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ABSTRACT

An analysis of the static and dynamic response of
a single span horizontally curved girder bridge is presented.
Static and dynamic loads were applied to a one-eighth scale
model, and experimental values obtained for deflections
and strains. The combined t9rsiopa1 and flexural natural
frequencies were obtained both analyticélly and experimentally.
The static analyéis was carried out with and
without a concrete slab deck. Without the concrete slab,
the bridge was treated as a plaﬁe grid with curved elements.
ﬁith the concrete slab; the bridge was treated as a beam
of,composite cross-section. A compa?ison is made between
the éomputed and experimental response of the model curved

bridge, and good agreement is obtained.
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NOTATION

L _, central included angle parameter
TR

= bimoment
= . viscous damping coefficient

= transverse displacement amplitudes of the nth
and nsth mode, respectively

= Viscous damping coefficient for the transverse
displacement

= viscous damping coefficient for the torsional
rotation

.

L , ratio of span to polar radius of gyration
W—Fo about shear centre

"= torsional rotation amplitudes if nth and nsth

mode

= dimensionless dynamic increment, defined as the
difference between the instantaneous value of a
dynamic effect and the corresponding static effect,
normalised with respect to the maximum static
~value of thit effect

= DI for deflection

= DI for rotation

= DI for bending moment

= DI for St. Venant's torsional moment

= DI for warping torsional ﬁoment

= DI for bimoment

= modulus of elasticity of the bridge material

= external load in the y-direction per unit length
= Rayleigh'’s dissipation function

= Modulus of shear rigidiiy
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W\h’ W\“s

Yn, Yns
fe

¢n, Pns
n, Wns

W

moment of inertialof the cross-section of the bridge
warping constant
St. Venant's torsional constant

length of curved bridge along the centre line
between supports

the beam mass per unit length

mnodel mass participating respectively in the nth
and nsth mode

an interger denoting the order of the natural
mode of vibration

magnitude of constant force

transverse shear force

strain energy

speed of vehicle

eigenfunctions for the transverse displacement

the polar radius of gyration of the bridge cross-
section about its shear centre

eigenfunctions for the torsional rotation

coupled natural frequencies of the curved beam

the nth uncoupled flexural natural frequency

of a stralght beam of the same length as the centre
11ne length of the curved beam

the nth uncoupled torsional natural frequency of

a stralght beam of the same length as the centre
line length of the curved beam



CHAPTER 1

INTRODUCTION

1.1 General

in recent years there has been an increasing demand
for highway interchanges in cities. With the tight geometric
restrictions necessary in such areas a demand for curved
bridges has developed. There are many advantages in the use
of curved girders. Steel girder bridges are particularly
attractive where clearance is cripical.

Mény curved girder bridges have‘been built using
steel girders, but in general the girders have been sfraight
with only the reinforced concrete deck being curved. However
a~curved girder bridge has certain advantages.. e.g.

1. The number of Piers required is less, because

straight girders which ére really chords of
the bridge have to be short to follow the curve
of the bridge.

2. There is continuity in curved girder bridges
providing reduction in momeutis, whereas straight
girders must he simple beams.

3., The overhanging slab from the outside girder
varies for the straight beams, whereas it is

constant for curved girders.

“rem



4. The appearance of curved girders is much better
than straight omnes, particularly when viewed
from below.

A review of the literature discloses several
theoretical and analytical approaches to the computation of
the dynamic response of vafious types of bridges under moving
loads, but literature on curved girder bridges is sparse.

Few papers on dynamic analysis of curved bridges are avail-

able.

L 3

The object of this investigation is to find out the
respons; of a curved girder bridge under the action of both
static and dynamic lbads. An actual bridge was designed for
highway H-20 16ading and an 1/8" scale model was used for
investigation of its static and dynamic behaviour.

An analysis has been developed for the natural
frequency of a curved girder bridge consisting of steel
girders and composite decking.

A static analysis of the bridge grid has been also
carried out to verify the analysis developed by previqué
investigators: '

1.2 Previgus Study
(1)

Fickel obtained the expression for the influence
lines of a curved girder for statically determinate and

indeterminate systems. close(2) derived an expression for

the deflection of a curved‘cantilever beam. In both of the



. above twé investigations the défiection is.assumed to result
from deformations due to bending and St. Venant's torsion,
without taking warping into consiaeration, even though
non-uniform torsion exists in a noh—circular section with
restraint against warping. A publication by United Steel

Corporation(33)

gives two methods of design and analysis.
Both are based on limiting assumptions. The segments of
curved girders between diaphragms are assumed to be either
comﬁietely free to warp or completeiy restrained.

Lavelle(3) developed a procedure for analysing
curved girders usiﬁg a stiffngss matrix. He also developed

a computer programme to analyse curved girder bridges under

static loading. Han Chin wu (4) developed a method of

determining normal stresses caused by warping. C.B. clark(5) .

analysed a model structure and found the work of Lavelle
and Wu to be in satisfactory_agreement with his expefimental
results.
Dabrowski(6) analysed a curved girder of thin
walled open cross-section sy;etric, about one axis only.
The structure is restrained against translation at the
supports while ;otation is permitted about all but the
longitudinal axis. This is an extension of the analysis of
Vlasov(7) who assumed cross-section to be doubly symetric.
Culver (8) determined the natural frequency of a

curved beam using the governing differential equations

T e L R e



developed by Vlascv. The cross—sectional shape is assumed

to be constant along the entire length of the member and
doubly symmetric i.e. the shear centre and centroid coincide.
Both prismatic and thin walled open cross-sections have been
considered for vibrations normal to the plane of curvature.
For the case of a simply supported bgam, he assumed the
normal mode function:u for deflections in the form of sine ’
curves and obtained a solution for Vlasov's equations. For
the case of fixed-end curved beams he obtained an approximate
solution for the natural frequencies using the'Rayleigh;
Ritz method.

: Yonezawa(g) used the solutions for orthotropic fan
shaped plates which are simply supported at two opposite
straight edges and rigidly attached to elastic beams at the
other curved edges for the static case of a uniformly
distributed load and for the case of free vibrations. He
applied those solutions tolthe numeric#l analysis of curved
-girder bridges.

In the proﬁlem of free vibrations- both an exact
solution (by the Frobenius Method) and an approximate'one
(by the Galerkin Method) were obtained.

The dynamic response of beams subjected to traveiling
loads is being studied for a century. In 1847 Willig(lo)
established the governing equation of motion of a mass load

traversing a simply supported beam haﬁing uniform stiffness



with negligible mass and damping.

Kryloff(ll) first solved the problem of a force
having no mass travelling with a constant velocity over a
member having a uniformly distributed mass.

Timoshenko(lz) solved the same béam with an additional
pulsating-iorce crossing the beam.

In 1935-Lowan(13) considered the effect cf a consfaﬁt
force traversing t@e beam at a variable rate.

'inglis(la) solved the problem of a smoo?hly rolling
mass and a pulsating forge crossing a beam having uniform
mass and stifiness and also possessing viscous damping. He
assumed the load disfribution and defiection to be represented
by a half sine curve.

Jeffcott(ls) solved the general case of a mass
travelling over a beam-of uniform mass and stiffmness. He
solvea the governing linear differential equation with
variable co—efficients by an jterative method.

éhallenkamp(l6) found a solution in terms of a
Fourier series with unknown co-efficients which were deter-
mined b§ solving a system of linear algébraic equatioﬁs,
obtained through the use of generaliéed co-ordinates and
linear superposition principles.

In 1950 Ayre(17) et al solved the problem of a
pure force passing over a two span continuous beam. A

subsequent experimental investigation was made(ls) for



_ comparison with the Shallenkamp‘golution fér a simple span
and for the pure force solution for a two span continuous
member. |

In 1961 Licari(lg) and Wilson obtained a mathematically
exact solution to the problem of a beam of uqiform mass and
stiffness with viscous damping traversed by a moving mass
system. The system consisted of unsprung and sprung,.damped
components in addition to a pulsating pure force. The
solution is presented as an infiinte series having co-efficients
obtained through the condition of compatibility.between the
beam and the vehicie. .

Looney_(?o’ZI) and Biggs(zz’zs) solved by numerical
.methods the differential equations describing the transient
response of a-single span beam subjected to a moving sprung
and unsprung mass system. It is assumed in these amnalyses
that the deflection of the structure could be described
by the first mode of wvibration.

Wen(24) extended this method in analysing the case
of a two axle vehicle by assuming the deflected shape of
the span to be equal to the static deflection ot the instant-
aneous positioﬁ of the vehicle.

Fleming and Romualdi(zs) analysed a multispan system
by replacing the spans by lumped mass systems excited by
forcing functions erendent on the position of the moving
mass load.

Tung(zq) et al solved numerically the governing



differential equation of motion of a single span member
derived from an energy consideration.

The work of Duncan(27) and Bishop et a1(28’29)
describing the use of dynamic receptances in the analysis
of vibrating systems was expanded by Skeér(30) to incorporate
a moving éqrcing function exerted on a beam and plate system.

Christiéno(31) studied the dynamic response of
horizontally curveq girder bridges subjected to moving
loads.

He formulated the differential equations of motion
of the bridge by adapting the static case derived by Dabrowski.
The equations are soived by using an extension oi the work
by Licari and Wilson who analysed the dynamic behaviour of"

a straight beam subjected to a similar forcing function.

The accelerations of the unsprung mass are expressed in

terms of a Fourier sine series with unknown co-efficients.

The compatibility condition between the bridge and vehicle

_are used to establish a system of linear differential

equations from which the co-efficients are obtained.

Due to non-coincidence of the shear centre and the
centroid of the cross-section, there results a triple
coupliné phenomenon of the bending (about two orthogonal
directions) and twisting modes of vibration. His investiga—.

tions employed the following assumptions regarding the

bridge model: the distribution of fiexural, torsional and



warping rigidities and the mass of the beam is uniform along
the length of the span. The effect of bridge damping is
neglected. The vehicle is jdealised to be a single axle

one with two wheels and having sprung and unsprung components
of mass. |

Vashi and Heins Jr.(32) investigated the dypamic
behaviour of a curved bridge.

In their analysis the flexural and torsional damping
in the bridge is considered to be viscous and uniformly
distribqted along the span. The co-efficients of viscous
damping in flexure and torsion are assumed to be proportiomnal
to the beam mass and.the mass polar moment 6f inertia
respectively. .The veﬂicle is represented as a single axle
as well as a two axle sprung mass-load having sprung and
unsprung components of mass. The suspension system includes
a constant frictional force and a pe;iodic force simulating
the effects of flat spots in tires.  The two axle representa-
tion permits investigation of the effects of pitching motion
and the axle Spacing>on the response of the curved‘beam;

In this investigation a scaled modél_of a curved
girder highway bridge has been tested to find its respomse
to botﬁ static and dynamic loading, 2and the combined natural
.frequencies of vibration have been measured for both the vertical

and twist modes.



CHAPTER I1I

2.1 Design and Fabrication of the Model

' The curved bridge was designed for H20-S16 loading.
Thé briage~is for singleviane traffic and has a simply
supported span of 90'-0" along the curve and a radius of
curvature of 90'-0¥, An 1/8 scale model is shown in Fig. 1.
The bridge consists of two main steel girders with inte;—
mediate cross girders. The concrete deck is o% composite
construction having st;ds connected to the top of the
curved'girders.

The design was based on a simplified method as

outlined in a publication by the United States Steel

Corporation(33).

This method has sufficient engineering
accuracy for practica; design. The fi;st step of the
‘simplified method is to isolate each curved girder under
'consideration and straighten it out fo its full developed
length. - The'external 1oad is then apﬁliéd fo the girder
considering it supported at its developed span lengtﬁs and
the moment diagram is comstructed by.standard procedures
for beams. Thi; diagram is called primary moment diagram.
The next step is to construct a similar diagfam

having as its ordinates the ordinates of the primary moment

diagram divided by the horizontal radius of the curved girder.
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This is referred to as the M/R diagram and its
purpose is explained with the help of Fig. 4.

A portion of the flange of a straight girder is
shown in Fig. 4(a). 1Ignoring flexural stress carned by
the web, the intermal force at any pointkalong the flange
is equal to the moment at that point divided by the depth

of the beamn.

F = M/d ) e (1)

By curving the flange along an arc of ;adius R, as
would be the case in -a curved girder, radial components of
these intérnal forces are developed as a distributed force,

g - This is shown in Fig. 4(b).

The magnitude of @ can best be derived by the
equilibrium condition for a very small segment of a girder
as shown in Fig. 4(c), where the direction of 4 is reversed.
Radial force g and axial force F, vary along the girder

'length. However, for a small segment of the girder,

and F may be.considered cdnstant. Writiﬂg the equilibrium
equation nn the Y direction,

29R A = 2F Sw &S

For small angles:

Ag = Sw &S

Reducing: 2gR=2eF%

or g- 'EQ' . - ' .-'-.-(-2)—.



Combining eqdations (1) and (2)

g = _M_ 3 oT .o (3)
dR
d = M/R eee (8)

The M/dAinternal forces developed in the top and
bottom flanges are .equal in magnitude but opposit in direc-
tion in the two flanges. Consequently, their radial com-
ponents q, are also equal in magnitude but oppoéite in
direction, represent;ng a couple (or a torque) equal to

(4d) .. Therefore, the M/R diagram is, in fact, a torque

11

diagram per unit length acting on the girder due to curvature.

‘The M/R diagram is now applied as a distributed load actiﬁg
laterally on the developed length of the gifder which is now
considered supported at each point of torsional restraint,
or in other words, at each diaphragm or floor beam.

Since the M/R loading is really torque per foot,
it is evident that the support reactions at the floorbeams
due to this lateral loading are then th; concentrated
resisting torques developed by the floorbeams to restrain
twisting of the curved girder. Although the girder is
actually continuous over the support at each floorbeam,

this continuity was ignored and the reactions at the floor-

beams due to the M/R loading determined by simple beam
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- action would be sufficiently acéurate. After computing the
reactions, the sﬁear diagram was constructed. The shear
diagram is the internal torque of the curved girder diagram.

After applying these steps-to both girders of the
system and obtaining the concentrated torques at both ends
qf the floorbeams, the end shears of each floorbeam were
computed by the equations of static equilibrium. These end
shears were then applied as vertical concentrated loéds to
the.éirdér which was again consideréd supported at its
developed span length. This method of convergence was
repreated twice and the results were considered sufficiently
accurate.

2.2 Fabrication of the Specimen

The steel used for fabrication was ASTM Standard
A36, Structural Steel The curved girders were heat curved

since the curvature of the girders was very high.

A1l Connections were welded. Small studs were welded

to top flanges to act as shear connectors. The model is

shown in Figure 1.



CHAPTER III

THEORETICAL PROGRAM

3.1 Static Analysis

The curved girder bridge was firsﬁ analyzed as
a grid without the concrete slab. Matrix analysis of the grid
was made using the i;iffness method. A computer program
developed by Lavelii Lﬁs used to analyze the grid. The
details of éhe derivation are given in Appendix A. It
outlines the general procedure for a stiffnesé matrix with
modification being made for tﬁe member stiffness matrix
of individual éuéved elements. This program gives the
moment, shea; and torque for each individual elements.

The stresses resulting from the non-uniform

(4)

torsion was obtained by the method used by Wu. Non-circular
sections when twisted, undefgo iongitudinal warping as

well as angular distortions. Plane sections before twist-
ing do not remain plane after twisting. If this warping
tendency is not restrained,‘the member will exhibit a con-
stant unit angle of twist and will therefore be subjected

to pute torsion; I1f however, the warping distorsion is
resisted in any way, longitudinal normal stresses are
produced in addition to the torsi;nal shearing stresses.

The angle of twist per uait length will no

longer be comstant. The detailed derivation is gi%en

13
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in Appendix B.

The curved bridge was'then analyzed with the
concrete deck. The method developed by Dabrowebi was
used. A brief outline is given below.

Consider the element shown in Fig. 2. The
_element is of length dz, which is the product of the
_radius and the central angular increment dX. The cross
section is assumed- to be non-deformable, and has a vertical
axis of symmetry. A p01nt on the element is defined by
its locatlon relative to the right hand co- -ordinate system,
the origin of which is at the centroid of the cross section.
The displacement of the shear center, thch is considered
to be a distance Yo above the centroid, is defined by
components U, V and W in the X, Y and Z directions respect-
ively, The displacement of any point on the cross—section
may be defined relative to the shear centre through the
angle of twist, §.

The external forces Px, Py, Pz acting in the
X, Y and Z directions respectively in addition to the
external torque P@§, about the Z axis, are applied at the
shear centre, and are shown acting in the positive direc-
tion. The internal shear forces Qx and Qy and the twis£ing‘
moment H, also act through the shear-centre, however the
normal force N and the bending moments Mx and My, are

transmitted through the centroid of the cross-section.
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Equilibrium Equations

The conditions of equilibrium are given. as

follows:

2y = Qx,+ % +Pys = (3.1.12a)
2Fx = ~Qyw Fy = (3.1.1b)
2Ffz= WN- @é + Pz =o . (3.1.1c)
TMy = M;+J§ (H+ @y + Qy = o (3.1.14)
2My=My i Qy=o (3.1.1e)

IM, = =L (v
z R DARRES (3.1.1f)

‘where the prime (') denoted differentiation with respect
to Z. The shear forces Qx and Qy may be eliminated from

the above equations, resulting in four independent equations

having four unknowns as follows:

N MY b, =0 (3.1.2a)
R .
14 ’
M,‘+J§(H~ T Yo Puvl)+ by -0 (3.1.2b)
n
Mﬁ‘ ‘;\__\;x:o : (3.1.2¢)
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M- b (Myr Ny ) v ey =0 (3.1.24)

Force Deformation and Moment—-Curvature Relations

The normal force N, the bending moments Mx and
My, and the twisting momentyg , are related to the displace-

ment components U, V, W and §, by

W= BEAQW- % &%) (3.1.3a)
[ ] 4’
My =-B1, (V- %) -~ (3.1.3b)
"y b
M» = e-!.y‘“"' Ez- _éz C\)G* v‘jj} (3.1-3(:)
" " . B
\—\="Elw(<§>+l)+GKt(<\>*2> (3.1.34)
= R
where
A = area of cross section
E = Young's modulus
G = Shear modulus
Ix = Moment of inertia about X axis
Iy = Moment of inertia about Y axis
Iw = Warping constant
Kt = §St. Venant torsion constant and
"y =

A 2. A
1,{‘”‘_“‘
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Substitution of Equations (3.1.3) into
Equations (3.1.2) would result in a set of four cougled
differential equations in U, V, W-and ¢. In order to
simplify the method of solution hdwever, it is assumed
that the normal force N, can be neglected in Equations
(3.1.2). The solution of the above is given in
reference (6).

3.2 Dvnamic Analysis

The dynamic analysis is based on a method
developed by Vashi(32). A brief outline of the method is
presented below.

3.2.1 Mathema;ical Models

The mathematical analysis of the problem of
the dynamic behaviour of hofizontally curved bridges
requires idealization of the actual bridée vehicle system.
This idealization is based upon the following simplifica—
.tions and assumptions regarding the behaviour of the bridge
and the vehicle unit.

1. Bridge:

a. Usual curved beam theory of thin-walled
symmetricai cross-sections is assumed to be applicable.
It is assumed that during vibration, the deflection of
all girders at any transverse section of the bridge is
constant. Accordingly, an actual bridge which may consist

of a floor system and stringers is represeﬁted by a single
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curved ﬁeam of equivalent rigidity and mass, as shown
ia Fig. 3.

b. Cross-sectional dimensions of the bridge are
assumed to be small, compared to ﬁhe horizontal radius of
curvature and the length of the beam.

¢. Centroid and shear centre are assumed to
coincide. Although this is not true of a highway bridge
cross-section, the noncoincidence of centroid and sﬁear

ce;t;e results in an inappreciable-error because of the
slenderness of the beam.

d. Theidistribution of flexural, torsional and
warping rigidities and the mass of the beam is uniform
along the span length.

e. Effects of shearing deformation, flexural
rotatory inertia and axial forces are a;sumed to be‘
negligible.

f. Bridge damping is viscous and uniformly
distributed along the span. The co-efficients Cb(Z) and
Co(z) of viscous damping in flexure and torsion, respect-
ively are assumed to be proportional to the beam mass and
the mass éolar moment of inertia.

gu The beam is assumed to be simply supported.
For a simple support, it is assumed that the fleﬁural and
warping normal stresses are zero at the support. The

designation "simple support" requires that such a support
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resists a torque i.e. prevents rotation.

h. Bridge deck is assumed to be smooth and free

of irregularitiecs.

3.2.2 Vehicle a2s a Constant Force

The problem of the vibration of a multi-wheel
vehicle with many degrees of freedom is very_complicated.
The width of the vehicle and consequently the effects of
rblling cannot be-considered in the analysis because of
the idealization of the bridge as a curved bean.

An actual highway vehicle which possesses sprung
and unsprung components of mass can be idealisea as a single
axle sprung mass in Figure 5.

Because of the vehicle mass, the contact forces
between the vehicle and the bridge wi%%zgary considerably.
Howevef, it has been shown in Reference that the extent
to which the constant force solutiop correlates with the
sprung mass load solutions depends primarily on the
frequency ratio <y - Also, for small values of
all sprung mass load solutions approach the constant force
solutions irgespective of the value of the méss ratio, RS,
and the contact forces remain almost constant and undergo
~a variation which is less than 10% of the static load.
Therefore, the vehicle will be idealised as a constant

force on the bridge. It will also be assumed that the

constant force will pass through the shear centre of every
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cross-section, as it traverses the bridge at a constant
speed, travelling from left to the right along the bridge

span.

Displacement Equations of Flexural-Torsional Bridge Motion

Vlasov's Theory ( 7 ) of flexural-torsional
motion of the elastic horizontally curved beam takes into
account the flexural and torsional deformations and’
accordingly contains two dependent variables instead of
the one transverse displacement described in the classical
theory of flexure of straight beams.

Fig. 6 shows an élement of a horizontally curved
Beam with a sét of reference axes passing through the shear
;entre of the beam cross—seétion. The parameters and
© denote respectively the vertical displacement of the
shear centre in the.Y direction and the angle of twist of
the beam cross-section. R is the constant radius of
curvature of the centre line of the beam (Z axis).

. The equilibrium of the forces moments and torques
acting on the sides of an element of the curved beam as

shown in Fig. 7 give the following three equations.

28 + ez - m\,;’i = o (3.2.1a)
oz
3‘

M _a+ T =o “ (3.2.1b)
FE R . i
2 |

3T _ M L« (z,x)=mf &' (3.2.1c) ‘
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The functions Q, M and T denote the transverse
shear fcrce, the bending moment and the torsional moment,
respectively.

The terms f(z,t) and m(z,t) represent the
external load intensity in the Y direction and the externally
applied to;sionél moment per unit length respéctively. The
terms ‘mb;‘i_ and ‘m\,[}é’ are the inertia forces of tramsla-
tion and rotation .during vibration. Y, and ﬁ» are respect-
ively, the beam mass per unit length and the polar radius
of gyration about the shear centre. The number of dots
above M and 6 indicates the order of differentiation with
respect to line, t. |

The internal bending and torsional moments as
described by Vlasov can be.expressed in terms of ¥ and ©

and used as follows:

M= - €1, (- ‘
x (m %) (3.2.2a)
T = GK{-_(ZR-\-S')~EIWC’Q;._‘_ e"‘) (3.2.2b)

The total torsional moment T defined by Eq. (3.2.2b)
is obtained by summing the St. Venant's torsional moment
S with the warping torsional moment W, which are as

"follows:

s= Gxx (2 4 9) : (3.2.2¢)
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The terms E x, GKt and EIw are flexural torsional
and warping rigidities respectively. The number of primes
above 1 and 6 indicates the order of differentiation with

respect to the 2 co-ordinate.

Eliminating the term Q in Eq. (3.2.1a) and (3.2.1b)
and substituting Egs. (3.2.2a) and (3.2.2b) into resulting

Equation and Eq; (3.2.1c) gives i )
’ n .
nu it  CCz,k

(E--S.W +E'1X)vz - th V)f.b_‘E._}!/e - EI%‘\'GK‘; e +yhbn. - ; rY )

R2 R2 = =3 .

(3.2.3a)
2 e

uis - "
Elwn - wt \q'_""' €1.0-G% 0+ E1xO *““bf,e =w (25t)
R "R R2

(3.2.3b)

These equations form a seg of two linear, simultaneous
partial differential equations for flexural torsional motions
of a horizontally curved beam with any support conditioms. subjected
"to the forcing functions £(z,t) and m(z,t).

For a simple support boundary conditions, the
displacement ?z, the rotation 6, the normal flexural stressqi s
and the normal warping stressG:(, all vanish at the boundary.
The first two conditions can be symbolically written as

N (ot) = n(L, V=0

(3.2.4a)

~

g(o,t) = oCLst) =0 (3.2.4b)
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Remembering that the normal flexural stress
is proportional to the bending moment M défined by Eq. 3.
2.2a and the normal warping stress Ju is pProportional to the

bimoment B defined as

" "
B = ‘E-&\NC,—}Z—R"\'G)

"and utilizing Eqs. (3.2.4a) and (3.2.4b) the remaining two

conditions are satisfied if:

” u
MO = (L) =0 (3.2.4¢)

/] “y . .
6(0,'!:) =8 (L:t) =0 ’ (3.2.44d)
Here L denotes the length of the curved beam
between the supports along the Z axis.

C. Free Vibrations

The free vibration problem is specified by

Egqs. (3.2.32) and (3.2.3b) in their homogeneous form, i.e. with
£(z,t) = m(z,t) = 0, and by boundary conditions given by

Eqs.(3.2.4a, b,c and d). For harﬁopic vibrations, one can

take

M (2,%) = c';_ Yu(2) Swmwant o €w)

n=! (3.2-53)
.° .

8(Z:t) = ¥ PnlZ) Sm(Wank « )
w=t (3.2.5b)

Substituting Eqs. (3.2.5 a, b) into Eqs. (3.2.3 a, b)
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with f(i,t) = m(z,t) = 0 results in a pair of ordinary
differential equations which can be solved for the eigen-
functions Yn and #n. However, for the simple support

boundary conditions the eigenfunctions have the simple

form:
N,.C(2) = C, sm“_’EE (3.2.6a)
' '<\>h‘(z) = Dwn %\y\"ﬁ{E | (3.2.6b)

Substituting Egs.(3.2.6a,b) into Eqs.(3.2.6a, b)
and the resulting equations into Eqs.{(3.2.3a2,b) with

f(z.t) = m(z,t) = o gives

o2 e Wn' 2 2 2
2 (o) {1- (TR0 flem~rlin @y (e ]bhm (3.2.72)
2 2 2 a2 a2
o w W 2

n W =0 '
v AD" (3.2.7b)

Here the following notation has been used.

2
Wy = (hﬂ') E1x

wq> - nwrx \'\"WZEI\N-\—G\(\\}
\:2 “\h?;a
A= TR
-

Pe -
Equating the determinant of the co-efficient matrix of
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Eqs.(3.2.7a, b) to zero and solving for Wn yield
; 2F & '
Wns = TBY\ P\'\S

(s =1 & 2 for each n = 1,2.....

(3.2.8)

where

1 _.‘_‘—C_ NG W 2 : 2
{:ha 2\_ +;\/c: a2 {\_(&R)“}

. 2 2 2
¢ =\ BRSO TR

TB=:Z_\;2. Ylbi_.
T\JEIX

It should be noted thatbaé,bdv and T, as

defined above represent the nth uncoupled torsional natural
frequency, the nth uncoupled flexural natural frequency

and the fundamental flexural natural period of a straight
beam of the same length as the centfe line length L, of

the curved beam. It is seen from Eq.(3.2.8) that for each

n, there are two frequencies, Wnl and Wn2. The corresponding

amplitude ratios

(%\;) _ Kwns

s = =
2 2
AN Wns
K V= %@ B4 {‘“ \m-)§
ws &
1+ (5)*C \9_";)"
w

S =1, and 2 for each n =1, 2, ccocvenes (3.2.9b)
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General Formulation of Forced Vibration With Damping

Any deflection of a curved beam can be represented
by a double infinite series of its eigenfunctions. As

was shown in Section C, the eigenfunctions for a simply

cn
supported curved beam are proportional to Sin 2 FZ

and, for éach‘n, there are two frequenciesWnl and Wn2.

In this case, it is convenient to assume

_ o 2 X
"ZQza't) = } E YV\S (Z) qhs ) : (3.2.11a)
W=l g . '

co 2
6(2:8) =7 7 st a&hs(*—) (3.2.11b)
n=\ S5
where )
YansCZ) = Sin wrxZ (3.2.12a)

L

— Kuns nTZ
C?hs FZ) T = Sin [ (3.2.12b)

The unknown functions gns(t) are called tﬁe
normal_co¥6rdinates.

For a beam undergoing combined bending ahd
torsional displacements, the kinetic energy K, the strain

energy U and thr Rayleigh dissipation fumction F are

L 2 L N
= %gvmbcn)az—*%smbracéch\z (3.2.133a)

(=] [
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L v
\ (= 4 * .

U= —agtlx <'Yl_— %)O\Z.‘-‘_ZSGKt(’_L_‘*Q)Q;\Z |

. J L (3.2.13b)
+L?_SEIW(11§+ &)az

L . " L

F=i(ce@Odz 3%

= 2| SelBDO Az ajCo(z)c @) dz (3.2.13¢)

- 6 ) °
Substituting Eqs.(3.2.11ap) into Egs. (3.2.13a, b)

and making use of the orthogonality equations.(3.2.1oa,b,c,
d and e) it can be shown that the energy expressions for K

and U reduce to

: o 2 %
S AN )

K= 5 7 7 Was Y (O (3.2.14a)

na=t 5=\ .

. o & 2 2

‘4= L wm

U= azéﬂ ws Wns 4, (3.2.14b)
v MLy (Ans$E :

ws > © ) : (3.2.14c)

The use of assumptions stated in Section A,

regarding the damping characteristics of bridge yields

_ 2
(D) = Mpymy |, Cg(Z) =/‘~6"‘bf’° (3.2.15a)
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where/ib and‘[Leare constants of proportionality. Further
it is assumed that /{’L\o and}}.e are nearly equal and

therefore

ML= Mo = M (3.2.15b)

Utilizing Eqs.(3.2.11),(3.2.15) and (3.2.10) the
Rayleigh dissipation functiom given by Eq.(3.2.13c) can be

written as

/& «a 2 "2 .
= =2 22 s sl = MK (3.2.16).
S

S=1

For systems with viscous damping, Lagrange's

equation of motion can be written as

a
a‘“s Wh %ns Aws
(S = 1 and 2 for each n =1, 2, ccecocces (3.2.17)

where Q ¢ is the generalised force corresponding to the
nsth generalised displacement gng- Substituting the series

expressions for K, U and F from equations(3.2.14a,b) and

(3.2.16) into Eq. (3.2.17) ,gives:

[X) © .
2
4“5 + /L 1“5 * whs th = th
Mnsg
(S =1 and 2 for each n =1, 2 ceedoenee . (3.2.18)

which represents a two fold infinite set of velocity-
uncoupled equatioms, and is similar to that of a onme-degree-

of-freedom system with viscous damping.
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For a single constant force P moving across the
the bridge with constant speed V, the generalised force

is given by

Rns = Pyns Cz=Vi)

Qns

(3.2.19)
(S =1 and 2 for each n=1, 2.........

Substituting for Qns from Eq.(3.2.19) into

Eq. (3.2.17) gives:

2 e Siw NIVE
%V\S }LO““S_*.\Q“S Ans s - (=

) (3.2.20)
(S =1 and 2 for eachn=1, 2 .,......

The orthogonality relations for the eigenfunctions
Yns(Z) and @,5(Z) of a curved beam with arbritary support
conditions and arbritary variation of mass and stiffnesses
- were developed by Vashi in reference3) . These relations

for S =1 and § = 2 are

L

N+ s d ) Az we o et

[

1]

s fov man(3.2.10p)

L
IEI*<Y"‘5 )c\z

+5G\<-\:(Yhs ‘fhs)(&-»éms)é\z

n

-k-SE-lw (Y“S “+ <k’\-\ts)(\f‘m:s * ¢wms) Az

= o {o‘ Yy F h (3.2.10¢)

: 2
=M gWas {ov m=n (3.2.104)

-4

FORS
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where

L, .
M, = J\mb(\(hs—lff’gdg“s)o\z (3.2.10e)
Q .

3.3 Solution of Equation of Motion

The solution of Eq.(3:2.20)may be written as
the sum of the soltuion of the associated homogeneous
equatioh and a convolution integral.

This leads to

-.—.-t . - o . _ .

t -4 (&-T)
4P X Sin DTNT o = 51 "5 (£-T)dT
“?\r\'s\”hs -
(S =1 and 2 for each n = 1, 2..... 0 .(3.3.1)

where W,g is the damped natural frequency given by

Substituting Eq-(_3o3t1) into Eq.(3‘2°lla’ b)

gives the general solution of the forced vibration problem

in the form

w2 . - ut - RN
Ae Cos Wngt + Bng SMWnTT
m(z,k) =2§ Yhsﬁz)[e 2 (Aws ws

nel S=i Y

-4 (x-T) _ A
+ 2 Xs\h\\w\lt o’ S{“whs(£-1)a\_t](3.3.3a)
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Z 7 %SCZ)[Q 2(/‘\\\ C°5"°V\st"‘ Rwnsg Stw w“st)

n=l S=i
t 4 (-7
\3d g S'\»‘“T\Jte Sin o\
+ - Wns -Vt
T ) v ons ( (3.3.3b)

where Y . and @ o are as defined by Egs.(3.2.12a,b).

For maximum effects, bridge damping wil} be
ngg}ected and hemce AL = 0. Further, for zero initial
conditions‘of the bridge displacement and velocity, the
constants A . and Bpg are all identically zero. As a
result, the general solution given by Eq(3:3:32, b) after
a considerable amount of simplification by substituting the
"values of W, and Mpg from Eqs.(3.2.8) and (3.2.14c) can be

written as

wrZ
v ns

(24 = T - Z . TRvns

(3.3.4a)
kh S\\‘\
0(zd) = o ST > Gns (V)

T E1,R "' s= Mhs :
(3.3.4Db)

Here, the following notation has been used

. t 2
GV\SC*-) - S 2Fn« ?3 —- d S\m27T n A/fhs

a5 s e

&= 3 = SPeed pavawmeler
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B. Dynamic Increments for Displacements and Stress Resultants

For highway bridges, the parameter &« is a small
quantity relative to unity, and the contribution of the
terms in Eqs. (3.3.4a,b) for n>1 may be neglected in
comparison to that for m = 1. Considering, therefore,

only the term m = 1 Eqs.(3.3.4a,b) reduce to

3 cd
PUSWEE 5§ @ ®
Tt sty

QZ(ZQ*D‘=

(3.3.5a)
3. 2
PL Sww 1% E Kig GisCh)
0(z,%) FE1, R en 2 RMis © (3.3.5b)

The static or crawl deflection at any section
at a distance Z from the left support at any time t is
obtained by taking & = 0 but retaining the term

Swn a;rcg..‘% in Equation(3.3.5a,b), This yilelds
8

PL Tz T 2
5£(ZJ°) L% I

t
e ET, P\SRM\S S\h'LTd?

{ s (3.3.62a)
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3 2 .
P\_ S\Y\T’._z‘. \<\S .
6 (Z t): - [7_ PE—— — SA 2' -t—

st TAE].xR S=1 F\SRN\S wEms T

(3.3.6b)

Subtracting Eqs.(3-3-68,b) from Eqs.(3-3.5a,b) gives

2

’ PL Sn\—— His V)

Z,t)~ 1) = -
Mzt ”Zsi(z,) ZE1s & RMag (3.3.7a)
aCZt). 0 A A
Z,%) = A

s-t( ) R ss R Mis (3.3.7b)

where
.

(‘p

2 .
W CY) A S\ 2Fd g - L Swvw 2T Pis Ts
) = —
* Pre (s o) NPis (fris - %7)

neous values

These equations define the instanta

of the dynamic increment at a section specified by the
ized with respect

co-ordinate Z, which, when nondimensional

aximum static effect, become

to the corresponding ®

A
M(Z:1) - My (Z01) Z;
Ol = = 5 N
T TPl wwns
S=

'2' 425{, ™ OR
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2
DI = 8(Z2,1) - 951 (Z,%) _ S= R Mg
2
esi, moax iz s
S=) P\S RM,g

(3.3.8b)

The subscripts n and @ refer to the tramsverse
deflection and torsional rotation respectively.

The nondimensional‘dynamic increments for bending
moment M, St. Venant's torsional moment S, wa;ping torsional
moment W and bimoment B can be derived in a manner similar
to that used above for obtaining DIQ.and DIg , by substituting
the required derivatives of the displacements into the
definitions of these stress resultants. The dynamic

increment for the bending moment DIy can be obtained as

% L+ A Kus

—_— N, g
C) S=21 R‘“4\s 'S
1. =
M 2
Ei \+ A Was
i . $=‘ r\s RM\S

(3.3.8¢c)
It can be shown that the dynamic increments DIg,
DIy and DIy associated respectively with the St. Venant's

torque; warping torque and bimoment are equal and are

given by
2
S M Ris \vs QY
= o R VMhs
2 \y¥is ) (3.3.84)
2 .
sat Pis ® Mis
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From Egs. (3.3.8¢c,d) an upperbound to the maximum

value of DIy, DIg, DIy and DIg can be obtained by ;aking

the sum of the absolute values of the individual terms.

This approach yields: 2 '
3 \+ A Khs %

Z—\ P\s RMrg ('\J_F‘s-d')

D'S_M = =
™ ox 2 \_\_ A’ZK\S
5_=‘ F\s RM 'S
DIg, max. = DIy, max. = DIg, max.
S+ .
2 -V '<\+\<\5) %
S+l
S P R Mig {‘V fis-CL =
> B
2, \+ Kas

S=1 'F\s RMag

(3.3.9a)

These formulas are useful in predicting’the general level

of response due to a single moving constant force.



CHAPTER 1V

EXPERIMENTAL PROGRAM

4.1.1 Static Test Procedure

The stétic test was carried out first. The
curved girders and cross beams were tested as a grid. Budd
Metafilm strain gauges Type C6-145 and deflection dial
gauges were used at locations shown in Fig. 13. The static
load wéé applied by a Cilmore Loading System. The actuator
was placed on top of a semi-circular wedge piece to approach
a concentrated 1oading condition. Loads of 3000 1lbs. and
4500 1lbs. were applied at locations shown in Fig. 13, and
the strains gnd deflections were recorded. A strain gauge
.vecorder was used to record the strains. Then the Gilmore
actuator was moved to the mnext position and the same pro-
cedure was repeated.

4.1.2 Test Results

The test results are shown in Fig. 8, 9 and 10.
Solid lines represent the expegimental values, whilé
theoretical values are shown by dotted lines. "I.G." indicates
the girder nearest the centre of curvature and "0.G." signifies
the farthest girder.

“4.1.3 Test Evaluation

Fig. 9 shows the vertical deflections of the

girders as measured by the dial indicators. The curves

36
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shown in the Figure 9 are for the bridge without a slab.
The curves shown iIn Fié. 10 are for the bridge with the
concrete slab:

For 1oéds applied to the outside girder at
1/4L and l/Zi the éctual deflections are more than the
computed defieétions; For the outside girder loaded at
mid span the discrepancy between measured and computed
vertical deflections is 10 percent. For loads on the
inner girder good correlation is obtained between the
measured and computed deflection. The correlation between
the experimental and theoretical analyses is on the whole
good.

The stress distribution for static loading for
the bridge without the concrete deck is shown in Fig. 8a
and 8b. The theoré%ical stress (shown'in parentheses)
are compared with those obtained from the measured strains
and are also shown at the location of strain gauges. The
stresses are greater when the load is on the outside girder
than when the 1oéd is on the inner girder. .

4.2.1 Dynamic Test Procedure

Dynamic tests were performed on the laboratory
model by running the load carriage across the bridge and
measuring the strains at the midspan. The load carriage is
shown in Photograph 16. The wheel spacing is shown in Fig. 12.
The load carriage was fitted with a wire rope and pulled by a
overhead trolley at a constant velocity. The load carriage

was fitted with rollers which pressed against a flat iron

——
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guide (4" x 1/2") bent to the samevcﬁrvature as the bridge

and clamped at the ends with C-clamps. The load garriage

was pulled and its velocity was recorded with a stop

watch. The strain gauge was connectéed to the strain-

indicator (Budd Type) which was again connected to the oscillo-
scope. The oscilloscope was adjusted for the same velocity

as the loaa carriage and the load carriage was pulled and

the oscillograph reading was photographed on a Polaroid

Land film.

Natyral Fregquency
| For measuring the natural frequency the set
up shown in Fig. 11 was used. A Bruel & Kjaer Accelerometer
type 4312 waé mounted magﬁetically under the cross beam at
the centre.
The Accelerometer was connected to a Preamplifier
. (Bruel & Kjaer 2616) also connected to the oscilloscope.
The bridge was then excited by a hammer blow and the
response recorded in th; oscilloscope was photographed.
The same procedurelwas repeated three times and the résults
were found to be consistent. |
. To verify the results further, the bridge model
was aéain excited by the Gilmore Loading. System at a certain
frequency and the response in the oscilloscope was photo-
graphed. The frequency of excitation was changed again .and
the same procedure was repeated. The frequency at the

maximum response is the natural frequency.



39

4.2.2 Test Results

The test results are shown on Photograph.

Photograph 1 shows the calibration of the oscilloscope
for known strain. Photograph 2 shows the stress variation
at strain gauge No. 26 as the load caffiage moves along
the spa;g

Pﬁotographs 3 to 10 are records of the natufal
frequencies. Phqtograph 3 shows the period of oscillation.
Phétograph 4 to 10 shows the response in the gscilloscope
when the model is shaken by the Gilmore Loadjng System at

known frequencies.

4.2.3 Test Evaluafion
For the dynamic load increments the results have
been evaluated for the condition when the’travelling load
is at 1/4 span and at 1/2 span points, in order to
compare these with theoretical calculations, the experimental
values being 9% and 12% more than the computed values.
Very good and consistent results have been
obtained for natural frequencies. The natural frequencies
have been determined in two different'ways and the-fesults
are consistent. The theoreticalvyalue obtained by Vashi's(32)
method was 26.2 and 64 while the experiment yielded a value

of 25.5 and 62.



CHAPTER V

SUMMARY AND CONCLUSION

-The theoretical analysis of éurVed bridge grid
utiliéing the stiffness method Fakes into aécount the curvé-
ture of the individual elements and hence is a method suff-
jciently accurate for design purposes.’ The torsional
rigidity of the eiements is considered, incorporates the
St. Venant.torsional rigidity but does not take into
account the warping torsional rigidity. The'torsional
rigidity does-ﬂot contribute‘ﬁuch to the results, although
it is importaﬁt.in a curved bridge since the beam elements
.are subjéctqd to considerable twigt. The stresses due to
non-uniform torsion were evaluated and 'in some cases this
added 15% more to the stress caused by flexure. The
procgdure adopted for finding the normal stress (Reference %)
is very involved and difficult to use in the design office.

The bridge with the concrete deck was analyzed
by the method used by Dabréwski. Reasonable correlation
has been obtained_between the computed and experimental
results. This shows that the whole curved bridge consisting
of the steel beams and concrete deck can be considered as a
curved beam, provide@ that there are adegqate shear connectors.

The accuracy will depend on the geometrical properties of

the bridge. For a very short span bridge, the theory may

40
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not be valid, but it is valid>for most practical bridges.
For the dynamic load increments the test was
performed with an unsprung mass only. In the analysis,
the vehicle was treated as a single moving constant force
where the force exerted by the vghicle is essentially
constant. The experimental results agree wéll with the
computed values. _ The flexural-torsional response of a
horizontally curved bridge due to sprung mass loads 1is
extremgly.complex because of its dependence om various

parameters, although an actual highway vehicle possesses

both sprung and unsprung masses and the test vehicle consisted

of an unsprung mass. Lt has been shown-in Reference .
that for a combination of a small value of frequency ratio

4.
and a large value of mass .ration RS or conversely,

- the peak values of the dynamic increments for the displace-"

ment -and the stress resultants can be approximated by a
constant force solution.

The naﬁural fréquencigs of the bridge found
experimentally agreed very well with the compufed values.
This §howS that the idealization of the curved bridge as

discussed in Chapter III is logical.



10.

11. |

12.

BIBLIOGRAPHY

Fickel, H.H., "Analysis of Curved Girders," Journal of the

Structural Division, ASCE, Vol. 85, No. ST7, Proc. Paper

2164, September 1959.

Close, R.A., "Deflection of Circular Curved I-Beams,"

Journal of the Structural Division, ASCE, Vol. 90, No. ST1,
Proc. Paper 3804, February 1964. '

Lavelle, F.H. and Bolck, J.S., "A Program to Analyze Curved
Girder Bridges," University of Rhode Island, Rhode Island,
December 1965. :

Wu, Han-Chin, and Clarke, C.B., "Normal Stresses in Beams
Due to Non-uniform- Torsion," Eng. Bulletin, No. 10,
University of Rhode Island, Rhode Island, Novembgr 1966.

Clarke, C.B., "Laboratory Tests of Horizontally.Curved -
Steel Girders," Presented at the January 31 to February 4,
1966 ASCE Structural Englneering Conference, at Miami
Beach, Fla. . .

Dabrowski, R., "Zur Berechnung Van Gekrummten Dunnwandigen
Trager mit offenem Profil," Der Stahlbau, Wilhelm Ermst
and Sohn, Berlin-Wilmersdorf, Germany, December 1964.

Vlasov, V.Z., "Thin Walled Elastic Beams," Second Edition,
Natural Science Foundation, Washington, D.C., 1961.

Culver, C.G., "Natural Frequency of Borizomntally Curved

Beams," Journal of the Structural Division, Proc. ASCE,
April 1967. '

Yonezawa, H., "Moments and Free Vibrations in Curved
Girder Bridges," Journal of the Engineering Mechanics

Division, ASCE, Vol. 88, February 1962.

Willis, R., "Appendix to the Report of the Commissioners...
to Inquire into Application of Iron to Railway Structures,"
London, England, 1847.

Kryloff, A.N., "Uber der erzwungenen Schwingungen von
gleich formigen," Mathematische Annalen, 61, 1905.

Timoshenke, S.P., "On the Forced Vibration of Bridges;"

" 'Philosophical Magazine, 43, 1922.

42



13.

14.

15.

160.

17.

18.

19'

20.

21.

22,

23.

24,

25. .

26.

43

Lowan, A.N., "On Transverse Oscillations of Beams.Under the
Action of Moving Variable Loads," Philosophical Magazinme,
19, Series 7, 1935.

Inglis, C.E., "Theory of Tramnsverse Oscillations in Girders
and Its Relation to Live Loads and Impact Allowances,"
Proceedings of the Institution of Civil Engineers, London,
England, 218, 1924,

Jeffcott, H.H., "On the Vibration of Beams Under the Action
of Moving Loads," Philosophical Magazine, 8, Series 7, 1929.

Schallenkamp, A.; "Schwingungen Von Tragern bei bewegten
Lasten," Ingenieur-Archiv, 8, 1937.

Ayre, R.S., G. Ford, and L.S. Jacobsen, "Tramnsverse
Vibration of a Two-Span Beam Under the Action .of a Moving
Constant Force," Journal of Applied Mechanics, 17, 1950.

Ayre, R.S., L.S. Jacobsen, C.S. Hsu, "Transverse Vibration
of One and of Two-Span Beams Under the Actiomn of a Moving
Mass Load," Proceedings of the First U.S. National Congress
on Applied Mechanics, 1951.

Licari, J.S. and E.W. Wilson, "Dynamic Response of a Beam
Subjected to a Moving Forcing System," Proceedings, Fourth

U.S. National Congress of Applied Mechanics, 1961.

Looney, C.T.G., "High Speed Computer Applied to Bridge
Impact,”" Proceedings, ASCE, 84, ST5, September 1958.

Looney, C.T.G., "Impact on Railway Bridges," Bulletin 352,
University of Illinois, Urbana, Illinois.

Biggs, J.M., "Vibrations of Simple Span Highway Bridges,"
Highway Research Board Bulletin 124, 1956.

Biggs,bJ.M. and H.S. Suer, "Vibrations -of Simple Highway
Bridges,™ Iransactions, ASCE, 124, 1959.. v :

Wen, R.K., "Dynamic Response of Beams Traversed by Two
Axles," Proceedings, ASCE, 86, EMS, October 1960.

Fleming, J.F. and J.P. Romualdi, "Effects of Load
Characteristics and Bridge Geometry Upon Highway Bridge
Impact,"'Prdceedings.'ASCE,'87; ST4, October 1961.

Tung, T.P., L.E. Goodman, T.Y. Chen and N.M. Newmark,
"Highway-Bridge Impact Problems,' Highway Research Board
Bulletin 124, 1956. :




27.

28.

29,

30.

31.

32.

33.

34.
35.

36.

37.

44

Duncan, W.J., "Mechanical Admittances and Their Applica-
tions to Oscillation Problems," Great Britain Aeronautical
Research Comm., R & M 2000, 1947.

Bishop, R.E.D., "The Analysis and Synthesis of Vibrating
Systems," Roval Aeronautical Society Journal, 58, 1954.

Bishop, R.E.D., "The Analysis of vibrating Systems which
Embody -Beams in.Flexure," Proceedings, Tnstitute of

- Mechanical Engineers, 69, 1955.

Skeer, M., "The Dynamic Response of Beam and Plate
Systems Subjected to Moving Mass Excitations,”" Ph.D.
Thesis, Carnegie Institute of Technology., Pittsburgh,
Penpsylvania, 1964.

Christiano, Paul P., "The Dynamic Respomnse of Horizontally
Curved Bridges Subject to Moving Loads," Ph.D. Thesis,
Carnegie-Mellon Upiversity, pittsburgh, Pa., 1967.

Vashi, K.M. and Heins, C.P., Jr., "Dynamic Behaviour of
Horizontally Curved Highway Bridges," Progress Report,
The Design of Curved Viaducts, University of Maryland,

Maryland, September 1969.

United States Steel Corporation, "Analysis and Design
of Horizontally Curved Steel Bridge Girders," ADUCO
91063, September 1963. )

Borg, S.F. and Gennaro, J.J.,"Advanced Structural Analysis",
D. Van Nostrand Co., inc., Princeton, N.J., 1959.

Goldberg, J-E., "rorsion of I Type and H Type Beams,"
Paper No. 145, Proceedings, ASCE, August 1952.

Bornscheuer, F.W., "Systematische Darstellung des Biege-
und Verfrehvorganges unter- besonderer Beruecksichtigung
der Woelbkrafttorsion,“ Stahlbau 21, Heft 1, Berlin 1952.

Lyse, I. and Johnston, B.G., "Structural Beams in Torsiom,"
ASCE Trans. Vol. 101, 1936.



45

=&,

\

¢

LABORATORY MODEL: BRIDGE

FIGURE 1l(a)



46
34" " s"\G

”

cx

3\

- ROCKER PLATE

3

i

forfen == f =

|

;
j
.
,
é,__,
;

V.

N

v

— A

[ —

e vE

" “”

— — - A

- — e

gy

- o -

fe ]

e e

Al

"

N

EXPANSION BEARING
FIGﬁRE l(}.o)




47

34

ROCKER

”

7@5dP\AC>L£EEB

cl

S s o/

1}

¥

o o anm e

]
. o ”
. P g g R “
e (aden o -

”

-5 \S

3a <« O

-k 4~

FIXED BEARING

oo e o — T TP

oo a s At e e e e

FIGURE 1(c)



48

{(a) Analytical Structural Model

(??'dez
’(!:H-l az

Q,+Q,dz

(b) Difﬁerential Element

AVALYTITAL MON=L OF HORIZONTALLY CURVED 3RIDGE
FIGURE 2

-



Elw 3GKt3E'X,mb,r'

CENTER OF
CURVATURE

IDEALISATION OF A SIMPLY SUPPORTED
HORIZONTALLY CURVED BRIDGE

FIGURE 3

49



50

PORTION OF STRAIGHT FLANGE - PLAN VIEW
(a)

zvaﬁs

=Md‘__ ' ~ar. -
£=M/d —| : Femy
URVED FLANGE
-PLAN VIEW SMALL SEGMENENT OFC \
CURVED FLANGE-P SLEN vIE
(b) (€3

FORCES IN FLANGE DUE TO CURVATURE

FIGURE 4



x_\__“x_;A
S X o
_-‘l_—\—M— [SPRUNG MASS)
c
(CONSTANT: SF1 K L_J VISCOUS DAMPER
FRICTIONAL SPRING
- FORCE ) ~
o (UNSPRUNG MASS)
Ium A -TIME DEPENDENT FORCE
7/ 7/

IDEALISATiON OF A VEHICLE AS
A SINGLE-AXLE LOAD UNIT _

FIGURE 5

51



COORDINATE SYSTEM .
FIGURE: 6

T+dT

f(Z,t) ‘mb:)é

> = ad

FORCES ON A CURVED ELEMENT

FIGURE 7

52



(-2-35) (-1-85)(-1-60)
-2.14 -2.0 -1-86

(-2-80) (-2.85)(-2.55)
-3-62 -3.10 2-58
I

1-89 147 1-02

1-65 1-40 115
(1-50) (1-40) (1-20) 65

. L { = ]
G T 0-G
| e—————— ! -
-~ > —_— -1
3-62 310 2:58 ! 2-14 20 186
SECTION AT MIDDLE SPAN
(-1-80)(—1'59) (-0.9) . ! . . (‘1.50)(_1.3a) (-1.10)
189 147 102 . 2165 -140 -115
t. 1 4 r -4
-G % |
: - . oG
) ~- l = —1
! .

SECTION AT QUARTER SPAN JOINTS 19& 20

NORMAL STRESSES DUE TO LOAD QN JOINT 13

Note: Measured Values
Denoted by¢ )

FIGURE 8(a)

(1-50) (1-35) (1-00)

53

Pl s svhatad o od Ak il




(0-30) (1.0) (1-30)
0-45 0.95 145

T 1
16
— 1

-0-45 -0-95 ~1-45
(~0-60)(-9-85)(-1-35)

SECTION AT MIDDLE SPAN

(-0-32) (- 5.25) (0-78)
-0-28 -0-01 0-30

| . 1

ic

1-_"-'"_—-'
0-28 0-01 -9-30
(0-30)€0-05) (045

(~8-00) (-7.16) (~5-72)
-7-09 -6-45 -5-81

P - -

L " 7

06

= ~ |
708 645 581
(1-01) (7-00) (6:03)

(-4-20} (-3-40) (-3.02)
~3-25 -2-90 -2-55
I—L—-_-.I

0G

L - - .
3-25 290 2-55
(4-00) (3-20) (3-15)

SECTION AT QUARTER SPAN JOINTS 19820

NORMAL STRESSES DUE To LOAD ON JOINT 14

Note:Measured Vaiues
Denoted by( )

FIGURE 8(b)

54



¢-1-25) (-1-05)(- 0-51
-1-31 -1:25°- 0-55

L |
1

- - |
131 125 0-55
(1-45) (0-92) (9-60)

SECTION AT MIDDLE ‘iSPAN

(- 3-0) (-2-70) (-2-20).
-3-20 -2-75 -2:25

- P -~

l m—

IG

- - .
3-20 275 2-25
(3-25)(2-48) (2-40)

SECTION AT QUARTER SPAN

NORMAL STRESSES DUE TO LdAD ON JOINT 19

Note: Measured Values
Denoted by { )

FIGURE 8({c)

:
|
|

55

(-1-59)-1-30) -1:20)
-1-65 -1-45 ~-1:25

-

f 1.

0¢

-
t

- - -
1-65 145 125
(1-58) €1°25) (1-20)

(-9-90)-1-18) (-1.52)
-1-00 -3.25 -1-50

- - P

L |

06

1 -t

1-00 1-25 1-50
(1-15) (1-20) (1-a1)

JOINTS 19& 20



(-31) €0-50) (0-84)
0-51 0-62 074

= 1
1

|
|

|- - -
-0-51 -0-62 -0-74
(-0-56)¢c0 -65) (-0 -80)

SECTION AT MIDDLE SPAN

(-0-22) €-05) (0-26) .
-0-29 0.01 0-31 -
 E— ~

16

;—'ﬁ_—-_l
0-29 —01 -30
(9-200 =°02) (31

faY
")

SEZTION AT QUARTER SPAN JOINTS 19&20

NORMAL STRESSES DUE TO LOAD ON JOINT 20

Note: Measured Values

Benoted by ¢ )

FIGURE 8(d)

56
(-4-23)(-3-15) (-3-78)

-4-02 -3-60 -3-20
= - =1
0¢
f——— N
4-02 3-60 3-20

(4-20) (4-15) (3-81)

(-5-42)(°4.25) (-3- 55)

-5-67 -4-75 -3-83
———
06
5-67 475 383

(6-03) (5200 (4-31)



1§

| i

LOAD AT JOINT 14

IT
I1G pia T . . \4 ; —
ECEE R O Fr ety e T .

LOAD AT joINT 13

'DEFLECTION_OF GIRDERS WITHOUT SLAB
FIGURE 9(a) ' - TETT-

‘Test
Analysis



K 58

IG T~ * - it dhaiia st A - . - - e
- —
— T
-_ - - —
-~ e — -
..Gl e — . e o ad -e

T - —

/
e\

‘ LOAD AT JOINT 19
(inch)

e DEFLECTION OF GIRDERS -~ Test
WITHOUT SLAB : ———- Analysis

FIGURE 9 (b).



- . S
g ~ e .o~
0 ’ —~ == L g
— — - _— S -
. i —— _G_____/ -
0.2_"‘._
FE .t ey
' TR Eeg T m—m— — o T ==
i i
01—+
l
LOAD AT JOINT 14
o c YT;'——'-- - . . - —— ~ -
’ . Tt T

LOAD AT JOINT 13

DEFLECTION OF GIRDERS WITH SLAB - Test
______ Analysis

FIGURE 10



O

Accele pPreamplifier - Oscilloscope
rometer o

INSTRUMENTATION ARRANGEMENT FOR DYNAMIC TEST

FIGURE 11

nn i B
O O
=

-

X3

— .

1

LOAD CARRIAGE

FIGURE 12



49 ]l 3 ’[5] 530 - s
50 52 54 ‘
' éﬂ ' "_.-5:6

LOCATIONS OF STRAIN GAUGES

FIGURE 13 (a)

57i
58«

-



62

NO-2

'LOCATIONS OF DIAL INDICATORS

FIGURE 13 (b)



APPENDIX A

ANALYSIS OF GRID STRUCTURES WITH CURVED MEMBERS

The curved girder bridge is taken as a planar frame
loaded normal to its plane as shown in Fig. A .1l.

A right-handed co-ordinate system is used. This

is called the structure system and is denoted by the super-

script Ei. Joints are established at supports gnd where
members frame together. These are numbered consecﬁtively
from 1 to n (where n is the number of joints), in any
convenient order. Tﬁe members are numbered comsecutively
from 1 to n, in any convenient order.

Each vector,ofhinterest (force or deflection) at
any joint has three components, one linear and two angular.
fhese components are always considered in the standard
order. Linear.albﬁg Z axis, angular about X axis, angular
. about Y axis, a component being positive when i;s sense
agreés with -that of'the corresponding-reference axis. An
angular—vector is represented by a doubie heaaed véctér
normal to the plane of rotation, according to tpe right-
hand rule (i.e. in the direction of the extended thumb of
the right hand when the fingers of the right hapd curl

in the direction of rotation).

The directions of interest are established by

63
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. numberiné the component directiéns consecutively from 1 to
3n, following the standard order at each joint taken in
numerical order where n is the number of joints. Thus
referring to Fig. p .2, the directiéns of interest at any
joint J are 3J-2, 3J-1, and 3J.

For any loading applied to the structure, three
equations of equilibrium are written for each joint. This
can be expressed as one matrix equation, which, assuﬁing

that loads are applied only at joints, takes the form:
Wo + R® - R°A° =0 . , . (1)

where XK° is the structure stiffness matrix>(order 3n).
W° is the load matrix consisting of the loads at all
joints. -
RO is the structure real matrix, comsisting of the

reactions at all joints.

o

AC is the deflection matrix consisting of the deflec-

tions at all joints.
W°, R®, and A° are of order (3m) x 1, with the elements being
componentsbgiven_in the order of thé directiﬁns of interest.
An ordered direction restraint list is made of the
directions in which free directioms are prevented. If there
are L'restraints, then Eq. 1 represents 31 equations in terms

of r unknown reactions and 3n-T unknown deflections. To
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solve this equatiomn, it is separated into an equivalent

pair of matrix equations:

where:

(cW)° - (CRC)°(Ca)° = 0 ‘ e (2)

(pW)° + (DR)® -(DKCY%(Cca)°® = O ...(3)

1

(DW)° and (DR)° are formed from WO and RC respect-

"ively by using components matching the qirection

restraint list (order = r X 1). .

(CW)° and (CR)° are formed from W° and R° respect-
ively by remgving components matching the direction
restraint list (order = (3h - r) x 1).

(CKC)° is formed from K° by remiving rows and
columns matching the dirgction restraint list

(order = (3n - 1) X (3n - 1) ).

Equation 2 is solved to obtain the deflections.

(ca)® = (Cre)°~l(ew)® - | cee (B

This is substituted into equation 3 to obtain the reactioms.

(CR)® = (DRC)°(CA)° - (DW) °

From these results any other desired information can be

readily obtained by simply statics.

Member Stiffness Matrix

Each member has its own stiffness matrix relating
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~its end forces and moments to deflections and rotations at

the ends. Thus for a member ij we can write

w m .y
Mij = iy A
wm m y
™ K.L KL' ZSL
M, L .
- m m
w . N .
M; Kii Xl B
— L L 4
where:
')

" Mg = 3 components of internal forces at end a
(shear in 2Z® direction, torque about X%
axis, moments about Y™ axis).

w

Do = 3 components- of deflection at g.expresséd
in m-system.
Ka= 3x3 stiffness submatrix relating Ma® to
N .
A B and i denotes a reference system related
to end joints, as shown in Fig.A3.
Joint i in Fig.A3 is called the near end and joint jJ

thé far end. The near end of a curved member must be
taken.so that the member lies in the positive x2-y" quadrant.

The member stiffness matrix can be expressed in

terms of six parameters and the distance L as follows:
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a b c -a -b -c
b d e -b -a -(e+bL)
c e f -c -e - (f+cl)
Kij®=
.=-a =b -c a b -c
-» -d -e | b d (e+b})
c ;(e+bL) - (£+cl) -c (etbl) - £ -

The parameters are computed érom the following
material and member properties which are assumed to be
constant for the member:

E = modulus'of elasticity

G = modulus of rigidity

1 = moment of inertia of cross-section about YT axis

J = torsional constant_of'crbss-section
For a curved member with radius R subtending a central angle

© these parameters are:

‘3 . ‘1 ’ t
a = 4i LY . ~S2
3 3 b
’ (8)
g= 2f-cc e= BS <= ad-bb
A 9 el
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where:
3 3 . '
e 208 Sm’e.e} L9 ssme s Sm2s
Bl {2 4 G 2 4
S == - - : 0SS = ) —
e1 [lz2” 4 z ~ = " 2}
E{Z

+ G {Iz + 2 }COS:E-[?‘ - S\h.z-

2 2 -
R ({Sme =) e S\ 20 =Y
' _ O cos& L 12 _ —T—=7) Swm 3
c=% { 2 : + [ a " 2}
G e <Swes ) St e e
"'?{{’2""715‘“‘2‘_— > COS?_S

r R 3
A= — [251»39-; Sine® S 8 e

. 3
1= 2 ©7 Stw2e Swwe °
(- eatg] B - B

£' is formed by interchanging EI and GJ in expression for a'.

e}’:. a'd'{ - \o'bl{‘ -.c'c'd’
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Coordinate Transformations

The components of vectors in an m system are related

to the components in the O-system by a rotation matrix.
O
LS W o ] ..
- o mo
w ...9(a)
\ (= o
- ow owm
° o coondk ownd 9 (b)
™ .
= . am s e e
v o - Swd . cosa®™"

‘& °® being measured from the O-system to the m system (see

Fig.A3)using the right hand rule to determine the signs.

From which:

™ wmao (]
- A. . . ) .
Dy = T Y\ | c..9(2)
° owm wm )
hﬂLS = “A\S
‘ : .l.g(d)

For this type of matrix, 7" and 7+ 2© are mutual

transposes as well as mutual inverse.

Combining Egq. 6a and Eq. 9c¢ we obtain

wm wda

A o))
| ML\ :(KL& m

——
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[&]

This enables us to find Mijm directly once the
joint deflections are determined combining Eq. 9d and

Eq. 10.

om wmn e ©

o wo, A °
Mij = (r Kijy T )ALi = Ky Ay

and we see that
wa

© \mo.t ™
k= (7 ) Ky T

Structure'Stiffness Matrix

The structure stiffness matrix K° of Eq; 1 is
assembled by summing the 3x3 submatrices of the individual

member stiffness matrices as defined in Eq. 12. Thus,

. N N s
A K2 K . . Kin
© © o [ 3
Kz PR Koz . . Kaw
= Q ° .
Kz Kae Xz d Kan
KY:\ K‘(:z K“-s . - . Z wn
ovad

vhere Kij° = 0 if no single member frames between i and J.



71

" JOINT AND MEMBER NUMBERS

FIGURE A.1
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APPENDIX B

NON UNIFORM TORSION

Non-circular sections when twisted undergo long-
itudinal warping as well és angulér distortions. Plane
sections before twisting do not remain plane after twisting.
If this warping tegdency is not restrained, the member
will éxhibit-a constant unit angle of twist and will there-
fore be subjected to pure torsion. If, however, the warping
distortion is resisted in any way, longitudinal normal
stresses are prodpced in addition to the torsional shearing
sfresses. The_angle of twist per unit of length will no
longer be constant. Therefofe, non-uniform torsion is
conéidereé_to exist-in a member of non-circular section with
restraint aéainst ﬁarping. - - .

| M&st of the papers discussing non-uniform torsion

Theory (34 35.7)

assume that the non-uniform torsion is
" obtained from the bending of -the flanges of an I section
about its minor principal axis, therefore, the theory is
restricted to fhis type of section. The general theory

of non-uniform torsion which can be applied to all kinds

of thin walled open sections was developed by W.F. Bornscheur(36)

and was later discussed by V.Z. Vliasov(26), H.C. Wu(4)~
used the above mentioned theory in solving torsion problems.

He used a method of analogy to solve the problem.

<. 73
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Torsional Constant

The St. Venant torsion theory gives the following

result for a member subjected to a torsional moment

MP = GJ@'
where MP = primary twisting moment (resisting moment of
| - unrestrained cross-section)
G = shear modulus of elasticity
J = torsional constant for the cross-section

¢' = dp = angle of rotation per unit léngth, along
dx )

the longitudinal axis

St. Venant fgund that for a rectangular section,
for large ratios of b/h the value of J was given by the
expression’ ‘

3 =1/3( - 0.630)3
in which b is the length and h is the width of the rectangular
section. qu a narrow rectangle, 0.63H may be neglected, |
_and hence

3 1/3bn3

) For a rolled section such as aﬁ I seétion or

channel, etc. which may be regarded as made up of narrow
rectangles, the value of J will be approximately

J =1/3 (b - 0.63hn)h3

More accurate formulas for J have been presented

by Inge Lyse and Bruce G. Johnston(37).
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- Warping Function

If a straight bar of thin-walled open section is
subjected to a bending-moment, a plane section before
bending will remain plane after bending. If it is subjected
to twisting moment then a plane section before twisting
will no longer be plane after twisting. Therefore, in the
case of a member acted upon by both bending and twisting
force systems (no restraint at both.ends), the plane cross-
section ﬁill’become a space curved surface.

If an orthogonal rectilinear co-ordinate system
(X-Y-2) has been chosen, with the longitudinél axis of the
beam iying in the X direction, the deformation of any section
‘of the beam when acted upon by both bending and twisting
moments, can ﬁe defined by three components i.e. ¥, Z and W.
The Y and Z components have the dimension in inches and
perpendicular to each other, the component, W (in inches),
denotes the displacement of the middle fibré of the cross-
section in the X direction.

Lét us consider now-a £hin—wa11ed open cross-—
section of‘arbritary shape (Fig®.2).

The following assumptions ;re made. The deforma-
tions due to primary (St. Venant's) shearing stresses will
be copsidered, whereas thosé due to secondary (warping)
shearing stresses will bé neglected. For thin-walled open

sections the primary shearing stresses (ZF) are linearly

-—
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distributed between the two edges (Fig.8l). Therefore,
the shearing stress?ﬁPand its shearing strain V vanish
at the middle line of the cross section.

Figuret®.2 shows a middle plane of an arbitrary
shaped open section with length 4Xx. Dufing torsion the
crpss-secéions rotate with respect to an.axis through point
D parallel to the longitudinal axis, and are twisted throﬁgh
an angle df between the two adjacent sections separated
by length dx. We cut two rectangular elements dx ds from
the middle plane and realize that they still have their -
rectangular form after deformation, since no shearing
stfain; due to primar§ shearing stresses have begn pro-.
duced at the middle plane (Fig.B.l).

The element (I) whose tangent makes an angle
Y, with the line DS will incline during torsiomn, and
produce a warping displacement -dw, whereas the element (II)
whose angle of inclinationV¥ II = 0, produces no warping
displacement in the longitudinal direction of the member.

From element (I) (Fig.B.2) we can write the relatioms

-dw = xds, «= Y
ax
4V = dC\S\V\\.}’ s Q0= \'A#
therefore

—dw= dds= al = da SV . Ydé stw¥gs
dw= &ds dxo\s -T—; ds = e

C. Awe -22 (vsmy)ds
ax
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Moreover, we know that

a$ _ dp S and ¥SmVY =
3x

hence dw = -6Y¥t ds

by integration we then obtain
S

W = wb—éS“to\S, v \nwehes }

©

-+-(5)

where S is measured counterclockwise from an arbitrary

point B omn the middle line of the cross- -section. Wb denotes
the dlsplacement in the X direction of point B where S is
equal to zero, and 6 is the angle of twist per unit length.
For St. Venantis torsion © is a constant, therefore we can
write 6 in front of the integral.

The following function is introduced to simplify

Eq. 5.
S

w= S\Y‘*o\s

o

«es(6)

where W is called the warping function and represents the
shaded area F'in Fig.B2(a) swept by the radius ¥ as we

move alpng.the middle line of the cross section from the
point S = 0 up to the point S under consideration. The
Qalue of W is taken as positive when the radius wis rotating
counterclockwise about D. At the point S = O which is

. chosen arbitrarily, W = 0.
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In the previous discussion, it was assumed that
the cross section rotated with respect to an arbitrar§
point D.

Let us now investigate the effect of warping of a
displacement of the rotation centre. Assume, for example,
that the centre of rotation is moved from Dm to Dn (Fig.B3a).

Considering an element ds of the middle line of
the cross section we can write the following from Fig.B.3.

e m+2m$m' g+ymcosp =

Y., t %, Stn g+ Y, cos B

Yin = Ttm * (Z,-2Z0)Sth B + (3 -Yn)cosP
\'th‘-‘vtm-\-(i )?‘_1+(ymy)°‘z ,
W =?\' a\s~jr ds - (2 z)]d3+(ymv)jo\z
ﬁ s tw 2. o
My ° w;\— (za‘én)(S-Vb) + (y“;yh)(z-zb)

If we take Dm as the origin of the co-ordinate system, Eq. (7)

becomes

W= Wz (y-y) - y,.(= 1) ' A ¢:))]

Then the warping functions having the centre of
gravity G and the shear centre S as its centre of rotation,

can be written:

Wy W Z,03-9) - y(z-2,) | cee(9)

We T W 2 (¥-yy) - N (Z-2) T ...(10)
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Transformation of Co-ordinates

In the previous article the co-ordinate system
(X-Y-Z) was chosen with its origin at an arbitrary point 0.
The warping function W was referred to an arbritary chosen
point D. The following properties refer to this co-ordinate
system. i

Area - integral of order zero

4 =faa ... (1)
. A )
Area - integral of first order
Ay =JydA R eae (12)
Az = [ZdA --0(,.13)
A
= ’ . e o0 14
. Aw Adea » ( ‘)
Area - integral of second order
Ayz = f&sz <.« (15)
A
Ayw = I&wdA vea(16)
I'N
Azw = [zudA ---(17)
A _ .
R .
Azz = fzsz ‘.Q(lg)_
A .
Aww = jwsz -_ .-+ (20)
©OA

" The above integrals will be transformed into some
other co-ordinates systems in order to simplify canculations.
The transformation can be divided into two steps.

A. First Transformation

If we introduce a new rectangular co-ordinate system

A A A

A A ’
X-Y-Z with its axes X, Y, %, parallel to X, Y, and Z but its

origin coinciding with the centre of gravity of the cross
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section, we have the following relatiomns:

M= f§ar=o ...(21)
v A

AA:IE&A:O

zZ A «..(22)
A .
y =y -9, e (23)
Z

=Z- 2% el (28)

where Yo and Zo are the co-ordinates of the translation of

the origin substituting Eq. (23) in Eq. {21)

Aoz |3 da = f(y;yo)dA=IydA-jofdA=_0
k4 A A A

[ydn Ay

hence Yo = ﬁ—(—— = N «..(25)
J an
A

similarly" Z = /_5:3:_
° A ... (26)
~
We transform the warping function W to W with a
new reference plane having a distance Wo (given in inches
square) -from the original plane along the longitudinal X-axis

in order to get the relation

A

A
= 3 =0 .
fWan e (27)

A
W

where ;\v -
= W= Wy <. (28)
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R . .
and W and W are both referred to the same rotation centre D.

Substituting Eq. (28) in Eq. (27) we have

AJW"\A AL,

.SdA = A : ... (29)

wo

Considering the change of rotation centre from -Dm to Dn

and also from Eq. (7) we have

~ Awn
W = Wan -W“o = Wwn~— A

ijh

= W~ (Zm-Zn)3-0) + (Y-¥n)(2-21) -

.- (29)

moreover
31\ - (wm-wm ) CZm-2n)(V-Y- ’°+’b)+\‘5m-5n)(2 Zp-Zo+2b)

w,,,: Wm _(Z“-Zh]\J + (\3“\'\’»\)2

_We observe that the "old" co-ordinates have
disappeared in all the terms of Eq. (30) except the term
'S . .
Wn. Using this equation we are able to transform Egs.

(9) and (10) into the new co-ordinate system.

A A A »
Wa = W 29— Yo Z

; . N
AN w2 " %7
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From the well known formula for the product of inertia we
have the general expression.

A\] Av

el

Ao = Puvm TA
100(33)

Using this, the six transformed area-integrals of second

order can be written as follows:

Aa A_A
an = dA = A - ___’___.z
Agy iyz \ g2 * = ... (38)
O o N Wl
A J A ...(35)
AL A
A%Q = f %& dA.z Azw" _%_y
...(36)
2 Ay A
A AAA = A - _2__2
AYY = f‘) vy N R
...(37)
2 _ Ahzbhz
R N
22 ...(38)
A A s A = AWW‘AWA\N
ALS, =fwd ~ v
100(39)

B, Second Transformation

The X~Y-Z co~ordinate system is rotated about the .

centre of gravity G through an angle d.(Fig.B-4) S0 éhat

another product of inertia is zero i.e.

A37 =© ' | ... (40)
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The axes of these directions are called the principal
axes and are denoted i—?-i. From Fig.B4 we can write the

well known relations

- A ~ :
- Cos - z Swd e s (41)
b4 -v < in inches
A : A . :
i: ZCOSK —~ ~ S\“d -00(42)
ia inches
2 AN
Yow 2& = 3
AIY- Az el (43)
S A PN A A aa 3 Aae
A3y = }E<A§8 * Az%)* “é‘\J(A‘H- AR 4A32 X oo (44)
A AN bl An . c s ll'
A = 5CASG+ AsE) ARSI - A angat )

As for the warping function, we transform its
reference point to 2 point S om the Y-Z plane, sO that the
following relations exist:

Ajw =° e e (46)

eeo (47)
where W is the new transformed Warpiﬁg function having S as
‘§ts reference point.

_ From the fact both the jntegrals of Eq. (46) and
Eq. (47) vanish, we know that the value of the integ:él
AWW is a minimum. This gives the maximum normal stress
due to warping.
If a transvers force is applied at the shear centre
S of the cross section, there will be bending of the bar

without torsion. Hence on the basis of the reciprocal theorm
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we conclude that the torque applied on the bar will produce
no deflection of point S.- The shear centre axis S-S there-
fore remains straight during torsion, and the cross section
of the bar rotates with respect to that axis. We call that
axis the principal axis or rotation, and its maximum normal
stress pfodgced during torsion is called the principal warping

stress.

From the above discussions, we know that the maximum
normal stress exists only when the cross section rotates about
its shear centre. Since we assumed that.the rotation centre
of the warping funct?on W was at point S in Fig. B.4 and
have obtained phe maximum nogmal étress'from this assunmption,
we conclude that the point S in Fig.B.4 is the shear centre.
Hence we write

a .
CV=<\N$=\:I+253‘\}SZ ;
ees(48)
The formulas for the calculation of Ys and Zs in-

Eq. (48) can be derived from the equations below which

themselves were derived from Eq. (46) and Eq. -(47)

«e.(49)

... (50)
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Jo A0 +2ZgAGY - YgAgs = O -e- (51
and similarly from Eq. (50)

: AN AA -
Ay +2sR37 -V AZZ =o ... (52)

solving Eq. (51) and Eq. (52) simuitaneously we obtain the

co-ordinates of the shear centre.

y o PG AYS - AYR AgR e (53)
> 3 A%: - (Ag3)T
A‘\ ~ AAA AAA Ahh .
7 = TOYWPRZZ ¥ Roaw ANz

After the transformation of co-ordinates to the
principal co-ordinate system, all the area-integrals of
second order, except Aww, Ay, and AZz are equal to ze;o;
- The moments of inertia Ay and A%Z cén be obtained very

easily from.the Eq. (44) and Eq. (45) whereas the warping

constant A%WWw can be obtained as follows:

. ) z
.Y A
= $\74sz =f(&+257-’sz) A

A
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A~- a A 22 AL ZAAA AAa AA
ww = AQWw +%s Ty *Ss 22 +ZZ$ \)w~2\)5/\zw_2\)sz

A
s A4%

Adw +75(ZgAS v 2A4 0 - Y5ASY)

TV A% -2A30 2z A4

now since

AA

Z A%y + 2 A& - Y ASL

A
'AY&AQE*AQQ Ag% ZAAI\ - KAZG;A" - Al AAA_
as + yw w}\"“
AJSAZE _(Ag%)2. vz

Aaa Aa na
Yy zz-(A,zf-

2
L A
= (A3%) - ASYAs;

A3J A% - (A42)*

= =AY 4285 =AY

‘similarly

A A

Vs A%z —2AG% - Z5Ag: = ~AZG

ARw = AQJW + ZsASE - Y ALY «es(55)

Normal Stresses and Deformations

After having the seqtional properties aﬁd the
concept of bending theory we Qre ablg to de?ive the formulas
for calculating Fhe normal stresses and the differential
eugation for the component deformations. The procedure
is as follows:

A. By using the six conditions of equilibrium;bthe internal
noments and forces acting on an element of a twisted member

are expressed in terms of the internal loading.



87

B. The relationship between stresses and moments aﬁd
forces is found.
C. The reslationship between the deformations and the
stresses is determined.
D. TUsing the relations of (A), (B), and (C) three differential
equations of deformatioﬁ are then set up.
Before going into the derivation of the differential
equations, we notice that the total twisting moment about
the sheér centre § is equal to the sum of the primarj
torque MSp (which produces the St. Venant's torsion) and the

secondary torque MSs which produces normal stresses.

= = - M"
M3 =Mge+ Mss ... (56)

Figure B¢ shows the twisting moments acting on an element

of length dx taken from a twisted bar. The term M3.dx

represents the external twisting moment applied upon

element about the S-S axis, which is parallel to the X axis.
In the calculation of normal stresses we can take

the primary t&isting moment MSp of Eq. (56) as a part of the

external loading, since this torque Msp gives no normél

Stresses during torsion. Hence the t%isting moments showp

in Fig. B5 may be replaced by those shown in Fig. Bé6.

- dMs—f d-
- _ - . >'4
.ax -.W\5<A’(+ ax .

«e.(57)
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=
o
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o
o
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e
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»
Fh
¢
H
B
0]
e

milar to the following integrals

We can write the integral which is called the warping

moment integral:

M\Tv"'ngS"‘\;‘ -\--C . (58)

where C is a constant.

Figure B7 shows an element taken from'a twisted baf;
the moments and the longitudinal forces are shown acting omn
the geﬁtre of gravity G of the cross section. The shearing
forces and twisting moments are acting omn the shear centre
S. The external loadings 23Te small -9z, 45 4z M3 w3z , M3
also shown in the middle section of the element. By applying
the six conditions of equilibrium we have the following

equations from Fig. B.7:

«e(59)
Svg =0 ¢ (Ng) + 45 =9 ... (60) .
: .
2\/’ Pl e (V'z)"'qz °
e (61)

... (62)
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... (63)
7
SM3 =0 (Mz) + Wz -Vz=0o L cea
(MF)' and (Z)' in Eq. (63) and Eq. (64) can be |
separated into two terms: .
(My) = (Mg0) + (M)’
(Mz) = Mgy (Mz2)
where (Myi)' and (MZi)' have the following relationships
.with the external loadings
(Mg\)l+_m;3 = O
(Mz) + W3 o
substituting the above expressions into Eq. (63) and Eq. (64)
we obtain

/
M3G,)-Vg =0 «e . (65)

4
Mz - N3 =0
(Mzz) - V2 _ ... (66)
substituting Eq. (65) in (60), Eq. {66) in (61) and Eq. (58)

in (62) we have

' u
M32) = -43 ... (67)

]
(M3z2) = -4z, .. (68)

(Ma)'= —™&
e (69)
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In order to obtain the relationships between the
stresses and the extermal loadings we have to eﬁpreSs the
left hand side of Eqs. (67), (68) and (69) in terms of the
sﬁresses.

We have the two well-known expressions for the two
bending moments

My, = jc-.s.c\:x +C a0

M3z, = jQ‘.i.dA +C
<. (71)

where is the normal stress on the crosé secti&n and C is

a constant. The expression for MW in terms of the stresses
will now be discussed. Let ¥y and ds have the ;ame meaning
as in Fig.B2(a)except with the shear centre S as their
fotation centre. Let t be the thickness of the thin-walled
section and T be the shearing stress; Then T.t is the unit
shearing force in force per unit length, and (TY) Yy is

the twisting moment about the shear centre § caused by this
unit shearing force.

If-we integrate this twisting moment over the
whole cross section, i.e. from S = 0 to S = e (end), we
éhall get the total secondary torque about the shear ceantre.
This is true because St. Venant's shearing stfess ( Te )

. due to bending produce no twisting moment about the shear
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Centre.

e
_ Tt as
o ' ' ve.(72)

using the method of integration by parts, we can rewrite

Eq. (72) as follows:

S | (= e S a( .
Mgy = | (T g-m.o\s)] - S (SV’?AS) d?) .as

The first term.of the above equation fanishes,
because the unit shearing forcé.(or shear flow) vahishes
atithe.open end; ;f a thin-walled section (at S = 0 and
‘S'=.e). ﬁoreqver, we have ASY't ds = W

o
the warping function referrred to shear centre §; hence

Eq. (72) becomes

e
_ -  2(T) A'S
Mg = - Sw. —2s :
) e (73)

Let Fig.B.8 he an element of a bar subjected to
both twisting and bending. By using the equilibrium condi-

tion we get the expression.

O(Ty) - -~ .t

25

At
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Substituting into Eq. (73):

ess (78)
A
Equation (74) into (58) -
i . _( (.25 .an.8% +C
M@.—.j\«.gsa\x-rc = || w- K2
o ) S A
changing the order of integration
*
. (f- T ., A% .dA xC
M\;;:)( 3
A O
* -
=\w _a_i‘:Ma*"\A"'c
=33
A o
MG :j@c-c\:wc
e s+ (75)

A
where the warping function W is independent of X. By

substituting Eq. (70) into (67), Eq. (71) into (68) and (75)
jnto (69), we obtain the following relationships between

stresses and the external loadings:

2 T.J AN
Biz(SA )

~

n

- 43 .. (76)

rs (31512 ésh) = - 43

=2 e (77)
2% A
'_a_i_(So'.chA)r--Y"\Tv e  (78)

-
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Next, we express the pormal s;ress G in tefms of
the deformations. Letdi and % bevthe deflections of the
Y and Z directions respectively, and B be the rotation of
the bar about its shear centre. The total normal Stress is
equal to the sum of the bending parts 0y and ¢y and the
warping parts O , thus

T= 034935 2+
J 2+ 0% eee(79)

The following stress due to bending are well-

known:

{j - ...(80)
e e o (81)

where E is the modulus of elasticity. But the normal stress
dur to warping is relatively complicated. From Eq. (5)

-and Eq. (6) we have the warping displacement:
S

W= Wb- GS "*‘ds = Wy ,-9Ow
°

Using Eq. (29) the average value of W, denoted by “o can

be obtained.

A
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where A is the area of the cross section. Thus, the warping
displacement, ﬁ, in the X-Y-Z-W system can be obtained by
subtracting the two above equations:

A

W = W-Wgo =— 6(W0°W) = -0w .++(82)

where w = -w-Wo C ... (28)

For the warping torsion, the.angle of fﬁist per

unit length, 6, is not a constant and is equal to aé

—

ax

A
or ‘_.“_i in the " A ¥ system.
ax

Therefore,

~-
N - _ dé W
W = 7 3%
aw . _ 2% &
and — - = ~2 °
ax AR

Using Hook's Law and substituting in the above

expression, we obtain the normal stress due to warping.

N A N
- A= E.SW = E.9% W
Tw = Eew 2% a%*

«..(83)

Hence, we can see that the warping normal stress

A
. depends on the angle or rotation § and the warping function

A
W oniy. Therefore we can write the expression for the
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.warping normal stress having the shear centre as its

centre of rotation as follows:

G—V.:I = —E..:#d\’-v
.+« (84)

Adding Eq. (80), Eq.
Eq. (79)

(81) and (84) we have from

T=-% (q—'l”‘-) + g”i =+ ;”\;‘)

«s.(85)

Substituting Eq. (85) in Eqs. (76), (77) and (78)

and using the symbols of the area integral we can obtain

three differential equations:

-

’Yz_" R EAgzs + EAGR @

au

{
<
<

<. (86)
-l Wil
L 33 EAzm e =
EAgZM F EAzz S ¥ BAZW Yz «e.(87)
- i1 1 -3y A__‘;”l_ Yo .o
EASR M +EAZH % T EAWWS = g ... (88)

These equations can be simplified, since the area

integrals Ayz and Ayw and AZw are all equal to zero due

to Eqs. (40), (46) and (47).

- hu

EALZIN = 93

. e 0(89)
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<..(90)

..+ (91)

Eliminating 4y »93 , Wy from Egs. (67), (68), (69)

and Egs-. (89), (90), and (91) we get

ol )

MG, = -E_'Vz_ A:,g

g Mz2

Ehagi

- MG
= EASw

Therefore, Eq. (85) becomes

I R R L
A3y ok 4 W

000(92)

ees(93)

.ea(98)

ees(95)

... (96)

... (97)

...(98)
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The first fwo terms of Eq. (98) are due to bending
and the last term is due to warpiﬁg.

The warping function'ﬁ and the warping constant
ATw have been discussed in Art. Iv.

The following Article will be devoted to the dis-

cussion of the warping moment integral Mw.

VI. Solutions to the Differential Equations

Equation (91) of Art. V is a differential equation
for the rotation angle B caused by torsionm. This differential
equation will be solved in this Article for diéferent-loadiﬁg
conditions. After having obtained the expression of a, the
warpiné moment integral Mw, and the normal stress Sw can be
found easily from Eqs. (94) and (84).

Rewriting Egs. (91) and (57):

-t

EAGw® = MW (o1
aMIp
ax e (57)
and substituting Eq. (57) into Eq. (91)- '
- 180 -dMé‘?
- Me + ————— *
E—Aww¢ S ax ee.(99)

The primary (st. Venant's) twisting moment is

given in Art. I1 as: ‘
' -
... (100)
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where G is the shear modulus of elasticity, and J is the
torsional constant for the cross section defined in

Art. II. Substituting Eq. (100) into (99), we have

- n

- 2
EAqm ¥ — GI® =73
-01(101)

We notice that this differential equation has the
same form as that for bending of a beam column.

r IHJ_ ”_ ) .
B1M =Ry = | .e.(102)

where M is the deflection of the beam; H is the axial tensile
.force and p is the external loading. Thus we can make an
analogy and understand Eq. (101) as a differential equation
for bending of a beam column as shown in Fig.B.9.
where GJ corresponds to the axial force H

MS corresponds to the loading P

EAww corresponds to.the flexural rigidity EI

and ° @ corrresponds to the deflection‘ﬁw{

To solve Eq. (102) we integrate it twice:

1= M = [(fedwadx +cyx+ <2

4{_ %111 = é—IKJ(FAX)a* * é‘x +C2:\ ... (103)
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- Homogeneous Solutions

* - BX '
m. . = K.Q%-\- ‘(22\3 = ASW\\'\%X_-\—BCOS\-\‘BX .
W .o (104)

where K1, K2, A and B are constants and Pt= A/ %%1

Assume the pérticular integral is of the following form:

. /7].‘; = -lE-—'l K‘Cg(SP-c\x)"\" * DS\°°\X* Fe -ka-\-K] 3

substituting into Eq. (103) and assuming P 2 constant:

-}'E_‘—i ‘CF' E-i iCS(f\:a\#)c\x + D pax + FP+Gx+\<~S-X

wve

= —;51‘_5 (_SPo\x) AX + S X _* Cr;_]

by comparing the co-efficients on both sides of the above

equation we have
—— = - = -
:-%,Dzo, ‘:'-'-"%t\o H 3 15

-&oU( S\pé.x) Ax + C\¥ -\-Cal"' ‘g:TE-_{

e (105)

It is known that the bending moment M° is of a

simply supported beam type acted upon by a distributed
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load p (without axial force) is

M = —U(S\%\*) Ax + G¥* C?]

... (106)
Differentiating with respect to x twice
dM - - ' - _
axe . ... (107)
and i the relati hi fp= LN |
using elationship o e A’ =1
we have °
2 2
ax-ﬁ? %
B €1
.e.(108)
Substituting Egs. (106), (107) and (108) into (105),
2 o
. \ (\4° \ am
L1 b TR)
Te* w e ax?®
f..(109).

and combining Egs. (104), and (109)‘to obtain the general

solution of Eq. (103):

2
, awm’
”L“"”l\—\""qp‘ As\h\§x+3cos\\%x+‘ (\a ?2 aﬂ)

..+(110)
By analogy the generai solution of Eq. 101 can be
written as follows:
M-

¢\> AS\h\«'X$'¥3C05\'7*X+ (Mw“‘.)@ a\"z>
ees(111)
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where A and B are comnstants, Mw® is the warping moment integral,

at GJ = 0, correspording to Eq. (106):

M‘:}b :-U(W\EAQ)A;—\- C\Y—&Cz)
: ee o (112)
and \ has the following expressioﬁ corresponding to that
of P .
e

TN Ehww ... (113)

The solutions of Eq. (101) for two different kinds

of loading will be discussed. " For convenience, a vector
symbol t is introduced to represent 2 torque acting on
‘a beam. Thus Fig.Bl0 can be represented by Fig.Bll
where % is a.“positive" torque and x a.“negative" one.

A. Uniform Torgque

A beam analogous to-the beam column is loaded ﬂy
a uniform torque of length C and an axial load GJ (Fig.B.12).
Figures (b) and (c) are the shear and bending moment
diagrame of this determinate-analogous beam at GJ = 0.

From Eq. (111) and Fig.B.12» the eipression of
¢ in each region can be written as éollows:
.Region I: ° 2 ©
atda= M+ 4 “:G_ ¥ BT (A\Sx'n\v\ AFEa ], CO0%\ARX)

x ax
- Mg 4 GICASINIAX 8,cosh x%)

«es (114)

Region II:

- . ™
13 = My - —= +GT (A SihAx+® Cosh A%
cid " e (A2 Sw 2 )“.(‘115)
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~Region ITI:
. ° ol AR Coshax)
...(116)
Applying the boundary conditions to determine the
6 constants appearing in Eq. (114) and Eq. (115) and Eq. (116)
At i =0 B = 0 (deflection of the analogous beam should be

equal to zero at the support). From Eq. (114)

o' = o+ Gl B, . .By=o
A F=L,d =0 | ...(Q117)
O = G\‘S(Ag‘S\h\n)\\. +33C05\'{>‘\')
cos\hWAL
‘Q. Agz - _Bi—.o—s-\—\-—"k‘f )
= <.+ (118)

At X = a, g1 = 5 11 (Deflection at left = deflection at
right).
(M;) +GI (A swhio + B, Ccs\s'xos’)
o
s

o .
:(yqia'- ﬁ;{-+<3:<:kz

Swha 32C°5\" A0).

substituting Eq, (117) and rewriting

mg

A= A’()s\.h\\ AN =- a3 + BZCOS\\ DB

«es(119)
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at x = a P1' = P11 (slope at left = slope at right):
(MS—P)O"* AaI (A, coshra B,S\'h\\lo»)

= (M2 + XGS(AZCos\«)\m-{.Ba%\'\n\-\lo\.}

o

substituting into Eq. (117) and rewriting,

(A= A2)coshra ~ B, Stwh e =0
’ «+.(120)

At x = a + ¢, 911 = §111

© - .
(Mi)gyem "5 + ST [Ae SinhA(are) 4+ Bacoshalo 9]

_.° . < &-,coshACo+c
=(Ma) g a3(As m\n‘)n(.a.-»c)f 3. )

& e
° (Ae- Ag)S\'\-\\\XQO\,-» <) -\-(62-83) cQs\\X(O\f c) = \"SG}

o N ) ee.(121)
At K= a.*c., Cb“ = ¢\\\ .

(M 4+ AGT[Ag cosh A(arc) 4+ Be Sinh A (are)]
+%63[AzCosh A(ar)+ By Sinkk(ase)]

©

é})a+c

(-]
= ( Mg\’)w\-c
or

Cho-Aa)cosh XA+ +B-Bx) Sivha(a+9) =
ees(122)

From Eq. (120)

Sz‘SQQk)wv
cos\h\ o

A-Ag =
... (123)
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Substituting into Eq. (119) and simplifying we have:

B, = mg cosh o

X &3
Eq. (124) into (123):
e S
A‘— Ao = S 5\\’\\'\-}\0:
PSRN}
wWs
C c).
B,-Ba= 'XQ' a3 05\"}‘ (o + )

Eq. (124) into Eq. (126):
mg'[-cos\n Ao — ;os\\ 7\(0\-\-(:)1
X a3

From Eqs. (118) and (127):

By =

w3 EOS\\ X0 -~ CoshAR(A+c) Cos\-\)!;l

' A3 - Oy -
Y GT e Sin hXL

From Eqs. (122) and (126):

wz Sinh A (are)

Ap-Pa3= - N GT

From Eqs. (128) and (129):

wg KCOs\-\ o -Cosh k(o\-»c)-Xcos\\kL
Y &T. SwmhXl

Ae= -

mg S WA+
At &3

104

.e.(124)

.. (125)

<.« (128)

eac (127)_

... (128)

«e.(129)

...(130)
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"From Eqs. (125) and (130):
‘“-s‘_ccs\“ Ao~ cosh A CO\"‘C)] coshal

Ay = .
XaJ. SwhxbL

ms Shhaa  wg sihoaea)

+
x e X%

... (131)
Substituting the six constants found in Eqs. (131),
(130), (128), (117), (124), and (127) into Egqs. (114), (115),

-

and (116) correspondingly, we have the expression .

Region I:
. © C. m;‘h -
M\‘;" - T- X

Gl = M; + @3 CAVSVe R A% + By Cosh AR)
e €2 cow o _w CCoshAaa-Coshaarc)) cos WL
- %i"'ci > -1 SeW AL

N Sweh ktma—c) Stwh AL = 5\."‘\">\,°" s“‘\‘ﬂ'] Stk Ax }
_ '$§\~ \ AL :

Using the relationships

N = Cos\%Cl-\o); Cosh 2L Coshnb
Cosh TS — s hxl SR Ao

Sin W ACOAS) = St ACL-1) = Stwk AL Cosh b
' : - cosh Al Synhr\s

cos\\ A = <oshy 1[9,- Cb-\-C)] = Coslk %L cosh x(b-pc)
- St hxl Swh xCoxg)

Sie X = Siwh XD,- (\o-\'c)] = Sl coshaore)
- coshxl Stnw X(bt )
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we have:

cosh o CashAL- cosh Ao~ swhXo Sm\\x\,]s'm\.xﬁ

- 2 C.
GI$ = Ws X2 ‘Y_ Sinhal
= L

Xcask Alo+a) - sk | s;h\a&}
Jd

or -2 - _
e ‘_'léi" <2 % Sivwhxl

... (132)

From Eq. (113) we can write

2
GT= X EAGS
L] D.<133)

Differeniiating Eq. (132) with respect to X twice and
substituting the obtained expression of " and Eq. (133)

into Eq. (94) we have
-l

M& = - EA;';)

2 Wg COS\\(\O*CB‘CC’S\"X“’ Sinhx%
P Sin h2L ... (134)

.

Equations (132) and (134) are the expressions of the

rotation ® and warping moment integral MW in Region I.

Region II:
' 50y
© - YX=- 0
c e Tewng o X2

(see Fig. 12.c)

L.
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From Eqs. (115), (130) and (124):
- ° m‘ . - -
GI$ = M - -):52+ G3 CAZSm\\Xx-b BZCOS\\XX)

= Mg i [c KV X (x ?J ECos\.)o.— cosha(a+e)coshal

Stnhat

4+ Sm\n » (a,+c)] S\h\s)«x + Cos\v.‘x.o. coshAX }

using the following formulas to simplify the above expression:

coshr(a+e) = Cosha(l-b) = Coshal Cashab
‘ - sinhal Smh2b

Sinhala+e) = Sinhx(t-b) = Swhal coshab
- coshatl Sinhab

then

G‘I¢ = i [chx~ (x-a)]_‘

_ [(cosk Aa Coshal- CoshAb) Sinhak — Sinhalcoshah coalhax
Sinhxt S\ AL

= W3 C.v _cx-a.)_
m{FlepE- =2

+ coshab Smhax Coé\. AR Swla )(’:‘;‘ )]3
Sin b Sinhal

therefore:
G'S<\> = W3 ’f c.wn.x _(x- a) 1+ Ce.s\\’xw St ax‘% Coshal S\h\ax}
P i T =2 Sin AL

and
wmg cOs\\Xm SwhAx’+ coshAb Swha % )
M& = X ! Sinhxt

.(136)
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~Region ITI:
Similarly, the following expressions can be

derived for Region III.

1. Mz o % coshWXa+c) - Coshao S\'v\\'ki'l
GIP = G Ty ) Sin h 2L '
-o-(137)
™ I cos\h N(a+xc) - Cosh X S.\\'\\\-}‘;‘I
h » Sinw AL
T ...(138)
For the special case; i.e. when c =1 and 2a = b = 0

the following expressions can be obtained from Eqs. (135)

and (136):
s =2 Swnh % 4 Sk SN
= Ws T2, Lg_Xy\_ AX >
GIe= X‘[)‘(_?x 2 )7V T )
... (139)
M- = tnj-(‘; s\h\aui.\-s{h\\u;?)
it » S XL
«e.(140)

B. Concentrated Torgue

The expressions of ¢ in each of the regions of the
'analogous beam (Fig. ) can be written as

Region I:

G::’p = Mt-,,, + G'S(A‘sih\a AKX + B COS\'\')\X) ’
) ... (141)
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Region 1I1:

a3 = Mg, + G3 (ApSink X% +Belosh X%) (142)

Applying the boundary conditions to determine the

constants .Al, A2, B1l, and B2 appearing in Eqs. (141) and

(142) .
AL X0, &= O. from Eq (141)
o4 GIB=°C .. B=0
- ... (143)

A{.§2=Q,J<§==<>-
from Eq. (142)

© = G3 (Az‘sih\\il-\\BgCos\'«?L)

or Agp= - B2 CoshXl
_ Sink %l
At x= 0, Sy = Fua QL8
(Mt';:)m-x CB) (A\S\h\n Aowx By Ccs\")u).)
= (M%v)&-\- &I (RS MR N 1B, Cos\\ia)
o _(A\_'Az) Sie b Ao+ (Bi- B2) Cé:s\-; Ao =0 _
: ... (145)

- - 7
At % = o 2 é‘! = ¢Il
© - .
(Mz) + Aa3(Acoshro B, S1wh o)
= (MED)+ A@T(hptoshie+Be swhXo

Referring to Fig. ®a4 , Wwe obtain the following

M‘-’i— + AGT( A‘Cos\\)a. <+ B 6;\«\\ o)
™. & 4 AGT(Ae cqé\\ o 4 Bz Sinh »o)
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Substituting Eqs. (143) and (144) in the above equation

and rewriting: . Coshal C \\
2N A% CoshR
MCox0) L @I (A coshia) =2 a2 [Swmh -, ]
——TT_'* .
oy Cos\\l\o
- =R, AQT ———
NG Cosh Ao~ T 2 S R XL
M+ P~_\ b ... (146)
Substituting Eqs. (143) and (144) into Eq. (145) and
simplifying:. . .
A, S\.\'\\\ P ¥ S\.\'\\\ L = 8- Sw )b
e (147)
Solving Egqs. (146) and (147) simultaneously we obtain
A‘ =-MS\.\'\\\7\\O . _ .
AGT S ALl - : _ ... (148)
- - E‘__ "b'\h\\)\a,
B2 = NGT
s 00 (149)
Therefore, from Eq. (144)
Moo - BaCos WLl _ M Swnh o coshal
Ch S WXL AGT SWmW XL .
: .es(150)

Substituting the four constants found in Egs. {148), (150)

(143) and (149) into Egs. (141) and (142) correspondingly,

we have the expression of 6
Region I:

o
™M w = \A.kl,vd
L (see Fig.B.\AC)



: ’ : 111
G’S; = M:‘Q L a3A sieh A% + By Cosh )o—c)

M. 5™ Stnh X Stwh XX

L X Stnh L
= 2 kax- Swhab sinbhas]
Swnh AL _
]
Mg = - BALL 4” . «..(151)
M Shlak W AR
* SinbWnl
] .. (152)
Region II:
= S\h\\lav . \\ =’
o < S\n R XX
GIP = [_""7\ TSmhal ]
ce.(153)
Mo oM Sh X | Sk Ak’
W T Sweal 158

C. Redundant ég;pigg Moment Integral

The redundant warping.moment integral, denoted by
My1 (Fig.®.\v5) of an analogous beam corresponds to the
redundant moment of a "real" beam. The ¢ and M{j due to
this integral, Myj can be obtained.as follows:

Using Eq. (111), the expression of ¢ is

- © .
aTd = Mg + T (A SmhaX 4 8coshA%)

At X:Q,é:a . 000(155)
hence,
o= Ox GIB L. R=o

.. (156)
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hence, =

=M +GT (A stnh AL+ Beash \\.)_

«ee (157}
Substituting Eq. (156) into Eq. (157) and rewriting,
A - M\-:I\ -
‘ GT Swmhal . ...(158)
At a distance X from the left support .
° % . _
M\‘;:, = M\:n’_!': (See Fig )
ees(159)

Substituting Egqs. (156), (158) and (159) into Egq. (155)

we have,
e3¢ = Mo (X - swhos 222N
WL skl ...(160)
?herefore, S
Mg = - EAGT %+
- IV Swwh A%
- w L4 —_‘__-’—‘L
Steh C ... (161)

Similarly, we obtain the following equatioms for the case

of Fig.

- =/ $\h\-\)~.x
cid = M. (x - )
v SieWat ... (162)
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Eﬂh\xjkil
Sinh XL

Mxi = M&e2

e (163)

" D. Torsion of Contipuous Beams

| Using the formulas of items (A4), (Bi and (C) of
this article we are able to derive the formula of the warping
moment integra, My of a continuous beam. The method of
superposition is used to obtain these formulas.

1. Uniform Torque

By the method of superposition, the étructure shown
in Fig.B.\7Jacan be represented b; fhe sum of structures of
F?g;&l7a and ¢ ,‘wﬁere Mwl is a redundant warping moment integral.
. The relation between the loading M and the redundant MWl can
be obtained by setting equal the first derivative of $ at the
left hand side of the middle support and that at the Tight
hand side of the middle suppoft. (Analogy: the slope at the
left side of the support is equal to the slope at the right
side of the.same support for a continuous beam under flexural

L X4

. beiding). I.e. Q’ left =<P right- From Egs. (137,
(160) and (162):

- i
S [-)e(l -n) + cosh Afatc) - cosh ra ] +H-1(-l + Acosh>d)
A L sinh vt 4 sinh3a
=M (1L - Acoshad )
wl g sinh Ad
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M. .a[l +1_- 1 - )

=

wl Al Aad tanhal tanh 2d

114

o

= mg[-—xc(f'—gl + cosh XA (atc)-cosh 2al o
> L sinh™\ i

Therefore,

Mo, < T K -
2
where
—[c( 2-n)A+ cosh Na+c)-cosh Aal
- sinh
K= 1_+1_ - 1 - _ 1
AL Ad tanh 2L tanhXd

= tanh 2L . tanhAd[rc (@ —n)sinhXL + cosh >a- cosh X(at+e)]

... (164)

e

gsinh At . [tanhat+tanh aM-(L_ + 1 )tanhal . tanh adl
) x9 XL

Region 1

From Egs (134) and (161):

M- =m- -
w S . cosh A(b+c)—cosh Ab . sinhdx
2 sinh Al ‘
M-, . simh>x
q - Simnb X
v sinh U
= m§ - — .
_> [ecosh A(b+c)-—cosh Ab . sinh Ax - K sinh 2x |
A2 sinh Al sinh 2L
=m§, ) -
_° .cosh _X(b+c)--cosh Ab-K . sinh Ax
2 sinh Al

... (165)

... (166)
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Region II
From Egs. (136) and (161):

M=  =mg

v _E (1 - coshxa.sinh Xx' + cosh X\b.sinh Ax)-M-_.sinh Ax
A2 sinhXl ¥* sinh 2L
_[1 - cosh Aa.sinh x' +(X+cosh Ab)sinh dx ]
A2 sinhXl
e..(167)
Region "IITI
From Egs. (138) and (161):
Ma = mg : - —
——+ cosh X(atc)-cosh Xa ..sinh Ax' -M . sinh xx
A2 sinh Wl  ‘sinh >t
= M= . — L ——
— « [cosh X(a+c)-cosh Aa] sinh Xxx'~-K sinh >x
A2 ) sinh XU
ee.(168)
Region IV
From Eq. (163):
Mz =-M—; . sinh 2x'd = m _
¥®  Sinh ad _° . K J(_ sinh x'd)
o 2 . sinh Xd
ese(169)

2. Concentrated Torque

Similarly, we can derive the formulas of M_ for the
w

structure shown in Fig. . The result is given as follows:

M = M. K
wl x
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K = tanh XAd tanh N ( a sinh At - AL sinh 2a)

at sinh xe(tanh ~d+tanhxt)-(1+)sinh>t -tanh Ad-tanhXl
d
...(171}

Region 1
¥_ =M . simh Ab-K . sinh X

A sinh Xt

, T e (172)
Region II

. ginh »a . sinh »x' -K sinh *x
sinh

M_ =
w

M
~

..2(173)
Region 111 .

M_ = M g(- sinh x'd) -
sinh *d

... (174)
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-+ FIGURE B.l Primary shearing stress .
in a thin-walled section
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After
-deformation—
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.tangent at s

FIGURE B.2(a) Deformed middle
plane of an open
section of length dx FIGURE B.2(b)
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S ¥s.2 dy

ds \R dz

FIGURE B.3(a) Effect on warping o

1y

f a displacement

of rotation centre

\ .
ysin P /\_

> Tom
\

tangent

FIGURE B.3 (b) Effect on warping of a disp

lacement

of rotation centre
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mg dx ) dMg
- S -
M eae— | = —eeMg+ = dx

D -

FIGURE B.5 Twisting moment on an element
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|d7 I

FIGURE B.6 Ewisting moments on an element
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FIGURE B.8 Element subjected to both
twisting and bending
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FIGURE B.9 Anzlogous beam column
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FIGURE 3.10 Besm subjected FIGURT 3,11 Vector convention
to torque for beam subjected
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FIGURE B.1lZ2 Anslocous beam column loaded with
: uniform torque
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PIGURE 3.13 Anslogous beam column loaded with
uniform torque for all length
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PIGURE B.1ll Analogous beam colummn sub jected
to concentrated torque
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FIGURE B.15 Ahalogous beam subjected to
redundant warping moment integral

M2
Gl \ 7 ——=6}
Ql -
v ;
L
—X X

FIGURE B.16 Analogous beam subjected to
redundant warping moment integral
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FIGURE B.18 Analogous continuous beam
) subjected to concentrated
- torque '
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Photograph 1, Calibration of Oscilloscope for Known Strain

)

Photograph 2. Oscilloscope Response for Strain Gauge No. 26
subjected to Moving Load

T . . . 4
Saide #2( 2 Sees/in
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Photograph 1. Calibration of Oscilloscope for Known Strain

Photograph 2. Oscilloscope Response for Strain Gauge No. 26
subjected to Moving Load
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Photograph 3. Oscilloscope Response showing the period of
Oscillation

Photograph 4. Oscilloscope Response when Gilmore Actuator is
at 20 cycles/sec
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Photograph 3. Oscilloscope Response showing the period of
- Oscillation
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Photograph 4. Oscilloscope Response when Gilmore Actuator 1is
at 20 cycles/sec
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Jeck S ¢€JT€

Photograph 5. Oscilloscope Respomnse when Gilmore Actuator is
at 24 cycles/sec

A

Photograph 6.

Oscilloscope Response when the Gilmore Actuator is
at 25 cycles/sec



Oscilloscope Response when Gilmore Actuator is

Photograph 5.
at 24 cycles/sec

Photograph 6. Oscilloscope Response when .the Gilmore Actuator 1is

at 25 cycles/sec



128

T K 4‘\} Cenlye .

Photograph 7. Oscilloscope Response when Gilmore Actuator is
at 25.5 cycles/sec

- +
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Photograph 8. Oscilloscope Response when Gilmore Actuator is
at 26 cycles/sec



Photograph 7. Oscilloscope Response when Gilmore Actuator is
at 25.5 cycles/sec

|

Photograph 8. Oscilloscope Response when Gilmore Actuator is
at 26 cycles/sec
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Photograph 9. Oscilloscope Response when Gilmore Actuator is
at 27 cycles/sec

Photograph 10. Ogcilloscope Response when Gilmore Actuator is

at 64 cycles/sec
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Oscilloscope Response when Gilmore Actuator is

Photograph 9.
at 27 cycles/sec

Oscilloscope Response when Gilmore Actuator is

Photograph 10.
at 64 cycles/sec
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Photograph 11. Model

Photograph 12. Model with Gilmore Actuator and Loading Frame
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Photograph 11. Model

Photograph 12. Model with Gilmore Actuator and Loading Frame
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Photograph 14. Gilmore Loading System.
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Photograph 13. Model with Strain Gauges and Dial Indicators

Photograph 1l4. Gilmore Loading System.
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Photograph 16. Load Carriage



Photograph 15. Model with Gilmore Actuator

Photograph 16. Load Carriage





