two events e, €', if e causally effects' ¢/, then the logical clocks associated with
them are such that LC(e) < LC(e’). However, as it is shown in [Mat89], logical clocks
are not sufficient to determine if event e precedes event e’ in a graph. Therefore we

will use a Vector Clock mechanism in achieving this purpose.

6.1.1 Vector Clock

A simple mechanism for tracking causality of events is Vector Clock [Mat89]. Specif-
ically, each proces. p; has a clock VC; which consists of a vector of length n, where
n is the number of processes in the system. Each process p; executes the following

protocol:

1. At each local event e;, the i component of clock VC(e,)[7] is incremeated by
1.

2. When process p, sends a message, it appends the timestamp (i.c., the current
VC;) to the end of the message.

3. If ¢; is a receive event and T is the timestamp of the message, Vj, VC(¢)[j] =
maz(VC(e)[j], Tlj]). In other words, each time process p, receives a message,
it updates its own timestamp with the maximum of the value received and the

value it previously held for each of the components of VC;.

1Event e may causally effect another event e if and only if e — ¢’ (i.e., there is a directed path
in the Space-time diagram starting at e and ending at e’).



Thus, one could decide if event e; causally effects event e, as follows:

VC(e:)[e] < VC(ey)li]. (5)

Also, two events e, and e, are said to be concurrent if the tollowing vector clock

condition holds:
VC(e)[i] > VC(e;)[i] A VC(e,)[i] > VC(ei)ls]- (6)

Thus, using vector clocks provides enough information to decide if two events are

causally effecting each other or they are concurrent as it is proven in [Mat89].

6.1.2 Using Vector Clock in our Model

In our algorithms, we need to decide if two local states e; and e; are consistent or
not. In other words, we want to conclude if either of the three condition: ¢; —* e,,

or e, —* ¢;, or ~[(e; =" ej, or €;) A (e, —* ;)] holds.
According to Mattern the following property is true [Mat89]:

Property of Vector Clock:
Given a space-time diagram, e; happens before e; iff  VC(e;)[1] < VC(e;)[E].

In terms of the correspouding Consistency Diagram, if we use s; to denote the cor-
responding local state upon the occurrence of e; and label VC(s;) = VC(e;), then
from definition s; is consistent with s; ( s; || s; ) iff e, does not happen before another

event in process i which in turn happens before e, in process j and vice versa. This

leads to the following lemma:

Lemma 8 In a Consistency Diagram, s; || s, iff

VC(s)[i] > VC(s))l] and VC(s;)[7] > VC(s:)[5].

60



Si2

2.3,1] (3,33]  [433]
1

[5,3.3]

C1 C2

Figure 27: Vector clock values in a Consistency Diagram.

Proof: This follows immediately from the vector clock property and the definition
of s, || s,.

QED

In Figure 27 the vector clock values are illustrated in a Consistency Diagram. While
cut C, is a consistent cut according to Lemma 8, cut C} is not. The clock value
at state s3; = [0,0,1], the clock value at state s;2 = [0,2,1], which implies that
VC(sx[3] < VC(s2[3]. Therefore, s3; and sz can not be involved in the same

concurrent cut.

6.2 The algorithms

In all the algorithms presented in the following sections consistency relationship he-
tween events is identified by using the vector clock mechanism explained in the pre-

vious section.

61



6.2.1 The algorithm for global state counting

Let the set B = {ri,r},...r% } denote the regions in Gi, and there is an array size
l..m associated with each event e;;;, which holds the value of the label. Then

the algorithm for computing the number of global states is constructed as shown in
Table 1 and Table 2.

The explanation of the terms used in the algorithms are as follows:
typeA(edge) = edges linking local states of each process only;

typeB(edge) = edge that either starts from or ends at process i, and starts from or

ends at process j > 1.

Pl is a set of partitions in process j. Initially, Vj(3 < j < n): there is only one

partition which contains all events at process j.

R' is a set of regions, where each region r}. contains a nonempty partition from each

process i+2 through n, and Vk,h: if v} € R* and ry, € R’ then r{ # ri.

FindIndex(k, s,4+;) is a function which returns the integer ¢ for which the following

condition hold: r§ C r(‘;“ AND siy1 € 770

The algorithm works as follows: In the first part (i.e., steps (1) through (5)), of Ex-
actStates, (G,—; is augmented with edges — those which start at or end at process
i, and start at or end at process j>i; — to form G,. Every time G;.; is augmented
with a particular edge, the necessary changes are made to the partitions at process j.
These changes occur according to the algorithm Partition shown in Table 2. When
G,-, is augmented with a forward edge for instance, the partition which contains
the event to where the edge points to is divided into two. An example i3 shown in
Figure 29, where G, (in Figure 28) is augmented with the edge (si,s;n). Also,
partition, = {s;n-1,5;n} in G,—1. Thus, following steps (5) through (8) in algorithm
Partition, partilionB = {s;,} according to step (5), and partitionA = {s,n_;} ac-
cording to step (6). Then partiticn? is 'replaced’in Pi by partition A and partitionB.
When G;_; is augmented with typeB edges, then each region in R; is identified ac-

cording to its definition. In the second part of the algorithm ExactStates (i.e., steps

62



NumOfStates := 0;

G = {N, A®}; where A° includes typeA(edge) only;
label(sy)[1] := 1;

begin

for i=1 to n-1

begin
(1) for each typeB(edge)
begin
(2) At = AU {edge};
(3) if p-distance of the edge > 1 then
(4) Partition(edge); /* described in Table 2 */
end;
(5) Identify R';
(6) for each s,4
(7) for each r}
(8) for each s;
(9) if (si||si+1) AND (s,||ri) then
begin
(10) q := FindIndex(k,si41);
(11) label(sip1)[k] := label(s,41)[k] + label(s,)q]);
end;
end;

(12) for each s,
(13) NumOfStates := NumOfStates + label(s,)[1];

Return NumOfStates;

end;

Table 1: Algorithm ExactStates.

63




partitionA = partitionB = {§};
Ipartition] € P? : s, € partilion;

begin
repeat

(1 if typeB(edge) is (s,,s;) /* it is a reverse edge */
for each s; € partition]

(2) if sy —"s; OR sy = s; then
sj € partilionA;
(3) else

s, € partitionB;

(4) if typeB(edge) is (s, s;) /* it is a forward edge */
for each sj € partition]

(5) if s; =" sy then
s, € partitionB;
(6) else

sy € partitionA;

(7) if partitionA # {0} AND partitionB # {0}

(8) P? = Pi — {partitionl} U {partitionA, partition B} ;
until there is no more typeB edge
end;

Table 2: Algorithm Partition.

64




.
partition
"""""""""" t | i il ittt | Tt T eSS eesenSsm=-
P St Sy ) :
. ]
process >i+l —=@ @ — & : : D
_________________ 1 L R | (IR o
®
[ ]
L ]
S
vone . @
5
o] L ]
£ .
——
7] ®
2
(]
g
= .

Figure 28: G,_;.

65




partitionA partitionB

process j>i+1 ®
L e T

- -

=

o]
= .
—

:J L ]

wy

[ %]

w

8

= 2

Figure 29: Augmentation of ;. with edge (s,k, s;1)-

66




(6) through (11)), each itemin the array referring to the label at each event s,y is
computed by summing the corresponding items at each event in process s, according
to Theorem 1 in Section 3.3.l. Finally, — at step (12) — the total number of states

are computed by summing the terms in the labels at each event in process n.

As an example, in Figure 30 the results are shown (after iteration 1) for a given
Consistency Diagram. There is one partition at process 4 and 5, and there are two at
process 3 in G,. Suppose there are two edges (s23,85) and (s12,525) to be included
at the second iteration to form G5 According to algorithm Partition, the parti-
tion {ss1,852, Ssa} at process 5 is replaced by two partitions: partition? = {s5} and
partition] = {sg, 353} [since edge (s, ss2)l. Similarly, the partition {s41, 842,840}
at process 4 is replaced by partition] = {sy,s42} and partitiond = {s43} [since
edge (s42,525)]- Now the 4 possible regions formed in (; arc: 1y = {s5}, {sa1,%02},
r2 = {ss1},{sa3}, r3 = {ss2,553}, {41,842}, and 74 = {s52, 553}, {s43}-

At the second part of algorithm ExactStates (i.e., step 6 through step I1) the label
is computed for each event in process 3. Consider the first element in the label at.
event s3;. Sirce sy belongs to 7y in Gy, function FindIndex(l,s3;) returns 1. 1t
means, that the algorithm sums the first elements in the label at each event s, which
is concurrent with event s3; and region 1 in Gz. Sincethere are 4 such 2vents [namely
S21, S22, 833, S24), the first element in the label at event sy is 2 +1 4+ 14 | = 5. This
process is repeated until all the elements in the label are computed at all events sy.
Then the algorithm ExactStates continues with the next iteration until the labels are
computed (and summed at step 13) at each event in process n. Finally, algorithm
ExactStates returns the total number of concurrent cuts for the given Consistency

Diagram. Next, we proceed with the proof of correctuess for the algorithm.

Lemma 9 The dgorithm EzactStates is correcl.

Proof: The steps (6) through (11) in the algorithm ExactStales conform to Fqua-
tion 1, which is proven to be correct in Section 3.3.1. Therelore, we have only to
show that the construction of the regions in G, is correct: steps (1) through (5) in
algorithm ExactStates identifies partitions correctly. Particulatly, we have to show
that each s, € partition? (partition) € r}) has the same consistency relationship

with respect to any event in G,. We provide a proof by induction.

67



Base: Initially, given Gy = {N, A°}, there is one partition at each process. Since A°
contains edges linking local states of each process only, it is clear that Vi, j, where
i#7: s, || s,» Which means that all events in partition’ are consistent with all events
located in any other processes. Thus the statement is true.

Now assume that it is true for G',_;. In other words, Vsk., where j # k; and for each

$;n € parlilion? one of the following is true:
1. if sj5 —" sy, then Vy, where 8jy € partition, =  sj; =" Sk,.
2. if s, > s, then Vy, where s,y € partition? = 53, =" s,,.
3. if (3,1 || sk.) then Vy, where s;, € partition? = s, || Skz-

As a next step, we will show that these conditions are true for each partition in
G, also. Consistency between events in (; may change by augmenting G;_; with
typeB edges. Suppose there is a typeB edge (si,s;5) introduced into G,_;, and
3;x € partition? in Gi—,. Then according to steps (5) and (6) in algorithm Partition,
partitzonl is divided into two disjoint subsets: partitionA and partition B. Since
(3igySjn) is a forward edge, it is clear that partitionB always has at least one event
in it: s,5. Moreover, in case there are more events in partitionB, s;, is the earliest.
Now assume that there is an s; for which one of the three conditions above holds in
Gi-1. If condition (1) or condition (2) holds, then the same condition holds for all the
clementsin partitionA and partztionB because of transitivity. Now suppose condition
(3) holds in G;_, when forward edge (s.g, ;1) is introduced in G;, and (sk, —* s;1)
is true in G;. As iz —”* 3jn, and s;n is the earliest event in partition B, so Yy,
where s,, € partition]: sy, =" sj,. Hence, the statement is true for partitionB. If
partitionA is nonempty, then clearly, no inconsistency is introduced in G, involving
events in partztionA. So for each each sir condition (3) holds the sarme way as in G;_;.
Now, suppose partition A = {0}. Then partition?, = partitionB, so the statement is
also true. With similar reasoning, it is easy to show that the statement is true when

Gi-1 1s augmented with a reverse edge. Thus the claim.
QED

The time complexity of the algorithm is determined by the number of comparisons
made between local states in the second part of the algorithm (i.e., steps (6) through

(11)). Assume there are g events at each process. Each event s;11 is compared with

63



________________ parritionj
T T T T T T T T s e T T e ST T \
|
3 %1 £ 73 8531
| 0— —0 -— !
----- i)artiti-o;l-i o o )
Pttt ]
E Sit S, %3 E
l\i&: ______ -8 -® 1
ST ST S S AP B
partition? partition’,
ot T T T T s E e ‘l Tt TTT e T
E 53 S | E S R
' @ — — T -— ———@
U A B
s
S Sn S 24 S5 S

2] [1,2]

s
Su 2
» O -

1,2]

1,2 [(1,2]

Figure 30: G, (after iteration 1).

69




partition’, partition;
f S E v S 5 E
' e— — i » @ -0
partition, [ TTTTTTTTTTTTC partition?
| Sn S | I
'@ —=@ ,: @ |
S3 S2 \ S $14
® =@ — @ ]
[5,7,1,3] (5,7/1,3] [9,1348] [9,134,8]
$1 S22 S Sy S
@ > 4] ] - ——— @
231 1,2] (1,2] 1,2] [1,2] (1,2]
Su Si2 S
@ —= D -

Figure 31: G2 (after iteration 2).

70




each event s;, and each s, compared with the events in a region ri. Since the events
have the same consistency relationship in each partition in the region 1}, it is sufli-
cient to compare s; with only one event from each partition. In the worst case there
are n — 2 such events, therefore it gives us (n — 2)q comparisons for identifying one
element in the label associated with event s,,;. Since there are m regions, the com-
putation of the label at each s, takes ¢*(n —2)m comparison. In the worst case the

outer loop brings the time complexity to O{(g*n*m).

The algorithm could be made more efficient with the following optimmization straie-
gies. As the algorithm migrates from process i-1 to process i, the label at each event,
below process i-1 could be discarded since there is no further use for these values
later. Furthermore, events belonging to the same process with same consistency re-
lationship could share the same label. For example, in Figure 6 in Chapter 3, events

899 through 555 may share label [1,0,4,1], which may reduce the space requirements

of the algorithm greatly.

6.2.2 The algorithm for upper bound estimation

The number of global states in an arbitrary Consistency Diagram can be computed
using algonthm ExactStates presented in the previous section. So, the same algo-
rithm can be used in estimating the upper bound on the number of global states also.
However, with some modifications made to the ExactStates algorithm there is a more
efficient way to get an upper bound estimation, as we will show in this scction. We
will derive an upper bound estimation on a given G, where the p-distance of any cdge

is at most 2.

Sug, ose that the partitions at the sameprocess are numbered 1,...,m, and p-reuin(s,)
denotes the partition number in which event s;, belongs. Then we: leave lines (1)
through (4) in algorithin ExactStates as it is, except the typeB(edge) is redefined

as follows [i.e., to makesure that there are no edges included in G, with p-distance>2):

typeB(edge) = edge that either starts from or ends al process 1, and} starts from or

ends at process i+1 or process i+2.

71



Moreover, line (5) through (11) in algorithm ExactStates are replaced with the fol-

lowing,.

begin
for each sy
for each partition; at process i+2
for each s,
if (si||sit1) AND (s;||partitiony) then
label(sip )] = label(siy)[k] + label(s)[p-num(sis1)];

eind;

In other words, we modify the algorithm ExactStates by comparing the consistency
between each event s; with each partition located at process i+2 in G}, instead of
mparing s; with all regions in G,. An example is shown in Figure 32. The three

regions, 1o be compared with s; in the modified ExactStates algorithm are listed

below.

rp = {snhsnl}a e 7{3j1,3j2}a v ){3i+2,1}

£ = {snl’an}a e ,{31173]'2!) e '{si+2,2}

rg = {snh 31;2}a cee ,{311’312}1 ce ’{s'+2,3}
It means, s; would be compared with at least one element in partition}, ..., and
one element in parfition], ..., and one element in partition;*?. However, observe

that any event s; is always consistent with any event s; [ j > i+2 ], because of the
construction of G,. So, in the modified algorithm here, we only need to compare each
s; with one element in partitioni*? in order to compute the first element in the label

associated with any event s;;,. Based on thesc observations, the following lemma is

72



P
i+2

i+l

partition ';

' Sai S k
. > ~-® ; -
.
.
.
partition j‘
Tt §LT TR, T v
) 1 2 :
6
N e o e e - e - e e - e oem o -
°
.
.
s 142 i
partition ':2 partition ; partition ;
E Sa21 !
8
§i
L
°
°
.

Figure 32: Partitions in G..

73




provable.

Lemma 10 The modified algorithm is correct.

Proof: We only have to show that partitions at process i+2 reflect the same consis-
tency relationship for regions in G; when each edge has p-distance of no more than 2.
In other words, we have to show that if 3s; such that s; || partitioni*?, then s; || r} in
G; where partitionit? € ri. Suppose there is an r§, which includes partitionj‘?, and
one partition from each process j [where j>i4-2]. Also, 3s; such that s; || partition;t?
but —(s; || 7). It means that 3s; € partitiond such that either s; — s, or 5; — .
However, this is impossible since events at processes i+3 through n are not ’connected’

to events located at other processes. So, it is a contradiction. Thus the claim.
QED

In the modified algorithm here, we compare consistency between events and a par-
tition located at process 142, instead of comparing events with all the partitions in
the corresponding region. Thus the time coraplexity of the algorithm is reduced to
O(q*nm). When compared with the ExactStates algorithm, the partitions at a pro-
cess here do not change as the algorithm migrates from level i to level i4+1. Thus,
according to Lemma 2, m < ¢ [i.e., since there are no edges with p-distance>2).

Hence the algorithm has a time cornplexity O(¢°n).

6.2.3 The algorithm for lower bound estimation

Based on the discussion in Section 3.3.3, it is straightforward to design a simple al-
gorithm to augment a given G to become G’ such that every edge has a p-distance of

at most 2. Table 3 demonstrates the ab<t,. ¢t algorithm for the augmentation.

The following notations are used in the algorithm Augmentation:
P = prefix processed so far, initialized to NIL.

R(P) = set of events which are 'ready’ given P. In particular, s in R(P) and s’ —* s
implies that s’ € P.

74



P = {}

s := some event in R(P);
Repeat
if an edge emanates from s with p-distance > 2 then
begin

apply Lemma 5 and Lemma 6
to replace that edge with a sequence of edges whose
p-distances are not more than 2;
P := P U{s};
end;
else
begin
if s is a typeB event then
P := P U{s};
else /*it is a local event*/
P := P U{s};
end;
R(P) := R(P) —{s};
s := some event in R(P);
until R(P) is empty;

Table 3: Algorithm Augmentation.

typeA(s) is a local event from where an edge emanates to the next event in the

same process.

typeB(s) is a event from where an edge emanates to another event located in an-

other process with p-distance not more than 2.

The algorithm Augmentation scans through the given Consistency diagran visiting
each event once. The priority between events is encoded in the if-then-else state-
ments. In other words, an event from where an edge emanates with p-distance > 2 is
considered first, followed by the typeB events. Finally typeA ev: nts are considered in

prefix P. This permits more local events remaining in R(P) which could be chosen



53

S, L) 843 S44
? 5] - -
531@\ Sy
5 LF Y S
@ »B

15

S/ S S13 Si4
®—r 2 e

P={}

R(P) ={all eventsin G }

——

Figure 33: G.

76




prefix
Si1 Sy2 S43
® -
S S,
-
S 52 S22 S2
4] -B
S5/ S 513 514 15
] @ -
P R(P)

Figure 34: Advancing prefix P alter replacing edge (s41,911).

7




P ={all eventsin G }
R(P) ={}

Figure 35: G’.

78




later in the augmentation procedure, and heuristically reduces the number of addi-
tional events.

Figure 33 through Figure 35 illustrate the steps in the algorithm on a simple ex-
ample. In Figure 33 the original G is shown. Since there is an edge that emanates
from (s4) and its p-distance is more than 2, it is replaced with a sequence of edges
(8415 8a) and (sq,s11). Event s, is an additional event, and it is denoted by an empty
circle in the figure. Then the prefix P is advanced as shown in Figure 34. The next
event from which an edge is initiated with a p-distance more than 2 is sy3. It is
replaced with the chain of edges (53, $32) and (sa2, $43) as shown in Figure 35. Since
the remaining event.; in R(P) are either type(A) or type(B), the prefix P is advanced
until it contains all events in G.

The correctness of the algorithm follows immediately from Lemma 5 and Lemma 6.
Using this augmented graph, we could proceed to obtain a lower bound on the state

size of the original G involving a polynomially bounded number of computational

steps.

6.2.4 The algorithm for the detection of a simple predicate

In Section 5.2.1 we discussed detection method for simple distributed predicates by
modifying the labeling procedure. Here we show hov the ExactStates algorithm (in
Table 1 explained in Section 6.2.1 can be used with slight modification for the detec-
tion of a conjunctive distributed predicate. The only modification made to algorithm

ExactStates is as follows:

1. line (11) in algorithm ExactStates is replaced with the following:

79



T

if the state of 5,41 is True AND label(s,)[q] = True then
label(s,41)[k] := True;
else

label(s,41)[k] := False;

2. line (12) and (13) is replaced with:

if ds, such that label(s,)[l] = True then
Return True;
else

Return False;

The elements in the label in this modified algorithm contain True or False values
according to the evaluation of the partial predicate. The algorithm returns Truc if
there is at least one global statc where the predicate turns true. If there is no such
state, then it returns False. The complexity of the algorithm is increased slightly, as
the evaluation of each local predicate is required with the comparison of these values

including event s;41 and s,.

6.3 Summary

A general algorithm ExactStates is designed for the computation of the state space
for a given arbitrary Consistency Diagram. It is quite good and can be used to derive
an upper bound estimation as well. However, for the upper bound estimation we
propose a more efficient way, by making some modification to algorithm ExactStates.
This way, the cost of computing can be decreased n times when computed with the
oiginal ExactStates algorithm. Obviously, the complexity reduction is substantial

in case of a large number of processes are included in the execution. In case of a

80



lower bound estimation, it is shown that based on the results in Section 3.3.3, with
a simple algorithm the given G can be transfered to G°, where edges with p-distance
> 2 are replaced with a chain of edges. Then, the computation of the lower bouud of
the state space can use algorithm ExactStates or the modified algorithm described in
Section 6.2.2. For the detection of a conjunctive predicate another simple alteration
of ExactStates is necessary. Here, the elements in the label associated with an event

reflect the resul' of the evaluated partial predicate.

In any of the algorithm discussed here, when it comes to decide if two events are

consistent or not, we use the well-known Vector Clock mechanism.

81



Chapter 7
Experimental results

Iixamples are carefully chosen to demonstrate experimental results for computing the

state size in different types of systems. The following applications have bern chosen:

1. Calculation of the value of II: A single co-ordinating process performs certain
functions on behalf of the others - the synchronization mimics the centralized

"client /server’ model;

Matrix factoring: Processes communicate through broadcast;

8o

3. llirschberg and Sinclair’s elective algorithm: A token ring forms the underlying

synchronization structure.

For each example the performances of the various labeling algorithms are obtained
with varying system parameters. These parameters include # of events, # of edges
and the size of the Consistency diagram. In these experiments the estimation ac-
curacy and the speedup of estimuiion of the lower and upper bound approximation

algorithms are also obtained. In each case the maximum size of the label is noted.

The ’estimation accuracy’ is defined as follows:

estimation accurccy = MAX(g:, —CC:) (7)
where C refers to the state size computed by the exact algorithm; and C* refers to
that by an estimation algorithm. For lower bound estimation, 0 < C* < C, and the
ratio C/C* gives the factor by which the optimal solution is larger than the approx-

imate solution. Similarly, for upper bound estimation, 0 < C < C*, and the ratio

82



C*/C gives the factor by which the approximate soluti  is larger than the optimal
solution for the given input size. Hence, the 'approxi « « ..a accuracy’ > 1 in each
case. Since the optimal (i.c. exact bound) algorithn. L. . ratio = 1, the closer the

‘estimation accuracy’ to 1, the better the approximation.

The ’speedup of estimation’ is a ratio between the execution time of the lower (or
upper) bound algorithm and that of exact algorithm.
We define accuracy-speedup ratio g as follows:

P = estimation accuracy xspeedup.

Obviously the larger g is, the better is the estimation algorithm.

7.1 The calculation of the value of Il

A simple numerical integration formula for generating the value of Il is [Rag91] :

14

II=
o 1422

dz (8)

An approach to evaluate Equation 8 is to divide the arca under the curve into a
number of evenly-spaced strips. Each strip is approximated as a rectangle. The value
of the function at the midpoint of the strip is taken as the height of the rectangle.

Pi, therefore, is calculated as the sum of the strips in the area under the curve.

The calculation of the areas of the rectangles is distributed among the processes.
Each node evaluates the function for an assigned set of strips and sums the values
for those strips. This leaves certain tasks to the co-ordinator process: collecting and

summing the partial sums calculated by each node.

Table 4, Table 5 and Table 6 shows the experimental results for the computation of
the value of 7 for the exact algorithm, lower and upper bound estimation algorithms
respectively. In Experiment 3., the estimation accuracy returns an unacceptably high
value (i.e. it should be close to 1) for the lower bound estimation algorithm, even if

the speedup of estimation is very good. However, the upper bound algorithm hehaves

83



Experiment || #events | #edges | size of | exact number
label of cuts

1. 12 8 27 10,406

2. 22 8 27 82

3. 83 18| 6561 215,219,239

4. 47 18 | 6561 19,684

Table 4: Exact numver of cuts for calculating II.

Experiment || #events | #edges | size of | lower bound | estimation speedup of
label accuracy estimation

1. 42 8 5 311 49.5 4 times

2. 22 8 5 27 10 4 times

3. 83 18 12 605 631039 | 13,566.4 times

4, 47 18 12 72 273.4 95.2 times

Table 5: Lower bound estimation for calculating II.

extremely well. This is especially so in Experiment 3., where g =~ 165,600 which is

> 1, and it is still quite close to the value of the speedup of estimation.

7.2 Matrix factoring

One of the well known algorithms is the Gaussian elimination algorithm for factoring

a square matrix into lower and upper triangular factors [Rag91).

Experiment || #events | #edges | size of | unper bound | estimation speedup of
label accuracy estimation

1. 42 8 3 15,386 1.479 8 times

2. 22 8 J 270 3.293 4 times

3. 88 18 3| 504,831,859 2.346 | 72,354.3 times

4. 47 18 3 174,960 8.888 1,903 times

Table 6: Upper bound estimation for calculating II.

84




Experiment || #events | #edges | size of | exacl number
label of cuts

1. 180 281 36 1,256,213

2. A72 48 150 36,970,233

Table 7: Exact number of cuts for Matrix factoring.

The given matrix is partitioned into columns which are assigned to the processes
in round-robin manner. The calculation starts with a process which owns the first
column. It finds the pivot element, swaps the pivot row with the first. row, and divides
the pivot column by the pivot. Afterwards, the process broadcasts the pivot column
and the pivot row number as a message to all the other processes. No further com-
putation is then required on the pivot column. When another process receives this
message, it swaps its pivot row with its first row. Then all of the proceases, including
the owner of the pivot column, subtinct the pivot column, appropriately scaled, from

each remaining colurnn.

In the parallel algorithm below, the number of processes is p, and the index of the
processor is me. The value of me is different for cach process and is in vhe range

0 <= me <= p. Aside from that, each process uses the same algorithm.

me «— index of processor
fori=1, .., N-1do
if (i-1 mod p) = me then
Find the index ip of the maximal element of the i'" columm of A
Swap rows of i and ip of A, so A,, is the pivot element.
Divide the pivot columnn, A, 41, through An,, by the pivot A,
Brcadcast the pivot column, A41, thiough Ay, and the row number ip to swap.
else
Receive the pivot column and the pivot row number.
Swap rows i and ip.
endif
Scale and subtract the pivot column from each remaining column.

end for

Table 4, Table 5 and Table 6 show the experimental 1esults with two different Con-

sistency Diagram as input. In this case the result of both approximation algorithms

85



Experiment || #events | #edges | size of | lower bound | estimation | speedup of
label | accuracy | estimation

1. 180 28 7 042,683 | 23] 28 times

2. 472 48 12 | 25,795,922 2.8 2 times

Table 8: Lower bound estimation for Matrix factoring,.

Experiment || #events | #edges | size of | upper bound | estimation | speedup of
label accuracy | estimation

1. 180 28 4 2,190,710 | L7 5.4 times

2. 472 48 6 72,226,687 1.95 5 times

Table 9: Upper bound estimation for Matrix factoring.

are quite good, as shown.

7.3 The Hirschberg and Sinclair elective algorithm

There are algorithims where there is a particular process which performs sorme "'man-
agerial’ task, called co-ordinator process (as in Section 7.1). However, in case the
co-ordinator process fails, another process should be selected to take over the role
of the co-ordinator. Often, the remaining processes conducting a negotiation among
themselves, and a process is chosen which has the highest (or lowest) identifier. ‘T'he

algorithms associated with such negntiations are called election algorithms.

In the Hirschberg and Sinclair clective algorithm [Ray88] processes are arranged
around a bidirectional ring in arbitrary order. Fach process in the ring is able to

execute the following communication primitives :
e send the seme message to both the left-hand and right-hand neighbor

o pass the message received from the right-hand neighbor to the ieft (or con-

versely) without modification

e send a response to the neighbor from which a message has just been received

86




Experiment || #fevents | #edges | size of | exact number
label of cuts

1. 111 54 7 14

2. 257 123 7 13

Table 10: Exact number of cuts computed for Election.

Experiment || #events | #tedges | size of | lower bound | estimation | speedup of
; label accuracy | estimation

1. 111 54 7 12 4.5| 0.7 times §
2. 257 123 7 5 24.6 | 0.35 times

Table 11: Lower bound estimation for Election.

The idea of the algorithm is to perform a sequence of elections on increasingly large
subsets of the processe: until all have been included. It works as follows:

The process which initiates the procedure declares itself as a candidate and secks
to find if its own identifier is greater than that of either of its two neighgbours by
sending its id to both of them. These neighbors compare their id with the received
id and if their id is found to be greater than the received id then the corresponding
neighbor declares itsell as candidate; otherwise the initiated process remains to be
the candidate. As a next step, the candidate process tests its id against a larger set
of processes, in fact doubling the number of processes consulted. If a candidate is
defeated at any election its task is simply to pass any message received from one hand

to the other. This continues until all the processes have been consulted.

Table 10, Table 11 and Table 12 show the results for the cases where there are 111
cvents with 54 edges, and 257 events with 123 edges respectively. Again, the lower
bound estimation do not perform very well. However, the upper bound estimation

results are still reasonable to be used.

87



Experiment || #events | #edges | size of | upper bound | estimation | speedup of
label accuracy | estimation

1. 111 51 1 36 2.57 2 times

2. 257 123 1 49 3771 L5 times

Table 12: Upper bound estimation for Election.

7.4 Conclusion

The experimental results confirm the usefulness of the upper bound estimation as the

resulting g > 1 in almost all cases. In fact, it performs extremely well especially in

the third Experiment of the first example. In this case the exact bound algorithm is

very slow (since the size of the label is very high), while the upper bound estimation

algorithm performs its task quickly and with good accuracy.

88




Chapter 8

Concluding Remarks

8.1 Conclusion

Distributed programs are difficult to develop and analyze. This is due to their inher-
ent characteristics such as concurrency, unavailability of global state and global time.
The fact that these aspects have still not been completely mastered at the conceptual
level is one of the reasons for the lack of adequate tools for the design and analysis

of distributed systems.

The motivation behind this thesis is the difficulties in distributed program analysis
and debugging. As one attempts to analyze program behavior through distributed
predicate detection, one may end up with an exponential cost in the detection process.
The main reason behind high complexity is the exponential growth of the number of
system states with concurrency. 1i examination of all states is inevitable, then the
cost of analysis may be expensive. Therefore, we attempt to address here the size of
the global state space and the complexity of distributed predicate detection in gen-

eral, and propose some strategy to deal with the problem in practice.

We observe that the complexity may be attributed to two factors:
1. The size of the global state space, and

2. The nature of the distributed predicate.

89



In practice, we may have to identify whether both unfavorable conditions exist in the
application, and if they do, we may have to find a suitable last resort to deal with

them. This thesis presents results leading to answers to these questions.

An algorithm for estimating the size of the global state space of an observed exe-
cution is proposed. While we have not succeeded in finding [and strongly conjecture
the non-existence of] a polynomially time bounded algorithm to compute the exact
number of cuts for an arbitrary consistency diagram, the upper bound estimation
technique is still useful to be included in a distributed debugger to help users to
move as far as possible in the debugging process. In addition, a detection method
is introduced for some simple form of distributed predicates, and a useful strategy is

proposed to deal with distributed predicate detection in genceral.

Although some distributed predicate detection may involve an exponential cost, prac-
tical systems may not exhibit such an intolerable complexily. This could be due to
the synchronization design of the distributed system where processes tend to com-
municate locally in the form of clusters. Such special cases, where the the size of the
global state space is guaranteed to be determinable in polynomial time are identified

in this work.

Examples are carefully chosen to demonstrate experimental results for identifying
the state space in different systems. Therefore, experiments are conducted using
the following three different applications: (i) Calculation of the value of II: a sin-
gle co-ordinating process performs certain functions on behalf of the others - the
synchronization mimics the centralized ’client/server’ model; (ii) Matrix factoring:
Processes communicate through broadcast; and (iii) Hirschberg and Sinclair’s clec-
tive algorithm: A token ring forms the underlying synchronization structure. These

experiments show that the upper bound estimation is quite effective.
The design of adequate tools may help the development and analysis of distributed

systems, but finding correct and efficient algorithms for general distributed predicate

detection still remains to be a challenge.

90



8.2 Suggested further work

1. Most of the theories about distributed predicate detection are based on some
abstract models (where the notion of processes in the sense ot linearly ordered
disjoint subscts of events does not exist). It would be useful to identify a
mathematical model for the representation of a distributed system which would

be more suitable.

2. Implementation of the model and the algorithms for the computation of the
number of global states presented in this thesis in a distributed debugging sys-

tem.

3. An cxamination of the significance of the state space estimation strategy in

different applications, other than distributed debuggers.

4. Identification of the different classes of distributed predicates and the amount of

complexity increase that each would contribute to a given distributed execution.

91



Bibliography

[BR95]

[CL85)

(CM3s)]

[CM91]

[FR94]

[GC93)

(GJ79)

[GW92]

0. Babaoglu and M. Raynal. Specification and verification of dynamic prop
erties in distributed computations. In Journal of Parallel and Distributed

Computing, volume 28, pages 173-185, 1995.

M. Chandy and L. Lamport. Distributed snapshot: Determining global
states of distributed systems. In ACM Transactions on Compuling Systems,

volume 3, pages 63-65, February 1985.

M. K. Chandy and J. Misra. Parallel Programn Dcsign: A loundation.
Addison Wesley, 1988.

R. Cooper and K. Marzullo. Consistent detection of global predicates. In
Proc. of the ACM/ONR Workshop on Parallel and Distributed Debugging,
pages 163-173, Santa Cruz, California, May 1991.

E. Fromentin and M. Raynal. Inevitable global states: A concept to detect,
unstable properties of distributed computations in an observer independent,
way. In Proc. of the 6th IEEE Symposium on Pavallel and Distribuled
Processing, pages 242-248, Dallas, Texas, October 1994,

V.K. Garg and C.M. Chase. Distributed algorithms for detecting conjunc-
tive predicates. In Proc. of the 15th Int. Conf. on Distribuled Compuling
Systems, pages 423-430, Vancuver, Canada, June 1995.

M.R. Garey and D.3. Johnson. Compulers and intractabilily - A guide to
the theory of NP-completeness. W.1. Freeman Publishers, 1979.

V.K. Care and B. Waldecker. Detection of unstable predicates in dis-

tributd programs. In Proc. of the 12th Int. Conf. on Foundelions of

92



[GWY4]

BWER

[LLam78]

[1.J96)

[LMC87]

[Mat89]

[Mat93]

[MC88)

[MHR93]

Software Technology and Theoretical Computer Science, pages 253-264,
Springer Verlag, LNCS 652, New Delhi, India, December 1992.

V.K. Garg and B. Waldecker. Detection of weak unstable predicates in
distributed programs. In IEEE Transactions on Parallel and Distributed
Systems, volume 5, pages 299-307, March 1994.

D. Haban and W. Weigel. Global events and global breakpoints in dis-
tributed systems. In Proc. of the 21st Hawaii Int. Conf. on System Sci-
ences, pages 166-175, Jan 1988.

L. Lamport. Time, clocks, and the ordering of events in distributed systems.
In Communications of the ACM, volume 21, pages 558-565, July 1978.

H.F. Li and M.G. Janto. State space estimation and distributed predicate
detection. Technical report, Concordia University, Montreal, Quebec, in

preparation, 1996.

T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant reply. In IEEE Transactions on Computers, pages 471-482,
April 1987.

F. Mattern. Virtual time and global states of distributed systems. In Paral-
lel and Distributed Algorithms, pages 215-226, Elsevier Science Publishers
B.V. (North-Holland), 1989.

F. Mattern. Efficient algorithms for distributed snapshots and global virtual
time approximation. In Journal of Parallel and Distr.! uted Computing,
volume 18, pages 423-433, August 1993.

B.P. Miller and J.D. Choi. Breakpoints and halting in distributed programs.
In Proc. of the 8th IEEE Int. Conf. on Distributed Computing Systems,
pages 316-323, San Jose, California, June 1988.

N. Plouzeau M. Hurfin and M. Raynal. Detecting atomic sequences of pred-
icates in distributed computations. In Proc. of the ACM/ONR Workshop
on Parallel and Distributed Debugging, pages 32-42, San Diego, California,
May 1993.

93



[PL90|

[Ragdl]

[Ray88]

[Seg93)

(VD95

D.K. Probst and H.F. Li. Using partial order semantic~ to avoid the state-
explosion problem in asynchronous system. In Workshop on Compuler

Aided Verification, pages 143-155, June 1990.
S. Ragsdale. Parallel Programming. McGraw-ill, Inc., 1991.

M. Raynal. Distributed Algorithms and Protocols. John Wiley and Sons,
1988.

H. Segel. Monitoring Distributed System. Concordia University, Master’s
Thesis, 1993.

S. Venkatesan and B. Dathan. Testing and debugging distributed programs
using global predicates. In IEEE Transactions on Software kngincering,
pages 163-177, February 1995.




