L7 Iehy

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Weliington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Our e NOle ieterenc e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur ie droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

TEMPORAL DEDUCTIVE DATABASES:
QUERY FINITENESS AND A QUERY LANGUAGE

Daniel A. Nonen

A Thesis
in
The Department
of

C'omputer Science

Presented in the Partial Fulfillment of
the Requirements for the Degree of
Master of Computer Science at
Concordia University

Montréal, Québec, Canada
September 1993

Copyright © 1993 by Daniel A. Nonen

National Lib
Bl S

Acqusitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontarnio
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welington
Ottawa (Ontano)

Your e Votte reterenc e

Chr e Noties reMtergun o

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa theése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-90921-8

Canada

ABSTRACT

Temporal Deductive Databases:
Query Finiteness and a Query Language

Daniel A. Nonen

Temporal databases have been proposed in the literature to provide a
uniform framework for modeling information that changes over time. Tem-
poral relational databases append time information to tuples in the form of
either valid intervals or event times. They also define special operators and
integrity constraints to handle temporal data. We extend this approach to
temporal deductive databases. Interesting temporal rules need function sym-
bols, but the use of function symbols raises the possibility that queries may
have an infinite number of answers. Unfortunately, detecting such queries is
undecidable in general. A recent proposal is to test for a stronger condition
than finiteness, called superfiniteness. However, the complexity of the only
known algorithm for testing this property is exponential. We develop poly-
nomial time decision procedures to detect superfiniteness for certain classes

of lincar programs.

We propose a Horn clause based query language called TKL (Temporal
Knowledge-base Language). TKL incorporates a screen-based editor which
visually associates fxttribute names with Horn clause arguments. In addi-
tion to the usual built-in Date data type for representing date and time,
user-defined temporal data types are allowed. Recognizing that real-world
measurement of time is inherently imprecise, we introduce two interpreta-
tion policies called broad and narrow to allow reasoning with such knowl-
edge. TKL is implemented within a DBMS architecture which is modular

and extendible.

Contents

1 Introduction

1.

1

1

(&

3

Temporal Relational Databases
Temporal Deductive Databases
1.2.1 Finiteness of Query Answers
1.2.2 Temporal Deductive Database Systems
Contributions made by this Thesis

Organization of the Thesis

2 Background

o

Relational Databases and Temporal Relational Databases . . .

2.1.1 TQuel: A Temporal Extension to Quel
2.1.2 HSQL: A Temporal Extension to SQL.
Deductive Databases

10

11,

11

23 TEMPLOG it i 29
24 STATELOG it i 31
Superfiniteness 34
3.1 Introduction, 34
3.2 Basic Definitions L oo L. 38
3.3 A Simple Proof Procedure for Superfiniteness 45
3.4 Compositional Programs 5
3.5 Multi-Rule Programs, 6.3
3.6 Linear Sirups 74
3.7 Summary e e e e e e e e e e e 79
A Temporal Deductive Database Language 80
4.1 Introduction Lo 81
4.2 Overvifew of TKL e 81
4.3 The Temporal Data Type 85

4.3.1 User-Defined Temporal Data Types 89

4.3.2 Interpretation of Imprecision in Intervals and Events . 92

4.3.3 Built-in Temporal Predicates 95

44 Semanticsof TKL o v e 99

44.1 Semanticsof TKLForms 99
4.4.2 Integrity Constraints 103
4.5 Object-Oriented Architecture 104
4.6 'The Implementationof TKL 109
4.6.1 Otherlssues 112
4.7 Conclusion e 117
TKL and Other Temporal Query Systems 118
5.1 TKL & Temporal Relational Query Systems 118
511 TQueland TKL. 119
51.2 HSQLand TKL. 120
5.1.3 Summary: Temporal Relational Systems 120
5.2 TKL & Temporal Deductive Query Systems 122
53 Summary e e e e 123
Conclusions 125
6.1 Contributions of the Thesis 127
6.1.1 Superfiniteness 0000, 127
6.1.2 Temporal Deductive Database Systems 128
6.2 FutureWork. 129

vi

Chapter 1

Introduction

Temporal deductive databases are informally introduced in this chapter by
first discussing temporal databases and then extending the discussion to tem-
poral deductive databases. This is followed by a description of the organiza-

tion of the thesis.

1.1 Temporal Relational Databases

Information about the objects modeled by databases changes over time in
real-world a;;plications. However, time is not managed in a uniform manner
in most databsses. Temporal databases have been introduced to fill this
gap. A survey of works on historical and temporal databases can be found in
Soo [Soo 91]. The idea of representing time as an attribute was suggested hy
Clifford and Warren [CW 82]. They treat time as a linear sequence of instants

which are isomorphic to the natural numbers. An event is .epresented by a

single time instant and an interval is represented by a sequence of consecutive
instants. Temporal databases have t@ model objects in complex ways. For
example, a student may be enrolled at a university, then drop out, and then
enroll again at a later time. The student should be allowed to register in a
course only if the course is offered for registration at the same time as the

student is enrolled.

Temporal databases which associate an event time or an interval with
cach picce of temporal data are considered primarily in this work. This
association can be achieved by adding a from and a to attribute to data
objects. For example, if ¢ is a tuple in a temporal relation, then t.From is
the first time that ¢ is valid and t.To is the final time ¢ is valid. (If ¢ is
currently valid, the value of ¢.to is the special variable Now which evaluates

to the current system time.)

The following problems arise in the context of temporal databases:

1. Writing queries is more difficult because even ‘simple’ queries may re-

quire many temporal comparisons;

2. Maintaining database consistency is problematic: for example, since
data is not deleted when updates are made, many tuples will have the
same ‘key’; :

3. Query evaluation may be inefficient unless the properties of temporal

attributes are recognized and exploited.!

Temporal database languages usually have special features to adapt them

for usc with temporal data. Two such languages for relational databases are

1Efficient temporal query processing techniques are not discussed in this work; see c.g., [GS 91].

TQuel [Snod 87], a superset of Quel, and HSQL [Sard 90}, a superset of SQL..
Both these proposals, which are described in detail in Chapter 2, include
database management system (DBMS) support for maintaining database
consistency. They offer useful operators for joining relations that precede,
contain, or overlap by performing the appropriate comparisons of the tem
poral intervals of the tuples being joined. TQuel extends Quel’s aggregate
functions to the temporal domain. However, since both HSQL and TQuel
are based on relational algebra, they lack the expressive power of a deductive

database language supporting recursion.

1.2 Temporal Deductive Databases

Deductive databases, with their increased expressive power over relational
databases have been recognized as one of the important data models for next
generation applications [T 91]. However, Datalog, a vehicle query language
for deductive databases which is based on Horn clauses, lacks the power
of function symbols. Function symbols are important for (z) better data
structuring ability, (i7) applications involving streams or list constructors,

and (777) applications like temporal deductive databases (e.g., see [Cl 88] or

[LN 92b)):.

A query to a deductive database is expressed using a set of Horn clause
rules, often called a query program. The query is then answered against
the least fixpoint model (e.g., see [Ull 89]) of this program, which intuitively

is the set of facts derived by the rules from the facts in the database. In

the presence of function symbols, answers to certain queries can be infinite.?
Detection of finite queries is fundamental to the design of query systems:
finiteness analysis is an integral part of such systems as NAIL! [Ull 89], LDL
[Chim 89], and SYGRAF [KL 88]. Recent works (e.g., see Brodsky and
Sagiv [BS 89, BS 91], Sohn and Van Gelder [SG 91]) also show applications
of finiteness analysis to the detection of termination of top-down evaluation

of logic query programs.

1.2.1 Finiteness of Query Answers

Function symbols are needed to write interesting temporal queries. However,
when they arc allowed, some difficult questions about the finiteness of query
answers have to be answered. Consider the following example in which the

successor function is used.
Example 1.1 An airline stores facts about daily inter-city flights in the
following relation.

daily flight(Dep, Arr, Date).

The intended meaning is that there is a daily flight from the departure airport
Dep to the arrival airport Arr on the date Date. The following two ruies define

the can_fly relation. A Prolog-like notation is used for expressing rules.

can_fly(Dep, Arr, Date)
:- daily flight(Dep, Arr, Date).

2As a notational shorthand, we say a query is infinite (finite) when the answer to the query has an
infinite (finite) number of tuples.

can_fly(Dep, Arr, Date + 1)
:- can.fly(Dep, Arr, Date),

daily_flight(Dep, Arr, Any.Date).

The first rule iniiializes the can_f1y relation to the contents of the daily_-
flight relation. The intended meaning of the second rule is that if one
can fly between two destinations on a particular date, and there is a daily
flight between those two destinations, then one can fly on the same flight
on the following day. Suppose the daily flight relation contains the tuple
<montreal, toronto, Jan 1,1992>. Consider the query ?- canfly(
montreal, toronto, T), in which montreal and toronto are interpreted
as constants and T is interpreted as a variable to be matched to flight dates.
This query asks for all flights from Montreal to Toronto. The set of answers

to this query is clearly infinite. a

In the context of temporal deductive databases, two approaches liave heen
considered for handling finiteness of queries. The first approach is to aellow
certain classes of “meaningful” infinite query answers, and to develop finite
representations for their answers. This 1s the approach taken by Chomicki
and Imieliiski [CI 88]. The second approach, which is pursued in Chapter 3,

is to detect and disallow infinite queries where possible.

Shmueli [Sh 87] showed that query finiteness is in gencral undecidable
for programs with function symbols. References to other decidability results
on query finiteness for different classes of queries can be found in Kifer «/
al.[KRS 88]. Ramakrishnan et al. [RBS 87] developed a framework for finite-

ness analysis in which programs with function symbols are approximated by

g]

function-free programs with infinite base relations satisfying finiteness con-
straints (FCs). Intuitively, FCs assert that if certain columns in a relation
have a finite number of values, so will some other column(s). For exam-
ple, consider an infinite relation s(A, B, C). The relation s satisfies the FC
AB — C exactly when it associates a finite number of C-values with any
given AB-value. Among other things they also showed that finiteness is de-
cidable for monadic programs, i.e., programs where all IDB predicates are

monadic.

Sagiv and Vardi [SV 89] showed that finiteness (in this framework) is
the conjunction of a property called weak finiteness and termination. They
showed that while weak finiteness is decidable, termination is in general un-
decidable. They also furnished a polynomial time algorithm for detecting
finiteness for monadic programs. It should be noted that, for general pro-
grams, the decidability of finiteness in the presence of infinite base relations
and FCs is still open [KRS 88]. Kifer et al. [KRS 88] proposed a stronger no-
tion of finiteness called superfiniteness which refers to a query answer being
finite in all fixpoin! models of the program, as opposed to only in the least
fixpoint model. Intuitively, a model M of a program P is a fixpoint model
if for every fact in M there is a rule in P that justifies this fact. They have
developed a complete axiom system, and a decision procedure for superfinite-
ness. They also extend their procedure to detect finiteness for certain classes
of query programs. While their contribution is fundamental and significant,
the time complexity of their algorithm for detecting superfinite query pro-

grams is exponential in the size of a set of co,straints generated®. The size

¥The main concern of that paper was proving decidability and axiomatizability of superfiniteness.

of the latter set is polynomially larger than the original program size.

1.2.2 Temporal Deductive Database Systems

The extension of temporal databases to temporal deductive databases is in-
troduced using three proposals fo1 them as examples. Two of these examples,
TEMPLOG and STATELOG, are discussed in Chapter 2. OQur own proposal,

TKL, is the subject of Chapter 4.

Temporal logic is the formalism used for the logic programming language
TEMPLOG [AM 87]. This formalism gives the language a great deal of cle-
gance and expressive power. However, the user is limited to using the abstract
temporal operators nert, always, eventually, until, and precedes as modifiers
to first-order logic predicates. Such operators may be unfamiliar and difficult
for the uninitiated to use as a query language. Also, in the context of (tem-
poral) databases, the expressiveness offered by these primitives is severely
limited. TEMPLOG has a Prolog-style execution model, and therefore, it is

not truly declarative.

STATELOG [CI 90] is based on Datalog extended by the successor function
to handle temporal queries. Its strength is the capability to determinca finite
representation for infinite query answers when the data is periodic in nature.
Unfortunately, due to the high computational complexity of the problem, a
finite representation can be determined for only certain periodic programs.
Also, temporal database programming using only the successor function can

be cumbersome.

TKL (T'emporal Knowledge-base Language) is also based on Datalog. A
proposal for TKL is the subject of Chapter 4. Horn clause query programs
are written in TKL by filling in forms using a special-purpose screen editor.
Temporal queries that express even simple temporal relationships may be
long and difficult to write because they can involve many comparisons of
temporal attributes. A design objective of TKL is to reduce these problems
by (z) incorporating the temporal predicates alluded to in Section 1.1 to
make temporal queries concise, and (2¢) associating attribute names visually
to Horn clause arguments in a manner reminiscent of the relational database
language QBE [Zlo 77]. Many relationships between temporal attributes can
be exp ~ssed neatly using forms. For example, if the answer to a query must
be restricted to tuples of relation R, and relation R; beginning at the same
time, the same variable is entered into the From fields of the forms for R,
and R,. When it is more convenient, temporal relationships may be stated

as expressions in the “Conditions” section of the query.

The approach taken in TKL to detecting query finiteness is to test for
the superfiniteness of certain classes of programs. In order to express notions
involving a progression in time, the successor function must be applied to
temporal values. For example, a TKL user may wish to add a rule to infer
that if a condition is true today, then some condition will also be true to-
morrow. However, it is necessary to assure that queries using this rule are

finite.

1.3 Contributions made by this Thesis

The contributions made by this thesis fall into two categories: query finiteness
and temporal deductive database design. Our results for query finiteness are

listed first.

e A conceptual aid for understanding superfiniteness called chased R/(

lrees;

o Identification of a class of programs for which superfiniteness analysis
can be carried out efficiently. This is formalized using the notion of

compositionality;

e The concept of permissive non-deterministic finite automata, a polyno-
mial time algorithm for determining when automata have this property,
and a characterization of superfiniteness in terms of permissiveness for
compositional linear programs and for linear programs with one recur-

sive rule.

In the area of temporal deductive database design, we make the following

contributions.

e An extension of temporal relational databases to temporal deductive
databases that resolves the question of query finiteness for certain

classes of programs by means of superfiniteness analysis;

e The introduction of user-defined temporal data types;

o A mechanism for reasoning with imprecise temporal data and temporal

null values using broad and narrow interpretation policies;

e A query language that uses a graphic user-interface in an essential

manner to express query programs clearly and concisely.

1.4 Organization of the Thesis

The nccessary background for the development of the thesis is presented in
Chapter 2. The fundamentals of relational and deductive databases are pre-
sented, and a brief discussion of the temporal relational database systems
TQuel and HSQL and of the temporal deductive systems TEMPLOG and
STATELOG is given as well. In Chapter 3, polynomial time algorithms are
presented for detecting superfiniteness for certain classes of programs. The
details of the design and the implementation of TKL are given in Chap-
ter 4 and, in Chapter 5, TKL is compared and contrasted to the systems

introduced in Chapter 2. Conclusions are given in Chapter 6.

10

Chapter 2

Background

This chapter contains a review of the basic concepts needed for the devel-
opment of the thesis. Notions from relational databases are described first.
These notions are then extended to temporal relational databases and to

temporal deductive databases.

2.1 Relational Databases and Temporal Relational

Databases

The relational model was introduced in 1970 by Codd [C 70]. Discussions
of the basics of relational databases can be found in this work as well as in
text books by Date [Da 86], Desai [D 90}, and Ullman [Ull 89]. A relational
database can be considered to be a collection of tables. The column headings,
or attribute names, are given in a fixed order so that each row, or tuple, in the

table is a fixed sequence of values. The values that can appear in a column

11

arc taken from a domain of values such as the integers, the set of strings of

a certain length, etc. A relation is a set of tuples.

An n-ary relation is any subset of the Cartesian product of n domains. For
each relation, there is a set of attributes called a key that uniquely identifies
each tuple in the relation. A set of attributes S is a key for a relation R if (7)
there are no two tuples r; and r; in R such that they have the same values

for the attributes in S and yet ry # r; (i7) there is no subset of S that has
property (7).

The relational algebra is briefly reviewed next. Let R and S be any two

relations.

RUS (Union): t € RUSifte Rort € S. Union is defined only when R

and S have the same arity.

R~ S (Set difference:) t €¢ R~ S ift € Rand t € S. Like union, set

difference is defined only when the arities of R and S are the same.

R x S (Cartesian product:) Let the arity of R be k; and the arity of S be
ky; t € Rx Sif tisa (ky + kq)-ary tuple such that the first k; attribute
values of { form a tuple in R and the last k, attribute values form a

tuple in S.

To..ax /2 (Projection): t € =, R iff t is a k-tuple and there is a tuple

.....

s € R such that the first value of ¢ is equal to the i,** value of s, ...,

and the k' value of ¢ is equal to the i,** value of s.

orR (Selection): Let F be a predicate expression such that

(1) its operands are either constants or attributes of R;

12

(#¢) its arithmetic comparison operators are taken from <, =, <, #,
and >;

(i27) its logical connectives are A and V and its negation operator
is .

Thent € opRift € Rand F is true when the values in ¢ are substituted

for the corresponding attributes in F.

The Cartesian product and the other relational algebra operators can
be used to derive a new relation, called a view. Informally, a view can be
thought of as a window through which the user can observe data that may
actually be contained in several different relations. Usually, but not always,
data shown in a view can be modified il all the modified columns are from

the same underlying relation.

2.1.1 TQuel: A Temporal Extension to Quel

TQuel, developed by Snodgrass [Snod 87], is a superset of the relational data-
base language Quel that is designed to model both data that changes over
time and to allow the state of the database to be “rolled-back” to its state
at some time in the past. A useful taxonomy of databases is also given in
[Snod 87] which partitions them into four categories. Snapshot databases do
not model time in a uniform way. In such a database, updating a tuple may
cause some data to be lost. Rollback databases are snapshot databases whose
data is extended to include a unique representation for the transaction times
using transaction identifiers which have a many-to-one correspondence to the

system date and time. A transaction identifier is added to the data when

13

it is physically inserted in the database and another transaction identifier is
added if the data is ever considered incorrect, perhaps due to an input error.
Such a feature can be extremely useful for queries about, for example, why
a particular action was taken in the past, which may have been based on
information that was later considered to be incorrect. Historical databases
are an extension to snapshot databases to model data that changes over time.
This can be achieved adding valid from and valid to information that is con-
sidered to be true over an interval. This is referred to as an interval relation
in a relational database. Data that is considered to be true at a particular
time instant can be modeled by adding valid at information indicating that
the data is considered to be true at that particular time instant. This is
referred to as an event relation in a relational database. Finally, according to
this taxonomy, a temporal database is one that combines the time-handling

features of roll-back databases and of historical databases.?

TQuel extends Quel by adding to Quel’s range, retrieve, and where clauses
new clauses for handling the temporal domain. The new clauses, valid from

to, when, and as of ... through, are formally described using the tuple
relational calculus on which Quel is based. The definitions of tuple variables
are extended to allow them to represent the intervals or event times of histor-
ical relations. The when clause is the temporal analogue of the where clause
in a Quel query: it is used to determine if a tuple satisfies the historical con-
straints of a query. A tuple variable by itself is used to represent an interval

or an event time in the when clause. The operators begin of and end of can

! The use of the word temporal was revised in [JCGSS] to refer to databases that support some inter-
preted aspect of time. Thus, both historical databases and roll-back databases can be called temporal
databases. Databases which combine the two are referred to as bitemporal databases.

14

be used to extract the end points of an interval represented by an interval

tuple variable.

TQuel provides the predicates precede, overlap, and equal, as well as and,
or, and not for expressions comparing intervals and events. Events are co-
erced into intervals that begin and end at the event time. Let « and 8 be
interval or event tuple variables. Then a precede 8 is true if end of a < begin
of B. The intervals represented by a and 3 are said to overlap if begin of @ <
end of B and begin of B < end of a. Finally, a = B if @ and f# are represent
events that occurred at the same time, or they represent intervals that began
and ended at the same time. Overlap is overloaded in the sense that it re-
turns the “intersection” of the intervals of its operands if they do overlap. In
the same spirit, the operator extend is provided to return the “union” of the
intervals if they overlap, that is, a extend f returns the interval containing

every instant of time contained in @ and f.

The semantics of TQuel are given in terms of tuple relational calculus.
Statements in tuple relational calculus are expressions of the form {¢®) | (1)}
where t is a variable denoting a tuple of arity ¢ and (¢} is a first-order
predicate calculus expression whose only free tuple variable is t. A TQuel
query has the following form. The tuple variable ¢;, 1 <7 < k, ranges over
the relation R, and D, is used to represent the attribute name of the j,‘*

column of relation R; .

range of ¢; is R

range of ty is Ky

15

retrieve (&,,.D,,,. .., ti,.D,,)
valid from v to x
where
when 7

as of a through 3

The range of, retrieve, and where clauses are unchanged from Quel. The
contents of the when clause, 7 are essentially made up of conditions on tu-
ples stated using tuple variables and the temporal predicates and operators

described previously.

The as of a through 3 clause determines the time-slice in which the query
is to be evaluated. If the values of the expressions ¢ and § are 7, and 73
respectively, then for all #;, 1 < ! < k, ¢; must be such that 7, is before
li|stop] and t;[start] is before 75, where t[start] is the transaction identifier
referring to when {; was inserted into the databas: and ¢;[stop] refers to the

transaction identifier for when t; was marked as incorrect.

Default values are assigned to TQuel clauses to provide the same seman-
tics as Quel when the temporal clauses are not used. For example, if the tuple
variables {; and (, are used in a query in wh.ich the when clause is unspecified,
the default value of the when clause is (¢; overlap t;) overlap NOW), that is,
tuples t; and ¢, are used in the calculation of the answer for the query only
if the intersection of their valid intervals overlaps and that overlap interval
also overlaps the current time. Other defaults are defined for the valid from
and as of clauses. When a query uses some, but not all of the default values,

the user must verify that the system supplied values are appropriate.

16

TQuel makes a significant contribution to temporal database technology
by providing a simple syntax and semantics for both rollback and historical
databases. In addition, it has been largely implemented in Quel. However,
the meaning of a few of its predicates may be confusing to some users. For
example, the temporal predicate expression t; precedes {3 is true even when
t, and {2 have a time in common, i.e., when end of ¢, is equal to begin of
ta. This seems to be the result of the design decision to use < instead of <
to determine when one time instant precedes another time instant. Also, {,
overlap t, is true even when ¢, is entirely contained in f3, i.c., there is no

overlap in the non-technical sense.

TQuel is not consistent in its treatment of temporal predicates and tem-
poral operators. For example, the predicate overlap has an operator counter-
part which returns the intersection of its operands, while equal and precede
do not have operator counterparts. In an attempt to increase the usefulness
of this approach, the ertend operator returns the union of overlapping inter-
vals. While the values returned by overlap anu eztend are useful for writing
queries, the choice of these operators (and not all predicate/operator pairs)

is arbitrary.

Temporal attributes are allowed to have different granularitics. However,
no formal methodology is provided for resolving the problems associated with
them, such as how to compare temporal terms having different granularitics
and how to interpret the imprecision inherent in time units that are longer

than one tick.

17

2.1.2 HSQL: A Temporal Extension to SQL

HSQL is a proposal to extend the relational query language SQL to include fa-
cilities for queries about the history of relations. It was put forward by Sarda
[Sard 90] as a complete historical database management system (HDBMS).

HSQL relations can be used to model “real-world” time in two ways:

1. Relations called state relations have a FROM and a TO attribute asso-
ciated with them, which are used to indicate the time interval in which

a database object “prevails”.

2. Relations called event relations have a FROM and a TO attribute as-
sociated with them also. However, they are actually degenerate interval
relations in the sense that the FROM and 7O values must be the same.
Alternately, an event relation can have an At attribute associated with
it. Event relations are used to mode] objects which prevail for one time

unit.

Attributes are divided into two types. The timing attributes are FROM,
TO, and AT. All the other attributes are called visible attributes. The timing
attributes are automatically added to }zistorical relation schemes if they are
defined to be either state or event relations. The database is diiided into
two segments. The current segment corresponds roughly to a non-historical
database. The value of the TO attribute of all tuples in the current section is
NOW, a special ‘moving’ variable whose value is the current system time. All
other historical tuples are considered part of the historical segment. When

queries are written, the segment to which they apply can be specified.

18

When an historical relation is defined, the granularity of the timing at-
tributes must also be specified by the database designer. The atlowed gran-
ularities are prefixes of the format yy:mm:dd:hh:MM:ss, where yy is a year,
mm is a month, dd is a day, hh is an hour, MM is a minute, and ss is a
second. Operators are given to inspect fields of formatted time values and
the successor/predecessor function for time values is defined. See [Sard 90)

for the details.

Historical databases require integrity constraints (ICs) in addition to
those needed for traditional relational databases. The HSQL proposal puts

forward the following additional ICs.

1. Let R be an historical relation; let r and s be tuples belonging to i
let { be any instant of time. Then a set of attributes A taken from K
is a key for Rif r.A# s.A and the intervalsin » and s both contain (,

forall s, r, and ¢.
2. Tuples with the null interval are not stored.

3. Concurrent tuples with the same visible attributes are coalesced into
one tuple having the least FROM value and the maximum 1O value

of the concurrent tuples.?

The predicates <,<=,=,>=,>, and /= (not equal) arc provided for com-
paring time values. The following predicates are provided for comparing

intervals. Let ¢ be a time instant and let p, p,, and p, be intervals.

® tinpis trueiff ¢ is included in p;

2The FROM and the TO attribute values, representing real- world time, come from an intesrnal clock.

19

e p, = py is true ifl p; and p; contain the same time instants;
e p, overlap p; is true iff p) and p; have at least one time in common;

e p, conlains p, is true iff all instants in p; are also in py;

e p meels py is true iff p;. TO+1 = p,. FROM;
e p, adjacent p, is true iff either p; meets p, or p; meets py;

o p, precedes p, is true iff p,. TO< p,. FROM.

Operators are defined for making an interval from two time instants, for con-
catenating overlapping or consecutive intervals, and to extract the common
parts of overlapping intervals. Provision is made for comparing time instants
with different granularities by first converting both times to intervals having

the finer granularity of the two times. and then comparing these intervals.

Although HSQL provides the five operations usually needed to show a
relational database language is complete [Ull 89}, i.e., union, set-diflerence,
selection, projection. and Cartesian product, they are not sufficient to show
completeness for a relational language extended with valid intervals. The
reason is that query answers may depend on time instants while tuples are
considered to be valid during an interval. For example, a tuple may have a
valid interval of Sept. 1, 1993 to Sept. 30, 1993 and a query may ask if it
is valid on Sept. 15, 1993. Since this date is not explicitly represented, the

query will fail for the tuple unless the valid interval is interpreted correctly.

To handle this mismatch, the relational algebra is extended with two new
operators: erpand, denoted by e, which takes an historical relation for its

argument and returns a set of tuples, one tuple for each instant that tuples

20

in the relation are valid, and coalesce, denoted by ¢, which also takes a relation
for its argument and combines tuples with the same visible attributes into
one tupl~ with the appropriate interval if they are concurrent or consecutive.
Now the historical variant of the Cartesian product, called the concurrent

product, denoted by x,, can be defined to be
Ry x¢ Ry = c(ma(op(e(Ry) x e(Ry))))

where R; and R, are historical relations with visible attributes X; and X,
respectively, A = X; U X, U {R,.FROM, R,.TO}, and F' is R,.FROM =
R; FROM. Note that, unlike other definitions of the Cartesian product, one
set of the join attributes is projected out of the resulting relation. The fime-
slice of Ry, w.r.t. the interval [t;,,], is defined to Ry x; {<{;,t2 >}, which

is the set of tuples of R, which are valid between times t; and ;.

Using these extensions to the relational algebra, the syntax and semantics
can be stated concisely. Queries in HSQL have the following syntax. Optional

elements are indicated by square brackets.

[FROMTIME ... TOTIME ... |
SELECT [COALESCED] ...
FROM [CONCURRENT] ...
[WHERE ...]

[EXPAND BY ...]

[GROUP BY ... |

[HAVING ...]

21

This differs from SQL in the following ways. FROMTIME and TOTIME
denote a time-slice, whose scope is all relations in the query. If COALESCED,
the result of the query is coalesced using ¢. If CONCURRENT, the concur-
rent product is applied to the relations on the FROM line instead of the
Cartesian product. If EXPAND BY, apply e with the appropriate granular-
ity: that is, the level of granularity up to which tuples of relations on the
FROM line are expanded. The key-words historical or current can be placed

after relation names on the FROM line to indicate the appropriate segment.

HSQL offers a uniform extension to SQL to handle historical data. Among
its contributions are (z) it provides an intuitive extension to SQL syntax,
(77) it develops the integrity constraints needed to maintain consistency in
historical relational databases, and (2ii) it provides an extension to relational
algebra that is complete when historical tuples are stored with valid intervals

while queries can be asked concerning valid time instants.

2.2 Deductive Databases

Dedurtive databases can be described with reference to logic programming
which is treated formally in Lloy(.i [L1 87]. Datalog, which is described in Ceri
el al. [CGT 89] and in Ullman [Ull 89], is a function-free and negation-free
logic programming language that has been developed to describe deductive
databases. Let us first review some important preliminaries from logic pro-
gramming. A term is defined recursively to be (7) a constant symbol, denoted
by a string beginning with a lower-case character, or a variable symbol, de-

noted by a string beginning with an upper-case character, or (i) a function

22

symbol applied to a tuple of terms. Examples of terms are the variable sym-
bol X, the constant symbol bob, and the functional term f(X), in which [
is a function symbol. An atom is a predicate symbol followed by a (possibly
empty) list of terms. For example, rich(bod) is an atom with predicate sym-
bol rich of arity 1 and a singleton list of terms bob. A literal is an atom or
its negation. A Horn clause has the form Lo :- Ly,..., L,. where Lo is an
atom and each L;, 1 < ¢ < nis a literal. Ly is called the head L,,..., 1L,
is called the body. If n = 0, the Horn clause is called a fact. For example,
rich(bob) is a fact asserting that the property rich holds for Bob. If n > 0,
the Horn clause is called a rule. A predicate which is the head of a rule is
called a derived predicate. For example, rich(X) :- republican(X). is a rule
asserting that if republican(X) is true, then rich(X) must also be true. The

predicate rich is a derived predicate.

The dependency graph of a logic program I is a graph with nodes labeled
with the predicates in Il and, for all predicates p and ¢ in 11, there is an
arc from ¢ to p if p is the head of a rule in Il and g occurs in its body.
II is non-recursive if there are no directed cycles in the dependency graph
associated with II, otherwise Il is recursive and ¢ and p are mutually recursive
predicates. Il is linear if there is at most one predicate ¢ mutually recursive
with p for every rule in II. A recursive program is linear if no predicate P
occurs more than once in any cycle in its associated dependency graph. An

example of a linear recursive program is given in Example 2.2 below.

Logical predicates and relations in a relational database have a natural
correspondence. Let p be a predicate symbol of arity n; let P be a relation

having n attributes; let { be a tuple of n terms. We say p corresponds to P

23

(and vice versa) iff VI : p(f) << { >€ P. A relation is said to be in the
eztensional database (EDB) if the tuples in the relation are given data (fact
relations). The intensional database (IDB) is made up of the relations cor-
responding to the derived predicates. It does not have an exact counterpart
in relational databases. If all the rules defining p are non-recursive, then P
corresponds to a view in a relational database. However, if p is defined by one
or more recursive rules, P cannot be expressed in a relational datak ase. It is
this difference in expressive power that essentially accounts for the difference

between deductive and relational databases.

The following example makes these definitions concrete.

Example 2.2 Consider a database for an airline which uses the EDB rela-

tion FLIGHT to store information about its flight schedule.
Slight(Num, Depart_city, Arrive_city, At).

Its attributes are interpreted as Num being the flight numbér, Depart_city
the departure city, Arrive_city the destination city, and At the arrival date
and time represented as an integer. The corresponding EDB predicate is
FLIGHT. The IDB predicate can_fly, which determines the transitive closure

of the FLIGHT relation, is defined by ."e following two rules.

can.fly(D, A, At) :- flight(N, D, A, At).
canfly(D, A, At) :- can_fly(D, A', At), flight(N, A’, A, At), At < At.

The FLIGHT relation contains the following tuples.

24

<#001, montreal, quebec, 1>
<#002, quebec, chicoutimi, 2>
<#003, chicoutimi, montreal, 3>

The rules for can_fly imply the following tuples for the CANFLY relation.

<montreal, quebec, 1>

< quebec, chicoutimi, 2>
< quebec, montreal, 3>
<chicoutimi, montreal, 3>
<montreal, chicoutimi, 2>

<montreal, montreal, 3> m]

The tuples belonging to an IDB relation P are obtained by substituting
constants for the variables in the RHS of each rule for p that make the rule
body true. We then infer that the derived tuples, formed from the head of p
by uniformly replacing the variables in p with these constants, also belongs

to P. Details of the procedure are presented on page 27.

Only programs which satisfy a condition called safety are considered here.
We do not allow programs with rules such as P(X,Y) - Q(X) or P(X,Y) :-
X#Y because they do put any ‘restrictions’ on Y, in the first rule, or on
X and Y, in the second rule, except that their values be taken from their
respective domains. We define limited variables ([Ull 89]) to disallow such
programs as follows. A variable X is limited if (¢) it occurs in an ordinary
predicate (i.e., not a built-in predicate such as #, =, or <) in the body, (i)

it occurs in a subgoal X = ¢ where ¢ is a constant, or (ii¢) it occurs in a

25

subgoal X =Y where Y is limited. A program II is safe if (i) every fact in
Il is variable-free, (i1) every variable occuring in the head of any rule also

occurs in its body, and (ii1) every variable X in II is limited.

There is a simple correspondence between non-recursive Horn clause pro-
grams and relational algebra. Informally, a rule r is transformed into a
relational algebra expression as follows. The Cartesian product of the rela-
tions corresponding to the body predicates of r is taken and the attributes
corresponding to predicate arguments with shared variables are equated. At-
tributes corresponding to arguments in the head of r are projected from this
product. Some complications due to constants appearing in rules, repeated
variables within a predicate, and due to built-in predicates are not treated
here. The reader is referred to Ullman [Ull 89] for details. Let p be the head
of a rule r. The relation P is the union of the relations contributed by each
rule with head p. The procedure is illustrated next using the program from

Example 2.2. The exit rule has the following relational algebra translation.

7r2,3,4(FL[GHT)

The recursive rule cannot be expressed in relational algebra, but the result

of one application of it can be represented as follows.

7$136.870F(CANFLY x FLIGHT) C CANFLY

where F = ((CANFLY .2 = FLIGHT.2) A (CANFLY .8 < FLIGHT.4)).

The above expression can be evaluated repeatedly, each time taking the

union of the result and the previously determined CANFLY relation and

26

using the union in the next iteration. After a possibly infinite number of
iterations, no new tuples will be added when the union is taken. The result
is called a fizpoint model of this program. If the CANFLY relation was
originally empty, it is called the least firpoint model of the program. This
evaluation is called bottom-up because it starts with the facts in the database
(as opposed to top-down evaluation which starts with the relation whose
value is required). This evaluation procedure for logic programs is called
naive evaluation [Ban 85]. A more efficient variant of this, which guarantees
never to derive a tuple twice in the same way, is called semi-naive evaluation
[BR 86]. We define the least fizpoint (LFP) model of a logic program Il
w.r.t. a set of relations D as follows. Let IT'(D) represent the result of
¢ iterations of bottom-up evaluation of II applied to D. Then LF Pyp) is
defined inductively as follows: (i) I°(D) = D, (i¢) I¥Y(D) = N¥(D) U
([1%(D)). (zi7) LF Papy = U II¥(D). Note that the number of iterations

k is finite when D is finite and Il does not contain function symbols.

While recursion cannot he expressed in relational algebra, relational al-
gebra can express negation (using the set-difference operator). It has been
shown that the LFP of facts and rules of Horn clause programs is the same as
the least model for these programs [AV 82]. However, this is not true when
negation is added. The Closed World Assumption (CWA) [Rei 78] can be
used to deduce a negative fact, - f, from a logic program by determining if
the positive form of the fact f can be derived using some procedure such as
naive evaluation. If f cannot be derived, then —f is true by CWA. Unfortu-

nately, when negated body predicates are allowed, there is no longer a unique

27

least model which can serve as the natural meaning for a program. For ex-
ample, consider the program comprised of the trivial rule cannotfly(quebec,
montreal) :- —can_fly(quebec, montreal, 2). This program has two minimal

models, {cannotfly(quebec, montreal)} and {can_fly(quebec, montreal, 2)}.

There is simple strategy for determininga “canonical” model for programs
with negation if they have a property termed stratifiable3. The following
test can be used to determine when a program is stratifiable. A predicate
p depends on a predicate ¢ if (7) ¢ is a predicate in the body of some rule
with head p, (i7) there is a predicate r in the body of a rule with head
p such that r depends on ¢q. The dependency is positive (negative) if the
occurrence of r or ¢ in the above definition (in the appropriate rule body)
is positive (negative). A program is stralifiable if no predicate negatively
depends on itself. Stratifiable programs have a distinguished minimal model
which is considered to be their intended model. The strata can be ordered
for evaluation so that negated predicates are always completely determined

in a lower stratum. Thus, CWA can be used local to each stratum.

Function symbols are needed in order to write many interesting rules for

temporal databases. Consider the following example.

Example 2.3 In Exam'ple 2.2 flight was considered to be an EDB relation.
Here, flight is an IDB relation defined by the next two rules which capture

the notion of a weekly fight schedule.

flight(N, D, A, At) :- first_flight(N, D, A, At).
flight(N, D, A, At+7) :- flight(N, D, At), weekly_flight(N).

3See Apt et al. [ABW 88).

28

The predicate first_flight plays the roll of the EDB predicate played by flight
in the previous example. The intended meaning of weekly_flight(N) is that
N is the flight number of a weekly flight. The semantics of the date and
time attribute At are still intended to mean the arrival time of the flight, but
At+7 1s intended to mean exactly 7 days from the date and time referred to

by the At attribute.

Clearly, the query can_fly(montreal, quebec, A) has an infinite number of

answers. 0

2.3 TEMPLOG

TEMPLOG was developed by Abadi and Manna as a logic programming lan-
guage based on a clausal subset of first-order temporal logic [AM 87]. Three
higher-order operators are allowed, o (next), o (eventually), and O (clways),
which can be applied to first-order predicates. Time is considered to be
discrete and extending infinitely into the future, but not into the past. Con-
stants and functions do not change over time, but the interpretation of pred-

icates can change over time.

TEMPLOG is an extension to logic programming languages such as Prolog
[Col 73] to permit temporal logic programs using higher-order operators. An
answer to a query in Prolog is the set of bindings to the free variables in the
query that make the query true with respect to the logic program. If there
are no such bindings, the answer ‘no’ is returned. In TEMPLOG, the answer

to a query is a sequence of sets of bindings for the free variables in the query,

29

one set for each instant of time. Clearly, care must be taken if finite answers
to TEMPLOG queries are required. The following are examples of fragments

of TEMPLOG programs.

Example 2.4 Let S represent the entropy of a system. Then the TEMPLOG
clause O(oS > §) expresses the notion that the entropy of the system is

increasing.

Example 2.5 Consider the TEMPLOG program fragment O(backup(X) «— o
maintenance(X)). If X is a file system, this rule expresses the fact that X

is always backed-up just before maintenance is done.

TEMPLOG programs have fewer arguments than temporal programs writ-
ten in other logic languages because attributes representing time are not
necessary. This makes some programs easier to state and to understand.
In real-time systems non-termination and time extending infinitely into the
future are desirable features. The rule for backups and system maintenance
above illustrates this. However, temporal databases model the past as well
as the future. Typically, query answers do not extend beyond the present.
TEMPLOG predicates naturally model an event, however, it is not clear how
they can be used to model an interval. Also, an uninitiated programmer may
have difficulty writing programs using the three temporal operators. Finally,
since the implementation of TEMPLOG is based on Prolog, it is not truly

declarative.

30

2.4 STATELOG

STATELOG is a deductive database query answering system dcveloped by
Chomicki and Imielinski which is capable of determining finite representa-
tions for certain infinite query answers. A situation is a possibly infinite set
of circumstances which includes changing time as a special case. Situations
are constructed using function symbols. STATELUG models variations in the
state of a database with respect to changing situations. Temporal STATELOG
is a variant of STATELOG in which the only allowed function is the successor

function.

The use of function symbols is restricted in STATELOG. A functional term
is either (i) a functional constant such as 0 or a variable, or (ii) a function

symbol applied to a functional term. A function can have non-functional

term arguments but it can have only one functional term argument which

must occur in a fixed position in the function. A further restriction is that a
STATELOG predicate can have no more than onc functional term argument

which must be in a fixed argument position.

Let P be a STATELOG program. Since P can contain function symbols,
the least fixpoint of P, Mp is infinite in general. In order to answer queries
on P which may have an infinite number of answers, a finite representation
for Mp is needed. Consider the following program which expresses the fact

that Tony and Jan meet with their (common) advisor on alternate days.

meets(0, tony).

meets(1, jan).

31

next(jan, tony).
next (tony, jan).

meets(T+1, X) :- meets(T, Y), next(Y, X).

Clearly the least fixpoint of this program is infinite and the query meets(T,

tony) has an infinite number of answers.

The essential notion in STATELOG is that allowed programs exhibit a pe-
riodicity in the states associated with each iunctional term. Infinite answers
can be determined by finding the least fixpoint of each of a finite number of
states and by finding a congruence relation that maps arbitrary functional
terms to representative terms for each of these states. These two elements

are referred to as the relational specification for the program.

In order to determine the relational specification for the example above,
the equivalence classes and their representatives are first found to be the
even integers, represented by [0], and the odd integers, represented by [1].
The state associated with the functional term 0 is Mp[0], that is all tuples in
Mp such that either their functional term is 0 or they do not have functional
terms. Thus the state associated with [0] is simply meets(0, tony) together
with the EDB relations. In the same way, the state associated with [1] is
meets(1, jan) together with the EDB relations. The congruence relation can
be expressed using a rewriting rule as (1 + (1 + T)) — T, where + is treated

as an uninterpreted function symbol.

Consider the query meets(4, tony) which requires a yes/no answer. The
functional term 4 can be represented as (1 + (1 + (1 + (1 + (0))))) which

rewrites to 0 in two steps and therefore, the representative for 4 is 0. We

32

then verify that meets(0, tony) is in the least fixpoint of the state associated

with the equivalence class [0] and thus the answer is yes.

Queries which are not yes/no queries are answered by giving the relational

specification.

The complexity of determining the least fixpoint for each state is poly-
nomial, the same as for determining the least fixpoint for a datalog program
since rules that construct new functional terms are not used within a state.
However, the number of states can be exponential in the number of con-
stants in the EDB. Thus the complexity of STATELOG query answering is

exponential.

STATELOG provides a decision procedure for a syntactically defined class
of datalog programs extended by function symbols. It addresses the need to
provide finite representations for infinite query answers and proposes an inno-
vative methodology for determining such a representation. The authors state
that, to the best of their knowledge, Temporal STATELOG and STATELOG are
the only syntactically defined decidable logic programming languages stud-
ied so far. However, because of their high complexity, they are impractical
as general deductive database inference mechanisms. Until useful classes of
STATELOG programs which are computable in polynomial time are discov-

ered, STATELOG will probably be mainly of theoretical interest.,

33

Chapter 3

Superfiniteness

3.1 Introduction

Deductive database systems that are based on pure Datalog cannot be used
directly for temporal deductive databases because Datalog does not have
function symbols. Function symbols create new terms from terms that al-
ready exist in a database. They allow better data structuring ability and
applications involving set or list constructors. They are essential for building

interesting temporal rules(e.g., see [CI 88]).

A query to a deductive database is expressed using a set of Horn clause
rules, often called a query program. The query is then answered against
the least fixpoint model of this program, which intuitively is the set of facts
derived by the rules from the base facts in the database. In the presence
of function symbols, answers to certain queries can be infinite. Detection of

finite queries is fundamental to the design of query systems. Some form of

34

finiteness analysis is an integral part of such systems as NAIL! [Ull 89}, LDL
[Chim 89], and SYGRAF [KL 88].

Shmueli [Sh 87] showed that query finiteness is in general undecidable for
programs with function symbols. Ramakrishnan et al. [RBS 87] developed
a framework for finiteness analysis. They approximate programs with func-
tion symbols by function-free programs with infinite base relations satisfying
finiteness constraints (FCs). Intuitively, FCs assert that if certain columns in
a relation have a finite number of values, so will other column(s). For exam-
ple, let s(A, B, C) be an infinite relation. Then s satisfies the FC AB —
exactly when it associates a finite number of C-values with any given AD-
value. Among other things [RBS 87] also showed that finiteness is decidable

for monadic programs. Additional background is given in Section 1.2.1.

Kifer et al. [KRS 88] proposed a stronger notion of finiteness called sup-
erfiniteness which refers to a query answer being finite in all fixpoint models
of the program, as spposed to only in the least model. Intuitively, a model
M of a program Il is a fixpoint model if for every fact in M there is a rule in
IT that justifies this fact. Unlike the least fixpoint model, IDB relations are
not assumed to be empty initially when determining an arbitrary fixpoint,
model. It turns out that superfiniteness, which is stronger than finiteness,
is decidable. They have developed a complete axiom system and a decision
procedure for superfuuteness. They also extend their procedure to detect
finiteness for certain class of query programs. While their contribution is
fundamental and significant, the time complexity of their algorithm for de-

tecting the superfiniteness of query programs is exponential in the size of the

35

input program and constraints?.

The methodology used by [RBS 87, KRS 88] is () to approximate a given
logic program with function symbols by a Datalog program with infinite base
relations together with FCs acting on them, and (i) to use superfiniteness as a
sufficient condition for detecting finiteness. It would thus be desirable to have
an eflicient algorithm for detecting superfiniteness. The main motivation for
this chapter is the development of such an algorithm for linear programs with

one IDB predicate?.

The remainder of this chapter is organized as follows. The basic notions
used are given in Section 3.2. A simple proof procedure using rule/goal
(R/G) trees for reasoning about superfiniteness is developed in Section 3.3.
In addition to shedding some light on superfiniteness analysis, this procedure
is useful in many proofs. The notion of compositionality of (linear) programs
is developed in Section 3.4 and it is shown that this property can be tested
in polynomial time. The significance of compositionality is that it character-
izes programs (together with FCs) for which superfiniteness analysis can be
performed by using the local information at the nodes of a R/G tree. Both
Sections 3.5 and 3.6 consider only unary FCs. In Section 3.5, the class of
compositional linear programs is considered and an automata-theoretic tech-
nique for detecting superfiniteness of predicates defined by such programs is
developed. This technique leads to a polynomial time decision procedure. In
Section 3.6, this technique is extended for the class of linear single recursive

rule programs (also called linear sirups) which need not be compositional.

' As was noted in Section 1.2.1, the main concern of that paper was proving decidability and axioma-
tizability of superfiniteness.

2Each recursive rule of a linear program has at most one subgoal recursive with the head.

36

Again, the complexity of the decision procedure is polynomial. A highlight
of this analysis is the development of logic programs for (¢) the construction
of the automaton associated with linear sirups (together with Fcs), and (i)
determining whether the automaton satisfies a property called “permissive-
ness” and hence whether the predicate is superfinite. In related work, Sagiv
and Vardi [SV 89] make use of a technique based on tree automata for de-
ciding finiteness of monadic programs (Z.e. programs defining monadic IDB
predicates). In comparison, the technique presented here is based on (nonde-
terministic) word automata which are used to decide superfiniteness. Also,
the classes of programs considered here are compositional lincar programs

and (arbitrary) linear sirups. A summary of this chapter is given in Section

3.7.

To end this section, a motivating example is considered in the form of a
puzzle.® Consider a hypothetical society with an infinite population, satisfy-
ing the following constraints. There are a finite number of founding fathers
and a finite number of founding mothers. Each person can only engender
a finite number of children. The society follows certain rules for forming
mating partners: (i) every founding father mates every founding mother;
(%) for every mating couple, either the man is a founding father and the
woman is born of a couple who mate, or the woman 1s a founding mother
and the man is born of a couple who mate. The problem is to show that the
number of mating couples is finite. The constraints in the puzzle can be for-
malized as the Fcs (formal definitions in Section 3.2) ¢— founding_father),

¢— founding.mother,, father;— father; and mother;—mother,. The rules

3This is an adaptation of an example appearing in [KRS 88].

37

followed for mating can be expressed using the following Datalog program.

ri: mates(X,Y) :- founding_father(X), founding.mother(Y).

ro: mates(X,Y) :- founding_father(X), father(U,Y),
mother(V,Y), female(Y), mates(U, V).

ry: males(X,Y) - founding.mother(Y), father(U, X),
mother(V, X),male(X), mates(U, V).

Since the relations father and mother are infinite, and since in every mating
couple one of the partners can be born of some mating couple (i.e. (s)heis a
non-founding member of the society), it is not clear whether the number of
pairs of mating partners is finite. It can be shown using the technique devel-
oped in this chapter that the relation mates is superfinite, and hence finite.
Notice that because of the interaction between rules ry,r3 it is not obvious
that the relation males is indeed superfinite. This example typifies the kind
of reasoning that must be performed in order to detect (super)finiteness of

querics.

3.2 Basic Definitions

The basic notions of Datalog were introduced in Section 2.2. A program is
linear if each rule body contains at most oi.c predicate which is mutually
recursive with the head predicate. A sirup is a program consisting of a single
recursive rule. Variables appearing in the head of a rule are oufput variables;
variables appearing only in the body are local variables. Throughout the

chapter, only linear programs with one IDB predicate, p, are considered.

38

(1) Reflexivity: fY C X then X-Y
(2) Augmentation: if X—Y then XZ-Y Z
(8) Transitivity: if X—=Y and Y—Z then X—Z

Figure 3.1: Armstrong’s Axioms

The following conventions are observed: all heads of rules are assumed to
appear as p(Xi,..., X,), where Xi, ..., X, are distinct output variables and
n is the arity of p; a and @’ are arbitrary IDB/EDB predicates; g, is the it
argument of a; b, ¢, d, etc., are EDB predicates; X,...,.X, are the output
variables; U, V, W, elc., are local variables; Z is either an output variable or
a local variable. IT = {ry,...,r,} denotes a Datalog program. The relation
for the body of rule r;, R,, is a relation having an argument for cach distinet

variable appearing in r;. R, , refers to the j** argument of R,.
g 3 g

A finiteness constraint (FC) [RBS 87] is an integrity constraint of the form
a,,,.. .a,, — a,. This FC is satisfied by a (possibly infinite) relation a if
and only if @ associates a finite number of values for the argument «,, with a
tuple of values for the arguments ¢;,, . . .,q,,. Here k is the arity of the ve. If
k = 0, then a satisfies the FC if it has a finite number of values in the column
a,,. In case k = 1, the FC is called unary. Naturally, a satisfies a set of FCs
if it satisfies every FC in the set. Ramakrishnan et al: [RBS 87] have shown
that Armstrong’s axioms (see Figure 3.1), originally proposed for functional

dependencies (FDs) [Ull 89], completely characterize Fcs.

The notion of closure for a set of arguments S, w.r.t. a given set of FCs

C, is identical to the classical one corresponding to FDs. By regarding the

39

body of a rule r, as a relation R; (as in [KRS 88]), closure can be associ-
ated with a rule body as well. For example, consider a rule r: p(Xi, X,):-
a(U, X1),b(X1,V),p(V, X2) and the FCs {a;—az,bj—b;}. Then the closure
of {a;} applied to the relation a is {a;,a2} while the closure of {a,} applied
to the body of 7 is {a1, az, by, b2, p1 }. Both notions of closure are used in this

chapter. The particular notion used will be clear from the context.

The following notions were introduced in [KRS 88]. Let a be any rela-

tion and a,,...,a, any relations of the same arity. Then a,,...,q, form a
decomposition of a, denoted a = a;|...|a, if a = e U...Ua,. A partial
constraint (PC) is a statement of the form Fy|...|Fk, where each Fj in the

statement is a set of FCs on some relation a. A PC holds for a decomposition
a=a...|a, if for every i, 1 <¢ < j, there is a j; such that a, satisfies F,,
where 1 < j, < k. The notation a: a is used to mean that a is a PC for
the predicate a. Let I = {r,...,7} be a program together with FCs C for
its EDB predicates. Consider a fixpoint model M for II, satisfying C. Let
R, denote the relation in M for the body of rule r,, and let p{*} denote its
projection onto the arguments corresponding to the head predicate p of r;.
M associates the decomposition p = p{"|...|p®) with p. For II and C, the
constraints associated with 11, denoted C(II), were introduced in [KRS 88].
A program Il together with FCs C on EDB predicates satisfies a PC p:a for
its IDB predicate, provided in every fixpoint model M of II satisfying C, the

decomposition of p w.r.t. M satisfies a. This is written as C(II) | a.

Let a and @’ be any predicates of arity m and [respectively, m > [, such
that @’ = a[X] where X is a vector of [arguments of a. Then a mapping

7, relating the arguments of a to those of @', can be defined as follows:

40

7(a;) = a), provided that the j, h argument in X is a;, where | < i < m,
1 < ji <. In other words, this means that the i** argument of a is projected
onto the j;** argument of a’. Let f = a;,,...,a;,—a;, be a FC on a. By T(f)
we mean the projection of f onto @/, vis., 7(a,,),...,7(a;,)=7(a;,). Note that
if {r(a,),...,7(a;,)} € X, then f does not have a projection onto a@’. The
mapping 7 is extended to sets of FCs and to PCs in the natural manner. Since
the order of components of a PC is irrelevant ([KRS 88}), we write a = 8, for
PCs o and 3, to mean o and 3 have the same set of components. For pCs
a:a and a: 8, a and f are equivalent, a = 3, provided every decomposition

of any relation « satisfies o iff it also satisfies /3.

Let Il be a program and C be a set of FCs on the EDB predicates of 1l.
Then an argument is superfinite [KRS 88]if and only if the relation for p has a
finite set of values for the argument p, in every fixpoint model of II satisfying
C. Kifer et al. [KRS 88] propose a sound and complete axiom system for
reasoning about superfiniteness. The system consists of rules for PCs, rules
for projection dependencies (PRDs), rules for inclusion dependencies (INDs),
and rules for decomposition dependencies (DDs). The complete axiom system

is given in Figure 3.2.

They also propose an exponential time algorithm for detecting superfi-
niteness of predicate arguments based on their axiom system. The intuition
behind the decision procedure is quite simple. Feed in the PCs known to
hold for each predicate into each rule body, close it w.r.t. the axioms for

PCs, and project the result onto the head; whenever there are a number of

#Note that X is a vector. Clearly, it has an associated set of arguments. The containment here refers
to containment in this set.

41

PC-Rules: Notation: For sets of FCs F' and G, F by G is used to mean
the rCs in G are derivable by applying the FC-axioms on F'.

(1) Leta = Fy|...|F, and 8 = G4]...|Gm be any PCs. Then
from aand {F;ty. G, :i=1,...,n, 1 < ji < m} infer §.

(i7) Let @ be Fy|...|F, and 8 be Gy|...|Gm. Let v denote the
rC formed by taking all pairwise unions of the components of «
and B,ie., vy =FUG|...|F;UG,|...|FaUGn. Then from a
and f infer ~.

PRD-Rules: Let o be a PC, a and o be predicates, let ¢’ = a[X] and sup-
pose 7 is the mapping associated with this projection. Then

(z) PRD-OUTPUT: from a:a infer ¢': 7(a);

(i) PRD-INPUT: from d¢':7() infer a: a

IND-Rule: IND-INHERIT: from a’ C a and a:e infer a’: a.

DD-Rules:
(¢!) froma = ay|...|ay and ay:ay,...,a;m:an infer a:ay]...|am;
(it) from a = a4|...|a,, and a:ainfer a;:a, ¢ =1,...,m.

Figure 3.2: Superfiniteness Axioms [KRS 88].

42

rules defining the same predicate, derive the resulting PC for that predicate as
the disjunction of the PCs obtained from each of the individual rules. Repeat
this process as long as a PC not equivalent to a known PC can be derived for
some predicate of the program. Since the total number of non-equivalent PCs
is finite, the procedure must terminate. Now, an argument p, is superfinite

if and only if the constraint ¢—p; can be derived by the above procedure.

Next we extend Example 2.2 to illustrate the difference between the least.

fixpoint model and any fixpoint model.

Example 3.6 Let us update the flight relation from Example 2.2 by adding
a new fourth tuple to express the fact that there is a flight from Knowl-
ton to Knowlton. We now have the following tuples in the flight relation.

<#001, montreal, quebce, 1>
<#002, quebec, chicoutimi, 2>
<#003, chicoutimi, montreal, 3>
<#000, knowlton, knowlton, 0>

Suppose the IDB relation can_fly is not empty initially as it was previously
and that it now contains the tuple

can_fly(knowlton, montreal, 0).
Note that the least fixpoint model of can_fly is not changed by the updates
since it is derived by applying the rules to the EDB relation flight. However,
now there is another model which is also a fixpoint of can_fly. It contains all
the tuples in the least fixpoint model,

<montreal, quebec, 1>

< quebec, chicoutimi, 2>
< quebec, montreal, 3>

< chicoutimi, montreal, 3>

43

<monlreal, chicoutimi, 2>

<montreal, montreal, 3>
and the following additional tuples resulting from the non-emptiness of the
can_fly relation:

<knowlton, montreal, 0>

<knowlton, quebec, 1>

<knowlton, chicoutimi, 2>

<knowlton, monireal, 3> D

We illustrate that a query may be finite but not superfinite with the

following example.

Example 3.7 Let us use the flight relation and the non-empty can_fly re-
lation from the previous example. In this example, we use the daily_flight

relation and rules from Example 1.1 from Section 1.2.1, i.c..

can_fly(Dep, Arr, Date)
- daily_flight(Dep, Arr, Date).
can_fly(Dep. Arr, Date + 1)
:- can_fly(Dep, Arr, Dale),
daily_flight(Dep, Arr, Any_Date).

Let us assume that the only tuple in the daily_flight relation is <knowlton,
knowlton, 0>. By considering the query ?- can_fly(knowlton, C, T), we can
see that its answer contains no tuples in the least fixpoint model and an
infinite number of tuples in the non-least fixpoint model. Hence, it is finite

but not superfinite. O

44

For a rule 7, a set of arguments S, and Fcs C, we define cl(S, r,C) to be
the closure of S on the body of r, w.r.t. the FCs in C. When FCs are unary,
it makes sense to define the inverse closure, revcl(S,r,C), which is obtained
by reversing the FCs in C and applying the closure ¢! with the reversed F¢s.

Finally, the set of arguments {p;,...,ps} of pis denoted by ARGUMENTS(p).

3.3 A Simple Proof Procedure for Superfiniteness

As outlined in Section 3.2, the methodology of [KRS 88] for detecting super-
finiteness is to try to prove a corresponding FC from the constraints in C(I1)
using the SF-Axioms. In this section. it is first shown that for every deduc-
tion of a FC using the SF-Axioms, there is a deduction of this FC conforming
to a certain normal form. The significance is twofold: the normal form deduc-
tion keeps the proof procedure focused, and it will be used later to develop a
simple intuitive proof procedure based on rule/goal (R/G) trees for detect-
ing superfiniteness. Even though the results hold for arbitrary programs, for

simplicity, the algorithm presented in Figure 3.3 is for lincar programs.

It is straightforward to show the following.
Fact: A FC p: f is derivable from C(II) using the SF-Axioms iff Algorithm

3.1 returns “p: f is true” when the input is the program II and the set of Fcs

C. a

Definitions for the notions of Rule/Goal (R/G) trees and witness trees follow.

Definition 3.1 Consider a program II. A R/G tree T for a goal predicate

p(X1,...,Xn) defined in II, is any tree satisfying the following conditions:

45

Algorithm 3.1 NFD (Normal-Form Deduction for FCs)

Input: a program II, a set of FCs C and a FC p:pi;,..., P, =Py,
to be tested;

Output: a decision whether p:p;,,...,p,—p, is true;

begin

for all rules rx in [l do
project the given FCs on the EDB predicates onto Ry,
the relation for the body of ry;

p:a = &; [x ® is the PC with no components. */

repeat

(1) IND-INHERIT: for all predicates a and a’ such that a’ C a do
inherit the FCs (or PCs) on a onto ¢’ and hence,
into the relation for the body of r, R;

(2) for all relations Ry for rule bodies do
combine all PCs on Ry into a single PC
(using the union rule for PCs);
close each component of the PCs w.r.t. FC-Axioms;

(3) Prb-ouTPUT: for all relations Ry for rule bodies do
Project the PCs on Ry onto p™®;

(4) pD: Let pM:aqy,. .., and p'® :a; be the Pcs derived in step (3).
Then infer p:oy ... |ax;

(5) p:a = p:a ¥ p:ay|...|ak, where W denotes the pairwise
union of components of the two PCs according to the PC-Rules;

until there is no change (logically) to the PC for p;

output:

for all components Fy in p:a do
if Fyl/ p:py,... y Py, 7Py
then return “p:p;,,...,pi,—p, is false”;
return “p:p,,...,p;,—pi, is true”;
end.

Figure 3.3: Normal Form Algorithm

46

(1) T has the goal node labeled p(Xi,...,.X,) as its root, ()il v is a goal
node for predicate p, then it is either a leaf or it has & rule children vy, ..., vg,
corresponding to each of the rules defining p; the label of v, is the body of rule
r, after its head is unified with the occurrence of p at v. If uis a rule node
labeled with a rule occurrence r, then it has a goal child corresponding to
each IDB subgoal occurring in its body. (For the class of programs considered
here, this subgoal is always unique and it is labeled by the occurrence of p

in the body of r.)

Consider a branch B of a R/G tree T. The chase of B w.r.t. a set of
arguments {p,,,...,p, } is defined as follows: (7) every occurrence of the
variables X;,,..., X,, in B is chased; (77) a variable is chased if it occurs in
an argument by, of an EDB predicate b, b satisfies the v¢ b, ..., 0, —b,,, and
the variables occurring in b,,,...,b, are already chased. The set of variables

in B that are chased by applying rules (i) and (i7) finitely many times is

called the chase of Bw.r.t. {p.,,,...,p. }-

Definition 3.2 The branch B witnesses a FC p,,,...,p, — Py, denoted
B wit. p,,...,pi = pi, I X, is in the chase of B wort. {p,...,p.).
B witnesses a set of FCs if it witnesses every FC in the set. Consider a po
a = Fy|...|FnandaR/Gtree T. The tree T' witnesses ar, denoted T wil. e,

if for every branch B, in T, thereis a j,, 1 < j, < m such that I3, wil. I, .

The following notation is introduced to refer to subtrees of R/G trees in
a concise manner. The symbol T 1s used to denote any R/G tree for the

IDB predicate p. For such a tree, we let T, denote the tree obtained from

47

r

r B

R ‘R, R,
T, };,

’ = T

Figure 3.4: Structure of the R/G tree T and the trees T,, 7;, and T, i = 1,2.

T by deleting the edge corresponding to r, from the root, and its associated
subtree, for all j # ¢. Clearly, T; is a R/G tree for p". Note that the
root of 7, is p, and p has a unique child u, which is a r,-descendant, and
that u is labeled with the body of r, (after appropriate unification). The
subtree rooted at u is denoted as 7,. Finally, T' is the subtree rooted at
the first occurence of p below u (again, after appropriate unification). These
conventions and notations are illustrated in Figure 3.4, where a two rule

program is used for simplicity.

For cach rule r, with head p in II, a mapping m, is defined from the
arguments of p (corresponding to the head) to the arguments of R,. such
that m,(p,) = R, if X, appears in R;,. Similarly, the inverse mapping m;!
is the mapping from the arguments of R, carrying output variables to the
arguments of p. We define m'(R,+) = p, if R, x carries X,. Note that m;’

15 defined for all rules. We extend m; and m! to FCs and to PCs in the

natural way.

A conceptually simple procedurc for testing superfiniteness is to detect
if there is a R/G tree T for the IDB predicate such that each branch of T
witnesses the superfiniteness of the IDB argument. More formally, to decide if

aFe pipy,...,p,—p, holds. we simply test if there is a R/G tree witnessing

48

p(X1, X2, X3)

. 4

pX2, V, X1), d(X1, X3), c(V)
5 \
: .
v S 3
pIU Y, X1), b(X1 xz))

\

\}
\
/ r p(X1, V, U}, d(U, X2}, ¢(V)

b R

(U, X2, Vj, BV, X1), e(U) (V, V', X2), d(X2, X1), c(V)
/ \
p(U, Vv, V), bV, X2), ¢(U})

p(V', V', V), d(V, X2), (V")
Figure 3.5: Chased R/G tree for the program in Example 3.8
this Fc.

Next, the notion of an R/G tree witnessing an FC is made concrete with
an example.

Example 3.8 The first few levels of the R/G tree for the program
r . p(Xl,Xg,X:;) - p(U, Xl, Xz), b(Xz, Xg), C(U)
p(‘XhX2aX3) - P(Xg, V7 Xl)a (XhX'%)’ C(V)

with FCs b;—b,, d, —d;, and ¢—c,} is shown in Figure 3.5

2 3.5. The chase of
¢ in the left-most branch of the tree is indicated by arrows and it is shown
that ¢—pa, i.e., p3 is superfinite

49

The following theorem establishes the equivalence of the two systems for

verification of superfiniteness — SF-Axioms and witness trees.

Theorem 3.1 Let Il be a Datalog program and let a be a PC. Then C(II) |=
a iff there is a R/G tree T for Il (with root p) such that T wit. c.

Remark: Only the PCs on the IDB predicate p are considered here. Also, to
simplify the notation in the proof, assume without loss of generality that II

consists of just two (recursive) rules, ry and rs.

Proof:

(«=): We prove sufficiency by induction on the height of T'. We say there is
a FC-path from X; to X, in a branch B of a R/G tree if X, is in the chase of
B w.rt. {X,}.

Base Case: Height of T is 1. Let « be a PC on p.
T wit. o« = 3 a pc F1|F; = a such that
Y branch B in T, B wit. F, for some j € {1,2} (by Def. 3.2).
Without loss of generality, suppose B; wit. F,, i = 1,2. Then
VY FC p,—pi € F,,
3 a Fc-path from X, to X in B; (by Def. 3.2).
Thus, V FC pj—pi € Fi, we have C(I) F R, : m;(p;)—mi(ps) (by IND-
INHERIT).
= C(I) + pt: p,—pi (by PRD-OUTPUT)
Thus, since these arguments apply to B, and B,, we have

C(MF p: F, i=1,2, and hence C(Il) p: F,|F, (by DD).

50

= C(I) F a. (by completeness of SF-Axioms).

Induction: Suppose for all R/G trees T" with root p and height < k. if T' wit. a
then C(IT) - a. Let T be a R/G tree of height k 4+ 1 with root p such that
the subtree of the root corresponding to r; is 7, of height no more than &,

. = 1,2. Recall the notation developed for R/G trees above (sce Fig. 3.4).

T wit. « = 3Ja,,as such that

() @ = a; | az and

(21) T, wet. oy, 1 = 1,2. (by Def. 3.2)
T; wit. a; = 7; wit. my(«;) (by Def. of mapping m,)
= J a set of FCs F, on the body of r, and a PC ! on p such that

(a) T* wet.), and

(b) the FC paths in T* witnessing ! together with the ¥c-paths corre-
sponding to F, in the body of r, will establish the FC-paths necessary for 7,
to witness m;(a,), : = 1,2. This implies that C(INU {R, : Fi,p: !} F R, :
m,(a,). (Note that the FC-rules and IND-INHERIT are used for this deriva-
tion.)
Since the height of T is at most k, by the induction hypothesis we have
CDkFp:al,i=1,2 .

= C(II) F R,: m\(a,), i = 1,2, (by IND-INHERIT and FC rules)

= C(I) F p: @, i = 1,2, (by Def. of mapping m, and PRD-OUTPUT)

= C(II) F a;]ag, (by DD).
and hence, C(Il) F a (by completeness of SF-Axioms).
(Note that the derivation allows unnecessary components to be included in

a; and aj, however the equivalence of o, |a; and a can be deduced using the

51

completeness of the SF-Axioms.)

(=>): We prove necessity by showing that if C(IT) F Fi|...|F,, then there
is a R/G tree T such that every branch B in T witnesses F;, for some ¢,

1 <i < m. We first prove the following theorem.

Claim: C(Il) v p: Fy|...|F, only if there exists an integer N such that
for all strings r,, ...7;, of length N over {r1,r2}, the following is true: if
r,, is the only rule applied on iteration 7 of the Normal Form Deduction
(Steps (1) to (5)), then a set of Fcs F' will be derived such that F' F Fj, for

some |, 1 <1 < m. In this case, we say that the stringr,, ...r,, captures Fj.)

Proof of Claim: We use induction on the number of iterations. We use the
notation S F<x F to mean that F was derived from S in at most k iterations

of Steps (1) to (5) Normal Form Deduction.
Let o = Fy|...|F, be derived by applying all rules on each iteration.

Buase Case: The number of iterations is & = 1. The claim follows trivially by

considering the strings r, and r, (of length 1).

Induction: Suppose the claim holds for some N after k iterations. Note that
a PC a, derived on the k + 1'% iteration could have been derived from a PC 7,
derived on the k" iteration and a PC 3, derived on the iteration k + 1. (See
Step (5) of NFD). Thus a = yW 3. We need to show that every string of some
appropriate length captures some component of a = y ¢ 3. By the induction
hypothesis, there exists a N such that all strings of length N capture some

component of 4. If we can show that there is such an integer Ny such

52

that all strings of length N, capture some component of 4, then it follows
from the properties of FCs and the Normal Form Deduction that all strings

of length maxz(N, Niyy1) do indeed capture some component of o = y W 3.

Suppose S is derived on iteration k + 1.
= 3Jf, B2 such that

(1) B = pilB2, (by DD)

(17) C(IT) F<k p) ¢ By and C(IT) i p!? : By, (by NFD)
= 3p1, B3, such that

(1) C(IT) k<x Ry : By and C(I1) F¢i R, : B33, and

(43) Ry : By F pV: By and Ry : B4+ p@ : By, (by PRD-OUTPUT)
= 3 A" such that

(1) C(IT) b<x p: B", and

(ity p: B"U{< FCs for Ry >} R, : 3}, and

p:B"U{< Fcs for Ry >} + Ry : B5. (by IND-INHERIT).

Here, < FCs for R, > refers to the set of FCs derived for the relation for
the body R, from the FCs C given for EDB predicates, via IND-INHERIT. By
the induction hypothesis, this implies there is an integer Ny such that cach
string of length Ny captures some component of 5".
= each string of length N captures some component of 3] and some com-
ponent of 3}
= each string of length N, + 1 with prefix r; captures some component of
B and each string of length Ny + 1 with prefix r; captures some component
of .
= each string of length Ny 4+ 1 captures some component of f§; or some

component of f,.

= J an integer Ng;; = N+ 1 such that each string of length N4y captures

some component of f. This was to be shown to prove the claim above.

We have shown that if C(I1) F Fy]|...|F,, then there is an integer N such
that each string of rules r; and r; of length N captures some component F;,
where 1 < ¢ < m. It is straightforward to show that the complete R/G tree

of height N witnesses the pC Fy|...|F,. 0

The characterization above does not seem to suggest an effective proce-
dure for superfiniteness. However, because of the direct correspondence to
provability in the axiom system of [KRS 88], it can be shown that there is a
bound & on the height of R/G trees, such that if there is a R/G tree witness-
ing a PC a, then there is a R/G tree of height at most h such that T' wit. a.

Thus, the proof procedure based on R/G trees is effective.

3.4 Compositional Programs

Compositionality for linear programs together with unary Fcs on EDB pred-
icates are considered in this section. The notion of compositional programs
is proposed and it is shown that compositionality can be tested in polyno-
mial time. Compositionality simplifies superfiniteness analysis somewhat.
An algorithm for determining the superfiniteness of compositional multi-rule

programs is developed in the next section.

Before discussing compositionality in detail, it is necessary to introduce

SF-trees. SF-trees are an abstraction of R/G trees formed by replacing the

94

p(X1, X2, X3)

/

P K1, X2), bz, X3

P(U. U, X1), b(X1, X2), ¢(U)

Figure 3.6: Chased R/G tree for the program in Example 3.9.

V: Q

P, U, U), by, XA), (U

node labels of the R/G tree by the sets of arguments needed to show a certain

FC holds. The idea behind SF-trees is illustrated by the following example.

Example 3.9 Consider the following program introduced in Example 3.8.

r: p(X1, X2, X3) :- p(U, Xy, X2), (X2, X3), c(U)

ro: p(X1, X2 X3) - p(X2,V, Xy). d(Xy, X3), ¢(V)

FCs: {by—by,d1—dy, ¢p—¢1}
It can be verified that ¢—pj3 holds for this program using the R/G tree Figure
3.6. The arrows in the figure show the path taken when the chase procedure is
applied. Note that superfiniteness information is propagated once downward
and once upward in each branch: that is, the path, as indicated by the arrows,
traverses each level of a branch at most once in each direction in order to

chase a variable. Such programs are called compositional programs.

A formalism is presented next to make the kind of reasoning performed in
Example 3.9, in order to detect compositionality automatically. An operator

7, is associated with a recursive rule r and a set of FCs (. Intuitively, 7, tells

59

us (i) which arguments of the subgoal occurrence of p® (in the context of a
R/G tree) will become superfinite given that certain arguments in the goal
occurrence are superfinite and (i7) which are the arguments of the subgoal
p®, at least one of which should be proved superfinite if the given argument

(or one of a given set of arguments) is to be proved superfinite for the goal

-

Formally, let F and G denote sets of arguments of (the goal occurrence
of) p. Associated with each rule r, there is a mapping ava from the head

arguments to the body arguments of r. More precisely,

k
ava({p,,..-,pi }) = U arg(X,,)
J=1

Intuitively, ava identifies the set of body arguments where Xj,,..., X,
appear. Then we define =.(F,G) = (F',G"), where F' = cl(ava(F),r,C) N
ARGUMENTS(p), and (i) G’ = ¢, if cl(ava(F),r,C) N revel{ava(G),r,C) # ¢,
(¢1) otherwise, G' = revcl(ave(G),r,C)N ARGUMENTS(p), if this set is non-
empty, and (2i7) G' = {L}, otherwise. Wherever G’ = {1}, it signifies the
original goal of proving any argument in G superfinite, given the arguments
of F' are superfinite, will fail. With each occurrence of the (sub)goal p in
a R/G trec we can thus associate a pair of sets of arguments (F,G), where
(7) F is the set of arguments of the occurrence of p which are known to be
superfinite and (2:) G is the set of arguments of this occurrence at least one of
which should be proved superfinite (in order to prove the original argument,

say p,, at the root of the tree superfinite). Note that in general, the pair

5Here, the subgoal occurrences are those obtained by an expansion using the rule r.
8By a goal (subgoal) p we mean the particular occurrence of p.

56

(F,G) associated with a node in a R/G tree makes use of the information

available in the entire context of the associated branch.

A function is associated with each branch of a R/G tree 1" as follows.
Let A denote ARGUMENTS(p). Let B be a branch in T corresponding to the
sequence of rule applications r;, - --r, . Then the function associated with
Bis fg : 24 x 24524 x 24, The image fp(F,G) is obtained by actually
constructing branch B of the R/G tree and determining () which arguments
of p (in the leaf occurrence) are superfinite given the arguments I are super-
finite (in the root occurrence of p), and (¢¢) which are the arguments of p in
the leaf occurrence at least one of which must be proved superfinite, if one
of the arguments in G is to be proved superfinite (for the root occurrence

of p).

Example 3.10 Consider the rule r: p(X;, X3, X3) :- p(X2, V, X}), b(Xy, X3).
¢(X;) with the Fcs C = {¢—cy, by —by}, and the branch r - 7. Then for the
pair (¢,p3), frr(®sp3) = ({P1,p3},¢). Indeed it can be seen in Figure 3.7
that the output variable X3 is chased in the R/G tree corresponding to this

branch. In this case it is easy to see that for any state (F, (), f;.(F, (/) =
(7 (F, G)).

As another example, consider the rule s: p(X;, X;,X3, X4) - p(X3,X),
Xz, U), b(X3, Xy), ¢(U, Xy) with Fcs C = {b;—b,, ¢;—¢2} and the branch s-
s-s. For the pair (p2,p4), it can be seen that fo...o(p2, ps) = ({P1, P2, P3, Pa}, 9).

Note my(ms(ms(P2,p4))) = ({2}, {P1,ps}) which is not equal to [,., 4(p2, pa)-
O

Y

(P2; P4) p(X1, X2, X3, X4)

:P3) X1, X2, X3) s |

r I (P3; 1) p(X3, X1, X2, U), b(X3, X4), c(U, X1)
®PuPs) p(X2 V, X1), (X1, X3), c(X2) s

r P1:P2,P4) px2, X3, X1, U), X2, U), c(U', X3)
(P193:9) PV, V', X2), B{X2, X1), c(V) s |

®2P1,P3) p(X1, X2, X3, U"), b(X1, U'), c(U", X2)
Figure 3.7: R/G trees with the associated F and G sets for the programs in
Example 3.10.

The observations made in Example 3.10 are formalized as follows. A de-
composition of a branch B is any pair of branches B;, B; such that B =
By - B,. A branch is compositional if for any decomposition of B = B; - By,
we have fy = fp,-fp,. A proof tree is compositional if every branch of the
tree is compositional. A program is compositional w.r.t. a set of FCs if every
proof tree generated by the program is compositional. FE.g., consider the pro-
gram consisting of the rules ry : p(X3, X2, X3) - p(U, X1, X2), (X2, X3),¢(U)
and 7 @ p(Xy, X2, X3) - p(X2,V, X1),d(X1, X3),¢(V), together with the FCs
{by—=b,y, dy—dy, d—c,} from Example 3.9. Figure 3.8 shows the F and G
sets associated with each node in parentheses with the sets separated by a
semi-colon. The set associated with the root is (¢, p3) which corresponds to
the FC ¢—py. It can be shown that since every branch is compositional, the

program is also compositional.

Intuitively, compositionality implies that superfiniteness analysis can be
carried out using information locally available at each node in the R/G tree.
This means that even though the pair of sets of arguments associated with
a noc~ could in principle make use of the information available in the entire

branch, this information can be captured just by using the local information

58

@:pY) p(X1, X2, X3)

I)
(p1; p3) (P2; p3)

p(U, X1, X2), b(X2, X3), c(U) p(X2, V, X1), d(X1, X3), ¢(V)

/r/ Z ‘\
(P1,p2; P3) (p3; p3) \
p(U’, U, X1), b(X1, X2), c(U’)

\
)
p(X1, v, U), d(U, X2), c(V) '
[
(p1,p2,p3: P3) / \ (P1,p3; P3) A
p(u”, U’ U), b(U, X1), c(U") p(u. v, U), dU', X1), ¢(v) __——"
/ X
(p3; p3) (P1.,p2; p3)
p(U, X2, V), b(V, X1), c(U) p(V, V', X2), d(X2, X1), (V')
/ \
(P2,p3; p3) (p1,p3; P3)
,D(U', V, V'), b(V', xz)' C(U') p(V', V", V), d(V. X2), C(V")

Figure 3.8: R/G treefor the program from Example 3.9 with the associated
F and G sets.

59

at the node in question.

Before algorithms can be given to detect superfiniteness in compositional
programs, it is necessary to show that compositionality can be efficiently
detected. Since compositionality is a semantic property, a syntactic charac-
terization is needed to obtain an efficient test. The first step is to define AVF
graphs’. In the following <a, b> indicates a directed node from a to b and
(a,b) indicates an undirected node incident on nodes a and b. It is assumed,
without loss of generality, that the local variables in the different rules of a
program are distinct. The AVF graph G for a program II has three types of
nodes: wvariable nodes corresponding to the local and output variable in II;
argument nodes corresponding to the arguments in II; and FC nodes corre-
sponding to the given FCs. For each variable Z that occurs in an argument
a, in the body of a rule r in II, there is an wdentity edge (a,,Z) labeled r in
(i. For each argument p; there is a unification edge < p,, X, >. For each FC
Ayys -« 5 0y, =y, let f be the FC node associated with this FC in G. Then G
has fe edges <a,,, f>,...,<a,,f>,and < f,a;,> in G. For example, Fig-
ure 3.9 shows the AVF graph for the single rule program p(X;, X;, X3, X4)
- p(X3, X1, X2, U), b(\3, Xy), (U, X;) and the FCs {b;—+b;,¢1—¢c2}. Since

there is only one rule, the rule labels have been omitted in the diagram.

Next, an AVF graph traversal algorithm is given for determining if I is
compositional. The AVF graph of the two-rule program {ry,rz} is used in
the following algorithm and theorems, although the results hold for multi-
rule programs. In this context, the notion of a path is generalized as follows.

A pathin an AVF graph G is a sequence of nodes <vy,..., v, > such that for

TAVF graphs are an extension of Naughton's AV graphs [N 89].

60

Xa 4 U - = 3> unification edge
— f{c odge

—— ldentity edge

P, P, Py Ps

Figure 3.9: AVF graph for p(X;, X3, X3, Xy) - p(X3, X1, X2, U), b(X3, X4),
c(U, X1) and the FCs {bj— bz, c1—c2}.

t, 1 <7< m, G has an edge incident on v, and v,4, satisfying the following
conditions: (i) the edge is the unification edge <w,, v,41> or the unification
edge < v;41,v,>; (i) or it is an identity edge (vi, v,41); (222) or it is an F¢
edge <v,,v,41>. Thus, unification edges (a.. rally, identity edges) can
be traversed in either direction, while FC edges must always be traversed in
the forward direction. The number of allernations associated with a path
is the number of times the path alternates the directions it traverses any
unification edge(s). A path is said to be k-alternating if it has an alternation
number k. The following theorem, which is proved in [LN 92a], shows that
compositionality of a program can be characterized in terms of the number of

alternations in any path connecting two output variables in its AVF graph.
Theorem 3.2 [LN 92a] Let Il be a two-rule program. Then Il is compo-

sitional iff its AVF graph has no 2-alternating path connecting any outpul

variables. 0

61

Example 3.11 To illustrate the concept of compositionality, consider a sim-
ple program II, with just one rule r.
r: p(X1, X2, X3, X4) - p(X3, X1, X2, U), b(X3, X4), (U, Xi).

The given FCs are {b;—b,, c;—c;}. Figure 3.9 shows the AVF graph for this
sirup. There is a 2-alternating path < X3 — bj— fo—b; — Xye—py — U —
a—fi—es— Xy —pp—=Xo—p3— Xa— b= fo— by — Xy=pg — U — 1~
fi—cz — X; >. The unification edges traversed corresponding to the alter-
nations are X3py. p— Xz, and X,—p, (again). It can be seen that for the

branch » - r - 7, frrr(d.ps) = (&, {P1,P2,3,p4}), while 7 (7.(7(&,p4))) =
(é, {p1,ps}). Thus, Il is not compositional. o

The following result. established in [LN 92a], shows that compositivnality

can be tested in polynomial time.

Theorem 3.3 [LN 92a] Given a linear program Il together with unary FCs
C' on its EDB predicates, it can be decided in polynomial time whether 11 is

compositional in the presence of C. m]

The proof makes use of two-alternating paths and shows that I is com-
positional in the presence of C iff the corresponding AVF-graph is free from
two-alternating paths. This latter property is shown to be decidable in poly-

nomial time.

It should be remarked here that when there is an alternating path with a
higher number of alternations than 2, there necessarily exists a 2-alternating

path. Thus, while the root cause of compositionality is an alternating path

62

Figure 3.10: AVF graph for the program 11 in Example 3.12.

with number of alternations > 1, it is sufficient to test for the existence of

2-alternating paths when testing compositionality.

Example 3.12 Consider the two-rule program Il = {r|,r2}, where

ri: p(X1, X2, X3) - p(U, X1, X2), b(X2, X3), c(17).

ro: p(X1, X2, Xa) - p(Xa,V, X1),d(X1, X3), (V).
Let the Fcs be C = {¢—c),b— by, di—d2}. The AVF graph for 11 is given
in Figure 3.10. The AVF graph for this program has no 2-alternating paths

connecting any distinguished variables and the program is compositional. O

3.5 Multi-Rule Programs

In this section, the class of linear programs with unary FCs satisfying the
compositionality property is considered. A technicue based on finite state
automata for superfiniteness analysis is developed. It is shown that an au-
tomaton can be associated with each program (together with ¥Cs) and that

this automaton completely captures the superfiniteness characteristics of the

63

program w.r.t. its FCs. The main result in this section is that superfiniteness
of predicates defined by programs in this class can be tested in polynomial
time by appealing to a property termed permissiveness of finite state au-
tomata. Both here and in Section 3.6, attention is restricted to programs con-
taining only recursive rules for the following reasons. Firstly, non-recursive
(also called exit) rules can be handled with only minor modifications (see the
end of Sections 3.5 and 3.6). Thus ignoring these rules allows attention to be
focused on the heart of the problem. Secondly, notice that predicates defined
by programs without exit rules are trivially empty and hence finite under the
least fixpoint semantics. However, they are not necessarily saperfinite. E.g.,

in p(X) :- p(X), the relation p is not superfinite.

The property of permissiveness of (nondeterministic) finite state automata
(nfa) is formulated as follows. Intuitively, a nfa is permissive if, for every
string over its alphabet, either the string is accepted by the nfa or there is a
way of completing the string such that the resulting string is accepted. More
formally, let M be a nfa with an input alphabet X. A string w € £* is called
good if (1) w is accepted by M, or (#7) w is the prefix of some good string in
Y= (i) wis good iff it so follows from finitely many applications of (7)-(i7).
Finally, a nfa M is permissive if every string over the alphabet ¥ is good

w.rt. M.

Permissiveness of a nfa can be tested in time polynomial in the size of the
description of the nfa. This can be accomplished by the following pebbling
algorithm. Consideranfa M = < S,%, I, F,6>, where S is the set of states,
¥ ={aj....,an} is the alphabet, I C S is the set of initial states, F' C S is

the set of final states, and § € § x £ xS is the transition relation, describing

64

the behavior of M. Suppose that for each letter a, € ¥, there are |S| pebbles
of type i, 1 < i < m. Initially, each final state is pebbled with m pebbles,
one from each of the m types above. At any stage, a state is pebbled with
at most one pebble of each type. The goal is to pebble as many states of
the nfa with as many pebbles (of different types) as possible. The criterion
used for pebbling is the following: a (non-final) state s is pebbled with a
pebble of type 7 iff there are (not necessarily distinct) states sy,...,8, such
that (i) 6(s, ai,s;) holds for all 1 £ j < m, and (#7) s, is pebbled with a
pebble of type j, 1 < j < m. The algorithm above can be expressed con-
cisely by a Datalog program Ii;. The program makes use of EDB predicates
final(X) meaning X is a final state of M, letter(L) asserting that L is let-
ter in £, and delta(X, L,Y) asserting that the transition 6(.X, L,Y), where
X,Y are states and L is a letter from the alphabet, holds for M. Finally,
distinct(L,,...,Ly) asserts that the letters Ly, ..., L,, are distinct. The pro-
gram recursively defines an IDB predicate pebbled(X, L) meaning that state
X of the nfa has been pebbled with a pebble corresponding to the letter L.
The program assumes that the alphabet has m letters and that the DB
relations are properly initialized. For convenience, a letter of the al)."-abet
and its corresponding pebbie type are used interchangeably. For example,
in rule r;, L is both a letter and a pebble of the corresponding type. The

program II; follows.

rq: pebbled(X, L) :- final(X),letter(L).
rqy: pebbled(X, L) :- letter(L),delta(X, L, Y1),...,dclta(X, L, Y,),
pebb",ed(yla Ll)a e ,PEbbl(:d(Ym, Lm)s

letter(Ly),...,letter(Ly,), distinct(Ly,. .., Ly).

A state s of the nfa is L-pebbled where L is a letter from the alphabet,
when s is pebbled with a pebble of type corresponding to the letter L. Sup-
pose that the program [I; is runon the input consisting of the EDB relations
properly initialized to correspond to the states and transitions of the nfa, and
its least fixpoint is computed. A state s is L-pebbled according to II; if the
least fixpoint model contains the tuple pebbled(s,L). We have the following

theorem.

Theorem 3.4 For anynfa M =< S,5,[,F,6>, withl = {a,...,am},
M is permissive if and only if there is an initial state s € I such that s is

L-pebbled for all L € X, according to I1;.

Proof: Call a state s of the nfa L-good, for a letter L, iff for each string with
a prefix L, either the string will take the nfa to a final state starting from
state s, or it can be completed into a string which will do so. We prove that
a state is L-good iff it is L-pebbled. by an induction on the number of steps
n in the bottom-up evaluation of II; needed to infer pebbled(s, L). This will

prove the theorem. We begin by proving sufficiency.

Base Case: n = 1. Since ry is the only applicable rule, s must be L — good.

Induction: Assume the result for all states s and and letters L such that
pebbled(s, L) € TI§(D), where I1§(D) is the result of k iterations of bottom-
up evaluation of I1; applied to D (defined on page 27), which represents the
EDB relations corresponding to delta, letter, final, etc. Suppose pebbled(s, L)

66

€ I¥*+1 _11%. Then there exists sq, ..., s, such that 8(s, Ly s)N. . .A8(s, L, sp)
is true. Beginning at state s, consider an input string ¢ € £* such that
o(1) = L, where o(7) is the ¢** letter in 0. Let ¢(2) = L,. Then, by the
above, 6(s, L, s;) is true and, by rule r, and the induction hypothesis, s, is
Li-pebbled. It follows that s; is L;-good and there exists an accepting path
for the string obtained as follows:

< 8,8,, P; > where P; is the accepting path for the string (2)...o(n) starting
from s;. Note that since s; is L,-good, there must be such an accepting path.
Thus, s is L — good. Since o is an arbitrary string, the result holds for all

strings o and it follows that M is permissive.

The proof of necessity is obtained by a similar argument, essentially obtained

by reversing the above steps. O

It is well known that the least fixpoint model of a Datalog program can be
computed in polynomial time in its input size. Thus it follows trivially that
permissiveness of nfa can be decided in polynomial time using the pebbling
algorithm. Direct efficient implementations of the pebbling algorithm are
possible, however, using a logic program highlights the reasoning behind the
characterization. This is best done using a Datalog program for implementing
the pebbling strategy. The next goal in this section is to relate superfiniteness
of predicates defined by compositional linear programs to the permissiveness

of the corresponding nfa.

Definition 3.3 Nfa associated with a program. Consider a compositional
linear program consisting only of the recursive rules Il = {ry,... 7}, to-

gether with a set C' of unary FCs for its EDB predicates. Assume that p

67

is the IDB predicate defined by Il and that it is of arity n. Suppose it is
desired to find if the predicate p satisfies a FC p;—p, in all fixpoint models
of Il satisfying the FCcs C. Then the nfa associated with the program and
the FCs is defined as follows. The nfa is given by Ny = <8§,%, {so}, F, 6>,
where S = {(p,pr) | 1 S Lh < n}U{(é,m) | 1 <1 < n} is the set of
states, ¥ = {r,...,rx} is the alphabet, so = (pi,p,) is the initial state,
F = {(pi,p) | 1 <1< n}isthe set of final states, and the transition relation
6 is defined as follows®. We say é(py, pu,7q,3) holds provided at least one of

the following holds:

e s is of the form (pi, pm), 7ry(pu, Pv) = (F',G'), and p; € F', p,, € G', o1
e s is of the form (@, pm), 71, (pu,) = (¢,G’), and p,, € G', or

e s is of the form (pm, pm) for some m, and =, (p.,p.) = (F', 9).

For the purpose of states, ¢ is viewed just as a symbol, corresponding to the
empty sct of arguments. Note that in the special case where 7, (pu,py) =
(F',{L}), we essentially leave § unspecified, and this may be conceptually

regarded as leading to a trap state in such cases. ;

Additional notation is needed before presenting the next result. Let Tl =
{ri,...,rx} be a linear program defining a predicate p, and suppose that
rule r, is of the form p :- a,,...,ay,p. Then the program II"™ is defined
to be the program obtained by transforming II as follows: (i) introduce a

new predicate p' of arity n, the same as that of p; (i7) rewrite each rule r,

¥The notation §(pu,pv,r, P, pm) is used to mean §{sy,r,s2) where 83 = (pu,py) and s2 = (p;,pm).
When convenient, the details and form of the states s, are suppressed.

68

in II into a rule r}, by replacing occurrences of the predicate p in the head
and body of r, by p'; and (2i7) let 7o be the rule p :- ay,...,ay,,p', which
is obtained simply by replacing the predicate occurrence p in the body of r,
by p'. Finally, IT" is the program {ro,7},...,7}}. Indeed 1I" is the program
corresponding to the relation p!*) in the decomposition of p, introduced in

Section 3.2. Qur next result is

Theorem 3.5 Let I1 = {r1,...,r} be a compositional linear program de fin-
ing a predicate p, together with a set of unary ¥Cs for its I'DB predicates.
Then p satisfies a FC p;—p, in every firpoint model of 11 satisfying the ¥os
C, i.e. C(I1) = pi—p;, iff the nfa Ny associated with this program and scl

of FCs, with an initial state (p,,p,), is permissive.
The following technical lemma is needed to prove the theorem.

Lemma 3.6 Let I1 be a linear compositional program defining an IDB pred-
icate p together with unary ¥Cs on its EDB predicates. Suppose thal in the
nfa Ny associated with I1 there is a state s = (p,,p,) such that §(s,s1),. ..,
6(s,sm) holds for exactly the sltates sy = (PP)seeos Smo= (Poypy). Sup-
pose also that Ty is a R/G tree for the program 11" and T" is the subtree
of Ty, asseciated with rule ry,, according to the notation introduced in Section
3.3 (see also Figure 3.4). Then Ty, witnesses the FC p,—p, if and only if T

witnesses the PC pi, —p, |- |p,—py, -

Proof. Recall the operator ., associated with rules. Suppose that =, (p,, p,)
= (F,G). By construction of the nfa Ny, we have that F' = {p,,...,p,}

and G = {p,;,...,py}-

69

T, witnesses p,—p,
& V branch B of T*, the branch r, - B witnesses p, —p, (from Def. 3.2)
¢ YV branch B of T*, B witnesses one of the FCs p,, —pj, ,-- ., pi,—P;, (by
compositionality of IT)

& T* witnesses the PC p;, —p,, |- - - |pi,—Dy- 0
The proof for Theorem 3.5 can now be given.

Proof of Theorem 3.5. Since the nfa is permissive iff its initial state is suc-
cessfully pebbled with pebbles for each letter of the alphabet (Theorem 3.4),
it is convenient to relate the program to the pebbling algorithm. In this
context, we shall show the stronger result that a state (p;,p,) of the nfa is
ry-pebbled iff C(I17) |= pi—p,. (Here, ry is a letter in the nfa’s alphabet, and
corresponds to a rule in 11.) To show the above, we note that by Theorem
3.1 it suffices to show that the state (pi,p,) is ry-pebbled iff for the program

II™s there is a R/G tree T, witnessing the FC p;—p,.

(=): Suppose that a state (p,,p,) is r,-pebbled. We should show that
C(I1"7) |= p,—p,. We prove this by induction on the number of steps needed

to pebble a state, and we induce simultaneously on all rules in the program.

Base Case: The state (p,,p,) is pebbled in 0 steps. This is possibl? iff it is a
final state, t.e. iff i = j. The trivial R/G tree consisting of one node labeled
p(X1,...,X,) witnesses this trivial FC.

Induction: Assume that for all states (p,,p,) and for all rules r4 € II, if the
state is ro-pebbled in m or fewer steps, then there is a R/G tree T, for II™
which witnesses the FC p;—p,. Suppose that the state s = (p;,p,) is 7,

pebbled in m + 1 steps. This implies there are states s = (pi,, pry)y -, Sk =

70

(i, Pr,) such that for each ¢ = 1,...,k: (i) 8(s, 7y, 34) holds, and (ii) s,
is ry-pebbled. Consider any s, = (pi,,pa,). Clearly, s, is rg-pebbled in
at most m steps. By inductive hypothesis, we have that there is a R/G
tree T, witnessing the FC p;,—p;,. Consider the R/G tree T" obtained by
taking the trees Ty, ¢ = 1,...,k, and identifying their roots. Clearly, T"
is a R/G tree for the program II and by construction, it witnesses the pc
P, —Pn, | -+ [P, —Pr,. Now, construct a R/G tree T, as follows. (1) The root
of T, is a node u labeled p(Xi,...,X;) (2) Node u has a unique rule child
v corresponding to the rule r; and labeled by the body of 4. (3) Node » has
a unique goal child which is the root of the tree 77 above. It is easy to see
that T, is a R/G tree for the program II"s. An application of Lemma 3.6 will
now reveal that 7' will necessarily witness the FC p,—p,. This completes the

induction.

(<): We prove the sufficiency by induction on the height of the R/G trees
T, for the program II'v witnessing FCs. For convenience, we define the height
of a R/G tree as the number of goal nodes ir the longest branch of the tree,

minus one. Let s denote the state (p,,p,)-

Base Case: If the height of 7} is 0, clearly T, witnesses only trivial FCs. Triv-

ial FCs correspond to the final states of the nfa and they are r-pebbled, for
all rules 7 € II. So consider a tree Ty of height 1. Let T, witness the Fc
pi—p;-

Since the height is 1, T, has a unique branch B,, and B, wil. p,—p,.

= cl(ava(p,),rq, C) Nrevel(ava(p,),ry,C) # ¢.

= 3 a final state sy = (py, p) for some [,

such that é(s, r,,ss) holds for Ny.

71

=> s will be ry-pebbled (sce the pebbling algorithm expressed by the Datalog

program II, in the beginning of this section).

Induction: Suppose that for all R/G trees T, for programs I1"¢, of height no
more than m, whenever T, witnesses a FC p;—p,, the state s = (p;,p;) is 74-
pebbled. Assume that Tj is a R/G tree of height m+1 for I1"? and that it wit-
nesses the FC p,—p;. Suppose that 7, (p., p;) = ({Prs- - -, P}y {Prys -+ < PR })-
Then by Lemma 3.6, the subtree T? of T, witnesses the PC p;, —pp, ||
m,—pr, (recall the notation for various subtrees of R/G trees, developed in

Section 3.3).

By Theorem 3.1 this means that every component p'9) of the decomposition
p=p"|--|p!¥, associated with the relation p defined by the program II"s,

salisfies some component, say pi,—ps,, of the above PC.

= the subtree (T'%), of the tree T? (see Section 3.3 and Fig. 3.4) witnesses

the FC py,—pa,, for g =1,... k.

By induction hypothesis, this implies 3 states s, = (pi,, ps,), such that:

(1) 0(s,7q,8,) holds, and (iz) s, is ry-pebbled, for g = 1,..., k.
= the state s will be r,-pebbled, according to the pebbling criterion (also
see the Datalog program II, at the beginning of this section). This completes

the induction and the proof. 0

Discussion: Theorem 3.5 reduces superfiniteness analysis of compositional
linear programs in the presence of unary FCs to that of testing the permis-

siveness of an associated nfa, a property decidable in polynomial time. It is

72

possible to improve the efficiency of the algorithm for deciding superfinite-
ness significantly, by limiting the construction of the nfa to those states that
are reachable from the initial state, and by having only one final state, say
(i, p1), for any I. Finally, the effect of exit rules is to add extra transitions
to the nfa. For example, an exit rule r.: p :- e will cause a transition from a
state (pi,p;) to a final state iff cl(ava(p;),re,C) N revel(ava(p,),re, C) # ¢.
Otherwise it causes a transition into a trap state. This minor detail can be
easily incorporated into our technique above. To conclude this section an

example is given demonstrating the technique.

Example 3.13 Consider the program Il consisting of the rules

r1: p(Xy, X2, X3) - p(U, Xy, X3), b(X2, X3), ¢(U), and

ro: p(X1, Xa, Xa) - p(X2,V, X)), d(Xy, Xa), (V).
We have already seen in Section 3.4 that Il is compositional. Suppose we
want to test if the argument p; is superfinite. The nfa associated with this
program is the following. For simplicity, we indicate only those states which
are reachable from the initial state, and retain only one final state. The
state set is S = {so = (&,p3),81 = (P,p3)ys2 = (P2, pa)y sy = (pnps)},
where sq is the initial state and s; is the final state. The transition relation
156 = {(s0,71,51), (S0,72,52), (S1,71,81), (51,71, 82), (81,72,8¢), (82,74, 8/),
(82,72,81), (82,72,82)}. (See Figure 3.11.) It can be verified by running the
pebbling program II; on this nfa, that the initial state so will be r,-pebbled,
i = 1,2. This shows that the argument p3 is superfinite. It may also be

verified that neither of p,,p, is superfinite. a

73

(p,P3) (P1,P3) (P2, P3) (P3, P3)

Figure 3.11: NFA used in Example 3.13

3.6 Linear Sirups

Programs consisting of one linear recursive rule, in the presence of unary FCs
are considered in this section. The restriction to compositional programs is
relaxed for this class of programs. A direct application of the technique of
Section 3.5 will lead to incompleteness: arguments of (the subgoals in) the
rule bodies have to be incorporated in the analysis based on nfa. A compli-
cation arises from the fact that with non-compositional programs, there may
be some “communication” between nodes at different levels of a branch (in
a R/G tree), and this cannot be captured using the present construction of
the nfa. This problem is solved by introducing basic and derived transitions
of the nfa, which will now incorporate the arguments of rule bodies in its

states. The details are outlined next.

Construction of the nfa: Let r be a linear sirup with head predicate p and
let C be a sel of unary FCs on the EDB predicates of ». Then the automaton
N, associated with the sirup is defined as follows. N, = < §,%, sq, F,6 >,
where § = {(a;,a}) | @, a’ are subgoals of r and a,,a) are any arguments in

them}, ¥ = {r} is the unary alphabet, sq is the initial state, determined

74

the FC required to be verified, F' = {(a,,a,) | @ is any subgoal of r and g, is

any argument of a}, and finally, the transition relation § C S x S, defined

as follows®.

The argument ay is defined to be fe-reachable from a, w.r.t. arule 7 and
(unary) Fcs C if ay is in cl({e;},7,C). The transition relation 6 consists
of a set of basic transitions 6p and a set of derived transitions §p, t.e. & =
8 Uép. In the following, we let o, 3,7,¢,0, T denote any subgoals of r. For
s1 = (ay, 3;) and s2 = (yk, €1, a basic transition 8z(s1, s;) holds exactly when

the following conditions are satisfied:
1. 3 arguments pp,,pm, of the IDB predicate p such that p., is pe-
reachable from q;, and f; is FC-reachable from p,,, ;

2. 3 arguments 6,,,,7m, in the body of » carrying the variables X, and

Xm, respectively;

3. 7 is Fc-reachable from 0,,,, and 7,, is Fc-reachable from (.

The derived transitions are defined as follows, A derived transition é,(s,!)
holds exactly when the following conditions are satisfied:
1. t = (k&) and J a state s; = (e, f;) such that é(s,s,) holds;

2. there is a transition §(s;,s3), where s3 = (0,,, 7,), for zome subgoals

0,7 and some of their arguments;

3. 0,, and 7, carry some output variables X,,, and X,;

9Since the alphabet is unary, and the nfa here will not have any transitions on the null string, we can
suppress the alphabet from the definition of the transition relation.

75

4. 4 is FC-reachable from pp, , and pp, is FC-reachable from €.

Notice that the definition of the derived transitions is recursive. Owing to
the intricate details involved in the construction of the transition relation, it
will be convenient to express the logic behind this construction in the form of
a Datalog program. The following program, II,, assumes some of the details
related to Fc-reachability to be available in the form of EDB relations in its
input. For an IDB argument p,, let 8 be any argument appearing in the
body of r such that 6, carries the output variable X,. In this case, we say
that 0 is an image of p, w.r.t. the rule r. The IDB predicate d(e, 3,, 0k, 1)
asserts that there is a transition (basic or derived) from state (a,, 3,) to the
state (0, 7)) (on input r). The details on the EDB predicates used by the
program II, are as follows. The predicate fc¢(A, B) says that argument B is
FC-reachable from argument A in the body of r; image(A, B) says that an
image of A (which thus denotes some argument of the IDB predicate p) w.r.t.

r is B. The program follows.

re: d(X,Y, Z,W) - fe(X, A), fe(B,Y),image(A, C),
image(B, D), f¢(C, Z), fe(W, D).

ry: d(X,Y, Z,W) - d(X,Y, X", Y"),d(X",Y", A, B),image(C, A),
image(D, B), fc(C, 2), fe(W, D).

The main result in this section is a characterization of superfiniteness
of predicates defined by linear sirups. Suppose that r is such a sirup. Let
N, denote the nfa associated with r, constructed as described above, where
the Datalog program I1, is used to construct the transitions. The following

theorem is established in [LN 92a].

Theorem 3.7 [LN 92a] Let r be a linear sirup defining a predicate p, C a
set of unary FCs on the EDB predicates of v, and N, the nfa constructed as
abovc. Then r satisfies a FC p: p,—p, if and only if the language accepted by

N, with (pi, p;) as its initial state, is nonempty. 0

The pebbling algorithm for detecting permissiveness, developed in Section
3.5, is related to R/G trees witnessing PCs. The steps followed in the proof
are similar to those of Theorem 3.5. The result follows on noting that on a
unary alphabet, permissiveness of the nfa reduces to non-emptiness of the

language accepted.

Discussion: Theorem 3.7 shows that using the automata theoretic technique
developed here, it is possible to test the superfiniteness of predicates defined
by linear sirups. Since each of the EDB relations used by the program I,
can be constructed trivially in polynomial time, it follows that the nfa N,

can be constructed in this time.

Theorem 3.8 Superfiniteness of predicates defined by lincar sirups (in the

presence of unary FCs) can be decided in polynomial tumne.

Proof. Follows from the above discussion and Theorem 3.4. In fact, by
reducing non-emptiness of the nfa to graph reachability, this problem can be

solved in nondeterministic logspace [Var 89]. O

Discussion: As in Section 3.5, the technique may be made more efficient
by avoiding the inclusion of states of the nfa which are not reachable from

the initial state, and by limiting the set of final states to just one state (also

77

see the discussion at the end of Section 3.3). A direct implementation of
the techniques developed here may lead to an improved efficiency in testing.
However, since the main goal here was to emphasize the logic behind the
techniques, the algorithms are presented in the form of Datalog programs.
Finally, the effect of exit rules on the nfa is to add extra transitions. As
discussed in Section 3.5, the transitions can be either to a final state or to
a trap state. Incorporation of exit rules into our overall technique is thus

trivial. Example 3.14 illustrates our technique.

Example 3.14 Consider the linear sirup
r: p(X1, X2, X3, Xy) - p(X3, X1, X2, U), b((X3,X4), (U, X,)

from Fxample 3.10. Recall that r is not compositional. Suppose we want
to test if p satisfies the FC py—p, in every fixpoint model of r which sat-
isfies the Fes C = {b;—bz,c1—c2}. The associated nfa is the following.
For simplicity, we only show the part of the nfa relevant to the problem
on hand. (See Figure 3.12.) The state set of the nfa includes the states
so = (p2,pa) (the initial state), s; = (pa,ps) (the final state), s; = (pa,p1),
s = (b2, p4), 83 = (p2, 1), and sy = (p3,ps). The basic transitions include
(S0.51),(81,82),(83,84), (S4,8). It can be seen that the transition (so, s3) is
derived. (E.g., using the automaton program II; it can be seen that these
basic and derived transitions hold for the nfa.) Now, clearly the language
accepted by the nfa is nonempty, as all strings with the prefix r - r - r are
accepted by the nfa. It follows that the FC pp—py is indeed satisfied by p.

0

78

——33m basic transition

- =<2 denved transition

(P2, pd) (P3,p1) (b2, pd) (P2, p1) (p3, p9) (P4, pd)

Figure 3.12: NFA used in Example 3.14

3.7 Summary

The problem of proving finiteness of query answers for deductive database
languages with function symbols was considered in this chapter. Function
symbols are an intrinsic part of temporal deductive databases. While detect-
ing query finiteness is undecidable in general, Ramakrishnan et al. [RBS 87}
and Kifer et al. [KRS 88] proposed a methodology consisting ol (i) ap-
proximating the original program with function symbols by a function-free
program while allowing infinite base relations with finiteness constraints act-
ing on them, and (i7) testing the stronger property of superfiniteness on the
resulting program. Kifer ef al. have shown that superfiniteness is decidable,
and provided a complete axiom systemn for this purpose. However, their pro-
cedure takes an exponential time in general. It would be desirable to have

an efficient proof procedure for this problem.

The first question addressed in this chapter was the development of a sim-
ple intuitive proof procedure for superfiniteness based on the well understood
notion of R/G trees. Then the problem of efficient detection of superfinite-
ness was addressed by developing an automata-theoretic characterization of
superfiniteness for certain classes of programs under unary rcs. From this,

polynomial time algorithms for detecting superfiniteness were developed.

79

Chapter 4

A Temporal Deductive

Database Language

The fundamental notions of deductive databases and of relational temporal
databases have been discussed in Chapter 2. One of the primary problems
involved in combining these two approaches, that of detecting wken a query
has a finite number of answers, was discussed in Chapter 3. In this chapter,
a proposal for a temporal deductive database language, TKL is presented
as well as the general DBMS architecture in which TKL is implemented.
This architecture is capable of supporting object-oriented and heterogeneous

databases as well as TKL.

4.1 Introduction

The temporal deductive database language TKL (T'emporal K nowledge-base
Language) offers a uniform medium for queries and updates in temporal
deductive databases. In Section 4.2, the graphic user interface used by TKL
is described. The interface improves clarity in two basic ways: (i) attribute
names are visually associated with predicate arguments in forms which are
presented on a computer terminal screen for editing by the user, and (i¢) an
area is provided to write conditions on statements in a way similar to domain
calculus or to tuple calculus. The temporal data type, defined in Section
4.3, includes the “Date” predefined temporal data type which is found in
other temporal database proposals and introduces the user-defined temporal
data type. Included in its definition is a mechanism for handling temporal
null values in stored relations and in querics, as well as a mechanism for
modeling imprecise temporal data. TKL has much of the expressive power of
a Horn clause language with bottom-up evaluation and stratified negation.
A more formal description of TKL is given in Section 4.4. The approach
taken to determine the superfiniteness of query programs, as well as other
implementation issues, are discussed in Section 4.6. Conclusions for this

chapter are presented in Section 4.7.

4.2 Overview of TKL

The basic concepts of deductive databases and Datalog were introduced in

Section 2.2. TKL supports recursive queries similar to queries supported

81

by Datalog and also supports features for the the temporal domain. It has
much of the power of Horn clause languages with bottom-up evaluation and
stratificd negation (sce, e.g., [ABW 88]). The language provides the built-
in temporal predicates precedes, contains, overlaps, etc., that are usually
included in temporal database query languages as well as support for valid
intervals and valid events. In this section, TKL is introduced informally
by the use of examples. In Section 4.4, its semantics are developed more

formally.

In TKL, the {emporal attribute names From, To, and At are reserved for
temporal relations. There are two types of temporal relations: (7) interval
relations, which have a closed valid interval in the form of the From attribute
and the To attribute associated with them; and (i7) event relations, which
have associated with them the At attribute. indicating the time an event
occurs. Relations which are not associated with temporal attributes are

called non-temporal relations.

Toward the goal of making the expression of a query suggest its meaning,
TKL provides a graphic form-based interface in the spirit of QBE [Zlo 77).

The language is introduced informally by the next two examples.

Example 4.15 A company maintains information about its employees using

the relation schema
emp(Name, Manager, Salary, Commissions, From, To)

to record the name of each employee, the name of the employee’s manager,
and the employee's earnings from salary and from commissions. The From

and To attribute values give the valid interval of each tuple in this relation.

82

A query program to determine all the bosses of cach employee can be
written in TKL as follows. A menu allows the selection of rules, queries, or
integrity constraints to be written, edited, browsed, or run. We select the
action of writing a rule. Then we select the head of the rule from a list of
IDB predicates in the database, or define a new IDB predicate interactively, if
necessary. In this case, we define a new IDB predicate by supplying the pred-
icate name boss and its attribute names and types: i.e., Emp Name(string) ,
Manager (string) , From(DATE yy:mm:dd)!, and To(DATE yy:mm:dd). Then
the first rule for the query program is written by requesting a boss form and
a emp form using a menu. The system will then display on the screen empty

forms similar to the following figure.

boss Emp Name Manager From To em) Name Manager Salar Commuu e Fron 7
bo.‘ [p. J.d l I‘ m] p 34 y Wi | [\

Conditions:

TKL variables are unquoted strings beginning with an uppercase char-
acter or an anderscore. Constants are () strings which are either quoted or
begin with a lowercase character, (z2) numbers, (i77) the boolean constants
true and false, or (iv) temporal constants (sce Section 4.3). The strings bost
and empi are called form identifiers. Unique form identifiers are automati-
cally generated by the system for every displayed form. They can be used
with an attribute name in the Conditions section, which appears after the
last form, to refer Lo the corresponding ficld value. [.g., empi.Name refers
to the field below Name in the form to the right of empl. When a form iden-

tifier is used by itself, it refers to the valid interval or the valid event of the

'Note the use of temporal data types for (temporal) attributes More details on these data types can
be found in Section 4.3.

83

corresponding form. The empty forms are completed as follows to create the

hase rule for the query program.

boss kmp Name Manag From To X N: M Salary C From To
bos? I Willy l ch-: l FJT I ompr: =55 I wuu:r Howard |] I F I T
Condltions:

This rule is equivalent to the SQL query Select Name, Manager, From,
To From emp. Note that empty attribute value fields are interpreted as
‘don’t care’ variables in TKL. The recursive rule is created by requesting a
boss form, an emp form, and another boss form which are then completed as
shown below. Notice that an employee’s valid interval should be concurrent

with the valid interval of each of his/her bosses.

[IRTY Ekmp Name Manager From To " ompi. emp Name Manager Salary Commuissions From To
l Willy [MJ_GnmI F I-r W-Hy] Howard l] l F1 I'n

boss Emp_Name Maniger From To
] Howard IMr_Gn.m§ F2 [TI

bos2,

Conditions:
empi ~ bos2,
emp1 intersection bos2 = bost

The rule for the boss relation cannot be expressed in a conventional relational
query language because it is recursive. Notice that the first condition uses the
form identifiers emp1 and bos2 and the built-in TKL predicate ~ to specify
that the corresponding valid intervals are concurrent, that is, they have some
time instant in common. The second condition is used to extract the interval
they have in common. (See Section 4.3.3 for the precise definition of the

built-in temporal predicates.)

In the following example, we illustrate how a query is written using TKL.

84

Note that a P. in an attribute value field of a form indicates that the value of
that field is part of the query answer. If P. is entered in the first value field
of a form, that is, the field under the form name, all attribute values of the

form are part of the query answer.

Example 4.16 Query: Using the relations in Example 4.15, give the details
of each employee whose earnings are more than 10% greater than his/her boss
at some time since 1987, where an employee’s earnings are his/her salary plus

commissions.

Two emp forms and one boss form arc needed to write this query. After

displaying them on the screen, they can be completed as follows.

emp Name Manager Salary Commissions From To
empt:
Willy | Howard Sw Cw
emp Name Manager Salary Commissions From To
emp2:
Howard Sh Ch
boss Emp_Name Manager From To
bosi:
P. Willy Howard T
Conditions:

{Sw + Cw) > (Sh+ Ch) * 1.1;
emp1 ~ emp2;

emp1 intersection emp2 = bos1;
T >=87:01:01;

4.3 The Temporal Data Type

The temporal data type is used to represent the time of an event or to

indicate the end points of a temporal interval. Temporal information may be

85

stored using other data types such as string or integer, but it would not take
advantage of the interpretations, optimizations, and integrity checks that
have been developed for the temporal data type [GS 91, Sard 90]. Multiple
temporal data types are allowed in TKL, unlike other temporal systems which

allow only one temporal data type in a database.

The built-in DATE temporal data type is useful for many common ap-
plications. However, there are some applications that do not naturally fit
into the ‘date and time of day’ format of the DATE data type: e.g., it is diffi-
cult and unnatural to capture the idea that something occurs every Monday
in the DATE format. Also, the time-frames needed for scientific Jatabases
are frequently specialized: e.g., different units for measuring time may be
required for particle physics and for astronomy. The user-defined temporal

data types is provided for cases like these.

An important feature of the temporal data type is that imprecise tempo-
ral data is accommodated implicitly by using temporal units that represent
a time interval (flezible granularity). A simple method for interpreting these
intervals is provided which is similar in spirit to the treatment of null values
in relational databases [Bisk 81]. As is usual in temporal database systems,
a number of temporal comparison predicates for common temporal relation-
ships are provided in order to simplify queries and they are extended to

handle temporal imprecision.

The temporal data type may have one or more suk“<lds. The built-
in DATE data type, in the format yy:mm:dd:hh:MM:ss, is predefined with

subficlds for years, months, and days following the Gregorian calendar and for

86

hours, minutes and seconds as usual using a 24-hour clock. Similarly, a user-
defined temporal data type may be separated into subfields by on¢ or more
formatting characters such as the colon. The following conventions will be
used in this section. Let U be a temporal data type with n subfields separated
by colons, denoted < subfield n >:< subfield n —1 >: ... :< subfield 1 >;
we say that G is a valid temporal subtype of U with m subficlds, m < n,
numbered from n down to n — m + 1, if G has m subfields and it is a prefix
of U. Notice that each type G implicitly induces a set of constants of this

type. They are referred to as temporal constants of type G.

A temporal term of type G is defined as follows: (i) all temporal con-
stants of type G are temporal terms of type G; (:¢) all variables representing
temporal constants of type G are temporal terms of type (7 (i2/) all strings
of the form sf, : ... : sfi_nyy, Where each sf, n —m + 1 <@ < nis either
a constant which is allowed in the i** field of G or a variable symbol, is a
temporal term of type GG. For example, the DATE subtype term 92:M:1) may
appear in a query about which month and day, denoted by the variables M

and D, in 1992 something happened.

Two important properties of a temporal data (sub)type are its lick size
and granulerity. The selection of U determines the tick size, which is the
shortest time period that can be represented by constants of type U/ (i.c.,
a tick is the interval represented by one unit of the rightmost subficld of
U). 1t is the atomic time unit for the data type. For example, the tick
determined by the DATE data type is a second, but it may be more suitable
to have a tick size of a minute for a business application; a tick of 100,000

years may he suitable for a database of geological samples; a tick of 10712

87

seconds may be suitable for a database of elementary particles for a physics
application. We define the granularity of a subtype G to be the number of
ticks in its rightmost subfield. Let p be a temporal relation having temporal
attribute(s) of type G. We define the granularity of p, denoted gran(p), to
be the granularity of the type associated with the temporal attribute(s) of
p. Although multiple temporal data types are allowed, only one subtype (of

onc of them) may be used in p.?

The granularity of a temporal relation reflects the imprecision of the valid
interval or event of the data modeled by the relation. This imprecision may be
a matter of convenience or due to a lack of information because of theoretical
and/or practical limitations on the accuracy of time measurements. Later
in this section, a proposal is made for reasoning using imprecise temporal

information.

The cardinality of the set of ticks is the largest integer that can be natu-
rally represented on the target machine of the implementation, viz., MAXINT.
MAXINT is typically 2%2 — 1 for an unsigned integer on a machine with a 32-
bit word-size. The product of the tick size of the temporal data type and
MAXINT determines the maximum time interval that can be represented us-
ing the data type. For example, if the tick size is one day and MAXINT is
232 — 1, the maximum time interval that can be represented is approximately

11,759,301 years.

The user must supply the start-up time for each temporal data type when

2'This restriction is imposed to simplify the description Jf this version of TKL. Multiple temporal data
types within the same predicate may be incorporated in later versions.

88

a new database is defined. Temporal constants are mapped to integers inter-
nally. The start-up time maps to 0, represented as a signed integer if time
is counted both forward and backward from the start-up time. If time is
counted forward (backward) only, then the start-up time maps to 0 (MAX-

INT, resp.) represented as an unsigned integer.

4.3.1 User-Defined Temporal Data Types

User-defined temporal data types, just like the predefined DATE data type,
have a fixed format. Associated with ali data types, there is an interpretation
function, which maps constants of that type to the integers. It is convenient
to distinguish between the base of a numbering system, such as octal, decimal,
hexadecimal, eic., and the base of a temporal subficld which we call the radir
of the subfield. For example, the radix of the hour subfield in the DATE data

type is 24 while its base is decimal.?

For user-defined ‘zmporal data types, the following specifications mmu«t

be supplied by the user:

1. the radix and base for subfields n — | to 1 and the base for the nt*

subfield*;

2. whether the subfield represents an ordinal integer as it does in the year,
month and day subfield of DATE or a cardinal as in the hour, minute,

and second subfields of DATE;

30ur use of the word ‘radix’' is, perhaps, non-standard and it may he confusing to some readers
Nevertheless, we use it for lack of a better word.

* The radix of the n** subfield may be considered MAXINT, MAXINT/2 — 1 or MAXING [2, depending on
the how time is counted, however, incrementing this value may be considered an overflow error,

89

3. if the subfield represents a subrange of values then each string that may
be a member of the subrange must be given in order beginning with the
least member (e.g., “January”, ..., “December”); in this case, there is

an ordinal number associated with each member of the subrange.

Example 4.17 Designers of a database for school schedules might want to

tailor the temporal data type S to fit their needs as follows:

subfield 1: 1,...,8; /* the number of periods in a school day */

subfield 2: mon. tues, wed, thurs, fri; /* school days */

subfield 3: winter, summer, fall; /* school terms */

subfield 4: base = 10, ordinal = yes; /x any integer representing a vear */
start-up time: 92:winter:mon:1:

sense in which time is counted. Forward;

Thus, Y2:fall:mon:1 refers to the first period on Monday during the fall term,
1992 and [92:fall:mon:1, 92:fall:fri:8] is the interval that includes all periods

in a school week during the fall term of 1992. 0

Some definitions are necessary before presenting the temporal interpre-
tation function for user-defined temporal data types. Let ¢ be a constant of
type U. We define SF(t, k) to be the value of the k* subficld of . We define
Ord(U, k) to be 1 if the kt* subfield o I/ is defined to have ordinal numbering,
otherwise it is defined to be 0. Then the function t_toi(U,t), which maps a

constant ¢ of type U to an integer, is described as follows. Let ,qriup, be

90

the start-up time given for U.

Let jo = 5, [SF(tstart-upy» §) — Ord(U,)} + tf(5);

Then t 403(U, tstart—upy) = 0

(Z)=1[SF(¢,5) — Ord(U, j)] * 7)) — jo if sign tis +
—(5=1[SF(t,5) — Ord(U, j)] * 7f(3)) — jo if sign tis —
where (1) = L,

ttoi(U,t) =

rfj+1)=rfj)*radiz(j +1), j=1,...,n—1,and

Jo = tto (U, tyart—up,)-

The sign of ¢ will be negative when the n'* subfield is less than zero (e.g.,
Arvistotle was born in the year -384 (i.e., 384 B.C.), in the DATE data type.).
It is possible to support arithmetic functions on temporal data (sub)types by
transforming them to corresponding functions on integers. It is also possible
to construct the inverse mappings which can convert integers back to the
corresponding temporal constants. The same inverse mapping is used to
interpret variables in temporal terms. Temporal terms can be thought of as
templates to be matched to integers. We say that field j of temporal term ¢

matches an integer ¢ if the following relation holds:
SF(L,§) = [((i + o) mod i + 1)) div 1flj)] + Ord(j), 1 < j < m,

where 7f{j) and j, are as defined above and we define rfin 4+ 1) to be the
maximum value allowed in the n** subfield. If SF{t, j) is the variable X,, then
X is assigned a value equal to the RHS of the above equation. The use of

the temporal interpretation function is illustrated by the following example.

91

Example 4.18 With reference to Example 4.17, #f{1) = 1, r{2) = 8, #fi3) =
40, rfl4) =120, and rf{4+1) =MAXINT. The start-up time for temporal data
type S is 92:winter:mon:1. Thus, the value of j, is t.te.i(S,92:winter:mon:1)
= 11040. It follows that ¢_to_i(S,92:fall:mon:1) = 1112011040 = 80. To de-
termine the value for the variable T such that the temporal term 92:7:mon:1
will match 80, we evaluate the expression (((80+ 11040)mod 120) div 40) + |

and get the value 3 for T, the ordinal corresponding to fall in the third

subfield of S. 0

4.3.2 Interpretation of Imprecision in Intervals and Events

Temporal relations must be assigned a temporal data type and a granular-
ity when they are defined. Temporal relations are allowed to have different
granularities, as appropriate for the precision of the available temporal in-
formation. Indeed, real-world temporal information is inherently imprecise.
However, allowing flexible granularities introduces a complication in inter-

preting intervals which is illustrated in the following example.

Example 4.19 The relation hours.worked(Name, From, To) is used by a
company to record the interval qmployees work cach day with granularity
of hour. A tuple s in this relation, <Bob, 92:10:15:8, 92:10:15:17>, can be
interpreted as meaning Bob worked anywhere from 8 hours and 1 second to

9 hours, 59 minutes, and 59 seconds on October 15, 1992. a

92

To resolve the above problem, it is necessary to make precise what exactly is
meant by a valid interval or a valid event in the context of flexible granulari-
ties. This is achieved by specifying an interpretation policy. Two interpreta-
tion policies are provided; they are narrow, denoted by O, and broad, denoted
by o. Applying the narrow interpretation to tuple s in Example 4.19 gives
[92:10:15:8:59:59, 92:10:15:17:00:00], meaning that s holds for all times ¢ in
this closed interval. Likewise, the broad interpretation is [92:10:15:8:00:00,
92:10:15:17:59:59] meaning that there is a non-zero probability that s holds
for all times ¢ in this closed interval. The interpretation policies broad and
narrow have interesting connections to the modalities possibly and necessar-
ily arising in modal logic [Chel 80] as well as the concepts of maybe answers
and surc answers studied in the context of relational databases with null
values [Bisk 81, Laks 89]. Within the context of the temporal data type, it
is convenient to think of necessity as a narrow interpretation and possibility

as a broad interpretation.

The temporal null character ‘/’, is introduced to indicate an unknown
value when it appears in a temporal term. Referring once again to Exam-
ple 4.19, the valid interval of tuple s could be represented using nulls as
[92:10:15:8:/:/. 92:10:15:17:/:/). A broad interpretation of an interval will
include every tick that could possibly be in the interval. This is obtained by
replacing every null in the From term with the minimum value for the field in
which it appears and by replacing every null in the To term by the maximum
value for the field in which it appears. Similarly, in a narrow interpretation,
every null in the From field is replaced by the maximum value for that field

and every null value in the To field is replaced by the minimum value for

93

that field. It is now a simple matter to allow null values in stored relations:
all that is needed is to extend the definition of temporal terms to allow ¢/
to be the value of a subfield. Nulls appearing in terms that are arguments of
the built-in temporal predicates, which are defined formally below, are inter-
preted according to the interpretation policy associated with the temporal

predicate.

The temporal attributes of interval relations can be represented internally
by expanding each of the To and From attribute values into two integers,
one for narrow interpretation and the other for broad interpretation. More
formally, let R be a temporal interval relation with temporal data type (7
and r € R be a tuple where r =< 1. f,t >. Then the internal representation

of risrp=<z,f~, ft,t=,tt >, where

J= = ttoa(l, f);
= = 1404(U,t);
ST =/ "+gran(R) - 1
t* =t +gran(R)—1.

Event attribute values are treated much like intervals by setting the single
event temporal attribute valuc.a to both f and t and then proceeding in the
same way as for interval relations.® Thus, the internal representation for
events is the same as for intervals. This allows a uniform semantics for the
built-in temporal predicates with either event or interval operands. More
formally, let E be a temporal event relation with temporal data type U and

e € E be a tuple, where ¢ =< #,a >. Then ¢; =< #,a7,a*,a",¢t >

5The word event, as it is used here, does not refer to a single tick in general, but to a sequence of ticks.

94

is the internal representation of e, where ™ = t.to_i(U,a) and at = a™ +

gran(l) — 1.

4.3.3 Built-in Temporal Predicates

The built-in temporal predicates are defined in terms of the internal repre-
sentation of their operands. Let r; and r; be tuples from any interval or
event relation in the database and let the internal representation of their
temporal intervals be I; = < fi, fi t0,t7 > and I = < f7, fF, 45,45 >
respectively. In the following, by 7 € [f, 1] we mean 7 is a member of the set

of ticks corresponding to the interval [f,1].

o (congruent) Intuition: I, = I iff
(Vrn € [ff 5] 3 € [ff 7]l m = 1) A (Vn € [fF,43] 3n €
Uil nm =mn) A (Y € [fiutt] 3 € [f5utd] 1 = m) A
(Vrp € [f5,13) 3ny € [f7 tF] 1 = 1), i.e.] is identical to Iy;
Formal Definition:

Lh=Lil(ff=f) A=) A T =t7) At =t7).

o (equivalent)) Intuition: I, =g I iff (V7 € [fif, 7] I € [fF, 5] n =
) A (V€ [ff,t5] In € [fi,t7] 1 = 72), i.e. every tick that must
necessarily be in I, must necessarily also be in I3, and vice versa;

Formal Definition: I; =q I iff (fi = f3) A (t7 =t3).

o (equivalent,) Intuition: I) =, I iff (Y, € [fif,t7] In € [f5,t5] 11 =
) A (Y € [ff,17]) 3n € [f7,t3] 11 = m2), i.e. every tick that must

necessarily be in I (/;) might possibly also be in I; (I;);

95

Formal Definition:

Lh=Liff (JTf <YNST <) N (7 <) A7 <).

(precedesy) Intuition: I} <o I iff I} must necessarily end before [,
might possibly begin;

Formal Definition: I, <o I iff tf < f5.

(precedes,) Intuition: I <, I iff I} might possibly end before I, must
begin;

Formal Definition: I} <, I, iff t7 < fF.

(containsy) Intuition: Iy ing I (f Vo € [f7 4T 1 € [fF,13], ic.,
every tick that might possibly be in I, must necessarily be in Iy;

Formal Definition: f, ing I iff (fF < f7) A (1f < 13).

(contains,) Intuition: I in, I iff Yry € [fiT t7) n € [f5, 1] e
every tick that must necessarily be in I} might possibly be in [y;

Formal Definition: I, in, I iff (f7 < f{f) A (7 < tf).

(overlaps — beforey) Intuition: Iy <|g I iff I} must necessarily begin
before I, might possibly begin, I; must nccessarily end before I might
possibly end, and I, and I3 must necessarily have some tick in common;

Formal Definition: I+ <|a Iy iff (/¥ < f77) A (IT < t5) A (fF < 7).

(overlaps — before,) Intuition: I} <|, I, iff I, might possibly begin
before I, must necessarily begin, I; might possibly end before [; must,
necessarily end, and J; and I, might possibly have some tick in common;

Formal Definition: I) <|o I iff (fi < fF) A (U7 < t3) A (f7 < tf).

96

o (consccutive — beforey) Intuition:) <|lo I iff Vr € [t7,tf] 3 €
[f, fF] 71 +1 = 7, i.e., one tick after J; must necessarily end, I, must
necessarily begin;

Formal Definition: ({7 +1 = f;) A (tf +1 = fF).

o (consecutive — before,) Intuition: Iy <||o I iff (I € [t7,tf) I €
[f5, f+] 1 +1 = 7; i.e., one tick after I; might possibly end, I might
possibly begin; Formal Definition: I; <||o I iff
(T+HISHFAFSH+DVET+HISFARFST+D)V
(ff SE+IAGT SV ST+ S)

In a similar fashion, we define >g, >o, |>a, |>,, etc. The following derived

predicates are defined next. The symbol o is used to mean either O or o.

o (overlap,) I |o I iff either Iy <|o I or 1) |o> Iz holds;

o (concurrent,) I) ~, I, iff either I, |, I or I in, I or I; ing I holds.

Let £y and f, be temporal terms. The value of max(¢,,t2) is defined to be
the maximum of ¢; and t, and the value of min(?,,t2) to be the minimum of
{; and t,. When I, and I, are concurrent, the value of I} N I, is defined to
be the interval [max(I;. From, I5. From), min(1,.To, I,.T0)] and the value of
I,UI; to be the interval [min(I;.From, I. From), maxz(I,.To, 1,.T0)]. When

I, and I, are not concurrent, the value of I; N I, and I, U I is left undefined.

To end this section an example is given using the temporal data type in
a Horn clause program. The symbol * is used instead of O and + is used
instead of o.

97

Example 4.20 This exaniple shows the differences in philosophy implied by

the choice of temporal interpretation policy.

The tick-size of a comparny’s database is a day for the DATE temporal data

type.

The following schemas are used to store accounts receivable and accounts

payable information.

receivable(Client, Amount, At)

payable(Creditor, Amount, At)
Both of these schemas have a granularity of month and the value of their
At attribute indicates when payment should be received or made. The times
when payments are actually received and payments are actually made by the
company are stored using the receipts schema and the payments schema
respectively, each of which have a granularity of a day.

receipts(Name, Amount, At)

payments(Name, Amount, At)
The following rules are used to find clients who are late in making their
payments and to find creditors to which the company is late in making its

payments at some time T.

late_receipt(C,T,T1):-receivable(C,A,T), not receipts(A,C,T1),
T1 <* T.

late_paying(C,T,T1) :-payable(C,A,T), not payments(C,A,T1),
Tl <+ T.

98

The only essential difference between these queries is in their temporal in-
terpretation policies. As a result of this difference, it appears to be company
policy to consider a client to be in aivears if he/she has not paid by the first
day of the month payment is due. On the other hand, the company considers
itself to be in arrears only if it has not paid a creditor by the last day of the

due month. o

4.4 Semantics of TKL

In this section, the semantics of TKL is given in terms of Datalog extended
with function symbols and stratified negation. This is followed by a discus-
sion of the integrity constraints (ICs) needed to maintain data consistency
in a temporal (deductive) database. Lastly, some aspects of the TKL imple-

mentation are discussed.

4.4.1 Semantics of TKL Forms

The meaning of TKL queries, rules and ICs can be given by (i) translat-
ing them into Datalog extended with stratified negation and function sym-
bols and (i7) applying the semantic interpretation for this extended Datalog
[Ul1 89] to the translated rules. We show how to translate a TKL query into
its corresponding Horn clause r and then we illustrate the procedure using
the query from Example 4.16. A TKL query is translated into the corre-
sponding Horn clause by performing the following steps. (Rules and ICs are

handled in much the same way.)

99

1. Replace the reserved word NOW with the current system time and
date using the appropriate granularity; uniformly replace TKIL vari-
ables with new variable symbols; replace each empty field with a new

variable symbol;

2. Replace form identifiers in the Conditions section with
() the corresponding attribute value when they appear in the dot field
accessor notation,
(71) the corresponding valid event or valid interval when they are used

with built-in temporal predicates;
3. Map constant temporal terms to the corresponding integers;

4. Create the head predicate of r, query(Xy,...X1), where query is a
reserved predicate symbol, as follows. Let Ay, ..., Ay be the distinet
attribute value fields which cither contain ‘P.” or the first field of whose
form contains ‘P.. Then we assign to each X, the value appearing in

A,, 1 <i < k. This value can be a variable or a constant.

5. For each form in the query, append a subgoal p to r where p is the
predicate symbol corresponding to the form and the arguments of p

are taken from the corresponding attribute values of the formy;

6. For each arithmetic or temporal expression x op y in the Conditions
section, where = and y are integers, reals, strings, or temporal terms,
create a subgoal using a built-in predicate as follows. Let p,, be the

built-in predicate symbol corresponding to op. Then p,y(z,y, z) is the

100

corresponding subgoal where 2z corresponds to the value of the arith-
metic expression. Nested arithmetic expressions are handled by replac-
ing z op y by z in the parse tree for the expression and repeating the
above procedure. Finally, append the resulting subgoals to the body

of r;

7. For each condition = 7 y in the Conditions section, where r and y
arc integers, reals, strings, or temporal terms and 7 is <, <=, =, >=,
! =(not equal) or a built-in temporal predicate, create a subgoal as
follows: let p, be the built-in predicate symbol corresponding to 7;

append p.(x,y) to r;

8. If any form or condition is negated, negate the corresponding subgoal.

The above procedure is illustrated by applying it to the query from Example

4.16.

Example 4.21 The TKL query from Example 4.16 is transformed into the
corresponding llorn clause by first performing variable replacements and in-
sertions, substituting intervals for form identifiers, and mapping temporal
terms to constants. For simplicity, we assume 87:01:01 maps to 0. This

yields the following equivalent TKL query.

101

omp1: emp Name Manager Salary Commissions From Teo
Vo1 V02 Vo3 vo4 Ol T2
omp2: emp Name Manager Salary Commtsstons From To
vo2 Vo5 Vo6 Vo7 T03 Tod
I boss Emp_Name Manager From To
bosi:
P. vol vo2 TOS | ToO6
Conditions:

(VO3 + VOd) > (V06 + VO * L1;
{TO1, TO2] - [TO3, TO4),
[TC1, T02] intersection [T03, T04) = (TS, T06),
TO6 >= 0,

Since P. appears only in the first value field of the bosi form, the only
output values are V01, V02, T05, and T06. Thus, the head predicate is
query(V01, V02, T05, T06). The predicate symbols corresponding to the
form names boss and emp are boss and emp, respectively. Subgoals corre-
sponding to the forms are created using these predicate symbols, where their

arguments are taken from the corresponding ficld values. The tree corre

sponding to the first line in the Conditions section is shown below.
>

+(X01) * (X03)
VO3 V04 +(X02) IL.1
/ N\

Vo6 V07

The built-in predicates corresponding to +, *, and > are plus, times, and
gt. The subgoals corresponding to the subexpressions with atomic operands
are plus(V 03, V04, X01) and plus(V06, V07, X02). According to Step 6,
the subtrees that these subgoals represent are replaced in the expression tree

by X01 and X02. These replacement values are showa in parentheses in the

102

diagram above. We continue in this way to the root of the tree. The remain-
ing conditions are handled similarly. The built-in predicates corresponding
to ~, intersection, and >= are concurrent, intersection, and gte. Finally,

the corresponding Horn clause is

query(V01,V02,705,7T06) :-
emp(V01,V02,V03,V04,7T01,T02), emp(V02,V05,V06,V07,703,7T04),
boss(V01,V 02,705, T06), plus(V03,V04, X01), plus(V06, V7, X02),
times(X02,1.1, X03), g¢(X01,X03), concurrent(T01,702,703,704),
infersection(T01,702, 703,704,705, T06), gte(T06,0). D

4.4.2 Integrity Constraints

Integrity constraints can be expressed in TKL in much the same manner as
rules in query programs. However, the user has to perform the appropriate
menu selection. In the context of temporal databases, in addition to the
normal ICs arising in any database application, certain ICs are implicitly
needed for ensuring consistency. TKL provides for the following types of
implicitly needed 1Cs. The first IC concerns the notion of keys appropriate
for temporal relations. The key for temporal relations is defined with respect
to valid intervals or valid events. Let R be a temporal relation and let A be
a set of non-temporal attributes of R. Then A is a key of R provided (3)
for every pair of tuples ¢, and ¢, in R, either t;[A] # t;{A] or ¢, and ¢, have
non-concurrent valid intervals, i.e., t; ~ ¢, is false, and (ii) A is minimal with

respect to this property.

103

The second IC concerns the notion of duplicates appropriate for temporal
relations. A temporal relation R contains duplicate tuples if there are two
tuples in R whose non-temporal values are identical and whose valid times are
concurrent. In TKL, duplicate elimination is performed as follows. Consider
the set of tuples {t;,...,#} C R such that they have identical non-temporal
values. We say that t,...,¢ are connected if for every pair of tuples t;,,,
1 <1,5 <k, (i) either ¢; and ¢, are concurrent, or (ii) thereisa t;, 1 <[< k,
such that ¢; is concurrent with ¢; and ¢; and ¢, are connected. Clearly, the set
{t1,...,t} form duplicates exactly when they are connected. To eliminate
duplicates, we combine the tuples ti,. .., into one tuple £ such that (i) the
non-temporal values of { match those of ¢, and, (i{) {.From = min({{,.From |

1 <1< k}), t.To=max({t,.To | 1 <7 < k}).

The third IC comes from the fact that if a tuple f in a relation R is such
that t.From > ¢.To then ¢ is never valid. TKL enforces this IC as well by
disallowing such tuples. This is in keeping with the closed world assumption
(see [Rei 78]) approach to implicitly represent negative information in base
relations as customarily adopted in (non-temporal) databases. In addition,
any tuples with this property arising in the intermediate stages of query

answer generation are discarded.

4.5 Object-Oriented Architecture

The TKL implementation uses a modular architecture which was conceived
both as a formal organizing structure for this project and as a unified frame-

work for incorporating other projects from the SOFTEKS Research Group at

104

Concordia University. This architecture is proposed to enhance extendabil-
ity and maintainability for the TKL project as well as to provide a uniform
framework into which other SOFTEKS projects, such as object-oriented de-
ductive databases and a heterogeneous federation of databases, can be inte-

grated. The gencral layout is shown in Figure 4.1.

By a FM or Federation Manager we mean a central authority regulating
the access of a group of users to a group of databases (referred to as file
systems). An Affiliate is a database querying facility that is part of the
federation and a Filc System is a (possibly external) database system which
may he as simple as a file server or as complex as a complete DBMS. Each
affiliate is required to translate its native language into a lingua franca (lf)
for communicating with the federation and also to translate query answers
from the federation (in If) into its native language. The lingua franca is also

used for communications between the federation and the file systems.

The Affiliates can be individual database language projects which depend
on external File Systems for many essential functions. The architecture par-
allels the dependency of TKL on the LDL deductive database system. The
LDL language is the lingua franca of this mini-federation. It is natural to
generalize this dependency into a general architecture which may be useful
for other SOFTEKS projects. The database engine is factored out of TKL
into the FM. Other important aspects of database management, such as log-
ging, crash-recovery, and concurrency control, which are not a part of TKL at
this stage of its development, can also be factored out. Thus, the designers of
cach Affiliate (e.g. TKL, object-oriented databases, probabilistic databases,

etc.) can concentrate on the aspects of database design important to their

105

..zﬁ._a _ ® weyshgoly

=

siemsue
pue ceuenb §)

-‘a@ i el Pworshsony

w_oi.o.a v.mumc_._!&
obenbuay oareN

Z ooy

/

N4

N._mkwcm

pue seuanb J

Corenyv

slomsue mcumcto_..v

Figure 4.1: Modular Architecture for TKL and other SOFTEKS projects.

106

project and, at the same time, they can legitimately claim to have a ‘real’
database system because other elements of the federation provide default

implementations for the missing capabilities.

Unfortunately, use of If alone is not sufficient to integrate the file systems
into the federation. The translations must take into account differences in

how data is represented. The problem is illustrated by the following example

taken from [LSS 93].

Example 4.22 [L.SS 93] Three universities maintain essentially the same in-
formation concerning their staff regarding average salary (avg.sal) according

to department (dept) and skill category (category), in the following ways.

University A: relation pay.info with attributes dept, category, and avg_sal;

University B: relation pay.info with attributes category, deptl, dept?, ...
where the domain of deptl, dept2, ... is the same as that of avg_sal

for University A;

University C: relation dept! with attributes category and avg_sal,

relation dept? with attributes category and avg-sal,

A strategy for querying these three databases uniformly has been pro-
posed by Lakshmanan, Sadri, and Subramanian ([LSS 93]) using a simple
logic called SchemaLog which provides a unified view of different schemas.
We propose that the federation maintain a set of schemas which will be pro-

vided to the users for composing If queries and that SchemaLog be used by

107

FM

N

Affiliate FileSystem Engine

Figure 4.2: Overview of Classes.

the file systems as part of the translation from If into their native languages.
The details of schema updates, insertions and deletions are not addressed at

this stage of the development of the architecture.

The class structure of the architecture is shown in Figure 4.2 using the
Object Model Notation. The principal class is the FM class which provides
operations for creating, accessing and maintaining affiliates, file systems and
engine-class objects (described below). This class controls access to the col-
lection of file systems that comprise the heterogeneous database. It imple-
ments the function query which has a parameter for a query statement in If
and a parameter for the set of file systems to which the query will be posed.
In addition the query function has a parameter for the data stream or the
file to which the answer is to be written. (Related functions are cost, which
returns a cost estimate for running a query, and hits, which returns the num-
ber of tuples in the answer to a query.) This class is also responsible for

combining answers from the various file systems into a single answer.

A FM class object poses queries to files systems in If. It is the responsi-
bility of each FileSystem object to translate If into its native language and
to translate answers back into if. This class provides operations for querying

its associated database as well as operations for obtaining the cost of a query

108

and the number of hits.

Queries are posed to the FM class object by Affiliate class objects. The
Affiliate class provides the same translation operations as does the FileSystem
class. It is also responsible for creating an interface for interacting with
agents posing queries. The agrnt may be as simple as a file which is read
by the Affiliate, or as complex as a person using a sophisticated computer
interface. The interface itself provides operations for sending tokens to the
Afliliate object from which a query can be compiled, as well as operations

for returning the answer to the agent.

The Engine class is the FM component responsible for processing queries.
It develops a processing strategy and queries the file systems for the infor-
mation it needs for determining query answers. Communication with the file
system is via the 'M object in order to centralize control of access to the file
systems. There may be many engine objects in each FM object. Individual
engines may be separate computers, computer networks, or other processing
entities. If the FM object maintains priority levels for users, engines can be
assigned according to priority. In addition, the FM object may be able to
determine from the query which engine is most appropriate and dispatch the
query accordingly. (E.g. If a query which is known to be I/O bound, it will

not benefit much from a vector processor.)

4.6 The Implementation of TKL

TKL is currently being implemented as an interface to the deductive database

system LDL. (See [Chim 89] for the syntax and the features of LDL.) LDL

109

is used as the underlying inference engine for TKL. It is also used as a
‘rapid prototyping’ language for implementing aspects of TKL. For example,
TKL database schema definitions are stored as data in LDL. This allows
type-consistency checking on TKL constants and variables in queries to be

implemented easily using rules. TKL schemas are stored in LDL relations of

the following form.
schema(Pred Name, ArgPosition, Attr Name, Attr_Type).

The value of the attribute Pred_Name is the predicate symbol corresponding
to a TKL form; Arg.Position is the relative position of an argument in the
predicate corresponding to Pred.Name; Attr_Name and Atir_Type are the

attribute name and attribute type associated with that argument position.

Information about forms used in statements is stored in the literal rela-
tion in LDL. There is a tuple in this relation for each attribute field in the
corresponding form.

literal(Sid, Pred Name, Pred Position, Arg, Value, Type).

The value of Sid is a unique statement identifier for each rule, query, and 1C
defined by the user; Pred_Name is the predicate symbol corresponding to a
TKL form; Pred.Position is the position of the predicate in the statement,
relative to the other subgoals; Arg is an argument position, and Value and
Type are its value and type. The type of the field value is determined by lex-
ical analysis of the tokens in the corresponding fields. The allowed types are

integer, real, string, boolean, DATE, and user-defined temporal data types.

Two rules are used for type checking. The first rule type checks constants

by verifying if the lexical type of each constant corresponds to the type

110

declared for that argument in the schema declaration. Underscores are used

to indicate unique ‘don’t care’ variables.

constant_type_error(Sid, Pos, Arg, Value, Type, Right_Type)
:- literal(Sid, P_Name, Pos, Arg, Value, Type),
not equal(Type, ‘variable’),
schema(P_Name, Arg, ., Right_Type),
not equal(Type, Right_Type).

Variables are type checked for consistency in their usage. We define consistent
usage as follows. Let A; and B, be arguments of literals used in the same
statement such that the same variable X appears in both arguments. Then
the usage of X is type consistent if the type of A, is the same as the type
of B,. The following rule performs this check. The atom literal(_, _, _,
-» -, ‘variable’) is true whenever the corresponding TKL field contains

. variable.

variable_type_error(Sid, Pos, Arg, Value)
:- literal(Sid, Pred, Pos, Arg, Value, ‘variable’),
schema(Pred, Arg, ., Type),
literal(Sid, Other_Pred, _, Other_Arg, Value, ‘variable’),
schema(Other_Pred, Other_Arg, ., Other_Type),

not equal(Type, Other_Type).

A type error is reported to the user whenever either of the relations con-

stant. type.error or variable type_error is non-empty.

111

4.6.1 Other Issues

Typically, a DBMS provides for detailed access control of its users. However,
this creates a problem in a federated system from a software-engineering point
of view. The root of the problem is the absence of agreement among managers
of file systems on a uniform treatment of access control. If each file system is
allowed to control the access of each agent, the resulting cross-linkage would
severely limit the extendibility and maintainability of the system: whenever a
new agent is added, every file system to which the agent requires access would
need to be informed. If a new file system is added, it would be necessary to
determine access privileges for each user, interface, terminal, and agent. For
these reasons, we require each file system to negotiate a global level of access
privileges with the fedecration. It is the responsibility of the federation to
delegate access privileges to its users, agents, ete. This approach allows each
file system to maintain its autonomy without hampering the manageablility

of the federation.

There is a natural hierarchy of access control within the architecture:
each file system determines how much it will trust the {ederation, the fed-
eration determines how much it will trust each user, and each user decides
how much it will trust each ager*, interface, terminal, etc. We note that a
probable consequence of the policy of global authorization is that the level of
authorization granted by file systems may be at a low level since they cannot

control how authorization is delegated within the federation.

Authorizations for queries and operations for communicating with the file

systems within the federation are centralized in the Federation class. Users

112

dispatch queries to the Federation object to which they belong where they are
authorized and passed to an Engine class object for processing. The engine
itself obtains the data needed by dispatching queries to the Federation object
where the authorization process is repeated. Only the Federation class has
operations to access the file systems. This assures that User and Engine

objects cannot side-step authorization.

The topics of validation, transaction control, and crash recovery have not
been included in this version of the architecture. In the current implementa-
tion of T'KL, the separation of file server and engine is not observed because
they are provided as a unit in LDL, the deductive DBMS that is used as a
rapid prototyping tool. However, a future version of TKL could use LDL as
a server for unprocessed relations and the engine could be implemented as a
separate unit. TKL is implemented in C++ using the InterViews class library
to build the graphic user interface. (InterViews, revised and renamed Fresco,

is scheduled to become part of the X-Windows Release 6 in 1994.)

The principal operations of the User class in TKL are to create an In-
terface object, read queries written on the interface in the TKL language,
translate the queries to the LDL language®, dispatch queries to LDL and get

answers from LDL, and return answers to the interface.

The interface, as it appears on a computer display is shown in Figure 4.3.
The principal operations of the Interface class are to create a window showing
the activity of LDL, which runs as a background process, to display choosers

for the queries, rules, and EDB/IDB relations that have been entered into

$The language of LDL is the lingua franca of this system.

113

the system, and to display forms corresponding to agents’ selections from
the choosers. It also provides scanning operations to get tokens from forms
and from the conditions section, as well as for type checking of tokens. The

schema and type data needed for these operations are obtained by querying

LDL.

Answers from LDL are read into a buffer which is dynamically allocated
in order to avoid placing an artificial bound on the size of query answers, as
do statically allocated buffers. (In this same spirit, a dynamically allocated
buffer is used for queries.) The required functionality is synthesized using C
++ libraries. Answers are optimized for rapid access to attribute values by
using pointers. They are also optimum in the sense that values are never

copied unnecessarily when they can be referenced using pointers.

LDL is accessed via its public interactive interface: sidin and stdout, in
UNIX parlance. This presents a problem with detecting the end of output
from LDL since it does not send a standard signal when it is finished writing
an answer. The solution we use is to detect the text patterns it typically
writes when its output is finished. There are five such patterns: the prompts
“-) " and “-(", and, when LDL requires instruction from the agent, the

» «

patterns “[y/n/?] ”,“(yes/no) ”, and “(yes/no/all) 7. The pattern matching

procedure is optimized for long query answers.

InterViews was selected for building the interface after experimenting
with three other X-Windows toolkits’. The first one we tried was the Xt-

Intrinsics toolkit with Athena widgets®. This toolkit was rejected because it

"Motif was not considered for use because it was not available to us.

8 A widget is an object that appears on a computer screen, such as a push-button or a scroll-bar, which
is used to construct g, aphic user interfaces.

114

Listener

2 soluttons
:-) query form{ “ancestori(®, 1, v!lo. File, Anm, finame
query_fora(..n..oﬂwnﬂ.uc ‘Y *“ancestor®’, ‘"ancesto)
query_fara(:I-uanﬂ.uo(. n. ‘“ancsstor®’, ‘“ancesto)
2 solutions
_"-v qfora ancestor{ $TKL_WR 0, T WR 1)
~)

ing: Query form already compiled: ancestor($TKL_WAR_O)
you wish R-. proceed? (yes/no)
iz,Anc)

ancestor(11z, jane),
ancestor(1iz, ed).
ancestor{ 11z, sally),
ancestor({ 11z, henry),
ancestor{ .1z, bill),
ancestor(liz, amn),
ancestor(11z, kent),
ancestor(11z, nicole),
ancestor(11z, john),
9 sclutions

~ 252 : cd v

sadhan.daniel

~/iv 253 : fg

tkl

~Z

Suspended

sadhan.daniel

~/1v 254 ; xwd -root | xpr -ps

115

igure 4.3: The TKL Interface. Shown answering a query.

F

requires programming at an unnaturally low level in comparison to ('t+, the
general programming language we used, and because Athena widgets are not

adequate for building TKL forms.

The next toolkit we tried was Olit using OpenLook widgets. While this
toolkit is at the same programming level as Xt, the widgets are powerful
enough for TKL forms. However, the administrators of the computer system
on which the implementation was being done decided to withdraw support
for OpenLook because of its inefficient use of memory. Thus, we decided not

to pursue use of this toolkit.

The third toolkit we tried was XView. This toolkit has sufliciently pow-
erful widgets and it ‘appears’ to allow a higher level of programming than the
other toolkits because comparable functions have fewer parameters in XView
than they do in Xt or Olit. However, in many cases global variables must
be set before calling these functions. This has an undesirable effect on the
clarity of code and it goes against object-oriented programming style where

almost all data is encapsulated in a class.

InterViews was finally selected because it provides widgets suitable for
TKL forms and it has a high-level C++ interface to X-Windows. Further, as
a bonus to our system administrators, its widgets are very efficient in their use
of memory. Unfortunately, this library has other deficiencies which slowed
the progress of the TKL project. The only docurnentation available is a very
terse manual. For example, in the important area of geometry management,
only three sentences are written to explain the basic operations (Section 2.1

of [L 92]). A set of examples is provided to demonstrate how the library

116

should be used. Some InterViews classes do not function as documented:
for example, the dialog box function dismiss does not work. Finally, it does
not provide some widgets which are commonly found in widget sets. For
example, it does not provide a text window with a scroll-bar or a string
chooser. Both of these widgets had to be constructed for use in TKL. On the
other hand, InterViews widgets have an attractive appearance, use memory

efficiently, and work quickly and dependably.

4.7 Conclusion

A uniform treatment of temporal information is a natural extension to data-
base technology that can aid in the design and the use of databases maintain-
ing the history of objects they model. We take the temporal extension one
step further to temporal deductive databases. The temporal deductive data-
base query language, TKL, offers some important innovations: its graphic
user interface is designed to make the meaning of queries as transparent as
possible; user-defined temporal data types help adapt the representation of
temporal data to fit the user's needs: finally, a simple semantics for tempo-
ral imprecision is provided using broad and narrow interpretation policies.
A spin-off of our treatment of flexible granularity is that null values can be
stored in temporal terms and used effectively in queries that reason about

time.

Chapter 5

TKL and Other Temporal

Query Systems

Several query systems were introduced in Chapter 2 for temporal databases.
TQuel and HSQL extend the relational database languages Qutel and SQL
(resp.) to temporal relational database languages. Two temporal deductive
systems were also introduced: TEMPLOG and STATELOG. TEMPLOG is based
on temporal logic and STATELOG is a deductive query answering system. In

this chapter, we compare TKL to these systems.

5.1 TKL & Temporal Relational Query Systems

The temporal relational database systems TQuel and HSQL are extensions
to the relational database query languages Quel and SQL respectively. They

are based on relational calculus. On the cther hand, TKL is based on a

118

deductive query system similar to Datalog. Thus, TKL features increased

expressive power over relational database systems.

5.1.1 TQuel and TKL

TQuel is a functioning temporal database system that provides a simple
syntax and semantics for roll-back and historical databases. It differs from
TKL somewhat regarding its choice of fundamental temporal predicates and
operators. For example, TQuel defines precedes using the < comparison
operator while TKL uses the < operator. Also, in TQuel the intervals I; and
I, are said to overlap when (i) I (I.) begins before I (1), resp.) and both
Iy and I, have some time instant in common, or (it) I; (/) is contained in 1,
(11, resp.). Thus, an interval I) can precede an interval I, even if they have a
point in time in common and they can overlap even when there is no overlap

in a non-technical sense, i.e., one interval contains the other interval.

Since TKL provides for flexible granularities together with the broed/-
narrow interpretation policies, operators in TKL and TQuel can only be
compared concisely on intervals which have a granularity of one tick. In this
case, differences in interpretation policies degenerate to produce equivalent
models of query programs. It can be seen from the definitions in Section
4.3.3 that the TKL precedes, predicate is defined using the < comparison
operator and that I} <y I is true only when I; occurs entirely before I,.
Also overlaps — before, is true for I} <|o I only if I; begins before I, and
both intervals have some point in time in common. For one-tick granularity,

it is casy to verify that substituting o for o in the above will give the same

119

interpretation. Thus, in TKL I, precedes I is true when I, ends strictly

before I; begins and I; overlaps I3 is never true when I contains I, is true.

Some TQuel temporal primitives such as overlap and ertend return in-
tervals as their value, while others such as precedes are predicates which are
either true or false. In TKL, the division between operators returning values

and predicates is clear: all the temporal primitives are predicates.

5.1.2 HSQL and TKL

The design of TKL has been influenced by the the design of HSQL with
respect to integrity constraints and its treatment of flexible granularity. The
notion of a unique key in the context of temporal intervals and the notion of
coalescing concurrent tuples with the same visible attributes from H5QL are
integrated into the design of TKL. The methodology for comparing intervals
with different granularities also originated there, aithough we have extended

it with broad and narrow interpretation policies.

5.1.3 Summary: Temporal Relational Systems

Both TQuel find HSQL provide the system support needed to model valid
events and valid intervals. They provide useful temporal operators, a sophis-
ticated temporal data type, and the integrity constraints needed to maintain
data consistency. TKL includes these features also, and, in addition, it fea-
tures a graphic user-interface, user-defined temporal data types, interpreta-
tion policies for handling flexible granularity correctly, and allows null-values

in temporal data types.

120

In both TQuel and HSQL, queries are written using a plain text editor.
However, temporal queries are often more complex than similar non-temporal
queries because the underlying relations have additional temporal attributes
and because the temporal conditions are often intricate and subtle. For these
reasons, TKL incorporates a graphic user-interface as part of its definition
as an aid to writing queries clearly and concisely. TKL forms visibly asso-
ciate attribute names and their values. Logical joins between forms can be
expressed concisely by entering the same variable symbol in the value fields
to be joined. When a plain text editor is more convenient than forms, the
TKL conditions-section can be used. Form identifiers are provided for use in
this section to represent the temporal intervals of the corresponding forms.

This is useful in expressions involving the temporal operators.

The DATE data type which is provided by TQuel and HSQL is unsuitable
for specialized temporal databases such as databases of geological data or
for particle physics experimental data. Also, it cannot capture periodicity
of data naturally. For these reasons, user-defined temporal data types are
provided in TKL. Both TQuel and HSQL allow flexible granularities, but they
rely on default interpretations of the imprecision that flexible granularities
introduce. TKL provides broad and narrow interpretation policies to give
the database user control over how . 1ch imprecise data is interpreted. In
addition, null values can be stored as TKL temporal data values and used
edectively in answering queries - something that cannot be done using TQuel

or HSQL.

121

5.2 TKL & Temporal Deductive Query Systems

The two temporal deductive query systems described in Sections 2.3 and 2.4,
TEMPLOG and STATELOG, are experimental query systems based on logic
programming. TEMPLOG uses a higher-order syntax to express the notions
of nert, eventually, and always and it can easily model processes that extend
infinitely into the future. It handles infinite answers by giving them one
at a time. However, users of temporal databases may find it difficult to
express queries using its primitives when intervals are the natural choice for

representing temporal validity.

The great strength of STATELOG is its ability to finitely represent certain
query answers that are periodic in nature. However, it will probably be of
mainly theoretical interest until tractable classes programs arc discovered.
Some of its power for periodic query answers in captured in TKIL by the
user-defined temporal data type, as illustrated in Example 4.17, which can

be tailored by the user to capture the periodic nature of some query answers.

TKL is designed for historical data and, by using superfiniteness analysis,
it provides a practical solution to the problem of detecting finiteness for
certain classes of query programs. Since TEMPLOG handles infinite query
answers by returning them one at a time, it is restricted to modeling real-time
systems when possibly infinite queries are involved. TKL cannot model such
real-time systems in its present form, although an extension for this purpose

may be possible. In any case TKL is not limited to such applications.

Neither TEMPLOG nor STATELOG were conceived to be general purpose

temporal deductive database query answering systems. In their current form,

122

they promise interesting capabilities. However, they do not provide sophisti-
cated temporal data types (user-defined or otherwise), the usual set of tem-
poral operators, or the integrity constraints needed for a practical temporal

deductive database system.

5.3 Summary

Neither HSQL nor TQuel provide facilities for conveniently handling tem-
poral data that cannot be concisely represented using the DATE data type,
such as the user-defined temporal data type found in TKL. Also they do
not provide support for imprecise temporal data or for temporal null values

which is provided in TKL.

The user-interface, which is an integral part of TKL, associates attribute
names and values graphically. Relationships between intervals, between in-
tervals and events, and between events can be long and complex in temporal
queries. Therefore, we provide two methods for representing them:

(/) temporal domain variables and values can be used in both forms
and in the conditions section of query programs, and
(¢) interval identifiers associated with literals can be used in
the conditions section. ‘
With regard to the choice of primitive operators, we believe the choices made
in TKL are intuitive and useful. However, the relative advantages of design

decisions such as these depend on the individual user and the particular

application.

TQuel and HSQL are based on relational algebra in which negation can be

123

expressed naturally by the set difference operator. While negation is prob-
lematic in general in logic programming (see page 28), it should be noted
that stratified negation, which is used in TKL, does have effective semantics
and proof-procedure. In fact, negation in TKL is strictly more expressive
than negation in TQuel and HSQL. Note also that because TKL uses logic
programming, it can express recursive queries — something that cannot be
expressed in TQuel or HSQL. In summary, we have extended temporal data-
base technology by introducing user-defined temporal data types, the broad
and narrow interpretation policy for imprecise temporal data, a query lan-
guage defined in terms of a graph user-interface, and by moving from a

relational database framework to a deductive database framework.

124

Chapter 6

Conclusions

Temporal databases are a natural extension to database technology that
can aid in the design and the use of databases which maintain the history
of objects they model. In this thesis, the temporal extension is taken one
step further to temporal deductive databases. After introducing the topic of
temporal deductive databases in Chapter 1, Chapter 2 was devoted to the
fundamentals of relational and deductive databases, as well a discussion of the
temporal relational database systems TQuel and HSQL and of the temporal
deductive systems TEMPLOG and STATELOG. In Chapter 3, polynomial time
algorithms were presented for detecting superfinitenéss for certain classes of
programs. Finally, the details of the design and the implementation of TKL

were given in Chapter 4.

Finiteness is known to be undecidable in general for Datalog with func-
tion symbols. Ramakrishnan, et al. [RBS 87] and Kifer, et al. [KRS 88]

have developed a methodology which consists of (z) approximating the logic

125

program with function symbols, with a function-free program together with
infinite base relations satisfying finiteness constraints (FCs) and (ii) testing
a stronger notion called superfiniteness on the resulting program. They have
developed a complete axiom system and a decision procedure for superfinite-
ness. Unfortunately, the time complexity of their algorithm is exponential in

the size of the program and the FcCs.

For relational temporal database systems, it was noted that T'quel makes
a significant contribution to temporal database technology by providing a
simple syntax and semantics for both rollback and historical databases. It has
been largely implemented in Quel and it is the only temporal database system
known to be operational at this time. HSQL offers a uniform extension
to SQL to handle historical data. Among its contributions, in addition to
its intuitive extension to SQL syntax, are the development of the integrity
constraints needed to maintain consistency in historical relational databases
and an extension to relational algebra for completeness when historical tuples

are stored with valid intervals or event times.

TEMPLOG and STATELOG are important proposals towards the intro-
duction of temporal deductive databases systems. TEMPLOG is based on
temp.oral logic and is implemented in Prolog. It can easily handle queries
about processes that extend for an indefinite time into the future and for
which there is a non-finite number of answers. In the case of such processes,
each answer is handled one at a time and, hence, non-finiteness is not a
problem. However, temporal databases model the past as well as the fu-
ture and, in general, more sophistication is necessary to detect which queries

have a finite number of answers. STATELOG is the only known syntactically

126

decidable logic languages with function symbols. 1t develops an innovative
methodology for determining a finite representation for infinite query an-
swers. However, because of its very high computational complexity, it is

impractical as a general deductive database inference mechanism.

6.1 Contributions of the Thesis

Contributions to the study of temporal deductive databases were made in
the detection of queries which are superfinite and in the design of temporal

deductive database languages. A summary follows.

6.1.1 Superfiniteness

The following contributions to the theory of superfiniteness have been pre-

sented in this thesis.

e Chased R/G tree were introduced as a conceptually simple method for
determining superfiniteness based on rule/goal trees. Besides being a
useful tool for developing an intuitive understanding for superfiniteness,

this method has been useful in proofs.

o The class of compositional linear programs was identified. Superfinite-
ness information is passed at most one time up and down each branch

of the R/G tree for compositional programs.

e A polynomial time algorithm was developed for compositional pro-

grams based on transforming the programs together with the given Fcs

127

for (EDB) predicates into a non-deterministic finite automaton (nfa)
when the FCs are unary. An nfa is said to be permissive il every string
over the alphabet of the nfa is a prefix of some string that is accepted
by the nfa. An algorithm based on pebbling was developed to decide
this property in polynomial time. Superfiniteness reduces to permis-
siveness of the nfa associated with the program and, therefore, it can

be tested in polynomial time.

For the class of single rule linear recursive programs, superfiniteness
reduces to the non-emptiness of the nfa associated with the program

and, again, this can be tested in polynomial time.

6.1.2 Temporal Deductive Database Systems

The temporal deductive database language TKL offers a uniform medium for

queries and updates in temporal deductive databases. In addition to incor-

porating algorithms for detecting query finiteness based on superfiniteness

analysis, the following features are included in the design of the language.

e The clarity of query exposition is enhanced by means of a graphic user

interface which improves clarity in two basic ways:

— attribute names are visually associated with predicate arguments

in forms, and

— an area is provided to write conditions on statements in a way

similar to domain calculus or to tuple calculus.

128

e The temporal data type is extended beyond that which is found in other

temporal database proposals. The following extensions are proposed.

— User-defined temporal data types are introduced to allow a nat-
ural representation for time when the traditional ‘date and time

of day’ representation is inappropriate, (e.g., for a weekly school
Y PP

schedule);

— The use of time values variable granularities introduces impre-
cision into temporal data. The temporal interpretation policies
broad and narrow are provided as a means for making such values
precise; and,

~ Temporal null values can be stored in base relations and used in

queries in a meaningful manner.

6.2 Future Work

There remains work to be done on the finiteness problem in deductive data-
bases due to the introduction of function symbols. The immediate work is to
extend the work presented here, which uses the permissive property of nfas,
to new classes of programs. A general algorithm.with acceptable complexity
may be achievable by applying algorithm to chase in the R/G tree. It is not
clear at this time what the bound on the height of the tree and the number of
folds should be. While it is known that finiteness is undecidable for logic pro-
grams with function symbols, the decidability of this class of programs with
finiteness constraints is open and investigating this question is an interesting

avenue for future research.

129

In the of direction of extending the capabilities of TKL, an interesting
problem is to allow user-defined temporal interpretation policies in addition
to the predefined nerrow and broad policies. For example, it may be known
that the probability that a temporal tuple holds in the imprecise temporal
intervals which the From and the To, and At attribute values can represent,
follows a normal distribution. In such cases where the probability distribution
is known, it should be possible to associate a probability with a tuple that is

in the temporal join of two temporal relations.

130

Bibliography

[AM 87)

[ABW 88]

[AV 82]

(Ban 85)

[BR 86)

[Baud 89]

[Bisk 81]

[BS 89]
[BS 91)

[CGT 89]

Abadi, M., Z. Manna. “Temporal logic programming,” Proc.
Symposium on Logic Programming, 1987, pp. 4-16.

Apt, K., H. Blair, A. Walker. “Towards a theory of declarative
knowledge,” in Foundations of Deductive Databases and Logic

Programming, Morgan Kaufmann, Los Altos, Ca., pp. 89-142,
1988.

Apt, K. R.; M. H. Van Fmden. “Contributions to the theory of
logic programming,” J. ACM, Vol.29, No. 3, 1982.

Bancilhon, F. “Naive evaluation of recursively defined relations,”
in On knowledge based management systems, Brodie and My-
lopoulos, Eds. Springer-Verlag, New York, 1985.

Bancilhon, F. and R. Ramakrishnan. “An amateur’s introduction
to recursive query-processing strategies,” ACM SIGMOD Intl.
Conf. on Management of Data, pp. 16-20, 1986.

Baudinet. Marianne. “Temporal logic is complete and expres-
sive,” ACM Symposium on Principles of Programming Lan-
guages, Austin, Texas, 1989, pp. 267-280.

Biskup. J. “Null values in database relations,” in Advances in
Data Basc Theory, Vol. 1, H.Gallaire, J.Minker, J.M. Nicolas,
eds., Plenum Press, New York, 1981.

Brodsky A. and Y. Sagiv. “Inference of monotonicity constraints
in datalog programs,” Proc. ACM PODS, 1989, pp. 190-199.

Brodsky. A. and Y. Sagiv. “Inference of inequality constraints in
logic programs,” Proc. ACM PODS, 1991, pp. 227-240.

Ceri, S.. G. Gottlob, L. Tanca. “What you always wanted to

know about datalog (and never dared to ask),” IEEE Trans. on

{(C%O\\'ledge and Data Eng. Vol. 1, No. 1, March 1989, pp. 146-
W,

131

[Chel 80]
[Chim 89)]
[CI 88]

[CI 90]

[CW 82]

[C 70]

[Col 73]

[Da 86)
[D 90]

(GS 91]

[1 89)
[JCGSS]

KL 88]

[KRS 88]

Chellas, B. F. Modal logic: an introduction, Cambridge Univ.
Press, 1980.

Chimenti, D. et al. “The LDL system prototype,” IEEE Trans.
on Knouwledge and Data Eng., Vol. 2. No. 1, 1989, pp. 76-90.

Chomicki, J., T. Imieliniski. “Temporal deductive databases and
infinite objects,” ACM PODS, 1988.

Chomicki, J., T. Imielinski. “Finite representation of infinite
query answers” , Tech. Report TR-CS-9G-10, Dept. of Comp. and
Information Sciences, Kansas State Univ., 1990.

Clifford, J., D. S. Warren. “Formal semantics for time in data-
bases,” ACM Trans. on Database Systems, Vol. 6 No. 2, 1983,
pp. 214-254.

Codd, E. F. “A relational model of data for large shared data
banks,” Comm. ACM Vol. 13, No. 6, pp. 377-387.

Colmerauer, A., et al. Un systéme de communication homme-

machine en francais, Tech. Report, Université d’Aix, France,
1973.

Date, C. J. Relational databases: sclected writings, Addison-
Wesley, Reading, Mass., 1986.

Desai, B. C. An introduction to database systems, West Publish-
ing Co., St. Paul, Minn., 1990.

Gunadhi, H., A. Segev. “Query processing for algorithins for tem-

poral intersection joins,” Proc. of the Tth International Conf. on
Data Eng.,Kobe, Japan, 1991, pp. 336-344.

lIoannidis, Y. “Commutativity and its role in the processing of

linear recursion,” IEEE VLDB, 1989.
Jensen, C. S., J. Clifford, S. K. Gadia, A. Segiv, R. T. Snodgrass.

“A glossary of temporal database concepts,” in preparalion.

Kifer, M., and E.L. Lozinskii. “SYGRAF: Implementing logic
progiams in a datalog style,” in IEEE Transactions on Software
Engineering, Vol. 14 No.7, 1988, pp. 922-934.

Kifer, M., R. Ramakrishnan and A. Silberschatz. “An axiomatic
approach to deciding finiteness of queries in deductive data-
bases,” Proc. ACM PODS, 1988. (Extended version available as
Tech. Report, Department of Comp. Sci., SUNY, Stony Brook,
NY, 1991.)

132

[KRS 88a] Krishnamurthy, R., R. Ramakrishnan, and O. Shmueli. “A

[Laks 89]

[LN 92a)

[IIN 92')]

(1SS 93]

[Leun 90]

(L 92]

[L1 87]
[N 89)

[RBS 87]

[Rei 78]

[SV 89)

[Sard 90]

framework for testing safety and effective computability,” Proc.
ACM SIGMOD Conf., 1988, pp. 154-163.

Lakshmanan, V.S. “Query evaluation with null values: how com-
plex is completeness?,” Proc. 6th Foundations of Software Tech-
nology and Computer Science, Springer-Verlag 1989, pp. 204-222.

Lakshmanan, V.S., D. Nonen. “Superfiniteness of query answers
in deductive databases: an automata-theoretic approach,” Proc.
9th Foundations of Software Technology and Computer Science,
1992. (Eztended version in preparation.)

Lakshmanan, V.S., D. Nonen. “On querying temporal deductive
databases” Workshop on Formal Method in Databases & Soft-
ware Engincering, Springer-Verlag, London, 1993.

Lakshmanan, V.S., F. Sadri, I. N. Subramanian. “On the logi-
cal foundation of schema integration and evolution in heteroge-
neous database systems,” to appear in Third International Con-
ference on Deductive and Object-Oriented Databases, Phoenix,

Az., Dec. 1993.

Leung, T., R. Muntz, “Query processing for temporal data-
bases,” Proc. 6th International Conference on Data Engineering,
Los Angles, Calif. Feb. 1990, pp. 200-208.

Linton, Mark A., et al. “InterViews reference manual version
3.1,” available as part of the InterViews 3.1, Stanford Univ. Ca.
Dec. 1992.

Lloyd, J. W. Foundations of logic programming, second extended
ed. Springer-Verlag, New York, 1987.

Naughton. J.F. “Data independent recursion in deductive data-
bases,” JCSS, 38 (1989), pp. 259-289.

Ramakrishnan, R., F. Bancilhon, and A. Silberschatz. “Safety of
recursive Horn clauses with infinite relations,” ACM Principles
of Databases Systems, 1987 pp. 328-339. °

Reiter, R. “On closed world databases,” in Symposium on logic

and data bases, Centre d’etudes et de recherches de Toulouse,
1977, edited by H. Gallaire and J. Minker, 1978, pp. 55-76.

Sagiv, Y. and M. Vardi. “Safety of datalog queries over infinite
databases,” in Proc. ACM PODS, 1989, pp. 160-171.

Sarda, N. “Extensions to SQL for historical databases,” IEEFE
Transactions on Knowledge and Data Engineering, 2, No. 2, June
1990, pp.220-230.

133

[Seth 89)
[Sh 87]

[Snod 87]

[SG 91]
(Soo 91]
[T 91]

(U1 89]
[Var 89]

[Zlo 77]

Sethi, R. Programming languages concepls and constructs,

Addison-Wesley Publishing Co. Reading, Mass., 1989.

Siumueli, O. “Decidability and expressiveness aspects of logic
queries,” ACM PODS, 1987, pp. 237-249.

Snodgrass, R. “The temporal query language TQuel,” ACM

Transactions on Database Systems, 12, No. 2, June 1987, pp.
247-298.

Sohn, K., A. Van Gelder. “Termination in logic programs using
argument size,” Proc. ACM PODS, 1991, pp. 216-226

Soo, M.D. “Bibliography of temporal databases,” Sigmod Record,
Vol.20, No.1, March, 1991, pp. 14-23.

Tsur S. “Deductive databases in action” in Proc. ACM PODS,
1991, pp. 142-153.

Ullman, J.D. Principles of Database and Knowledge-Base Sys-
tems, Vol. I & II, Computer Science Press, 1989.

Vardi, M. “Automata Theory for Database Theoreticians,” Proc.
ACM PODS, 1989.

Zloof, M. “Query-by-example: a database language,” 1BM Sys-
tems J. 16:4 pp. 324-343.

134

