l *I National Library
of Canada du Canada

Bibhotheque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependentupon the
quality of the original thesis submutted for microfiiming
Every effort has been made to ensure the highestqualty of
reproduction possible

It pages are missing, contact the university which granted
the degree

Some pages may have indistinct pnnt especially if the
original pages were typed with a poor typewriter nbbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform 1s governed
by the Canadian Copynght Act,R S C 1970, ¢. C-30, and
subsequent amendments.

NU 39 [8Se0d) ¢

AVIS

La qualté de cette microforme dépend grandement de i
qualité de 1a thése soumise au microhimage Nous avons
tout fait pour assurer une qualiié supencure de seproduc
tion.

Sl manque des pao~s, veullez communquer avec
université qut a conféré le grade

La qualité d'impression de certaines paqes peut lusser o
désirer, surtout st les pages onginales ont &lé dactylngra
pruées A faide d'un ruban usé ou si furwversité nous a tat
parvenir une photocopie de qualité infénieure

La reproduction, méme particlle, de ceite microforme est
soumise & Ia Lol canadienne sur le droit d'auteur, SRC
1370, ¢ C-30, et ses amendements subsequents

el

Canadi

TABU SEARCH HEURISTICS FOR
HYPERCUBE EMBEDDING

Jiawel Guo

A Tlesis
in the Department of

Computer Science

Presented in Partial Fulfilnent of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Moutreal. Quebee, Canada

1992

©Jiawni Guo, 1992

pR—,

R |

National Library
of Canada

Biblothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing th= National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

15BN

Canadi

o

e

bt

Service des théses canadiennes

o

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplares de
cette these a la dispostion des personnes
intéresseéeas

L'auteur conserve fa propnate du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ct ne doivent atre
imprimés ou autrement reproduits sans son
autorisation.

773601-7

Abstract

Tabu Search Heuristics for Hypercube Embedding

Jiawel Guo

The performance of a parallel program on a parallel computer depends heavily on
the quality of program mapping: how to map the processes to the processors to mm
imize the communication overhead. Since all the processors perform communications
asvnchronously for MIMD parallel machines, the interprocessor communication tiune
can be modeled by the total communication cost. Stmilavly, since all the processans
perform communications synchronously for SIMD parallel machines. the nterproces
sor communication time can be modeled by the maximal communication cost hetween
any pair of communicating processes. In this thesis we present two new hyperoube

program cmbedding strategies for the above two models.,

We use tabu search as the main tool 1o search for optimized hyperenbe cmbed
dings. Tabu search is a new general technique for sulving combinatotial optingization
problems. Different from other approaches, tabu scarch adopts an aggressive. deter
ministic scarch strategy. We studied the following issues for onr tabisearch henristics
(1) neighborhood design; (2) gain functions and their updatess (3) tabu st length

control; (1) the choice of tabu list contents; and (5) use of two eflicient data structine.

We generate a large set of random, geometric, and pertinhed regnlar graphs anidl
compare the performance of our tabu search heuristics with the tost competitive
heuristics reported in the literature - simulated anncaling and Kernighan Lin fresis
tics. Experiments show that our new proposed heuristics can significatly vnprove

the solution quality and reduce the execntion time.

i

Acknowledgments

[am gratelnl to my thesis advisor Dr. Lixin Tao for his support and advice dur-
ing my study at Concordia University. My thesis benefits greatly from his insights
and demand for high qnality reseaich. [would also like to express my gratitude to
the members of my thesis defense committee Dr. €. Lam. Dr. R Javaknmar, and

especially Dro Tao Li for their comments and suggestions for my rescarch,

In addition, I'would like to thank Prof. Yong Chang Zhao for his suggestions and
discussions, Mi. Xin Ming Yu for his help in the Lab and friendship during the past
few years T deeply appreciate my wife Lisha Kang for her love, understanding. and

suppott throughout my study.

This work was partially supported by the Canadian NSERC rescarch grant OGDP-

OOHTEIS and FCAR reseavch grant 92NC0026.

Contents

List of Figures
List of Tables

1 Introduction
[.1 The hypercube embedding problem
(.2 Tabu search teehnique

1.3 Thesis outhine . .

2 Literature Survey

2.1 Hypereabe embedding
2.2 Tabu search

2.3 Summary

3 Problem-Specific Design Issues

3.1 Move-set and neighborhood design
3.2 Gain function and s update o ..
321 Gain function for all-swap neighborhood

3.2.2 Gain function for cube-neighbor neighbothood

v

Vil

Lo

i

20

33 Bucket fist prionty quene data structure L L.
3.0 Beochmark eraphs o 000000000
3.0 Tlesthed o0 00000 L0
.60 Swmnnuny o000

Established Hypercube Embedding Approaches

1L Gheedy approach 0000000000
L2 Rernighan-Lin approach .. 000 0.
[3 Simulated annealing approach L.

P An adaptive version of simulated annealing . . .
LT New SA Hewistie .00 000

L2 Parameter tuning for SACT .00 0L

.....

L3 Performance comparisons between SAC and CSA(

LY Summary oL

S.0 Tabu search heuristic and its characteristics . .
S0 Moveset design o000 Lo L
5.1.2 0 The contents of the tabu List L L.
503 The design of the adaptive tabu list . . .
A Aspiration level L. L L L e e
5.5 Application of tabu statns array
5.1.6 Nccelerating the neighborhood search . .

2.2 Performance comparisons L.

vi

5 ‘Tabu Search Heuristic with Objective Function D(r)

.....

.....

......

......

......

32

31

31

39

37

10

19

50

Z
[N

SRUR

5.2.2 0 Stability evaluation

Fatensive conipatisons

5.3

Suminary

6.1 Gain function and its update

('ost funetion evaluation

Tabu search heuristic

(.1 Petformance comparisots

6.1.1 Random eraphs
&

6.1.2 Geometric graphs

G.1.3 Perturbed regular graphs

6.5 Summary

Conclusion

A

-1

Observations on experimental results

7.2

Major contiibutions

.3

FFuture work

Bibliography

Appendix A: Derivation of the Expected Minimal Cost fo:
Runs

Appendix B: Heap Operations

vil

Comparsons with various time himits

Tabu Search Heuristic with Objective Funetion D

7

s

K2

- Multiple

8K

K9

List of Figures

L Hypercabes 0000000 0000 e 3
L2 abu seanel o000 0L e e e 9
300 Buchet-lst™ priotity quene 00000 S22
3.2 Geometric graph G312 00 0000 000 e 2
Il Greedy approach for hypercube embedding L. e 20
L2 Kemighan-Lincapproach o 0000 00000000000 R {1
3 Simudated anoealing approach o0 00000000 S

L1 New simulated annealing for hypercube embedding o0 0 0000 00 3]

Ly The effect of different mitial temperatures . 0 0 000 00000000036

S0 Pabusearch henvistic w0 0 0000 00000000 R B
%2 The progress of TS and TSC o0 0000000000 T B
2.3 The effect of tabu hist length on solution cost for RHI2W. 7
S 1 Comparison with various time limits for random graphs 36

5.0 Histograms of solution costs for 1,000 runs on RH12W using T'SC, SAC,

and FOFRLC 0o 37

A4 Cost time graph for 1000 runs on RS12W using TSC, SAC, and FG+RKLC 53

vili

s §
-1

e
A

0.2

Cost /time trade offs for random graphs

Cost/time trade offs for geometvie graphs

Cost/time trade-olfs Tor perturbed regular graphs

Heap strneture used to report the masimal mapped distane e

Hennstic 'TSH .

t

[

List of Tables

3.1

L4

Characteristies of the random benchmark graphs .
Characteristics of the geometric henehmark graphs

Characteristies of the perturbed regular benchmark graphs

Dependence of running time and average cost on ¢ and ¢ for R512\W
Dependence of running time and average cost on 7, and X for RH12\W
Comparisons between two SA henristics for random graphs

Comparisons hetween two SA henristios for geometrie graphs o . ..

Dependence of average cost on f and 4, e
Comparisons between static and adaptive tabu hists .. 000 00 L.
Petformance comparisons hetween TSC and TSCA 000 00

Performance of TSC without using array TABUSTATE . ..

Comparisons between TSCwith and without bucket-hist . o . . L.
Cost vs, timefor SAC © o 00000000 L. e e
Cost vs, time for FG4HRKLC © 0000000000 e e
Cost vs. timefor TSC L L 000 000
Statistics for 1000 vuns of TSC, SAC, and FGH+RLC .00 0 000

I
-t

20

39

10

{0

-1

ot

510 Comparisons of TSCLSAC and FGHRLC on RAIZW o000 it
5.11 Comparisons for embedding random graphs to minimize Dz . i)
5.12 Comparisons for cinbedding geometric graphs to minimize D). it
513 Comparisons for embedding perturbed cubes to minimize D1 0
5.0 1 Comparisons for embedding perturbed meshes to mumimize Dix) .0 07
6.1 Comparisons for embedding random graphs to mininse D(x) .. I
6.2 Comparisons for embedding geometric graphs to mininwze D) o0 b

6.3 Comparisons for embedding perturbed regatar graphs to mimimice Desy 0
] 8 B B

xi

Chapter 1

Introduction

The performance of a paralle] program on a parallel machine with distributed mem-
ory depends heavily on the mapping of the processes to the processors. Sinee the
patallel machine nsually has a fixed topology and cach program usually has dillerent
communication patterns, the interprocess messages usually have to go through some
intermediate processors before reaching their destinations. To mininuze such commu-
nication overhead. we should map (load) processes into processors so that each pair
ol communicating processes are as close as possible, and each pair of connmunicating
processes with heavy communication load are at a distance no longer than that for a

pair ol communicating processes with light communication load.

We can model the above program mapping prablem with the following graph map-
preng problem. We abstract the communication pattern of a parallel program into
a Aask graph (communication grapn) G = (V.) in which each vertex represents a
process, cach edge represents a logical commuuication channel, and the weight on
cach edge represents the communication load between the two incident processes. We
can also abstract the parallel machine into a system graph 11 = (V,.12;) in which
cach vertex represerts a processor and each edge represents a physical link. Any
function @+ V7 — 1 represents a program mapping scheme. Given any pair of
adjacent vertices woy € V', we use the term mapped distance between @ and y to

denote the product of the edge weight between @ and 3 and the distance between

() and ®(y) in . I the machine is working under the MIMD iode, sinee the

computation and communication of different processes can be conducted in parallel
asynchronously, the interprocessor communication time can be modeled by the snn
mation of mapped distances between all pairs of comnumicating processes [10] 11 the
machine is working under the SINT mode, since all the processors perforin commn
nications svnchronously. the interprocessor communication time can he wodeled by

the maximal mapped distance between any pair of conmmunicating processes [H0L T,

1.2 The hypercube embedding problem

Due to its high regularity, small diameter, and high efficieney for diverse appheations,
hypercube interconnection pattern is becoming very popular for commerdiab and ey
perimental parallel machines. This attracts the study of the hgpereube cinbedding

problem, which is a restricted version of the above graph mapping problem.

A d-dimensional hyprreube. also called d-cube, is an undirected graph consisting ol
n = 24 vertices labeled from 0 to 27 — 1 such that there is an edge hetween any pan ol
vertices if and only if the binary representations of their labels differ at exactly one bit
position. Figure 1.1 shows a 3-cube with 8 vertices and a J-cube with 16 vertices. f
a d-cube, according to the definition, each vertex has exactly d neighbors (deerce dy

there are a total of nd/2 edges; the diameter is dy and the average distance hetween

dn
2(n-1})°

pairs of vertices is In addition, a d-cube is hipartite; the two hipartitions are
the set of vertices whose labels have an even number of s and the set of vertices
whose labels have an odd number of 17s. A graph (7 is said to be d-cabwal il ¢4 1,

isomorphic to a subgraph of a d-cube,

Lot 1T = (V) Ex) be a d-cube. Given any two vertices u and ¢ in Vy,, we nuse olu.r)
to denote the length of the shortest paths between e and o (Hanmming distance). Let
(' = (V, E) be an undirected graph where [V = [V |, and w2 k= [(] s the set
ol positive integers) a weight function. An embedding of (¢ into [1 i a bijection

71V = Vi. For any pair of vertices w, v € V, 6(x(u), w(e)) - wlu, o) is the tapped

000 001 (000 0001

1000 100y
S i
10 101 0100 ¢ #0101
I A G 1
oo |4 non]
: ‘] '
! | ! i
' 11010 101
010 b - e
011 OO0 & e 001
l’l :’I
A v
1110 Y
) 11 0110 0111

(a) 3-cube

(b) l-cube

Figurve 1.1t Hypercubes

distance hetween u and v,

We nse two diflerent objective functions to abstract the program cmbedding prob-
lem under two different computation modes. We define the following average mapped

distaner

1

Z{u.u}GE 'U/'(U, l') {uvv}eE

D(r) (r(u).m(v)) wlu.v)

to model the program embedding problem on MIMD machines. This objective func-
tion gives us a special case of the Quadratic Assignment Problem |12, 33]. For any
embedding 7, D(r) > 1. 1f & preserves the neighborship in G, we have D(7) = 1. In
our performance comparisons in the following chapters, we also use the folal mapped

distanee T(7) = ¥ g vper S(m(u), m(e)) - wlu, v) for reference.

We also define the following marimal mapped distance

D(r) = {11‘11;}\‘_:}'[:5(71'(11), 7(0)) - wl(u,v)

to model the program embedding problem on SIMD machines. If all edge weights are

constant 1, D(x) reduces to the dilation cost [14].

The hypereube embedding problem can thus be defined as follows: Given «a task

graph (= (V. EY and a d-cube 11 = (V. F)) where V] = |Vl find a boection

71 Vo= Vi to minimize the objective function D(z) or D(x).

Unfortunately, the problem of identifying whether a given graph ¢ is a subgraph
ol a hypercube has been shown to be NP-complete [12]. We can reduce the hvpetenbe
sithgraph problem into our hypercube embedding problem. Let aw(¢) = 1 loradl ¢ ¢ 1
If ¢/ has less vertices than {1, we intioduce isolated dumimy vertices so that ¢ and {1
have the same number of vertices. Then (s a subgraph of a hypereube i and only
if (can be embedded into Il with D(7) = 1 or D(x) = I. Thevefore our by peronbe

embedding probleny is NP-hard no matter which objective funetion is used.

Many heuristics have been proposed for solving the hypercube embedding problem.
lee and Aggarwal [38] proposed a constructive greedy embedding henristic amd an
iterative local search embedding heuristic. Simulated annealing heuristios have heen
studied by Ramamujam, Ercal, and Sadavappau [10]. Bollinger and Mudhill [5] aud
Chen [11, 10]. Chen made a comprelicnsive comparative stady of different hypercibe
cmbedding heuristics, proposed a new greedy hewristic, and further improved the
local scarch and Kernighan-Lin heuristies [10]. In this thesis, we propose two new

efficient tabu search heuristics for hypercube embedding,.

1.2 Tabu search technique

Tabu scarch, recently introduced by Glover [19], is a new strategy for solving general
combinatorial optimization problems. Unlike simulated anncaling which is a totally
randomized heuristic, tabu scarch looks more like an intelligent search which may
in some sense imitate a human behavior or apply some rales hased on artificial i

telligenee principles. It is an adaptive metaheuvistic with the ability to make nse of
many other methods, such as linear programuming and specialized heuristies, which
it directs to overcome the limitations of local optimality. Tabu search has hren sie

cessfully applied to solving many NP-hard problems including character recognition

[31]. computer chaunel balancing problem [20], quadratic assignment problems {33,

. Get a random initial solution =.
2. While stop criterion not met do:
2.1 Let 7’ be a neighbor of m maximizing
A = cost(m) — cost(7') and not visited
in the last ¢ iterations,
22 Set =7,

Return the best 7 visited.

-

Figure 1.2: Tabu search

42}, graph coloring [30], graph partitioning [15], and maximum stable set problems

[16, 17).

Tabu search can be viewed as an improved variant of local search. It differs from

simulated annealing at two main aspects:

e Il is more aggressive. For cach iteration the whole neighborhood of the current

solution is usnally searched exhaustively to find the best candidate moee.

o It is deterministic. Fach iteration repeats the above exhaustive search for best
candidate moves. The best candidate move which does not cause cveling in
the solution space will be used no matter whether it improves on the current
solntion or not. A tabu list is usually used to record the recent move history to

avoid solution cycling, so comes the name of the approach.

Figure 1.2 outlines a generic tabu search heuristic using ¢ to represent the length
of the tabu list. Given a random initial solution, the heuristic repeats the loop at
Step 2 antil some stop criterion is met. During each iteration. the heuristic makes an
exhaustive seavch of the solutions in the neighborhood of the current solution which
havenot been traversed in the last ¢ (f > 1) iterations, The neighboring solution with
the best cost found in the above process will be used to replace the current solution.

Fhe main design issues for a tabu search heuristic includes:

WA o £

The design of the neighborhood (moves) of the carrent solution. Tet S he

the move-set consisting of ail defined moves and = the current solntion. 'he
neighborhood of 7. denoted by A'(7). s the set of solutions which can he reached
from = by one move in S. The neighborhood design is basically to make the
trade-ofl between the aggressiveness and the CPU time for the neighborhood
scarch. Tor a large neighborhood size. the hearistic is more agotessive at cach
iteration and less eflicient. If the neighborhood size is too small, the aggressive

property of tabu search will be lost.

. The design of the contents of the tabu list. Tabu list is basically nsed (o avoid

cyeling due to uphiit moves. The contents of the tabu list can be any attibutes
of the current solution. I we record a more abstracy set of attributes ol .
solution in the tabu Lst, more restrictions will be applied to the search at cadh
iteration, and more moves will be tabued. I we use a mote detailed et ol
attributes of a soluticn in cach cell of the tabu list. however, more memoy
space and checking time will be incurred during the solution space search. and
the scarches will be less restrictive sinee less solutions (in addition to the ones

visited in the last ¢ iterations) will be tabued.

. The design of the length ¢ of the tabu list. In general, the louger the tabn

list 1s, the more time tabu status checking tahes for cach move. and the more
restrictive the search process will be. On the other hand, a too short tabn st
risks to introduce eycling in the solution space. For many applications, the hest

tabu list length is both instance-dependent and time-dependent.,

. The design of the aspiration level function. Since most tabu lists only store some

attributes (moves, for example) of the solutions, these attributes can tabun 1o
many moves not causing solution cycling. To prevent this case hrom ocouring,
an aspiration level function can be defined. For cach move s and cadhi solntion
7, we define an aspiration level A(s, 7). Let © be the current solution. For anv
move s which is m the tabu list, we say that the aspivation level is attained

if cost(s(m)) < A(s, 7). The role of A(s,7) is 1o provide added flexability to

)

chioose good moves by allowing the tabu status of a move to be overridden if
the aspiration level is attained. The goal is to do this in a manner that retains

the ability to avoid solution cycling.

O, The design of the intermediate and long term memory. Intermediate and long
term memory functions are employed within tabu scarch to achieve regional in-
tensification and global diversification of the search. Combined with the short
term memory function fulfilled by the tabu list, the intermediate and long term
functions work alternatively. Intermediate term memory operates by recording
and comparing features of a selected number of best trial solutions generated
during a particular period of search. Features that are common to all or a com-
pelling majority of these solutions are taken to be a regional attribute of good
solutions. "The method then secks new solutions that exhibit these features, by
correspondingly restricting or penalizing available moves during a subsequent
period of regional search intensification. The long term memory function, whose
goal is to diversily the search, employs principles that are roughly the reverse
of those for intermediate term memory. Instead of inducing the search to focus
more intensively on regions that contain good solutions found previously. the
long termy memory function guides the process to regions that markedly contrast
with those examined thus far. The approach differs from those methods that
seek diversity by generating a series of random starting points, and hence which
allord no opportunity to learn from the past. The objective is to create evalu-
ation criteria that can be used by heuristic scarch process which is specifically

designed to produce a new better than random starting point.

1.3 Thesis outline

According to our literature survey on hypercube embedding problems, we found
that Chen's recent. PhuD thesis [10] made the most extensive comparative study of

various hypercube embedding techniques. Chen claimed that the combination of a

-1

greedy heuristic (FQ) and a Kernighan-Lin heuristic with cube neighbor netglibor
hood (KLC) scarch strategy gave the best performance over other heuristics goieedy .
local search, Kernighan-Lin, and simulated anncaling) Tor vatious types of task graphs
Chen used unweighted total mapped distance as his objective function [HL 0] Onn
main objective in this thesis is to generalize Chen's embedding model and propose new
cllicient tabu search embedding heuristics to outperform the hest heuristies claimed

by Chen in both solution quality and running time.

In Chapter 2, we give a concise literature survey on hypercube embedding probleg

and tabu search technique.

The problem-specific design and implementation issues (henristic mdependent b are
discussed in Chapter 3. These issues include move-set design. g hindtion and
its update, a hucket-list priovity queune data stracture. henchmak graphs nsed ton

performance comparisons. and the test bed.

In Chapter 1. we introduce the established hypercube embedding approacbies i
cluding greedy, Kernighan-Lin, and simulated anncaling. We snmmanize these ap
proaches in the context of Chen’s adaptations of them to by perenbe embeddine. We
also introduce our improvement on Chen’s simulated annealing heuristic, e related

performance comparisons are reported at the end of this Chapter.

Chapter 5 presents the details of our tabu search heuristic (TSCY with the objective
function D(r). We investigate the effects of neighborhood selection on solution qaahity
and CPU elficiency. We successlully introduce an adaptive tabu list to our tab searddy
hearistic to capture the dynamic properties of the hyperenbe embedding process. e
relevant performance comparisons between tabu search henristios with statie and
adaptive tabu lists are presented. The experiments show that the iteration muonber
and running time using adaptive tabu list arve I8% and 229 less than those hased on
static tabu list respectively while the sohition quality of the former is hetter thim that
of the latter. We also present both extensive and intensive performance cotnpinisons

Letween Chen’s most competitive hearistics and our new tabu search heunstic

A new tabn search heuristic (TSD) for objective function D(#) is introduced in

Chapter 6. We discuss the special difficulties in minimizing D(#). and present the

guin velated design based on D(#) and the other implementation issnes. We also

deseribe a heap priority queue data structure used in TSD to facilitate the evaluation
ol Dixy. The performance comparisons for D(x) are made between TSD and TS5¢
tor all of our henehmark graphs. The experiments show that TSD cannot be replaced

'l}' II‘S('_

Chapter 7 concludes the thesis with a summary of our main observations, our

contributions to this research, and future work.

Chapter 2

Literature Survey

[this chapter we 1eview the literatures on by percube embedding and talar scarch
Based on our survey, we found that Chen’s study {10} on hypercube embedding i
most extensive in both embedding approaches and petformance comparisons armong

different approaches: and tabu search is a new promising scarch techque stll nnder

development.

2.1 Hypercube embedding

Many heuaristics have been proposed based on different optinization models. ot

section, we only survey those previous work telated to ns,

Bokhari proposed a local scarch heuristic with pairwise exchange for mapping taek
graphs to a Finite Element Machine (FEM) (Meight nearest neighbor™ mterconned tion
[1]. Bokhari's objective function maximizes the number of edges inthe tash eraph
that are mapped to single edges in FEM. which is also used by the grecdy hennisnhe
in [10] (referred to as FG) for hypercube embedding, He tested about 20 5t tial
problems of 9 to 19 vertices for FEAM's of size 1«1 to T » 7. To avoid local optin

traps, probabilistic jumps were used in the local scarch to improve petfornance

Lee and Aggarwal formulated a set of objective functions which quantify con

munication overhead for different applications (e.g., asynchironons conmpuncation.

10

s nchronons commuuication, and parallel image-processing model) [38]. The edges in

¢/ are divided into sume subsets such that the edges in the same subset 1epresent the
inter process communications which ocenr simultancously and the edges in different
wthects represent the inter-process communications which occur sequentially. The
two objective functions, Y2, (max, (¢,,)) and max, (max,(¢,,)). were formulated, where
¢ is the subset number. j is edge number in subset 7. and ¢, is the mapped distance
of the jth edge in subset 7. A greedy hearistic in combination with a local scarch
(pairwise exchange) was proposed to solve the mapping problem. The heuristic was
tested for 9 task graphs on hypercubes of 8 and 16 vertices respectively using the

second objective function,

A simulated annealing heuristic was studied and reported by Ramamujam. Freal.
and Sadayappan [10]. To formulate the communication overhead, the total mapped
distance T(m) was used as the objective function subject to a constraint on a load-
imbatance factor. Two strategies, namely simulated annealing with scaling and sinm-
lated anncaling with exchange, were investigated to prevent the load-imbalance factor
[rom trapping the annealing process at local optima. Experiments were done for 5

structured and 3 random graphs with 111 to 602 vertices.

Ereal, Ramanujam, and Sadayappan further proposed a recursive mapping strategy
(13] based on repeated applications of the Kernihan-Lin graph partitioning heuristic
[35]. This hearistic was compared with simulated annealing for the same set of test
graphs in [10]. Results showed that this heuristic obtained costs slightly worse than
those for simulated annealing, but the cost difference was always less than 10% and

the computation time of this recursive strategy was much less.

A processor and link assignment heuristic using simulated annealing was devel-
oped by Bollinger and Midkifl' {3]. Since cach link in the multiprocessor may be
contended by several processes at the same time (causing tralfic congestion on the
link). the objective function considers communication costs aud the load on cach
link. The hearistic employs two optimization phases. Process annealing is first used

(O assigh processes to processors (processor assignment), and connection anncaling is

11

then used to further reduce the communication cost by routing tratlic over data paths
(hink assignment). Two different objective functions were used for the two ditferent
phases. The performance of the heuristic was evaluated by mapping hypercubes with
S 10 512 vertices onto themselves and mapping binary trees to hypercubes, Faper

iments showed that this simulated anncaling heuristic was able to consistently map

hypereubes of size < 128 into themselves perfeetly.

A greedy heuristic embedding strategy was proposed by Chen and Gehringer in
[9]. They chose the average distance (the total mapped distance divided hy nummber
of edges in (7) without edge weight as the objective function. The performanee of em
bedding fully connected task graphs, almost fully connected task graphs, hypercubes.

and rings into hypercube were presented.

The performance of several different mapping heuristics for the hypereube e
bedding problem was compared by André, Pazat, and Priol [2]. They adopted the
quadratic assignment model for their objective function and conpared fowre diflerent
hearisties including Bokhari's local search heuristic [1], Chen’s greedy heuristic [4).
a simulated annealing heuristic, and Pazat’s “fricudly greedy™ hearistie [39]. The
comparison was based on mapping 1 x4 meshes to d-cubes and mapping « parallel

ray-tracing algorithm to 4- and 5-cubes.

Based on the same objective function as used in [9], Chen’s recent thesis studied
three greedy heuristics, a local scavch heuristic with lat moves, a Kerniphan Lin
heuristic with uphill moves, and a simulated annealing heuristic [10]. An efliciem
hucket-list data structure (see Section 3.3) proposed by Fiduecia and Mattheyses {15
was emploved to implement a priority quene. We will deseribe these enristios in

Chapter 1.

2.2 Tabu search
Tabu search was first proposed for the integer progranuning problem [19] and then
developed in a general framework by Glover. Independently, Hansen proposed i

12

<

Steepest. Ascent/Mildest: Descent technique based on similar ideas and used it to

solve maximum satisfiability problem [28]. Research on tabu search has heen focused

on the following issnes [30, 6, 16, 50, 48, 29, 42, 32, 13, 17, 33, 13, 41].

3.

Neighborhood design

Giiven a solution 7, its neighborhood N (7) is defined as the set of all possible
solutions which can be found from 7 by one movc or modification. A large neigh-
borhoaod size will result in a long computation time for neighborhood scarch. To
reduce the time for neighborhood search, Hartz and Werra [30] proposed to stop
the search as soon as a better neighbor solution 7' is found in the neighborhood
of the current solution m, and the move is performed directly from # to ' In
[10] Chen chose the cube-neighbor neighborhood for hypercube embedding and
demonstrated that the heuristics with cube-neighbor neighborhood performs

better than those with all-swap neighborhood.

Tabu list size

The choice of tabu list size is critical for many applications. If tabu list is too
short, cyeling may occur in the search process; if tabu list is too long. appealing
moves may be forbidden and leading to the exploration of lower quality solu-
tions. 1t is, however, difficult to give a general rule for finding the best tabu
list size. In most references, the tabu list size was fixed. Taillard proposed a
scheme to change the tabu list size randomly during the scarch for Quadratic
Assignment Problem [12]. The tabu list size & will be chiosen between Ay and
Fmaxn = Fuin + A, where both &y, and A are given positive integers. For every
2+ hpaae iterations, a random number r uniformly distributed over interval [0.4]
is used to change the tabu list size to &y, +r. In this way Taillard claimed that
one can find better solutions in a more reliable way and reduce 30% iterations

than for a lixed tabu list size.

Aspiration level function

13

(a) Skorin-Kapov used the best cost. best _cost, obtained thus far as the aspira

tion level function [33]. 1f a move transforming solution from x 1o x5 1
tabu status and cosl(7') < best_cost, then the tabu status can be overrid
den. While this aspiration level function is simple, its ability to overnde

the tabu status is very limited.

(b) Hertz et al. proposed that the tabu status of a move ftom 7 to &' he
dropped il cost(x') is smaller than the best cost obtained carlier by leaving

| a solution 7" where cost(x") = cost(x) [30. 29, 32].

. Long term 1nemory

Skorin-Kapov incorporated long term memory in her tabu search hennstic o
the Quadratic Assignment Problem (QAP) [33]. The heuristic has two pliases
— construction and improvement. The former provides an initial solution hased
on the flow and distauce matrices, and the latter improves the initial solution
using tabu search. An n ox n matrix LPM is used to record the move statisties
ol cach facility for the QAP of size n. At the end of the inprovement pliase,
the recent move history stored in LTM is used to modily the distanee matvix
and the above process is repeated with a new initial solution. 'The experiments
show that tabu search with LTM takes much more time than that withont LTI

and the improvement on solution quality is very Hmited.

2.3 Summary

For most research on hypercube embedding, the total communication cost (with o
without edge weight) is employed as the objective function. The technigues that e

nsed to solve the hypercube embedding problem can be classified into two catesories:

constructive approach and iterative improvement approach. The former inchides the
variants of various greedy heuristics, and the latter includes local seareh. Keruighan
, Lin, and simulated anncaling heuristics. Chen made extensive performance compi

isons for most of these heuristics [10].

14

Taba seardiis a new general search strategy stitl under development. It has been
successtully applied to a wide range of problem domains with superior perforinance.
T he tajor design issues are focused on neighborhood. tabu list, aspiration level fune-

fron, and intermediate/long term memory functions,

Chapter 3

Problem-Specific Design Issues

Let X be the set of all bijeetions 70 V' o— Vil and cost(7) denote either D{a) o

D(7). Our hypercube embedding problenm can bhe presented in the following form
Minimize cost{zx): = ¢ \.
We call X the solulion space.

A wide range of heuristics for solving problems capable of heing wiitten i the
above form can be characterized conveniently by reference to sequences ol mores
that lead from one trial solution (selected # € X)) to another. A more s is 4 mapping
from a subsct X(s) of X to X. Let S be the move-set containing all defined moves
Weuse S(m) (7 € X) to denote the subset of movesin S applicable to moand Sta.Y)
(7 € X, Y C V) the subsct of moves in S(x) that only redelines (e for oo)
For any s € S(), 8(7). the new solution obtained by applying move s to z s called
a neighbor of . We use N(#7), called neighborhood of 7, to denote the set o all
neighbors of 7, and [NV (w)| the neighborhood size of 7. Since all of the moves whicly

we use are bijections, we have | S(7)] = |A(7)].

3.1 Move-set and neighborhood design

From an abstract point of view, all the heuristics (except greedy henristics) i s

thesis perform a series of iterations. At cach iteration, a subset of the neighborliood

16

A7) of the eurvent solution 7 in the solution space X is investigated and the curremt
solntion 7 is updated accordingly (making a move s € S(r)). To make these heuristics

efficient and effective, the move-set, S should be defined with the following properties:

o cachabilily: Given any two solutions 7 and 7’ in X, it should he possible to
apply a sequence of moves in S to reach 7' from 7. This property will greatly

increase the probability for an heuristic to converge to the global optimum.

o [fJiciency: Given any solution # € X and s € S(7), the cost of s(7) can he
casily evaluated by incrementally updating the cost of . This will allow us to

avoid evaluating the cost function during cach iteration.

e lujectivencss: For any # € X and any two different moves s, 8" € S(7), »(7) #
o!(w). This will make sure that cach neighbor of the current solution will be

chiecked only once for the current neighborhood seaich.

Let m € X be the current solution. Given a vertex u € V', we use y(w.w. 1) to
denote a vertex v € V osuch that a(v) is the ith (1 < i < d) dimensional neighbor
of m(u) in the d-cube, The following are two popular move-set designs for hypercube

cmbedding:

Cube-neighbor move-set : S\(x) = {{v.v}u,v € Vi é(w(u), 7 (v)) = L};

All-swap move-set : Sy(w) = {{u,v}{u,v € Viu # v;}.

For a move s = {u, v}, s(r) is obtained by exchanging the values of = (u) and w(v).
We let V(7)) = {s(n)|s € S} and Ay(w) = {s(r)|s € S3}. We call Ny(r) the cube-
neighbor neighborhood, and Ay(r) the all-swap neighborhood. For all-swap neighbor-
hood. the neighborhood size [Ay(7)| = [Sa(w)] = n(n = 1)/2. For cube-n.-ghbor
neighborhood, however, the neighborhood size is reduced to |JAy(7)] = |Si(7)] =
(nlogn)/2 by allowing swaps only between vertices in G that are mapped to adjacent

hypercube vertices.,

17

For both objective functions D(#) and D(7). both Sy and S, enjoy the reachalndity
and the injectiveness propertics. For objective tunction D(x). the elliciency is acqguited
for both of the two move-sets by incrementally updating the current solution cost D)
to get its neighbor's solution cost. To be more specific, for anv 7 ¢ \ and s ¢ 5, we
define a gain gain(m,s) such that D(s(r)) = D(=) + garn(z.). We will introduee
the gain function for D(x) in the next section. For objective function D(). however.
the property of efficiency is not casily available, We will deseribe the pain fune tion

for D{=) in Chapter 6.

3.2 Gain function and its update

In this section, we only discuss the gain function and its update for objective lunction
D(r). For objective function D(x), the corresponding disenssion will bhe made in

Chapter 6.

A gain function should be defined to measure the ellectiveness of cach potential
move, and this gain function should be casily updated following cach move to mmimize
the computational overhead introduced by recvaluating the gain function. We assnme
that a data structure is used to store the gain value for cach move; and for any move

s. it takes constant time to {ind the gain associated with it

Given any current solution # € X and any move s € S(r), we deline the gain of -
related to 7 as gain(s) = D(r) = D{s(r)). Because a move s (swapping two vertices)
only affects part of the total mapped distance, and our neighhorhoods have special
properties, the gain function can be refined. In the following, for any vertex v ¢ V.

we use F{u) to denote the set of all the neighboring vertices of w in (4.

3.2.1 Gain function for all-swap neighborhood

For any vertices u,v € V, the exchange of ¢ and o will only affect the mapped

distances between vertex u and its neighbors and hetween vertex o and its neighbors.

18

The gainlu.e) can thus be refined as

gain(u,v) = Z &(m (r))-wlu,z) + Z O(m(v)yw(y)) wlv,y) —

1€/ (u) y€3(v)
z‘ &(m o)) - w(u,) Z S(m(u), = (y)) wl(v,y).
1€/3(u) y€3(v)

The time complexity of function gain(w,v) is O(deg(u) + deg(v)) = O(d), where
d = (2m)/nis the average degree of the vertices in Gy and m = |1} is the number of

edpes in G

Given a specific embedding, the values of gain(u, v) for all combinations of v and
¢ can be initialized in time Q2 < d) = O(n? - 27") = 0(2mn) = O(mn). Given any
w0 €V, whenever a swap {u, v} is performed, it is suflicient to update the gains for

(the following pairs:

o {u.r} and {o,0} for all w € V: a reevaluation of the gain for cach of these
swips can be done in time O(d); there are O(n) such pairs, the total time for
the reevalunation for all these pairs is thus Ond) = O(n(2m/n)) = O(m);

e {r,y) forr e p(u)up(e), ally € V —{u,v}: these gains need only be adjusted
according to the new distances between @ and w and between 2 and v, The gain
can be updated by the following formula: gain(r,y) = gain(a,y) + A(r,y) -

w(a,y), where

A, y) = (b(rsu) = 8y u)) = (é(xv) = 8(y,)i ifr e Bu)

(8l v) = 8(y,v)) = (8(a,) = 6(y,), il x € @(e).

The time complexity is O((deg(u) + deg(v))n) = O(((i—{- dyn) = O(m).

The time complexity for updating the gain function for cacli move is thus O(m).

19

3.2.2 Gain function for cube-neighbor neighborhood

Let (e, 1), 1 <7 < d. be the decrease in cost that would result from moving, « to
the ith dimensional neighbor of #(u) (without moving any other vertices). We have
Mu, 1) = Z alr) - wlu,)

re;3{)
where a(e,u,d) equals 1l the ith bit of () in cube is the same as the oth bit of
7(u). =1 otherwise. The garn(u, o) for a move s = {u, e} e = ylrouay, V0 .
is thus
gan(u.e) = (u, 1) +q(e0) =2 x ady(u, v),
where adj(u,v) is il w and e are adjacent in G, 0 otherwise, ‘T'he time complesity

of function gain(u,v)is thus O(de g(u) + deg(e)) = O(d).

Given a specific embedding, the values of gain (. o) for all combinations ol w and ¢
can be initialized in time O(n-log n-d) = O(u-log n-22) = O2mlog n) - O(mlog n)

Given any v € Vand I <0< d, let v = p(m,u.i). Assume that move = {u. e} has

just been performed.

o Lor cach dimension j, | < j < d, let = y(s(x),u,y) and y - y(s(7).000).
the values of gam(u,) and gain(e, y) ave reevaluated. The corresponding tine

complexity is thus O(d log n);

o Lorall @ € F(u)U #(v), let y = y(s(7),w,0). Since the swap of vertices u and
v oonly affects the value of gain related to the ith dimensional enbe neighbo
ol w(x), only gaimn{a,y) needs to be reevaluated. The corresponding tine com

plexity is thus O(d?).

The total time complexity of gain update for cach move is thus Q(d{d { log 1)),

We implemented each heuristic in this thesis for both all-swap and cube neighbo
neighborhoods. For cach heuristic, the all-swap version always has inferior peifor
mance to the cube-neighbor version since the former can only afford very limited

number of iterations due to its large neighborhood size. This confirms a similar caim

20

made by Chen in [10]. Therefore. this thesis will focus on the performance compar-

isons of hentisties based on the cube-neighbor neighborhood design.

3.3 Bucket-list priority queue data structure

For most henristics, we need a priority queue to support our implementations. The

peneral setting for this quene is as follows. There is a finite set Y of items, an integer

giar > 0, and an integer function g : ¥V — {—gmax,- -, gmaxr}. The priority quene
shonld support the following operations:

Inscrt(Q,y,g) insert item y with gain g into ()

Mar(Q

Move(Q.y. 9

)
Delete(Q,y) remove item y from the quene @
) return y, the item with the largest gain in @
) revise item y's position in the queue @ in accordance
with 1ts new gain ¢
Fiduceia and Mattheyses intraduced a bucket-list data structure to implement this
priority quene in their Kernighan-Lin heuristic for graph partition [15). This data
structure was also employed by Chen in his implementation of hypercube embedding,
{10). T'he implementation is based on an array bucket[—gmar,gmax], whose kth
entry is a pointer to a doubly-linked list, called a bucket, of cells ecach containing an
item with gain currently equal to k. Each cell has a field to keep its current bucket
number. A separate array of pointers, indexed by moves, allow us to have direct access
to cach item in the buckets. An integer typed variable best.gain always points to the
first (from top) non-empty bucket. Figure 3.1 shows the bucket-list implementation
of the priority queue used in our heuristics.
The following lemma is a restatement of the time bound found in {15]. presented

in more general terms.

Lemma 1 Let Qg be the number of tinies that the priority-queuc operations Inscri(),
Delete(), and Move() are called. Qyy the number of calls to Max(), M the maximum

eain of any item, and N,y the maximun amount by which the gain of any item may

21

Highest
possible pain

1]

best_gatn ——»

p Jeens [4 T} Jenn [47 =

HNEE

Lowest
pussible gain L

Figure 3,10 “Bucket-list™ priority quene

increase hetween two successive Mar() operations. Then, assuming all inscrtions oo
cur at the beginning, the priority quene can be implemented so that the total e

for all operations is O(Q; + QyA e+). O

Proof: The operation Mouve() is simply a matter of moving a cell from one douhly
linked list to another and can be done in constant time. Inserf() and Delclof) can
also be done in constant time. The auxiliary variable best_gain is used to facilitate
Max(). Variable best _gain is updated whenever the gain of an item bhecomes Tavgos
than the current value of best _gain as the result of Tnsert or Movc(). Afteva ldeletc().
he st_gain may have to be decreased (if the bucket containing the itenn of highest gain
was emptied) by scanning for the next non-empty bucket. However, the scan Tor the
next non-empty bucket can be deferred nntil the next Mae() operation. I the time

spent on scanning is ignored, Maa() can be done in constant time.

The total time spent scanning for the next non-empty bucket during Marf) is

proportional to the number of buckets, plus the sum over all Mar() operations of

22

the inerease in best_gain since the previous Mar(). Except the increases due to the
initial insertions, which account for a total of at most Af, best_gain cannot increase
i value unless the gain of an individual item increases by at least the same amount.

Thus the time spent on scanning is O(QarAner + M). O

In the implementation of our heuristics with bucket-list data structure, we keep all
possible swaps formed (u,v) in the bucket-list together with their associated gains.

et dyy, be the maximal vertex degree in G, 0 < djoe < (0= 1).

o l'or move-set Sy(7), whenever two vertices u and v are swapped. the mapped
distance between w and one of its neighbors in (7 can chane by at most log n — 1:
similarly, the mapped distance between v and one of its neighbors in G can
change by at most logn — 1. Thercfore the maximum gain (M) of any single

swap is in the range £2d,,..(logn = 1) = O(dpar log n).

-

o l'or move-set, S)(7), whenever vertex u € V is swapped with vertex v =
fmyuyi), 1 <0 < d, the mapped distance between w(u) (or =(v)) and oune
of its neighbors in & can change by at most 1 because (1) and #(v) are cube
neighbors. Therefore the maximum gain (Af) of any single swap is in the range

:El(l,,m r = O(dmn.r)~

3.4 Benchmark graphs

Three classes of task graphs are generated and used to compare the solution quality of
various heuristics. They are random graphs, geometric graphs, and perturbed regular
graphs (cubes and meshes). The former two classes of graphs are mainly characterized

by two parameters: n, the vertex number; and d, the expected degree for each vertex.

Generation of random graphs:

Given positive integers n and d, define p = df(n~1). Value p specifies the probability

that any given pair of vertices constitutes an edge. The edge weight is generated

23

randomly in some specific integer ranges,

Generation of geometric graphs:

Given positive integers n and d. detine k= y/d/(n7). The coordinates of i vertices
are first generated randomly on a unit square plane. Two vertices share a connecting,
edge if and only if the Euclidean distance hetween thenn is £ o less The weight
for any edge is the ceiling integer of the product of @ seale factor & and the ratio

of the distance between the vertices incident to the edge over £ Figure 3.2 shows a

Figure 3.2: Geometric graph GH12

geometric graph G512 generated with » = 512 and d = Y.

Generation of perturbed regular graphs:

Given positive integers n and k, where 1 = 29, we can generate a perturbed cube b
;]

first generating a d-cube, then randomly delete (add) £ edges from (to) this d-cube.

2

name) (l;u/o (ll]lill ([n)nx l':

R128.3 . : 3.036 1941.3
RI28.7 : 6.952 : 4141.9
R128.10 9.978 638.6
512 Sl { 9.188 2352.0

RI28W._3 1 128 3 {1-3] 10 3.036 194.3
RI2SW.T | 128 7 [1-5¢ 10 6.952 4414.9
RI2ZSW_10(12 1-51 10 9.978 633.6
R512W 512 9 |1-5{ 1 9.188 18 12352.0

p—
AV

Table 3.1: Characteristics of the random benchmark graphs

Given positive integers ny, g, and k, where ny -ny = 24, we can generate a perturbed
2-dimensional mesh by first generating an ny X ny mesh, and then randomly delete
fadd) & edges from (to) this mesh. Since the optimal embeddings of this class of
graphs into hypercubes of the same size are casicr to be obtained, we can use them

to get more objective evaluations {or our heuristics.

name n d |S # dave | dipinl dmax | ||
1283 28 3 i 10 2778 0 9 177.8
1287 28 7 l 10 6.166 0 14 394.6
G128_10 28 110 | 1 10 8.605 { 0O 17 | 550.7
GhHl 512 9 1 l 8.133 0 16 {2032.0
G128W23 128 3 H 10 2,778 0 9 177.8
GI28W.oT 128 7 5! 10 6.166 0 14 394.6
GI28W_10) 128 |10 5 10 3.605 0 17 550.7
GH12W 512 9 5 1 3.133 0 16 12082.0

Table 3.2: Characteristics of the geometric benchmark graphs

All of our sets of benchmark graphs are specified in Tables 3.1, 3.2, and 3.3, The
first letter of a graph-set name designates the graph class: R for random graph, G

for geometrie graph, C' for cube, and M for mesh.

e lor cach set of the random and geometric graphs, we specify its vertex number

n. expected degree d, range for w (for random graphs), and scale-factor S (for

25

name n # dave 1dpin ldiman | 1]
C7 128 ! 7 T 7 N
'7-P3 123 10 7.017 T S Ihl
C7.M3 123 10 6953 | 6 T 15
7.P7 128 10| 7109 | 7 8 155
CT_M7 128 10 6.891 O 7 H
MS_16 1238 1 3.625 2 1 242
MS_16.P3 | 128 10 | 3.672 | 2 5 235
ME_IG-M3| 128 10| 3578 [2 ! 224
MS_16-P7 | 128 10} 3931 ¢ 2) 234
MS_IG_MT| 128 10 | 3516 | 2 l 225

Table 3.3: Characteristics of the perturbed regular benehimarh graph-

geometrie graphs). We also list their average degree diyge, minimm desyec
dipine maximum degree dipayg. average edge number [£], and number of praphs
#. The last {our entries are averages over all the graphs in the set. We
general choose small d as most interesting applications involve graphs with
low average degree, and beeause sueh graphs are better for distinguishing the

performance of different heuristics than denser ones [31].

FFor cach set of the perturbed regular graphs, we speeify its vertex mumber o
Ior cach name for perturbed cubes, “C” is followed by a nuinber o specifying the
dimension of the graphs. For cach name for perturbed meshes, “M™ is followed
by two numbers ny_ny specifying a 2-dimeusional ny » ny mesh. At the end
of cach graph-set name, "Pr” stands for graphs with £ edges randomly added;
and “MA” stands for graphs with & edges randomnly deleted. We use an 8- 16
mesh to generate onr perturbed meshes. We also list their average degree d,,, .

minimum degree dy,i,, maximum degree dpay, average edge number [F] and

number of graphs #.

Although neither of these three classes is likely to arise in a typical application, they

provide the basis for repeatable experiments, and, it is hoped, constitute a bioad

enough spectrum to yield insights into the general performance of the hearisties,

26

3.5 Test bed

Al of our experiments are carried out on a Sun-Spare 14 workstation under SunQ3
Release 4.01. Since the heuristics are randomized, one run on one graph may not
be conclusive, Ideally, the most accurate results are obtained with a huge number
of graphs and a lmge number of iterations per graph. However, we cannot alford
cxcessive computation time for cach experiment, since many experiments aie to be
condueted. In this research, most running times and solution costs reported are based
on running 10 times for cach of the 10 problem instances generated randomly for a
specilie sot ol parameters. This choice is a compromise between the reliability of the

data we obtained and the time we can afford.

I our experiments, all hearistics are run on the same set of benchmark graphs.
Thus the average solution cost of cach heuristic reflects its relative solution ynality.
Also, all the erative improvement heuristics are given the same set of initial solutions
for cach graph, so they begin at the same starting point. In case that greedy heuristics
are used as front ends of local scarch variants, the solutions of the former are fed

directly to the latter.

3.6 Summary

In this Chapter. we described some problem-specific design issues which are foun-
dations for all of our heuristics and implementations for hypercube embedding. We
described the eriteria for neighborhood design. We introduced the gain function and
it~ update fur objective function D(r). A bucket-list data structure employed in both
Chen's and our implementations of embedding heuristics, the benchmark graphs used

in our experiments, and the test environment were also presented.

Chapter 4

Established Hypercube Embedding
Approaches

Based on our literature survey, we found that the major approaches applied fo hy
perctbe embedding problems are greedy, local search, Kernighan-Lin, and siinulated
annealing. Chen studied the most hypercube embedding approaches and made exten
sive comparisons for minimizing D(m) (without edge weights) {10]. To conduct pe
formance comparisons between Chen's heuristies and our new proposed tabn seaich
heuristics, we summarize in this chapter the most competitive approaches in the 1it
crature in the contexts ol their adaptations to the hypercube embedding problem
reported in [10]. We also improve Chen's simulated anncaling, heuristic and mahe the

relevant performance comparisons.

4.1 Greedy approach

Greedy approach is a kind of constructive technique. It is very efficient to b tised
to generate better than random solutions. The generic form of a greedy heuristic
for hypercube embedding is given in Figure 4.1. The hearistic gradually deciease.
the number of unmapped vertices until every vertex has been mapped. Durig cach
iteration, v, a vertex in V having most neighbors already mapped, is chosen greedily

as the next vertex to be mapped. Given v, the heuristic then greedily chooses Iy the

28

While not all vertices in V' have been mapped to I do:
Choose any vertex v € V which has most neighbors al-
ready mapped to 1.

Choose any h € V), such that the total distance bhetween v |-
and its mapped neighbors is minimized if v is mapped
to h.

Map v to h.

Report the embedding and its cost.

Figure -L.1: Greedy approach for hypercube embedding

hy percube vertex to which ¢ is mapped, such that the total distance hetween ¢ and

its mapped neighbors is minimized if v is mapped to h.

Chen implemented three greedy heuristics for hypercube embedding based on the
different methods of choosing h and v in the generic greedy heuristic shown in IMig-
ure L1 The simple greedy (SG) chooses vertex h in a predetermined sequence
the binary represented gray-code sequence. The fasi gre (I'G) chooses vertex h
according to the principle that the maximal number of edges in ¢ incident to v should
be mapped preserving neighborship. The third one was proposed by Chen (referred
toas G). It s slightly different from the variants of the generic greedy heuristic (SCG
and I'G). Basically, the constraint of v being chosen before h is eliminated; the (v.h)
pair is chosen from all possible candidates in V' x /I to minimize the summation of
mapped distances between v and all its neighbors in . Chen’s G is more powerlul

than SG and I'G for random graphs but less efficient.

The time complexities of SG, FG, and G are O(m + n), O(mlogn). and O(mn)

respectively, where m is the number of edges in graph G, i.e., m = |E] [10].

Our expetiments confirmed Chen’s claim: SG is the fastest heuristic, but also
gives worst solution quality for random and geometric graphs. However SG can cinbed
meshes and cubes optinsally. G generates better solution than SG and FG for randomn

and geometric graphs, but is less efficient. While the solution quality and running

1. Get a random ntial solution .
2, Let Jo = 0.
3. Repeat

30 Lt ag=m, T =0, 0=1.
3.2 While S(#,_,V = T) # §§ do:
3.2.1 Pind amove s, in S(7,-. V" =) such that
A =D(#_1) = D(s,(F.. 1)) is maximized.
3.2.2 Let & = s,47,2).
323 Let go=g + N T =T UV (s)0 =041
3.3 Let g = max{gy, gae- oo tim1)
3.4 Let # = frA..
Until ¢, <0.
4. Return 7.

Fignre 1.2 Kernighan-Lin approach

time of FQG are between those for SG and G, it can embed optimalty lor eshes,
cubes, and meshes and cubes with some edges deleted, Due to their efliciency and
ability to embed regular graphs, FG and SG are good front end henristics for other

iterative heuristics.

4.2 Kernighan-Lin approach

The Kernighan-Lin approach differs from the local seavelr at two kev aspects (1)
is mote aggressive during cach iteration by always using the move among the cnrrent
candidates that can maximize the gaing (2) It gives cach vertex a chance to move and
the “aphill” moves will be accepted as long as the compound gain of the sequence of

moves including these “uphill” ones is positive.

Let V(s) be the subset of vertices in V' oinvolved in the move s. We can preseit
the Kernighan-Lin approach in Figure 4.2, Given a random initial solution (7).
the heuristic exccutes a main loop (step 3) which will not stop nntil no positive
compound gain can be found. During cach iteration of this main loop. an inner loop

(step 3.2) is used to move cach vertex exactly once, and 1" is used to maintain the

30

vertices already involved in some previons moves in this main iteration. The 2th

eration of the inner loop makes one move (s,), updates the current solution (7,),
and calenlates the compound gain up to that stage (§,). The chosen move (s,) must
maximize the gain (A) and involve no vertices already moved in the current main
iteration (s, € S(#,-1,V — 7). After this inner loop the solution corresponding to
the maximum compound gain () is used as the initial solution for the next iteration

ol the main loop.

As an implementation detail, Chen made the following adaptations for Kernighan-

Lin heuristic in [10].

I. Move-set. S)(7) is used to deline the neighborhood of solution .

2. The termination condition of the main loop (step 3) is relaxed to allow p con-
secutive uphill moves, where p > 0 is an integer typed paramneter. The step 3.4
is changed to “if ¢, > 0, then n# = 7y otherwise, 7 = &, where 0 < r < 7 is a

random integer.

3. Bach vertex can be swapped more than once. In the inner loop (step 3.2),
suppose a move formed (u,v), u,v € V and v = g(7,u,i),1 < i < d, gives
the maximal A, then both vertices v and » are allowed to be swapped again
with other vertices in later iterations if they only occur as the cube neighbors

ol other vertices formed (%, u) or (x,v).

We call the Kernighan-Lin heuristic with all-swap miove-set KL, the Kernighan-Lin
heuristic with cabe-neighbor move-set KLC. For every inner loop iteration, there are
O(log 1) Delete() operations and O(d logn) Move() operations. For every outer loop
iteration, there are Q(n) ianer loop iterations, hence we have Qpa = O(n) Max()
operations. Henee Q) = O(n{log n +dlogn)) = O(m log n). We have known that the
maximum amount by which the gain of any swap may increase is Ay = O(dax)s
and the maximum gain of any swap is M = 2A,.r = Oldnar) (see page 23 in

Section 3.3). According to Lemma 1, the time complexity for one outer loop iteration

31

of KLC is O(mlog n+nd,,ur +doar) = O(m log n+nd,,,). 'The total time compleity

of KLC is thus O(I(mlog n 4+ nd .,)) where Lis the total outer loop iteration number,

The experiment al results showed: (1) Without uphill moves, although signiticantly
slower, KL does give results much better than those for KLC without uphill moves,
(2) With increasing p, however, KLC does so well that it outperforms KL, Chen
claimed that KLC outperforms simulated annealing (especially for vandom graphs)

[10).

4.3 Simulated annealing approach

Simulated Annealing (SA), developed by Kirkpatrick et al. [36]. can be viewed as
aun enhanced version of the local search. Tt attempts to avoid being trapped i poos
local optitma by allowing occasional uphill moves. This is done under the influence of
a random number generator and a control parameter T called the temperature. s
typically implemented [31], the SA approach involves a pair of nested loops and thiee
parameters: the initial temperature Ty; the cooling ratio 17, 0 < 1, < 1, and the
integer typed femperalure length i (see the generie simulated annealing hieuresticn
Figure 1.3). At the end of step 3, the term frozon refers to a state in which no furthen
improvetent on cost(x) seems likely.

The heart of this procedure is the loop at Step 3.1, Note that « /T will be o
number in the interval (0,1) when 7' > 0 and A > 0, and rightfully can be interpreted
as a probability that depends on A and 7. The probability that an uphill imove will
be accepted diminishes as the temperature declines, and, for a fixed temperatnre 17,
small uphill moves have higher probabilities of acceptance than farger ones. This
particular method of operation is motivated by a physical analogy, best described m
terms of the physics of crystal growth [36]. It has been proven that the hemistic will

converge to a global optimum if the temperature is lowered in exponential time and

the initial temperature is chosen sulliciently high {27].

We use (SAC to denote Chen’s simulated annealing hearistic. Chen made the

I. Generate an initial embedding 7.
2. Let T'=Tgy, an initial temperature.
3. Repeat
3.1 For L ilerations do
3.1.1 Choose a random move s € S(7).
3.2 Let A = D(s(r)) - D(x).
3.1.3 If A <0 then
7 = s(7).
else
r = s(r) with probability ¢=2/7.
3.2 T =T, xT (reduce temperature).
Until frozen condition is met.
4. Return the best 7 visited.

Figure 1.3: Simulated anncaling approach

following adaptations for hypercube embedding;:

1. Move-set S)(r) is used to define the neighborhood of solution =.
2. Let L = |8y SIZE_FACTOR, where SIZE_FACTOR is a parameter.

3. Frozen condition: The acceptance rate of the proposed moves is measured for
cach temperature. The heunistie stops when for five temperatures the accep-
tance rate is lower than NINPERCENT and the best visited solution is not
improved in that period of time. Here MIN_PERCENT is another parameter
in the range (0,1).

Several parameters that affect running time and solution quality must be adjusted
lor CSAC implementation. Since all these parameters are not independent. for cach
of our henchmark graphs, we tune parameters one at a time, and repeat the process

until no perturbation of the parameters can improve the performance.

33

Generate an initial embedding 7.
Let T = To, an nitial temperature,
Repeat
3.1 While |chaireaccepl_ratio — cpoch_accept ratio] > « do
3.1.1 For ¢ iterations do
Choose a random move s € S (7).
Let A = D(s(w)) — D(r).
If A <0 then
T = s(r).
else

2t -

7 = s(x) with probability ¢~/

3.1.2 Calculate cpoch.aceeptratio and chain_acecploratio.
3.2 T =T, x T (reduce temperature).
Until the best 7 is not improved for A consecutive 1's.
1. Return the best 7 visited.

Figure 4.-1: New simulated annealing for hypercube emmbedding

4.4 An adaptive version of simulated anncaling

In CSAC, the length of cach Markov chair (iterations under the same femperatine)
is a coustant. It means that the same effo: o is made for cach temperature no matter
what acceptance ratiois. Experiments show that this implementationis very sensitive
to parameter tuning and inefficient if we use conservative size factors. Therefore we

improve CSAC heuristic by introducing adaptive Markov chain lengths.

4.4.1 New SA Heuristic

Our new anncaling heuristic with cube-neighbor neighborhood (SAC), outhned i
Figure 1.4, is a refinement of the scheme used in [19]. We use the statistics o ac
coptance ratio for cach Markov chain to determine if the relative equilibiinm has
been reached, If this is the case, the chain can be terminated. In this way. instead

of blindly wasting time in continuing a stabilized chain, we can spend more time to

34

ifensify the solution search in more promising chains.

Five parameters are involved in our SAC: the initial temperature Ty, the cooling
ratio T, the integer typed epoch length ¢, the float typed folerance ¢, and the integer
typed termination parameter A, To be more specific, we define an cpoch to be «
consecutive iterations. After the exccution of an epoch, the acceptance ratio during
this epoch is compared with the total acceptance ratio since the beginning of this
temperature, If the difference between these two acceptance ratios is larger than a
given tolerance ¢, another epoch is given at the same temperature. Otherwise, the
chain is assumed to be in equilibrium at that temperature, and the temperature is
reduced by a cooling ratio T,. This process is repeated until the best solution is
not. improved for A consecutive temperatures. In case that the value of tolerance ¢
is too small to terminate the iterations at one temperature, a counter will be used
to terminate the loop when the pre-defined maximal chain length (100 - |.Sy(7)]) is
reached. The comparison of the two acceptance ratios is started after the first two

epochs to avoid terminating the chain right after the execution of the first epoch.

4.4.2 Parameter tuning for SAC

The performance of any SA heuristic depends hiecavily on the parameter settings. In
attempting to optimize the performance of our SAC heuristic, we faced the same
kinds of questions that any potential designer of SA heuristics must address. Since
there are too many related parameters for us to investigate, we study one or two of
them at a time in hope of isolating their effects. This process is repeated for all the
parameters until their values stabilize. In the following we show the final round of
parameter tuning to get our standard parameter settings for random graph R312\V:

lo=0,1T, =097, ¢ = 1000, =0.001, and A = 8.
Initial temperature 7},

Let us first concentrate on the effect of initial terrperature 7. and do so by taking a

more detailed look at the operation of the heuristic. In Figure 4.5, curve (a) presents a

35

time exposure of an annealing run on random graph RH12W. The standard parameters
were used with the exception that the initial temperature Ty was increased from D
to 50 so that the initial acceptance ratio a is increased from 209 to Y0Y. Duting,
the run, the solution cost was sampled every 1000 iterations, and these values were

plotted as a function of time at which they were encountered.

We can observe from curve (a) that slow progress is made at the beginuing, of the
schedule. For the first 100 or so samples (100,000 iterations, or 1 seconds) the costs
can barely be distinguished from those of totally random partitions (the costs for
1,000 randomly generated partitions for this graph range from 1400 1o 1625 with o
mean of 4.507). But there still remains the gquestion of whether the time spent at

high temperatures might somehow be necessary, but not. be scen yet. Curves (b)) {¢)

TV'I!YI[‘!WT]!I'I[IllllTllV'lTllI'llllllll'rIY"
i 1
4.5 (a) T, =50 (a=90%)"
T (b) T, = 6 (a=27%)
R (¢) Ty =5 (a=20%)]
| s, (d) T, = 4 (a=12%)
40 | i :
E‘-' i ¥
[7p] | B 4
(@] -
O 3.5 + ’\L“\l -
¥ ,.';-\\.((‘ Ty (a)
L ".";ﬁ_:*‘iﬁ" 5 w
3.0 + SURN “ .
(@ "' ‘
L Ald) ={e)* (b) ™o)
- Mo “ﬂ"\._ .'\.._\]
i % \\
2.5 Ll [T SRR STErN G U UTS GIVPUT IS STU U SN SN UTOrOr Ul W O i S W e

0 20 40 60 80 100 120 140 160 180
TIME (SECOND)

Figure 4.5: The effect of different initial temperatures

and (d) in Figure 4.5 address this issue by presenting time exposures of three shortes

. . o e, . v Y . ry -
anucaling runs with initial acceptance ratio 27%, 20%, and 12% (using Ty ~ 6, 5. and

36

1) respectively, Experiments show that a Ty greater than 5 does not help in solution

quality hut increases the ranning time. When Ty < 5, the performance is worse than

that when Ty = 5. With Ty = 5, we got the better solution in shorter time than those

with other initial temperatures. Therefore we choose Ty = 5.

Epoch length ¢ and Tolerance ¢

Parameters ¢ and ¢ determine the length of each Markov chain. Let ¢ and ¢ take
on variots combinations of values from {50, 100, 200, 500, 800, 1000, 2000} and {0.1.
(1.01, 0.005, 0.002, 0.001, 0.0008} respectively. We keep all the other parameters at
their standard settings. From Table 4.1 we can sce that when e < 500 and ¢ < 0.005
the solution costs are improved but the speed of improvement is much slower than
that with ¢ > 500. In general, the better solution quality can be obtained by either
inercasing epoch length e or decreasing tolerance e. When doing so, the running time
is increased oo, As a compromise between solution quality and running time, we use

¢ = 1000 and « = 0.001.
Cooling ratio 7, and termination parameter \

Parameters T, and A together control how many times the temperature is reduced
in the cooling process. Table 4.2 illustrates the effects of these parameters for random
graph RH12W. We fix all parameters except the two in question at their standard
settings, \We let 7% and X take on various combinations of values from {0.8, 0.85, 0.9.
0.95, 0.96, 0.97, 0.98} and {1, 3, 5, 8, 10}, respectively. We sce from Table 1.2 that
the solution quality is getting better (and the running time is also getting longer) as
1, s getting larger. Also we can see that the solution costs are almost not changed
when \is larger than 8. Therefore we choose the combination of 7). = 0.97 and A =

S which gives the best compromise between solution quality and running time.

1.4.3 Performance comparisons between SAC and CSAC

We designed experiments to demonstrate the performance of our SAC heuristic rela-

tive to Chen's CSAC heuristic. For CSAC. we used the same method to tune param-

37

Table 1.1:

0.1 0.01 | 0.005 | 0.002 | 0.001 | 0.0008
501 3.50 | 433 [1851 {201.20 [120.60 [310.70

100] 4.37 | 90 | 6.48 [109.00 [166.50 [192.30
200 5.91 | 810 | 971 | LL79 [111.10 [107.00
500 7.15 | 1L12 | 1796 | 25.00 | 3421 | 3875
800 898 | 1948 | 2038 | 2950 | 4428 | 52,11
1000} 9.81 | 2237 | 2747 | 37.13 | 52.63 | 58.62
2000] 15.25 | 36.12 | 16.07 | 60.62 | 83.31 | 88.28
3000] 20.55 | 48.65 | 60.30 | S1.45 [109.50 |119.00

(a) Running Time
c (4

0.0 | 001 | 0.005 | 0.002 | 0.001 [0.0008

501 2.913 | 2880 | 2.792 | 2611 | 2562 | 2530

too] 2.878 | 2.836 | 2791 | 2.663 | 2.579 | 2.575

200] 2.810 | 2761 | 2737 | 2.681 { 2617 | 2605
500] 2.806 | 2.687 | 2.661 | 2.635 | 2.607 | 2.602
s00| 2772 | 2.650 | 2.637 | 2.600 | 2.586 | 2.580
1000 2.763 | 2.645 | 2.628 | 2.607 | 2.581 | 2571
20000 2.699 | 2.605 | 2.399 | 2.573 | 2355 | 2.550
3000 2.673 | 2.581 | 2.576 | 2.561 | L5101 | 2047

Dependence of running time and average cost on ¢ and for RGE2W

(b) Average cost

38

1,
4 0.8 0.85 0.9 0.95 0.96 0.97 0.98
| 25.23 | 27.38 | 2295 | 22.82 | 22.01 | 20.80 | 18.36
312734 | 30.33 | 3241 | 4047 | 46.66 | 48.99 | 44.27
5 28.71 | 30.62 | 33.71 | 42,79 | 49.22 | 58.08 | 64.40
81 20.53 | 31.03 | 33.77 | 44.28 | 52.41 | 61.76 | 72.49
10 29.74 | 31.57 | 34.48 | 45.28 | 53.10 | 62.05 | 73.34
(a) Running Time

A T
0.8 0.85 0.9 0.95 0.96 0.97 0.98
Il 2.648 | 2.636 | 2.720 | 2.747 | 2.774 | 2.799 | 2.827
31 2.646 | 2.633 | 2.621 | 2.588 | 2.584 | 2.594 | 2.637
A 2,646 | 2.633 | 2.620 | 2.586 | 2.582 | 2.569 | 2.555
81 2.646 | 2.633 | 2.620 | 2.586 | 2.581 | 2.568 | 2.550
[0 2.646 | 2.633 | 2.620 | 2.586 | 2.581 | 2.568 | 2.54Y

(b) Average Cost

Table 1.2: Dependence of running time and average cost on 7T, and A for R512W

eters, and found the best parameter settings for cach graph. The results are reported
in Table 1.3 for random graphs and Table 4.4 for geometric graphs. We also report
the total mapped distance 7(r) and maximal mapped distance D(r) in the tables

for reference.

The results show that SAC ontperforms CSAC in both solution quality and running
time. For all of our random graphs, for example, SAC spends on the average 75% of

time which CSAC takes while improves on the average cost of CSAC by 3%.

39

Graph T(m) D(r) D(r) Pime '
CSAC | SAC [CSAC|SAC[CSACSACTUSACSAC

R128.3 3450 2801 L1776 [L4391 L8 | LO | 1222 11008
RI28.7 935.01 926.2) 2.101 j2.081] 5.6 | 5.6 | 1222 8.61
RI128.10 1464.5 1160.2] 2.293 [2.2861 6.0 ¢ 6.1 | IS. 13 116.08
R512 6383.0] 6375.01 2.711 [2.710) 8.0 | 8.0 | 4855 | 15.01
R128W_3 82041 TOT.H 10 [13720 135 12) TEST | 792
RI28W_7 | 2557.1] 2551.0] 1.925 [1.921] 19.8 [19.1] 1822 [17.65
RI2SW_10| 4193.2(4176.8| 2.195 12.187] 23.0 [23.0 | [8.20 {1212
R512W 18580.0118567.0) 2.613 2.611| 30.0 |30.0] 5112 120.00
Table 1.3: Comparisons between two SA heuristics for random graphs

Graph Tir) D(x) D) "‘.“”.(_'-_

CSAC | SAC [CSAC|SAC |CSACISACCSAC) SAC
G128.3 276.21 247.9} 1.556 {1.3961 3.8 | 3.0 | 11.82 10.61
G128.7 676.6] 675.2| L7TIS |L.7TI5] 4.0 | 3.8 | 1L7N {1013
G128.10 10344 1026.0} 1.878 | 1.8G3} 4.4 do8 P AT 12Ty
Ghi2 1087.0] 1016.0] 1.715 11.929) 6.0 0.0 | 15.05 Il 3 i
G128W_3 S13.4 T96.81 1.362 | 1330} 12,0 120 1hs2 | 7. (;()
GI128W_7 | 3516.3| 3329.8! [.815 [1.T19] 26.8 253 | 1291 | 7.92
GI28W_10] 615411 6GO88.8} 1.977 | 1956} 32.8 132.6) 16.91 | 7.18
GH12W 12315.0]12251.0] 1.976 | 1.966| 20.0 {20.0 | 72.57 [67.9)5

Table 1.4: Comparisons between two SA heuristics for geometrie graphs

4.5 Summary

40

hoth solution quality and running time. In the following chapters, we will use

This Chapter summarized the main ideas of previously established optimization ap
proaches including greedy, Kernighan-Lin, and simulated annealing, as well as Chen™
adaptations of themn for hypercube embedding. We introduced our new adaptive sim
ulated annealing heuristic SAC and made the performance comparisons with Chen's

anncaling heuristic CSAC. The experiments show that SAC outperforms CSAC i

A

to represent simulated anncaling heuristic in performance comparisons.

Chapter 5

Tabu Search Heuristic with Objective
Function D(r)

h this chapter, our tabu search heuristic TSC with objective function D(r) is de-
scribed. Intensive and extensive performance comparisons are made for the most
competitive heuristic FG+RKLC claimed by Chen, our new proposed TSC, and our
improved simulated annealing heuristic SAC. Experiments show that T'SC outper-
forms SAC, and both of them outperform Chen’s FGHKLC with a big margin in

both solution quality and running time.

5.1 Tabu search heuristic and its characteristics

In this section we describe our tabu scarch heuristic and its characteristics. Figure 5.1
presents our tabu search heuristic for hypercube embedding with objective function
D(7). Given an (random or greedy generated) initial solution, it repeats the loop at.
step 1 until the best solution 7 visited is not improved for p consecutive iterations.
At cacliteration, our tabu search heuristic always chooses the move s which has the
hest cost improvement over all possible candidates from the move-set S(x) of the

current solution 7 and has not been used in the last ¢ iterations.

I the following we discuss the main design issues that directly affect the perfor-

41

I. Initialize the tabu list 7' = o.

2. Get an initial solution .

3. Initialize all possible gains according to 7.
4. Repeat

4.1 Find a move s € S(z) - T

that maximizes D(7) — D(s(7)).
4.2 Set = s(7) and insert s into T
.3 Update gains.
Until best 7 visited is not improved

—

I3

for p consecutive terations.
. Return the best 7 visited,

St

Figure 5.1: Tabu search heuristic

mance of our tabu search heuristic.

5.1.1 Move-set design

rom Figure 5.1 we can see that there is a trade-off between the number of iterations
and the aggressiveness of cach iteration. With large move-set size, cach iteration is
more aggressive but more time consuming; with small move-set size, however, the

search can afford more iterations but cach iteration is less aggressive.

To reduce the search time for the best neighbor, we employ the bhucket-Jist data
structure to implement a priority queue. We keep all possible moves associated witl
their gains in the bucket-list. The best candidate move can thus be found in constant
time. Whenever a move is done, we update the affected gains, By nsing the buche
list, the major time for cacl iteration is spent on gain update.

We implemented tabu scarch heuristics with both cube-neighbor move set and all
swap move-set, and call them TSC and TS respectively. According to Lemnma 1. we

have the following time complexities for our tabu search henristic,

e Move-set Sy(r): We have known that the time complexity of gain inthalization

is O(mn) and the time complexity of gain update for cach move is O() (see

Subsection 3.2.1). Let I be the total iteration number. The number of calls
to Mar() is Qar = [Q) is dominated by O(lm) Move() operations. M =
O(dd 0 tog 1) {see page 23 in Section 3.3, We have N, = O(daa log 1), The

overall running time of TS is therefore O(mn + {(n + dopay log n)).

o Movesset Sy (7): Shmilarly, the time complexity of gain initialization is O(m log n)
and the time complexity of gain update for each move is ()((i((] + log 1)) (sce
Subsection 3.2.2). The number of calls to Max() is Qy = [; Qy is domi-
nated by OUd(d + log n)) Movc() operations. M = O(dy,,) (see page 23 in
Sceetion 330 We have A, = O(dyer). The overall running time ol T'SC is

therefore O(mlog n + /(]((/,,,,“. +logn)).

As shown in Figure 5.1, in each iteration, our tabu scarch heuristic always chooses
the move s with the best cost improvement over all eligible moves from the move-set
Str). For ‘I's, whenever a move s is applied to the current solution #, updating
alfected gains will take time O(m) (see Subsection 3.2.1). For TSC, lhowever. it will
only need time O(d(d + log n)) to update the affected gains (sce Subsection 3.2.2).
For the same period of time, TSC can perform more iterations than TS, In general
1SC has more chances to get to and jump out of a local optimum than 'S, Figure 5.2
shows the progress of a TS run and a TSC run for the first random graph of R123.7.
We see that the number of iterations lor TS is just 10% of that for TSC: TS spends
CPU time more than 50 times of that for TSCY; and the solution quality of TS is worse

thin that of TS,

5.1.2 The contents of the tabu list

I move s is used to transform the current solution 7 to s(7), the corresponding cell
of the tabu list should store some attributes of s(x) so that s(7) will not be traversed
apain in the next £ jterations. At one extreme, we can store solution # directly in the
tabu list. But in practice, to save memory space and checking time, some attributes

of s(7) will be stored in the tabu list to prevent s or 871 from being used in the next

13

— S —— BE (rrmrrrrerge e rrvrm s rs v s e e sy e e

4 34 }
b |
4 a2
4 30
b b o
i 8
2 8
R 28
4 24
\\\\“—_‘. N 22
y ‘\‘h"w'\\,w\./“wu ~
20 1 ' n N . 2.0 bessannimitiasiassiatisiiissaabasaasasionciaes
o 60 100 150 200 250 0 600 1000 1600 2000 '“)UU
ITERATION ITERATION
(a) Cost vs. iteration for TS (¢} Cost vs. tteration for 'ISC°
e rrrT—— L
E 34
4 a2
E 2.0
-
% 8 8 20
O © |
4 28 !
|
. 4 24 1
22 \ 22
\\""" f\"v-\,'n,'/\m‘, .Ar'm,n. ~
2_0 L)] 1 1 at Az doa 2 btmaalaas scdaace o basasld
0 10 20 30 40 50 60 70 80 00 05 10 18 w0 et
TIME (SECONDS) TIMF (SECONDS)
(b) Cost vs. time for 'I'S () Costovs thme for T8¢

Figure 3.2: The progress of TS and 1€

P iterations.

In our implementation of tabu list. we tried the following two sets of attihite
of (7). (a) Whenever a vertex u is swapped with another vortes oowhere ¢
ylmou) <7< odo owe put pair (1.d) into tabu list. (b)) Whenever o verte oo
is swapped with another vertex o we pnt pait {u.e} into tabo lete We can e
that the pair (u.Z) prohibits vertex « [rom being swapped again with sts th cnle
neighbor in the following [iterations no matter what its ith cube newhbor o hibe

the pair {u. e} only prohibits vertex u from being swapped again with vertes e in e

1

[ollowing 1 iterations. Therefore scheme (a) is more prohibitive than scheme (h). The

cxperiments showed that the petformance of scheme {a) is much poorer than that of

schierne (). Therefore we adopted seheme (b)Y in our final implementation.
|

5.1.3 The design of the adaptive tabu list

One ol the major design issues for the tabu list is to decide its length. In general, the
fonger the tabu list is, the more time tabu status checking takes for cach move, and
the maore restrictive the search process will be. On the othier hand, a too short tabu
fist 1isks to introduce ey cling in the solution space. For most tabu search heuristics in
the literature, the tabi Tists are of fixed length. Ideally, the tabu list length shonld be
changed dynamically during the search process. For different problem instances. the
best tabu list length may not be the same. It is usually hard to determine the hest
tabu fist length for different problem instances. Even for the same problem instance,
the best tabu list length may be different from time to time. For most applications.
the tabu Bist length should be short at the beginning to allow most flexible scarches.

and heinercased whenever the search is trapped in local optima.

I our hearistic, we propose a dynamic tabu list mechanism to capture the dyvnamic
natiie of the search process. Qur motivation is to let the length of the tabu list
change according to the variation of the recent solution quality. According to our
experitients, the solution can always be improved easily until a local optimum is
teached during, the first certain iterations. During this period, we should reduce the
size of tabu list to allow the search to reach a local optimum quickly. To help the
seardh get out ol the local optimum afterwards. the length of the tabu list should be
increased until the solution cost is decreasing again. To prevent the tabu list length
trom being inereased oo mueh thus losing its aggressiveness, or decreased too much
thus introducing, cyeles, we set up a range in which the length of the tabu list can be

llp(l.\lvd.

We tmiplement the tabu list T as a circular list with variable size £, Let ¢ he a

vartable indicating the position in T where the last moveis recorded. When ¢ = £ - 1.

15

the next move will be stored in location 0 to replace its old contents.

Let £y, denote the base length of the tabu lists 7, bhe an integer, cadled span, detinmy,
the range of length variation. 1, < {4; and 1 be the current toby st length, Thiee
adaptive tabu list strategies are tested. In the following strategios, the tabu list fength

will he updated only if the specified condition s met.

Strategy 1 /, = 0 for all the time.

Strategy 2 After cach fiterations, we cheek if the best solution costis improved 1t
it is. the value of 1is decreased by one il £ > 4, — 1.0 otherwise, the value ol
is inereased by one if t < £, +1,. Repeat this procedure until the termination

condition is met.

Strategy 3 If the hest solution cost is itproved in the past Citerations, the valie of
t will be decreased by one if £ > £, — {5 otherwise, the value of £ will heinereased
by one if 1 <t + 1, for cach of the following iterations until an nprovement
on the best solution cost is found. Then after the next £ iterations. we repeat

the above procedure,

Strategy 4 This strategy is proposed by Taillard in [12]. Letspan £, be any integer
For every 2+ ({y + 1,) iterations, a random number r uniformly distributed oves

[0.1.] is used to change the tabu list length to 6,4 1.

For the first strategy. the tabu list keep the same length all the thne. For the

second strategy. the update of the tabu list only occwrs after every £ iterations For

the thivd strategy. if the improvement on the best solution cost can be fonnd fog cach

[iterations. it is the same as the first strategy; otherwise. the tabn Hst lenpgth will be

increased continuously until the improvement on the best sohution co s Tomnd. Wee

weo that the interval of checking whether the tabu st length should be updated i
variable. For the fourth strategy. however, the length of tabu listis randomlyv npdated

after every constant mumber of iterations.

16

80 2.9 - @
70
60

50

(3) 7]

90 3 . - (1)
Wn

'S INEVE ERTM

2.8

COST

2.7

PP FEREE FETY

TABU LIST LENGTH

) 2.8

LAILILINL I LI B B S M B R N IRLINE B B A S A

aabegaa byl

NP SR NN PR TN SUTTY FWewe PR, 5 NI FRUTH W WEE FRTEE U ETE FWEw e

‘OO T‘r*r*r‘rv‘f‘r‘r'rv‘rr'r‘rv—r'r—r‘rr'v'r'r‘r?rm 3,0 '11 v]vvnlv]vnlulvllr—rnlurvvrrvuu1
} |
0

5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
TIME (SECONDS) TIME (SECONDS)

(a) (b)
Iigure 5.3: The effect of tabu list length on solution cost for R512W.

Fignre 5.3 shows an example of the variation of tabu list length and solution costs
during four runs of tabu search heuristic on graph R512W with the four different
taba list implementations. In the figure, (a) shows the variation of the tabu list
length during the search, and (b) shows the solution cost comparisons for TSC with
different adaptive tabu list strategies. Curve (1) is obtained by TSC with static tabu
list: curve (2) is obtained by TSC with strategy 2; curve (3) is obtained by TSC with
strategy 3z and enrve (1) is obtained by TSC with strategy 1. Experiments show that
I'SCwith strategy 3 outperforms the rest strategies. Therefore we adopt strategy 3

i our inal version of TSC,

To further demonstrate the effects of £, and {5 on solution quality. we conduct the
following, experiment. We let p = 2000, and let ¢, and {4 take on values from {10. 20,
30010, 15, 50, 55, 60, 70, 80} and {0, 3, 7, 13, 18, 23, 28, 33. 38} respectively. We
tun our TSC for graph R512W. The results are shown in Table 5.1, From the column
for £, = 0 in Table 5.1, we can see that for £y < 50, the average cost can be improved
by increasing L. For most rows, however, we see that the solution cost can be further
improved by choosing (5 > 0. We can see that the best solution cost in Table 5.1 (a)

s obtained when 4, = 50 and 1, = 7, a combination taking the longest CPU time in

i

—
-

{y -

0 3 7 13 I8) 23 RATE BN I8
10 {2783 {2.771 2.732 ¢ - -
2012.673]2.663(2.633 12.581 (2559 -
30 12.605)2.566) 2.570 12.56112.526|2.533 | 2.533
10 12,558 12,5521 2.556 }2.51912.52912.519 1 2.5 131 2.53912.530
15 [2.555 2557] 2.559 [2.516{2.5 13 12.530 { 2516 [2.5 1212519
50(2.536(2.51112.525|2.537 2547 |2.510 | 25101 252812515
55 12.55212.539) 2.558 12.531 [2.566 | 2.556 | 2.511 | 2.5172.562
GO [2.53212.510) 2.538 12541 2511 25501 2.585 12517 12532
TO12.553 (2.5 2531 [2.5 1712510212550 [2.553
SO [2.51212.5291 2.555 |25 11 2.510

(a) Cost

t s —

0 3 7 13 I8 | 23 25 1 33 | O8N
107 97 1L.86] 1255 - - -
201229912597 33.87 [(17.67{17.01{ -
30 146.76 [5216] 5219 [LLA1160.73 16,88 1 1.55
10 J43.59 41,167 1187 (1259 [1.15 136.68 | 351G | 36,71 13,15
15] ELAT L1079 35,004 138,26 110.06 152,101 37.67) 11.61 112,72
50[43.78] 10.67|51.23 |13.0 1 {37.52 {4 1.0 39.32 11315 1897
55 (39.06 {48.11] 35.61 {1839 2917 [32.39[35.65 47.21 130.80
GO [16.25 [13.52(35.92 [39.40 [39.72 [35.00 4715 {3511 [16.00

36.06

36.55

38.58 133.01

40.00

33.8271

37.12

J-1.87

29.30 131.68

10.62

Table 5.1

(h) Running time

: Dependence of average cost on 1y, and 1,

Table 5.0 (). Here the reader may ask whether we can get similar solution cost for

I, = 0 by increasing the value of p to increase the running time. Table 5.2 shows the

comparisons of rnning time for TSC with adaptive tabu list and TSC with static

tabu list to reach similar solution cost. Experiments show that the iteration number

N {, n iterations| time ’D(ﬂ)
H0 7 2000 21871 51.23 | 2.525
50 0 2500 22168 59.50 | 2.526
43 0 2800 2895: 68.21 | 2.531
5Y) 0 3300 285738 69.17 | 2.528

Table 5.2: Comparisons between static and adaptive tabu lists

for reaching a specific solution cost can be greatly reduced by using the adaptive tabn
list strategy. According to Table 5.2, the iteration number with parameter setting
I, = 50 and ¢, = T is 18% less than the average iteration number with parameter
settings 1, € {H0,43,57} and [, = 0; the running time with the former parameter
selting is 22% less than the average running time with the latter parameter settings:
while the solution gquality of the former is better than that of the latter. Therefore we

decide to use), =50 and {, = T as our standard parameter setting for graph R512\W,

5.1.4 Aspiration level

By experiments we observed that our heuaristic has the tendency of intensifving
scarches in small solution subspaces. To explore the solution space more evenly.
a long tabu list is usually necessary. Since the main role of aspiration level is to
further intensify the solution search in local arca, we conjecture that aspiration func-
tion may not be helpful for our heuristic. We tried a simple and popular aspiration
function the best cost found so far. Whenever a proposed move s is in the tabu list
but the new cost D(s(w)) is smaller than the best cost found so far, the tabu statns
of & will be overridden. Table 5.3 shows the performance comparisons between 15

without aspiration function and TSC with the aspiration function ('TSCA) for our

19

heuristies D(x) time
TSCA 2530 51.19

TSC 2525 5H1.23

Table 5.3: Performance comparisons between TSCand 'SCA

standard graph R312W. Experiments show that 'I'SCA does not perform better than
TSC. For example, in about the same CPU time, the average solution cost ol I'SCA
is worse than that of TSC. It confivmed our conjecture abont the aspiration fundcton
Therefore, for all of our reported experimental results in the following sections, we

did not use the aspiration function,

5.1.5 Application of tabu status array

o general, the tabu list is implemented as a civenlar list. To cheeh il a move s
the tabn lst, we have to go through cach cell in the hst. Henee the checking tine s
proportional to the length of the tabu list. When the tabu st length is Taree, the
time spent for checking tabu status at ecach iteration can be signilicant. To male
our TSC more efficient, an n x n array TABUSTATIE is employed (o accelerate the
checking of tabu status. For any u. e € VO TABUSTATEw, o) his o positive value i
vertices w and ¢ are forbidden from being swapped, aud zero otherwise, The positive
value in TABUSTATE(u, o) specifies the position in the tabu fist where the attiibute

fu.r} is recorded.

In our tabu search heuristic, there are two cases where the TABUSTATE needs
to be updated. Let variable ¢ denote the current position in tabn list where the
Jast move was recorded. Whenever two vertices w and ¢ oare swapped. we peset the
TABUSTATE cell corresponding to the pair at tabu list position ¢ + 1, msert the pan
{u. 0} into tabu list cell ¢ + L. and set TABUSTATE(u,v) to ¢+ L When the length
of tabu list will be reduced by one, the TABUSTATE cell cortesponding to the pan

al tabu list position { — 1 is reset.

50

All of onr experiments use array TABUSTATE. To see if the array TABUSTATL

gives us real help, we repeat the previous experiment on R512W for showing the effects

of adaptive tabu list on solution costs reported in Table 5.2 without incorporating the

array TABUSTATE. The performance of TSC without using array TABUSTATE is

time

7 | 57.14
50 10 61.86 | 2.520
43 10 71.95 | 2.531
57 | 0 T4.74 | 2.528

Table 5. 1: Performance of TSC without using array TABUSTATIS

teported in Table .40 We see that TSC with array TABUSTATE runs on the average
7.7% Taster than that without this array for the same solution costs. It confirmed

that this array is very helpful when the tabu list becomes long,.

5.1.6 Accelerating the neighborhood search

In this subsection we demonstrate the effectiveness of the hucket-list data structure.

FFor the initial version of our TSC, we did not use the bucket-list data structure.
We used an nox log n two dimensional array to store all the possible gains. For cach
iteration, the time complexity of finding the maximum gain is O(nlog n) and the
time complexuty of updating the affected gains is O((i+ logn) (see Subsection 3.2.2).
[hetefore the major time is spent on finding the maximum gain. To reduce the
search time for the maxumum gain, we introduce the bucket-list priority queue to
store the gains. This allows us to find the maximum gain in coustant time. and
spend O(d + logn) CPU time to update the positions of the cells in the bucket-list

corresponding to those affected gains after a move.

Table 5.5 shows the time and solution cost comparisons between TSC with bucket-

st and TSC without bucket-list for our random graph R512. We can see that TSC

ol

TSC T(r) | D(x) | time

with bl [6271.2 | 2.666 | 83.10

without b.l, | 61112) 2.739 | 326.50

b.l. - buchet-list

-

Table 5.5: Comparisons between TSC with and withont hucket list

with bucket-list spends time 7-0.5% less than that for TSC without bucket list while

improving the solution cost by 2.6%.

5.2 Performance comparisons

[n this section, we compare the performances of our T'SC and SACT with that of
FGHRLC which is the most competitive heuristic claimed by Chen in [10]. "The
performance comparisons are divided into three categories. Based on the standard
parameter settings, we show the performances of the heuristics under test with var
jous limits on running time in Subsection 5.2.1. Subsection 5.2.2 reports the vesult
of stability test with 1,000 runs on our standard random graph R5IZW for cachiol
the competing heuristics. Subsection 5.2.3 presents the extensive petlormance com
parisons for graphs with 123 vertices and various structures to show the consistency
in performance of our heuristics for different graph types. Some observations of o

experimental results are discussed in Section H.3.

5.2.1 Comparisons with various time limits

For iterative heuristics, there is a trade-off between solution quality and ranmng
time. For most of them, the solution cost is a nonincereasing funetion ol ranmng
time. The relative performance of different hearistics may change with different tine

limits. One approach for performance comparison is to compare the solntion cost ol

(To T ¢ ¢ A) D(w) | Time

(5 0.90 1000 0.005 8) 2.670 19.52

(5 0.95 1000 0.002 8) 2.609 35.18

(5 0.96 1000 0.001 8) 2.581 52.73
(5 0.97 1000 0.001 8) 2.568 60.96
(5 0.98 1000 0.001 8) 2.550 72.75

(5 0.99 1000 0.001 8) 2.533 93.25

(5 0.99 1000 0.0008 8) 25256 | 111.84
(5.5 0.995 1500 0.0008 15) | 2.495 | 223.39
(5.5 0.995 1500 0.0005 20){ 2.479 | 390.32
(5.5 0.993 1500 0.0001 25)| 2.458 | 756.61
(5.5 0.995 1500 0.0003 30) | 2.441 [1202.10

Table 5.6: Cost vs. time for SAC

diflerent heuristies with the same running time limit. In this subsection, we show the
performance of cach heuristic with various time limits up to 1300 CPU seconds. For
cach time limit, we tune the parameters for each heuristic to optimize its performance,
We locus our tests on our standard random graph R512W. Results {or the other graphs
are similar.
SAC

For SAC, the solution cost can be improved by adjusting the value of any one
of the five parameters. For the experiments in this subsection, we allow more time
than the standard parameter setting. Based on our standard setting. we tune the
parameters to minimize the cost under different time limits. The resulting parameter
settings and the corresponding costs and times are reported in Table 5.6. We can
see from Table 5.6 that better solution cost can be obtained by increasing the Iength
of cach Markov chain (decreasing the value of ¢), or increasing the eporh length ¢,
or increasing the cooling ratio 7. The price of such adjustments is the increase in

running time.

i D(r) Time
0 2,714 62.1H
1 2.661 117,13
2 | 2,640 | 191.63
5 [2.628 | 283.50
10 2.081 486,72
16 2515 | T61.93
32 2.537 | 962.61
n0 2.5023 113378

Table 5.7: Cost vs. time for FG4+RLC

FG4+KLC

For FG4+KLC, the parameter setting is simple. We can obtain better solintions by
increasing the value of p, the number of consecutive uphill moves, Table 5.7 presents
the cost and time as functions of p for FGHKLC. We can see that 1°G ERLC performs
worse than SAC under various time limits. The running time grows dramatically when

we increase .
TSC

As explained in Subsection 5.1.3, the best parameter setting for TSC is £, - 50
and 1, = 7. 'To increase the running time, we should only adjust the valiue of pothe
number of consccutive uphill moves. The effects of various values for p are teported
in Table 5.8, Compared with Table 5.6 and Table 5.7, the results for TSC ae dearly

the best,

Based on our above parameter tuning, we compare the solution qualities of FG KLE
SAC, and TSC under various time fimits in Figure 5.40 1 s elear that PS5 s the bess
for any time limit. SAC performs worse than TSC with small differences in solution

costs. Both TSC and SAC outperform FG+RLC with large performance margins,

P D(7) Time
500 | 2.607 | 16.44
1000 | 2.573 | 26.03
3000 | 2.524 | 66.94
5000 | 2.511 | 80.57
10000 | 2.492 | 129.33
15000 | 2.478 | 195.46
20000 | 2.471 | 245.01
10000 | 2.458 | 388.61
70000 | 2.441 | 700.16
100000 | 2.423 [1211.00

Table 5.8: Cost vs. time for TSC

5.2.2 Stability evaluation

For most iterative improvement heuristics, we note that the solution quality can be
improved by either increasing the running time or performing multiple runs. Since
all of our competing heuristics use random initial solutions, we should not cenclude
the relative performance of the heuristics based on only limited number of try runs.
A good heuristie should be stable in the sense that it can provide umform good

performance in huge number of runs.

lu this experiment, we run cach heuristic 1000 timies on the same graph R512W
using their standard parameter settings. We report the best value, worst value,
average value, and standard deviation of cost and running time for each heuristic in
Fable 5.9, the comparisons of the histograms of cost in Figure 5.5, and the cost /time

information for every run in Figure 5.6.

According to Table 5.9, the average results for the above three heuristics show
that (1) I'SC spends time 61.96% less than FG+KLC and achieves average cost
LA6Y% Tower than that for FG+KLC; (2) TSC spends time 28.8% less than SAC and
achiceves average cost 1.62% lower than that for SAC; (3) SAC spends time 50.53%

less than FG+KLC and achieves average cost 3.29% lower than that for FG+KLC.

09

2075 'llV!]lllllr"ll]’ll""lIII’TVIX'TV'T

o FG+KILC
e SAC
v TSC

YT

270

2.65

T T

2.60

COST

2.55 |

2.50 -

2.45 -

ogq0 Lot e i b v b b e L
4] 200 400 600 800 1000 1200 1400

TIME (SECONDS)

Figure 5.1 Comparison with vatious time limits for vandom graphs

The standard deviation values show that SAC is the most stable heuristic for both
cost distribution and time distiibution. Therefore multipie runs do not help mnch in

solution quality for SAC. FG+KLC is the least stable heuristic.

Figure 5.5 shows that the histograms of cost for both FGHRKLC and either FRC
or SAC can be displayed on the same axis with litile overlap bhetween the worst ol

found by TSC (or SAC) and the best cost found by FF'G+KLC.

Figure 5.6 illustrates the solution cost distribution according to the thne spent o
cach solution. From the cost-time graph we can see that the solutions obtained Dy
TSC and SAC are concentrated in two small arcas close 1o the lower left corner while
the solutions obtained by FG4+KLC are in a relatively larger arca on ar above the
main diagonal. It implies that SAC and 'TSC are more stable than FGURLC and

have superior performances.

Table 5.10 shows our estimates for the expected best of £ runs of FGHRLO, £ rans

56

15C SAC IFG+RLC
T(x) D(rx) Time | T(zx) D(x) Time| T(x) D(x) Time
BBest 17596 2471 11821117936 2.522 103.88| 18277 2.570 317.70
Worst IS129 2,592 30.90) 18473 2.598 (G7.22) 19375 2723 TT.AY
Average] 17981 2,529 G0.96G| 18202 2.560 8§5.59] 13825 2.617 173.00
StdDev 126,962 0.0183 11427 [86.838 0.012 9,160 | 178477 0.025 51.286
Table 5.9: Statistics for 1000 runs of TSC', SAC, and FG4+KLC
5711 J R — R —— T T T T T T T
800 |- — Esac]
% gcs:(ixu: . = & FG+KLC
4a0 7] 500 [- .
% : £
%7 g =]
100 // q B . 400 ¢
o // NS g | =
& % NN 3 300 F H 7
@ 200 // \\ & [=
w Z NN] & L -
»n : =
AN NN 200 = R
277 IINANN -
ol 772 NN\ J : =
7\ o E ~
R S
N7 AN | EEENIN J
245 260 265 260 266 270 276 2.0 245 250 255 260 266 270 275 260
cost cost

(a) TSC and FG4+RKLC (b) SAC and FG+KLC

-

Figure 5.5: Histograms ol solution costs for 1,000 runs on R512\W using TSC. SAC.
and G H\l ¢

of SAC and F rous of TSC for graph R512\W and various values of &, based on the
FOOD runs of FGHRLC, SAC, and TSC (see Appendix A). It is interesting to note
that the solution cost by one run of TSC is equal to the hest cost of 100 runs of SAC
and the solution cost by one run of SAC is better than the best cost of 100 runs of
FGERLC Therefore TSC elearly outperforms both SAC and FG4+KLC.

5.2.3 Extensive comparisons

In the last two subsections we made intensive performance comparisons for our stan-

dard vandom graph R512W. For graphs with different structures, however, the heuris-

v
-1

275 lrlvx1f1"lri\]lflT{xrlT)"\'\"‘\‘\"trY\]\YW\
FG+KLC
SAC
2.70 TSC
2.65
= o
o 2.60 ° ®°
Q o o
° o
2.55
2 80
F
245 NN T S SR WU AV SUVRN N S WA ST S ST TO0 VAV T SR U WITEP SRV ST U U [PSR

0 50 100 150 200 250 300 350 400
TIME (SECONDS)

Figure 5.6: Cost-time graph for 1000 rans on RSI2W asing TSCSACand FG INLC

ties normally have different performances. 'To see whethier acheavistic petfotns corse.
tently better than others, we conduct the following experiments to test our heuyistye -

on different types of benehmark graphs.

[n this subsection. we comparve the performances for TSCOSAC G RLCDSG
and FG.TSC and SAC are our two most competitive henistios proposed e th,
thesis. FO4INLC s the most competitive henristic caimed by Chen m [10] 56 anid
U are two very efficient greedy hearistics which will be used to genetate hetter than

random initial solutions.

To compromise solution quality and running time. we finit the nmnine tine of
cach heuristic to be within 70 CPU seconds. We will test omr heunistios on ronds i
graphs, geometric graphs, and perturbed regulan graphs. Fach graph has 125 vertiee
For random and geometric graphs. three different average vertes degree (407 aud
10 respectively) are used. For pertmnbed vegular graphs. 3 o1 7 edges ave randomly

deleted from or added to T-cube and 8 # 16 mesh. For cach set of 10 graphs we nnn

H¥

k TSC SAC [FG+KLC
1 2.529 | 2.560 2.617
2 2,519 | 255 2.633
) 2,508 | 2.516 2.613
10 2.502 | 2.541 2.609

25 2496 | 2.5306 2.599
50 2491 1 2,532 2.593
100 | 20487 | 2.529 2.587

‘Table 5.10; Comparisons of TSC. SAC and PGHRNLC on RHT2AW

L0 times on cach graph, and take the average cost and average running time ove
the 100 runs. In this way we see a general trend of performance for cach henristie,
M results shown in this subsection are based on our standard parameter settings

imtroduced in subsection 1.1.2 (on page 35) and in subsection 3.1.3 (on page 17).

We will see that TSC s the most powerful heuristic for most graphs. By usine
srecdy initial solutions for geometric graphs and perturbed regular graphs. T5C can
be fnrther enhanced so that it can outperform all the other heuristies for all the graph
fypes we tested. By using a greedy initial solution. TSC can significantly reduce its

teratton nmmber and improve its solution quality within specified time leats,

We also report the solution cost generated by random solution (RAND) to provide

an intuitive fecling of how much improvement is achieved by applving tue heuristies,

Random graphs

Shown in Table 5,11 are the performance comparisons for embedding random graphs.
As the table shows, TSC beats all the other heuristics in both solution quality and
runniing time by a wide margin, We do not use greedy heuristic as the front end of
PSC because it does noi help much in solution quality. SAC performs better than
FGHRELC i both solution quality and running time for dense random graphs. BBy
experiments we found that the performance of FG4+KLC is sensitive to the average

vertes degree d. FGHRLC does not perform well when d is getting large. From

54

Table 5.11

Hewristies

1283

RI25W 3

D(=) 1 fime D(x) tine
s T orsae [oves | | sies
SAC o2 3o | tass | s
FGHERLCT 13t | s0.62 | 1 | 36,71
G 1955 | 001 | 1975 | o
SG 2972 | 001 | 2261 | oo
TRAND | 352) | 000 | 3526 | v
Heowrestios RIS _R_i-)\\\
Diz) | time P() e
TSC | oSt | a206 | st |
SAC | 2016 | 3130 | 1.a22 | 3810
FGHRLC| 2,061 | 5115 oar BEED
G 2651 1 008 | 2056 | oos
SG |2 | o2 | esis | o
RAND | 3520 | 001 | 3528 | ool

Heuristios

RI28_10

l{l’\\\ tH)

D(x) | time 'P(:r) fine

TSC | 2255 | 16.08 | 2s | ot
SAC | 2200 | 17.76 | 2161 | a77
FOHRLC] 2313 [6278 | 2108 | 215
LG 2R13 | 001 | asw oo
SC; 3010 | 0.02 | s009 | oo
RAND | 3.526 | 0.01 | 3528 | 0.0

()

: Comparisons for embedding random graphs 1o mnimize Dix)

Fable 501 we can also see that the relative performances of onr heuristies are not

sensible to the addition of edge weights to the graphs.

Figme 5.7 gives a closer look at TSC, SAC, and FG+RLC with different paramete
«ettings. We nse the same method introduced previously to determine the parameter
~etlings. Fadh curve in the figure represents the trade-ofls between running time and
~olntion quality made by a particular heuristic nsing different paranieter settings.
From the fipure we see that TSC obtains hetter solntions than all the other heunistics
i the same on less tunning time. \When d = 3 as in Figure 5.7 (a), SAC has basically
the sane petformance as FGHRLC, When d is getting large. however, SAC apparent iy
ontpetfonms FGA4 KLC with big margin as shown in Figure 5.7 (b) and Figure 5.7 (¢).
We did not give the curves for graphs without edge weights because the corresponding
petformance comparisons are very similar, From Figure 5.7 we can see that for all
the three heuristies, both the solution cost and the running time increase with the

averase vertex degree d.

Gieometric graphs

I'he petformanee comparisons for our geometric graphs are shown in Table 512, The
eeneral trends ave similar to those of random graphs but there are some differences
One of the major differences is that the greedy heuristic SG improves the petformance
of 'TSC signtficantly. TSC with SG frout end beats all the other hearisties. FG+RLC
petforms better than it does for random graphs. As for random graphs. the relative
performance of our heuristics are not sensible to the addition of edge weights to the

ceometric graphs.

Figure 5.8 gives a closer look at the heuristics that are competitive in solution
quality and running time. As shown in Figure 5.8 (a) for graphs with d = 3.SG+TSC.
ISCLand FGHRNLC have basically the same performance and SAC has the worst
petformance. As shown in Figure 5.8 (b) and Figure 3.8 (¢) for graphs with d=7
aned 10, however, SAC starts to stand on the second place and SG4+TSC heats all the

other hearisties with big margin, Like for random graphs, both the solution cost and

61

COST

1.50 (e T LR I R e R S R R AR R RRR R RERRR R
T T T T T T — T T 1 i i 1) ' \

. o FG+KLC o oK
» SAC 205} s S0
145 v TSC . v T

200

r [
17 b \\
140 8 o
o
1651} \ \\ ©
— .
I i -,
135 + -
190 | —_
e
.
~w
N
|
130 " 1 1 P PR | PP WU U | » 185 Lusandaiaalaaalasasdassaldacislasvadaiantone,
¢ 8 10 16 20 26 30 35 40 3 S 10 15 20 2b 30 45 40 4H
TIME (SECONDS) TIME (SCCONDS)

(a) RI28\W 3 (h) RI2SW 7

mrmmm"’m’"ﬂ""r‘f"]""l""!‘"'
230 + .
i o FGiKILC
228 s SAC
; v TSC
2.26
q
224 ¢
G 222 o ou
[—~
(8] 9 ~——
2.20 - \ ~0
218 ¢ ——
[e
: \ \’“\
2.16 - \\v ~—e
: \”\..
214 -~ T —— v
2.12 MW;MMtL;uluuluuluu

0 5 10 15 20 25 30 35 40 45 50 55 60 65
TIME (SECONDS)

(¢) RI2ZSW_10

Figure 5.7: Cost/time trade-offs for random graphs

2

G128.3 G128W_3
D(r) | time | D(x) | time
SGHTSC 1358 | 1649 | 1.300 | 33.50

TSC 1364 | 1585 | 1.302 | 27.20
FG+RKLCT 1.365 | 16.39 | 1.307 | 27.8]
SAC 1402) 25.79 | 1316 | 33.64
I'G 1471 0.05 | 1.159 0.05
SG 1.575 0.01 | 1.600 0.01
RAND | 3.530 0.01 | 3.529 0.01

Heuristics

G128_7 GI28\W_7
D(x) | time | D(r) | time
SCG+1SCT 1.653 | 26.69 | 1.615 | 37.76

TSC | 1.690 | 34.61 | 1.616 | 36.-10
SAC | i4%8 [39.89 | 1.636 | 36.73
FGHKLCT 1688 | 36.38 | 1.655 | 15.98
FG 1.895 | 0.08 | 1.921 | 0.08
SC 991 | 0.01 [2.065 | 0.0l
RAND | 3528 | 0.01 | 3.527 | 0.01

Heuristies

G128.10 G128\V_10
D(r) | time | D(x) | time
SG+TSC Y 1.820 | 36.91 | 1.797 | 31.92

SA(C 1.810 | 38.10 | 1.816 | 39.83

TSC 1.862 | 36.17 | 1.836 | 42.20
FG+RLC| 1861 | 39.18 | 1.832 | 45.50

I°G 2.080 0.11 | 2.123 0.11

SG 2,188 0.02 | 2.279 0.02

RAND | 3.530 0.01 | 3.531 0.01

Heuristics

Table 5.12: Comparisons for embedding geometric graphs to minimize D(r)

63

COST

139

137

133

131

129

INERAMMAE LS S SLEA IMAEAE ISRV IS SMMMAR 174 promepeeraqrreqrrrrgrra et
L o0 FC+KLC | ooenRe
* SAC 172 ¢ SAC
r v TSC v oIsCe
s SG+TSC a SGISC
i B 170} \
1688
L. - \,
(%21
8 \v LS 3
166} . o
L S oo
\\\ v !
184 | > i
A\\N - i
162} e i
r (a3
adieiciadoau s [t Lo aad vaaalay adaaan 150 adsasalassalaniadisantasastlasaadaasddiianidvasadiad
0 5 10 15 20 25 30 35 0 5 10 15 20 25 U0 6 40 4b oo

TIME (SECONDS)

(a) GI28W 3

TIME (SECONDS)

(hy GIas\W 7

1 92 ahasasialnsansAAaSn AASS RARRI ARRARARARRARAN MRS

190

168 +

1.86 -

=
5] |
o ~.
Q —

1.84 + T »

L DR 6]
182 +
o~
\\

O FG KLU

s SAC |
v TSC

a SG+15C

\A

r

1.80

178 assadaiaaal
o 5 10

Figure 3.8: Clost/tin

[FOUTR UUTWE BT YOUDS WOPIY ORI DRI

1§ 20 25 30 a5 40 45 50
TIME (SECONDS)

(¢) GI23W_10

ne trade-offs for geometric graphs

61

the tunming time increase with the average vertex degree d.

Perturbed regular graphs
g

Lable 513 and Table 511 present the performance comparisons among the heuristies

for pertnrhed T-enbes and perturbed 8 4 16 meshes,

We can see that SGATSC gives the hest solutions than all the others for perturhed
reentar graphs FG and SG ean embed cubes and meshes without edges deleted o
added optimally. FCGand SGHTSC can embed cubes with certain edges deleted
optimally. Sinee it is hard for most heuristics to embed graphs C7_PT and M8 16_P7
aptimally, we choose these two graphs as examples to show the relative petformance
of the hewristies in Figure 5.9,

For graph CT.P7, FO4+KRLC can acquire the same performance as SG+TSC alter
10 <econds We conjecture that hoth FGH+RKLC and SG4TSC Lave embedded grapls
CTPT optimally, SAC and TSC seem worse than FGHRLC and SGHTSCL For
eraph MS_16.P7. it is apparent that SG+TSC beats all the other heuristios. SC

FGERLC, and SAC are on the second. third, and fourth places respectively.

5.3 Summary

s Chapter deseribed the design of our tabu search heuristic and made the various
esperiments. The major characteristies of our tabu search heuristic based on objective
tune ion D7) for hypercube embedding were discussed. Cube-neighbor neighborship
was shown to be a better compromise between the solution search and the running
time of cach iteration. We implemented an adaptive tabu list scheme to reduce the
eration number and improve the solution quality. We used a tabu status array to
aceelerate the checking of whether a move is in tabu list. Experiments showed that

asprration function is not helpful for this particular hyperenbe embedding model.

By performing the vatious experiments, we conclude that SG+T5C" is the most

65

Heurestics ¢ .

D(r) fime

G 1000 | 0.015

SG 1.000 | 0.015

SGH1SC] 1000 | 0063

FO+RLCT Looo | o0

TSC 1029 | a0

SAC L 1oss | oo

RAND | 3517 | 0002

Heuristies (7.M3 _~__£_7_ _\!T

D(r) tine Dix) time
1°¢3 1.000 (.06 1.000 0.07
SGHTSC| 1000 | o1 | tooo | o
FGHRLCT 1ooo | oas | rooo | o
TSC o2 | o526 [s |ouo
SAC | rort | 7a2 [oo | s
SG 1329 | 0.02 | 1.653 | 002
RAND | 3515 | 0.01 | 3517 | o.01
Hewristies 7.3 . 7 l)l_‘
D(7) timme D(%) Litin
SGHTSC| 1066 | 138 | 1o | 6.2
TSC | 1081 | 536 | LT | S.96
FOFRLCT 1091 | 6.68 | 1.010 | 1052
SACT | 1066 | s | romr [1s.as
1°C; 1110 | 0.06 | 1285 | 0.06
SC; 1697 | 0.01 | 2066 | 0.0
RAND | 3515 | 001 | 3515 | .01

66

Table 5.13: Comparisons for embedding pertuthed cubes to mininize Dl

MNS.I6

D(r) time
SG 1.000 | 0.001
I'G 1.000 { 0.033
SGH+TSC | 1000 0.033
FG+RLC] 1.000 | 0.133
TSC 1.310 | 9417
SAC 1401 | 25.720
RAND | 3.473 | 0.007

Hewrsties

MS_16.M3 M3_16-M7
D(x) | time | D(r) | time
SGH+TSC] 1.052 6.21 | 1.120 8.30 |
FOG+RLC] 1148 6.27 | 1.323 10.10

Ts¢ 1.311 9.88 | 1.287 | 12,48

SAC 1.398 | 21.46 | 1106 | 22.41

FG 1.290 0.03 | 1.567 0.03
SG [.307 0.01 | 1.687 0.01
RAND | 3.116 0.01 | 3.416 0.01

Hewristies

M3.16.P3 MS_16_P7
D(x) | time | D(x) time
SG+TSC | 1106 7.47 | 1.200 9.97

TSC 1.309 9.28 | 1.356 9.32
FG+INLCY 1.309 9.86 { 1.398 12.29

SAC 1126) 18.81 | 1428 | 1597

I'G 1.478 0.041 | 1.663 0.01
SG 1.618 0.01 | 1.907 0.01
RAND | 3116 0.01 | 3.117 0.01

Heuristies

Table 5.1 Comparisons for embedding perturbed meshes to minimize D(x)

67

18

AN B A RSN IR S S R A B A N
G + KIC
17+ SAC 1
TSC
16 L SG+TSC
15
%
o] 1-4 -
o
13 -
12|
11 ¢+
g v Spmiveopimmtghantel L V)
e o
10 bece o L
0 12 14
TIME (SECONDS)
(0) CT_PT
1.60 ["""‘PT‘!‘('_T‘T—‘T’"\"“T“ 1"‘“1“1_‘1_"“”‘v"‘1""‘l ' L
[o FGi+KIC
1.55 r ® SAC
g v TSC
1.50 E a SG+TSC
1.45 -
r J
1.40 | o | om——o
2 \ -0
O 135 T
F T
130}
r
b
1.25 g A
1 20 \b\
T ———
1.15 O S ST SN S W IS S VY VNS S SN ST ST VU WU DU SUNY DU SUNY S SN SRt
0 5 10 15 20

TIME (SECONDS)

() MS_16.P7

Figure 5.9: Cost/time trade-ofls for perturhed regular sraphs

6S

successful and efficient heuristic for all types of graphs. TSC is the best choice for all
tandom graphs. When rnning time s not strictly limited, SAC is the second good
choice for large random graphs. When the problem size is relatively small, FG + I LC
i~ also a good choice for sparse geometric graphs. For regular graphs, SG and I'G
are good choices. SG and FGare also useful for situations where better than random

sohttion is desired,

For task graphs whose structure is close to cube. we can get better embeddings
than for random graphs. When the average vertex degree d is getting large, the
sohition cost is getting worse and more running time is acquired.

As a final observation, the parameter tuning for 'T'SC is much easier than that for

SAC sinee 'TSC Las less parameters than SAC.

69

Chapter 6

Tabu Search Heuristic with Objective

Function D(r)

For synchronous SINMID parallel machines, the objective function D(a) is mote apprna

priate to be used to minimize the maximal mapped distance of embeddings. Graph
embedding with objective function D(r) is inuch harder than that with objectie
function D(w) because of the former’s special difficulties for cost evahiation and pain
update, Based on our literature survey on hypercube embedding, no piaper as sen

onsly worked on this model. Tn this chapter, we propose another tabn search heuristie
to solve the hypercube embedding problem with objective furetion D) and refer to

this new heuristic as 'I'SD.

We first discuss some special propertios of the objective funcetion D) and desien
a special gain function for D(r). To facilitate the evalnation of the cost Tanction. an
ellicient heap data stracture is introduced. After we present the hewristic 'ESDthe
performance compatisons between TSI and TSC s conducted to demonstiate 1510

special role in minimizing D(x).

70

6.1 Gain function and its update

For heuristies with objective function D(7). it is straightforward to define the gaimn of

vapping vertices wand e orelative to the current solution as the decrease in total cost
ater the swapping. For heuristics with objective function D(7), however. the same
definition would not work becanse changing the mapped distance for some ¢ € F
does ot imply changing the global embedding cost. The straightforw rd definition
of gain function for D(x) does not enconrage local improvements which is eritical to

the rednction of the embedding cost.,

A poul definition for the gain function should encourage the gradual reduction in
the nmber of edges with maximal mapped distance. In our heutistie, we use the
following special definition for the gain function to encourage any swap of vertices u
and e that can rednce the maximal mapped distance of the edges ¢ € I adjacent to
wor v Given the carrent embedding © and any swap of vertices w and v, we defimne
the gain ol the swap {u. e} as

gean(u v) = max {&0(m(u) () wluox), Sm(e)m(y)) wleyr}) -
E(u)pe i)

s ASE() m ()l x) O ()5 () (e y))

where () may be w(1)’s cube-neighbor. The time complexity for evalnatine function

qarn(u) is thus ()(4)).

o minimize the computational overhead introduced by 1eevaluating the gam tune -
not we also use a bucket-list priority queae data stracture to store all possible gains

Whenever a swap is done, only allected gams are updated.

For all swap neighborhood, the time complexity for gain initializationis QOvnen-dy -
O and the time complexity for gain update alter a swap is O(d - nd) = Ovdin).

For cube-neighbor neighborhood. the gains can he initialized for cach swap in time
Qunlow n - d) = O@mlog n). Whenever vertices w and ¢ are swapped where s(e1 s
cube neighbor of 7 (). the alfected gains will be recomputed for all the paivs {e.y}

whete o 300 VU {uc e} and =(y) is cube-neighbor of (). The time spent on

7l

Fignre 6.1 Heap structine used 1o report the masinnal mapped di e

the updating of gain after aswap is thus O(dtde gt v dvgienlom iy ond Lo,

6.2 Cost function evaluation

For objective function Diz).one intportant issue s to tediee the e dor e th
masimal mapped distance alter cachimove, 1we e an artay to store the tepd
distances for all edees in £ weneed tie Gy 1o find the naamal mapped i tasne

Lo mahe o henristic efficient. we use o prionts quese (0 o tore e papge !

distances o that the masimnal Ill(l])]u'(‘ distance can he fortrod o com tant

Our priotits quene is implemented byoa heape as shown i ene 68 1o Canls

edue ¢ € [we store a]mi! {ist.) i the h('.:]: where dost o the Too peatvne
the mapped distance of edee o N hnear avvay odye rnder mdeaed byedees ol
For cacy € € FL cilye _ll///r.l'[(] IS« pointer to the cotrespondime node the eap
!

specitying the mapped distance of edge o Following thiee operation. aee npporton

on the heap:

-‘]
[

Lo Initialize the tabu list 1" = o,
2. Get an mitial solution =,
3. Initialize all possible gains according to =,
[. Repeat I'TER_NMAN tines:
LU Findamove s € S(x) -1
that maximizes garn(s).
1.2 Set = s(x) and insert s into 7,
1.3 Update gains.,
5. Return the best 7 visited,
Figne 6.2 Heuristic 'TSD
Maa (1) return the maximal mapped distance in ()
Livsert(€Qy, . dist) insert a node (dist, o) into (Qy,;
Dclete(€y, inder) delete a heap node pointed to by tnder from (.

Lhie aleorithins for these three procedures are given in Appendis B, Vo () has con
stant tine complexity. The time complexities for Tusert() and Delete(y are ol

Otlos TR O log).

Fhas heap can be initialized i time OQmlog). Whenever two vertices wand ¢
ateswapped.only the tapped distances for edges incident to wor e i G are changed,

Hieretore the update of heap after a swap can be done in time O(d log).

6.3 Tabu search heuristic

Wermplemented two versions of tabu search heuristic with objective lundtion D).
one tor albswap neighborhoud, the other for enbe-neighbor neighborhood. 1 he exper-
nnental results show that IS with cube-neighbor neighborhood outperforin. 1S
with adl swap neighborhood. Therefore we only discuss TSD with cube-neighbor
neighborhood. Like TSCUTSD also uses our adaptive tabu list design and tabu sta-
tus artay implementation. Fignee 6.2 shows the heuristic TSD. We can see fiom

Fignre 6.2 that I'SD s basically the same as TSC except that the objective funetion.

3

the gam function, and the termination condition are ditferent. ISD firse ninade os
all possible gains and put all moves associated with these gains into the bucket Tist
FSD also initializes the heap to store all mapped distances of edgesin 7 TPFIONEAN
iterations of the Toop at step ©are then executed, TS transforms the current wo
lntion 1o one of its neighbors by performing the best move which is not e the talba
List. Whenever a move s is performed, s is nserted into the tabu st and the attected
eains are updated as explained e Seetion G0 Dilferent from TSCOESD o spend
O(d tog m) CPU time to update the affeeted mapped distances stared e the fea g o

sote edges,

[he dimeter of a d cube is do the pundmum eam Vol any sinede asap o
objective lunction DEs)is thus inranee (- 1) - Sdon s 1y Oddoe v Then
have N,y = O(log). Let [he the total mnnber of iterations T hemnaber ol call oo
Mar()yis Qv = 1.0 is domimated by O log 1), Necordime to Femmin b theoverali
nmning, time of TSD s therelore the summation ol sarn imtabations and updat
for both bucket-list and heap operations, that s, Ot Top pd for vanme tatsaleat oy
O log nn for heap mitialization, Otld low) tor heap apdate aud 07cld Lo o
”Uj_', n -k loe ") for wotn lllnlaha he total tine u»lllp!v\.ll\ 1= thas Chigoloe o

ldid oo i+ oo).

6.4 Performance comparisons

\s for ISC i Section 320 the vandomr graphs. the eeornarne eraphs and vhe po
tihed tegnlar graphs specilied in Section 300 are nsed s bewe bk eraph T
conpatisons are made (1) between heuristios TSD and TS Tor vandons oraph
seometric graphs: (2) among heutistios FGHTSDOTSDL and ISC Hor pertached e
alar graphs. The parformance compatisons teported in this section ae ohtanea by
making the trade-offs hetween solution quality and exeantion e, For cach ot ol
10 graphs, we ran 10 times on each graph, and take the wvennge costand e

rinning time over the 100 runs.

Tl

TSD TS5

({raphs
D(x) | Time | D(x) | Time
Ri25W.3 | 1000 | s2r | 11,96 | 8.0
RI2SW.T | 1070 | 1095 | 19.92 | 11.90
RIZSW_10) 1630 | 2073 | 2000 | 23.31
REI2\W 20.00 | 66.63 | 28.80 | 66.91

RI28.3 3.00 6.3 3,83 6.35
RI2S.T 4.00 | 16.61 .06 16.61
RI28_10 2.00 1 10.51 G.12 1 17.02
R512 6.00 | 12,23 740) 718

Fable 6.1 Compatisons for embedding random graphs to minimize D(7)

As desaribed in Subsection 112 and Subsection 5.1.3. for cach of our bendlunark
oraphs. we tune the pataimeters one at a time, and repeat the process antil no per-
tuthation for the parameters can nnprove the performance. The following reporis are

obtained based on the best patameter settings,

6.4.1 Random graphs

Fable 6 1 shows the performance comparisons between TS and 15C on randon:
vraphs For all tandom graphs with edge weight<, TSH on the average can tmprove
the cost D)ol ISC Dy 25900 in X6 of the running time of TSCL For all vandom
craphs withon edee weights, TSD on the average can improve the cost Diz) of IS¢

Py 2 O 760 of the running time of TSC,

6.4.2 Geometric graphs

Fable 62 shows the performance comparisons on geometric graphs. For gcometric
vraphs, the performance od TSH depends on the attributes of the graphs. TSD
stll outperforms TSC for geometric graphs with edge weights and various average

vertev degrees, For geometrie graphs vithout edge weights, TSD gives lowe maximal

~1
=

TSh 'S¢

D(r) Mime l"(,":\ e
GLI23AW S 10,10 13.15 12,348 R

GI2SW_7 | 1520 | 2001 | 1

GI2IW 0] 18,60 | 3159 | 1o9s | a3

(raphs

05 ‘\u.)

GHIW 2100 | A2T0 | 2700 Lo
GI2Ry 3.30 13.03 A.10 1321
GIas_T LOO | 2579 | oo | a0 e
GI2810 | Lo | 3127 | o | oses
(512 600 | 1iso L6201

Table 6,20 Comparisous for embedding seametvic eraphs tomunmee Des s

niapped distanees for grapls with either o = 10 or 0 512 Tor eraple G5

bowever, 1SD performs worse than I'SC.

o be e speciiie. for peometire praphs with edecwaehie FSH onthe anerae
caninprove the cost Diz) of PSC e PR G0 N5 700 of the tmmnne tie o 150
For all acometiie graphs withont edee weighits, TSD on the averaee canaprone the

cost Dizy of TSC Hhy LRV i ~65 of the tanmmy, time of [S¢

6.4.3 Perturbed regular graphs

Lable 63 presents the performance comparisons for pertmbed reonlar eraphic W
cantsee frotn Lable 6.3 that 1SD petlotms worse than TSC for T cube and ©onbe o
3 or 7 edges randomly deleted. By experimental tesults yeportad e Sub ecton 51
we hnow that greedy heuristies SGoand FGoean embed o d cnbe and denbe wny
cortain edees defeted to a d-cube optimallv. Therefores by asine FGas b from
end of TSD. we can significantly improve the solution qualits . For pertarhed ol

FGHTSD outperforis both TSI and TSC i both solution qualite and e
time. For perturbed meshes. FG+TSD also ontperforins all the other hevristios

Loth solution quality and ranning time. and TSH performs better than 1SC

70

FGESD 1S Ts¢

Clraphs

Dim)| Time {D(x){ Time [D(x); Time
7 Lo loz21o] 10| 8896 | 1.1] 5010
(7 M3 RO | 0267] 1.0 | 8795 | 1.2 | 5260
(7 M7 1O [0233 [1.0 | 8689 | 1.6 | 1.699
(7.P3 3.0 1095 | 1o | 8913 | a2 | 5365
CTPT | a | LS | Lo | 901 | 52 | Ru59
\IS_16 Lo | o33 [0 [osss [32] o0
NS TGS 2o | e 3.0 1 0612 | 35 | 9._76
MS 6T 3.0 | 1927 [30 [oars |30 12010
MSLGPS | 3.0 | 2,081 | 3.0 111051 | 3.7 | 9.981
\lx“ﬂlz[s_n IR EERNEYE R

Lible 6.3 Compatisons for embedding perturbed tegnlar graphs to minimize D{x)

[o bemore specifie, for o'l perturbed cabes. FG4TSD on the average can Hnprove
the cost Dezy of TSC By 270850 m 29150 of the running, time of TSCL For all perturhed
meshes PG TSD o the average can improve the cost Diz) of TSC by 3160 in 224

ol the tunmime, thime ol 1SC

6.5 Summary

o s chapters we deseribed the design of another tabu search hewtistic 1o miui-
te objective function Mx). We explained the ditlienlty in decreasing D(z) and
detined the special gain function to measure the ineremental improvement during the
~eatch We also introduced another efficient priority quene implemented by a heap
data stincture. For SINMD hypercube machines, the experiments showed that the
FGETSD cannot be replaced by TSC because FGHTSD performs better for mini-

mizing the manimal mapped distance than TSC.

-1

-1

Chapier 7

Conclusion

[u this thesis we proposed thiee new efficient hewristies 'PSCCSACand TSH Fhiey
ate used to sohve the by perenbe embedding problem wirh obective tunerions eithe
mnimizing average mapped distance or mimmizing the masimal mapped de tanee
Lhe most suecessint henristie for minimizine the average mapped distanee o Pse

Phe efficient hentistic for minimizie the masimab mapped distance s Feso 1S

In the following we make some observations hased on omr expernmental vooal
=
stmmatize o major contribntions to this researche and potut out several futin

tesearch ditections,

7.1 Observations on experimental results

A vatiety of conclusions can be drawn from the results wlnch we reporied Fach of

the following items highlights one of onr major observa ions,

{. For most iterative improvement heuristies, their is a trade off betweenolntion
cuuality and running time, We can usually adjust this teade ofl by vasme the

parameter settings {or cach heuristic,

2. Iterative improvement hearistics perforin better when the starting solution i

better than random (SG and FG are good methods Tor generating starting,

78

solmions) Om ohservation on this point is true especially for geometiic and

tegular praphs when the expected running time is limited. When the running

tine is long enongh. however, this feature cannot be seen explicitly.

3 The stincture of the task graph must be taken into account when choosing a

henvistie, For completely random graphs, the hest choices tend to be iterative

improvement heuristics, For graphs that are cubes or almost cubes, FG and 5G
are the best choices. FG and SG can, for example, efficiently map a cube or

mesh to hypereabe with the same number of vertices optimally.

Lo Espetitnental results show that simuated annealing hewristic with adaptive

AMarkov chains outpetfonms that with fixed-length Markov chains,

5. For MIMD by peranbe niachines, SGHTSC s the most effective and efficient

| henristic for all tvpes of graphs, TSC s the hest chotee {or all randon eraphs.
When ranuing time is not strictly mited, SAC has a petformance only secoud

to ISC for Targe tandom graphs. When the problem size is relatively small.

FOERLC S also a good choiee for sparse geometric graphs, For regular graphs.

SGoand FG are good choices. SG and FG are also useful for situations where

better than random solution is desited,

o, For SIMD By percube machines, the experiments showed that the FG4HTSD
cannot be replaced by 1SC hecause FG4HTSD petforms better for minimizing,

the manimal mapped distance than TSC does.

7.2 Major contributions
he tollowings are our major contributions to this research:
. Generalization of Chen's mapping model, First, we introduce the edge weight

function to the objective function to model the potentially different commu-

nication loads between different pairs of processes, Second, in addition to the

=1
<X

——

(£

objective function D{x) which minimizes the average mapped distance we also
use the maximal mapped distance D(x) as our objective tunction Pherelore,
we design embedding heuristios for program mapping on both svnchronons and

asynchronous parallel systems.

Introduction of adaptive tabu list to tabu search hewristies for Inpercube crn
bedding. For hoth of our two tabu seareh heuristios, the Tength of tabn Tist can
be updated according to the recent improvement istors of the best solunon
forund so far. The purpose of designing an adaptive taba Hstos 1o avoid mtio
dneing eveling in the solntion space and to help the search to et aut ol the
local optimum quickly, The experimental results showed that the tabm search
hearistie with adaptive tabu list outperforms that with static taba e\
shown in Table 5.20 for example, tabn seareh hennistic waith adaptive vabu b
mproves on the solution quality of that with static tabu et e G50 ol 1

e of the latter for graph RH12W

Design and implementation of two tabu search heunstios with objectine i

tions D{x) and D(x) respectively. For the hennstic to mmunize Disyowe
designad a special garn function. O special combination ol the cnbe nerelibo
neishbothood, the adaptive tabu list, the application of taln status array andd
onr oflicient data structures make ot tabu search hennistioovers ellicent Cong

pated with Chen’s most competitive heuristic FOERLC for obpectinve nnction
D(=). for example, TSC spends only 337 of time whidh FGORTE tade o

reduce the average cost of FGERLC for random graph ROEZAW Ty 54

The improvement on Chen’s sinmlated annealmg hennstic. o optinnze the
simulated anncaling hearistic, we introduced the adaptive Marhos dinne carch
stiategy. The experimental resalts show that one new annealie hennstic om

performs Chen’s in both solution quality and running time. For all of o
random graphs, for example, our new annealing henristic spends on the averape
75% of time which Chen’s annealing hearistic takes to reduce the avetage cont

of Chen's by 3%.

50

7.3 Future work

For tabu seatch heuristies implemented in this thesis, further rescarch can be con-

ducted in the following directions.

[. Incorporation of intermediate and long term memory functions. The interme-
diate memory is used to record the recent moee history to intensify the scarch
to reach the local optimum faster. The long term memory is used to eocord the
more history since the start of the search to diversify the search to new ateas

and try 1o avoid being trapped in local optima.

2. Determination of the valnes of the parameters f, and {1, by the statistics f
the moves. For different periods of the search process, the hest range for the
tabu list length may be different. Therefore the value of parameters £ and
£, may need to be changed during the scarch process. To reduee the effort
on parameter tuning and to improve the solution quality, ¢, and £, may he

periodically adjusted according to the statistics of the moves,

3. Parallelization of our sequential heuristies. Our experimental studies ate basad
on sequential machines, To speed up the solution scarch and make our henristies
more cflicient, we can parallellize the hypercube embedding heuristios, tnitial

mvestigations have been conducted.

o]
—

Bibliography

4

2

]

FLLL Aarts, FALL de Bonto JUALAL Habers, and PLENL van Laathoven A
parallel statistical cooling algorithm™. In Leeture woles an conmputer serence, "1

pages 8T 97, 986,

1. André, JUL. Pazat, and ‘1. Priol. “Experiments with mappine aleoothoe
on a hypercube™. In Proc. of the forth conferonee on hypercubes, concurent

compulers, and applications, pages 39 16, 198,

Francine Berman and Lawrence Snyvder. =On Mappine Pavallel Meonthos mio
Parallel Architectures™. Journal of Pavallcd aud Distribaled Cowpad g, 119

13N, 1987,

Shahid 11 Bokhari =On the Mapping Problem ™. [EET Pransactions on Com
pulers, C-30(3):207 2110 1981

S. Wavne Bollinger and Scott I Adkifl. “Processor and Linke Assienment i
Multicomputers Using Simnlated Annealing™. In Proc. of the 1958 [nlcinalional

Conforcuee on Parallel Processing, volume Lo pages 17, TOSS,

J. Bovet. (. Constantin, and D. de Werra, *A Convoy Scheduling, Problem”
Technical Report ORWP 87/23, Départment de Mathématiques, Feole Poly

technique Fedérale de Lansanne, 1988,

A. Casotto, F. Romeo, and A.L. Sangiovanni-Vincentelli. =\ parallel sunulited
annecaling algorithm for the Placement of Macro-Cells™. In Proc. of inte rualional

confcrence on compulcr design, pages 30 33, 1956.

32

vt
|\]
.

]

[10]

)

1)

[16]

[17]

VMee Yee Chan, “Dilation-2 Embeddings of Grids into Hypercubes™ In Proc. of

International Conferenee on parallcl processing. pages 295 298, 1988,

WK, Chen and .. Gehringer. A graph-oriented mapping strategy for a

hypercube”. In Proe. of the third conferenee on hyperedbe concurrent computors

and applicalions, pages 200 209, 1988.

Woei Kae Chen. Theorctical and erperimental approaches for the hypcrcube cm-

hedding problon. Ph) thesis. North Carolina State University, 1991,

Woet-Kae Chen, Matthias F.M. Stallmann, and Edward I°. Gehringer. =Hyper-
cube Embedding Heuristies: An Evaluation”. Tntcrnational Journal of Parallcl

Progranmming, 15(6):505 519, 1989,

Georgr Cybenko, David W, Keanmme, and K.N. Venkataraman. “Fixed Hyper-

cube Fmbedding™. Informalion Processing Letlers, 25:35-39, 1987,

. Breall J. Ramanujam, and P. Sadayappan. “Task Allocation onto a Hypercube

by Recursive Mincut Bipartitioning”. ACAM, pages 210 221, 1938,

. Peltend S, Karling and SV, Otto. *The Traveling Salesman Problem on a
hypercubie, MIND Computer™. In Proe. of 1985 international confercnee on

puralle] processimg, pages 610, 1985,

("ML Fidueeia and RO Mattheyses. *A Linear-Time Heuristic for Improving
Network Partitions™. In IEEE 19th Design Automation Conferenec. pages 175

PR, 1982,

. Friden, AL Hertzo and DL de Werra, *Stabulus: A technique for finding stable

sets in large graphs with Tabu search™. Computing, 12:35- 11, 1989,

. Friden, AL Hertz, and D, de Werra, *TABARIS: An exact algorithim based
on tabu search for finding a maximum independent set in a graph”. Compulers

and Opcrations Rescareh, 17(5):137 - 115, 1990.

[13]

Michel Gendreau, Louis Salvail, and Patrick Soriano. “Solving the Maxtmum
Clique Problem Using a Tabu Search Approach”™. Technical Report Pechnieal
g ! {

Report CRT-675. Publication #6795, Centre de recherche sur les transports, 1990,
I]

Ired Glover. *Future paths for integer programming and hinks to atitictal mtel

ligenee™. Computers and Operations Rescarch, L3533 519, 19S0.

Fred Glover. *Tabn Search - Part 17, ORSA Jowrnal on Computing, 1190 206,
/ !

1939,

Fred Glover. *Tabu Scarch - Pact 117, ORSA Jowrnal on Compuding, (V) 1320,

1990.

Fred Glover, *TABU Search: A Tutorial™. Techmical Report ‘Technieal Report.

Center for Applied Artificial Intelligence, University of Colorado, 19650

Fred Glover and Harvey J. Greenberg, “New aporoaches for heuristic search
A bilateral linkage with artificial intelligence™. Fuwvopcan Journal of Operational

Rescarch, 39:119 130, 1989.

Ired Glover and Clande MceMillan. *The general employee scheduling prablem
an integration of management science and artificial intelligence™. Computcrs and

Opcrations Rescareh, 13(5):563 573, 19386,

B.L. Golden and C.C', Skiscim. “Using simulated annealing to solve tontimg and

location problems”. Naval Rescarch Logistics, 33:261 279, 1936,

D.R. Greening. “Parallel simulated anncaling technigues™. Physica 1D, 12(1

3):293-306. 1990.

B. Hajek. “Cooling schedules for optimal anncaling™. Mathcuralics of Operalion

Rescareh, 13(2):311 329, 1988.

P. Jaumard B. Hansen. “Algorithms {or the Maxitam Stability Problem”™.
Techuical Report RUTCOR Research Report 487, Ruters University. New

Brunswick, NJ, 19387.

84

29]

[30)

[31]

132]

3]

[31]

[38]

A. Hertz. “Tabu Search for Large Scale Timetabling Problems™ Teclimeal
Report Technical Report ORWP 8971, Départment de Mathématignes, Peole

Polytechnique Fédéiale de Lausanne, 1989,

A. Hertz and D. de Werra., “Using Tabu search techniques for graph colormg”

Compulimg. 29:315 351, 1987,

A. Hertz and D. de Werra., “The Tabu search metaheuristics How we used it”

Annals of Mathematies and Aviaficial Intelligenec, LT 1210 1990

Alain Hertz. “Finding a Feasible Course Scheduls Using “Tabu Scaveh™ Technical
Report Technical Report, Départment de Mathématignes, Ecole Polvtechnigue

I'édérale de Lausanne, 1990,

Skorin-Kapov Jadranka., “Tabu Scarch Applied to the Quadratic Assipnment

Problem”. ORSA Journal on Compuling, 2(1):33 15, 1990,

D.S. Johnson. (.R. Aragon, L.A. McGeoch, and .. Scheron. *Optimization by
simulated annealing: Au experimental evaluation; Part 1, Graph paititioning”.

Operations Rescarch, 37(6):865 392, 1989,

B.W. Kernighan and S. Lin. “An eflicient Heuristic procedure for partitionine,

graphs”. The Bell System Technical Jowrnal, pages 291 307, 1970,

S. Kirkpatrick, C.D.Jr. Gelatt, and M.P. Veechi. “Optimization by Sinlated

Annealing”. Seicnee, 220(15938):671- 630, May 1983.

C-1I Lee, C-L Park, and M. Kim. “Efficient, algorithin for graph partitionine,
problem using a problem transformation method”. Compuler-Adled Desgn,

21(10):611 618, 1989.

Soo-Young Lee and J.K. Aggarwal. “A Mapping Strategy for Marvallel Process
ing”. IEEE Transactions on Computers, C-36(4):433 4120 1987,

139

[10]

1)

[13]

[11]

[15]

[16]

Jean Louis Pazat. A friendly-greedy algorithm for process assignment™. In
M.Cosnard et al.. editor, Parallel and distributed algorithms, pages 321- 327,

Blsevier Seience Publishers B.V. (North-olland), 1989.

J. Ramammjam, F. Ercal, and P. Sadayappan. “Task allocation by simulated

anncaling”. In Proc of mternational conference on Supercomputing. 1933,

Frederie Semet and Frie Taillard. “Solving Real-Life Vehicle Routing Problems
Flliciently Using Taboo Search”. Technical Report ORWDP 91/03, Départment

de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1991,

. Taillard. “Robust Taboo Search for the Quadratic Assignment Problem”™.
Technical Report ORWDP 90/10, Départment de Mathématiques. Ecole Poly-

technigue Iédérale de Lausanne, 1990.

15 Taillavd, “Some efficient heuristic methods for the flow shop sequencing prob-

lem”. Furopean Journal of Operational Rescarch, 47:65-74, 1990.

Lixin Tao. Mapping parallel programs onto parallcl systems with torus and mesh

based communicalion structures. PhD thesis, University of Pennsylvania, 1988.

Lixin Tao, Yongchang Zhao, and Jiawei Guo. “An Efficient Tabu Scarch Al-
gorithm for m-way Graph Partition”. In Supercomputing Symposiun 91, pages

263 270, Fredericton, NB, 1991,

Jia wei Hong, Kurt Mehlhorn, and Arnold L. Rosenberg. “Cost Trade-offs in
Graph Embeddings, with Applications”. Journal of the ACM, 30(4):709- 728,

1983.

D.de Werra and AL Hertz, “Tabu Scarch Techniques: A Tutorial and an Appli-

cation to Neural Networks™. OR Specktrum, 11:131-141, 1989.

M. Widmer. *Job shop scheduling with tooling constraints: a tabu scarch ap-
proach”™. Technical Report ORWP 89/22, Départment de Mathématiques, Iicole

Polvtechnique Fédérale de Lausanne, 1989,

86

[19] Mickey R. Wilhehn and Thomas L. Ward. “Solving Quadiatic Assigniment ob

lems by ‘Simulated Annealing™. 117 Transactions, 19(1):107 119, 1087,

[50] M. Windmerand AL Hertz, “A new approach for solving the flow shop sequencing,

problem™. Furopcan Journal of Opcrational Rescarch, 11(2): 186 193, 1939

87

Appendix A: Derivation of the Expected
Minimal Cost for Multiple Runs

[f we already have the costs for s runs of an heuristic with random initial solutions.
we can casily derive from these costs the expected minimal cost for & (A < s) runs

ol the hieuristic with randmmn initial solutions.

Let L= (e.ch. ... ¢5) be the list of given costs in nondecreasing order of their
value, The expected minimal cost for & runs of the heuristic is
s—hk+1
D M

1=1
where p, is the probability that ¢, is the minimal for & costs randomly chosen from
I.. We can decompose p, as p, = pl - p? where p is the probability that none of the
hist ¢ — 1 costs in L is among the k chosen costs, and p? is the probability that ¢ is

among the & chosen costs. 1t can he verified that

b=l (s i 41) —

m=1I

1=0 s =)

and

A-1
B3 1 ll'
=1 | — = .
P H((s—i+l)—j) s— i+l

J=U
The cost devived above is more reliable than the one obtained by simply running the
heuristic & times because it is based on the information for a much larger population

of costs.

oD
9 7

Appendix B: Heap Operations

Algorithm: Max((Q,)
begin
return heap[l].key;
end

Algorithm: Insert Heap(Q),key,code)
begin
insert new _node(key, code) to last position of heap:
while (new_node.key > parvent.key)
swap({ new_node, parent);
update array edge_index according to parent code;
end while
return final position of new_node;
end

Algorithm: Delete Heap((Q),index)
begin
move last node to heaplindex);
update array edge_index according to heapfindes] code:
while (heap(index]key > parent key)
swap(heap[index]. parent);
update two edgeindex values according, to
heapfindex].code and parent.code:
end while
while (heaplindex].key < children. key)
swap(heap[index]. children);
update two edge_index values according 1o
heap[index].code and children.code;
end while
end

89

