Natonal Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa Ontano

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

f pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subseqguent amendments.

ik

Canada

395 rue Wellington
Ottawa (Ontanio)

Bibliotheque na.ionale
du Canada

Direction des acquisitions et
des services binliographiques

Yo b Vol e e

the e Notre rotve oy o

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a confére le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d'un
ruban usé ou si V'université nous
a fait parvenir une photo-~opie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

TEST CASE GENERATION AND FAULT
DIAGNOSIS METHODS FOR
COMMUNICATION PROTOCOLS BASED ON
FSM AND EFSM MODELS

Ramalingom Thavasinadar

A Thesis
in
The Department
of

Electrical and Computer Engineering,

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal. Québee, Canada

September 1994

(©) Ramalingom Thavasinadar. 149

l ", l Natonal Library Bibliothéque nationale
du Canada

Your Me Volre reldrance

Ouwr hie Notre éldvence

of Canada
Acquisitions and Direct:on des acquisitions et
Biblographic Services Branch des services biblicgraphiques
395 Wellington Street 395, rus Wellington
Ottawa, Ontano Ottawa (C. 1ano)
KIA ON4 K1A ON4

THE AUTHOR HAS GRANTED AN

IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR Ri:TAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY 8E PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

L'AUTEUR A ACCOP.L.” UNE LICENCE
IRREVOCABLE Ft NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTEREYSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODU.TS SANS SON
AUTORISATION.

ISBN 0-612-01277-8

Canadi

ABSTRACT

TEST CASE GENERATION AND FAULT DIAGNOSIS METHODS
FOR COMMUNICATION PROTOCOLS BASED ON
FSM AND EFSM MODELS

Ramalingom Thavasinadar, I'h.D..

Concordia University. 1994

Conformance testing is essential for assuring if an implementation ol a com
puter communication protocol is according to its standard specification. This thesis
addresses the problem of fest case generation as well as the problem of fault diagno
sis from a specification which is represented as a Finite State Machine (FSM) or an
Extended Finite State Machine (EFSN).

A new problem, called the Basie UIS Assignment Problem (BUATD), is defined.
Aa efficient algorithm based on the Maximmm Cardinality Two Matroid Intersection
Problem is proposed for selecting & minimum number of transitions and an assignment
of an Unique Input Sequence (UIS) for cach of these transitions such that the resulting
test graph has the minimum number of connected components. Three heutistie algo
rithms are developed for solving the asymmetric Rural Postperson Problem (RPP).
Finally. a new method which combines the solutions to the BUAP and the RPP with
the MU-method [SL92] is proposed for generating a minimal length test sequence fon
any strongly connected FSM which has at least one UIS for each state,

After analyzing the existing FSM-based test sequence generation methods for
their fault detection and diagnosis capabilities, we propose two new fanlt diagnosis
methods: the UIDD-method and the CSDD-method for implementations with at
most one output or transfer fault. The UIDD-method minimizes the length of the
test sequence using the RPP and it provides better fault diagnosis capability than

all the UlS-based methods analyzed. This method is illustrated on the NBS ‘TP

transport protocol. The CSDD-method uses the Characterizing Sequences instead of
the UISs and gnarantees a superior fault diagnosis capability.

A new methodology is proposed for generating test cases from an EFSM A
new type of UIS, called a Context Independent Unique Sequence (CIUS). is defined
and an algorithm is developed for computing a CIUS set. Our trans-CIUS-set control
flow criterion is to apply the CIUS of every state at the tail state of every transition.
Our def-use-oly data flow eriterion enables the def-use associations to be externally
observable. A two phase breadth first search algorithim is presented for generating a
set of executable test cases for the required criteria. The methodology is demonstrated

on a class 2 transport protocol.

v

TO MY PARENTS AND TEACHERS

Acknowledgments

I express my deepest gratitude to my thesis supervisors Professor K. Thulasira-
man and Dr. Anindya Das. The technical guidance and the long discussions we had
throughont the conrse of this thesis were truly valuable.

I am thankful to Professor Jeremiah F. Haves and Dr. Mare A, Comean for
their suggestions and moral support.

I owe thauks to the members of the PROSOFT research group of University of
Montical which enriched my knowledge in Protocol Engineering. In particular. i am
grateful to Professor Goov. Bochmann and Dr. Rachida Dssouli.

I am indebted 1o all my friends in Montreal for making my stay here pleasant
and enjovable.

Last but not the least,] thank my mother. wife and my late father for their

constant inspiration and support.

Contents

LIST OF ABBREVIATIONS
LIST OF FIGURES
LIST OF TABLES

1 INTRODUCTION
LI Conformance Testing

1.2 Finite State Machine Maodel

1.2.1 Fault Model for FSM

.......................
.......................

1.3 Review of Literature

...........................

1.3.1 IF'SM-Based Test Sequence Generation
1.3.2 Fault Diagnosis Methods
1.3.3 EFSM-Based Test Sequence Generation

1.4 Expressing Algorithms

..........................

1.5 Scope of the Thesis

............................

2 TEST CASE GENERATION FROM FSM MODEL
2.1 Graphsand Matroids
2.2 UIS-Based Methods and the Need for a New Method
2.2.1 The U-method

2.2.2 MUli-method

.........

..........................

............................

X1

Xiv

2.2.4 Motivation for the New method 29

2.3 Basic UIS Assignment Problem . . 0 00 0 00000000000 31
2.3.1 An lllustrationof BUAP 0 .00 000 o000 oL 42
24 Algorithms for the Rural Postperson Problem . .. 0 0 00 ... 0 . A7
2.4.1 A Heuristic Algorithm Based on Augmentations 47
2.4.2 A Heuaristic Algorithm Based on MST . .. 0 o0 0000 L. o
2.4.3 A Heuristie Algorithm Based on Symmetry 0000 L. 56
2.5 Genetalized UlS testingmethod © 0 000 00 00 00000000 a9

250 The GU-method0 o o A"
2020 Anllustration .. 0 000 65

260 Summary L. e e e N (1

ANALYSIS OF FSM-BASED TEST SEQUENCE GENERATION

METHODS 67
3.1 Test Sequence Generation Methods: Review and Analysis . 0 0. 0 L 63
3.1.1 Distinguishing Sequence Method 0000 000 00000 GY
3.1.2 Characterizing Sequences Method . 000000000000 73
3.3 Wamethod o000 0o L
3.1.4 Transition Tour Method . . 0 .0 0000000 81
305 UlS-Based Methods . . .0 00000000 0 82
3.6 Wp-method . .. 0L 0o 89
3.2 Comparison of Test Sequence Generation Methods 93
52,1 Fault Coverage and Diagnosis 94
3.2.2 Length of Test Sequences Generated 95
33 Summary ..o e e 95
FAULT DIAGNOSIS METHODS 97
LU UIDD-method o 0 0000 0 oo 98
1.2 State Cover Tree and UIS Set Computation 107

Viii

4.3 An Hustration of the UIDD-method 0 ..o 0000000 [
4.4 CSDD-method . . o 000000 123
4.5 Fault Localization oL 0 oo 124
4.6 Summary ... oL e e 132
TEST CASE GENERATION FROM THE EFSM MODEL 133
5.1 The EFSM Model 000 0o 135
5.0 AnExample . o000 00000 oo 139
5.1.2 Unique Inpnt Sequence o0 00000 o000 oo 113
5.1.3 Control Flow Fault Model © 0000 0000000000000 [11
5.2 Test Case Selection Criteria . .0 o0 o0 00000000000 L15
5.2.1 Control Flow Coverage 00000000000 1.1h
5.2.2 Data Flow Coverageo o oo 117
5.3 CIUS Computation Algorithmo 0000000 T 1Y
53.0 Au Ilustration o Lo 170
5.1 Data Flow Graph Manipulationo 00000000 173
5.5 Automatic Test (lase Generation . . oo oo 00000 182
5.5.1 The Two-Phase Algovithim 0.0 00000 [N
5.5.2 Fault Coverage o o 197
5.6 Transport Protocol Test (ase Generation 0000000 200
5.7 The Feasibility Problemo . o000 212
58 SUIMMATY .« o v v v v e v e e e e e e e e 214
SUMMARY AND PROBLEMS FOR FUTURE STUDY 221
6.1 Summary L e e 22]
6.2 Problemsfor Future Study oo 220
BIBLIOGRAPHY 227

List of Abbreviations

BUAP Basie VIS Assignment Problem

coerrr Comité Consultatif International Télégraphique et Télephonique
CCS (‘velie Characterizing Sequence

C1es Context Independent Unigue Sequence

'S (haracterizing Sequence

¢sp C'onstraint Satisfaction Problem

DG Data Flow Graph

DNI Disjunctive Normal Form

KIS Extended Finite State Machine

EUTO Extended Unique Input Output

FHT Formal Description Technique

I'SM Finite State Machine

e Gomory Cut

PP Integer Programming Problem

IS Identifyving Sequence

15O International Qrganization for Standardization

T FSM/EFSM Representation of an Iinplementation Under Test
Lp Linear Programming

MCMIP Maximum Cardinality Matroid Intersection Problem

MC2MIP Maximum Cardinality Two-Matroid Intersection Problem

MST Minimum Weight Spanning Tree
Osl Open Systems Intercounection
PET Partial Enumeration Technique

RPp

RPT

SDL

SPEC

TCSD Property
TUISD Properis
UAP

U10

U1s

Asymmettie Rural Postperson Problem
Asymmetric Rural Postperson Tour
Specification and Description Languape
FSM/EFSM Representation of « Specification
Tree Characterizing, Set Disjoi 't Property
Tree U1S Set Disjoint Property

UIS Assignment Problem

Unigue Input Output

Unique Input Sequenee

Xi

List of Figures

1.1

[N

N
= W e

[

S
-1

ISO reference model for OSI . 000 0000000000
Varions aspeets of Protocol Engineering . .00 0 000000
Simplified transport protocol © .0 o000 0oL
An FSM based on the INRES protocol: responder o0 0 000 0.
Simplitied alternating bhit protocol (receiver)y 00000000
Cyvelesin G L0 0
(" for the FSM given in Figure 220 .00 00 0000 L. L.
(/yp i the fiest iteration of basic_assignment. L.
(/; in the second iteration of basic_assignment.
(/y in the third iteration of basic_assignmeent.
Flow graph for the FSM given in Fignre 222, 0 000000 L.
An Example for the D-method . . 00 00 000000000
Protocol passed by the C-method . . . 0 0 00 000000 0L L.

Mustration of the I-fault resolution capability of the (“method
An Example for the U-method . . 0 000 00000000000 L.
Protocol passed by the Uv-method . .0 000000000000
An Example for the Uvemethod 0 000 00 000000000 L

State cover tree of the SPEC given in Figure 3.1(a)

SPEC and a state cover tree of an abstract protocol

xi

84

[

30
31
33
39

-
45
16
61

4.2 A SPEC of a subset of NBS TP transport protocol © 00 0000 H1Y

13 A state cover tree of the transport protocol . 0 0000 121
5.1 An EFSM for the AP-module in the Class 2 trausport protocol 110
5.2 A data flow graph for £3 with respect to the walk #1038, 152
5.3 Different walks with the same behavior sequence afo .. 0 Ih1
5.1 Data flow graph for the transition ¢1 in the AP-module 201
5.5 Data flow graphs for {1,43.68 with respeet to the walk 112638 of the

AP-module o000 205
5.6 Data flow graphs for £3 and (8! with respeet to (13818 and 18 with

respect to 111348812, o A6

X1

List of Tables

2.1 Labels for transitions in Figure 2.1 oo 00 30
2.2 UlSs for states of the FSM shown in Figure 2.1 30
2.3 Labels of the transitions in Figure 222 0 0 0 0 000000000000 31
2.4 Valid UIS assignment without connected test graph 32
2.5 Valid UIS assignment with connected test graph 33
2.6 Edge description of (7 for the FSM given in Figure 2.2. 43
2.7 Parameters on the edges of the flow graph G, 61
2.8 UIS assignment using min-cost flow 64
3.1 Responses of the SPEC for the distinguishing sequence 70
4.1 UlSs selected by set.uis for SPEC of Figure 4.1(a) 114
1.2 Test subtours generated in the first phase of DD-method 116
4.3 Subtours for testing U-transitionso 0oL 116
4.4 Subtours for testing the tail states of the UlSs 117
1.5 Tour for testing all non-T-transitions 118
4.6 Explanation of state symbol notations in transport protocol 118
4.7 Labels of the transitions of NBS-TP4 transport protocol 120
4.8 UlISs generated for the transport protocol 12]
4.9 Subtours for testing the U-transitions 122
410 An optimal tour for testing non-T- non-U-transitions 123

xiv

a1

................

(‘ore transitions in the transport protocol

Core transitions in the transport protocol ((‘ontd.)

.
..........

.............

Non-core transitions in the transport protocol

CIUSs for the states in the AP-module

.................

Data flow coverage in the AP-module

..................

Data flow coverage in the AP-module (contd.)

.............

Data flow coverage in the AP-module (Contd.)

............

Preambles aud control flow test tours for the transport protocol

201
202
203

207

Preambles and control flow test tours for the transport protocol (Contd.)208

XV

Chapter 1

INTRODUCTION

The Open Svstems Interconnection (OS1) reference model [1S7498] of International
Organization for Standardization (1SO) proposes a seven layer architecture for design-
ing computer communication systems. as shown in Figure 1.1. Each layer performs
a well defined funcetion and it consists of many entities. Entities of a given layer
communicate with the laver ahove (below) through service access points. Each layer
functions according, to a set of well defined rules known as the protocol of that layer.
As protocols hecome highly complex systems, protocol design is becoming a challeng-
ing problem [Sar93]. A protocol engineering [Liu89] life cycle includes service and
protocol specification. validation and verification, implementation, and conformance
testing. Fisure 1.2 shows the relationship between the different phases of the life
cvele,

Traditionally. many protocols are specified in deterministic Finite State Ma-
chines (FSMs) [Boc78]. Standardization institutions such as ISO and Comité Consul-
tatif International Télégraphique et Téléphonique (CCITT) have standardized spec-
ification languages, also called Formal Description Techniques (FDTs), such as LO-
TOS [1S8807. BB87]. Estelle [IS9074. BD87] and the Specification and Description
Language (SDL) [SDL88] for specifying distributed systems. in general, and protocol

standards, in particular. While Estelle and SDL are based on the Extended Finite

Layer
7

Apphcatiun ettt Apphcation
Interface
Presentation ittt il ™ Presentation
Session e el ittt Sessan
Transport aati it el R e e > Trunsport
Network [~ = - Network e - = 'i__ Network P = = Network
Data link pe- = - Data hink e = -] Data ink - - - Data ink
Physical Physical Phywical Physicil

Figure 1.1: 150 ceference model for OS]

Service/Informal Spec.

Synthesis

Protoco ;D

Validation & VeriHication

Implementation

design and development

Implementation

Conformance testing

Figure 1.2: Various aspects of Protocol Engincering,

State Machine (EFSM) model. LOTOS is based on the Calenlus of Communicat-
ing Svstems [MilN9], the Communicating Sequential Processes [Hoa®5) and ACTONE
[EMS5).

Validation of a protocol is a process of checking the (standard) specification
for logical self-consisteney: it is normally done by checking if the specification sat-
isfies the safety and liveness properties [2af78, ZWR*80]. Protocol verification is
the process of verifving whether the specification provides the required functions
of the protocol as per its servive specification [Sab88]. Once the specification is
validated and verified. the implementation phase begins. Semi-automatic tools are
heing developed for deriving an implementation of a protocol from its specification
[BGSKT, SFRT. JJ89. SSO1h, SS91a. Bud92. Tel93). Since the implementation phase
involves hmman interactions, the implementation is error-prone [Nai92]. Therefore.
in order to achieve the interworking of heterogeneous computers. the ultimate goal of
OSI. it is important to test for the correctness of the implementations of a protocol
against its formal specification. Conformance testing [IS9646] is the most practical

way of testing an implementation and it has been an active area of research.

1.1 Conformance Testing

Conformance testing of a protocol implementation is intended to assure that the
implementation is equivalent to the standard specification of the protocol [Sta93.
[S9616]. Tt involves the generation of test suite from the specification, execution of
the test suite on the implementation under a suitable test environment, and analysis
of the test results [IS9616, Ray87]. The OSI conformance testing methodology and
framework [IS9616]) defines a test suite as a set of test cases, where a test case is a
set of protocol event sequences. Each test case has an associated purpose of testing a
specific protocol function. Also. a verdict of pass. fail. or inconclusive is assigned to

cach event sequence in a test case. A verdict of a sequence depends on the purpose of

the test case for which it is a member as well as the specification. During conformance
testing the implementation under test is viewed as a black box with some Points of
Control and Observation (PCOs). Various test architectures for executing the
test suite on an implementation are also standardized in [IS9616].

ISO has recently established a working group for studying the application of
Formal Methods in Conformance Testing (FMCT) [FMC93]. One of the primary
aims of the FMCT group is to enable computer-aided test suite derivation from pro
tocol standards specified 1u FDTs. As a result, there has been a growing interest
in developing methods for antomatic test case generation from protocol standards.
Since testing involves heavy costs, only a limited number of test cases of finite length
are usnally selected for testing. Hence. the quality of test cases generated has direct
influence on the gquality of the test reselt. Over the last fifteen years o1 so. research
has heen carried out for generating test cases of minimum cost with maxinun fanlt
covertage. Before 1eviewing the literature on the test case generation methods, we

next introduce the widely used FSM model.

1.2 Finite State Machine Model

An FSM M can be formally defined as a H-tuple M = (S.s). 1.0 T) where S =
{s1.8000 000 s} is the nonempty finite set of states of M. s is a designated state
called the 1aitial state, and [and O are nonempty finite sets of possible inputs and
outputs of the protocol, respectively. The transition function T'is a partial function
defined as T : S x I = S x 0. T(s,,a) = (s,,0) means that the FSM M at state
s, makes a transition to state s, when the input a is applied producing the output
o. If 1 = ((s,.a).(s;.0)) € T, then tis called a transition in M. s, and s; are called
the starting state and the tail state of {, respectively. We shall represent 1 as
(5¢.5,0af0).

An FSM M = (S.5,. 1.0, T) can also be represented by a directed labeled graph

GV, E), where S = V and cach transition (s,,s,:a/0) corresponds to an arc in £
directed from s, to s, with label t2d : a/o, where tid is a unique transition identification
for the transition/arc. The identification t7d in the label of the transition is in fact
optional. An FSM is said to Lave reset capability if for each state s, in S there
exists a transition (s,,sy;7/—), called a reset transition which resets the FSM to
its initial state where ‘" denotes the ‘reset’ command and ‘—’ denotes that the FSMI
does not. produce any output for the reset command. Whenever there is no confusion.
we represent all the reset transitions in a protocol simply by r.

We call an FSM M completely specified if at each state s, in M and for each
input « in [, there is an outgoing transition from s, with input a. An FSM can be
modified into a completely specified one by using what is called a completeness as-
sumption [DS88]. The completeness assumption requires that a self-loop transition
with input @ and output *—" be added for a state s, if it does not have an outgoing
transition with input «.

An input (output) sequence is a sequence of input (output) symbols. We denote
an ordered pair (a.b) of input and output by a/b. An input-output sequence is
a sequence of input and output pairs. We use the operator ‘e’ for concatenating
two inputs (outputs) symbols as well as input-output pairs. ‘@’ is an operator for
concatenating two input (output) sequences as well as input-output sequences. These
operators are omitted in certain sequences whenever there is no confusion.

A walk is a sequence of a finite number of transitions in the graph G of M,
where the tail state of every transition, except the last transition, is the starting
state of its successive transition. We use ‘@° for concatenating walks. This operator
is often omitted in the concatenated walks. Note that the same operator is used
for concatenating input, output, and input-output sequences. The usage of ‘@' can
casily be distinguished from the context. The starting state (tail state) of the first
(last) tramsition in a walk is called the starting state (tail state) of the walk. A

walk is said to be closed if its starting state and the tail state are the same. A

tour is a closed walk whose starting state is the initial state of the FSNL. We often
identify a state («,) in M by simply referring to its index (i). By Walk(j, inseq).
we denote a walk from s, of the graph of M such that inscq is the concatenation of
the iuputs along this walk. It actually denotes the sequence of transitions the FSA
will go through when inscq is applied to it when it is at s,.

The function Tail(j, inseq) accepts the index of the state s,, 1 < j < and
an input sequence inseq and returns the index of the state the FSN A will reach on
applying the inseq to M wher t stays at s,. That is, T'wl(j,inscq)is the tail state
of Walk(j.inscq). Similarly Dest(t) will denote the tail state of the transition f. We
shall denote the iuput sequence. the output sequence and the input-output sequence
on a walk H by Inseq(W), Outseq(W) and I0seq(W), respectively.

A completely specified FSM A is said to be minimal if for every pair of distinet
states in M there exists at least one input sequence of finite length such that M
produces different output sequences when this input sequence is applied to A when
it is in these two different states. Formally. a completely specified FSM A7 is minimal
if for every pair of states (s,.,),7 # J, there exists an input sequence), of finite
length such that Qutscq(Walk(i, D,,;)) # Outscq(Walk(y, D,,))

In FSM-based testing methods., the specifications and the implementations are
assumed to be represented as FSMs. We shall refer to the FSM representations of
a specification and an implementation of a protocol as SPEC and TUT, respectively.

The methods also assume that the SPEC is strongly connected!.

1.2.1 Fault Model for FSM

Our fault model for an FSM-based protocol is similar to the one given in [BDD191].
The faulty IUTs are assumed to have only two types of faults, namely, the output fault
and the transfer fault [BDD*91, DS88]. A transition (s,,s,;¢/0) of the SPEC is said

to have an output fault in the IUT if for the state corresponding to s, and for the

YAn FSM M is said to be strongly connected if each state is reachable from all the states,

6

input a, the ITUT produces an output different from o. A transition (s,, s,;a/0) of the
SPIC is said to have a transfer fault in the IUT if for the state corresponding to s,
and for the input a, the IUT makes a transition to a state which does not correspond
to s,. The fault coverage of a test scquence generation method is the percentage
of faulty IUTs the method can detect from the set of all IUTs with any number of
output faults and/or transfer faults. Thus, a method is said to have complete fault
coverage il the test sequence generated by the method has 100% fault coverage.

In order to detect and diagnose the fault, the test sequence generated is applied
to the IUT one by one and the output is observed. 1f the output is different from
the expected one. the testing process is stopped and the IUT is declared faulty.
The output sequence obtained thus far is analyzed for diagnosing the fault. A test
sequence generation method has k-fault resolution capability of level 1, where
ko0 > 1. il for any IUT with at most & faulty transitions. a test sequence generated by
the method can localize at least one faulty transition to within a set ot [transitions

provided the presence of a fault is detected.

1.3 Review of Literature

1.3.1 FSM-Based Test Sequence Generation

The control flow in a protocol can be represented by an FSM. A major part of the
research contributions in test sequence generation so far is based on the FSM model.
Some of the earlier work had been done with respect to hardware and software testing
[Gil62, Gon70, Koh78, Cho78]. The test suite for an FSM is simply a linear input
sequence. The expected output sequence for this input sequence is also known to the
tester. Though some of the existing methods, for example, the U-method [SD85],
consider the test sequence as an input-output sequence, we uniformly treat the test
sequence of an FSM as an input sequence.

In all FSM-based test sequence generation methods, a transition is tested by

-1

ringing the IUT to the starting state of the transition under test and applying the
input symbol of the transition and observing, the output produced by the IUT to see
if it matches with the output of the transition. Most of the methods also confirm
the tail state of the transition in the IUT by applying a sequence which can uniquely
identify the state [Koh78]. Since such an identilication sequence is generated from
the SPEC, some methods verify this sequence in the TUT before using it.

The transition tour methed (in short. the T-method) [NTSI] requires traversal
of each of the transitions at least once. Thus, the required test sequence is an inpul
sequence along a minimum length tour which traverses all the transitions. Tt is re-
ported that this method has only a limited capability of detecting faults in an 117
since it does not confirm the intermediate states as it traverses the transitions [SL8Y).

The distinguishing sequence method [Hen64, Gon70], also known as the D-
method. assumes that the SPEC is completely specified and mimmal. The TUT is
assumed to have at most the same number of states as the SPEC. The method uses
what is called a distinguishing sequence for identifying the states. The method is
discussed in detail, later in Chapter 3. It consists of two phases. The test sequence
generated in the first phase verifies if the distinguishing sequence of the SPEC is
also a distinguishing sequence of the IUT. The second phase is to generate a test
sequence for testing all the transitions. A test subsequence for a trausition consists
of a sequence to put the IUT in the starting state of the transition followed by the
input of the transition and the distinguishing sequence. The method has complete
fault coverage [FBK*91]. The primary limitation of the method is that some SPECs
may not have a distinguishing sequence.

The characterizing sequence method, henceforth referred to as the C-method,
proposed by Kohavi et al [KRKT74, Koh78] assumes that the SPEC is completely
specified and minimal. It uses a set of sequences known as the Characterizing
Sequence set (CS set) for identifying the states. C-method is also discussed in

Chapter 3. For each state, it defines an Identifying Sequence set (IS set). a

subset of the €S set. It first computes an identifying sequence for each state using
the IS set of that state. As in the D-method, the C-method also has two phases. In
the first phase, it gencrates a test sequence for verifying the identifying sequence of
cacli state in the TUT. The sequence generated in the second phase is for testing the
transitions. A test sequence for a transition consists of a sequence to put the ITUT in
the starting state of the transition under test and confirming the state followed by the
input symbol of the transition and a sequence to verify the tail state of the transition
in the IUT. The latter sequence is based on the identifving sequence of the tail state
as well as the characterizing sequences. Unlike the D-method. the C-method can he
applied on any SPEC which is minimal.

In [ChoT8]. Chow proposes a test sequence generation method for SPE('s which
have the reset capability. The method, called tihe W-method, assumes that the SPE('
and the TUT are completely specified and minimai. It further assumes that the 1UT
is strongly connected and it has the reset capability. The number of states in the
1UT is assumed to be within a known bound. The method first computes the ('S
set of the TUT from the ('S set of the SPEC. The C'S set of the IUT is used in the
test sequence generation. The W-method uses a fixed path to reach a given state
from the initial state. The reset transition is used to reach the initial state from a
given state. The test sequence for a transition consists of a set of subsequences. one
for each sequence in the C'S set. A subsequence in the above set lies along the tour
cousisting of the fixed path from the initial state to the starting state of the transition
under test, the transition itself, the walk starting from the tail state of the transition
with the characterizing sequence as its input sequence and the reset transition. The
W-method guarantees complete fault coverage [Cho78].

The Wp-method of Fujiwara et o/ [FBK*+91]is an improvement of the W-method
in that the length of the test sequence is reduced without compromising the fault
coverage. It actually splits the W-method into two phases. Only the transitions in

the fixed paths are tested in the first phase. For this the scheme as described in the

9

W-method is used. The remaining transitions are tested in the second phase, The
same scheme is applied in this phase for testing the remaining transitions. However,
for confirming the tail state of the transition under test, it uses only the IS set (in
the IUT) of the state, instead of the whole ('S set of the TUT. The We-method and
the Wp-method are described in detail in Chapter 3.

The U-method presented in [SD85, ADLUSK, DSUY0a, SDSK] defines what is
called a Unique Input Output (UIO) sequence of cach state for state identili-
cation. An UlO-sequence of a state is an input-output sequence of shortest length
which lies along a walk starting from that state such that no walk starting from any
other state has the same sequence. Since we express the test sequence as an input se-
quence, we extract only the input pa of an UlO-sequence and call it as the Unique
Input Sequence (UIS) asin [Y' BY3]. A test sequence for cach transition is an
input sequence along a walk which comprises of the transition followed by the walk
starting from the tail state of the transition along the UIS of the state. The proh-
lem of generating a minimum length test sequence according to the above scheme is
formulated in {ADLUSS] as an asymmetric Rural Postperson Problem (RPP)
[EJ73, Kua62 T<ul]. The eficient solution for RPP proposed in [ADLUSS] requires
a certain auxiliary graph derived from the SPEC for a given set of UISs. to be weakly
connected? [ADLUSH].

In order to further minimize the length of the test sequence generated by the
U-method, Shen ¢t al [SLD92, SL92] have recently proposed a method, known as thie
MU-method. Instead of a single UIS for each state, it uses a number of UlSs. The
improvement is achieved by suitably assigning an UIS for testing every transition
incoming at a state from theset of UlSs of that state such that the final test sequence
is of minimum length. They have formulated the problem as an UIS Assignment
Problem (UAP) and presented an efficient algorithm. The algorithm presented in

[SL92] is based ou a minimum cost maximum flow problem [Tar83] and it requires

2A directed graph is said to be weakly connected, if there exists a path hetween every par of
vertices in the anderlying undirected graph.

10

that a certain graph derived from the SPEC for the given assignment of UlSs to the
transitions be weakly connected [SL92).

Methods for further minimizing the length of the test sequence by overlapping
test subsequences of the transitions are presented in [CCK90, MP91, LJH92]. Boyd
and Ural have shown in [BU91] that the problem of finding an optimum length test
sequence is NP-complete if the overlapping of the test subsequences of the transitions
is allowed,

Thongh the UlS-based methods as described in [ADLUSS. SLD92, SL92, ("CK90.
MP9I1. LJH92] have very high fault coverage [M('S93]. they do not have complete fault
coverage [CVISY]. The improved UIS method of Chan et ol [CVI8Y] is intended to
rectifv this limitation by verifving the UlSs in the 1UT as it is done in other methods
(for example. D-method, C-method. W-method) for verifving the state identification
sequences used in the respective methods. This method assmmes that both the SPEC
and the TUT are completely specified.

The recent method by Yao o al [YPB93] is for generating test sequences for
PECS which may not have the reset capability. It assumes that the IUT has at most
the same number of states as the SPEC. and that the IUT is completely specified
and minimal. The test sequence also includes subsequences for verifying the UlSs in
the TUT and it guarantees complete fault coverage. The length of the test sequence

generated is often very high in this method due to the state verification sequences.

1.3.2 Fault Diagnosis Methods

When an implementation fails the conformance testing, it goes back to the implemen-
tor for correction. Apart from assigning a fail verdict to the implementation, if the
tester also provides some diagnostic information on the possible functions/operations
which are not implemented as per the standard specification. then it certainly speeds
up the correction process. All the test case generation methods available in the liter-

ature basically detect the presence of faults, if any, in the implementation. Because

11

of its practical importance. researchers have started designing methods for generating
test cases for detecting as well as diagnosing faults in an implementation.

The work by Vuong and Ko [VKY90] is for the FSM model and is based on
the Constraint Satisfartion Problem (CSP) [Mac77]. Using ('SP resolution, they first
generate the set of ali FSMs whose behavior is the same as that of the IUT for a given
test sequence. These FSMs are then checked for their equivalence with the SPEC. IS
none of them is cquivalent to the SPEC, then clearly the IUT is faulty. Therefore,
the method generates some additional test sequences to identify from the above set
the FSM which is identical to the IUT. The complexity of this method is quite high.
as the CSP is an NP-complete problem.

The recent method by Ghedamsi [Ghe92] takes an alternate approach for di-
agnosing faults in an FSM. As the first step, it applies the test sequence genetated
by any test generation method. such as the T-method, U-method. W-method, or the
Wp-method to the TUT in order to find a set of transitions which could he faulty.
We shall refer to this set as the initial fault resolution set. In the second step, it
computes a set of additional test sequences for further localizing the fanlt.

The size of the initial fault resolution set depends on the fault detection and
diagnosis capability of the test generation method used. Some of the existing methods
may produce almost all the transitions in the SPEC as the initial fault resolution set.
In this case, the first step is not very useful; also it severely affects the second step sinee
the method needs to avoid all the transitions in the initial fault resolution set while
computing the limited characterizing set [(ihe92]. Some of the test generation
methods, for instance the T-method, may produce an empty initial faull resolution

set despite the fact that the IUT is faulty.

1.3.3 EFSM-Based Test Sequence Generation

As its name suggests. the Extended Finite State Machine (EFSM) model is an ex-

tension of the FSM model. Here, we provide an informal description of the EFSM

12

model considered in this thesis. A formal treatment is given in Chapter 5 where we
present a fest case generation method for this model. While a transition in an FSM
has only an input and an output, the one in an EFSM can have an input interac-
tion, a sequence of output interactions, and a predicate. A transition in an EFSM
can also use and operate on a set of local variables of the EFSM. The input and
outputl interactions also have a set of interaction parameters. A transition in an
EFSM can be executed, if the input interaction specified in the transition is input
to the EFSM when it is in the starting state of the transition and the values of the
input interaction parameters and the local variables are such that the predicate of
the transition is satisfied. When a transition is executed. the EFSM produces a se-
guence of output interactions as given in the transition. some variables are set to new
values as specified by the transition, and the EFSM moves to the tail state of the
transition. Specification langunages Estelle. and SDL are based on a more powerful
EFSN model than the one considered in this thesis [("A91]. For instance, this model
supports communicating EFSMs. whereas our model has a single EFSM only. There
are techniques available in the literature to transform a protocol specification written
in Estelle or SDL into an EFSM model {SBS6. Tri92, LL91. CA91, UW93], which
is similar to the one considered in this thesis. Protocols expressed in LOTOS have
also been transformed into a labeled transition system in order to generate test cases
for the protocols [Kar88, Tri92]. Henceforth, by an EFSM. we refer to our restricted
maodel.

As evident from the EFSM model, the input and output interactions are allowed
to have parameters, and it has a set of local variables which can be manipulated
by executing the transitions. Therefore, as part of conformance testing, data flow
aspects of the EFSM have to be tested in addition to the control flow aspects. As
the associated predicates have to be satisfied in order to execute the transitions, the
feasibility of a walk cannot be taken for granted [UY 91, UW93, CZ93]. Therefore.

generating test cases which adequately cover the data flow and control flow aspects

13

of a protocol represented in an EFSM is a challenging problem. In this section we

review the EFSM-based test sequence generation methods available in the literature,

The Functional Approach

2]

The semi-automatic test case generation method of Saritaya of al [SBOST, 1592] is
for a normal form Estelle module [SB86]. which is similar to an EFSM. This method
is based on the functional approach for software testing [How87]. It selects a set of
tours for each functional block. In order to test every function thoroughly a set of
test data is selected for executing cach tour generated for the function.
The method has limited control flow coverage since the tail states of the tran

sitions are not verified while traversing the transitions. The functional coverape is
affected since the feasibility of a tonur is considered only after selecting a set of tours

for the function. The method does not address the data flow aspeets effectively,

The Static Data Flow Approach

Ural and Yang [UY91] uses the static data flow analysis technigue [RWS5S, UrasT] for
selecting test cases for protocols represented as a single normal form Estelle module.
An I10-df-chain with respect to a variable is a walk from the starting state of a
transition where the variable is defined by an input interaction parameter. The valne
of the variable affects a chain of variables along this walk. The walk terminates in
a transition where this chain ends affecting an output interaction parameter or the
predicate in the transition. In order to have finite length, the walk does not inelude
more than two sub-walks for any def-use pair in this walk. A data flow coverage
criterion known as the 10-df-chain criterion is used to select a set of tours such
that every [Q-df-chain in the module is covered by at least one tour in the set.

The tours are not tested for feasibility while selecting them. Due to the limita-
tion imposed on the 10-df-chain for achieving finite length, a number of tours selected

may be infeasible. This phenomenon is also observed in [Wey90] with respect to the

14

all-du-path enterion [RWS5). For the control flow aspects of testing. the method only
guarantees the traversal of cach transition in the module,

In their recent work [UW93}, Ural and Williams have used the all-uses [RW385]
data flow coverage criterion to select test cases for protocols specified in SDL. The
all-uses criterion requires the selection of a set of tours such that at least one def-
clear path for every def-use pair in the protocol is covered by some tour. Though
the number of tours required to satisfy the all-uses criterion is only quadratic in t! =
number of transitions in the protocol, the use of a variable in the def-use pair may
not be observable in the selected tour. Although Ural and Williams do not directly

address the feasibility of the selected tours, they have emphasized its importance.

UlO-Based Approaches

In [CA91]. Chun and Amer have applied the U-muethod [ADLU8S, SD88] for selecting
test cases for an Estelle module in normal form. As in the U-method, their control
flow coverage eriterion is to traverse each transition followed by an UlQ-sequence of
its tail state. Henceforth, we refer to this criterion as the trans-UIO criterion. In
general, we define the trans-state-id criterion as the one which requires a set of
tours such that for each transition, the set has at least one tour which traverses the
transition followed by a state identification sequence of the tail state of the transition
[Koh78, Cho78, FBK*91]. They have also presented a scheme for generating an
executable sequence of transitions. They do not, however, consider how this scheme
could be used for computing feasible UlO-sequences or for selecting feasible test cases
which satisfy the required control flow coverage criterion. The data flow aspect is
not addressed in this approach. Due to the tail state confirmation requirement in the
transition testing, the test cases selected in this method provide better control flow
fault coverage than all the EFSM-based methods discussed thus far.

In [LHHTY4]. Li et al propose a method for generating control flow test cases

from an EFSM. The EFSM is assumed to have only integer type of local variables

and input interaction parameters. Also. the predicates are assamed to he linear. A
new type of U10-sequence known as the Extended UlO-sequence (EUIO-sequence)
is introduced. Let W1 (1172) be a walk ending (starting) at a state. The sequence
of input and output interactions along W1H™2 is called an EUlO-sequence of the
state if W 112 is always feasible and the sequence of input and output interactions
along W2 is an UlO-sequence of the state. We refer to W1 as a pre-walk for the
EUIO-sequence. Two feasible tours are selected for testing a trausition such that they
contain the same walk from the initial state to the starting state of the transition under
test. Also. while the first tour contains the underlving walk of an EUTO-sequence of
the starting state of the transition. the second tour contains the underlying walk of
an EUlO-sequence of the tail state of the transition such that the pre-walk has the
transition under test as its last transition. The feasibility of the walks are checked
using integer linear programming problem.

In order to test all the incoming transitions at a state, more than one FULO-
sequence may be required for that state. Also, the problem of finding if a piven
UlO-sequence has an EUIO-sequence is, in general, undecidable [LHHTY94]. The
method does not consider the data flow testing. It assumes a reset transition from

every state to the initial state.

Combined Testing Approaches

The test case selection method of Miller and Paul, presented in [MP92], covers hoth
the control flow and the data flow aspects of protocols which are specified as a single
normal form Estelle module. The trans-UIO criterion is used for control flow coverage.
It has been established in [MP91] that, in order to guarantee the trans-UIO eriterion,
it is enough to find a tour such that (i) it covers all the transitions, and (ii) for

each occurrence of any converging transition®, the tour covers the transition followed

3A transition ending at a state is said to be converging if there exists another transition ending
at the same state such that both transitions have the same input and the same output

16

by the path along the UlO-sequence of its tail state. A def-ob path (def-puse
path) with respect to a variable in a data flow graph - a graph extracted from the
Estelle module - is a path in the graph such that the variable is defined by an inpnt
interaction patameter in the first node of the path and the value flows through other
local variables along the path until it is assigned to an output interaction parameter (a
variable in the predicate) at the end of the path. Corresponding to each def-ob path
(def-puse path) in the data flow graph. there exist def-ob walks (def-puse walks)
in the Estelle module such that the required data flow occurs in these walks in the
same order as in the def-ob path (def-puse path). The def-ob/def-puse criterion is
to cover at least one feasible def ob walk for each def-ob path and at least one feasible
def-puse walk for cach def-puse path. The method provides a back-tracking approach
for selecting a set of tours which cover the set of walks satisfving the combined data
flow and the control flow eriteria.

Miller and Paul’s method takes the white box approach of testing. in contrast
to the traditional black-box approach which is suitable for conformance testing of
protocol implementations. The method does not address the feasibility issue effec-
tively. For instance. it does not consider the issue of obtaining a feasible def-ob walk
(def-puse walk) for a def-ob path (def-puse path) even if such a walk is known to
be present. The back-tracking approach of combining the walks is ineflicient as the
partial tours obtained at a certain point of time may have to be undone if there exists
no enabling context for all the uncovered walks.

In their recent work [('Z93]. Chanson and Zhu have presented another unified
approach for selecting test cases for both control flow and data flow aspects of pro-
tocols represented as EFSMs. They use the trans-state-id criterion for control flow
coverage. A Cyclic Characterizing Sequence (CCS) [('Z93] is used as the state
identification sequence for each state. They propose to use either the all-du-path
criterion or the all-uses criterion for the data flow coverage. A set of paths satisfving

the required def-use association is first determined. Each path is then augmented

17

into a tour by prefixing it with a shortest path from the initial state of the EFSM to
the starting state of the path and suflixing the path with a shortest path from the
ending state of the path to the initial state followed by a CCS of the initial state, The
tours are then augmented with a ('C'S at each converging state! [MP91] provided the
('C'S does not disturb the data flow coverage criterion. In this way, the above ¢ also
covers the control flow eriterion for some of the transitions. Some additional tours are
also selected for covering the remaining transitions for their control flow. Traditional
('SP techniques [Mac77. JLRT] are used to cheek the feasibility of the selected tours,
If a tour is infeasible. then the self-loops within the tour which influence the control
flow are analyzed for determining the number of times they have to he induded so
that the tour becomes feasible, if such an augmentation is possible. The remaining,
infeasible tours are discarded.

The self-loop analvsis reguires solutions to two mathematically intractable proly-
lems: the recurrence relation problem and the feasibility problem [CZ93]. Sinee the
feasibility of the tours are considered only after selecting them to cover the eriteria,
the control flow and the data flow coverage criteria ave affected if some of the tours

remain infeasible after the self-loop analysis.

The Fauit-Based Method

In [WL93]. Wang and Lin present a fault model based test case generation method
for an EFSM model which is somewhat similar to the EFSM model considered in this
thesis. While all the other methods generate test cases independent of any specific
fault model. this method selects test cases which have the capability of detecting
faults in a prespecified fault model. The method takes an EFSM representation of
a protocol specification and a fault model as its input and produces a test case that

detects errors in the model. The feasibility issue is not addressed effectively in this

4A set of states are said to be converging if there exists a set of transitions such that 1t has one
transition from every state in this set to a commor state and the transitions in this set has the same
input and the sarme output

1¥

method.

1.4 Expressing Algorithms

In this thesis algorithms are described using plain English combined with the widely
known Pascal-like syntax [JW74] such as the assignment and the if statements, the
for, the while, and the repeat..until structures, the block and the record structures
ete. Comments in the algorithm descriptions are surrounded with curly brackets
(braces) { }, for example {Input: Specification graph G.}. Curly brackets are also
used to denote a set of elements, for example E := {s, | 1 <7 <n}. Both uses are

fairly standard and easy to recognize from the context.

1.5 Scope of the Thesis

This thesis is concerned with the development of new methods for generating test
cases for protocols specified either as an FSM or as an EFSM.

Chapter 2 presents a new method for generating a test sequence for a given FSM
which has at least one UIS for each state. This method is based on the MU-method
and addresses certain shortcomings of this method. The novelty of the U-method
and the MU-m.thod is that they minimize the length of the test sequence using
optimization techniques such as RPP and minimum cost maximum flow problems
[Tar83]. These methods have very high fault coverage [MCS93]. The length mini-
mization techniques of the U-method and thie MU-method can be applied only when
certain auxiliary graphs constructed from the SPEC are weakly connected. There are
real life protocols for which this condition may not be satisfied. This shortcoming is
addressed in our method. It requires solutions to two sub-problems: Basic UIS As-
signment Problem (BUAP), and the general RPP. The BUAP is formally define ! and

is shown to be a maximum cardinality two matroid intersection problem [Law76).

19

An efficient algorithm is proposed based on the algorithms of Lawler [Law7h] and
Edmonds [Edm79] as given in [NW88]. Heuristic algorithms for the RPP are then
presented. Finally. our test sequence generation algorithm carefully combines the
above algorithms with the MU-method.

In Chapter 3, we formally analyze the fault detection and fault diagnosis capa-
bilities of the existing FSM-based test sequence generation methods. These methods
are now being used for detecting the presence of faults in an implementation. Re-
cently, test sequences generated by these methods have been taken as the initial
sequences for diagnosing faults in an implementation {Ghe92]. While the fault de-
tection capabilities of only some of the methods are available in the literature, none
of these methods have formally been analyzed for their fault diagnosis capabilitics.
Therefore. our analysis in Chapter 3 will be useful for the practitioners to choose au
appropriate method for testing and diagnosing protocol implementations. The need
for similar study is also indicated in [Ura92], Moreover, this study gives us an insight
on the complexities involved in designing new methods with better fault diagnosis
capabilities.

Two new methods are proposed in Chapter 4 for generating test sequences from
specification FSMs for diagnosing a single fault in an implementation. Both methods
are based on the Wp-method [FBK*91]. The first method uses a UIS for identifying
a state. It applies the RPP optimization techniques at appropriate places in order
to minimize the length of the test sequence. This method guarantees the best. fault
diagnosis capability among all the UIS based methods analyzed in Chapter 3. The
second method uses a CS set for identifying the states and it provides superior fanlt
diagnosis capability than the Wp-method.

Chapter 5 presents a new approach for generating test cases for testing both
the control flow and the data flow aspects for protocols which are represented as
EFSMs. A new type of state identification sequence, namely the Context Independent

Unique Sequence (CIUS), is defined and an algorithm for computing a C1US of a given

20

state is developed. The trans-CIUS-set criterion proposed for control flow coverage
is superior to the existing control flow coverage criteria for the EFSM. In order to
provide observability, the “all-uses” data flow coverage criterion is extended to what is
called the def-use-ob criterion. Finally, a two-phase breadth-first search algorithm is
designed for generating a set of executable test tours for covering the selected criteria.

In Chapter 6, we summarize our contributions in this thesis and point ont

certain problems for future study.

Chapter 2

TEST CA5SE GENERATION
FROM FSM MODEL

As pointed out in Chapter 1, the U-method [ADLUSS] and the MU-method [SLD92,
SL9Y2] generate test sequences of minimal length with very high fault coverage [MC'593]
and have practical applications [SU90]. However, these can be applied ounly for limited
classes of protocals which are represented as strongly connected FSMs having at least
one Unique Input Sequence for each state. In this chapter, we propose a generalized
approach that can be used for generating test sequences for any such protocol.

The necessary definitions from graph theory and matroid theory are provided in
Section 2.1. The U-method, the MU-method and the need for a new method for test
case generation are discussed in Section 2.2. Qur method requires soliutions to two
sub-problems: the Basic UIS Assignment Problem (BUAP), and the general Rural
Postperson Problem (RPP) [EJ73]. In Section 2.3, the BUAP is formally defined and
an efficient solution is presented. Heuristic algorithms for the RPP are proposed in
Section 2.4. Our generalized method presented in Section 2.5 carefully combines the

above algorithms with the MU-method to derive test sequences for a given protocol.

22

2.1 Graphs and Matroids

The following definitions are taken from [TS92, Law76, PR8S8].

A graph G is a pair (V, E), where V and E are two finite disjoint sets. Elements
of V and E are called vertices and edges, respectively. Each edge is identified with
an unordered pair of vertices referred to as the end vertices of the edge. An edge
is said to be incident on its end vertices. Two edges are said to be adjacent
if they have a common end vertex. An edge is called a self-loop if both its end
vertices are identical. A walk in a graph is a finite sequence of vertices (vg, vy, ..., v4).
A > 1 such that (v,_q,0,) for i = 1,2,...,k, are edges in (G. vy and vy are called
the end vertices of the walk and all other vertices are called its internal vertices.
The walk (vg.rp,...,v%) can also be denoted as a sequence of edges (t).15....,1;)
if {, = (v=y,v) for7 = 1,2,...,k. A walk is open if its end vertices are distinct;
otherwise it is closed. A closed walk is referred to as a tour. A walk is called a trail
if all its edges are distinct. An open trail is a path if all its vertices are distinct. A
closed trail is called a cycle if all its vertices except the end vertices are distinct. A
graph is said to he connected if there exists a path between every pair of vertices in
the graph.

Weighted graphs are those graphs in which a real number, usually called the
cost, is associated with each edge. The graph G” = (V”, E') is said to be a subgraph
of the graph G = (V, E) if V' C V,E' C E and both end vertices of every edge in E’
are in V', A subgraph (= (V' E') of G = (V, E) is called a spanning subgraph if
V= V. A subgraph (' = (V', E") of G = (V, E) is said to be induced by F C E if
E' = F and V'is the set of end vertices of all the edges in F. This induced subgraph
is denoted by G[F]. If F is a bag'.of edges from E, then in G[F] each edge in F is
repeated as many times as it occurs in F. If A is a set of edges having both their end

verticesin V', then (7 + I\ denotes the graph obtained from G' = (V, E) by adding all

'A bag is a collection of elements over some domain. Unlike sets, bags can have multiple occur-
rences of the same element

23

the edges in " to (the edge set of) (7.

If each edge of a graph G = (1] E) is identified with an ordered pair of vertices
then (i is called a directed graph or simply a digraph. The edges in a digraph are
also referred to as arcs. Let a« = (u,v) € E, where u and v are the vertices in V. o is
called an outgoing (incoming) arc at u(v). Also, u and v are called the starting
vertex and the ending vertex of «, respectively. A walk in a digraph ¢ is a finite
sequence of vertices (vg, v1,...,v), K > 1 such that (v,_y,v,) for i = 1,2,..., Ak, are
edges in (4. vy and vy are called the starting vertex and ending vertex of the
walk, respectively and all other vertices are called its internal vertices. A tour, a
path, and a cycle in a digra h can be delined analogous to those in the undireeted
graph. A digraph is said to be strongly connected if there exists a path from any
given vertex to any other vertex. A digraph is weakly connected if the underlving
undirected graph is connected. The digraph (¢ = (V. E) is said to he symmetric
if the number of incoming arcs at every vertex in Vs the same as the number of
outgoing arcs at that vertex. Given a strongly connected digraph (4 = (V1) witly
weighted arcs, and a subset of ares F' C E, the Asymmetric Rural Postperson
Problem (RPP) with respect to F is to find a tour with minimum cost such that it
covers each arc in F at least once [EJ73, Kua62, TSY2]. Such a minimun cost tonr
is referred to as a Asymmetric Rural Postperson Tour (RPT) with respeet to
F. The RPP is known to be an NP-complete problem [LRK76, Pap76].

A matroid M = (£,TI) is a structure in which £ is a finite set. of elements and

7 is a family of subsets of E such that
1. The empty set is a member of Z;
2. F CFand FeTIimply F, € Z;

3. If F, and F,4y are sets in T having p and p+ 1 elements respectively, then there

exists an element ¢ € Fyiy — F, such that /5, U {c} € 7.
Elements in T are called the independent sets in M.

24

A graphic matroid of a graph ¢ = (V.) is a matroid (E,Z) such that
I Z L is in IHff GF] has no cyele.

Let P = {5, F,. ..., £} beapartition of the edge set I of a graph G = (V. E).
Let) = {iy.75....,2,.} be a given set of non-negative integers. Let (E£.T) be a system

sitch that F e Tl

E,0F| <iforj=1.2,...,k Itis known that (E,T) is a matroid
[Law76]. It is called the partition matroid of (7 with respect to the partition P and
the index (4.

Let (E.Z)). j=1,2....,k{or some k 2> 2, be a system of matroids over L. The
Maximum Cardinality Matroid Intersection Problem (MCMIP) is to find a
maximum subset H of £ such that I is independent in (£.Z,) for j = 1.2... k. If
k= 2. then the above problem is referred to as the Maximum Cardinality Two
Matroid Intersection Problem (MC2MIP). Though the general NICMIP is NP-
complete [PS82. PRSS]. its special case MO2MIP is polvnomially solvable [Law76].

An input sequence, 7, is called a Unique Input Sequence (UIS) of the state
s, of an FSN MU is a sequence of shortest length such that (i) there exists a walk
W from s, such that Inseq(i.W)={", and (1) for each state s,.J # 1, either there is
no walk from s, with input sequence U, or Juiscq(j.U,) # Oulscq{i. l7,). Moreover,
the input-ontpnt sequence 10seq(W) is called an Unique Input Output (UIO)
sequence of 5.

Let Uy hean VIS of s,. 1 <7 <n. Theset Y = {7, | | <@ < n}is referred to
as an UIS set of the FSM /.

We assign a unit cost to each edge in the specification graph G, = (.9, E) since
we are coneerned with test sequence length minimization. Let MU, be a nonempty set
of UlSs for each state s, € S, We assume that the functions head and tail will return
the starting state and the ending state of any UIS. respectively. Also, the functions
start(). label(¢) and end(c) will return the starting state, label and the ending state
of any transition ¢, respectively, Let AIU = MU, U MU, U...U MLU,. Define the
relation £ C £ x M such that (e.u) € Riff <nd(c) = head(u). Clearly. R derotes

the set of all possible assignments of UIS from MU for all the transitions in 2. \We
call any subset B C K a valid UIS assignment or simply an UIS assignment for
the set of transitions D C E if dom(B) = D and [{u | (¢.2) € B} = 1. for each
e € D. That is. each element in D has exactly one UIS assigned in B, A valid UIS
assignment for £ is also referred to as a (valid) UIS assignment of the protocol
Gs.

Consider the undirected graph (' = (.S, E') where E' = {{start(¢) tail{a): label
(yau)|(c.u) € R}. Anedge ! € E' which corresponds to (¢, u) € R is often referred
to as a test edge for the transition ¢ since ¢ can be tested by applying the sequence
along ¢/. For each edge ' = (start(c).tail(u):label(c)au) € [which corresponds
to (e.u) € R. the length of the input sequence in label(e) is taken as the cost of
¢’. It is easy to see that there is a one-to-one correspondence between Itand 17, An
element of R is often treated as an edge in E' and vice versa. Let I3 be a valid UIS
assignment for /2 C £. The subgraph G'[B] of (7 induced by B is called a test. graph
for D. The test graph induced by an UIS assignment of the protocol ¢y is simply
referred to as a test graph for the protocol. Observe that every test graph for a
strongly connected protocol always spans all the states of the protocol. Subgraphs
of (i are often extended by adding edges from (s and viee versa. Suppose ' s a
subgraph of (' and FF C E. then If' + I’ will be treated as an undirected graph as 1/
is undirected. On the other hand. if H is a subgraph of ¢/, and I C £ then 14 1
will be treated as a directed graph as H is directed, the orientation of the edges in

F' coinciding with that of the corresponding edge in (/.

2.2 UlIS-Based Methods and the Need for a New
Method

Two important methods based on the UlSs are deseribed in this section. We study the

need for a new method by analyzing the scope of these methods. Reeall that SPEC

26

and 1UT denote the FSM representation of a specification and an implementation of

a protocol, respectively.

2.2.1 The U-method

The U-method [ADLUSS] [DSU90D] reqguires that the representation graph G =
(5,) of SPEC be strongly connected. Each state of G is assumed to have an UIS.
Let U be an UIS for s,. 1 < j < n. The U-method tests each transition (s,.s;:a/0).

as follows:

The protocol implementation IUT is first put in state s,. Then the input
a is applied and the output is verified for o. Finally. to check for state s,.
the UIS U is applicd to the current state of the IUT and the output is

examined against the expected output according to the SPEC.

Thus the input sequence @@l is ti, - test subsequence for the transition (s,,s,;a/o) .
By considering MU, = {l/;}, 1 < j < n, we get (7 = (S,E'), where L' =
{(spctadd(U7))s al))|(s08,5af/0) € E}. Clearly. (i is the unique test graph of Gj.
Let (i = (iy 4+ E'. In the U-method. each transition in G is tested by applying the
subsequence along its test edge in E’. Thus au optimai test sequence for G, lies along
an RPT of (with respect to E'. In other words, the optimal test sequence gen-
cration problem is equivalent to the problem of finding an RPT of G™ with respect
to E'. Before proceeding further, we introduce a definition. A rural symmetric
augmentation of a weighted digraph ¢ = (V/, E) with respect to F C E is a digraph
([FF U Ey] such that (i) G[F U E|] is symmetric. and (ii) E; is a minimum cost bag
in I satisfying (i). The polynomial algorithm given in [SD85] for finding an RPT
first computes a rural syminetric augmentation G*[£’ U E|] of G with respect to £,
where £y is a bag containing elements in £ U E'. 1t then generatcs a test sequence
by concatenating the subsequences and/or inputs along an euler tour of G*[E' U E,].

This algorithm can be successfully applied to a protocol G if the test graph G’ is

s)T

connected [ADLUSS]. Note that this is only a sufficient condition. 1t is also shown
that protocols which have either a self-loop at cach state or the reset capability always

meet this requirement.

2.2.2 MU-method

In the MU-method [SLD92, SL92], Shen «f al have proposed an improvement for
the U-method. While the U-method uses only one UIS for each state, this method
uses multiple (> 1) UIS(s) for each state. The improvement is obtained by suitably
assigning an UIS for cach transition from the set of multiple UISs of its tail state in
order to reduce the length of the test sequence. The approach of using multiple UISs
for minimizing the length of the test sequence as introduced in [SLD8Y, SLD92] has

two problems:

(1) The test graph resulting from the UIS assignment computed in the method may

not be connected.

(2) The UIS assignment computed in the method does not necessarily minimize the

length of the resulting test sequence.

These two problems were rectified in their recent. method as deseribed in [SL92) and
we shall consider this modified method as the MU-method. We would like to note vhat
an alternate approach of solving the above two problems is proposed in [Ura92]. Given
a set MU, of multiple UISs of the minimum length for each state s,,2 = 1,2,... n
of the protocol G5 = (S, E), the UIS Assignment Problem (UAP) is to find a
valid UIS assignment B of the protocol such that the RPT of (7, + B with respect to
B is of minimum length among all valid UIS assignments of the protocol. The MU-
methed solves certain specific instances of this problem efficiently by trausforming it
into an equivalent multi-stage minimum cost maximum flow problem [SL92]. As in
the Ul-method, a minimum length test sequence is obtained by concatenating the test

subsequences and/or the input of the transitions along the minimum cost RPT. The

28

MU-method guarantees an optimal test sequence for a protocol Gy if the test graph
('[B] is connected. It has also been proved that protocols which have either the reset
capability or a self-loop at cach state always meet this requirement [ADLUS88, SLD92].
As we shall see later in this section, this approach of obtaining minimum length test
sequences does not work for all protocols.

Methods fer further minimizing the length of a test sequence by overlapping
test subsequences of the transitions are presented in [CCK90, MP91, LJH92]. In this
thesis, we do not consider optimization through overlapping. We shall now illustrate

the need for extending the U- and the MU-methods.

2.2.3 Motivation for the New method

It has been reported in [ADLUSS] and [CS92] that the U-method can be applied to
generate test sequence for any protocol G5 which satisfies one of the conditions (i)
through (v) below. Note that conditions (i) through (iv) are independent of UlISs

whereas condition (v) is with respect to a particular UIS for each state.
(1) (75 has the reset capability [ADLUSS].
(i1) ¢/, has a self-loop at each state [ADLUSS].

(i11) G5 has a state, say s, with a self-loop and a reset edge, and each state has a

sclf-loop, or a reset edge, or an edge to the state s. [C592].

(iv) For every partition of .S into two nonempty subsets S4 and S — S4,3s, € Sy
and s, € S — 5,4 such that there is an edge to some state s, from both s, and

s, [€S92].

(v) For every partition of S into two nonempty subsets S4 and S — S4,3s, € Sy
and s, € S — S, such that state s,(s;) has an edge to a state s,(s,) in S and
tail(l’,) = tail(l,). Here, 17 is an UIS for the state s,, j = 1.2,...,n and it is

used for testing every incoming transition at the state s, [CS92].

29

17,t8,19,t10

Figure 2.1: Simplified transport protocol

Transition | Label Transition | Label

t1 TCONreq/s-CR | t2 r-CR/TCONd

t3 r-DR/TDISind t4 r-CC/TCONconf

5 TDISreq/s-DR L6 r-DR /s-DC&TDISind
t7 null/s-AK t8 r-AK/null

19 r-DT/TDATAind | t10 TDATAreq/s-DT

tll TCONresp/s-CC' | t12 TDISreq/s-DR

113 r-DC/TDISconf

Table 2.1: Labels for transitions in Figure 2.1

State | UIS State | UIS

S, |2 (CR) [S; | t4 (rCC)

Sy |6 (-DR) | Sy |11 (TCONresp)
Sy | U3 (D)

Table 2.2: UlSs for states of the FSM shown in Figure 2.1

30

t1
t5
Y
t6
Figure 2.2: An FSM based on the INRES protocol: responder
Transition | Label Transition | Label
t1 CR/ICONind1 t2 IDISreq/DRI
13 1CONresp/C'C 14 ('R/ICONind2
(5 IDISreq/DR2 t6 DT2/AK
{7 DTI/IDATind& AR

Table 2.3: Labels of the transitions in Figure 2.2

We would like to note that the above conditions are only sufficient conditions.
There are real life protocols which do not satisfy any of these conditions. yet the
U-method can successfully generate test sequences for these protocols provided suit-
able UISs are chosen. For example, consider the FSM representation of a simplified
transport protocol as given in (BDZ89] and shown in Figure 2.1. The labels for the
transitions are shown in Table 2.1. This protocol does not satisfy conditions (i) -
(iv). With the U]Ss generated as in Table 2.2, condition (v) is not met. However. the
test graph of the protacol is connected if the UISs given in Table 2.2 are used. This
example suggests that even if a protocol does not have any of the structures stated
in the literature, a suitable assignment of UISs for some of the transitions for testing

their tail states would facilitate the U-method to obtain an optimum test sequence.

31

Transition { UIS | Transition | UIS
tl 12 t2. 85 t1
t3. t6, t7 t6 t t3

Table 2.4: Valid UIS assignment without connected test graph
g grag

Careful assignment of UlSs to transitions is necessary since an arbitrary assign-
ment may not produce a connected test graph despite the existence of such assign-
ments. For example, consider the abstract FSM protocol as given in Figure 2.2, hased
on the responder module of the INRES protocol {Hog92]. Ounly the core transitions
are considered here. The states s;.s,. and s3 correspond to the states DISCON-
NECTED., WAIT, and CONNECTED of the respondcr module, respectively. We
have slightly modified the original labels of the transitions so that the FSM has mul-
tiple UISs. The labels of the transitions are given in Table 2.3, Let MUy = {11},
MU, = {t2.13}. and M3 = {14.15.16} be the set of UlISs for the states sy, s, and sy,
respectively. Note that the UlISs are denoted by their corresponding transitions. Let
MU = MU UAMU,UMUs. Clearly, the assignments Ay and Ay given in Table 2.1
and Table 2.5, respectively. are valid UIS assignments of the protocol. Also both
these assignments are obtainable in the MU-method while it attempts to solve the
UADP. Note that the test graph ('[A(] is not connected whereas the other test graph
G'[A,) is connected. If the UlS-based methods assign UlSs to the transitions as per
Ay then they cannot generate a test sequence for this protocol. On the other hand,
A, facilitates the UlS-based methods to generate an optimal test sequence for the
protocol. The above discussion implies that the UIS-based methods as described in
[ADLUSS, SLD92, SL92] may not always produce a test sequence even if the proto-
col has a connected test graph. Unfortunately, there is no way to ensure that the
min-cost flow approach will lead to a test graph which is connected.

It should also be emphasized that certain protocols may not even have any
connected test graph. Cousider the FSM representation of a simplified alternating

bit protocol (reeciver) shown in Figure 2.3. 1a0 and] are the only UISs for the

32

Transition | UIS | Transition | UIS
t1 3 |12, t5 t1
t3, 16,17 | t6 | t4 t2

Table 2.5: Valid UIS assignment with connected test graph

m0/a0

ml/al

Figure 2.3: Simplified alternating bit protocol (recciver)

states sp and s,, respectively. The FSM neither satisfies the requirement stated in
conditions (i) through (v) nor has a valid UIS assignment so that the resulting test
graph is connected.

Thus the following questions arise; Given a set of multiple UlSs for each state.
does the protocol have a set BE C E of transitions and a valid UIS assignment for
BE such that the resulting test graph for BE is connected and spans all the states
of the protocol? If so, how to find a minimum set of transitions satisfying the above
condition? (This problem is formalized in Section 2.3 as the Basic UIS Assignment
Problem (BUAP)) If not so, how to minimize the length of the test sequence for
this protocol? These questions are addressed in Sections 2.4 and 2.5. In section 2.4
we provide three heuristic algorithms for solviug the general RPP. In Section 2.5,
we propose a new method which combines the solutions to BUAP and general RPP.
This method can be used to generate a test sequence from any protocol which is

represented as strongly connected FSM having at least one UIS for earh state.

33

2.3 Basic UIS Assignment Problem

As defined earlier, let A/, be a nonempty set of UISs for cach state s, of the strongly
connected specification digraph G, = (S,E); MU = MU, U MU, U...UAMLl,.
R C E x MU is a relation such that (e,u) € Riff end(¢) = head(u). Consider the
undirected graph G’ = (5, E') where E' = {(start(c), tail(u); labcl(e You)|(e, u) € It}
Observe that for each valid UIS assignment B, the induced graph (/[B} is a test graph

for dom(B).

The Basic UIS Assignment Problem (BUAP) is to find a min-
imum set A" C E and a valid UIS assignment I of A" such that
'[B] has the minimum number of connected components span-

ning G'.

The BUAP can be efficiently solved using the matroid theoretic approach. We
demonstrate this by mapping the BUAP into an equivalent MC2MIP whicli is solvable
in polynomial steps. To start with, let us assume that (7 is connected and that it
has no self-loop. Let M, = (£, Z;) be the graphic matroid of (/. Let €, he the set
of all possible UIS assignments from MU for the transition ¢. Clearly, (2, C [t and
dom(Q.) = {¢}. Let P ={Q. | c € E}. Then clearly, P’ is a partition of [2'. Let
M, = (E’,7,) be the partition matroid over the partition /” and integers 7, = | for all
e € E. Suppose that [,,,, is a maximum set such that it is independent in M, as well
as in My, then it is a valid assigament for dom(/,qr) and ('[1,,4,] is acyclic. Sinee
Iinar is @ maximum set, it spans G'. These properties, in turn, imply that ([/,..,]
contains the minimum number of components (see Proof of Theorem 2.2). Hence,
dom(1,,qz) and I,,.» form a solution to the BUAP.

We now present an efficient algorithm called basic.assignment for solving the
BUAP. We assume that G’ is connected and it has no self-loop. This algorithm is

based on the algorithms for the MC2MIP by Lawler [Law75, Law76), and Edmonds

34

[Edm79] as given in [NWEB]. These algorithms are for computing a maximum car-
dinality intersection of any two matroids over the same set of elements. Algorithm
basic_assignment is obtained from the above algorithms by adapting them for com-
puting the maximum cardinality intersection of the graphic matroid M; and the
partition matroid M, given aboove; thereby reducing the overall time complexity.
The basic_assigninent algorithm starts with an empty set of edges. That is, initially
H = 0. At each iteration of the repeat..until loop of the algorithm, it ccmputes a
valid UIS assignment I such that G'[H] is acyclic and H has one element more than
the number of elements it had in the previous iteration. The algorithm terminates
when there is no such I in the current iteration. The UIS assignment H output by
the algorithm and dom(1) form a solution to the BUAP. A formal description of
the algorithm is given helow. For the sake of simplicity in notation, we shall let an

clement | = (e,u) € E' also refer to the edge e.

Algorithm basic_assignment(G MU G H);
{ Input: The digraph ;; = (S, E), graph ' = (.5, E'), set of UlSs AU}
{ Output: a set of edges H from E’ }
He0;
Vir « {stJUE;
repeat
{Construct the digraph 'y = (Vy, Ex))
Ey 8
for each j = (e,u) € E' — H do
begin
if (G'[H U {j}] is acyclic) then
Ey «— EnU{(s.j)};
if (¢ € dom(H)) then
Ey « Egu{(0)};
for each k= (¢’,u') € H do
begin
if (¢ = ¢') then

Ey « Eg U{(j.k)}:

35

if (G'[H U {j}] has a unique cycle contaiming k) then
Ey « Equ{{k.))}:
end
end
if (the digraph G’y = (V. E'n) has a path from s to f) then
begin
find a shortest path (s, 1, k1. .. jpo1 kpo1.dp t) from s totin Gy
He (HU{ o apd) =Lk ke ko)
end
else
begin
output(H):
stop
end
for ever

end basie_assignment.

An iterotion of the repeat..until loop first constructs a digraph (/yy =
(V. Ey) for a given H. Here. Vy = {s t}UE’. where s and { are two designated ver
tices in V. The set of vertices in V3 which represents the edges in £ is partitioned
into two sets: /{ and £’ — H. Then. the graph G is constructed in such a way that
the presence of a path from s to ¢ in Gy guarantees that the cardinality of 1/ in the
current iteration can be increased by one. In order to construct the edge set Iy, the

following is done with respect to each j = (¢,u) € E' — If.

If G'[H U {j}] is acyclic, then an edge from s to j is added to [y, If
¢ € dom(H), then aun edge from j to t is added to L. Yor each b =
(¢',u') € H, an edge from j to k is added to £y if k and j are test edges
for the same transition (that is, if ¢ = ¢’). Also, if 7 and k are contained

in a cycle of G'[H U {j}], then an edge is added to Ey from k to j.

36

If the digraph (i thus constructed has a path from s to f, then let (s,5,k. ...,
Jp=1,kp-1, Jpst) be a shortest path from s to ¢. Asestablished in Theorem 2.1, H’ =
(H U {j1,J2s-sJp}) = {k1, k2,...,kp—y} is a valid assignment such that G'[H'] is
acyclic. Therefore, the algorithm proceeds to the next iteration of the repeat...until
loop. On the other hand, if (G'y has no path from sto ¢, then the algorithm terminates
since Il computed in the previous iteration and dom(H) form a solution to the BUAP
(refer to Theorem 2.2).

Suppose that the cardinality of H computed in the current iteration is n — 1,
where n is the number of states in G5. Then, G'[H U {7}] will have a cycle for each
J € E'= H. Therefore, 'y computed in the next iteration will not have any outgoing
edge from s. In other words, Gy has no path from s to ¢. Also, the algorithm starts
with Il as an empty set and each iteration adds one edge to H. As a result, the
algorithm terminates within n iterations.

Let m and v denote the number of transitions and the maximum number of UISs
in MU for any state of the protocol, respectively. Since (75 is strongly connected,
m 2> n, where n is the number of states in G5. Suppose that the computation needed
to check if a given set is independent in a given matroid is considered as one step.
Then, our algorithm requires O(n(mv)?) steps. This complexity can easily be derived
since the outer and the inner for loop of the repeat..until loop are executed at most
m x v times. Whereas the repeat..until loop itself is executed at most n times.
Note that this complexity is better than the complexity (O(mw)?)) of the general
maximum cardinality two-matroid intersection algorithms. When the time required
to complete each step is also taken into account, the complexity of basic_assignment
become O(n?m??) time units. The following theorems establish the correctness of

the algorithm.

Theorem 2.1 Supposc that H C E' is a valid UlS assignment and G'[H) is acyclic
at the beginning of a given iteration of the repeat..until loop of basic_assigniient

algorithm. If P = (s, ji ki, .o fp=1.kpo1.Jpy t) is a shortest path from s to 1 in Gy

37

then H' = (H U {ji,J2y---vJp}) — {krokae. o kot } ds @ valid UIS assignment for
dom(H') and G'[H'] is acyclic.

Proof:

We will first establish that H' = (H U {ji,y2,...,jp}) = {ki ks ke }is a
valid UIS assignment.

No pair of edges j, and 7, where 1 <7 < < p, can be the UIS assignments
for the same transition in E. Assume the contrary. Then, j, and Ay will be UIS
assignments for the same transition due to the fact that j and A assign UIS for the
same transition. This means that (j,, k) € Ey and that (s, jy, kyeo o Joy ki, Ji+ 1k +
Looooydp=1skpot, Jpot) is @ path in Gy shorter than P. A contradiction,

Similarly, j, and j,, where 1 </ < p, cannot be UIS assignments for the same
transition. If this is not true, then lc' ¢ € E be the transition for which j, and j, are
UIS assignments. We know that, e € dom () because (j,,1) € Ey. So, (ji,1) € Ey.
This means GGy has a path shorter than P. A contradiction.

Also, no j,.1 <i< pand h,, € H, (h,, # ki, for any) can both assign UIS
for the same transition. If this is not so. then h,, and k, will assign UIS for the same
transition. It contradicts that H is a valid assighment.

From the above it follows that (HU{j1,72....,7p}) = {k1. k2, .., hpor }is a valid
UIS assignment.

Next, we show that G'[H'] is acyclic. The fact that (s, j;) € Eyy implies that
G[H,] is acyclic, where Hy = HU{j; }. Let H, = HU{j, j2,-- -+ Je}={k1, kay ... Ky)y
for 2 < ¢ < p. We shall prove by induction that G'[H,] is acyclic, for 2 = 2,3,...,p.
Note that G'[H,)] is nothing but G'[H']. Since (ky,j2) € Ey, ki is an edge in the
unique cycle C; of G'[H U {j;}]. As shown in Figure 2.4, let us denote this cycle as
R j2 S ki, where R and S are some paths in G’ whose edges are from H only.

We shall prove by contradiction that G'[H,] is acyclic. Suppose that G'{11,] has
a cycle, then as G'[H U {j2} — {A1}] is acyclic, j; and j; are in a cycle, say)y, of
G'[H,). Let C; = X j; Y j, where X and Y are paths in (¥ whose edges are from

38

o— —0

1 1
]]
] C]
X! 2 'y
! .l !
] 2 |
O O
l l
¢ ~ t
R’ ¢ 'S
t |
kg :
O O

Figure 2.4: Cycles in (¢

Il = {ky}. This evele is also shown in Figure 2.4, Then 'y 5 (', € H, has a cycle?
[TS92). contradicting that G'[H;] is acyclic.

By assuming that ('[H,]. where _ i < pis acyclic. we prove that G'[H, 4]
is acyche, Let Hy = H — {ky.hy ... ko_1}. Clearly, H, = Hy U {)i.j2....J:} and
Wy = Ho U {1 jove v jupr } = { A}

As (k. jiy1) € Ey, we know that &, is contained in the unique cycle of G'[H U
{Jis1}]). Also. no edge from {ky, k.. ... k._1} is contaived in this unique cycle of
YH U {41}, For, suppose that A, for some r, 1 < r <7 — 1, is an edge in
the evele, then (A jipr) € Eyoand (s, gy koo ok iprs Rigts e o < Jpe) is a path in
(/y shorter than P. This is a contradiction since P is a shortest path in Gy. By
the induction hypothesis. we know that G'[He U {j1, 2, ..., }] s acyclic. Therefore.
G'[Ho UAJivjae oo du fisr) — {A}] is acyclic. This completes the induction and the

proof of the theorem.
O

At the beginning of the first iteration of the repeat..until loop of the algorithm
basic_assignment Il is a valid assignment and G’[H] is acyclic since H = . At

the start of a subsequent iteration, / corresponds to H' of the previous iteration

OB Cr = (CLU) = (0 C)

39

Therefore. as per Theorem 2.1, we know that H is a valid UIS assignment and (/[H)

is acyclic.

Theorem 2.2 At the end of a gwen iteration of the repeat..until loop of the alqgo-
rithm basic_assignment, if Gy has no path from s to t then H and don(H) form u

solution to the BUAP.

Proof:
In order to prove the theorem, we define the functions f and a from the power
set of E' to the set of natural numbers including zero and the functions 7" and A from

the powerset of E' to itself. Let X be a subset of £,

t(X) = number of edges in the largest acyclic subgraph of (/[X].

a(.X') = number of elements in a maximmum valid UIS assignment in .Y,
T(X) = Fil Fisalargest superset of X in [/ such that {(]7) = ¢(X).
A(X) = Fif Fisalargest superset of X in E' such that «(F) = a{X).

We will first establish that H is a maximum valid UIS assignment in £ such that

7'[H] is acyclic. Let R denote the set of all vertices in Gy which are reachable from
s. Formally, R = {v € £’ | 3 apath from s tovin Gy} Let Nt = L' = Ik, Rl
= RNH ,and NRH = Nk NH.

We claim that R CA(RH). RH is a valid UIS assignment since its superset. 1]
itselfis a valid UIS assignment. So, RH C A(RH). Let j € R—RI. In order to prove
our claim it is enough to prove that RHis a maximum valid UIS assignment in f2/]
U{;j}. In other words, we have to prove that RH U{j} is not a valid UIS assignment.
Let j be an UIS assignment for the transition ¢. Suppose that RH U{j} is a valid
UIS assignment then ¢ ¢ dom(RH). Also, ¢ € dom(H — R) for otherwise an element
in H — R will be reachable from s. Therefore, ¢ € dom(H) and (j,t) € Iy, But then

there exists a path from s to ¢ in G'y because j € K. This is a contradiétion.

40

Owm next claim is that NR € T(NRH). Since NRH C T(NRH). it is enough to
prove that NR—=NRI C T(NRH). Let j € NR—=NRH. Note that G'[NRH] is acyclic.
We have to prove that the largest acyclic subgraph of G'|[NRH U{j}] is G’'[NRH]. If
not, then G'[NRITU{j}] is acyclic. But, G'[HU{;j}] has a cycle because j € R and so
(s,J) € I5y. Therefore, there exists a k € RH such that it is contained in the unigue
eycle in (/[H U {5}). Then. (k.j) € En. k €RH and (k.j) € Ey together imply
J € It. This is a contradiction as j ENR—NRH.

Let Mo, be a maximum valid UIS assignment in £’ such that G'[Hyae) is

acyclic. Clearly,
|| < |Has (2.1)

The following derivation is obtained using the above claims.

sl = Huas ~ K]+ |Huar O R
= {(Huazr — R)+ a(Hmar N R)
< HE - R) +a(R)
= t(NR)+ a(R)
< T(NRH))+ a(A(RH))
= |NRH|+ |RH]|
= |H] (2.2)

Combining the inequalities (2.1) and (2.2) we obtain that H is a maximum valid
U1S assignment in E' such that G'[H] is acyclic.

Suppose H does not span all the vertices in G’. Let v be a vertex in G’ which is
not spanned by H. Let ¢/ € ' be an edge incident at v such that ¢’ = (e,u) € R and
starf(c) = v. Clearly. H U {c’} is a valid UIS assignment and G'[H U {¢'}] is acyclic.
This contradicts that / is a maximum valid UIS assignment. Therefore, H spans all

the vertices is (7.

41

We shall prove by contradiction that G'{H] has the minimum number of con-
nected components. Suppose it is not true. Then, let P be an UIS assignment such
that G'[P] is acyclic, spans every vertex in ', and has the minimum number of con-
nected components. Let p and ¢ be the number of connected components in (7[11]
and G'[P] respectively. Clearly, p > ¢. Since G'[H] and G'[P] are both acyclic it
follows that the number of edges in H and P are n — p and n — ¢, respectively. Sinee
p > q. we have n —p < n —q. That is, H has less number of edges than P2, This
is a contradiction since If is a maximum valid UIS assignment with ('[H] acyelie.
In other words, G'[I{] has the minimum number of connected components. Thus we
have proved that I is a maximum valid UIS assignment such that G'[H] is acyelic.

In other words, H and dom(H) provide a solution to the BUAP,
]

In the presentation of the solution to the BUAP, we have assumed that ¢
1s connected and it has no self-loop. Our approach works for the general case as
well. Suppose that the graph obtained from G’ by removing all the self-loops is not
connected. Let (), ..., C, be the connected components of the resulting graph,
where p > 2. Let A, and B, be the solutions for the BUAP for), where &, and
B, denote the edge set and the UIS assignment for Ky, respectively. 1f (/) s just a
single vertex, say sg. then B, = {'} aud K, = {c}, where = (¢, u) € H is some
self-loop at s, in (', If C;is not a single vertex then its solution is obtained using,
the algorithm basic_assignment. Then it is easy to see that K = Ky UK, U...UN,

and B = By U B, U...U B, form a solution to the original BUAD.

2.3.1 An Illustration of BUAP

As an illustration for the basic_assignment algorithm, we consider the FSM as given
in Figure 2.2 with MU, = {t1}, MU, = {t2,13}, and MUy = {14,15,t6} as the sets of

multiple I iSs for the states sy. s,, and s3, respectively. Note that, we have referred to

Edge | Description || Edge | Description
l (s2,82:12 11) €2 | (s3,s32;t5 t1)
3| (s, 81581 £2) ed | (s1,85;11 13)
eh | (83,5314 12) €6 | (s3.53:t4 13)
€T | (s2os89503 t4) || €8 | (s2,51:13 t5)

) (s)
) ()
) (

S2
9 | (59.55:43 16) | €10 | (53,5216 14
eIl | (s3,81;16 15 cl2 | (s3,53;16 16
13 | (s3,89:t7 14 el4 &3, 81317 15)
elb | (83,8317 t6)

Table 2.6: Edge description of G for the FSM given in Figure 2.2

an UIS of a state by the corresponding transition along which the sequence lies. The
graph (Y = (S, F') for the FSM is given in Figure 2.5. Here, £’ = {¢1,¢2....c15}.
The edges are deseribed in Table 2.6. For convenience. we represent the label of an
edge in £ as the sequence of transitions along which the label of the edge lies. As
discussed before, basic.assignment algorithm considers only the non-self-loop edges
in . Thus the set {cl,¢3,¢6,¢7,c12,¢c15} of edges are removed from E'.

To siart with # = (. The first part of the repeat...until loop constructs a
digraph Gy = (Vi Ey), where Vi = {5, t1}UE’. Ey is the empty set at the beginning
of the first iteration. The edge set Ey after completely executing the first for loop
is shown in Figure 2.6 as part of the digraph Gyy. Observe that, for instance, an edge
from s to (8 was added to Eyy in this loop since G'[H U {€8}] is acyclic. Also, an edge
from % to 1 was added to Ey since the transition 3, for which €8 is a test edge. does
not obviously belong to dom(H) = @. Since (s,¢8,t) is a shortest path from s to ¢
in (. €8 is added to H. Therefore, H = {e8} and dom(H) = {t3}. The algorithm
enters into the second iteration of the repeat...until loop.

The digraph Gy constructed in the second iteration of the repeat...until loop
1s shown in Figure 2.7. Note that an edge from €9 to €8 is present in Gy since €9 and
€8 are test e:dges for the same transition t3. Since (s.e€5,t) is a shortest path from s
to tin the current Gy, ¢5 is added to H. Thus H = {€8,e5} and dom(H) = {13,4}

at the end of the second iteration of the repeat...until loop. Figure 2.8 shows the

43

Figure 2.5: (' for the FSM given in Figure 2.2.

eld

& ©

Figure 2.6: (G in the first iteration of basic_assignmanl.

44

ONONO

eld

.

Figure 2.7: Gy in the second iteration of basic.assignment.

45

Figure 2.8: (;; in the third iteration of basic_assignminl.
g [

46

graph (i/y constructed in the third iteration of the loop. Observe that the edge from
¢5 1o 2, for instance, is present in Gy since ¢5 and €2 are contained in the unique
cycle in G'[H U {¢2}]. V'~ algorithm terminates in this iteration since there is no
path from s to t in Gy. Thus the solution to the basic assignment problem at hand
is Il = {¢8,¢h} with dom(H) = {t3,t4}. That is, to assign the UIS along t5 to
the transition t3 and the UIS along {2 to the transition t4. Observe that G'[H] is a

spanning tree of G'.

2.4 Algorithms for the Rural Postperson Prob-
lem

As stated earlier, given a strongly connected weighted digraph G = (V, E) and an arc
subset FF of E, the RPP is to find a tour with minimum cost which traverses each
arc in FF at least once. This problem is known to be NP-complete. In this section

we present three heuristic algorithms for the RPP.

2.4.1 A Heuristic Algorithm Based on Augmentations

Our first heuristic algorithm app_rpt repeatedly applies the rural symmetric aug-
mentation algorithm of Aho ef al [ADLU8S8]. We refer to this as ruralsymm_aug
(G F. (G4, Ey). This algorithm accepts a weighted digraph G = (V, E), and an edge
set 7 C E and computes a rural symmetric augmentation Gy = G[F U Ey] of G with
respect to F by finding a minimum cost bag E, of edges from E such that G, is
symmetric.

The algorithm app_rpt consists of three steps. Step 1 calls the algorithm ru-
ral_symm_aug(G, F F,Go, Ep) to compute a rural symmetric augmentation Gy of G
with respect to the given set FF C E. If Gy is weakly connected, then the algo-

rithm outputs an euler tour of Gy as the required tour and terminates. Otherwise

47

it proceeds to Step 2. As explained below, this step joins the subtours in ¢y in an
iterative fashion by computing rural symmetric augmentations of different auxiliary
graphs with respect to some subsets of FF. The idea of joining the subtours is also
applied by Frieze et al in their heuristic algorithm [FGM&82] for the asvmmetric trav-
eling salesperson problem [TS92, PS82]. Step 3 further mitamizes the cost of the tour

obtained at the end of Step 2. The formal deseription of the algorithm is given below.

Algorithm app_rpl(G, FF,T)
{ The algorithm finds an approximate RPT T of ¢ with respect to F'17,}
{ where G'= (1 E) is a directed weighted graph with a cost of one uuit on)

{ each edge and FF C E. }

Step 1 {lnitial rural symmetric augmentation }
rural_symm_aug(G;, F F, Gy, Ey):
if (Gp is weakly connected) then begin
Compute an euler tour I of GGy ;
Stop
end
else begin
Let C'y,Cy, ..., Cjq be the components of (igy;
T:=FFULEy; K :=|c;
Compute all pair shortest paths in G
end
Step 2 {Compute rural symmetric augimentations of auxiliary graphs }
repeat
{ Construct an auxiliary weighted digraph G’ = (V', E’) }
V'i:=0; E':=0;
F':= 0

48

Vii=0; V=0
fori := 1to K do begin
Choose an edge ¢ = (vy,v) € FFN C,
Add vy to Vy and to V'
Add v to V, and to V/;
Add ¢ to E' and to F';
Associate the cost of ¢ in E as the cost of ¢ in £
end
for each v, € V| do
for each v; € V} such that (vy,v) € F' do begin
Add an edge ¢ = (vnry) to B
Let the cost of ¢/ he that of a shortest path from v, te vy in G:
end
Let &7 = (V' E"):
rural_symm_aug(G;', F',G*, E™) ;
Let 77 be the bag of all underlying edges in E for the edges in £~ U I
Add all the edges in T’ to T
Let (', Cy.. ... C) be the components of G*;
KN = h;
until(A" = 1)

Step 3 { Delete unwanted edges from 7" and compute the final tour }
Construct an undirected graph G” from G[T] by fusing the end vertices
of each edge in F'F' and ignoring the orientation of the remaining edges;
Compute an MST T of G";

Let F" be the set of edges in E corresponding to the edges in T"
ruralsymm_aug(G, FF U F", G, E'),
Compute an euler tour T' of (7

end app.rpt.

49

Suppose that (g is not weakly connected. Let (. 'y, ... Ol be the set of components
of Gy. Observe that each component contains at least one edge from F7F; for otherwise
Eo will not be a minimum cost bag such that Gio = G[F F'U Ey] is svmmetric. In this
case, the algorithm proceeds to Step 2 after storing F'FU Iy in the bag T'. In general,
each iteration of the repeat..until loop of this step accepts the set of all components
C1.Cq,...Cx , K > 2, of a symmetric disconnected digraph of the previous iteration
and a bag T of edges computed thus far. Each component will have at least one edpe
from FFF. Let " C FF such that it has exactly one edge from cach component. Let
V7 (17) be the set of all starting (ending) vertices of the edges in [7. Step 2 first
constructs the weighted digraph G’ = (V70 E'). where V! =V, UV and B = F'u P,
where P = {(vi,vy) | vy € Vi and vy € Vyand (vy,v) € ') That s, an edge is
added from the ending vertex v, of each edge in F” to the starting vertex vy of every
other edge in F’. The cost associated with this edge is the cost of a shortest path in
G from v, to vy, Also, the cost associated with an edge in /7 is the cost assigned for
this edge in (5.

Step 2 then invokes ruralsymm_aug((', F',C*, ™) to find & rural symmetrie
augmentation G* = G'[F'U E*] of (7 with respect to I/, Let 77 he the bag of all the
underlying edges for the edges in F'UE*. 7"is added to 7'. Note that if (7 is weakly
connected, then so is G[T]. Also, G[T] is a symmetric digraph containing cach edge
in FF at least once. Therefore, the algorithm proceeds to Step 3 to derive a tonr
using edges in T'. Suppose that G™ is not weakly connected. Then, let Oy, C,, ..., (7,
be the components of GG*. In this case, the algorithm repeats the repeat..until loops
of the Step 2 for this set of components. As shown in Theorem 2.3, the number of
components at the starting of a given iteration of the loop is at most half of the
number of components in the starting of the previous iteration. Therefore, Step 2
terminates within [log |c|] iterations.

Step 3 computes a set F* of edges of minimum cost from T such that G[[<#0U /")

50

is weakly connected. For this purpose. it reduces G[T'] into the graph G” by fusing the
end vertices of each edge in F7F and ignoring the orientation of the remaining edges.
It then computes a Minimum weight Spanning Tree (MST) 77 [TS92] of G, F" is
nothing but the set of edges in I corresponding to the edges in T". The step finally
outputs the enler tour of the rural symmetric augmentation (¢ of G with respect to
1O F" as the required approximate tour. Note that since G[FF U F”] is weakly
connected, the enler tour is guaranteed.

In the following, we estabiis the correctness of app_rpt and the level of ap-
proximation of the tour obtained hy the algorithm. Let cost(XX) be a function which
accepts a bag X of edges and output the total cost of all the edges in X, considering

cach ocenrrence of an edge in X as being separate.

Lemma 2.1 L/ (7 = (V. F) bc a waghted digraph and It G{FF U E\] be a rural
symmedrie augmentation of G with respeet to FF C E. Supposc that Ty is an RPT
of G with vespeet to FFF. Then, cost(FF U Ey) < cost(Tgp).

Proof

Since GFF U E] is a rural symmetric augmentation of GG with respect to FF,
Iy is a minimum cost bag from £ such that G[FF U E)] is symmetric. However. an
RPT ', needs a minimum cost bag £, from E such that G[FF U E,] is syinmetric
and weakly connected. Therefore. cost(FFUE)) < cost(F FULE,). That is, cost(F FU

I2)) < cost(o).

0

Lemma 2.2 Let (= (V, E) be a weighted digraph and FF C E. Let F' C FF such
that no two edges in I’ are adjacent. Let V' = Vy UV, where V) (Vi) is the set of all
starting (ending) vertices of the edges in F'. Let P = {(vivy) | vy € Vi and vy € Vy
and (vyov)) € F'} Lt G = (V' E') be a weighted digraph, where E' = F'U P and

the costs assigned to the edges are as follows: For cach edge ¢ in F' the cost of € ir:

I 1s assigned as its cost in 73’ For cach edge ! = (v vp) € P the cost of a shortest
path e G from vy to vy 15 associated as the cost of & i (0 Suppose that T, s
an RPT of G with respeet to F and U is an RPT of (7 with respeet to V', Then,
cost(I'") < cost(l,).

Proof

In T'ypr. choose one occurrence of each edge in I/, Let fi be an arbitrary edge
in I, Label the other edges in £ such that F' = {f;. fo..... fi}and fy oo o0 fois
the order in which the chosen instances of the edges occur in e Let o) and o) be
the starting and the ending vertices of f,. for ¢ = 1.2.... k. Obtain a tour Y from
I'opr by replacing the walk in Ty from of to v'j“ JHord = 1020000k = 10 by an edge
with the cost as the cost of the shortest path in ¢ from v} to v’l“. Also, to obtain
T, replace the walk in ', from »f to e by an edge with the cost as the cost of o
shortest path in 7 from vF to v}. Clearly. cost{(T) < cost{F0). Also. Y isa tour in
G’ which visits each edge in F' at least once. Since I is an RP'T of (" with respect

to F'. cost{I") < cost(T). Thus. cost(T') < cost(,).

The lemma given, below directly follows from Lemma 2.1 and Lenima 2.2

Lemma 2.3 Lt (7, () FF. and I’ be as defined in Lewnma 2.2, Supposc thal
G'[F'"UE"] is a rural symmeiric augmentation of G with vespeet Lo 1 and U,y 15 an
y g I I

RPT of G with respect to FI. Then, cost(1'U E7) < cost(],,).
7
]

We prove in the following theorem that the cost of the tour I' produced by om
app-rpt algorithm is (1 + [log|c|])-approximate® to the cost of an RP'T of ¢ with
respect to F'F', where |c| is the number of weakly connected components of the rural

symmetric augmentation obtained in Step 1 of the algorithm.

3The cost of a tour A is said to be k-approximate to that of a tour B f % < k. where
cost(A),cost(B) > 0.k > 1 and cost(B) # 0.

Theorem 2.8 Supposc that 1y s an RPT of G with respeet to FF and that T s
the output given by algorithn apprpt. Thon 1 ds a single tour containing cach cdge
in P17 at least onee and cost(T) < (14 [log|el])cost(Topt), where |c| is the number of
weakly connceted components of the rural symmctric augmentation oblained in Step 1
of the algorithm. That is, the cost of T is (i -+ [loglc|])-approrimate to the cost of an
RPT of (i with respeet to FF.

Proof

If the rural symmetric augmentaaon Gy of (¢ with respect to FF is weakly
connected, then clearly ' is an euler tour of G and so it contains each edge in I'F
at least once. By lemma 2.1, we have cost(I") < cost(Iy). Since Gy is also weakly
connected, from the definition of an RPT. we have cost(I',) < cost(I'). Thus,
cost(1') = cost(I,,).

If (7 is not weakly connected. then a'l the edges in FF as well as the bag (F£y)
of edges computed for the rural symmetric augmentation are stored in T and the re-
peat...until loop of Step 2 is executed with this 7 and the components (. Ca.. .. Cy
of (5. Note that cosi(T') < cost(',) before entering Step 2. From the construction
of I and (', we kuow that each component of the rural symmetric augmentation
(7= (U E*] of (7 with respect to F' contains 2t least two edges from F”, where
I is a minimu . cost bag in £ such that G is symmetric. Therefore. F' is re-
duced at least by a factor of 2 between successive iterations of the repeat...until
loop. At the starting of the first iteration 'F’| = |¢|. Therefore, this loop is repeated
at most [log [¢]] iterations. In ecach itcration of this loop, the bag T’ of edges in E
corresponding to the bag F' U E* of edges is added to T'. Since the rural symmetric
augmentation (™ in the last iteration of the loop is weakly connected, G[T] is also
weakly connected. Also. since FF is added to T in Step 1 and none of the edges in T
is deleted in Step 20 T contains all the edges in FF. From the construction of G in
Step 30 it follows that G[F F U F"] is weakly connected. where £ is the set of edges

corresponding to the MST of (7. Therefore. the rural symmetric augmentation G of

G with respect to F/F U F" is clearly eulerian and the euler tour I' of (7 contains all
the edges in FF.

From Lemma 2.3, we know that cost(7T") < cost(T,) at the end of a given
iteration of the repeat...until loop of Step 2. Since cost(T') < cost{V,,) before
entering Step 2 and since T' is added to T at the end of every iteration of this
loop which is repeated at most [log|c|] times, cost(T) < (1 4 [log|e]])eost(T o).
Step 3 computes a set £ of edges from T such that G[FF U F"] is weakly connected.
It then finds a rural symmetric augmentation G of G with respect to FIU Y
Let T be the euler tour of (& Since GIT] is symmetric and contains cach edge in
FFU#" cost(T) < cost(T). But cost(T) < (1 + [log|e|Decost(l,,,). Therefore,
cost(T') < (1 + [log |e]])cost (T). This completes the proof .

]

As given in [SLD92]. the time complexity of most practical algorithms for find-
ing the rural symmetric augmentation of a graph ¢ with respect 1o a set of edges FIF
is O(ni*log n). where m and n are the number of edges and the number of vertices
in the graph (7, respectively. Step 2 of app_rpt takes O([e]*log [¢]) time units, where
le| is the number of weakly connected components in Gy, the rural symmetric aug:
mentation computed in Step 1. It follows that the time complexity of the algorithm

is O(m?logn + |c|*log |¢]).

2.4.2 A Heuristic Algorithm Based on MST

One naive approach of finding a tour covering cach arce in FF at least once when the
induced graph G[FF] is not weakly connected is by connecting the disconneeted com-
ponents of G[FF] by a set of arcs with minimum cost and finding a rural symmetiic
augmentation of G with respect to the new set of arcs. The approach is naive be-
cause it simply connects the components which would have heen connected otherwise

through the rural symmetric augmentation itself. Qur heuristic algorithm hased on

trees takes care of this point. The algorithm is so named because Step 2 and Step 3 of
the algorithm involve the computation of minimum weight spanning trees of certain
auxiliary graphs. The algorithm is given below. It starts with the computation of
a rural symmetric augmentation Gy of G with respect to FF. If G} is weakly con-
nected then we can find the RPT right away. Otherwise in Step 2 we compute a set
of ares I} with minimum cost among the arcs added in Step 1 so that the weakly
connected components of G[F F] which belong to the same component in G are also
in the same component in G[FF U Fy). A set of arcs F, with minimum cost which
miakes G717 U Fy U Fy] weakly connected is computed in Step 3. The required tour
is obtained in Step 4 by finding uic euler tour of the rural symmetric augmentation
graph G4 of ¢ with respect to FFUFy U f, .

Algorithm mstorpt(G FF.IN

Step 1 {Rural sy netric auginentation}
o Compute the rural symmetric augmentation (7; of G with respect to FF.

o If (7} is weakly connected then compute the euler tour of ¢y and stop,

Else compute the weakly connected components (), (s, ... (i of Gy.
Step 2 {Find the M3T of the weakly connected components)

e For cach component ('y construct the undirected graph C*/ from C, by fusing
the end vertices of arcs in FF N (, and dropping the orientation of the
remaining arcs.

o Computethe MSTT! of C}.i=1.2,... |c|. Let F; = T{UTU ... T}, where

7, is the set of arcs in (7 corresponding to the edges in 77, i=1,2,... |c|.
Step 3 {Minimum cost arc set for connecting the components}

e Construct a weighted undirected graph Gz = (V3, E3) where V3 = {0, v§,. .. vl“c'}
and e = (v;',vJ‘) € E5iff 3 a path in G between a vertex in C, and a vertex in
('y whose intermediate vertices (possibly empty} are only from V — V(G,);
the cost of the edge e is the minimum cost over all such paths in G. Here,
V(1) denotes the vertex set of Giy.

¢ (ompute a minimum weight spanning tree 7 of (/3. Let F, be the set of

arcs in (7 corresponding to the edges in T.

(21
fubs)

Step 4 {Rural symmetric augmentation}

e Compute the rural symmetric augmentation (75 of (7 with respect to FF U

FyUF,.

o Compute the euler tour I' of G4 .

end mst_rpt

By the constructions in Step 2 and Step 3, G[F FU FyU F,] is weakly connected.
Thus the algorithm guarantees a tour visiting each arc in FI at least once. The time
complexity of this algorithm is dominated by the complexity of finding the rural

symmetric augmentations. Thus the algorithm takes O(m?logn) time units,

2.4.3 A Heuristic Algorithm Based on Symmetry

This algorithm differs from the previous algorithm only in Step 3. At the end of Step 2
the induced graph G[F FF'U Fy] may have a number of weakly connected components.
In Step 3, we compute a set Fy of ares such hat G[FFU FyU Fy] is weakly connected
and I contributes to an optimal extent in making G[F F U Iy U F,] symmetrie. This
is done using the procedure symm_conncct, which is based on a greedy approach.
Given a graph G = (V,FE) and a set X C FE, cach vertex is assigned one of the
following three attributes: excess, deficient and neutral. A vertex v has the attribute
excess, deficient, or neutral if the number of incoming arcs (from the set X) at
vertex v respectively is greater than, less than, or equal to the number of ontgoing,

arcs (from the arc set X') at the vertex v. The algorithin is given below.

Algorithm symm_rpt(G,FF,I")

Step 1 {Rural symmetric augmentation}

e Compute the rural symmetric augmentation (7 of (i with respect to FF.

o If (7, is weakly connected then compute the euler tour of (7 and stop.

Else compute the weakly connected components €, Co,... Cjq of ().

Step 2 {Find the MST of the weakly connected cotnponents}

56

o Fur cach component (', construct the undirected graph €7 from € by fusing
the end vertices of ares in FF N €, and dropping the orientation of the
remaining ares

o Computethe MST T of (], i = 1.2,... |¢|]. Let F} = TYUTaU .., Tjc| where

T} is the set of arcs in G corresponding to the edges in 77, i = 1,2, .. |c|

Step 3 {Find an arc set(with contriliutions to symmetry) for connecting components

o Perform procedure symm_connect(GG, FFU Fy, Fy).
Step 4 { Rural syminetric augnientation }

o C'ompute the rural symmetrie augmentation Gy of (7 with respect to FFU
Fruly

o (‘ompute the culer tour I' of (3.

end symm_rpl
The formal description of the procedure symm _conneet is given below:

Procedure symim_conneet (G.FF F')
Step 1
Compute the weakly connected components of G[FF};
Let I he empty;
Mark an arbitrary component selected and the others unselected;

Compute the attribute of each vertex in (i with respect to FFUF’,
Step 2

while (there exist an unselected component and
a path from an excess vertex of a s-lected (unselected) component to a deficient

vertex of an unselected (selected) component) do
begin
Find one such path, say P, with minimum cost;

Mark all unselected components along P as selected:

57

Add all the arcs aleng P into F’;
Reassign the attributes for the end vertices of P> with respect to FFUFY,

end
Step 3

while(there exists an unselected component and
(there is a path from an excess vertex of a selected (unselected) component to a
neutral vertex of an unselected (selected) component or
there exists a path from a neutral vertex of a selected (unselected) component

to a deficient vertex of an unselected (selected) component}) do
begin
Find one such path say £ with minimum cost;
Mark all unselected components along F? as selected,
Add all the ares along P imto 1™,
Reassign the attributes for the end vertices of I> with respect to FRUTY,
Perform Step 2;

end
Step 4

while (there is an unselected component) do
begin

Choose a path P with minimum cost between a selected component and an

unselected component;
Mark all unselected components along P as selected;
Add all the arcs along P into [,
Reassign the attributes for the end vertices of P with respect to FIUFY,
Perform Step 3;

end

end symm.connect

It is casy to sce that the graph G[FF U FyU Fy] is weakly connected and so the graph
(/4 is culerian. The time complexity of this algorithm is O(m?logn + n?|c|), where
le| is the number of weakly connected components in Gy.

As far as the selection of a method for solving the general RPP is concerned.
if an explicit hound on the optimality of the tour is of prime importance, then one
could use the heuristic algorithm app_rpt rather than the other two. The approach
taken in this thesis is to apply all three heuristics and choose the tour of shortest

length among the tours obtained.

2.5 Generalized UIS testing method

As pointed before the existing UlS-based methods can be applied only to a subset
of strongly connected protocols which are represented as FSMs having at least one
UIS for each state. These methods. however. have the merit of generating minimum
length test sequences with high fault coverage [MCS93]. In this section. we propose
a generalized approach which can be applied to any protocol satisfying the above
conditions. This method produces test sequences with varied level of optimality

depending on the structure of the protocol and the UlSs considered.

2.5.1 The GU-method

Our GU-method is based on the BUAP and the RPP. The method is formally de-
scribed in algorithm: guio_fest. We assume that the protocol representation grapl
(/s = (S, E) is strongly connected and each of its states has a nonempty set of UlSs,
As defined earlier, AfU/, is a nonempty set of UlSs for each state s,. Let MU =
MUy UMULU. . UMU,. Let R C Ex MU such that (¢,u) € Riff end(c) = head(u).
Let G = (S.E'), where E' = {(start(c),tail(u);label(e)@u)|(e,u) € R}. A cost is
assigned to cach edge in E'. Suppose ¢’ € E' corresponds to (e,u) € R. then the cost

assigned to ¢’ is the length of the UIS u vlus one. The generalized method starts by

59

checking whether the MU-method can be applied to generate a test sequence for the
given protocol. If so. the method computes a minimum length test sequence in Step |
using the MU-method and terminates. If the MU-method fails to find a solution,
then the generalized method uses the UIS assignment B obtained in the MU-method
to calculate an approximate RPT I'y of (G5 4+ B with respect to B by choosing a tour
with the minimum cost among the tours obtained by the algorithms app_rpt, mst _rpt
and symm_rpl. In Step 2, the method finds a minimum set of transitions BE and a
valid UIS assignment H for B E such that the resulting test graph (/[H] spans (" and
G'[H] has the minimum number of connected components. This is done by invoking,
the basic_assignment algorithm.

In order to minimize the length of the test sequence, a valid UIS assignment
H' for the transitions in £ — BE and a minimum bag E P of trausitions from £ are
computed in Step 3 such that the graph G” = G'[HUH']+ EP is symmetric. Note that
each transition in FP is repeated in G as many times as they oceur in P H' and
E P are obtained by computing a minimum cost maximu m flow f~ of a multi-stage llow
graph (7 = (V. Ey) whose construction is deseribed below. Vy = {s,1}ut; ub, oV
where Vi = {wry e oo bV = {meyee oo} and Vo = {z1200000,5,) By =
EGUE UL, . UE . .UE UE,; where, Eg, = {(s.r) |1 <7 <n} by = {(eny,)] 3
E-BEAstart(c) = s,Aend(¢) = s,}, Ey: = {(y, ;) | 3u € MU ANl ()= s}, ., =
{(zi.2,) | e € E Astart(c) = s, Aend(¢) = s,} By = {(z.) | 1 <1 < n}, and
Eo. = {(r,z) | Ie,u) € H A start(c) = s, AMail(u) = s,}. The lower bound, cost,

m

and capacity assigned to the edges of Gy are shown in Table 2.7,

Assignment of UlISs for the transitions in £ — BE is done using the optimum
flow f* in G;. For instance, an unit flow from z, to z; through the vertex y, indicates
that the UIS u € MU, with tail(u) = s is to be assigned to a transition in £ — BJ
from s, to s,. This assignment H' is computed in Step 3. EP is obtained by adding

a transition from s, to s, to EP as many times as the flow f*(z,,z,) along the edge

(:n ‘:_)) € E::-

60

kdge | lower bound cost capacity

(s,2,) 0 0 # of out trans. from s, in £
(v4, 1)] 0 # of trans. from s, tos; in £ — BE
(. 2) 0 length{u), where ~

head(u) = s, Aail(u) = s,

(2, 2) 0 | o0

(z,,1)] 0 # of out trans. from s, in E
(ry,2;) 1 0 1

Table 2.7: Parameters on the edges of the flow graph G/

If (" is connected, then (7 is eulerian and an euler tour I'y of G” is computed in
Step 4. Otherwise, an approximate RPT Iy of G + F' with respect to F' is computed
in this step by choosing a tour with the minimum cost among the tours obtained hy
the heuristic algorithms apporptomst orpt and symmerpt, where £ = H U H'. The
tour with minimum cost is chosen from 'y and 'y and a test sequence is obtained
from this tour by concatenating the subsequences and /or the inputs of the transitions

along this tour. The algorithm guio-tcst is described below.

Algorithm guo_test((/;, MU G TS),
Step 1
Apply the MU-method;
Let B be the UIS assigmnent computed in the MU-miethod:
Let I7y be a bag in E computed in the MU-method
such that (;/[B] 4+ E; is symmetric;
if (('[B]+ Iy is connected) then
begin
Obtain the test sequence TS by concatenating the labels
of the edges along the euler tour I' of ('[B] + E};
stop
end
else begin
apprpt (GG, + B, B, X);
mstopl(Gy+ B, B,Y);
symm_rpl(Gy+ B, B, Z);

Let T"y be the tour with minimuin cost among X,} and Z:

61

end

Step 2
basic_assignment(Go, MU G H)
BE + dom(H):

Step 3
Compute a minimum cost maximum flow f* of Gy (1,),
H «¢:
for each ¢ = (5,.5,:a/0) € £~ BE do
begin

[y) < leay) -1
Choose (y,,2x) € Ey such that f*{y,. z1) > 0.
[(yeoz) e o) -
Let uw € MU, such that head(u) = s, and tail(u) = sy
Add (r.u) to 1I'";
end
F = {(start(e) tail () labed{cyau)|(c.u) € TV H'}:
EP «§.
for each (z,.z;) € £y such that f*(z,.z,) > 0 do
Add a transition frorn s, to s, with mininmm cost to P f*(z,, z,) times |
Step 4
if ("= G'[HU ')+ EP s connected) then
Find the euler tour I'y, of (7",
else begin
apprpt(Gs + F, F, X):
mst_rpt(Gy+ F.F, YY),
symm_rpt(G, + F, F. Z).
Let T'y be the tour with minimum cost among X, Y and Z;
end
Obtain the test sequence TS by concatenating the labels of
the edges along the tour with minimun cost bhetweey Ty and Ty,

end guio_lesl.

We would like to note that the multi-stage flow problem formulation used above

62

is similar to the one given in [SL92) for assigning UlSs to the transitions in E. While
the assignment obtained in [SLY92] may not result in a connected test graph, an
optimal flow of our flow graph always yields a connected test graph whenever such
a test graph exists. This is due to the fact that any optimal flow in our flow graph
always subsumes the UIS assignment obtained as a solution to the BUAP in Step 2.
It can be seen that the rural symmetric augmentations made in the first step of
app_rpt ,mst_rpt, and syman_rpt are redundant, as far as the guro_tcst is concerned,
since similar angmentation is already done in Step 1 or Step 3 of guio-test. We do
not however modify the former algorithims due to their generic application.

The algorithm takes at most O(n2m?? 4+ ¢?loge) time units. Here, ¢ =
max{|ey |, |e2]}. where Jey | and ey are the number of weakly conuected components of
('[B)+ Ey and (7, respectively. As before. v denotes the maximum number of UlSs
in MU for any state. The level of optimality of the test sequence obtained by our
generalized method are summarized in the following theorem. Proof of the theorem

direetly follows from Theorem 2.3 and the algorithm guio_tesi.

Theorem 2.4 The lenglh of the test sequence generaled in the generalized mcthod

has the following levels of optimality.
(i) of ('[B)+ Ky s conneeted then it i optimum

(i) of G is conneeted then it is opltimum subject to the condition that the edges in

dom(H) arc preassigned using H, a solution to the BUAP,

(iii) In the worst case, it is always (1 + [log{min{|c1], |c2|})])-approzimate to the
length of an optimal test sequenee, where |ey| and |cz| are the number of con-

neeted components of G'|B] + Ey and G, respectively.

63

o l

(0‘|,l) (l.-.Z)
oL
(0,1,1)
0
(0,2,2)
x2
a,)
(©,1,1)
1h (e
{1,7)
(1)
~
x3 ¥3
\>*/ 0,22) (1,2

73

(0.2,2)

4.4)

Note: (1) *-* indicates the infinite capacity (1) Edge lables are the triplet (cost, capacity, {low),
the last entry (flow) 1s omutted if 1115 zero (1) (1, -) 1s assumed on all the unlabetled edpes

(1v) Assign a lower bound of one unit on edges (x2. 21) and (x3, 21} and sero tor other edpes

Figure 2.9: Flow graph for the FSM given in Figure 2.2,

Trausitions | UIS
t1 3
t2, tH i1
t6, t7 t6

Table 2.8: UIS assignment using min-cost flow

64

2.5.2 An Illustration

We now illustrate the proposed method on the FSM given in Figure 2.2. Let us
consider the same sets of multiple UISs which are used in Section 2.2.3: MU, =
{t1}, MU, = {t2,t3}, and MU; = {t4,15,16}. The generalized method finds a test
sequence of minimuin length (14) if G'[B] + E;, computed in Step 1, is connected.
If not, let us suppose that the UIS assignment of the FSM obtained in Step 1 is
Ay as given in Table 2.4, Since G'[A;] itself is symmetric, E; = 0. Since G'[A] +
Iy is not connected the henristic algorithms have to be invoked for computing an
approximate RPT with respect to A;. Suppose that {e3, €9}, where €3 = (51,5511 t2)
and €9 = (s,. 83313 16) (refer to Table 2.6), is chosen as F in the first iteration of the
repeat...until loop of the algorithm app_rpt. Then T = {t1,t5} and app_rpt moves
to the third step. In Step 3 of epp_rpt. the edge 13 is added so that G'[A;] + E;.
t1.15, and 3 together form the tour X: t1 12 t1 121 t4 1615 t113 14 t316 617
16 15 of length 17. Since each edge in (7) is in fact a test edge, Fy computed in
Step 2 of mist rpt as well as symm_rpt is the empty set. Suppose that the transition
11 is selected in Step 3 of mst_rpl. Then the last step of this algorithm adds {2 to
Ay U {t1} so that G[A, U{t1} U{t2}] is symmetric. The algorithm mst_rpt returns
an upproximate RPT Y: 1/ t2 t1 13 t6 16 16 17 t6 1/ t3 t5t1t2 t1 12 of length 16.
Similarly. the algorithm symm_rpt produces an approximate RPT Z of length 16 or
17 depending on the selection of the transition #1 (12) or t5, respectively, in the third
step. Let 'y be the tour Y, the one with the minimum length (16) among X,Y and
Z.

The algorithm basic_assignment is invoked at Step 2 with the above set of
multiple UISs. Suppose that the algorithm basic_assignment assigns the UISs t5 and
{2 to transitions {3 and t4, respectively. Note that this assignment(H) in fact yields a
connected test graph. The multi-stage flow graph for computing the UIS assignment
for the remaining transitions as well as a set of transitions to be added for obtaining

G" is shown in Figure 29. Labels in each edge is a triplet representing the cost.

capacity, and the optimal flow, in that order. The last part of the triplet is omitted
if the optimum solution has a zero flow along that edge. Edges (&g, zy) and (@4, 2y)
also have a unit lower bound. The resulting UIS assignment(H') for the remaining
transitions are shown in Table 2.8. The solution also indicates that {1 and 3 are the
only additional transitions required for obtaining a rural symmetric augmentation of
Gs + (H U H') with respect to HU H'. t1 1316 16 t7 1615 (1 1201 345 113 1] 12
is the resulting tour I';. Note that the length of ', is same as the length of '), A
test sequence is obtained by concatenating the input-output of the transitions along,
I';. Observe that our generalized method produces a test sequence of length 16, two
more than the optimum test sequence, whereas the MU-method by itsell does not

guarantee a test sequence.

2.6 Summary

The optimal UlS-based test generation methods (U-method [ADLUSS] and MU-
method [SLD92]) do not cover certain protocols which are represented as strongly
connected FSMs having at least one UIS for each state. In this chapter we have gen-
eralized the MU-method so that it can be applied on any such protocol. Observe that
our method can also be applied for protocols without reset capability. The method
generates test sequences of different levels of optimality depending on the structure of
the protocol as well as the set of UlSs used. The method uses solutions to the Basie
UIS assignment Problem, and the Rural Postperson Problem. The BUAP is formu-
lated as an MC2MIP and an efficient algorithm based on the MC2MIP is presented.
Three heuristic algorithms, including one with an explicit bound on the optimality of
the solution, are proposed for the general RPP.

The work presented in this chapter is reported in [RTD94].

66

Chapter 3

ANALYSIS OF FSM-BASED
TEST SEQUENCE
GENERATION METHODS

I this chapter, we review and analyze FSM-based test sequence generation methods
for their fault deteetion and fault diagnosis capabilities. We also summarize results
on the lengths of the test sequences they generate. As suggested in [Ura92] this
comprehensive study will be useful in selecting suitable methods for generating test
sequences for i given protocol. A formal analysis of the fault diagnosis capabilities of
the methods will also aid one in choosing a suitable method for diagnosing the faults
in an implementation [Ghe92]. In addition. this analysis will help understand the
complexities involved in developing test sequence generation methods with greater
fault detection and fault diagnosis capabilities. Detailed descriptions of these test
sequence generation methods may be found in [Gil61, Hen64, KL67, KK6S, Gon70.
KR Koh78, Chor8, NTSI. ADLUSS, SD8S, C'VI89. SL89, FBK+91, Ura92] .
Analysis of fault coverage of some of these methods may also be found in [SL39,
CVISY. FBRYO1. BPY O],

The chapter is organized as follows. In Section 3.1, we review various FSM-based

67

test sequence generation methods and analyze their fault detection and diagnosis
capabilities. These methods are compared in Section 3.2 with respect to their fault
detection and diagnosis capabilities and the length of the test sequences the methods
generate. Some of the desirable characteristics a testing method should have in order

to have better diagnosis capabilities are discussed in the concluding section.

3.1 Test Sequence Generation Methods: Review

and Analysis

In this section we review FSM-based test sequence generation methods and analyze
their fault detection and fault diagnosis capabilities with respect to the fault model
introduced in Section 1.2.1. We examine the fault coverage and the 1-fault resolution
capabilities of these methods. We denote the FSM representations of the protocol
specification and «n implementation by SPEC and TUT| respectively. In the analyvsis
of the I-fault resolution capabilities of the methods, the TUTs are assuined to have
at most one fault (either a transfer fault or an ontput fault in a transition). Thas,
a faulty TUT is identical to the SPEC except foo the unique faulty transition. In
all these methods. n and |F| will denote the number of states, aud the number of
transitions in the SPEC, respectively.

Let TEST (s, 8,5 a/0) denote a set of walks for testing the transition (s,,5,;a/0).
That is. {Inseq(W) | W € TEST(s,, s,;a/0)} is the set of input sequences for testing,
(8:.8;;a/0). Suppose that TEST(s,, s,;af0) is a sing’eton, then the unique walk in
this set itself is denoted by T'EST (s, s,5af0). Each walk Win T'EST (s, s,1af0) can

be divided into three parts:
W = prcamblcabodypostamble

The prcamble is a path for putting the IUT in the state s, from its current state, The

walk for trav-rsing and testing the transition (s,.s;:a/o) conotitutes the body. T'he

63

postamble is o path for putting the TUT into a known state after traversing the body.

3.1.1 Distinguishing Sequence Method

The distinguishing sequence method (in short. the D-method) [Hen64, Gon70, Koh78)
assumes that the SPEC is strongly connected, minimal, and completely specified. The
TUT is assumed to have at most n states. It is assumed that the SPE(' has a special
type of inpnt sequence called a distinonishing sequence. Formally, an input sequence
Xo is said to be a distinguishing sequence of a SPEC if the output sequence
obtained while applying Xy at cach state in the SPEC is distinet. Let D(7) denote
the walk from s, with the input sequence Xo. Let ¢, = Tail(i. Xg). That is. ¢, is the
state the SPEC reaches efter applving Xy at s,. ¢ = L.2.....n. Let T(7,)) denote a
shortest path from s, to s, in the SPEC, where } <2,) < n. The D-method i~ -olves
two phases: the state verification phase and the transition testing phase. Given a
distinguishing sequence X, he state verification phase tests whether (i) the IUT has
exactly nostates and (if) o is also a distinguishing sequence of the IUT. This phase

is performed using the input sequence along the following walk.
D(1) T(¢n.2) D(2) T(g2,3)... D(n) T(q,.1) D(1)

If we get the expected output sequence on applying the input sequence along the above
walk to the 1UT, then clearly. the IUT also has n distinct states. In the transition
testing phase each transition 1 = (s,,5,5a/0) € E is tested using the input sequence
along T(gp 1 — 1) D(1 = 1) T'(q,=y.1) t D(j) where, g, is the state of the IUT before
starting the testing of transition (s,.s;;a/0). The prefix T'(q,,1 —1) D(i = 1) T(g,~4,7)
i: to ensure that the TUT is put in state s, before applying the input of the transition
(si08,1af0). D(J) is to confirm whether the tail state of the transition under test is
in fact s, tn order to reduce the length of the test sequence one can test some of
the transitions in the state verification phase itself. The main advantage of the D-

method is that it ensures complete fault coverage [FBK*91]. It is also likely that the

69

State | output for arbrr || State | output for arbrr
Sy 00101 s) 00000
S5 00001 84 20000
S5 12101 s6 02101
St 20101 Sy 22101

Table 3.1: Responses of the SPEC' for the distinguishing sequence

length of the test sequence will be smaller than those obtained by other test sequence

generation methods having state verification phase.

In the following we present our results on the analysis of the I-fault resolntion
capahility of this method. OQur first claim is that its fault diagnosis capability is very
limited if the TUT fails in the state verification phase. For example consider the SPEC
and the TUT given in Figure 3.1. From Table 3.1, it is easy to see that Xy, = arhrr is
a distinguishing sequence of the SPEC. Observe that the transition 13 = (51, 5,:.0/0)
of the SPEC has a transfer fault in the IUT. C'onsider the input sequence along, the
walk

D(1) T(q1,2) D(2) T(q..3) D(3) T(qs,4) D(4)

where gy =6 and ¢, = g3 = 2. T(q1,2), T(q2. 3), and T{(q5.4) are the paths (19 13,16,
and 5 respectively. Clearly, the input sequenceis a prefix of the sequence gonerated in
the state verification pliase. The actual input sequence, the expected output sequence.
and the output sequence observed on applying the input sequence to the IUT are given

helow.

Test subsequence = erbrzr br arbre ¢ arbrr b arbrr.
Expected output sequence = 00101 00 00000 0 00001 0 20000.
Observed output sequence = 00101 00 60000 0 00001 0 00101,
Thus the TUT fails while verifying the distinguishing sequence at state sq. However,

the fault is at the transition 13 = (s;.5,;.0/0), which is a part of T'(qy,2). D(2), D(3)

70

t21:a/2
£22:b/2
n4a:x/o "’y

7:x/1(_{(52) : 125:b/1

til:x/0

(a) SPEC

t21:a/2
t22:b/2
t24:a/2
t26:x/2
t25:b/1

t11:x/0

(b) IUT

Figure 3.1: An Example for the D-method

and D(1). In general, if the IUT fails in the state verification phase, then the fault
could be in any of the transitions traversed before the detection of the fault. Thus
the D-method has the 1-fault resolution capability of level only {£]. On the other

hand, suppose that the method ensures the following, property:

If an IUT passes the test sequence generated in the state verification phase
of the D-method. then for each state s, of the SPEC, the corresponding,

state in the IUT responds to Xg in the same way as s,.

Assume that the TUT fails in the second phase while testing the transition =

(s0.8,:afo) using the following walk.
TEST(sicsnafo)=T(qpt = 1) Do = 1) T'(qoyo0) U D(y).

One of the transitions in T(q,..2 — 1) or in D(p) is faulty if an unexpected ontput s
ohserved from the IUT while applying the input sequence along the subwalk T'(q,. 1 -
1) D(i = 1) of TEST (s,.5,:a/0). Onu the other hand. o the first nuexpected output
o' # o corresponds to the input a of the transition . then the transition ¢ has an
output fault. However. if the first unexpected cutput corresponds to (), then we
can ccaclude that the transition 7 has a transfer fault. Since the lengthof T'(q. 0 =1) 15
at most n—1, we conclude that the fault can be diagnosed within /41— 1 transitions,
where [is the length of the distinguishing sequence Xg. We summiarize this result

on the 1-fault resolution capability of the D-method in the following lemma.

Lemma 3.1 Assume that the TUT has at most one Jault. The D-mcthod, in general,
has I-faull resolution capability of level only | [2). Howcver, if the sucecssful comple-
tion of the statc verification phasc on an 1UT also vuplics thal the vesponse lo e
distinguishing scquence Xo al cach state s, in the SPEC s the samc as the vesponsc Lo
Xo in the corresponding state in the IUT, then the faull ecan be located withar 41—

transitions, where 1y is the langth of X,

iy

A known theoretical upper bound for Iy is (n = 1)n™ [Koh78]. Actually, {; would
be much smaller for real life protocols. The method as such does not ensure that the
state in the TUT corresponding to cach state s, responds to Xo in the same way as s,
even if the TUT passes the state verification phase. This is due to the fact that a single
transfer fanlt in a transition can permute the distinguishing sequence’s response of

one state into the other [KRK74).

3.1.2 Characterizing Sequences Method

The characterizing sequence method (henceforth referred to as the C-method) pro-
posed by Kohavi «f al [KRK74. Koh78] is a fault detection experiment for testing
FSMs which may not have any distinguishing sequence. Only a brief description of
the method is presented here. 1t is assumed that the protocol specification SPEC is
strongly connected and minimal. The C-method assumes that the SPEC is completely
specified. The C-method uses a set, called a characterizing sequence set for identifyiug,
the states. A nonempty iinite set C of input sequences is called a characterizing se-
quence set of a protocol specification SPEC if no two states in SPEC have the same set
of vutput sequences when all the sequences from C are applied to them. Formally. C
is a« Chararcterizing Sequence set (CS set) if for any two distinct states s, and s,
in S A{Oulscq(Walk(i,C) | C € C} # {Outseq(Walk{j,C) | C € C}. Each sequence
in C is called a Characterizing Sequence (CS). When C is a singleton, the unique
characterizing scquence becomes a distinguishing sequence. A set V, C C is called an
Identifying Sequence set (IS set) [Koh78] of the state s, if V, is a minimal subset
of a ('S set C such that {Qutseq(Walk(@ V)V € V,} # {Outseq(Walk(j, V)|V € V,}
for every state s, # s,

We describe the method for |C| = 2. Let € = {Cy,C2}. In order to identify
the states an identifving sequence [, for each state s, is computed using its 1S set
Vi. Suppose V, = {C,}(j =1 or 2) fcr a state s,. where 1 <7 < n. Then [, = (|

is an identifving sequence for s, and it is called an identifying sequence of first

3

order. On the other hand, if V, = {(',.(,} then an identifying sequence of
second order is computed as follows. As defined carlier, T'(1.j) is the transfer
sequence which takes the SPEC from s, to s,. Let g, and r, denote the states of the
SPEC after Cy and (3 respectively are applied at s,. That is, ¢, = Tail(1,0"y) and
r, = Tail(i.(y), 1 = 1.2,....n. Suppose 8 states respond to ('y in the same way
as &,. Then the C-method uses the sequence I, = [Cy Inscq(T(q,, 1))]C, as the
identifying sequence for s, [IKRK74]. The reason for applyving 3+ I-times the sequence
Cy Inscq(T (g, 1)) is to assure that the IUT is in the same state corresponding to s,
before an application of ("y and the application of (",. Let €°(2) = Walk(a. 1)) and
p. = Tail(i.). for i = 1,2,....n. The following description of the Comethod s
applicable even if |C] > 2 provided V, is a singleton subset of C for all o = 1,2, 0.
In this case. the unigue element in YV, becomes [, for all ¢ = 1,200,000 Similar to the
D-method. this method can also be divided into two phases: state verification phase
and the transition testing phase. The test sequence for the state verification phase

corresponds to the walk given below.
(1) T(p,2) C2) T(p23) C@3) ... Cla—=1) T{pu=y,n) C(n).

In the transition testing phase cach transition of the SPEC is tested, The test
sequience corresponding to a transition, say (s,, 5,1 @/o) consists of (i) a sequence along
a path required to put the IUT in state s, and confirming it, (ii) the input symbol
of the transition under test. and (iii) a sequence for identifying the tail state s,. For
more details on the (-method, [KRK74, Koh78] may be consulted.

We next analyze the fault coverage and the 1-fault resolution capability of the
(-method. We claim that the C-method does not have complete fault coverage.
We demonstrate this using the fictitious protocol SPE(C" and its implementation 17
shown in Figure 3.2. The same example has been used in [CVI8Y] for analyzing the
fanlt coverage of the U-method. Let (') = aa and (', = ba. Clearly. C = {(/;. ("} is a

CS set. Also. I} = [, = Cy and Iy = (/4. The test sequence for the state verification

74

b/1
al0 a/l

SPEC IuT
Figure 3.2: Protocol passed by the C-method

Test sequence aaaaabbaaaabbaanaaaaaabbaaaaaaaaaaaabbabbabaaabbaaabbaa
Expected output sequence: 1010111101011101010101111010101010101111111001111011110.

phase is aaaaabba. The corresponding expected vutput sequence is 10101111, Sub-
sequences for testing the transitions (sy.sp5a/1). (82,835 0/1). (82, s1:a/0), (81, 53: 0/1).
(sa.5,0a/0), and (3, 81:0/1) in that order are aaabbaaaaa. vaaabba. aaaaaaa, aaaabba.
bhabaaa. and bbaaabbaa, respectively. Thus, the test sequence generated and the ex-
pected output sequence are given below.

The above test sequence passes the IUT given in Figure 2.2. However, the transition
(510033 0/1) has a tail state fault in the IUT. Observe that though /3 is an identify-
ing sequence of sy in the SPEC, it is not an identifying sequence for s3 in the IUT
(responses for I3 at both s; and s3 in the IUT are identical).

Suppose that the IUTs of a SPEC are known to have at most one fault. The
fact that an IUT fails while testing the transition (s,,s,;a/0) using the test sub-

sequence along T'EST(s,,8,:a/0) does not necessarily imply that a transition in

~1
<t

t4:a/1

19:x/0

tio:y/0
t8:a/1

Figure 3.3: Illustration of the 1-fault resolution capability of the (-method

TEST (s.5,;a/0) is faulty. In fact the fault could be in any of the transitions tra-
versed by the test sequence up to the point when the IUT failed. We illustrate this
using the SPEC and its IUT as shown in Figure 3.3, Let C = {7y, (", Cy}, where
Cy = ra.Cy = ray. and (3 = ay. Clearly,Cis a CS set and [, = (', for | <i <
and Iy = (5. It is easy to see that p; = ps = 3 and py = py = 2. Let us take
T(p1,4) =19 t3 15, T (p2,4) = t5,T(p3,2) = t9 13, and T'(pg, 1) = 5 16. The walk
traversed for the state identification phase, test subsequence 175, and the oxpected
output sequence are given below.
Walk for ITS = (1) C(3) T(ps,2) C(2) T'(p2,4) C(4)
T(ps, 1) C(1) T(p1,4) 0(4) T'(pa, 1).
ITS =zaayry zay r ay za Ta Tyr ay ra.

Expected output sequence =01 10 00 000 0 00 00 01 000 00 00.
Let PT'S be the concatenation of the subsequences along TEST (s, ;¢ /0).

TEST (sg, s2;a/1), TEST(s2,84;x/0), and TEST(s4,5,;a/0) in that order. These

subsequences are defined in the following.

76

TEST (s1,92:a/0) =11 C(2).
Input sequence = a ray.
Expected output sequence =0 000.
TEST(sy,s05a/1) =C(2) 4 C(2).
Input sequence = ray ¢ ray.
Expected output sequence = 000 1 000.
TEST (s2,04;0/0) = C(2) 15 C(4).
Input sequence = ray r ay.
Expected output sequence = 000 0 00.
TEST(s4.5:a/0) =T(p,.4) C(4) C(2) T(p:.4) t6 C(1).
luput sequence =r ay ray r a ra.

Expected output sequence =000 000 00 01.

Clearly PT'S is a prefix of a test subsequence obtained in the transition testing phase.
It can be verified that the IUT passes the test subsequence ITS. If we apply PTS
to the 10T, after applying the ITS. the output observed from the IUT is the same
as expected one but for the last input symbol a which lies in the test subsequence for
16 = (54,515 a/0). When the last input symbol a is applied. the IUT gives the output
0 instead of the expected output I. One could suspect that one of the transitions in
T'EST(s4.51:a/0) is faulty. However, the actual fault is at the transition (sy,s2: a/0),
which is tested at the initial part of PTS. From this we conclude that even if the
C-method detects the fault, locating the fault using the test sequence generated by

this method is dificult. Thus we conclude that the C-method has 1-fault resolution

E|.

capability of level

-1
-1

In the following lemma we present our result on the I-fault resolution capability
of the C-method under a requirement on the state verification phase. We consider
only the interesting case of all the identifying sequences being of order at most 2. Test
sequences generated using the C-method for a SPEC having a S set of cardinality
more than two are in general very long and Kohavi suggests the use of some alternative

methods [KL67, KRK74].

Lemma 3.2 Assume that thc IUT has at most one faull. The C-nethod, in general,
has 1-fault resolution capability of level |E|. Supposc that the suceess of the stale
verification phasc ensurcs that the identifying sequence I, of cach state in the SPEC
1> also an idenlifying scquenee of the corresponding state in the U'T and that the
fault is detected i the transition testing phase. Thon the C-mecthod diagnoses < fault
to within (3 + 3)(l. + n — 1) + 1 transitions. Here, C = {(', Oy} is the 85 set of
the SPEC, 3 is the marimum number of states cxhibiting the same response while

applying Cy al thosc statcs and I, is the maconum length of a chavacterizing sequence

inC.

Proof:

The first part of the lemma directly follows from the above discussion. Let
W, denote Walk(i,(?)), 1 €7 <n.l £ j <20 Suppose that the TUT fails in the
second phase while testing the transition { = (s,,5,,a/0) using the sequence along,
TEST(s,,8,,af0) . Let s, be the state of the IUT bhefore applying this sequence.
Let t' = (sg,50;0/0') be the last transition tested and s; be the state of the IUT
before applying the sequence T'EST (s,,s1;0/0"). Let us assume that the identifying,

sequences for s,,s,, Sk, Sg, 85 and sy are of second order. Clearly,

TEST(s,,5,,a/0) = C(k) T(peyi) Wa Tlqn k) C(k) T(pr,i) Wz T(r, k)

Ck) T(pr-i) t Wiy T(q, k) C(k) Tpiyi) t Wy
We know that Iy = [C) Inseq(T(q, k)" o I an unexpected output is

observed in the IUT while applying the sequence along the first instance of C'(k) in the

78

above walk, then one of the transitions along the walk C(f) T(py, g) t' Wi, is faulty.
Note that C(f) T'(ps,g) t' Wi is a suffix of TEST (s, 4;b/0"). As the maximum
length of any identifying sequence and any transfer sequence are (F+2)l.+(5+1)(n~1)
and n — 1, respectively, the fanlt can be localized within 1+ (84 3)l. + (84 2)(n—1)
transitions. However, if the first unexpected output corresponds to T'(pi,7) Wiy of
T EST(s,,s;,a/0) , then one of the transitions in C(k) or in T(pg,1) is faulty. Thus.
the fault is localized within (4 + 2)({. + n — 1) transitions. If the first mismatch
between the expected output and the observed output is found while applying the
first. occurrence of T(q,. &) then it can be concluded that one of the transitions in
C'(k), T(pkyi)y, Wa and T'(q,, k) is faulty. Proceeding this way, it is easy to see
that if the first unexpected output is observed while applying the sequence T(q,. k).
then the fanlty transition is either (s,, s,.a/0), or one among the transitions in C(k).
T'(pyi), Wy, and T(q,, k). Thus the fault is localized within (8 +3)({. +n—1)+1
trausitions. Similarly in all the instances of frst output mismatch while applyving the
sequence along T'EST (s,,s,,a/0), it can be shown that the fault is localized within

(/4 3)({. 4+ n —=1)+1 transitions.

3.1.3 W-method

In [ChoT78] Chow proposed the W-method for testing the control structure of software
designs modeled by FSMs. In recent years, this method has been wid-ly applied for
generating test sequences for protocol testing [SL89, FBK*91]. In this method, it is
assumed that the protocol specification (SPEC) and its implementation (1UT) are
strongly connected, minimal, completely specified and they accept the same input
set, say 1. The method also assumes that the SPE(' has reset capability which is
correctly implemented in the IUT. The IUT is allowed to have any number of states

bounded by a finite estimate.

7

For state verification purposes the W-method uses a S set of the TUT. It
provides a scheme for obtaining a S set of the IUT from a 'S set of the SPEC.
Given two sets of input sequences A and B, its concatenation AB is delined as
AB={a@b|a€e ANDE B}. By A" we denote the concatenation of A 7 times
for any non-negative integer 1. A% is the empty sequence . Let 1[j] denote the
set of all possible input sequences of length at most . for some integer j. Clearly
I} ={qulTulPu...ullifj>0. I[j]is {¢}if J < 0. Let C bea C8 set of
the SPEC. Let n and ' denote the number of states in the SPEC and an upper
bound on the number of states in the IUT, respectively. 1t is proved in [(‘ho78] that
W= TI[n"—=n] Cisa (S set for any fault free IUT. In order to confirm a state in the
IUT. the W-method applies all the sequences from W oat that state,

A directed spanning tree rooted at the initial state is used for reaching any state
from the initial state. We refer to this tree as a state cover tree. lLet IV denote
the unique path in a state cover tree T from the initial state to a given state s, for
1= 1,2.....n. Reset transitions are traversed for putting the SPEC or the TUT into
the initial state from any given state. Thus. P for 0 = 12000000 and 2 oare the
only transfer paths considered in this wiethod. The set TEST (s, s,,a/0) of walks
for testing a given transition { = (s,.5,,a/0) is obtained using reset transitions, /.
(.55 afo). and W. That is. TEST (s,.s,,afo) = {r Pt Walk(j. W) | W ¢ W},
The required test sequence is an arbitrary concatenation of the test subsequences for
all the transitions in the SPEC.

The W-method assures complete fault coverage {Cho78]. Let us compare this
method with the C-method. When 2/ < n, W is nothing but C. In this case the
W-method applies every sequence in C at a given state s, for identifying it in the
IUT. However, the C-method only applies an IS set V, - a subset of C - for identifying
s, in the IUT. This is the key difference between the C-method and the W-method.
This difference and the reliable reset capability together make the W-method detect

any fault in the JUT, while the ("-method does not have such a capability.

80

Lemma 3.3 provides the -fault resolution capability of the W-method.

Lemma 3.3 [f an I1'T has at most one fault, thon the Womethod always locates the
fault to withm n + 1. transitions, where 1o is the length of a longest characterizing

sequence gencrated i the W-method.

Proof

Suppose the TUT fails while testing the transition 1 = (s,,8,:0/0) using a se-
gquence from TEST (s, 8,:a/o). More specifically et v Pt Walk(y, C), for some
(' € C be the sequence in T'EST(s,.s,:a/0) for which the TUT produces an output
sequence different from the expected one. Sinee the TUT is known to be in the initial
state after applying ‘v, it follows that either the fanlt is at 1. orin any ol the tran
sitious i the path Poor in Walk(y. (') . Thos we conclude that the Womethod has

the I-fault resolution capability of level n 41 L if the TUT has at most n states,
L)

The 1-fanlt resolution capability level of the Wamethod can he rewritten as
I 4+ d + . where d is the depth of the state cover tree. Therefore by minimizing
the depth of the tree one can improve the 1-fanlt resolution capability. 1t is worth
mentioning that the reliable reset capability assumption on the SPEC and the U]
lias a significant role in diagnosing the fault to within o 4/, transitions. It is known
that every minimal machine with n states has a CS set C of cardinality at most 1~ 1,
where the maxiinal length of a characterizing sequence in € is n— 1 [Koh78]. In sucly
a case the level of I-fault resolution capability reduces to 2n — 1. Further localization

of the fault could be achieved by applying additional test sequences to the TUT,

3.1.4 Transition Tour Method

The transition tour methoa (T-method. in short) [N'T81] assumes that the SPEC s

completely specified. The test sequence is generated based on a minimal travsition

81

tomr which traverses cach transition in the SPEC at least once. Here the test subse-
quence for a transition is stmp.y its input. This method generates a test sequence of
the shortest fength among all the methods discussed in this chapter. The T-method
neither has a state verification phase nor does it verify the interinediate states in the
[T as it traverses the transitions. Hence the method does not have the capability
of deteeting transfer faults [DSU90h, SL89]. For the same reason this method cannot
diagnose fanlts in the IUT with transfer faults even if 1t certifies the T1UT as faulty.
In the worst case, the 1-fault resolution capability level of the T-method is |E]. where

2] is the number of transitions in the SPEC,

3.1.5 UIS-Based Methods

We itst analyze the favlt detection and diagnosis capabilities of the U-method de-
seribed in Section 2.2.1. Although the fault coverage of this method is better than
the T-method. it does not provide complete fault coverage [('VI89]. Let U, be an UIS
of state s, 1 <0 <. Let £7(z) denote the walk from s, with the input sequence (.
That is. U(e) = Walk(0.17,). As defined in Section 2.1, the set & = {1, U,. L.}
is referred to as an UIS set. Note that it is also a CS set for the SPEC. Thus. this
method is similar to the (-method. However, while the (-method confirms the start-
ing state of the transition before testing the transition, the U-method does not. Also
the U-method does not have a state verification phase. Hence we conclude that the
fault coverage of this method cannot be better than the D-, (-, or W-methods. We
observe that the fault resolution capability of this method is affected due to the fol-
lowing reasons. While applying the UlSs | or transferring the IUT {-01n one state to
another state using transfer sequences, it might traverse transitions which have not
vet been tested. As the method does not have a state verification phase, UIS of a
state in the SPEC may not be an ULS of the corresponding state in the 1UT.

For example, consider the SPE(C and an [UT of an abstract protocol shown in

Figure 3.1, The reset transitions are not shown explicitly in the figure.

82

tS:b/1

t2:h/0 th:a/l t2:b/0

(st

td:a/0
t6:2/0
t3:¢/1

£5:b/1 17:¢/1

SPEC Iyt

(reset transitions are not shown explicitly)

Figure 3.4: An Example for the U-methiad

The VISs of the states sy spsg are Uy = bo Uy = boand Uy = ¢b respeetively.
An optimal test sequence generated using the U-method is the concatenation of the

following subsequences in that order (from left to right).

TEST(sy, s5i0/1) = t3al"(3) TEST(s1, 51:6/0) = 120 17(1)
TEST(s1.50.0/1) = thal’(2) TEST(s5. 51.¢/1) =T(1,3)aTal (1)

TEST(s5.50:b/1) =T(1.2)at500° (1) TEST(s2. %, a/0) =T(1.2)a14al’(1)
TEST(s3. s2.0/0) =T(1.3)at6al’(2) TEST(s).sp:0/=) = ral’(])
TEST(sy.s1:0/=) =T(1.2)aral’(1) TEST(sy s1.0/=) =F(1.8)eral’(1)
T(1.1)
Here, T(1.2) = {1 . T(1,3) = 13, and T(1,1) = r. The test sequence('I'S) and

the expected output sequence (0OS) are given by

TS= ccbbbabeebabbaabeabrbarbe rbr
OS=1100011110110100101-01-01-0-.

Though the test gives the fail verdict to the IUT as intended. it does not localize the

fault. One could be misled to conclude that the fault is in the transition corresponding

&3

Lo (s9.51:¢/1) of the SPEC since the IUT fails while testing this transition with the
sequence along TEST(s3.515¢/1). However, it is the transition (s;.5;0/1) of the
SPEC that has a tail state fault in the IUT. Thus we conclude that the U-method
has 1-fault resolution capability of level only |E|.

Since the traversal of transitions and UlSs in the MU-method as well as our G-
mcthod which are presented in Section 2.2.2 and Section 2.5.1. respectively, is similar
to that of the U-method. the fault detection and the I-fault diagnosis capability of

these methods are similar to the U-method.

Improved UIS Method

As its name suggests, the improved UIS method (in short. the Uv-metliod) is an
improvement over the original UIS-based method as described in [SD88]. The im-
provement is suggested by Chan o ol [CVIS9]. The Uv-method assumes that both
the SPEC and the TUT are completely specified and strongly connected. Each state
in the SPEC is assmined to have an UIS. Let U = {U;. U,..... Uy} be an UIS set of
the SPEC, where U, is an UIS of &,. 1 <7 < n. It further assumes that the SPEC and
the TUT have the reset capability. The method consists of two phases: UIS verifica-
tion phase and transition testing phase. In the UIS verification phase, the metliod
checks whether the selected UlSs of the states of the SPEC are also UISs of the cor-
responding states in the IUT. This could be done by verifying the output sequence
produced by the IUT for every UIS in & when the IUT is in s, for 7 = 1,2,...n.
Though Chan e? al have suggested the need for verifying the UlSs in the IUT, they
do not provide any method for achieving this requirement. In the transition testing
phase, all transitions are tested as in the UlS-based method as described in [SD88].
Here, TEST (s,,s,;af/0) = v P(i) t U(7) is the subsequence for testing the transition
(8,.8,5a/0), where P(i) is a shortest path from sy to s; and U(j) is the walk from s,
with input sequence U,.

The Uv-method is known to have complete fault coverage [CVI89]. In the

84

following theorem we analyze the [-fault resolution capability of this method.

Lemma 3.4 Suppose that the [UTs have at most one fault. Then the Uv-method has
I-fault resolution capability of lecel n + 1, wherc n is the number of states m the
SPLEC and U, is the length of a longest sequence an the UIS sct {U Uy o0 Uy} used
by the method. Here U, is the UIS of the stale s, 1= 1,2...., n. Supposc that the
successful completion of the first phasc ensuves that U, s also an ULS of the state
the 1UT corresponding to s, for cach state s, m the SPEC, then the Uv-method locate s
the fault eractly.

Proof:

The proof of the first part of this lemma is omitted sinee it is similar to that of
Lemma 3.3.

We now show that the Uv-method has the capability of locating, the fault exactly
if the successful completion of the first phase implies that U, is also an UIS of the state
in the IUT corresponding to s, for each state s, in the SPEC. Assume that the second
phase fails while testing tranisiton 1 = (s,,5,5a/0) with the sequence » P(i) £ U()).
Here (1) is a shortest path from s; to s,. Note that (i) is used in the first phase
while verifying if [, is an UIS of the state in the [UT which is reached when inpnt
sequence along P(i) is applied to the IUT at its initial state. Recall that {7()) is
the walk at s; with the input sequence U;. We claim that P(7) puts the IUT at the
state corresponding to s,. For, if P(7) puts the IUT in some state which does not
correspond to s, then, as per the first phase and our assumption, {/, is an UIS of a
state which does not correspond to s,. This is a contradiction. It follows that ¢ is the

unique faulty transition.
O

It is known that the Uv-method has complete fault coverage. We observe that
the complete fault coverage property cannot be gaaranteed if one uses the rural poster-

son optimization technique as described in [ADLUSS] in the transition testing phase

12:¢/0 t7:b/1

‘4\ t4:a4/0

16:a/0)

SPEC ' IUT

State cover tree for the SPEC

Figure 3.5: Protocol passed by the Uv-method

of the Uv-method. Consider the SPEC and an TUT of an abstract protocol shown
in Figure 3.5, The reset transitions are not shown explicitly in the figure. The tran-
sition (s3.84:a/0) has a transfer fault in the TUT. Observe that for hoth the SPEC
and its IUT, 'y = eb. Uy = ba.l'y = e, and Uy = b are UlSs of the states s, 85,84,
and s4. respectively. If the paths along the state cover tree T shown in Figure 3.5
and the reset trausitions only are used as transfer sequences in the UIS verification
phase. then the TUT passes this phase. The test sequence generated in the transition
testing phase is the concatenation of the tost subsequences for the transitions and the

transfer sequences, as given helow.

TEST (s1.00:b/0)aT(L3) 0T EST (s 4. sq:a/0) 0 T(1L3) 0T EST sy s010/1) 0
T A OTEST (s oot b/ 1 aT(L) OTEST (syspaJ0)aT (1, 1)
TEST (sgoope/0) QT EST (sy. 040 ¢/0)0T(1.2ya T EST (55, 54 bJ0).

Here, T(1.4) = £2.T(1L3) = (8. T(1.3) = 1248, and T(1.2) = (1. The resulting,
test sequence (TS) which passes the fanlty TUT and the expected output sequence

{OS) are given below.

TS=bbacabeeechebebeabeeeebbbe,

05=00000100101010100100101001.

The Uv-method is ¢imilar to the C-method. However, in the first phase, while the
C-method confirms the state by applying sequences from the IS set of cach state at
that state, the Uv-method applies all the UISs from an UIS set. Unlike the C-method
the Uv-method assumes that the SPEC and the TUT have the reset capability.

In the following we demonstrate that the 1-fault resolution capability of the
Uv-method will be affected if one uses the rural postperson optimization technigue
in the transition testing phase. As in the U-method. the Uv-methiod may use some

transitions for putting the JUT in the starting state of the transition under test. Such

87

t1:a/0

t2:b/0

(reset transitions are not shown explicitly)

Figure 3.6: An Example for the Uv-method

transitions constitute a preamble for the transition under test. This preamble may
contain fanlty transitions which are vet to be tested. Also. some of the transitions
which constitute the UIS of the tail state of the transition under test may be faulty.
In other words, even if the TUT passes the first phase, the state of the SPEC after
applying an UIS. say, [, at state s, need not correspond to the state of the 1U'T
after applying {7, at the state of the IUT correspouding to s,. Therefore, if one uses

the rural postperson optimization technique in the transition testing phase of the

Uv method then its level of 1-fault resolution capability becomes [E|. For example,
consider the SPEC" and the IUT of an abstract protocol shown in Figure 3.6. The
reset transitions are not shown explicitly in the figure.)} = a, U; = q, Us = ¢, and
Uiy = ¢ are the UlSs of sy.89,83. and s4 in the SPEC as well as the JUT.

Observe that the UIS of each state in the SPEC is also an UIS of the cor-
responding state in the IUT. It can be easily seen that if one uses the transitions
(s1.82:a/0), (s1,54:0/0), and (s4, 835 a/2) and reset transitions to reach different states

for verifving the UIS, then the IUT passes the UIS verification phase successfully. It

15 a simple exercise 1o check that an optimal test sequence generated in transition

~
o

Z
&

testing phase is the conecatenation of the following subsequences in that order (from

left to right). Note that {'(1) = Walk(:,U) .1 <0 <AL

TEST(s1,54;6/0) = 1200'(4) TEST (54, 51.¢/0) = (8al’(4)
TEST (54, 53,0/2) = 160l (3) TEST (53, 53,¢/1) = (hal’(3)
TEST(s1,82:a/0) =T(3, 1aflal(2) TEST(s3.51:b/1) = t4al'(1)

TEST (s2,s3,0/1) = t3al"(3) TEST (4, 00:0/1) =T(3, 4) 0t Tl " (2)
T(3.1).

Here, T(3.1) = #4, and T(3,4) = {4 t2. The resulting test sequence (TS) and

the expected output sequence (OS) are given below

TS=beccacecbaabaachbbalb,

0OS=000021 1101101110111,

Though the IUT fails while testing the transition corresponding to £ = (sg.8100/1),
this transition is fault-free in the IUT. Actually, the transition t3 = (s, s5a/1) of
the SPEC has a transfer fault in the TUT. In order to make the illustration simple
the test subsequences corresponding te the raset transitions are omitted. We would
like to note that one can modify the SPEC and the IUT to be completely specified

using the completeness assumption and the above result is still vaiid.

3.1.6 Wp-method

The Wp-method introduced by Fujiwara ¢f al [FBK*91] is based on the W-methaod.
The Wp-method assumes that the SPEC is strongly connected, minimal, and com-
pletely specified. The SPEC and the IUT have reset capability and same input set.
It further assumes a finite upper bound, say, n’ on the number of states of the TUT.
Let C be a CS set of the SPEC. Let V, C C be an IS set of the state s, in the SPEC
for each state s,. As discussed in the W-method, W = I{n' — 1] C is a CS set of
correct implementations which have at most n’ states. Clearly, in such correet imple-
mentations, W, = I{n’ — n] V, is the 1S set of the states corresponding to each state

s, of the SPEC.

89

The Wp-method consists of two phases: state verification phase and transition
testing phase. The first phase is mainly to verify whether Wois a C'S set of the IUT.
This is done by applying every sequence in W at each state in the JUT. Paths m a
state cover tree, say T', and the reset transitions are used for putting the IUT in each
state for applying sequences from W. As a result, all the transitions in the state cover
tree T are also tested by the cad of this phase,

It is claimed in [FBK*9I] that if an IUT passes the state verification phase.

then
Cl:all transitions in T are implemented correetly in the 1UT,

'2: W, is an IS set for the states in the 1UT corresponding to the state s, of the

SPEC.

In the transition testing phase all the transitions of the SPEC which are not in
the state cover tree T arve tested. Transitions in T are not tested here, as it is done
in the first phase itself. Reset transitions and paths in a state cover tree, say 7, are
used for putting the TUT in the starting state of the transition under test. In order
to confirm the tail state of a given transition, say. (s,.s,;a/0) € E — T in the IUT.
cach sequence from the IS set W is applied at the tail state. Here, E denotes the set
of all trausitions in the SPEC.

Clearly, the Wp-method is an improvement over the W-method. Note that the
aim of the first phase of the Wp-method is to assure that W, is an 1S set of the state
in the TUT corresponding to s, for j = 1,2,...n. As a result in the second phasc
the tail state of the transition { = (s,,s,:a/0) in the IUT is confirmed by applying
the sequences from W, in the current state after traversing {, instead of applying
the whole (S set W. this is the main difference between the W-method and the
Wp-method. Thus the length of the test sequence generated by the Wp-method is
always less than or equal to the one generated by the W-method. The Wp-method

also assures complete fault coverage [FBK¥91].

90

tl:a/0 \/0

12: h/(l

° t25:b/1

t17:x/0

© @

Figure 3.7: State cover tree of the SPEC given in Figure 3.1(a)

t6:c/0

We now analyze the I-fault resolution capability of this method. We observe
that claims ('l and ("2 need not always be true for IUTs passiug the state verification
phase successfully. We demonstrate this on an abstract protocol whose SPEC and
IUT are given in Figure 3.1. Reset transitions are not shown explicitly in this fignre.
Here, the SPEC and the TUT have the same number of states, i.e., 0’ = u. Clearly,
C' = {arbrer} is a 'S set of the SPEC. Since m =n, we have W = (", and W, = W',
for I <7< 8. The state cover tree T used in testing is shown in Figure 3.7. With
state cover tree T and the ('S set U the TUT passes the state verification phase,
In the transition testing phase, transition (8 = (s, $5;0/0) is tested using the inpnt
sequence along TEST (s3.85;0/0). This test subsequence, its expected output and

the output given by the IUT are given bilow:

TEST (s3.55;0/0) =1r P19 Walk(5,arbr.r)
Input sequence =rrcbarbrue
Expected output sequence =-00012101
Observed output sequence =-00020000

Using the clair: C'1 one could conclude that the transition 19 = (s, 55;6/0) has

91

a transfor fanlt, and its fanlty tail state in the 1UT is s5. However. this transition is
fault-free in the TUT. The actual fanlt is at the transition t3 = (s;.s2:0/0). Though
the IUT passes the fiest phase. the state cover tree transition (sy, 8,3 2/0) has a transfer
fault i the TUT. Also, though W, = Wy = W is an 1S set for states s, and s
in the 10T, the output sequences obtained while applying W on these states are.
respectively, different from the ontput sequences obtained while applying 117 at s, and
sy of the SPEC, That is. the claim C2 is not valid for this IUT. In fact the responses
for W at s, and sy of the TUT is the permutation of the respective responses in the
SPEC. The level of 1-fault resolution capability of the Wp-method is presented in the

following lemma.,

Lemma 3.5 Supposc that the 1'Ts have at most one faull. Then the Wp-nicthod
has 1-fault resolution capability of level w+ 1, where n is the numbcr of states
the SPEC and 1. is the length of a longest sequenee in C{= W). Suppose that the
successful complchion of the first phase ensures that the IS sel V(= W,) is also an 1S
sel of the state i the 1UT corvesponding to s, for each state s, in the SPEC, then the

Wp-mecthod locates the faull cractly.

Proof:

The proof of the {irst part of this lemma is similar to that of Lemma 3.3. Suppose
that the [UT fails in the first phase while verifying the ('S set W at the state, say s,.
More specifically, if the eutput sequence correspunding to the input sequence along,
the walk » P, Walk(:. W) for some W € W is not the same as the expected one. then
the fault can be in any of the transitions in P, Walk{:, W).

On the other hand. if the TUT fails in the second phase, while testing a transi-
tion, say, t = (s,.8,1a/0), with a sequence, say, r P, t Walk(j, W) for some W € W,,
then any of the transitions in P, t Walk(j3, W) could be faulty.

In both the cases, the set of such transitions within which the faulty one lies
has cardinality at most n 41, . Thus the Wp-method has 1-fault resolution capability

of level n + 1.

92

Suppose that the successful completion of the first phase implies that the 15 set
V(= W,) is also an 18 set of the state in the TUT corresponding, to s, tor cach state
s, in the SPEC. It is easy to prove that all the transitions in the state cover tree [
are also fault free provided each state s, in the SPEC is selected for applying € in a
breadth first fashion along 7', Suppose phase 2 fails while testing the transition, say.
{ = (8,5,;a,/0). with the sequence along » P ¢ Walk(e, W) for some W0 W0 Ay
the transitions along P, are known to he correctly imp' mented, there would not be

any mismatch if £ is fault free. Therefore tis the unigue faulty transition.

Although the Wp-method. in general. provides a shorter test sequence than
the W-method, its fault resolution capability is the same as that of the Wanethad.
The 1-fault resolution capability of the Wp-method can he improved by mininnzing
the depth of the state cover tree. This is also the case with the Weamethod, A
noted in the W-method, if rne considers a ('S set C of cardinality v — 1 ju which cach
characterizing sequence is of length at most n— 1,1t can be deduced that Wp methad
has 1-fault resolution capability of level 20 — 1. Moreover, the fault can be located
exactly if the success of the first phase implies that the IS set of a state in the SPEC
is also an IS set of the corresponding state of the TUT and if tne IUT fails in the
sccond phase. The Wp-method is improved in Chapter 4 so that the two propertios
(Claims C'1 and ('2) claimed in [FBK*91] for this method hold ou the snceessiul

completion of the first phase of the proposed methods.

3.2 Comparison of Test Sequence Generation Meth-

ods

In this section we compare test sequence generation methods hased on their fanic de

tection and diagnosis capabilities, and the length of the test sequences they generate.

93

3.2.1 Fault Coverage and Diagnosis

Among all the methods discussed in Section 3.1, only the D-. the W-, the Uv. and
the Wp- methods provide complete fault coverage. Since the T-method does not
verify the intermediate states as it traverses the transitions, the fault coverage of
this method is less than that of all state identification based methods, those which
use state identification sequences. Among the state identification based methods, the
fault coverages of the C- and the U-methods are less than that of the state verification
based methods, namely the D-, the W-, the Uv- and the Wp- methods. Comparing
the (- and U- methods. the (C-method has at least the same fault coverage as the
U-method, since the C-method checks the tail states of transfer sequences while the
U-method does not. A partial ordering among the fault coverages of the test sequence
generation methods is summarized helow. Here, F(X) denotes the fault coverage of

the method X,
F(T) < FU') < F(C) < F(D) = F(W) = F(liv) = F(Wp)

In general, the W-, the Uv- and the Wp-methods have the best 1-fault resolution
capabilities among the known methods. Consider the D-. the Uv- and the Wp-
methods. They have a separate state verification phase. Suppose that these methods
somehow guarantee that the sequences used for identifying the states are also the
identifying sequences of the corresponding states in the IUT on successful completion
of the state verification phase. From Lemma 3.1, 3.4 and 3.5, we know that (i) the
D-method localizes the fanlt within I+ n — 1 and (ii) the Uv- and the Wp-methods
localizes the fault exactly. Here, [; is the length of the distinguishing sequence used
in the D-method. The known upper bound for [, is (n — 1)n™. Therefore, if FRL(X)
denote the worst case bound on the level of 1-fault resolution capability of the method
X under the condition stated above, wheie X is one of D-, Uv-, and Wp- methods,
then

FRL(D) > FRL(Uv) = FRL(Wp).

94

3.2.2 Length of Test Sequences Generated

In general. the lengths of test sequences generated using the T-method are always
less than those of the sequences generated using state identification based methods.
The test sequences are even longer if the sequences used for identifying, the states are
also verified in the IUT. In order to compare the lengths, we assume that the same
UIS set is used in both the U and Uv methods. The ('S set for each of (', W and
Wp methods is the UIS set selected for the U-method. It is also assumed that the
number of states of the IUT is no more than the the number of states of the SPEC.
Suppose L(.X) denote the length of a test sequence generated in method X, Then,
the order among the lengths of test sequences generated nsing the various methods

is as given below.
L(T)< LUy < L(Uv). LIUY S L(Wp) < L(W)oand L) < L(C").

As noted in [Ura92]. the upper bound on the length of the test sequences generated
in the D-method is the longest among all the methods discussed in this chapter,
However. in practice it is the least among the sequences generated using the W-,

Wp-. Uv-, and C-methods.

3.3 Summary

In this chapter, we have surveyed different methods for generating test sequences
for testing communication protocols based on the FSM model. Fault coverage of
each method, if available in the literature, is also reviewed. We have demonstrated
that complete fault coverage cannot be guaranteed if one applies the rural postperson
optimization technique in the transition testing phase of the Uv-method. We have also
shown that the C-method does not have complete fault coverage. With a single fault
assumption, all the FSM based methods are formally analyzed to see if they can he

used for diagnosing the fault in an implementation. The levels of 1-fault resolution

95

capabilities derived for these methods demonstrate that the W-, the Uv- and the
Wp-methods are the best ones for diagnosing the fault to within a few transitions.
A comparison of the test sequence generation methods is made based on the fault
coverage, 1-fault diagnosis capability and the length of test sequences they generate.

In all the test sequence generation methods discussed in this chapter, the test
subsequence for testing a transition is, in general, the concatenation of a preamble.
input of the transition under test, state identification sequence of the tail state of
the transition under test, and a postamble. For the purpose of optimization, in some
of the methods certain subsequences may be overlapped or omitted . Thus a test
sequence generation method will have better fault resolution capability if the method
confirms the correctness of the following transitions prior to the testing of a given

transition:
(1) Transitions in the preamble of the transition under test.

(1) Transitions along the sequence for identifying the tail state of the transition

under test.
(1i1) Transitions in the postamble of the cransition under test.

As we have pointed out. test sequence generation methods considered in this chapter
meet this requirement only partially. Attempts to meet these requirements lead to
new test generation methods with improved 1-fault resolution capabilities. These
methods are discussed in the following chapter.

The work presented in this chapter has been reported in [RDT93, RDTa].

96

Chapter 4

FAULT DIAGNOSIS METHODS

As pointed out in Chapter 3. some of the desirable properties for fault diagnosis do
not always hold for the existing test case generation methods. In this chapter, we
propose two test sequence generation methods for diagnosing faults with respect to
the fault model defined in Section 1.2.1. The specification and an implementation
are represented as FSMs, denoted by SPEC and 1UT, respectively, which accept the
same set of inputs. We assume that the SPEC is strongly connected and minimal.
The completeness assumption is used for treating the given SPEC and the TUT as
being completely specified. We further assume that the SPEC has a cyclie UIS - an
UIS for a state whose corresponding walk at the state is a cycle - for the initial state
which is also a cyclic UIS for the initial state of the TUT. In our opinion, this is casioer
to achieve in practice than the usual reset capability, For example, the SPEC and the
IUT have a self-loop transition with “state/initial” label for their initial state only.
We assume that the IUT has at most one output or transfer fault and that the 1UT
is in the initial state before the testing commences. Note that the number of states
in the IUT is the same as the number of states in the SPEC.

Both our diagnosis methods are based on the Wp-method [FBK*91]. Our first
method is called the UIDD-method and it uses an UIS set (refer to Section 2.1)

for identifying the .ail states of transitions. This method provides superior 1-fault

97

diagnosis capability than all the UlIS-hased test generation methods analyzed in Chap-
ter 3. Also by incorporating the rural postperson optimization technique of Aho ¢t
al [ADLUSS] and the heuristic algorithms for the generalized RPP developed in Sec-
tion 2.4, the UIDD-method minimizes the length of the test sequence generated. This
method requires an UIS set and a state cover tree satisfying the Tree UIS Set Dis-
joint (TUISD) property (defined later). It should be noted that there may exist
some protocols which may not have an UIS set and a state cover tree with the required
property. As reported in Section 4.6, all the real life protocols we have analyzed so
far do satisfy this requirement.

Our second diagnosis method, called the CSDD-method, uses a 'S set as defined
in Section 3.1.2, instead of an UIS set as in the first method. While there may exist
some minimum SPECs without an UIS set, all such SPEC's do have a CS set. This
method provides better 1-fault resolution capability than the Wp-method by carofully
selecting the O'S set and the state cover tree.

Our UIDD-method is presented in Section 4.1. In Section 4.2, we present an
algorithm for computing an UIS set and a state cover tree with the TUISD property.
This method is illustrated in Section 4.3. The CSDD-method is described in Sec-
tion 4.4. An approach for exactly locating the fault or improving the fault resolution
capability of the above methods is presented in Section 4.5. Unless otherwise stated,

a tour in this chapter usually refers to one starting and ending at the initial state.

4.1 UIDD-method

Apart from the assumptions stated above, in the UIDD-method, we assume that
the SPEC has an UIS set. An UIS set U is used for identifying the states. Let
U= {U,U,,....U,}. Here U; is a cyclic UIS of the initial states of the SPEC and
the TUT, and U7, is an UIS of the state s, of the SPEC, where 2 < j < n. Recall

that Walk(j, inseq) denotes the walk taken by the SPEC' when the input sequence

938

inscq is applied at the state s,. A transition is called a ¢{-transition if it belongs
to Walk(y.l',) for some j.1 <y < n. Let E(U7) denote the set of all H-transitions.
The UIDD-method uses a state cover tree T' to reach different states from the initial
state. A transition is called a T-transition if it is on the state cover tree 7' Lot
E(T) denote the set of all T-transitions. As noted in the previous chapter, for better
fault resolution it is necessary that we test all the T-transitions before using them for
testing other transitions. It is also necessary to verify if the UlSs are also the UlSs
of the corresponding states in the IUT. Meeting these two requirements is diflicult
as T-transition testing requires verified UlSs and UIS verification reguires tested -
transitions. This could be achieved if T and U have a special property known as the

Tree UIS Set Disjoint (TUISD) property defined below.,

For each transition { = (s,.s,:a/0) in T the label a/o does not vecur in
the U10-sequence corresponding to the UIS 1) or the walk from s, with

the input sequence U, does not contain ¢, for all k.1 <k <wnand b # §.

We have analyzed a number of protocols (reported later) and found that they have
a T and an U with the TUISD property. However, there may exist some protocols
which do not have such T and ¥{.

The UIDD-method is described in the algorithm ULLDD. This algorithm first
invokes the procedure sct_uis (to be discussed) for computing a state cover tree 7" and
an UIS set & with the TUISD property. The algorithm then invokes the procedure
Ulgen_seq for generating the required test sequence. In this section, unless specifically
mentioned, by an UIS we mean an UIS from Y. Let P, denote the unigue path in
T from sy to s, for 1 <7 <n. Let @ = {Q, |1 <7 < n}, where @, denotes
a shortest path in the FSM from s, to 5. for 1 < ¢ < n. P and @, are also
known as the preamble and the postamble for the state s,, respectively, for 1 <

1 < n. Let E; be the set of edges which denote the postambles in Q. That is.

Eq = {(&,Slll(lbcl(Q,))lQ, € Q}

99

The procedure U7 1gen_seq consists of two phases. The purpose of the first phase
is to test all the transitions in T as well as to verify if the UlISs are actually UIS<
of the corresponding state in the [UT. Let ¢’ C U be obtained from U by removing
all the duplicate UISs and those UISs which are prefixes of other sequences in .
Each transition in T is selected for testing in a breadth-first fashion. Test sequence
for I = (s,.8,;a) € T consists of a set of tours. one tour for each VIS 7 € U'. The
tour with respeet to U is obtained by concatenating P.t. Walk(). 7). Qraug.00). and
Walk(1,17)) in that order. Recall that the function Tail(j, inseq) accepts the index
of the state s,. 1 < j < and an input sequence inscq and returns the index of the
tail state of Walk(j.inseq). Observe that the cyclic UIS {7 is used for confirming
the initial state. It is established later in this section (Theorem 4.1) that the test
sequence generated in the above scheme is also sufficient for verifying if the UIS of
ary state in the SPEC is atso an UIS of the corresponding state in the IUT.

The second phase cousists of six steps. In the first step. we generate a towr for
testing the correctness of the set of postambles (Q) in the IUT. Step 2 through Step 3
and Step 4 through Step 5 are two alternate ways of testing all the non-T-transitions.
[n the first alternative, in Step 2 each of the Y-transitions is tested individually using
a tour consisting of the preamble to reach the transition. the transition. the UIS of
its tail state and the postamble from the tail state of the UIS. Transitions which are
neither in 7" nor m the UlSs are tested in Step 3. Let E. be the set of test edges
for the set of all non-T- non-U-transitions. As defined in Section 2.1. a test edge for
a transition { = (s,,8,5a/0) is an edge from s, to Tail(j.U,) with label aGl’,. Let
S = (S E.UE(T)U E(U)UE,). If possible, the RPT optimization technique of Aho
f al [ADLUSS] is used for computing an RPT T4 of G’ with respect to E.. Clearly
11 tests all the transitions in E.. Otherwise, this step computes three approximate
tours (ThH, TG and T7) using the three heuristic algorithms for the RPP developed
in Section 2.4, It also computes another tour (T8) in which each of the transitions is

tested exactly similar to the ¢-transitions in Step 2. Among T5, T6. T7 and T8. the

100

oue with the minimum length is then chosen as the tour T4, Note that T may not
start and end at the initial state of the SPEC. Therefore, T4 is augmented with the
preamble and the postamble o1 a state in T'1 so that T1 starts and ends at the initial
state of the SPEC.

In the second alternative for testing the non-T-transitions, the tail states of the
UISs are first confirmed iu Step 4. This is done by reaching cach state () using the
preamble and then applying the UIS U followed by the UIS of T'ail(j.U,). The initial
state is reached by traversing an appropriate postamble. A tour('T'10) fur testing all
the non-T-transitions is derived in Step 5. Step 5 s similar to Step 3. While the
set E. in Step 3 contains an edge for each of the non-T non-i-transitions only. the
same set in Step 5 contains an edge for each of the non-T-transitions. Clearly. either
of the towrs T30T4 and T9aTI0 can be used for testing the non-T-transitions. We
choose the one with the minimum length. In the algorithuo, T'1H denotes this tour.
The tours T1, T2 and T15 are used in Step 6 to generate the final test sequence,

Algorithm [71_DD)SPEC)

set_uts(SPEC,T.U):

Ulgen_seq(SPEC,T 04);
end U_DD

procedure 'lgen_seq(SPECTH)
Phase 1 {UIS verification and T-transition testing}
Obtain M’ from U by deleting duplicate sequences and
removing secuences which are prefixes of other sequences;
Tl.=
for each U €/’ do
T1 := T1eWalk(1,U) QQrayqrvy@Walk(1,U/).
for each t = (s,.5,:a/0) € T selected 1n breadth-first order do
for each I € U'do
T1 := Tlae PrataWalk(p 1) aQ g aney)y O Walk(1.017):
Phase 11

101

Step 1 {Postamble checking}
T2-=0;
for k := 1 ton do
T2 := T20Pya@yoeWalk(i, 1)),
Step 2 {U-transition testing}
T3 =0,
for each l-transition { = (s,,5,5¢/0) € T do
T3 := T3P @taWalk(j. 1)) Qraigv,);
Step 3 {Testing the remaining transitions}
Compute E. = {(s,8p;a¢l’)) | (s,5,:a) € E- (E(TYUEWMU)) ATail(j, 1) = p}:
Let ()= (S.E.UE(TYUEM)UE,).
C'ompute a rural symmetric augmentation ¢y of ¢/
with respeet to Eg;
if ((7y is weakly connected) then
Compute an Euler tour T4 of (7};
else begin
apprpt(G'E.L ThH):
mst.rpt((+', E.. 'T6);
symm_rpt{(;', E., 'I'T);
']‘8::”.
for each transition t = (s,,s,;a) € E~ (E(T)U E()) do
T8 := T8 « Pt alk(§, U,) @Qraug ;)
Let T4 be a tour with the minimun length in {T5, T6, T7, T8}:
end
Let s), be a state in T4 such that P,«@@), is the shortest among all the states in T4;
Rotate T4 such that it starts and ends a2t s;;
T4 := PpaT4a@),
Step 4 {Confirmation of the tail states of the UlSs }
T9 = §;
for):= 2 tondo
T9 := TYQP,@Walk(j, U;)aWalk(Tail (j,1/;), Urauv,)) @QTait(Tan3,U,) Uran.w,))?
Step 5 {Testing all non-T-transitions }
Compute Ec = {(sy,sp;a@l/}) | (s,,5,:a) € E = E(T) ATail(j.U,) = r};
Let (' = (S, E. U E(T) U Ey);

102

Compute a rural symmetric augmentation (7 of (&’
with respect to E;
if ((7) is weakly connected) then
Compute an Euler tour T19 of (vy;
else begin
app.rpt((i’, E., T11);
mst.rpt(G7’, E., T12);
symm.rpt((;', E., T13);
Ti14:=:
for each transition t = (s,,5;:a} € E — E(T') do
T4 = T14 @ ParaWalk(j.U)) Qa1):
Let T10 be a tour with the minimum length m {T11, T12, T13. T14}:

end

Let s;, be astate in T10 such that PyaQ)y is the shortest among all the states in 'T'10,
Rotate T10 such that it starts and ends at sy;
T10 := PyaT10aQy
Step 6 {Compute the final test sequence}
Let T15 be a tour with the minimum length i {T30T4 | TOaT10};
Let T := TlaT2aTIlh;
Gienerate the test sequence by concatenating the inputs along I

end o, n_seq

We will shortly give the procedure set _uis for finding a state cover tree T and an
UIS set i satisfying the TUISD property. Under the single fault assumption, we shall
now establish that the successful completion of Phase 1 of the procedure Ulgen_seq

will guarantec a fault-free state cover tree and a verified set of UISs for the TUT.

Theorem 4.1 Suppose that an TUT has at most | fault and it passcs Phase | of

Ulgen_scq successfully then the following are true:
1. The state cover trce T obtained from the SPEC is faull-free in the TUT.

2. The UIS of cach statc of the SPEC from the sct U is also an UIS of the corre-
sponding state in the 1UT.

103

Proof

Let, .9': denote the state in the IUT corresponding to s,, 1 € ¢ < n. There is
no ambiguity in the notation with respect to our fault model (which includes only
transfer faults and output faults). First note that U; is a cyclic UIS of s5; and s;. We
will prove the first part by induction on the level number of the state cover tree T.

We claim that all transitions of level | are fault-free in the IUT. Let (s,.s,;a/0)
be a T-transition of level 1. Suppose it has an output fault in the IUT. Then when we
apply the input sequence along the tour {Q@Walk(i,U)@Qrauqy@Walk(1,), for
some [7 € U, which is generated in the first phase. we will get an output mismatch
when the input a of ¢ is applied. Therefore the TUT will fail in Phase 1. Suppose the
transition has a transfer fault in the IUT. Let its new tail state be S;, where j # 1. In
other words, the corresponding transition in the TUT is (). s;; a/o). Let us observe the
behavior of the TUT for the sequence t@Walk(i, U)@Q rquq,u,) Walk(1.Uy). The fact
that the IUT is in .s'; before applying the sequence along the above tour is confirmed
by applying Walk(1, U,), a postfix of the tour preceding this walk. When the input
sequence along the walk Walk(z, U,) is applied at s;, the IUT may or may not traverse
the faulty transition £. If it traverses f, then the output sequence will be different
from the expected one since a/o does not occur in U, due to the TUISD property.
On the other hand. if it does not traverse ¢ then due to the single fault assumption
all the transitions traversed are fault free. Therefore, the output observed will he
different from the expected one as per Walk(i, U,). In either case, the IUT fails in
the first phase. Assuming all the T-transitions up to level [are fault-free, we have
to prove that all the T-transitions of level [4+ 1 are also fault-free. Let (s,,s,;a/0)
be the current T-transition under test of level [+ 1. Since all the transitions up to
level I are fault-free, we can reach s, by traversing the fault-free path P, from sp. It is
easy to see that Phase I fails if the IUT has an output fault in (s;,s,;a/0). Suppose
(81 8;3a/0) has a transfer fault and let its new tail state in the IUT be s,k # j.

Let us observe the behavior of the 1UY for the tour P,@t@Walk(j, U,)@W alk(1,U,).

104

Clearly P, @t puts the IUT in the state s;. When the input sequence along the walk
Walk(j. U,) is applied at ;. the IUT may or may not traverse the faulty transition
t. If it traverses ¢ then the output sequence will be different from the expected one
due to the TUISD property. On the other hand if it does not traverse ¢ then due
to the single fault assumption all the transitions traversed are fault free. Therefore,
the output observed will be different from the expected one as per Walk(j. (7)), This
completes the induction.

Observe that the initial state the IUT reaches after applying any postamble
sequence is always confirmed in the first phase by applying the cyelie UIS Uy of the
initial state. Also only the T-transitions are used to reach the states in order to apply
the UlSs. Therefore. if Phase 1 is successful then this phase correetly reaches every
state in the TUT in order to apply cach sequence in 4. In other words, if Phase 1is
successful. then the UIS of cach state of the SPEC from he set i is also an U]S of

the corresponding state in the 1UT.
0O

The following theorem establishes the I-fanlt resolution capability of the UHDD-

method.

Theorem 4.2 Supposc that an 1UT has at wmost onc fault, then the UIDD-1010thod
detailed in the algorithm UIDD has [-fault resolution capability of level n+ 1, wher

n and l, arc the number of statcs and the length of a longest ULS in U, respeetivly.,

Proof

Suppose that the IUT fails in Phase I while applying the sequence along the

following tour for the transition ¢ = (s,,s,; a/o).
P,@t@)Wl’llk(j, U)(nyTa,,(],”)@Walk(1, U]), Uel’.

Since the T-transitions are traversed in breadth-first fashion, as in the proof of the

last theoreny, it follows from the TUISD property of 7' and U and the single tault

105

assumption that none of the transitions in P, is faulty. If an output o' is ohserved
instead of o while applying the input @ of the T-transition (s,, s,;a/0), then the T-
transition has an output fault. Otherwise, either ¢ has a transfer fault or a transition
in the walk Walk(j, (1N Q4,0 is faulty. Thus the fault can be diagnosed within
n + 1, transitions.

Assume that the IUT fails in Step 1 of Phase 11 while applying the test sub-
sequence [alald alk(l, (7)), for some £,2 < k < n. As per Theorem 4.1, all
the transitions in Py are fault free. Therefore, the faulty transition lies in the path
Q1. Inthis case, the fault is located within n — 1 transitions. If the TUT fails while
applying the sequence geierated in the second step of Phase II for the U-transition
b= (85,5 a /o), then let the sequence be on the tour PGta H'alk(j.U])‘('l_Qq,,,[(j,;vJ).
We know that none of the transitions in P, is faulty. If the mismatch is at t, then
[has an output fault; otherwise, t has a transfer fault. Suppose that the mismatch
oceurs while applving a subsequence of 74 (computed at the end of Step 3) aloug the
test edge (s, s0008)) € E. for the transition ¢t = (s,.s,;a/0). At this stage all the
T-transitions, all the ¢-transitions and all the postambles in Q are known to be fault
free. Therefore, tis the only faulty transition.

Suppose that the mismatch occurs while applying the subsequence in T9. for
confirming, the tail state of Walk(y.7,),2 < j < nin the IUT. Let the subsequence

correspond to the tour deseribed below.

I)J w3 alk{}, UJ)’(.‘\”'(I,IA'(T(ll'l(j. UJ), UT“7’(117_»))@QTMI(TMI(J.U))‘('Tau(J,uJ))'

From Theorem 4.1, it follows that the faulty transition is in Walk(j,U/,). Therefore,
the fault is located within £, transitions. It is easy to verify that the fault can be
located exactly if the mismatch occurs while applying any subsequence in the tour
T'10 which is computed at the end of Step 5. Thus we conclude that the UIDD-method

locates the fault within n 4+ [, transitions.

106

If the SPEC and the TUT have the reliable reset capability. then the SPEC and
the IUT are not required to have a cyclic UIS at their initial states. However, like
the other states in the SPEC, its initial state has an UIS. For this case, the algorithm
UILDD needs only minor changes as described below. Suppose that we denote all the
reset transitions simply by *r', the input interaction of the reset transitions. Then, we
have to replace every occurrence of (. for all o, 1 < i < n, by the symbol . The walk
Wall(1,U}) postfixed to various tours in the algorithm has to be deleted. The first
step in Phase Il has to be removed. The following corollary is a direct consequence

of these modifications in the algorithm.

Corollary 4.2.1 Supposc that the SPEC and the 11T satisfy all the conditions re-
quired for the mcthod crecpt @ cyelie ULS requivenient for the mitial states, Also,
suppose that both the SPEC nd the 1UT have the resct capability. Then, the U1D1-

method locales the fault withine 1 + 1, transitions.
]

Observe that the 1-fault diagnosis capability of the UIDD-method is superion
to those provided by the UlS-based methods analyzed in Seetion 215, As noted by
Sabnani «f al [SD88] {, < 5 for most of the known protocols. Therefore, from the
above corollary we can deduce that for most of the known protocols with reliable
reset capability, the UIDD-method localizes the fault within six transitions.

In the next section, we consider the problem of extracting a state cover tree 1

and an UIS set U with the TUISD roperty.

4.2 State Cover Tree and UIS Set Computation

We know that a state cover tree T and an UIS set Y with TUISD propetty play key
roles in our UIDD-method. In this section, we present an algorithim to find them. Our

algorithm is referred to as set_uzs. This algorithm uses the procedure find_muas which

107

accepts a state, say &, and aset (TT) of incoming transitions at s, and it finds an UIS

U, of length at most 2n? for s, such that U/, either does not contain the label of at least
[_J

one transition in T'T or there exists a transition in T'T such that it does not belong
to the walk from any state other than s, with [, as the input sequence, provided such
an {/, exists. Note that U, satisfies that part of the TUISD requirement for s, with
respect to at least one transition in T'T. Otherwise, it finds a set of UISs of length at
most 212 such that each of the UISs either does not contain the label of at least one
incoming transition at s, or there exists an incoming transition. say t. at s, such that
{ does not belong to the walk from any state ocher than s, with the UIS as the input
sequence, These UISs are used in the later part of the procedure. Thus find_muis is
invoked exactly once for cach state. This procedure is similar to the one by Sabnani
and Dahbura [SD8S]. While the latter computes an UlO-sequence of length at most
204 for a given state, our algorithm computesan UIS with special property for a given
state. With minor modifications. find_muss can be used for computing multiple UlISs
for a given state,

The algorithm set_uis constructs the state cover tree in a breadth-first fashiou.
In the algorithim, 55 is the set of all states already covered by the partial state cover
tree T constructed thus far. NS C SS is the set of all states in 59 which are yet to be
scanned for possible growth of 7. The algorithm starts with an arbitrary cyclic UIS
for sy and by initializing SS and NS to the singleton set {s;}. Initially. T contains
no transition. At a given step. a state, say s, from NS is chosen and deleted from
this set: each state, say s,. from S-S5 which has an incoming transition from s, is
considered for possible extension of T'. Let TT be the set of all transitions from states
in NS to s,. If the procedure find_muis has already been invoked for s,, then the set
of UISs computed for s, in that invocation are searched for an UIS which satisfies
the TUISD requirement for s, with respect to a transition in T'7T. Otinerwise, the
procedure find_muis is invoked with suitable parameters. Suppose that the procedure
is successful in finding an UIS, say U,, which satisfies the TUISD requirement for
s with respeet to a traunsition, say ¢. in T'T. Then, U, and ¢ are added to &/ and T,
respectively. Also, the state s, is added to both $Sand NS. The above step is repeated

until T becomes a state cover tree or NS= . The latter case simply implies that the

108

SPEC does not have an UlS set having UlSs of length at most 2n? and a state cover
tree satisfying the TUISD property. We shall now present the formal description
of the algorithm. Assume that the function In(s,) (Out(s,)) returns the set of all
incoming (outgoing) transitions at the state s,. Let Input (Output) be a function
which returns the Input (Output) part of a given input-output sequence. Recall
that the functions Inseq, Outseq and I0seq accept a walk and return the input
sequence. output sequence, and the input-output sequence of the walk, respectively.

The algorithm uses the following record structures and variables,

const
N=...; { the number of states }
MAX=..; { some large number }
MAX2=_... { maximum number of incoming transitions at any state }
type
u_rec = record
length: integer:
useq: sequence of input,
intrans: set of transitions:
end u.rer;
pat_rec = record
pattern- sequence of input-outj.ut;
end : state_type;
htset : set of htstate_rec;
intrans: set of transitions:
end pat_rec,
htstate_rec = record { treated as an ordered pair of states }
head : state_type;
tail : state_type;
end htstate_rec;
var
u_tab: array[l .N, 1..MAX2] of u_rer;
nucol: array{]..N] of integer;
{ nucoli] = # of columns filled in the ith row of u_tab }
OP, P: array[l..MAX] of pat_ree:

searched: array[l1..N] of boolean:

109

coveredtr, array[l..N] of set of trans;

Following is the description of the algorithm sct_uis

Algorithm sctns(SPEC, U, T);
begin
for i := 1 to N do begin
searched[i] := false;

nucol[i] := 0;

end;
SS = {a b
NS ={a)

Obtamn a eyelic UIS Uy for s; using the algorithm given i [SD83]:
for each s, € 8 do coveredtr[i] -= @;
repeat
delete a state s, from NS,
for each s, € 5-SS do
if (3 a transition ¢’ from s to s, such that t' ¢ coveredtr(i])
then begin
TT := {t | t €ln(s,) — coveredtr{i] A head(t) = NSU {sx} };
if (searched[i]) then begin
if (3 j such that 1 < j < nucol[i] A TT N u-tabfij].intrans # @)
then begin
Choose t € TT N u_tabl[i,j].intrans;
U, := u_tab[ij].useq;
Add U, to U;
Add t to T
Add s, to SS; Add s, to NS;
end
end
else begin
find.muis(s,, TT, U, t, u.tab, found};
searched[i]:= true:

if (found) then begin

110

Add U, to U:
Addtto T:
Add s, to SS: Add s, to NS;
end
end
coveredtri] := coveredtri] U TT,
end { if (3 a transition {'.. . }
until(SS=S or NS=0)

end scl_uis

Following is the formal description of the procedure findanuis.

procedure find.muis(s,, TT. uis, t, u_tab, found);

begin
uis := 0:
Li=1j:=0

havepattern := false;
for each ot € Out(s,) do begin
first := true;
for each it € In(s,) do begin
if (Label(it) # Label(ot) or
it @ Walk(j. Inseq(ot)) for all j,1 < j < n,j# 1) then begin
if (first) then begin
j=j+ 1L
OP[j].pattern := Label{ot);
OP[jl.end := s74(0t):
first := false,
havepattern := true
end;
Add it to OP{j].intrans
end
end;
if (havepattern) then begin
havepattern := false;

Let SP := { (ff, tt) | 3t € E s.t. t=(fT,tt;Label(ot)) };

111

OP[)hset .= SP — { (5,87 an(01)) }
if (OP[)].htset = @) then begin
if (OP[j].intrans VW TT # @) then begin
uis := Input(OP[j].pattern);
Choose t € OP[j] intrans N TT .
found := true
return
end
else begin
for each t € OP[jlintrans do begin
avall = false:
for k.= 1. nucolfi] do
if (1 € u_tablik].intrans then
avail := true,
if (not avail) then begin
p = nucollt] := nucoli] + 1;
u-tabfi.p].length .= L-
u-tably,p] useq := Input(OP[j].pa’tern):

u-tab[i,p).intrans := OP[j].intrans

end
end
end
end { if (OP[j].htset = 0)..... }
end { if (havepattern) ... }

end { for each ot € Qut(s} }

OND := j,

while(uis = and L < 2N*) do begin
L:=1L+1;
ND :=0;

fori:=1to OND do begin
for each ot € Out(OP[i].end) do begin
first := true;
for each it € OP[i].intrans do begin
if (Label(it) # Label(ot) or it € Walk(j, Input(OP[i].pattern)@Inseq(ot))

112

Vj1<j<n,j#1i) then begin
if (first) then begin
first := false:
ND .= ND -+
P[ND].pattern := OP[i].pattern @ Label(ot),
PIND].end "= stauon:
P[ND] htset := @
end:
Add it to P[ND].intrans
end
eud { for each it ... }
for each two-state tuple (from, to) € OP[i] htset do
for each transition ot2 € Out(to) do
if (Label{ot2) = Label(ot}) then
P[ND].htset := P[ND] htset U { (from,) gy 1.
if (P[ND].htset = @) then
if (P[NDlintrans N TT # #) then begin
uis .= Input(P[ND] pattern):
Choose t € P[ND].intrans 0 TT:
found = true:
return
end
else begin
for each t € OP[j] intrans do begin
avail := false,
for k:= 1, nucol[i] do
if (t € u.tab[i,k] intrans) then
avail ;= true;
if (not avail) then begin
p := nucol[i} := nueoli] + 1,
u_tab[i,p].Jength := L;
u_tab[i,pl.useq ‘= Input(OP[ND].pattern);
u-tabfi,p).intrans := OP[ND] intrans

end

113

State s, | UIS () State s, | UIS L
Y 11021122 || 1T1H113
St 18115 84 112¢14¢1
S5, t1H 8¢ 11824
S7 123125 Sy 126

Table 4.1: UlSs selected by set_uis for SPEC of Figure 4.1(a)

end
end
end { for each ot |}
end {for1 =110 0ND .}
OND = ND.
for1 =110 ND do begin
OPQ] pattern = Ph) pattern:
OP() end = PQ] end
OP)].hitset = PN].htset,
OP[i} mtrans -= P[1] intrans,
end
end { whilefuis=¢ |}
if(L > 2N%) then
found := false
else found ;= true

end find_mus

4.3 An Illustration of the UIDD-method

We illustrate the UIDD-method by generating a test sequence for the SPEC as shown
in Figure 4.1(a). We assume that the SPEC' has the reset capability. As before. we
express the UISs as well as the test sequence in terms of the transitions. By applying

the algorithm of Sabnani and Dahbura [SDSS]. we get 11121122 as an UIS for s;. The

114

t21:a/2
t22:h/2

t25:h/1

t11:x/0

(a) SPEC

t1:a/0 £23:x/0

t3:x/0
@ t25:b/1
\ t17:x/0
t6:c/0

(b) State cover tree of the SPEC

Figure 4.1: SPEC" and a state cover tree of an abstract protocol

State Subtour
S 1221422983581 3rt 1823824
54 1200201201 301:2¢0 1420137226121 14L 1 r
89 13141142278 3t715t13rt 3141 3t4r
Sy 1316t8215t25113t6t11t9¢16rt3t618L17t18r
o 112142142201 142382511608 11211231247
. L1123824124125rt1123126125t16711123124126124r
S (12238251 151241251 112312511 711982rt 1123125115126 247
s T1E234250 1 7L 812442501 11231258 171201 1912021823125t 17118126124 r

Table 4.2: Test subtours generated in the first phase of DD-method

U-transition Substour U-transition Subtour r
th 1t3tHh112tld4tlr t7 t3t7 t7TtH t13r
tN t3tot8 tlhr t12 t2 112 t12t14 tl r
t13 t2t13t12114 ¢l ¢ t14 t2 t14 t1 121 t22 r
t1H t1 123125 115126 r t18 t1 t23 125 t17 t18t26 r
121 t] 121 123125« t22 t1 122123 t25r
124 t] 1231211261 t26 t1 t23 t206 t26 r

Table 4.3: Subtours for testing U-transitions

algorithm sel_uis produces the state cover tree as shown in Figure 4.1(b). The set U
of UISs selected by sef_uis is tabulated in Table 4.1. Note that U/; is not cyclic since
the SPEC and the TUT are assumed to have the reliable reset capability. The above
state cover tree and the UIS set satisfy the TUISD property.

The tour T'1 generated in the first phase of Ulgen_seqis shown in Table 4.2. The
tour is subdivided into a set of subtours for testing the incoming T-transition as well
as the UIS set at diilerent states. Only sequences from the set U’ = {aab, zbb, ara}
are applied at each state. The length of the resulting tour T'1 is 138. Also, the
poustamble set @ in the entire algorithm is replaced by the reset transition denoted by
its input symbol *r". The test tour 73 generated in the second step of this phase for

testing all the ¢-transitions is shown in Table 4.3 as a number of subtours at s,. The

116

State Subtour State Subtour
oY) tl t21 t22t23 t25 r 8y t3t7TH L1312 11t
83 t3 t6 t8 t15 t26 r S4 t2 112 t14 t1 t23 125 v
35 t] t23 t25115 t26 r 8¢ t1 t23 125 t17 LIS 121126 r
S7 t1 t23 t25t15 r Sg 1] 123 126 t26 v

Table 4.4: Subtours for testing the tail states of the UlSs

length of the tour is 68. Clearly, {t4.19,110.111,216,119,120} is the set of transitions
which are neither in the state cover tree nor in any of the UlSs. Transitions in this
set are tested in the third step. The graph obtained through the yaral symmetric
augmentation performed in Step 3 is weakly connected. The resulting touwr T of

length 38 for testing the transitions in the above set is given helow.

13 1411121122 rt3 16 L0753 r t3 t6 tIISLIS t25

L1615 t25 17 120018124 t25 t17 11911121422 r 43 t6 t9 S r

Underlined segments in this tour as well as in other tours correspond to the test
subsequences for their leftmost transitions. For example, the underlined segment
14t1t21t22 is for testing the transition t4.

Transitions which are not covered by the stale cover tree can also be tested
using the tour generated in the fourth and the fifth steps. The towr 79 of Step 4
consists of the set of subtours for confirming the tail states of the UlSs. The subtours
are shown in Table 4.4. The length of 7'9 is 50. As the graph induced by the test
edges for the above transitions is weakly connected, the graph obtained through the
rural symmetric augmentation is also weakly connected. The resulting test tonr 7'10
is shown in Table 4.5; the length of 710 is 84. As the length of the tour 7374 is
shorter than that of the tour T'9T'10, the former is chosen as the tour for testing all
the transitions. The length of this tour is 107. The final test sequence is obtained by
concatenatiug the inputs along the transitions in the tour TIT37T4. Thus the total

length of the test sequence is 244.

12 11411121122 r t3 t7t7e513 t13t 1201481 rt3 t411t21t22 r t3
t5t1201440 rt3 t6 10t7e5t13 t12t12¢14t1 $21¢23t25 t15t26 t25
L17 L1826 t25 t17 1204 18t24 t24t26 12626 125 t17 £19t1t21¢22
$22123125 t16t15 r t3 t6 t8t15 r t3 t6 t11t8t15 r t3 t6 t9t15 r

‘Table 4.5: Tour for testing all non-T-transitions

State Actual State Actual State Actual
Symbol State Symbol State Symbol State
5 CLOSED Sy CALLED 83 CALLING
54 REF_WAIT S5 CR.RCVD S6 CRSENT

57 ACK_WAIT Sy CLOSING Sy C_.ACK_WAIT
810 G.CLOSING 811 ESTAB 812 G_CLOSING_P
813 G(OLS2 S14 GCLSI S15 GCLS3

Table 4.6: Explanation of state symbol notations in transport protocol

As the maximum length of any UIS in U is 3. the test sequence generated local-
izes any output fault or transfer fault in any of the T-transitions within 4 transitions.
Any such fault in other transitions is located exactly by the above test sequence.

We have applied the UIDD-method on a subset of the class 4 transport pro-
tocol. NBS TP4 developed by the National Bureau of Standards [Nat83]. In [SL39]
Sidlit et al have analyzed this subset for studying different formal methods of test
sequence generation based on the FSM model. The protocol has 15 states and 61
core transitions. The SPEC of the protocol as specified in [SL89] is shown in Figure
4.2, The relation between the state symbols we have used and the actual states as
expressed in [SL89] is given in Table 4.6. As shown in Figure 4.2, each transition
is given a distinet number. The corresponding labels are given in Table 4.7. Details
of the protocol and the abbreviations of input-output symbols can be obtained from
the paper by Sidhu et a/ [SL89). We assumme that the SPEC has the reliable reset
capability: the reset transitions are however not shown in the figure. In the tours and
the test cases the reset transitions are simply expressed by the symbol ‘7. Also, with

the completeness assumption, the protocol is considered to be completely specified.

118

1l
t9,t10 8
15,16

8 ®
{16

4

® (14,15 (4, pom

O

12

78

1y

132,133
134,435,436

128,129
S7

130

)

141,142

{ NBS TP4 transport protorol

Figure 4.2: A SPEC of a subset 0

119

Trans. | Label Trans. | Label
1 | N.CRDR 12 | Set/Ner SINCT
t5 | N.CR/ci t4 | U.cg/CR ST
th N_di/Null 6 U.cq' [N _cq
t7 | NCR/DER t8 | N.CR/ci
9 | S.et/N_dr t10 | N_di/Null
thl | NCCJCRSIT t12 | Uer/CC S.RTT
s | Udr/DRSTT t14 | N.GR"JAK C_.RT S_RT
t15 | N.DR/DC ST C.RT t16 | S.rt/N_dr
t17 | S.it/CR ST t18 | SLt'/S.GT
t1) | N.CCJAK S AT ec CIT C.GT 20 | N.DR/DC de C_AT S_RT
121 | N.C'C'/DR de S_TT C.IT (.GT 22 | S.gt/dec S_RT
128 | S./DR ST 24 | S_gt/S_RT
125 | N.DCJCAT S_RT 126 | N.DR/C'_AT S_RT
127 | N.difC_AT S_RT 128 | S.zt'/S.GT
124 S.atfee S_RTT 30 U_kr/GR
131 N_AR/Null t32 | S_gt/dc S_RT
(33 | N_DR/DC de C_AT S_RT t34 | N_AK'/S.JAT C.IAT
135 | N.GR"JCIAT S_IAT AR 136 | N.GR'/S_IAT C'_IAT
37 | Ukr/GR t38 | N.GR/CJAT S_IAT AK ke
139 | S.rt’/S.GT t40 | S_rt/cc S_.RTT
t41 | S_gt/de S.RT t42 | N_.DR/DC dc C_AT S_RT
t43 | NLARK/JC.RTT CGT SAIAT S.FCT SWT | t44 | N.GR"JC_IAT S_IAT AN
t45 | N.GR'JSIAT C_IAT t46 | N_AK'/S_IAT C_.1AT
t47 | N.GR/CIAT S_I1AT AK t48 | N.AK/S_IAT C_IAT
A9 | NAR'JSIAT C_IAT 150 | N_.GR"/C_IAT S_IAT AK
thl | Ukr/GR 152 | N_.GR"/C_IAT S_IAT AK
t53 | NCAK'JS_IAT C_IAT t54 | N_AK/C_AT S_RT ke
th5 | N.GR'JS.IAT C_IAT t56 | N_.GR"/C.IAT S_IAT AK
t57 | NLAK'JS_IAT C.1AT t58 | N_.GR/AK ke C_AT S.RT
59 | N.GR"/CIAT S_1AT AK t60 | N_AK'/S_IAT C'_IAT
161 | N.AK/C_AT S_RT

Table 4.7: Labels of the transitions of NBS-TP4 transport protocol

120

t30

tsi

Figure 4.3: A state cover tree of the transport protocol

Again, the non-core transitions which are added due to the completeness requirement
are not shown in the figure. By applying the procedure sel_uis we obtain the state
cover tree T and the UIS set U of UlSs as shown in Figure 4.3 and in Table 4.8, re
spectively. The first phase of the procedure Ulgen_scg for test case generation results

in a tour T'l of length 960 transitions. As specified in the procedure, T'1 consists of

State | UIS || State | UIS || State IS
S t4 82 t9 Sy tll
S4 t15 S, t12 S6 t19
87 t31 Sg t26 Sy 143
Sio t48 1 t38 EIp) thl tGl
S13 tH4 S14 1%51] S15 t61

Table 4.8: UlSs gencrated for the transport protecs

Trans Subtour Trans Subtour

t9 t2t9 t4r t1l t6tl1l1 t19 r
tiH t4 120 t15 tl5r t26 t3 t13 126 t15r
t31 t3 112 t31 t38r t43 t3 t12t30 t43 t48 r

tH1 t4 119 t37 t47 tH4 IS r 158 | t4 19 t37 t48 t58 t15r
t61 t4 t19 t38 t5]1 t61 t1Hr

Table 4.9: Subtours for testing the U-transitions

a number of subtours given in the following set with the usual notation.
{PooWalki. U3)0r | 1 <7k < 15}

{t9. 111 1A, 126, 131, 113,151 138161} is the set of U-transitions which are not
covered by the state cover tree. A collection of subtours which constitute the tom
T3 required for testing the transitions in this set is obtained in the second step of
Phase 11 and is shown in Table 4.9. Note that the length of T3 1s 50. As listed below
there are 38 core transitions which are neither in the state cover tree nor in any of

the UISs,

o th t7o 8 1100 t 14 t16, 17 tI8. 121, 1220 t230 124, t25.
127, 128, 129, €32, ¢330 1340 1350 t36. t39. 140, t4]. t42,

t1h 6150 146, 149, 150, 152, t53. 155, thH6. tH7. t59. t60.

A tour for testing these transitions is generated in the third step of Phase I1. It is easy
to see that G'[E.] is weakly connected. where (¢ is the graph constructed in this step
and E. is the set of test edges for the transitions listed above. Therefore, the rural
svmmetric augmentation (73 computed in this step is eulerian. An euler tour T4 of
length 139 obtained from 7y which is also the tour for testing the above transitions is
shown in Table 4.10. By applving Step 4 and Step 5 of the second phase. we compute
an alternate tour for testing the non-T-transitions. As this tour is longer than the
tour which consists of the tours T3 and T4 computed in Step 2 and Step 3. the latter

becomes the final tour for testing the non-T-transitions. Thus. the concatenation

t2 719 t2 812 2931 t34UI8 t49t5 161 r 2 10t 22005 v 5] 21626 ¢
t1td t18t19 135138 t50t51161 rt3 t13 127t15 v t3 t13 123126 rt3 t13 t24t15
rt3 t13 2515 r t4 t19 t38 t31 t59t61 r td t19 t36t33 t5l t6Ot6l r td

t19 t37 147 t52t54 r t3 t12 130 t41t15 r t3 12 130 142015 r t3 t12 t30 39143
t46t48 t55t58 r t3 t12 t30 140t43 t45t18 tA6t58 r t3 t12 128131 t37 144048
tHTt58 t14415 r t3 112 133815 t16t4 L1789 t37 t47 tH3thd r t3 t12 32115 v

Table 4.10: An optimal tour for testing non-T- non-U-transitions

of the inputs along the tour T1T3T'4 becomes the required test sequence for testing,
the transport protocol. This test sequence has 1149 inputs. Observe that the test
sequence generated localizes any ontput fault or transfer fault within 3 transitions, if

the fault is at a T-transition: otherwise it Jocates the fault exaetly.

4.4 CSDD-method

As indicated in the introduction of this chapter. we can generalize the approach pre-
sented in the UIDD-method to develop a diagnosis method which uses a characterizing
set for generating the test sequence. In this section. we briefly sketeh the method.,
henceforth referred to as the CSDD-method. While the UIDD-method reguires a UIS
set and a state cover tree with TUISD property. this method needs a characterizing
set. say W and a state cover tree, say T. with what is known as the Tree Charac-
terizing Set Disjoint (TCSD) property. Let V, € W be the identifying sequence
set (IS set) of 5,. 1 <7< n. Let t be the incoming T-transition at s,. T and W are
said to have the TCSD property if for each state s,, 1 <i < n, at least one of the

following is true.

(a) The label of t does not occur in the input-output sequence along the

walk Walk(i. V') ,forall V € V.

123

(b) For each state s,, 1 < 7 < n, j # 1, there exisis at least one W €
W such that Qutseq(Walk(i,W)) # Outscq(Walk(j,W)) and t ¢
W(l”u'(ja W)

Note that, as per our assumption, there exists a Iy € W such that U; is a
cyclic sequence which is a UIS for the initial states of the SPEC and the IUT. Before
discussing the CSDD-method, we first present an algorithm for computing a state
cover tree which satisfies the TCSD property for a given characterizing set. In the
algorithm, InTr(i,5) denotes a set of incoming transitions at the state s;, where 1 <
7,7 <n.

procedure compule_sct{SPEC,W, T);

begin

for 1 := 2 to n do begin
InTr(i,i) := Ny-ep {c € In(s,) | Label(e) & 10seq(Walk(i. V))} ;
for j:= | tondo
if (i #j) then
InTr(ij):= {e€ In(s,) |IWeW
A Outseq(Walk(i, W)) # Outseq(Walk(;, W)) Ae & Walk(j, W)}
InTr(i,f) := InTr(i, i)U(ﬂ,SJS"'#, InTr(i, j));
ond;
Let EE := {InTr(i,i) |2< i < n}UOut(sy) ;
Construct G = (S, EE),
if (G has a path from s; to every other state in .5) then
Compute a directed spanning tree T rooted at s
else
writeln(* No state cover tree for W");

end compute_sct.

The algorithm finds a state cover tree which satisfies the TCSD property in
conjunction with the CS set W, whenever such a tree exists. An alternate CS set has
to be chosen if the given ('S set does not have the required state cover tree for W.

The CSDD-method of test sequence generation is also based on the Wp-method.

It consists of two phases. As defined earlier, let P, denote the uniquc path in 7 from

124

sitos,. Let @ ={Q, |1 <i<n}. where @, is a shortest path from s, to s;. The

first phase is to test the T-transitions as well as to verify if the identifying set of

)
.

each state of the SPEC is an identifying set of the corresponding state in the TUT. In
order to apply a sequence from W at a given state, P, is used to reach the state from
the initial state; the postamble in Q is used for reaching the initial state from the
state after applying W. As in the Wp-method, all the non-T-transitions are tested in
the second phase. For confirming the tail state of any non-T-trausitions only those
sequences which form the identifying set of the state are applied, instead of applying,

all the sequence in W. A detailed description of the algorithm is given helow.

Algorithm CS_DD(SPEC, W)
compute_sc{SPEC, T W);
CSgen_seq(SPEC.T,W);

end CS_DD.

procedure CSgen_seq(SPEC. T W)
Phase I {IS verification and T-transition testing}
Ti:=0;
for each W e W do
T1 := Ti@Walk(1,W)@Qr a1, w)@Walk(1,/;);
for each t = (s,,s;;a/0) € T {select { € T in BF-order} do
for each IV € W do
T1 := TtePataeWalk(j, W)eQrau,w)eWalk(1,U,),
Phase II {Testing all non-T-transitions }
T2 := B;
for each transition { = (s,,s,;a/0) € E ~ T do
for each V € V; do
T2 := T3ePtaWalk(j, V)Qrai,,v)@Walk(i, Uy);
Let T' := T1@T2;
(ienerate the test sequence by concatenating inputs along T;

end CSgen_seq

We next present results analogous to those for the UIDD-method described
in the previous section. For the sake of completeness we present these results with

proofs.

Theorem 4.3 Supposc that an [UT has af most I fault and it passes Phase I of

(Sgen.seq suceessfully then the following arc truc:
1. The state cover tree T obtained from the SPEC is fault-free in the IUT.

2. The 1S scf YV, €W of s, of the SPEC is also an 1S set of the corresponding
state in the 1UT.

Proof

First note that Uy is a cyclic UIS of the initial state of both SPEC and the IUT.
Let s, be the state in the IUT corresponding to the state s, of the SPEC. We will prove
the first part by induction on the level number of the state cover tree T'. We claim that
all transitions of level 1 are fault-free in the IUT. Let ¢ = (s;, 3,;a/0) be a T-transition
of level 1. Suppose it has an output fault in the IUT. Then when we apply the input
a, we will get some output o' # o. Therefore the ITUT will fail in Phase 1. Suppose the
transition has a transfer fault in the IUT. Let its new tail state be s', where j #£ 7. In
other words, the corresponding transition in the IUT is (s},],a/o) If we consider
that the label «/o does not occur in any of the CS in V, and if the subwalk Walk(z, V")
of the tour taWalk(i, V)QQrau,,vy@Walk(1,U;) in the IUT, for some V € V, such
that Quiseq(Walx(i,'”) # Outseq(Walk(j, V'), traverses the faulty transition ¢, then
we will observe o while applying the input symbol a as a part of the sequence V.
This is a mismatch as the walk Walk(z, 1) does not have the label a/o. On the other
hand, if the above subwalk does not traverses the unique faulty transition in the IUT,
then also a mismatch occurs as the observed output sequence (Qutseq(Walk(j, V))
is not the same as the expected output sequence (Outseq(Walk(j,V)) as we tra-
verse the subwalk in the IUT. i we consider that there exists a W € W such that

Outscq(Walk(i, W)} # Outseq(Walk(j, W)) and t € Walk(j, W), then a mismatch

126

will be observed while applying the tour tQW alk(i, W)Q@Qp . wyeWalk(1. 1)) to
the IUT. Thus, the JUT would not have passed the first phase. Observe that the fact
that the IUT is in the initial state before applying this walk is confirmed by applying
Walk(1,U,), a postfix of the tour preceding this walk. Assuming all the T-transitions
up to level [are fault-free, we have to prove that all the T-transitions of level I+ 1 are
also fault-free. Let (s,.s,:a/0) be the current T-transition under test of level I+ 1.
Since all the transitions up to level [are fault-free, we can reach s by traversing the
fault-free path P, from s). It is easy to see that Phase 1 fails if (s8148,:a/0) has an
output fault in the IUT. Suppose (s,,s,5a/0) has a transfer fault. Then, using the
argument similar to the one used in the initial step of the induction, we can prove
that the IUT will fail in the first phase. This completes the induction.

Observe that the initial state the IUT reaches after applving any postamble
sequence is always confirmed in the first phase by applying the eyclic UIS {7; of the
initial state. Also only the T-transitions are used to reach the states in order to apply
the CSs. Therefore, if Phase 1is successful, then this phase correctly reaches every
state in the IUT in order to apply cach sequence in W. In other words, if Phase 1is
successful, then the IS set of each state of the SPEC from the set W is also an 1S set

of the corresponding state in the IUT.

0

Theorem 4.4 The CSDD-method diagnoscs the fault within n+ 1. transitions, whe re
n and l. arc the number of statcs and the length of a longest CS in the st W,

respectively.

Proof

Suppose that a mismatch occurs while applying the following tour for testing

the T-transition ¢ = (s,,s,; /o).
P,@t@Walk(j, W)@QTQ,I(J,W)@‘"V(llk(1, U]), Wew.

127

Since the JUT has produced the expected output for all the tours selected for every
transition in P, in breadth-first order, as in the proof of the previous theorem. we
can see that all the transitions in P, are fault free. Also. the IUT is confirmed to
be in the initial state before applying this tour. Therefore, one of the transitions in
the walk tO@Walk(j, W)@Qrau,w) is faulty. On the other hand, suppose that the
observed output is different from the expected one while applying the following tour

for testing the non-T-transition ¢ = (s,,s,:a/0).
Pratalalk() VYyaQrau,vyeWalk(l,Uy). VeV,

Then, we infer that { is the unique faulty transition in the JUT. Thus the CSDD-
method has the 1-fault resolution capability of level n + [, where n and [, are as

described in the theorem.

The following corollary is easilv derivable from the above theorem.

Corollary 4.4.1 Suppose that the SPEC as well as the 1UT has the resel capability

then the faull can be located within 1 + [transitions.

0

The Wp-method assumes the availability of the reset transition from every state
in the SPEC (1UT) to its initial state. This is mainly to put the IUT in its initial state
between any two successive tours of the IUT for testing transitions. This is achieved
in this method by confirming the initial state by a known cyclic UIS of the initial
states of the SPEC and the IUT. This requirement is less restrictive than the reliable
reset capability requirement. Instead of using arbitrary state cover tree and a CS set
as the Wp-method does, our method uses those which satisfy the TCSD requirement.
As a result, the CSDD-method satisfies assertions stated in Theorem 4.3 whereas
they need not always hold for the Wp-method, as shown in the previous chapter
(Section 3.1.6). The CSDD-method achieves better 1-fault resolution capability

than the Wp-method for protocols with reliable reset capability.

128

4.5 Fault Localization

As we know. the level of resolution of the fault is an important factor in any diagnosis
method. In this section we present an approach for improving the level of I-fault
resolution capability of the UiDD-method and the CSDD-method by using some
additional test sequences. We first discuss this approach with respect to the UIDD-
method. A set of transitions is called a fault resolution set if it contains a faulty
transition. It is known that if the IUT fails in the first phase of Ulgon_seq then the
fault can be located within n + [, transitions. Different candidate sets are possible
for F' depending on the instant at which the TUT fails. Suppose the JUT fails while
testing the T-transition £ = (s,.5,:a/0) with the subsequence along the following

subtour. where | < h<mnand ' e’ CU.
PrataWalk(j. U7) 0 QrquganW alk(1.17).

Then. F is taken as the set containing the transition (s,.s,:a/0) and the transitions
in Walk(j.U)aQraupay- On the other haud if the IUT fails while applying the
test subsequence along the subtour Pra@QpaWalk(1,U;) which is generated in the
first step of the second phase. then consider /' to be the set of transitions along
Qr. Assume F to be the set of transitions along the walk taWalk(y,U,) if the IUT
fails while testing the U-transition { = (s,,s,;a/0) with the input sequence along the
tour P ataWalk(g, U,)QQrau(.,y which is obtained in the second step of Phase I1.
Suppose that the mismatch between the observed and the expected output sequences
occur while applying the input sequence along the tour for confirming the tail state
of the walk Walk(j,U,). Clearly, the required tour as described below is generated

in the fourth step of Phase I1.

PJ @Walk(], UJ)@W(IH»(T(”[(j, UJ), U’I‘a:l(].ll,))(“—'QTmI(’I'ml(],U,

Wrany.v,))

In this case, we take the set of transitions along the walk Walk(j,l/;) as the set I,
From the proof of Theorem 4.2, it is easy to sec that in all the cases Fis a fanlt reso-

lution set. The faulty transition in F can be further localized by repeatedly applying

129

Ulgen_seq using different state cover trees and UIS sets with TUISD property such
that the sequences generated in the first phase of U/lgen_seq do not involve at least
one transition from F. The procedure Ullocalize_fault for generating a test sequence

with improved fault resolution is given below. In this algorithm, |F| > 1 initially.

procedure {/llocalize_fuult(F, SPEC IUT);
Let each transition in F be unmarked;
while (|F| > 1 and F has an unmarked transition) do
begin
C'hoose and mark an uninarked transition ¢ in F;
Choose Q such that none of the postambles contains e;
sctis(SPEC—e, T, U,);
if (sct_uis is successful) then
hegin
Ulgen.seq(SPEC, To, 14,);
Let F, he the resulting fault resolution set,
F:=FnF,
end
end

end UV llocalize_fault.

At each iteration of the while loop an unmarked transition e in /' is marked and,
if possible, a state cover tree T, and a UIS set U, are selected such that they satisfy the
TUISD property and that neither T, nor any walk Walk(j,Ux) 1 < 7,k < n contains
the trausition ¢. Each postamble in @ is chosen in such a way that it does not traverse
c. Hsuch @, T, and U/, are found then the 1UT is tested with the corresponding test
sequence and a fault resolution set F. is obtained as above with respect to this test
sequence. From the proof of Theorem 4.2, it is easy to see tnat either the fault is
located exactly or ¢ € F.. In the latter case, the number of transitions in the fault
resolution set is reduced by at least one since |F N F.| < |F| before the execution of
the statement F := F N F,. Thus using U Ilocalize_fault the fault resolution can be

improved significantly or the fault can be located exactly.

130

The same approach can in fact be used for improving the 1-fault resolution
capability of the CSDD-method. It is easy to see that F is the set of all transitions
in the walk t@W alk(j, W)@Qrqy(,w) if the IUT fails in the first phase while testing,

the T-transition { = (s,, s,; a/o) with the following tour where W € W,
Piat @W alk(j, W)Qau(, s @W alk(1, 1),

We know that the fault is located exactly if the IUT fails in the second phase.
The procedure for fault localization is presented below without any further

explanation since it is very similar to the previous procedure.

procedure CSlocalize _fault(F,SPEC IUTY};
Let each transition in F be unmarked;
while (]| > 1 and F has an unmarked transition) do
begin
Choose and mark an unmarked transition ¢ in F;
Choose Q such that none of the pastamnbles contains ¢;
Choose a ('S set W, such that e ¢ Walk(i, W)Vil <1 < nand VW e W,
compulc_scl{iSPEC-e, To., W,),
if (compule_set is successful) then
begin
(' Sgen_seq(SPEC, T., W,);
Let F, be the resulting fault resolution set;
F:=FnFe
end
end

end C'Slocalize_fault.

Observe that the above procedure improves the 1-fault resolution capability by
generating additional test sequences. Clearly, the algorithm Ullocalize_fault can he
improved by considering the original state cover tree T and the original UIS-set, I
in the selection of T, and Y,. Similatly, the algorithm C'Slocalize_fault can also be

improved.

131

4.6 Summary

In this chapter. we have presented two new diagnosis methods based on the Wp-
method. The first method called the UIDD-method uses an UIS set and a state cover
tree with a special property known as the TUISD-property. The UIDD-method has
a superior 1-fanlt diagnosis capability. Length of the test sequence is minimized by
applying the RPT-algorithm of Aho ¢f al [ADLUS8S] and the heuristic algorithms
for the general RPP (developed in Section 2.4) at appropriate places. An adaptive
approach is preposed for further improving the 1-fault resolution capability of the
method by generating additional test sequences.

Another method. known as the CSDD-method. uses a ('S set and a state cover
tree with what is called the TCSD-property. The 1-fault resolution capability of the
CSDD-method is an improvement over the Wp-method by upto n transitions. where
n is the nmmber of states in the SPEC. Further localization of fault is also possihle
as in the case of the UIDD-method.

Our UIDD-method (CSDD-method) achieves good 1-fault resolution capability
ona SPEC if the SPEC has a state cover tree. and an UIS set (CS set) with the TUISD
property (TCSD property). Interestingly such a tree and a UIS set (CS set) exist for
the simplificd NBS TP4 transport protocol which we have used for illustrating the
UIDD-method. We have also found that a few other protocols such as the ISDN-BRI-
D-Channel signaling protocol (network interface side, originating end) [DSU90a]. an
FSM representation of a simplified transport protocol studied in [Boc90], and the
alternating bit protocol [SD&8] satisfly the required conditions for the UIDD-method
as well as the CSDD-method.

Some of the results presented in this chapter have been reported in [RDT93.

RDTH).

Chapter 5

TEST CASE GENERATION
FROM THE EFSM MODEL

In this chapter. we propose a new approach for generating a quadratic polynomnial
size set of feasible test cases which adequately tests both the control flow and the
cata flow aspects of a protocol specified as an EFSM. Each test case in this approach
corresponds to a tour which starts and ends at the initial state of the protocol. Our
control flow coverage criterion is based on the W-method [ChoT8] for the FSM model.
In the FSM model, this criterion requires the selection of a Characterizing Sequence
set (('S set) [KohT8, Cho78] and a set of 1 .t tours such that for cach transition and
each characterizing sequence, the latter set has at least one tour which covers the
transition followed by the characterizing sequence. For the data flow coverage, we
extend the “all-uses™ criterion proposed in [RWS85] for testing computer programs
to what is called a def-use-ob criterion. We shall see that this new criterion is
required due to the so called black-box approach of protocol testing and it enhances
the observability of the def-use associations. In the worst case, the order of the set of
tours which satisfies the def-use-ob criterion is only quadratic in terms of the numiber
of transitions in the protocol. Another important requirement, of our method is to

consider the feasibility of the tours during their generation itself. In other words, we do

133

not, intend Lo first generate a set of tours which satisfies the required coverage criteria
and then check for their feasibility. The latter strategy, in general, results in discarding
a large number of infeasible tours, which in turn aflects the coverage criteria. Except
for the combined testing method of Miller and Paul [MP92], all the existing methods
have taken the latter strategy of checking for the feasibility of the tours after their
selection, The combined testing method uses a backtracking technique for generating,
feasible test cases. As discussed in Sectjon 1.3.3, this technique does not handle the
feasibility issue effectively while joining different types of test subsequences into a
single feasible sequence.

In order to achieve the control flow coverage criterion. we define a special type
of 1S, known as the Context Independent Unique Sequence (CIUS). We shall
discuss the importance of CIUS in Section 5.2.1 where we establish the criterion. We
present an algorithm for computing a CIUS for a given state and select one CiUS
for cach state. The set of CIUSs. one for each state. becomes the required ('S set.
For tracking the data flow information. we define a new type of data flow graph for
a given transition and a walk which contains this transition. From this data flow
graph one can determine the set of def-use pairs covered by this walk for the def-use-
ob eriterion. We design various procedures for manipulating this graph. We finally
present our main algorithm which generates a set of test tours which adequatelyv
covers the required control flow and the data flow criteria. This algorithm uses a
breadth-first approach for computing the test tours.

This chapter is organized as follows. The EFSM model is introduced in Sec-
tion 5.1. In Section 5.2, we present the test case selection criteria and the data
flow graph. The algorithm for computing a CIUS for a given state is described in
Section 5.3, Algorithins for manipulating the data flow graphs are developed in Sec-
tion Hh4. The breadth-first approach for feasible test tour generation is the topic
of Section 5.5. We illustrate the proposed approach in Section 5.6 hy selecting test

tours for a major module in a transport protocol. A restricted case of the feasibility

134

problem encountered in the C'IUS computation algorithm and the test tour selection
algorithm is addressed in Section 5.7. We then conclude this chapter in the final

section.

5.1 The EFSM Model

The EFSM model presented in this chapter is inspired from [UY91]. An EFSM Y
is a 6-tuple Al = (S.5,. 1,0, T, V), where S. 1.0, T,V are a nonempty set of states,
a nonempty set of input interactions, a nonempty set of formal ontput interactions,
a nonempty set of transitions, and a set of variables, respectively. These sets are
mutually disjoint. Let S = {s, | 1 < j < n}k s is called the initial state of
the EFSM. Each member of [is expressed as ipli(parlist), where ip denotes an in-
teraction point [BD87] wher» the interaction of type ¢ occurs with a list of inpat
interaction parameters parlist. which is disjoint from V. Each member of O is ex
pressed as iplo(outlist). where ip denotes an interaction point where the interaction
of tvpe o occurs with a formal list of parameters, outlist. Fach parameter in outlist
can be replaced by a suitable variable from V', an input interaction parameter, o
a constant. The interaction thus obtained from a formal' output interaction is re
ferred to as an output interaction or an output statement. We will assmme
that the variables in V" aud the input interaction parameters can be of types integer,
real. boolean, character, and character string only. Each element 1 € T is a S-tuple
t = (source, dcst.input,pred, compute block). Here, source and de st are the states in
S representing the starting state and the tail state of ¢, respectively. tuput is cither
an input interaction from I or empty. prcd is a Pascal-like predicate expressed in
terms of the variables in V, the parameters of the input interaction inpul and some
constants. The compute_block is a computation block which consists of Pascal-like

assignment statements and output statements. While the left side of an assignment

statement can have only a variable. the expression in the right side can have the in-
put interaction parameter from the input interaction of the transition. variables and
constants, of course with suitable operators. A compouent of a transition can also
be represented by postfixing the trancition with a period followed by the name of the
component. For example 1.pred represents the predicate component of the transition
. Note that. unlike a variable. the scope of a parameter in an input interaction of a
transition is restricted to the transition only. Let m denote the number of transitions<
in M. We will assume that m > n.

As defined in Section 1.2, a walk is a sequence of transitions where the tail state
of every transition. except the last transition. is the starting state of its successive
transition. The starting state of the first transition and the tail state of the last
transition in a walk are called the starting state and the tail state of the walk.
1espectively, Recall that a wa' ,aid to be closed if the tail state of the walk is
also the starting state of the walk. A closed walk which starts and ends at the initial
state is referred to as a tour.

A transition in M with empty input interaction is called a spontaneous tran-
sition. A spontaneous transition is referred to as a silent transition if its compu-
tation block does not have any output statement. A silent walk is a walk which has
only silent transitions.

A context of A is the set {(var.val) | var € V" and val is a value of var from
its domain }. A valid context of a state in M is a contex* which is established when
M's execntion proceeds along a walk from the initial state to the given state.

Let t = (source.dest.input, pred, compute block) be a non-spontaneous transi-
tion in M. tis said to be executableif (i) M is in the state ¢.source . (ii) there is an
input interaction of type 7 at the interaction point ip. where t.input = ip?i(parlist).
and (iii) the valid context of the state and the values of the input interaction pa-

rameters in parlist are such that the predicate t.pred evaluates to true. Ilf t =

136

(source.dest. input. pred. compute block). where input = ., is a spontancous transi-
tion. then t is executable if (i) M is in the state t.source and (11) the valid context
of the state is such that t.pred evaluates to true. When a transition is executed, all
the statements in its computation block get executed sequentially and the machine
goes to the destination state of the transition after the execution.

A walk W in A is said to be executable if all the transitions in W are exe-
cutable sequentially. starting from the beginning of the walk.

A walk W in M can be executed symbolically [(laT6] by assuming distinet
svmbolic values for the local variables at the begiuning of W' as well as distinet
svinbolic values for the input interaction parameters along W, Note that the same
input interaction parameter occurring in two different transitions has to b treated
differently. Therefore, different symbols will be taken for each such occurrence. A
symbolically executed walk is also called a (symbolically) interpreted walk.

Let ™ be a symbolically interpreted walk. Clearly the conjunction of the pred-
icates along W is also interpreted and is expressed in terms of the initial symbolic
values for the local variables and the symbolic values for the input interaction param-
eters. W is said to be satisfiable if the conjunction of the interpreted predicates is
satisfiable.

Note that a walk whicl is executable is always satisfiavle. However. its converse
is not true. This is because none of the possible values for the variables which made
I’ satisfiable may be a valid context at the starting state of the walk. That is, these
values are not ‘settable’ by any of the executable walks from the initial state to the
starting state of 1",

A specification described as an EFSM as defined above is also known as a
normal form specification [SB86]. In their paper [SB86] Sarikaya and Bochmann
have presented an algorithm for transforming an Estelle module into a normal form
specification. The priority clause in an Estelle module can be eliminated using the

approach proposed by Chun and Amer in [(CA91]. The transition with delay clause

137

can be treated as a spontaneous transition in the EFSM. This is due to the difficulty in
evaluating the relative speeds of the implementation of a protocol and the testing unit
[CA91]. In [LL91] Lee and Lee have proposed a method for transforming protocols
specified as a system of communicating Estelle modules into a control flow graph
which is similar to the EFSM. In [UW93] Ural and Williams provide a mapping for
transforming an SDL process or procedure into an equivalent flow graph. The flow
graph is similar to the EFSM model studied in this thesis. Methods are also available
in the literature [Kar88, Tri92] for tranzforming protocols specified in SDL or LOTOS
into labeled transition systems which are similar to the EFSM. Thus. the proposed
test case generation method based on the EFSM model can be applied for generating
test cases for protocols which are specified in Estelle, LOTOS, or SDL.

The EFSM representation of the specification, henceforth referred to as SPEC.
and the EFSM representation of the implementation, denoted as IUT, of the protocol
are assumed to be deterministic. That is, for a given valid context of a state. there
exists al most one executable outgoing transition from that state. We assume that the
interaction points in the SPEC and the IUT are controllable and observable. In other
words, we assume that we can directly apply/observe interactions at the interaction
points of the SPEC and the TUT.

An EFSM M is said to be completely specified if it always accepts any
input interaction defined for the EFSM. We assume that the SPEC and the IUT are
completely specified. An arbitrary EFSM M can be transformed into a completely
specified one using what is called a completeness transfermation described next.
Given a valid context of a state and an instantiated input interaction, suppose that
M does not have an executable outgoing non-spontaneous transition at the state
for the given valid context and the input interaction, and that M does rot have an
outgoing spontaneous transition at the state such that it is executable for the given
valid context, then according to the completeness transformation a self-loop transition

is added at the state such that it is executable for the given context and the input

138

interaction. The newly added transitions are called non-core transitions and they
do not have computation blocks.

It is assumed that for every transition in the SPEC', the SPEC' has an exe-
cutable walk from the initial state to the starting state of the transition such that
the transition is executable for the resulting valid context. Similarly, we assume that
the initial state is always reachable from any state with a given valid context. We
further assume that the SPEC has no satisfiable silent closed walk of length greater
than AV, for a fixed integer A* > 1. Observe that all the variables in our EFSM model
are assumed to be of types integer, real, boolean, character and character string only.

That is. we do not consider dynamic data structures,

5.1.1 An Example

As an example of a SPEC, let us consider a major module (AP-module in [Boc90])
of a simplified version of a class 2 transport protocol [I1S8073]. This module par-
ticipates in connection establishment, data transfer, end-to-end flow control, and
segmentation. It has the interaction point labeled U connected to the transport ser-
vice access point and another interaction point labeled N connected to a mapping
module. Here. we represent the EFSM SPEC = (5,s,1,0,T,V) of this module,
We would like to note that the SPEC is obtained from the AP-module by elimi-
nating a few non-determinisms in certain transitions starting from the data transfer
state. This EFSM is used throughout this chapter for illustrating various points. Let

S = {s1, 82, 83, S4, S5, 56} The following is the set of input interactions (1):

{U?TCONreq(dest_add, prop-opt), U?TCON-resp(accpt_opt),
U?TDISreq, U?TDATreq(Udata, EoSDii), UZU.READY(cr),
N?TrCR(peer.add, opt.ind, cr), N?TrCC(opt-ind, cr),
N?TrDR(disc_reason, switch), N?TrDT(send_sq, Ndata, EoTSDU),
N?TrAK(XpSsq, cr), N?ready, N7terminated, N?TrDC }

139

125, 626,127 133,134,135

t1

122,123,124
t8 through t15
116,131,132

t36, 37,138

128, 129,30

Figure 5.1: An EFSM for the AP-module in the Class 2 transport protocol

The set O of ontput interactions is given below:

{UITCONconf(opt). MTCONind(peer-add, opt), U'TDISind(msg),
UITDATAiInd(data, EoTSDU), Ulerror, UUREADY, U!TDISconf,
N!TrCR (dest_add, opt, credit), N'TrDR(reason, switch),
Nlterminated, N!TrC'C(opt, credit), N!TrDT(sq-no, data, EoSDU),
NiTrAK(sqmo, credit), Nlerror, NITrDC}

V={op!l, R_credit, S_credit, TRsq, TSsq }. All the variables in V' are of integer
type. The transitions are shown in Figure 5.1, Table 5.1 , Table 5.2 and Table 5.3.
The state sy is repeated in the figure merel:’ for convenience. Note that the transitions
t1 to t21 are the only core transitions. 122 through ¢38 are some of the non-core tran-
sitions. While the non-core transitions do not have the computation block, transitions

22 through 38 do not have predicates either.

140

Tr. | Input Predicate Compute-block
t1 | U?TCONreq(dst-add, opt:= prop.opt;
prop.opt) R-credit := ()
NITrCR(dst.add,opt,R_credit)
t2 | N?TrCR(peer.add, opt := opt.ind; S_credit = cr;
opt_ind, cr) R_credit := 0;
UWITCONind(peer.add, opt)
t3 | N?TrCC(opt.ind.cr) optnd < opt TRsq:=0:TS~q:=0;
opt := opt.ind; S_credit ‘= er,
UITCONconf(opt)
t4 | N7TrCC(optand, cr) opt.ind > opt UITDISind(* procedure error’),
NITrDR (‘procedure error’, false)
th N?TrDR(disc_reason, UITDISind(disc_reason);)
swileh) Niterminated
t6 | U?TCONresp(accpt-opt) | acept_opt < opt | opt := acept_opt;
TRsq := 0, TSsq = 0;
NITrCC(opt, R.ocredit)
t7 | U7TDISreq NITrDR(*User tmtiated’ | true)
t8 U?TDATreq(Udata, S_credit > 0 S_credii 1= S_eredit—1;
Eo$DU) NITrDT(TSsq, Udata, EoSDU);
TSsq := (TSsq + 1)med128;
t9 | N?TrDT(send_sq, Ndata, | R-credit # 0 A | TRsq := (TRsq + 1)}mod 128;
EoTSDU) send_sq = TRsq | R_credit := R_credit — 1;
UITDATAInd(Ndata, EoTSDU);
NITrAK(TRsq, R_credit)
t10 [N?TrDT(send_sq, Ndata, | R.credit = 0 vV | Nlerror;
EoTSDU) send.sq # TRsq | Ulerror
t11 | UZU_READY (cr) R-credit := R.credit+er,

NITrAK(TRsq, Roeredit)

Table 5.1: Core transitions in the transport protocol

141

Tr | Input Predicate Compute-block
112 | N7TrAK(XpSsq, cr) TSsq> XpSsq A S_credit :=
cr+ XpSsq —TSsqg >0 A cr+ XpSsqg — TSsq
cr 4+ XpSsq —TSsg < 15
t1d | N7IrAK(XpSsqy, cr) TSsq>XpSsq A Ulerror;
(er 4+ XpSsy =TSsg <0V Nlerror
er 4+ XpSsq — TSsqg > 15)
t14 | N7TrAK(XpSsq, cr) TSsq< XpSsy A S_credit =
er 4+ XpSsq—TSsqg—12820A cr+ XpSsqg — TSsq — 128
er+ XpSsg — TSsqg — 128< 15
115 | N7TrAK(XpSsy, er) TSsq< XpSsy A Ulerror,
(er + XpSsqg — TSsq — 128 <0V | Nlerror
cr + XpSsqg — T'Ssq — 128 > 15H)
t16 | N7ready S.eredst > 0 U'READY
117 | U?TDEsreq NITrDR(User imtiated’,
Sfalse)
t18 | N7TrDR (dise_reason, UITDISin (disc_reason).
swileh) NI'TrDC
t19 | N?ternnnated U'TDISconf -
120 | N?TrDC Nlterminated;
U!ITDISconf
121 | N7TrDR (discreason, Nlterminated

switeh)

Table 5.2: Core transitions in the trausport protocol (Contd.)

Transitions

Input

125, 128, t31, t33. t36
23, t26, t34, t35
122, 129, t37
t24. 127, 30, t32, t35

U?TDISreq

N?terminated

U?TCONreq(dest-add, prop-opt)

N?TrDR(disc_reason, switch)

Table 5.3: Non-core transitions in the transport protocol

5.1.2 Unique Input Sequence

An input sequence in an EFSM is a sequence of input interactions. where cach input
interaction, as we know. consists of the name of an interaction point, name of the
interaction type, and a set of input interaction parameters. An input sequence is said
to be instantiated if all the parameters in the sequencs are properly instantiated
with values. Given an instantiated input sequence X, a state s, and a valid context
C at s,, Ewalk(i. X.() denotes the unique walk traversed when X is applied to the
SPEC which is currently at s, with the context (.

A test sequence is a sequence of input interactions and output interactions. A
seguence of zero or more output interactions between two successive input interactions
i a test sequence is the sequence to be observed after applying the vreceding input
interaction to an EFSM and hefore applying the succeeding one.

The sequence of input and output interactions along a satisfiable walk W is
denoted as Trace(W). known as the trace of the walk W. The sequence of in-
put (output) interactions along a walk W™ is denoted by Inseq(W) (Outseq(W)).
Tracc(W) and Outscq(M7) are actually obtained by symbolically exeeuting U for
some symbolic values for the variables at the starting state of W and for the syin-
bolic values of the input interaction parameters along W. It is casy to see that these
sequences are expressed in terms of the symbolic values and constants. Suppose “hat
the actual value of a symbol is known. then the corresponding sequences can be oh-
tained from the above sequences by replacing the symbol by the value throughout the
sequences.

Two input interactions are said to be distinguishable if: (i) they occur at
two different interaction points or (ii) their interaction types are different. We say
that two output interactions are distinguishable if at feast one of the following is
true: (i) they occur at two different interaction points, (ii) their interaction types
are different, and (iii) if the parameters in a given position in both interactions are

constants then they are different.

143

For example. the oatput interactions N!TrDR(‘procedure error’, false) and
NI'TrDR(‘procedure error’y true) are distinguishable. However, N!TrDT(TS5sq,
Udata, EoSDU! ...-d NITrDT(TRsq, Udata, EoSDU) are not distinguishable.

An input interaction is obviously distinguishable from an output interaction.
The total number of input and output interactions - each occurrence of an interaction
is counted - in a sequence is called the length of the sequence. Let S; and Sz be
two sequences of input and/or output interactions. Assume that they are of the same
length. In order to check for distinguishability of the two sequences, starting from
the first position the interactions in S; and S, are checked position-wise. S; and
Sy are said to be distinguishable if the interactions in at least one position in .S
and S, are distinguishable. Otherwise, they are said to be indistinguishable. Two
sequences of different lengths are always distinguishable.

Let W be an executable walk at s,. Let {7 be an instantiation of Inseq(117). We
define I as an Unique Input Sequence (UIS) of s, if Trace(W') is distinguishable
from Tracc (W), for any satisfiable walk W at state sg, for k =1,2,...,n,k # J. In
this case, W is called an UIS walk for 7. Note that it is enough to check only those

walks U with Inscqg(W) = Inscg(H7).

r.1.3 Control Flow Fault Model

We assume the the TUT has the same number of states as the SPEC. Let s; denote
the TUT state corresponding to s,, 1 < j' < n.

A transition ¢ from s, to s in the SPEC is said to have a simple control flow
fault in the IUT if the corresponding transition from s; terminates at some state s;,.
where p 3 k.

A transition ¢ from s, to & in the SPEC is said to have output interaction
type fault in the IUT, if the sequence of output interaction types of the corresponding
transition in the TUT is different from that of ¢.

We define the control flow fault coverage of a test case gene:ation method

144

for the EFSM model as the percentage of faulty implementations the method deteets
from the set of all implementations with any number of simple control flow faults
and/or output interaction type faults, only.

The data-oriented fault model for the EFSM will be discussed in Section 5.5.2.

5.2 Test Case Selection Criteria

In this section we define the coverage criteria for the control flow and the data flow.

5.2.1 Control Flow Coverage

Our test generation scheme for the coutrol flow coverage is similar to the W-method
[ChoT8]. We would like to apply an UIS of every state at the tail state of the transition
under test. A careful selection of the UlISs is required since an arbitrary UIS for cach
state may not be sufficient to generate test cases. For example, let {7 he an UIS for
s, and let U™ be the UIS walk of {/. Let ¢ be an incoming transition at s, and . he
the starting state of {. In order to test ¢, we need to compute an executable preamble
walk P, from s; to s, and associate values for the input interaction parameters along,
P, and t such that P, t W is executable. For a given W, it is in general difficult to
find a P so that the walk P, t W is executable.

A walk from a state is said to be context independent if the predicate
of every transition along the walk, duly interpreted, is independent of the symbolic
values of the local variables at the starting of the walk. Observe that every context
independent satisfiable walk is executable.

We introduce a special type of UIS, called Context Independent Uniqu:
Sequence (CIUS). Let U, be an UIS of s, and let U(z) be the corresponding UIS
walk at s,. U, is said to be a CIUS of s, if U/(7) is context independent and exceeutable.

Note that all the local variables used in the predicate of each transition in 1/(7)

are defined within U/(z) prior to their use. In other words, the predicates along /(7)

145

are independent of any valid context at s,. Therefore, U7(7) can be postfixed to any
executable walk from the initial state to s, and the resulting walk is also executable.
This property reduces the complexity of computing feasible test cases for the control
How coverage.

In the next section, we present an algorithm for computing a CIUS for a state.
Note that a CIUS is simply a sequence of input interactions and is always instantiated.
The test subsequence which corresponds to the application of a CIUS at a state is the
trace along a walk which is executed when the CIUS is applied at that state. Thus.
in this sequence, cach input interaction of the CIUS will be followed by a sequence
of zero or more output interactions to be observed before applying the next input
mmteraction. This test subsequence. of course, depends on the state where the CIUS
is applied and the valid context of the state if the CIUS is not for this state,

A CIUS is said to be eyelic if the corresponding C'IUS walk is a cycle. We
assume that the SPEC has a cyclic CIUS U/ for its initial state, which is also a
cycliec CIUS for the initial state of the IUT. This, in our view, is easy to realize
in practice. For example, the SPEC can be designed and the IUT implemented
such that their initial states have a self-loop with an unique input interaction and
an output interaction. Observe that this is similar to the “status/state” self-loop
transition proposed in [DSU30b]. However, we need such a transition only for the
initial states of the machines. Let 7, be a CIUS for the state s,, 2 < 7 < n. Let
U ={l/,|1 <i<n}. Wecall f as a CIUS set. Our control flow coverage criterion,
called the trans-CIUS-set criterion is to select a set 7 of executable tours such
that for each transition ¢ in the SPEC and for each U, € U, T has a tour which
traverses ¢ followed by {/,. An executable walk from the initial state to the starting
state of a transition t is called a preamble walk for ¢ if Wt is also executable. In
Section 5.5.1, we present an algorithm for generating a set of feasible test tours for
covering this control flow criterion as well as the data flow coverage criterion which

is established in the following,.

146

5.2.2 Data Flow Coverage

The data flow testing is basically to check if the implementation has the right flow of
information as its execution proceeds. A hicrarchy of data flow coverage criteria has
been proposed in [RWS85] for testing computer programs. It is proved that the “all-
uses” criterion is superior to those criteria, for instance the “all-defs™ eriterion, which
can be satisfied by a polynomial order set of test cases [Wey84, RWSH). Ural and
Williams [UW3] have recently used the all-uses criterion for generating test cases
for protocols specified in SDL. Due to the black-box approach of protocol testing,
the set of test cases which satisfies the all-uses eriterion may not have observability.
For the data flow coverage. we extend the all-uses criterion to what is called o def-
use-ob criterion. An useful property of the def-use-ob eriterion is that the set of
test cases selected as per this criterion facilitates the tester to observe every def-use
association in the protocol. The observable extension is similar to the one proposed
for the 10-def-chain criterion {UY91].

We introduce some definitions before formally defining the def-use-ob criterion.
A parameter v occurring in the input interaction of a transition t is referred to as a
def and is denoted by t./.v. Similarly, a variable v in the left side of an assignment
statement at the location ¢ in the computation block of a transition { is also said
to be a def and it is denoted by t.e.o. The use of a variable or input interaction
parameter v in the predicate of a transition { is called a p-use and is denoted by 1./.0.
The variable/input interaction parameter v used in the right side of an assignment
statement at the location ¢l in the computation binck of a transition { is referred
to as a c-use and is denoted by t.cl.v. Similarly, the variable/input interaction
parameter v appearing as a parameter in the output interaction at the location ¢2 in
the computation block of a transition t is referred to as a e-use and it is denoted by
t.c2.v. By an use. we refer to a p-use, a c-use or a o-use.

A def-use pair D with rospect to a variable/parameter v is an ordered pair

of def and use of v such that there exists a walk in the SPEC which satisfies the

147

following: (i) the first transition in the walk is the one where v is defined (i.e., where
the def ocenrs) and the last transition of the walk is the one where v is used (i.e..
where the nse occurs) and (i) v is not redefined in the walk between the location
where it is originally defined and the location where it is used. Such a walk is called
a def-clear walk for 1. Note that the walk could be a single transition.

Let D be the set of all def-use pairs for all the variables and inpvt interaction
parameters. The same input interaction parameter occurring in two different trausi-
tions are treated as distin~t. The def-use pairs in D can be classified into five types

as follows.

type 1: An input parameter v is defined in the input interaction of a transition ¢,
and is used in the predicate of the same transition. Such a pair is denoted by

(/].I.l,.]’)!‘.

type 2: An input parameter v is defined in the input interaction of a transition #;
and is used in an output statement ¢, in the computation block of the same

transition. Such a pair is denoted by (¢;.1,4;.¢5)0.

type 3: An input parameter v is defined in the input interaction of a transition {,
and is used in an assignment statement ¢z in the computation block of the same

transition, Such a pair is denoted by (¢;,.1,1;.c3)v.

type 4: A vaiiabie v is defined in an assignment statement ¢, in the computation
block of a transition t; and is used in the predicate of another transition ¢,.

Such a pair is denoted by (¢;.¢.1,5.P)v.

type 5: A variable v is defined in statement ¢; in the computation block of a tran-
sition ¢y and is used in statement ¢, in the computation block of a transition
ta. Such a pair is denoted by (ty.¢;.t5.c;)v. Note that ¢; can either be an

-

assignment statement or an output statement.

'he def-use pairs of types 1 and 2 are not considered here because, as we shall
see later. they are covered for the def-use-ob criterion by our trans-CIUS-set eriterion
itself. We assume that the set D of all def-use pairs of types 3.4 and 5 in the SPEC
is known. Note that, apart from the usual def-use pairs where the def and the use
belong to different transitions. D also includes the def-use pairs within a transition.
A minor modification of the algorithm presented in [('Z93] would suflice to obtain D.
This modification is to consider the def-use pairs within a transition.

Let [(I') be a location in transition { (') where a variable/parameter ¢ (0f) is
defined (used). Suppose that X = DD, ... Dy, where bk > 1. is a sequence of def use
pairs such that (i) D, is a def-use pair for variable oo i = 1200000k (1) vy = v and
1 = v and the source of Dy is t.l and the destination of Dy is .U, (iii) the use part
of D, is for defining vy, where 1 = 1,2,.... 0k = L and (iv) if & = 1, then v = o',
Then. X is called an information flow chain from the definition of v at the location
[of transition to the use of v’ at the location " of transition ¢°. Further, if a walk
W has a subwalk W’ with ¢ and ¢’ as the first and the last transition such that 117
can be expressed as W' = WijoW,a «lfy where W, is a def-clear walk for 1), for
i =1.2,...k, then. we say that X is an information flow chain along W'

Our def-use-ob criterion requires the selection of a set of executable tours
such that for each feasible def-use pair) € D, the set has at least one tour, say T,

satisfying the following conditions.
(a) If the use part in D is an o-use, then T contains a def-clear walk for 1.

(b) If the use part in D is a p-use, then T' contains a def-clear walk W for 1) followed

by the CIUS walk U(j), where s, is the tail state of W1.

(c) If the use part in D is a c-use, then T contains a walk W2 followed by o walk
'3, where W2 is a def-clear walk for D) and W3 has an information flow chain
from the variable which is defined at the location where the variable for 1) s

c-used to a location where a variable is either o-used or p-used. Moreover, if

149

the information flow chain terminates in a p-use variable. then. i T, W3 is

followed by the CIUS walk ['(p). where s, is the tail state of 173,

Condition (a) takes care of the def-use association for all the def-use pairs in which
the use part is an o-use. If the use part of D is a p-use, then apart from meeting
the def-use association, by applying the CIUS of s,, condition (b) enables the tester
to check if the predicate of the transition where the p-use occurs evaluates to true
as expected. On the other hand, if the use part of D is a c-use. then condition
(¢) enables the tester to observe the effect of the value computed. Actually. this
valtie Hlows through other intermediate variables along T until it is used in an output
statement o1 in a predicate of a transition. In addition. the correct evaluation of the
predicate is ensured by 7" as in condition (b).

An executable walk 7 starting from the initial state is called a preamble walk
for D if it satisfies conditions (a). (b) and (c¢) where T is replaced by 1.

We know that. as per the trans-CIUS-set criterion. each transition followed by
the CIUS of the tail state of the transition will be covered by at least one tour.
Clearly. this ionr also covers all the def-use pairs of types 1 and 2 for the def-use-ob
criterion,

We define a new type of Data Flow Graph (DFG) to represent the data flow
information on a particular executable walk starting from the initial state. Given a
transition ¢ in such a walk W', the data flow graph for ¢ with respect to W contains
the data flow information along W for all the input interaction parameters and local
variables defined in t. Suppose D; C D such that each def-use pair in D, has its defl
part in {. Then, this graph is useful in computing the subset of Dy, for which this
walk is a preamble walk, except possibly for the CIUS walk extension.

The data flow graph has four types of nodes: i-node, c-node. p-node and o-node.

e Aun i-node is labeled as (¢, /,v) and it corresponds to the definition of the

parameter v in the input interaction of the transition {.

e A c-nodeislabeled as (¢.¢.v) and it corresponds to the definition of the variable

v in the assignment statement ¢ of the transition 1.

e A p-node is labeled as (2.) and it indicates that the node corresponds to the

predicate of the transition {.

e A o-node is labeled as (¢,¢) and it simply denotes that it corresponds to the

output statement ¢ in the computation block of the trausition ¢.

The data flow graph for the transition ¢ with respect to the walk # which contains
tis denoted by DFG[7. W', DFG[.] has a connected subgraph ¢ for each definition
of a variable or a input interaction parameter, say v, in {. (i is a directed graph with
a unique designated node. called the root node which identifies the definition of
. If we consider the nodes to he in three different levels with the root node as the
unique node in the first level. then the edges are alwavs from the node of a given
level to a node in the next higher level. Tt is always the case that the root node of ¢/
is either an i-node (f./.v) or a c-node (f.e.v). whichi represents the definition of the
input interaction parameter v or the local variable o0 respectively. Nodes in level 2
correspond to the direct use of v in statements/predicates in W, In other words, the
pair consisting of the root node and a level 2 node is in fact a def-use pair for whicl
the part of W is a def-clear walk for this pair. The root node is connected to all the
nodes of level 2. It is easy to see that a node in level 2 can be a e-node, p-node, or
a o-node. The level 2 p-nodes and o-nodes a0 not have any outgoing edges. Similar
to a level 2 node. a level 3 node is a c-node, p-node, or a o-node such that there
exists a data flow along W from au assignment statement corresponding to at least,
one c-node in level 2 to a predicate, assignment statement, or an output statement
corresponding to this level 3 node. A c¢-node in level 2 is connected to a level 3 node
if there exists an information flow chain along W from the level 2 node to the level 3
node. For notational convenience. we also denote a node at a given level by attaching

the level number as a subscript to the label of the node, For example, a c-node

(3,1, er) (13, 1, TRaq) (t3, c2, TSeq) (3, cd, opt) (3, ¢4, S_credit)

(1L Ofl ind)

(3, ¢3, opt)

(13, c4, S_credit)

(18, c2) (13, <3, TSsq) (3,c5) (18.cl,S_credit) (g p)

(18, cl, S_credit)
(t3, c5)

DFG[O, t113x]

Figure 5.2: A data flow graph for 13 with respect to the walk £1¢3¢8

(/,e,v) at level 3 is also denoted by (2, ¢,v)s. In the graphical representation of a data
ilow graph, rectangles represent i-nodes as well as o-nodes, whereas the circles and
diamonds represent e-nodes and p-nodes. respectively.

Fignre 5.2 shows the data flow graph DFG[t3, t1¢318], for the transition {3 in
the walk 112318 of the EFSM given in Figure 5.1. The second subgraph in this data
flow graph corresponds to the definition of the input interaction parameter cr. Hence
the root node of the subgraph is the i-node (#3,/.cr). Since cr is directly used in
the definition of the variable S_eredit at the fourth computation statement in ¢3, this
subgraph has zn edge from (23,1, cr) to the level 2 c-node (13, ¢4, S_credit). Similarly
the edges from (3, ¢4, S_credit) to the level 3 nodes (¢8, P) and (8, cl, S_credit) indi-
cate that the variable S_ercdit defined in 13.¢4 is p-used at the predicate of transition
(8 and c-used in the definition of S_eredit at the first statement in the computation
block of 18, respectively.

Algorithms for constructing and manipulating a data flow graph are presented in
Section 5.4, In the following, we establish that the trans-CIUS-set and the def-use-ob

criteria together require only a set of test tours of quadratic order.

152

Theorem 5.1 The order of the set of test tours required to satisfy the trans-CIHUS-set

and the dcf-usc-ob criteria together is quadratic in the numbcr of transitic as in the

EFSM SPEC.

Proof:

Let n denote the number of states in the SPEC. We know that the trans-CIUS-
set criterion requires the selection of a sel T of executable tours such that for cach
transition ¢ in the SPEC. and for each U/, € U, T has a tour which traverses t followed
by the walk along {7,. Thus, this criterion requires a maximum of n tours for cach
transition. Therefore. the maximum number of tonrs required to satisfv this criterion
is only m x n, where m is the number of transitions.

Let Par and Oy denote maximum number of input interaction parameters
in any input interaction and the maximum number of statements in the computation
block of any transition, respectively. Thus the maximum number of definitions in
the SPEC is only m(Par + Char). Suppose (', is the maximum number of times
a variable or an interaction parameter is used in a predicate, or in a computation
statement. Then, the maximum number of def-use pairs in D is only m*(P, +
Conar(Criar -+ 1)Cy. Inorder to satisfv the def-use-ob criterion, we need only one
tour for each def-use pair in D. Therefore, the maximum number of tours to satisfy
the def-use-ob criterion is O(m?).

Since m > n. from the above we conclude that the order of the set of west tours
required to satisfy the trans-CIUS-set and the def-use-ob criteria together is quadratic

in the number of transitions.
]

In the following section we develop an algorithm for computing a CIUS of a

given state.

153

Q-G D6

Figure 5.3: Different walks with the same behavior sequence a/o
5.3 CIUS Computation Algorithm

The presence of contexts and predicates in the transitions makes the EFSM model
more powerful than the FSM model. Unlike a transition in an FFSM. the one in an
IEFFSM need not have both an input and an output. Due to these enhancements and
the special characteristics of the CIUS, the existing algorithm [SD88] for computing
UIO-sequence is not suitable for the CIUS computation. For iustance, in order to
find whether a state in an FSM produces an output o when an input a is applied. it
is enough to check if the state has any outgoing transition with the label a/o. But in
an EFSM, any of the two types of feasible walks from the state, say s,. as shown in
Figure 5.3, may have the same trace; therefore their presence has to be analyzed. In
the figure. the dashed edges with label = denote walks consisting of a finite number
(possibly zero) of silent transitions. ?a and lo indicate the input interaction « and
the output interaction o, respectively. Note that these iuteractions do not have any
parameter. In this section, we develop an algorithm for computing a C1US of a given
state in the EFSM SPEC. In order to guarantee the termination of the algorithm, as
stated earlier, we assume that the SPEC has no satisfiable silent closed walk of length
more than A" for some integer K > 1.

Let WL and W2 be two satisfiable walks in the SPEC. Let { be the last transition
in W1l We sav that Trace(W1) subsumes Trace(1W2) if there exists a sequence
0N of zero or more output interactions at the end of ¢ such that Trace(W1) and

Trace(W2)@OS are indistinguishable. OS is called the surplus sequence in 1’1

154

with respect to W2, By a null walk at a state , we refer to an empty walk, a walk
without any transition. starting and ending at that state. We first present a higher

level description of the proposed algorithm.

Input: An EFSM SPEC and a state s, in SPE(C

Output: If it exists, a CIUS for s such that its underlying,

walk W’ is of length < 2n? and W has only uon-silent transitions.

Step O { Initialization }

(i) Wset := { the null walk at s, }.
(i1) OWset:= { the null walk at &, | 1 <)< j#k}.
(iii) L := 0.
Step 1 { Iterative step }
(i) repeat (a) to (¢) until L > 20%:
(a) L:= L+ 1.
(b) Set TWset and TOWscl to the empty set,
(¢) Do Step 2.
(ii) Stop.

Step 2 { Compute TWset. the set of all context independent exeeutable
walks of length L at si. Also, compute TOWset, the set of all satisfiable
walks from the other states such that the trace of cach walk
subsumes the trace of a walk in TWset. }

(i) Do Step 2.1 for each walk W € Wasct and for each non-silent,
outgoing transition ¢ in the SPEC at the tail state of W.

(i1) Copy TWsct to Wiset.

(iii) Copy TOWsct to OWscl.

Step 2.1 { For a given walk W and a transition ¢, if W! is a context
independent executable walk. then find the set of all satisfiable walks from
states other than s, such that the trace of cach walk subsumes the trace of

Wi, 1f the latter set is empty, then Inseq(W1) is the required CIUS of .}

(i) If W L is a context independent executable walk then do the following
in that order.

a) Let W' be the walk W (.

)
h) Add W' to TWisct.
)

(
(
(¢) Initialize NOWset to the empty set.
(d) Do Step 2.1.1 for each walk W} in OWset.
(¢) If NOWsct is empty then Declare Inseqg(W {) as the CIUS and <top.
Step 2.1.1
(i) H there exists a satisfiable extended walk W5 in the SPEC for 11
such that Tracec (W) subsumes Trace(W’) then do the following:

(a) Add all such satisfiable extended walks of Wy to TOW sct.
(b) Add all such satisfiable extended walks of U7y to NOWset.

This algorithm computes a C'1US of the state s, in the SPEC such that the walk from
sy which corresponds to the C'IUS is of length at most 2n%. For better controllabil-
ity and observability while testing. these walks are allowed to have only non-silent
transitions. However, the algorithm can easily be adapted to compute ('1US walks
with silent transitions. We would like to note that there may exist a state which does
not have a CIUS, in general. and the CIUS with this length and non-silent transition
restriction, in particular.

At the beginning of the ith iteration of Step 1, Wsef contains the set of zll
context independent executable walks of length (i — 1) which starts from s;. At the
same instant, OWset contains the set of all satisfiable walks from all the states other
than s, such that the trace of every walk in OWsel subsumes the trace of a walk
in Wasel. In Step 0, Wset is initialized with the null walk at s, and OWset contains
the null walk at s, for all j,1 < j < n,j # k. Step 1 is the iterative step which is
repeated at most 2n? times,

When the 7th iteration of Step | invokes Step 2, the latter step computes a set

156

(TWset) of context independent executable walks of length 7 which start from s,
This is done by checking the executability of the walk obtained from cach walk 1V’
in Wset by appending each non-silent outgoing transition from the tail state of W
to 1V, Step 2 also computes the set (TOWisct) of all satisfiable walks from any state
other than s, such that the trace along a walk in this set subsumes the trace along
some walk in TWiset. Step 2 does these computations by repeatedly calling Step 2.1
which in turn invokes Step 2.1.1 many times. T'Wsef and TOWset become Wael and
OWset, respectively. for the (7 4+ 1)th iteration. Step 2.1 and Step 2.1.1 are explained
below.

Given a walk W € Wset and a non-silent outgoing transition from the tail state
of W.if the walk W7 = W 1 is executable and context independent, then Step 2.1
adds this walk to TWascl. For each walk Wy € OWset. Step 2.1 invokes Step 2.1.1
for computing the set of all satisfiable walk extensions of Wy such that the traces of
the resulting walks subsume the Trace (7). In YOHWsel, Step 2.1 stores the set of
all satisfiable walks from any state other than s, such ihat the trace along a walk in
this set subsumes the trace along a walk W’ € TWset. If NOWset is empty, then the
trace along W' is clearly a CIUS of s;. And in this case the algorithm terminates. If
NOWset is not empty for all the 2n? iteratious, then the algorithm terminates without
finding a CIUS for »;.

Given a walk U € OWsel, and a walk W' € TWset, Step 2.1.1 computes the
set of all satisfiable walk extensions of W) such that the traces of the resulting walks
subsume Trace(W'). The extended walks are added 1o TOWset as well as NOWscl.

We shall now present the formal description of a more detailed algorithm. Ex-
planations for the various steps in the algorithm are given after the formal description.
It uses the function Prefix(X,Y), where X and Y are sequences of output interac-
tions. It returns true if a prefix of Y is indistinguishable from X. In this case, we

say the X is an indistinguishable prefix of Y. Otherwise. it returns false. [lhe

function DelPrefix(X,Y) returns the sequence obtained from Y by deleting the pre-
fix of Y which is indistinguishable from X provided Prefix(X,Y) is true. Throughout

this algorithm ‘@’ js used as a concatenation operator.

Algorithm ComputcCIUS (SPEC: EFSM, s state)

{ A CIUS for the state s; in the SPEC is computed such that the

CIUS walk W is of length at most 2n? and W has no silent transition,

whenever such a CIUS exists. OUTS will hold the CIUS. }

const
MAXI:
MAX2:= ...
MANI:

]

type

outlist = sequence of output interactions:

walk]l = record
trlist: list of transitions;
pred: predicate; { interpreted predicate }
dest: state: { tail state of the walk}
Sval: V. — SymExp;
{ SymExp is the set of all symbolic expressions }
{ Sval(v) is the symbolic expression for the variable v
at the end of a walk of type walkl }

end;

walk?2 = record
trlist: list of transitions;
pred: predicate ; { interpreted predicates }
source: state; { starting state }
dest: state: { tail state }

Sval: V' — SymExp:

158

{ SymExp is the set of all symbolic expressions }
surpol:outlist;
{ sequence of surplus ouput interactions at the last transition in the walk }
end;
var
walk, twalk: array[l1..MAX1] of walk] ; { walks from state s; }
owalk, towalk: array[l.MAXI, 1.MAX2)] of walk2 ;
{ walks from other states }
NW., NTW: integer;
NOW. NTOW: array[l..MAX3] of integer:
i,j.L: integer:;
OUTS:sequence of input interactions;
temp: walk?:
a : input interaction:
go. gol. sol: outlist;
Ipred: predicate; { interpreted predicate }
begin
NW := 1; NOW[l} := n—1; OU'1S := §;
with walk[l] do begin
dest 1= sy
trlist := @; pred := 0
for each variable v € V do
Sval(v) := a unique symbolic value for v;
end
for j:= 1 tok-1 do
with owalk[1,j] do begin
source 1= s,; dest 1= 5

trlist := @; pred := §;

159

surpol := 0

for each variable v € V do
Sval(v) := a unique symbolic value for v;
end
for j := kto n—1do
with owalk[],j] do begin
source := 8,41; dest 1= s,44;
trhist := @; pred := §;

surpol :=§

end

L=

while (OUTS=) and L. < 2n?) do begin
L:=L+1;

NTW := 0
fori:=1to NW do
for each non-silent t € out(walk|i].dest) do begin
Obtain Ipred by interpreting t.pred as per the symbolic values
in walkl[i].Sval and a unique symbolic value for each input
parameter.. in the input interaction of ¢, if applicable;
if (Ipred is independent of the symbolic values of the variables
at s, and (walk[i].pred A Ipred is satisfiable))
then begin
NTW := NTW + [;
with twalk[NTW] do begin
trlist := walk[i].trlist @ t;
pred := walk[i].pred @ (A Ipred);
Obtain Sval from walk[i].Sval by symbolically and

sequentially executing the statements in t ;

4

160

dest := t.dest;
end;
NTOW[NTW):=0: a := t.input;
go:= sequence of symbolically interpreted output
interactions in ¢;
for j:= 1 to NOWJ[i] do begin
if (a = 0 or owalk[i,j].surpol = @) then
{ otherwise no extension }
if (owalk[i,j].surpol = () then
ExtendWalk(a. go. owalk[i.j])
else if 'refix(go, owalk[i,j].surpol) then begin
{ observe that =0 }
NTOW([NTW] := NTOW[NTW] + I;
with towalk[NTW. NTOW[N'TW]] do begin
trlist := owalkli,j].trlist;
pred := owalk|i,j).pred;
source := owalk[i,j].source;
dest = owalk[i,j].dest;
surpol == DelPrefix(go, owalk[i,j].surpol);
{ surpol is obtained by removing the prefix
of owalk(i,j].surpol, which is indistinguishabie
from go, from owalk|i,j].surpol }
end
end
{a =0 at this point }
else if Prefix(owalk[i,j].surpol, go) then begin
gol := DelPrefix(owalk(i,j}.surpol, go) ;
with temp do begin

161

trlist := owalk[i,j]. trlist;
pred := owalk(i,j].pred;
source := owalk[i,j].source;
dest := owalkli,j].dest;
surpol :=
end
ExtendWalk (0. gol. temp)
end
end { forj=1...}
if (NTOW[NTW] = 0) then begin
{ Trace(twalk[NTW]) is unique }
OUTS:= Inscq(twalk[NTW]):
exit;
end
end { if }
end { for each t } { fori:=1to NW }
NW = NTW;
fori:= 1 to NW do begin
walk[i] := twalk[i];
NOW]Ji] := NTOWi};
for j := 1 to NOW[i] do
owalk[i,j] := towalk[i,j]
end
end { while }

end.

procedure Ertend Walk{a:input; go:outlist; walk:walk2);

{ checks il walk could be extended for the given input interaction

162

a and outputlist go. If so it is extended }
{ i.c., it checks if walk could be extended to a walk Wl such that
walk.surpol followed by the trace along the extended part of Wi
subsumes a followed by go }
var
temp:walk?2;
osurpext, gol:outlist;
Ipred : predicate;
begin
if (a = 0 and go = @) then begin { recursion termination }
NTOW[NTW] := NTOW[NTW] + I
towalk[NTW. NTOW[NTW]] := walk:
end
else for each t € out(walk.dest) do begin
Obtain Ipred from t.pred by interpreting it with the symbolic value
of the variables as in walk.Sval and the symbolic values for the
input interaction parameters of ¢;
if(walk pred A Ipred is satisfiable) then
if (t is silent) then begin
with temp do begin
trlist := walk.trlist @ ¢ ;
pred := walk.pred @ (A Ipred);
surpol := walk.surpol;
source := walk.source;
dest := t.dest;
end:
ExtendWalk(a, go. temp)
end

163

else if {TransMove(a. go. gol. walk. t. osurpext)) then begin
with temp do begin
trlist := walk.trlist a t ;
pred 1= walk.pred a (A Ipred):

surpol := osurpext:

source ;= walk.source;
dest 1= t.dest:
end:

ExtendWalk(0. gol. temp)
end
end

end;

function TransMouve(a:input: go:outlist: var gol:outlist:
ep:walk2: t:transition: var osurpext:outlist): boolean:

{ Checks if ¢p can be extended by t for the given imput interaction «
and outputlist go. If so, TransMove is set to true and go is
adjusted to gol. Surplus output interactions in t after the extension
s returned through osurpert }
var
col. tol: outlist:
begin

tul:= sequence of symbolically interpreted output

interactions in ¢ with respect to ep:

TransMove := false:

if (a« # @) then

if (ep.surpol = 9) then

if (Linput = &) then

164

if Prefix(tol. go) then begin
gol := Delprefix(tol.go): osurpext:= §;
TransMove.= true;
end
else if Prefix(ro. tol) then begin
osurpext := DelPrefix(go. tol): gol := @
TransMove := true
end;
if (a = () then
if (t.input = 0)then begin
col := ep.surpol a tol:
if Prefix(col. go) then begin
gol := Delprefix(col. go) : osurpext :=) ;
TransMove := true
end
else if Prefix(go. col) then begin
osurpext := Delpr ‘ix(go, col): gol =0 ;
TransMove := true
end
end

end:

The algorithm uses the recursive procedure Ertend Walk which in turn uses the
function TransMove. At the end of the iteration [of the while loop in the algorithm
Compute CIUS, walk[7], 1 < 7 < NH, contaius a context independent executable
walk of length / from s(. containing only non-silent transitions. owalk|i, jl. 1 < ; <
NOWT). is a satisfiable walk from some state other than sf such that Traec(walk|{i))

is subsumed by Tracc(owalk(i. j]). At the iteration {4+ 1. every walkli). 1 <1 < NW',

165

is extended, if possible. by every non-silent transition from walk[t).dcst. to form a
context independent executable walk of length 1+ 1. Let {twalk[p]|]l < p < NTW'}
be the resulting set of walks of length { + 1. Let twalk[p] be tue walk obtained from
walk[i] by extending it with the transition £. Each walk owalk[s, j],1 < j < NOW).
is also extended, if possible, by a sequence of transitions so that the resulting walk
is satisfiable and the trace of each of the resulting walks subsumes Trace(twalk[p]).
{towalk[p.]|} <7 < NTOW/{p]} is the set of all such satisfiable walks from states
other than s, corresponding to twalk[p]. This set is also computed in this iteration.
IT NTOW([p] = 0, then clearly OUTS. the input interactions along twalk[p]. becomes
a C1US for 4. After considering all the out transitions from the tail states of walk[:].
r= 1020 NW ., if it has not found a CIUS, then the algorithm proceeds to the
next iteration. Note that as per the termination condition of the while loop in the
algorithm Computc C1US the maximum number of iterations is only 2n?.

i order to «xtend the walks owalk[i.j]. 1 < j < NOWTi], the algorithm uses
the procedure £ cndWalk which in turn calls the function TransMove. As before.
let fwalk[p) be the walk obtained from walk{z] by extending it with the transition
. owalk[i,)] is considered for extension only if { is a spontaneous transition or
awalki. j] has no surplus output interaction sequence with respect to walk[s]. For
otherwise, the trace of no extension of owalk[i. j] can subsume Trace(twalk[p]). Let
owalk]i. j] be the walk under consideration. Suppose that owalk|i, j] has a surplus
output interaction sequence (with respect to walk[i]). Then Ertead Walk is invoked
to find all satisfiable walk extensions of owalk[i,j] such that their traces subsume
Trace(twalk[p]). However, suppose that { is spontaneous and owalk|i, j] has a surplus
output interaction sequence with respect to walk(i] such that the sequence of ouput
interactions in ¢ is a prefix of this surplus sequence. Then, the iudistinguishable
prefix of the surplus sequence with respect to the output interactions in ¢ is removed.
owalk[i,)] with the resulting surplus sequence becomes towalk|[p. k] for some A since

the trace of this walk subsumes the trace of twalk{p].

166

Suppose that t is spontancous and owalk[i. j] has surplus output interactions
such that it is an indistinguishable prefix of the ontput interactions in t. Then. the
procedure ErtendWalk(, gol, tcmp) is invoked , where gol is the remaining sequence
after removing the indistinguishable prefix of go with respect to the surplus output
interactions in owalk(i,j] and temp is the walk obtained after removing the surplus
output interactic ns in owalk{i,j].

We will first explain the function TransMove. This function accepts an input
interaction (a), a list of output interactions (go). the walk (¢p) to be extended, and
the transition (1) to be tried for an extension. Let ST be the trace of ¢ for the
symbolic values of the variables as given in ep. Let X1 be the sequence obtained by
prefixing the input interaction i « to the sequence of outpr * interactions in go and
X2 be the sequence obtained by prefixing the surplus sequence in ep to S1. X
is an indistinguishable prefix of X2, then TransMove returns true. TransMove also
returns the surplus output interactions in X2 with respeet to X1 through osurpert.
If X2 is an indistinguishable prefix of X1, then TransMove also returns true. In this
case. the surplus output interactions in X1 are returned througl, gol.

The recursive procedure ErtendWalk accepts an input interaction (a), a list of
output interactions (go), and a walk (walk). It computes all satisfiable walk exten-
sions of walk such that the surplus sequence in the walk followed by the trace on the
sequence of extended transitions subsumes the trace obtaized by prefixing the input
interaction in a to the sequence of output interactions in go. This is done by extending,
walk by a sequence of transitions starting from the tail state of walk. If @ as well as
go are empty, then the procedure declares walk itself as an extension and terminates,
Otherwise, it considers all the outgoing transitions from the tail state of walk such
that walk followed by the transition is satisfiable. Let ¢ be one such transition, 1f
t is silent, then ¢ is postfixed to walk to form a new walk tcinp. and Frtend Walk is
reinvoked with the same ¢ and go along with the walk tonp. However, if 1 s not a

silent transition, then TransMove(a. go, gol, walk, { osurpcrt) is called to detenmine

167

if walk is extendible along t for the given « and go. If TransMove returns true fur-
ther extensions of walkat for the remaining sequence of output interactions obtained
through gol and osurpext is done by calling Extend Walk with suitable parameters.

We shall now discuss the complexity and correctness of the algorithm.

Lemma 5.1 Supposc that the EFSM SPEC' has no satisfiablc closed silent walk of
length more than K for some integer W > 1. Then the depth of recursion of the proce-
dure ExtendWalk during any of its invocations in ComputeCIUS is (14 Opaz) (N +1),
where Oyar is the marimum numbey of output inferactions in any transition in the
SPEC. The tolal number of recursive instantietions of ExtendWalk for a given in-
vocalion of this procedurc in Compute CIUS is al most (dov!)1+0max)N+D+E - apfy e
dptt s the e marimuom wumber of outgoing transitions including sclf-loops at any

stale.

Proof:

As the EFSM has no closed satisfiable silent walk of length more than A, it is easy
to see that ecith~r the input interaction in a. or at least one output interactior in go
will be deleted in every (K+1) successive recursive invocations of ErtendWalk. As a
result. within (14 |go|)(A 4+ 1) successive recursive invocations of ExtendWalk both «
and go will be empty and so the last instantiation of the procedure terminates. Here,
|go| denotes the number of output interactions in go. The first part of the lemma
follows from the fact that |go] < O, Since d2%, is the maximum number of times
this procedure is called at a particular invocation of Eztend Walk (i.e, the maximum
number of children in a node in the recursion tree for Ertend Walk), the total number

of recursive instantiations of the procedure for a given invocation of Ertend Walk in

ComputeCIUS is at most (d2¥! J(1+Omaz)(K+1)+1

0

Theorem 5.2 Suppose that the EFSM SPEC has no satisfiable closed silent walk of

length more than K for some integer N > 1. Then the algorithm ComputeCIUS takes

168

al most 2d°Y el (n = 1)(do YT+ 2+ (14 0mar) (A 41} 41) steps, where n, Oy

maxr maxr

and d% . arc the number of states, the maximum number of output interactions m any
transition in the EFSM, and the mazrimum number of outgoing transitions including

self-loops in any stalc, respectively.

Proof

Let 6 = (dgrt,)1 +Omand(N41) 14 is enough to analyze the time complexity of the while

mar

loop of the algorithm Computc CIUS since it dominates every other step. In the first

iteration of this loop it computes a maximum of d"* walks from the state s, In

mayg

this iteration, ExtendWalk is called at most (n — 1)d2" times. The last for loop

Ml

within the while loop is also executed at most d°*! times. Thus, this iteration takes

mar

at most 2d 4+ (n = 1)(d°")20 steps. In the second iteration, the number of walks

mar maa

from s which are considered for feasibility is at most (d2)2, The maximum number

mar

of times Extend Walk is called is (n — 1)(d9!)20. Alsc, the last for loop in the while

max

loop is performed at most (d2¥)2 times. Theiefore, this iteration will take at most

20d28 2+ (n = 1))360% steps 1 general, the maximum number of steps taken

mar maxr/

in the 7th iteration of the while loop is 2(¢*/)" 4 (n = 1)(d2",) 0", As this loop

mar mad

. - D . . . 32
is performed at most 2n? times , the algorithim takes at most 2(d%)25+ 4 (4

mais
4R
])dou{T[(lout 0]27& +1 Sl(’])S.

ma mar

0

Note that only a higher level complexity of the above algorithim is given in terms
of the number of times variaous basic steps are executed. The executions of some of
these steps may themselves be complex. For instance, finding whether a given walk
is context independent and executable is considered to be a part of a single step in

our analysis.

Theorem 5.3 Suppose that the EFSM SPEC has at least one walk W oof lougth at

most 2n? al s, € S such that (i) W is a contert indcpendent crecutable walk hamng

169

only non-silent transitions, and (it) Tracc(W) is distinguishablc from the trace of
any satisfiable walk from any state other than s;. Then, the algorithm ComputeCIUS
roturns the input scquence U along a shortest walk at sy which satisfies (i) and (ii).

U is a CIUS of 4.

Proof:

The first iteration of the while loop in ComputeUlS considers all the walks from s,
of unit length and checks if any of them satisfies the conditions (i) and (ii) of the
theorem. Condition (ii) is in fact checked in the third for loop within the while
loop by invoking the procedure ErtendWalk. 1f the algorithm finds a walk satisfying
(1) and (i), then it terminates after returning the input sequence along this walk.
Otherwise, it considers all the walks from s; of length 2 and it proceeds as above.
This process is repeated until it returns an input along a walk satisfying (i) and (ii)
or it has considered all the walks of length at most 2n? at s;. Thus. if M has walks
satisfving conditions (i) and (ii) of the theorem, then it returns the input sequence
along one such shortest walk.

Suppose that W is a walk satisfving conditions (i) and (ii). Then, (ii) implies
that if W' is a walk from s,. j # k, such that W’ may be executable for some context
and for Inseq(W). then Tracc(W) is distinguishable from Trace(W”’). Therefore
Inscqg(W) is a CIUS for sy.

5.3.1 An Illustration

Let us find a CIUS for the state sy of the EFSM given in Figure 5.1. Initially, NW=1,
walk[l].dest=xs4, walk[l].trlist=0, walk[l].pred=0, walk[1].Sval(opt)=opts, walk[1].
Sval(K_credit)=R_credity, walk{l].Sval(S_credit)=S_credity. walk[1].Sval(TRsq)=
T Rsqy. walk[1].Sval(TSsq)=T Ssq;, NOW|[l]=n-1. owalk[l.1].source=s;, owalk[1.1].
dest=s;. owalk[1.1].trlist=0. owalk{l.1].pred=0, owalk[1.1].Sval(opt)=0pt; , owalk[1,1].

170

Sval(R_credit)=R_credit,. owalk[1,1].Sval(S_credit)=S_cradity. owalk[1.1].
Sval(TRsq)=T Rsq;. owalk[1.1].5val(TSsq)=T'Ssq;. Similarly, we know the initial
values for the null walks owalk[l.2]. owalk[1.3]. owalk[l.1], and owalk[1.5] at states
$1.52, S3. 85, 8g. respectively. Without loss of generality, assume that the transition 117
from sy is chosen as the first outgoing transition from s, for executing the second for
loop within the while loop. As it has no associated predicate, the transition is auto-
matically context independent and executable, Therefore, twalk|1) is defined for the
walk £17. That is. twalk[1].trlist = 117, twalk|l].pred = . and twalk[1].dest = s,
twalk[1].Sval remains the same as walk[1].Sval since there is no change of context
in {17. Also. @ and go are set to the input interaction U?TDISreq and the output
interaction NITrDR(* User initiated”, false). respectively. NTOW[1] is initialized with
zero In the third for loop within the while loop. the walk owalk{1, 1] is selected fist.
The procedure ErtendWalk is invoked with the parameters a.go. and owalk[1,1]. in
that order. to check if it can he extended 1o satisfiable walks whose traces subsmme
Tracc(twalk{l]). The for loop of ErtendWalk is executed for every outgoing tran

sition ¢ from s;. Therefore. TransMovcfa.go.got owalk[1.1]. 1, osurpert) is invoked
for every transition ¢ from s;. The procedure TransMove returns true only for the
transition 23 since its trace UZTDISreq is an indistinguishable prefix of the sequence
U?TDISreq N!'TrDR(*User initiated’. false) - the input interaction in a followed by the
output interaction in go. Therefore, owalk[1.1] is extended to a walk {emp by post fix-
ing 123 to owalk[].1]. Note that gol will hold the output interaction NUFrDR(*User
initiated’, false) after the execution of TransMove for 123. The procedure Ertend-
Walk is invoked with the parameters, &, gol, and termp, in that order. [rtend Wall.,
in turn. calls TransMove for every outgoing transition from s;. But at this timne, cacl
invocation of TransMouve returns false since s; has no spontancous transition and gol
has an output interaction. Therefore, there is no walk starting from s; whose trace
subsumes Tracc(twalk[1]). The complete execution of the third for loop within the

while loop of ComputcCCIUS yields the same result for the states sy, sq. g, and .

171

State | CJUS Transition Seq.

5 U?TCONreq(dst_add, prop_opt)@ | t1tH
N?TrDR(disc_reason, switch)

Sy N?TrDR(disc_reason, switch) tH

Sy U?TDISreq t7

84 U?TDISreq t17

S, N?TrDR(disc_reason, switch) t21

86 N?terminated t19

Table 5.4: C'IUSs for the states in the AP-module

That is, NTOW([1] remains zero after the execution of the third for loop within the
while loop. Therefore U?TDISreq - the input sequence along twalk{1] - becomes a
C1US of s,.

The CIUSs for the states <. 04, 84,85 and s; of the AP-module thus obtained
are presented in Table 5.4, The algorithm terminates with a single iteration of the
while loop in ComputcC'1US for any of the above states. Also the maximum depth
of recursion for a given invocation of ErtendWalk in the main algorithm is only 2.
Though the given algorithm is exponential. for real life protocols which have C'1USs
for all the states, the algorithm is expected to terminate within a few iterations. as
in the above EFSM. As per our assumption. the cyclic CIUS for s; as shown in the
table is alrcady known. The transitions(t] and ¢5) which are part of this CIUS at s,
are also known to be fault free in the TUT. The parameters in the CIUSs have to he
instantiated with certain feasible values.

We have also found that a few other protocols such as a class 0 transport protocol
as specified in [UY91] and the abracadabra protocol as specified in [Tur93] have a
C1US for every state. The EFSM representation of the class 0 transport protocol has
4 states and 14 core transitions. The shortest CIUS walk for thc initial state is of
length 2. All other states have a CIUS walk of unit length. The EFSM representation
of the abracadabra protocol has 5 states and 30 core transitions. It has a CIUS set

such that the maximum length of a CIUS walk for a CIUS in this set is only 2.

5.4 Data Flow Graph Manipulation

Let W be an executable walk from the initial state of the SPEC. Let £ be a traunsition
in W. We know that the data flow graph DFG[i, W] for ¢ with respect to W has one
subgraph for each definition in 1. As defined in Section 5.2.2, a subgraph of DFG[t, W]
for a variable/parameter defined in ¢ represents the information flow chains along W
from the location in ¢ where the variable/parameter is defined to variables which are
used in locations in the subwalk of W starting from £. In this scction, we develop
different procedures for constructing and manipulating the data flow graphs.

Each walk starting from the initial state is represented by a record as deseribed

below.,

type
trwalk = sequence of transition;
walk = record
trlist: trwalk; { sequence of transitions in the walk }
pred: predicate ;
{ conjunction of the interpreted predicates along the walk }
dest: state; { tail scave of the walk }
def: set of variables; { set of variables and parameters defined }
puse: set of variables;
{ set of variables and parameters used in predicates }
Sval: def — SymExp;
{symbolic values of variables/parameters in defat the end of the walk};
recentdef: def — (transition, ‘I’ fassignment statement no)
{ walk.recentdef(v) is an ordered pair of transition and ‘I’
signifying the input interaction of the transition or the statement no.
of the assignment statement, where v is most recently defined}

end

173

The array DFWALK as declared below is a global variable of our SelectTest Tour
algorithm (to be discussed in Section 5.5.1) which calls the procedures described in

this section.
DFWALK:array(l..|D]] of walk

In order to simplify our explanation, we refer to an element of the array corresponding
to the def-use pair D as DFWALK[D]. We design and present the procedures for the
DFG manipulation in a bottom-up fashion.

Onr first procedure PredErtond Graph is for processing a predicate in a given
transition. The procedure accepts a walk M2, a transition 12, where 12 is the last
transition in W2, and a partial subgraph (' of a data flow graph for a transition
13 # 12 in W2 with respect to W2, Let (¢ correspond to a variable/parameter u
defined at 3. Note that (G is partial since it does not have the data flow information
corresponding to the use of the variables in 2. PredErtcndGraph extends the graph
(i if the value of u is eventually used in the predicate of 2. The procedure is given

below,

procedure PredErtendGraph(G:graph: t2:transition; W2:walk);
begin
inlevel? := false: inlevel3 := false;
Let (tl.xl.u) be the root node of G; { x1 = ‘I' or assignment stmt. no. }
for each variable v used in t2.pred do begin
Let (t, ¢) = W2recentdef(v);
if ((t,c,v) is the root node of G) then begin { (t,c,v)=tl,x1,u) }
if (not inlevel2) then begin
Create a p-uode (t2,P) at level 2 in G; inlevel2 := true;

end;

174

Add an edge from (tlx1.u); to (12.P),y in G:
if (D = (tl.x1. t2.P)(u)€ D is not vet covered) then begin
Mark D as covered:
Obtain DFWALK[D] by appending U(j) to W2,
where s,= t2.dest & U(j) is the CIUS walk for {};
end
end:;
if ((t,c,v) is a node at level 2 in (i) then begin
if (not inlevel3) then begin
(‘reate a p-node (12.1) at level 3 in G inleveld := true;
end:
Add an edge from (t.ev), to (12,P)5 in G;
if (D = (t1.x1, t.c)(u)€ D is not vet covered) then begin
Mark D as covered:
Obtain DFWALK[D] by appending U(j) to W2,
where s,= t2.dest & U(j) is the CIUS walk for ['};
end
end:
if ((t.c,v) is a node at level 3 in i) then begin
if (not inlevel3) then begin
C'reate a p-node (12,P) at level 3 in G; inlevel3 := true;
end;
for each incoming edge ¢ to (t, ¢, v) do begin
Let (t',c’,v'); be the starting node of ¢;
Add an edge from (', v'); to (12,P)y in G;
if (D = (t1.x1, t'.¢')(u)€ D is not yet covered) then begin
Mark D as covered:

Obtain DFWALK([D] by appending U(j) to W2,

175

where s, = t2.dest & U(j) is the CIUS walk for 17);
end
end
end

end { for each variable v }

end { PredExtendGraph }

" which denotes the input

Let (11,01, u) be the root node of ;. Here, x1 is either ‘]
tnteraction or a computation statement number in {1, Let pred be the predicate of
{2 and v be a variable used in pred. Let L.c be the location in W2 where v is most
recently defined, where tis a transition in W2 and ¢ is the statement number of
the assignment statement in which v is defined. If v = u and tl.rl is the samc as
f.e. then a p-node (12, P) is added as a level 2 node in GG, provided (12, P), is not
already present. and an edge from (c1,rlou)y to (12.P), is also added. Let W he
the walk obtained by suffixing W2 with the walk {7(j) from s,. Recall that {7(j) is
the CIUS walk for U,. Clearly, W is a preamble walk for covering the def-use pair
D) = (t1.r1,02.P)(u). Note that the CIUS walk extension is required for observing,
the p-use, as discussed earlier. If D is not already covered. then it is marked covered
and " is stored in DFWALK[D)]. Suppose that (¢,¢,v) is a level 2 node in G, then
a p-node (12,) is added at level 3 in G. provided (12,), is not already present.
and an edge from (f,e,v); to (12, P)3 is added to G. If D = (tl.xl,t.c)(u) is not
already covered, then it is marked covered and W' is stored in DFWALK|D] since it
is a preamble walk for D. However, if (¢.¢,v) is a node in the third level of G then
a p-node (12, P) is added at the same level, provided ({2, P)3 is not already present.
An cdge is added to (12, P)3 from the starting vertex (', ¢/, v'); of each incoming edge
of (f.e.v)y. Also, if the def-use pair D = ({1.rl,t".c')(u) is not vet covered, then it is
marked as covered and W is stored in DFWALK[D).

Our next procedure is StmtErtendGraph. This procedure accepts a walk W2,

176

the transition {2 which is the last transition in 120 an assignment statement ¢2
in {2, and a partial subgraph (¢ of DFG[13.12], for some transition 13 in W2, It
extends (7 with respect to the uses of variables/parameters in ¢2 of £2. The detailed
description of the procedure is given below. Explanation of the procedure is omitted
since it is very similar to PredErtendGraph. Observe that, unlike PredlrtendGraph,
StmtErtcndGraph does not check if W2 covers any def-use pair for the def-use ob

criterion.

procedure StmtExtadGraph(G:graph; t2:transition; c2:statement; W2iwalk):
begin
Let ¢2: w = exp be the statement:
inlevel2 := false: inlevel3 (= false:
for each variable or parameter v used in exp do begin
Let (1. x) = W2 recentdel(v): { x = I" or computation statement no. }
if ((1. x.v) is the root node of (i) then begin
if (not inlevel2) then begin
(‘reate a c-node (12.02.w) at level 2 in Gy inlevel? := true:
end
Add aun edge from (tx.v)) to (t2,¢2.w), in G
end:
if ((t, x.v) is a c-node at level 2 in ;) then begin
{ x has to be a computation stmt. no }
if (not inlevel3) then begin
Create a c-node (12,c2,w) at le vel 3 in G5; inleveld := true:
end
Add an edge from (t. x.v), to (12.c2.w)y in G;
end;
if ((t, x.v) is a e-node at level 3 in G) then begin

{ % has to be a computation stit no. }

177

if {(not inlevel3) then begin
(‘reate a c-node (12.02.0) at level 3 in Goinlevel3 i = true;
end
for each incoming edge ¢ to (1. x.v) do begin
Let (2. ¢'.v"), be the starting node of o
Add an edge from (' ¢ ") to (1202w in G
end
end
end { for each variable or partameter v }

end {StmiLrtandGraph '}

The proceduve Quiput ExtendGraph is also similar to PredErtendGraph, 1t aceepts a
walk W20 a transition ¢2 which is the last transitics: in W the statement number ol
an output statement in 2, and a + atial subgraph of & DFG of some transition 3 in
2. It extends (¢ by adding nodes and edges necessary to represent the information
flow chains along W2 from the variable/parameter which corresponds to the rout
node of (7 to the variables nsed in the output statement. This proecedure also checks
if W2 is a preamnble walk for a def-use pair along W2 where the definition corresponds

to the root node of &0 The formal deseription of Quiput I'rtendGraph is as follows.

procedure QuiputErlendGraph{G:grapl; t2:itransition: e2istatement: W2iwalk)
begin
inlevel2 := false: inlevel3 := false:
Let (t1,x1,u) be the root node of Gy { x1 =I" or computation stit. no. }
Let ¢2: ip.oi(parlist);
for each variable v used in parlist do begin
Let (1. ¢) = W2recentdef(v):

if ((t.c.v) is the root node of (i) then begin

178

if (not inlevel2) then begin
Create a o-node (12.¢2) at level 2 in (55 inlevel2 := true;
end:
Add an edge from (t.c,v); to (12.¢2); in G;
if (D = (t1.x1, t2.¢2)(u) €D and it is not yet covered)
then begin
Mark D as covered; DFWALK[D] := W2:
end
end:
if ((1.c.v) is a node at level 2 in (3) then begin
if (not inlevel3) then begin
(‘reate a o-node (t2.c2) at level 3 in G; inlevel3 := true:
end;
Add an edge from (t,c.v),; to (t2.c2)3 in G:
if (D = (t1.x1. f.e)(u) €D and it is not yet covered)
then begin
Mark D as covered; DFWALK[D] := W2;
end
end;
if ((t.c.v) is a node at level 3 in GG) then begin
if (not inlevel3) then begin
('reate a o-node (t2,c2) at level 3 in G; inlevel3 := true;
end;
for each incoming edge e to (1, ¢, v) do begin
Let (', ¢, v’), be the starting node of e;
Add an edge from (¢'.c'. 1)z to (12.c2); in G;
if (D = (tl.x1.t".¢')(u) €D and it is not yet covered)

then begin

179

Mark D as covered: DFWALK[D] 1= W
end
end
end

end { for each variable v }

end { OutputErtcndGraph }

We shall now describe procedure ExtendDEFG. This procedure accepts a walk
Wi a transition 11 in W, and a transition 2 which starts from the tail state of
W and computes DFG[{1. W1 £2]. the data flow graph for (1 with respeet to the
walk 1 120 EvlcndDFG achieves this by extending the already known data How
graph DFG L W] as per the data flows along W1 #2 from the variables/parameters
defined in ¢ to the variables used in the predicates and the statements jn 12, Let
W2 = W12 Let us assume that the set of def-use pairs in D which are yet to .
covered is known at the starting of the procedure. After copying DFGH W] into
DEFG[t1. 1W72]. it manipulates cach subgraph in DEG[1, W2] with respect to the vari
ables used in the predicate of 12. It calls the procedure Predirtend Graph for this pur-
pose. It then sequentially selects every statement in the computation block of 12, and
updates every subgraph in DFG[t1, 12) by considering all the variables/parameters
used in the statement. If it is an assignment statement, then ErtendDr 4 calls the
procedure StmtExtcndGraph; otherwise it invokes QuiputErtcndGraph for updating a

given subgraph. The formal description is given below.

procedure Erfend DFG(t1:transition;W l:walk;t2:transition);
{ DFG[t]1,W] = DFG[t1,W2] where W2.trlist = Wl.trlistat2 }
{ Mark the def-use associations which are covered by DFG{t1,W2] }
begin
Let W2 be the walk obtained by appending 12 to the walk W1;

180

DEGRLWI] = DIFG[t1,W2]:
for each subgraph G in DFG[11.W2] do
PredExtendGraph(G, t2, W2):
{ Sequentially process the statements in the compuie-block of t2 }
for each statement c2 in the compute-block of t2 do
for each subgraph G in DFG[t1,W2} do
if (¢2 is an assignment statement) then
St ExtendGraph(G. t2, c2. W2)
else OutputExtendGraph(G. t2. c2, W2):

end; { ExtendDFG }

Our final procedure for DFG manipulation is ConstructDFG for constructing
DEG{.]} for every transition 7 in SPEC. The procedure is described below. It is
very similar to ErtendDEFG. Al the DFG manipulation procedures are illustrated in

Section 5.6 while generating test tours for the SPEC given in Figure 5.1.

procedure ConstructDF(/(t:transition);
begin
DFGt. t] := 0
if (1 is not a spontancous transition) then begin
Let ip.i(parlist) be the input interaction;
for each parameter v in parlist do
create an i-node (t.I,v) as a root node in DFGt, t]:
end
{Sequentially process the statements in the computation block of t }
for each statement c in the compute-block of t do begin
for each subgraph G in DFGIt. t] do

if (¢ is an assignment statement) then

181

StmtExtendGraph(G.ot, e 1)
else OutputExtendGraph(G. t. ¢, t):
if (c is an assigement statement) then begin
Let ¢ w := exp be the statement:
Create a c-node (teaw) as a root node in DFG[t. t]
end

end

end { ConstructDFG }

In the above procedures for manipulating data flow graphs we assume that the addi
tion of edees ina DFG s done such that there are no duplicate edges between any

given pair of nodes.

5.5 Automatic Test Case Generation

5.5.1 The Two-Phase Algorithm

We have already established the trans-CIUS-set eriterion for the control flow testing,
and the def-use-ob criterion for data flow testing. Hereo we develop an algorithm for
generating a set of test tours for covering the above eriteria for a given EFSM SPEC,
The algorithm has two phases. The first phase constructs a preamble walk W for
every transition in the SPEC. Recall that an executable walk 117 starting from the
initial state is called a preamble walk for ¢ if Wt is also executable. This phase also
computes preamble walks for the feasible def-use pairs in D. Refer to Section 5.2.2
for the definition of a preamble walk of a def-use pair.

In the second phase. all preambles computed in the first phase are corpleted
into executable tours. These tours are in fact the required set of tours for the coverage

criteria. The step-wise description of the first phase of the algerithm is given below.

182

Phase 1

Input: EFSM SPEC. CIUS-set U = {I’, | 1 < ; < n}. Def-use pairs set
D. A fixed positive integer A

Output: UFset: set of preamble walks for the coverage eriteria.

Step 0 Data flow graphs initialization }

(1) Constinet the data flow graph of cadh transition with respect to itself.
Step 1 null walk initialization }

(1) Let I be a null walk at <p: Let P = {P}.

Step 2 { th iteration of this step computes the set of all executable walks

-

of length ¢ starting from 5. Thev are computed from the executable
walks of length + — I computed in the previous iteration. This step

marks all trausitions and def-use paire covered by the new walks.}

(i) Let T = 0.

(i1) Do Step 2.1 for cach PP € P end for cach outgoing trausition ¢ from
the tail state of P,

(111) If all the transitious in SPEC are covered for control flow and all the
def-use pairs in D are covered for data flow or the number of iterations
of Step 2 exceeds K. a fixed positive integer. then proceed to Step 3.

(iv) Consider T as P and repeat Step 2.

Step 3 { For every transition 1. and for every CIUS, postfix ¢ followed

by the walk along the CIUS to the preamble walk. Also collect the

resulting walks for the transitions as well as the preamble

walks for the def-use pairs into UFsel. }

183

(i) Let both CF st and DFset to he the empty set.

(i1) For each transition ¢ covered by Step 2 and for each CIUS 17,1 < & <
n. add Watalwalk(j. Ui C) to CFset. where Wois the preamble
walk computed for . s, is the tail state of ¢ and (7 is the context
after executing Way,

(111) For sach def-use pair 1) € D covered by Step 2, add the preamble
walk for) computed in Step 2 to DFset.

(iv) Let UFsct = CFset U DFsct. Delete each walk W € UFsel such that

W is a prefix of some other walk in UFsel.

(v) Stop.
Step 2.1

(i) Let Q = P 1.

(i1) If @ is exeentable and 1 is not vet covered for control flow then mark

t as covered and take I” as the preamble walk for ¢,

(ii1) If Q is executable and either ¢ is not a self-loop or 1 has at least one

assignment statement in its computation block then add) to T.
(iv) If Q is executable then do Step 2.1.1.
Step 2.1.1

(i) For each t’ € P, (a)compute DFG[t', Q] from DFG[Y, P}, (1) Mark
all the def-use pairs covered by (2, and (¢) Construct an appropriate

preamble walk for each sich pair.

(ii) Consider DFG[t.] to be DFG[t. Q).

The first phase starts by constructing DFG[t, t]. for every transition ¢ in SPEC,

As we shall see in the detailed algorithm. this can be done using the procedure

184

Construct DFG. n Step 1. the set P is initialized with the singleton set containing
the null walk st ;. Starting from the initial state, Step 2 traverses SPEC in a
breadth-first fashion, in order to compute the preambles for each transition in SPEC
and for each feasible def use pair in D. At the starting of the kth iteration of Step 2.
k > 1, P consists of the set of all executable walks of length & — 1 which start from
the initial state. At this instant, the data flow graphs DFG[t, W), for all W € P, and
for all transitions ¢ in W, are also known. The kth iteration of this step computes
the set of all executable walks of length & by extending the walks in P by single
transitions. The executability of the extended walk is checked only with respect to
the last transition since the rest of the walk is known to be executable at this point.
This reduces the complexity of the feasibility problem to a great extent. We shall
return to this feasibility problem in Section 5.7.

For cach walk P € P and for each transition ¢ from the tail state of P, Step 2.1
cheeks if the walk @ obtained by postfixing ¢ to P is executable. If so, then @ is
added to T provided either ¢ leads to a state other than the tail state of P or some
context is set by £. Also, if Q is executable and if ¢ is not yet covered, then ¢ is marked
as covered and P becomes the preamble walk for t. When @ is executable, Step 2.1
uses Step 2.1.1 for computing the data flow graphs pertaining to @, for determining
the def-use pairs in D covered by @Q, and for selecting a preamble walk for every
def-use pair covered by Q. As given in the detailed description of the algorithm.
Step 2.1.1 can be achieved using the procedure ErtendDFG which extends DFG[t, P]
to DFG[?. Q], for all ' in P.

Step 2 is repeated until the preambles for all transitions in SPEC are computed
and all def-use pairs in D are covered or the number of iterations of Step 2 exceeds
a fixed positive integer K. I depends on the SPEC. It has to be chosen in such
a way that the preambles for all the transitions are computed in I} iterations of
Step 2. Recall that, for every transition. the SPEC is assumed to have a feasible walk

from the initial state such that the transition is executable for the resulting context.

185

Therefore, the preambles for all the transitions are computable in a finite number of
iterations of Step 2. Observe that some of the def-use pairs in D may not be yeasible,
Also, the problem of finding v hether a given pair is feasible or not is undecidable. If
D has some infeasible pairs. then this phase terminates after Ay iterations of Step 2.

We know that, for each transition in SPEC, the trans-CIUS-set eriterion requires
the traversal of the transition followed by each CIUS U, 1 <) < n. Suppose that W
is a preamble walk for computed in Step 2. Then, for each CIUS [, 1 < &k <,
Step 3 computes a walk which extends Wt by postfixing it with Fuwalk(h Uy, ("),
where (" is the context set by Wi, Note that Ewalk(k, Uy, (") is the unique walk
executable from s; for the given context (7 and the instantiated input sequence U,
These walks are computed for every transition covered in Step 2 and they are stored
in the set C' Fsct. Similarly, the set of all walks computed in Step 2 for covering the
def-use pairs are stored in the set called DFset. Note that the walks for the def-use
pairs covered in Step 0 are not added to DFset since their corresponding walks are
single transitions. Therefore they are automatically covered by the trans-CIHUS-set
criterion. In order to minimize the number of test tours, duplicate walks and walks
which are prefixes of other walks in C'Fset U DFsel are removed; UFsctis the resulting
set of walks.

Phase 11 described below is essentially for completing cach walk in {/Fset into

an executable tour.

Phase 11

Input: The EFSM SPEC, UFset returned by Phase 1

Output: UFTourset, a set of tours for the selection criteria
Step 1 { Initialization }

(i) Let P be a null walk at s;; Let P = {P}.

(ii) Let /FTourset be the empty set.

186

Step 2 { ath iteration of this step computes the set T of all satisfiable

walks of length + ending at s;. The set of all preambles in [V Fsct,
which are executable in conjunction with a walk in T
which starts at the tail state of the preambles, are declared to be

covered by the tour obtained by prefixing the preamble to the walk. }

(1) Let T be the empty set.

(ii) Do Step 2.1 for each P € P and for cach transition ¢ starting from a

state other than s and ending at the starting state of 2.
(iit) If all the walks in "Fsct are covered, then stop.

(iv) Consider T as P and repeatr Step 2.
Step 2.1

(1) Let Q=1 P.
(11) If @ is satisfiable. then add Q 10 T.

(ii1) Do Step 2.1.1 for cach walk W in UFset such that W™ @Q is a tour

provided @ is satisfiable.
Step 2.1.1

(1) If " @ is executable then Add W Q Walk(1,1/)) to UF Tourset aud

mark W as covered.

Starting from the initial state (s,), Phase Il traverses the transitions, in the
reverse direction, in a breadth-first fashion and complete the walks in UFset into
execusable tours. The first ite. ation of the second step starts after initializing the
set P to the singleton set containing the null walk starting at the initial state and
initializing UF Tourset to the empty set. At the starting of the kth iteration of Step 2.
k> 1. P contains the set of all satisfiable walks of length & — 1 such that each walk

starts at some state and ends at s;. At the kth iteration of this step, Phase I1 computes

187

the set 7 of all satisfiable walks of length A using walks in P. For extending cach
P € P, it considers every incoming transition { at the starting state of P such that ¢
does not start from the initial state s;. Step 2 invokes Step 2.1 for computing the set of
all preambles in U Fwalk which can be completed into executable tours by postfixing
them with ¢ P. This step first determines if the walk) obtained by prefixing £ to P is
satisfiable. If so. then @ is added to 7. which was initialized to the empty set at the
starting of the current iteration of Step 2. Also, if () is found to be satisfiable, then
for each uncovered walk W € UV Fset which ends at the starting state of (), this step
also checks if the tour 17 Q) is executable. Step 2.1 uses Step 2.1.1 for this purpose.
If Step 2.1.1 finds that 1 Q) is execntable, then W is marked as covered and the tour
W Q Walk(1.U7)) is added to UFToursct. Note that Walk(1, 7)) is postfixed to W)
in order to confirm the initial state. W Q) Walk(1, 7)) is the requited test tour for
all the def-use pairs for which a prefix of W is a preamble. and it is also a member
of the set of required tours for covering any transition for which W is a preamble.
Step 2 is repeated until all the walks in UFsct are covered. T at the end of the current
iteration is considered as P for the next iteration. Note that Phase 11 successfully
completes the walks in 7 Fset into tours and terminates in a finite number of steps
since the initial state is reachable from every other state with every valid context,
For the sake of completeness, a formal deseription of the algorithm is provided

below.

Algorithm Select Test Tour (M:EFSM., U:CIUS-set; D:all-use-set, Ky:integer);
{ It computes a set of test tours for covering
the data flow and control flow in the EFSM, M }
const
N = ... { number of states }
type
trwalk = sequence of transition;

walk = record

188

trlist: trwalk: { sequence of transitions in the walk }
pred: predicate
{ conjunction of the interpreted predicates along the walk }
dest: state; { tail state of the walk }
del: set of variables; { set of variables and parameters defined }
puse: set of variables;
{ set of variables and parameters used in predicates }
Sval: def = SymExp:
{ symbolic valnes of variables/parameters in def at the end of the walk } ;
recentdef: defl — (transition. ‘I"/assignment statement_no)
{ walk.recentdef(v) is an ordered pair of transitio: and ‘I’
signifying the input interaction of the transition or the statement no.
of the assignment statement where v is most recently defined}
end;
var
t: transition: p: integer;
('FPRE: array[l..]T|) ef walk: { an element of this array
corresponding to transition ¢ is referred to as CFPRE[t]
DFWALK:array[l..|D|] of walk; { an element of this array
corresponding to the def-use pair D is referred to as DFWALK|D]
CFWALK:array(l..|T|, 1..N] of walk; { an element of this array corresponding
to transition ¢ and for the state s, is referred to as CFWALK(t,j]
UFWALK, UFTOUR: set of walk;
begin
{ PHASE 1 }
for each t € T do
ContructDFG(t):

Delete all the def-use pairs in D which are covered by single transitions;

139

{ def-use-ob eriterion for these pairs will be satisfied by the
trans-C'IUS-set criterion }
ComputePreamble:
for each transition f in the SPEC do
for p:=1 to N do begin
CFWALK(L, p] := CFPRE[tjetaEwalk(t.dest, [, . C), where
(" is the context set after exccuting CFPRE[t]ot:
UFWALK := UFWALK U CFWALKIt, p)
end:
for eachi covered def-use pair D) in D do
UFWALK := UFWALK U DFWALKI[D]:
Delete cach WeUFWALKN s.t. Wois a subwalk of
some other walk in UFWALK:
{ PHASE 11 }
Construct Tour:

end.

procedure ComputePreamble
var
P, T: set of walk; s
P, Q:walk;
t’, t:transition;
v: variable;
begin
with P do begin
dest := sp: pred := @; trlist := ()
def := 0; puse:= @; Sval := 0;

end;

190

Li=0:P:={P}h
repeat
T :=¥;
for each P € P do
for each out transition t from P.dest do
if (every variable used in t is defined in Pt prior to its use)
then begin
Interpret t.pred with respect to P.Sval and t.input:
if (P.pred A t.pred is satisfiable) then begin

if (t is not vet covered) then begin
Mark t as covered;
CFPRE[t] := P

end

Compute Q.Sval by updating P.Sval

with respect to the symbolic execution of t:

with Q do begin
trlist := P.trlistat; pred := P.preda(At.pred):
def := P.def U t.def: puse := P.puse U t.puse;
dest 1= t.dest:

end

Compute Q.recentdef(v) V v € Q.def;

if (1 is not a self-loop or t has at least one assignment
statement in its computation block) then
Add Q to T;

for eact t' in P.trlist do
ExtendDFG(¢, P, t);

DFGIt, Q] := DFGt. t};

end

191

end:
P:=T;L:=L+ I
until((al} transitions in T are covered and
(all def-use pairs in D are covered)) or (L. > A}y))

end:

procedure Contruct Tour;
var
P.T: set of walk:
F: set of trwalk:
U,V trwalk:
P. Q. W: walk:
t. v transition:
begin
for each W € UFWALK do
if W is a tour then
Delete W from UFWALK and add W to UFTOUR:
with P do begin
dest := sy pred := 0: trlist := 0;

def := 0: puse := 0; Sval := 0

end;
P = {P}:
repeat

T =0

for each P € P do
for each incoming transition t at P.source s.t. t.source # s,
do begin
Compute t.Sval by symbolically executing t for some

initial symbols for the local variables and input parameters ;

192

Symbolically interpret P.Sval with respect to t.Sval :
infsw := false;
if (3 F € F such that F = P.trlist @ t) then
infsw := true;
Interpret P.pred with respect to t.Sval;
if (infsw or t.pred A P.pred is satisfiable) then begin
if (infsw) then begin
Delete F from F; infsw := false
end
{ Q is the walk obtained by prefixing t to P }
Compute QQ.Sval by updating P.Sval
with respect to t.Sval;
with Q do begin
trlist ;= t «@ P.rlist: pred := t.pred @ (A P.pred):
def := P.def U t.def; puse := P.puse U t.puse:
end
Add Q to T;
for each W € UFWALAK do
if (W.dest = Q.source) then begin
Interpret Q.pred with respect to W.Sval:
if (every variable in Q.puse is defined
in Wor in Q prior to its use) then
if (W.pred A Q.pred is satisfiable)
then begin
for each v in W.trlist do begin
Let W.trlist = U@va@V;
if (AF € F such that F.trlist =
vavV@Q.trlist) then

193

Add vaVeQ.trlist to F;
end { for each v }
if (W € UFWALK) then begin
Let T = W.trlist @Q.trlist:
Postfix U(1) to T;
Add T to UFTOUR:
Delete W from UFWALK:
end
end { if (W.pred A Q.pred }
end { if (W.dest = Q.source) }
end { if (infsw or t.pred A P.pred }
end { for each incoming.. }
P=T:
until (UFWALK = 0)
end: { ConstructTour }

In the following lemma, we establish the time and the space complexities as well

as the correctness of Compute Preamble.

Lemima 5.2 The time and the spacc compleritics of Compule Preamble are
O((do¥t Y+ steps and O((d2,)8Y) units, respectivey, where do% is the mari-
mum number of oulgoing transitions including sclf-loops al any state in the SPLEC
and K, is the marimum number of iterations of the repeat...until loop of the pro-
cedure ComputePreamble. ComputePreamble successfully computes a preamble wall
for those transitions in the SPEC which have al lcast one preamble walk of length al

most Ky. It also computes a prcamble walk for every frasible def-usc pair i D wheeh

has at least one preamble walk of length at most Ky exeluding their CHIS subwall:

ertension.

194

Proof:
Note that the time complexity of the repeat...until iterative loop of Compute Pream-
ble is proportional to |[P| multiplied by d2% . where [P} is the cardinality of P.

mar*
At the start of the #th iteration |P| is at most (d24.)'"', 7 > 1. Since the re-
peat...until structure is executed at mest Iy times, Compute Prcamble takes at most
O((demt Y1) steps.

Let Po.r and Chae denote the maximum number of input interaction param-
cters in any input interaction and the maximum number of statements (both the
assignment statements and the output statements) in the computation block of any
trausition in SPEC, respectively, The maximum number of subgraphs in a data flow
graph is ., + Char. Since Iy is the maximum length of a walk in P generated
at any iteration in the first phase, each variable/parameter can be used in at most
O(N(Ch2)) statements/predicates along any walk. In other words. the number of
nodes at either the second level or the third level of any subgraph in a data flow graph
1s O(N{(Chiar)). As the edges in the data flow graphs are only from a node of given
level to the nodes in the next-higher level, the total number of edges in a subgraph
is at most O((K1(Char))?). Thus, the memory requirement of a data flow graph is
O((Poas + Coax)2 (Criaz)?). We know that there are at most Ay data flow graphs
for any walk, and (4")% walks in any given iteration of the repeat...until loop of
Compute Preamble. Henee the space requirement for storing the data flow graphs of
a given iteration is at most (2)M K O((Poar + Coaz)(N1)?(Criaz)?). Also at any

given iteration, |P| is at most (d%%)1, Hence. it follows that the space complexity

of ComputePreamble is O((do¥)Rr) .

The remaining part of the lemma directly follows from the fact that Com-

pute Preamble searches the set of all executable walks of length at most K.

O

Lemma 5.3 Lct d'"

nmalx

denole the marimum number of incoming transitions includ-

ing the sclf-loops at any state in the SPEC. Suppose that the repeat...until loop of

195

ComputeTour is exrccuted hy times. Then the sceend phase of the test case generation
algorithm takes O((d'",)h2+Y) steps and at requires O, 02 wats of memory. 1

mads My

completes all the preambles computed in Compute Preamble into feasible tours.

Proof:

The time and space complexities proof of this lemma is similar to that of Lemma 5.2
and is therefore omitted. Note that I, is finite as the EFSM has an executable walk
from any state with a given valid context to the initial state. From the termination
condition of the repeat loop in Compute Tour, it is clear that it completes all the

preambles computed in ComputePreamble into feasible tonrs,

[

We summarize the time and space complexities and correetness of the Seleet Test-

Tour algorithm in the following theorem.

Theorem 5.4 Let Ny () be the number of times (maranum wamber of tines) the
repeat...until loop of Compute Tour (Compute Preamble) s creented. The tane com-
plerity of the algorithin Scleet Test Tour s O((dynt YW (e, YY) steps, wher

et Hitd

i h oul . , . \ , . i1l .
d . (do) denotes the marimum number of meoming (outgomyg) transitions includ-

ing the self-loops al any state in the SPEC. The algorithm also roquires O((demt Yo 4
((lm

w2y units of memory. It suceessfully computes an crccutable tour for those

transitions in the SPEC which have al least onc preamble walk of longth at most k.
The algorithm computes an cxccutable tour for cvery feasible def-use par in D which
have at least one preamble walk of length at most Iy cxcludimg theor CHIS subwall:

ertension.

O

Corollary 5.4.1 For a suitable value of Ky, 1 < Ky < oc, SelectTest Tour suceess-
fully computes a sct of tours such that (i) the sct satisfics the trans-CHUS-set erderion,

and (ii) the set satisfies the def-use-ob criterion of D has only feasible def-usc pairs,

196

Proof:

We know that every transition in the SPEC is reachable from the initial state.
Therefore. ina finite number of iterations of the repeat..until loop of Compute Pream-
ble, a preamble walk can be computed for every transition in the SPEC. Similarly,
if D has only feasible def-use pairs. then a preamble walk for every def-use pair in
D can be computed in a finite number of iterations of the repeat..until loop of

Compule Preamble. The rest of the proof follows from the above theorem.

O

Note that only a higher level complexity of the above algorithm is given in terms
of the number of times variaons basic steps are executed. The executions of some of
these steps may themselves be complex. For instance. finding whether a given walk

is satisfiable is considered to be a part of a single step in our analysis.

5.5.2 Fault Coverage

It is known that some of the FSM-based test sequence generation methods achieve
complete fault coverage capabioty by including the verification of the state identifi-
cation sequences in the IUT. In the EFSM model, in order to establish that an input
sequence is an UIS of a state in the 1UT, one has to show that for any valid context
of the TUT at that state. the output sequence produced by the 1UT while applying
the input sequence is different from the ontput sequence obtained by applying the
input sequence at any other state with every valid context. Due to the black-boy
approach of testing. it is. in general. difficult to achieve this UIS verification require-
ment. For each incoming transition at a state s,, our test case generation scheme in
Seleet Test Tour generates one feasible tour for applving the CIUS [, at s, to see if
it provides the expected output, and a tour for applying the CIUS U, of the state

s, = 0200 soneg #F o at s to cheek if it produces the output different from the

197

one obtained when U7} is applied at s,. Further. these tours can be exercised for dif-
ferent data in their feasible domain. Thus the Seleet Test Tour algorithm establishes
the CIUS verification requirement partially. while the existing, EFSM based test gen-
eration methods do not consider this issue. In addition. the test tours selected are
all feasible and for a suitable value for K. they satisfy the control flow eriterion.
Therefore. the control flow fault coverage of this method is the same or better than
those guaranteed by the existing EFSM based methods.

We shall now discuss the data-oriented fault model for the EFSM and point ont
how the data-oriented faults can be detected using, the test tours generated with out
algorithm.

Let ap?e(parlist) be the input interaction at the transition £, Let v he a pa
rameter at the position p in parlist. Transition {is said to have input interaction
parameter fault with respect to the parameter ¢ at the position p in parlist if the
corresponding transition in the IUT is identical to ¢ but for the parameter in the pth
position in the parlist. The corresponding parameter in the TUT is actually different
from v.

Let ¢t v i=cny op erp, be a computation statement in the transition 4. Here,
c. v.and op are the statement reference number. variable, and an arithmetic operaton.
respectively. crpy and crp, are arithmetic expressions. We say that transition £ has
an arithmetic operator fault for the operator op (in its position) at statement e, if
cvi=arpy opf erp, is the corresponding computation statement of the transition
corresponding to ¢ in the IUT, where op # op'.

Suppose that ¢ @ v = «rp is a computation statement in the transition ¢,
where ¢, v, and ¢rp are the statement reference number, a variable, and an arithmetic
expression, respectively. Transition ¢ is said to have a variable definition fault
with respect to the statement ¢ if ¢ 1w = crpis the corresponding statement in the
transition in the IUT corresponding to . and w is different from v,

Let ¢ @ u = crp(...v...) be a computation statement. where ¢ is a statement

198

reference number, v and v are variables. and v is referred in the arithmetic expression
crp. Transition 1 is said to have a variable reference fault with respect to v (in its
position) at the statement ¢, if ¢ : u:= crp(...w...) is the corresponding statement in
the transition in the IUT corresponding to t and w is different from v.

If the statement where the variable reference fault occurs is an output statement.
then we refer to this fault as output parameter fault. A constant reference fault
can be defined similar to the variable reference fault.

Similarly, we can define predicate operator fault and predicate variable reference
fault.

We believe that the data-oriented faults as defined above can be detected by
thoroughly executing each tour generated by the algorithm with a number of test
data from the feasible domain of the tour.

For instance, let us suppose that the computation statement ¢ : v := exrpin the
transition { has a variable definition fault for the variable v. Here. c is the statement
reference number in the computation block of ¢ and exp is an arithmetic expression.
Let T be the set of all tours generated by our algorithm. Let 7. C T be the set
of tours for covering all the feasible def-use pairs for the definition of v (at ¢ in ?).
Assume that 7. # 0. Let D = (t.¢,t".¢')v be a feasible def-use pair with respect to v
such that 7. has a tour, say Tp for covering D. Here, ¢’ is an assignment statement
in the computation block of . We know that Tp contains a def-clear walk W1
for D followed by another walk W2 through which the effect of the “usc” ol v at
t".¢' flows until it is assigned to an output interaction parameter or to a variable in
the predicate of the last transition in W2. In the latter case; Tp also has the walk
'3 which corresponds to the CIUS of the tail state of W2. Since v did not get
the intended value at f.e, for a suitable value for the input interaction parameters
along T from the feasible domain for Tp, either the variable defined at ¢’ will get a
value different from the expected one or W1 itself will not be executed. If the latter

is the case, then it is quite likely that the observed sequence of output interactions

199

from the IUT for the sequence of input interactions along 1 will he different from the
expected one; so the presence of a fault is detected. In the former case, if the terminal
“use” in W2 corresponds to an output interaction parameter, then for certain data
values for the input interaction paramneters in 77, the output obtained through the
output parameter in question may be different from the expected one if the walk
W2 is executed by the JUT; otherwise the erroncous control flow would produce the
unexpected output. Similarly. = the terminal “use™ in W2 is on the predicate of the
last transition in W2, then, unexpected transitions may be chosen while the 1UT
attempts to execute W2 and unexpected output would be observed as a result.
Though it is not addressed in this thesis, the problem of finding a set of test
data for exccuting each tour generated by a given test case generation algorithm such
that the data-oriented faults are detected is certainly an interesting research problem.
We believe that the set of tours generated by oui approach is a good candidate for
the test data selection problem. since (i) all the tours generated are executable and
(11) it provides observability of the data flow. The fault based techniques as deseribed
in [FW93, RT93. TRC93, Mor90] would be helpful to gain more insight on the test

data selection problen,

5.6 Transport Protocol Test Case Generation

We shall illustrate our test case generation algorithm on the transport protocol given
in Figure 5.1. In this example, we consider only the core-transitionus for the coverage
criteria. The set D of all def-use pairs of types 3, 4 and 5 (refer Section 5.2.2) is given
in the first column of Table 5.5 through Table 5.7. Let us take Ay = 5. Note that
the def-use pairs which correspond to input parameters in a transition being used in
the predicate of the same transition as well as those pairs which correspond to input
parameters of a transition being used in the output interaction of the same transition

are not considered. Such pairs are automatically covered in the control flow coverage

200

Def-Use Pair DFWALK UFTOUR
(t1.1, tl.el)prop_opt | tl

(tl.el, t3.P)opt tl 3 t17

(t1.c1, 14.P)opt t1 t4 t21

(t1.c2, 19.P)R_credit | infeasible

(t1.c2, t9.c2)R_credit | infeasible

(t1.c2, t10.P)R_credit | t1 t3 110 ti7

(tI.e2. t1l.cl)Roeredit | t1 t3 t11

(t2.1, t2.c)opt_ind t2

(t2.1, t2.¢2)er
(t2.c1. 16.P)opt
(t2.¢2, t8.P)S_credit
(t2.¢2, t8.c1)S_credit
(t2.c2, t16.P)S_credit
(12.¢3, t6.c4)R_credit
3. 19.P)R_credit
(12.¢3, t9.¢2)R_credit
(t2.¢3, t10.P)R_credit
(t2.¢3, t11.c])R credit
(t3.1. t3.¢3)opt_ind
(t3.1. t3.c4)cr
(t3.cl, t9.P)TRsq
t3.cl. t9.¢1)TRsq
td.cl, 110.P)TRsq
td.cl, t11.c2)TRsq
t3.¢2, 18.¢2)TSsq
(t3.¢2, t8.¢3)TSsq
(13.c2, t12.P)TSsq
(13.c2, 12.c1)TSsq

—_— o —

t2 t6 18 t17

t2 t6 t17

12 t6 t8 t17

t2 t6 t8 t8 t17
infeasible

t2 t6

infeasible
infeasible

t2 t6 t10 t17
t2 16 111

t1 t3

] t3 8 £17

tl t3tll t9 t17
t1 t3¢1]t9t9 t17
t1 t3¢10t17

tl t3tll

t1 t3t8

t1 t3t8 t8

t1 t3t12t17

tl t3 112 t8 t17

t216 t8t17t20

t2 16 t38 t8t17t20

t216 t10 t17t20

t2t6 t11t17t20

t1t3 t11t9 t9 t17t20

tl t3 t12 t8i17t20

Note: Postfix t1t5 to all the tours in UFTOUR

Table 5.5: Data flow coverage in the AP-module

Def-Use Pair

DFWALK

UIFTOUR

(t3.c2, t13.P)TSsq
(t3.c2, t14.P)TSsq
(t3.c2, t14.c1)TSsq
(t3.c2, t15.P)TSsq
(t3.c4, t8.P)S_credit
(t3.c4, t8.cl)S_credit
(13.c4, t16.P)S_credit
(t6.1. t6.cl)accp_opt
(16.¢2, 19.P)TRsq
(16.c2, t9.c1)TRsq
(16.¢3. t8.¢2)TSsq
(t6.c3, t8.¢3)TSsq
(t6.c3. t12.P)TSsq
(t6.c3, 112.¢1)TSsq
(16.c3, t13.F)TSsq
(t6.c3. t14.P)TSsq
(16.c3, t14.c1)TSsq
(16.c3. t15.P)TSsq
(t8.cl, t8.P)S_credit
(t8.cl. t8.cl)S_credit
(t8.c1, t16.P)S_credit
(t8.c3, t8.¢2)TSsq
(t8.c3. t8.¢3)TSsq
(t8.¢3, t12.P)TSsq
(t8.c3, t12.c1)TSsq
(t8.¢3, t13.P)TSsq
(t8.c3, t14.P)TSsq
(t8.c3, ti4.c1)TSsq
(t8.¢3. t15.P)TSsq

tl t3t13 t17
tlt3 tid t17
t1t3 t14 8

t1 t3 t1H t17

t1 13 t8 t17

t1 13 t8 t8 117

t1 t3 t16 t17

t2 16

infeasible
infeasible

12 t6 t&

210 t8 t8

t216 t12 t17

t2 16 t12 18 t17
t2 16 t13 t17
t216 t14 t17
1216 t14 18 t17
t216 t1H t17

tl t3t8 t8 t17

t]1 13 t8 18 t8 t17
tl 1318 L6 t17
t1 t3 18t

t1 13 t8 t8 t8 t17
tl t3t8 t12¢17
tl t3 t8 t12 t8 t17
t1 t3 t8t13t17
tl t3t8 t14 t17
t1 13 t8 t14 t3 t17
tl t3 L8 t15 t17

1246 12017120

t2 16 t12 t8t 17120
1216 (13617120
1216 t14117120
1246 t14 18117120
t2 16 t15t17120

t1 3 AR ISLLT120

t] t3 t8 IR A8L]7120
L1 3 R L16L1T7t20

I3 8 112017120
th 3 t8 L2 t8L17120
th 13 t8 t13017¢20
t1 t3 t8 t14L 17120
t1 t3 18 114 t8L17t20
t1 t3 48 t15t 17120

Note: Postfix t1tH to all the tours in UFTOUR

Table 5.6: Data flow coverage in the AP-module (contd.)

202

Def-Use Pair

DFWALK

UFTOUR

(19.c1, t9.P)TRsq
(19.¢1, t9.¢1)TRsq
(t9.c1, t10.P)TRsq
(19.¢2, t9.P)R _credit
(19.¢2. t9.c2)R_credit
(t9.¢2, t10.P)R_credit
(19.¢2, t11.r1)R _credit
(t1Li. oll.cl)er
(t1l.el, t1lcel)R credit
(t1Lel. t9.P)R _credit
(1111, 19.c2)R credit
(t1lel, t10.P)R_credit
(L1221, t12.¢1)XpSsq
(t120, ti2.cl)er
(t12.c1, t8.P)S_credit
(t12.c1, t8.cl)S_credit
(112.cl, t16.P)S_credit
(t14.1, t14.c1)XpSsq
(t11.1, t1d.el)er
(t14.c1, t8.P)S_credit
(t14.cl, t8.cl)S_credit
(t11.el, t16.P)S_credit

tlI t3 111 t9t9 t17

t1 t3t11 t9t9

t1 t3t11 t9t10 €17
tHt3 1l t9t9 ¢17

tl t3tll t9t9

t1 t3t11 t9t10 €17
t1 t3t11 t9tll

tl t3tl1
ti t3tll tll

{1 t3 11 t9¢17

tl1 t3t1l tY

t1 13t 10 t17
tht3t12 t8 t17

t1 t3 112 t8 t17

tl t3 112 t8 t17

t] t3t12 t8t8 t17
t1 t3t12 t16 t17
th t3t14 t8¢17

tl t3 114 18 t17

tl t3 t14 t8 t17

t1 t3t14 t§t8 t17
tl t3t14 t16 t17

tl t3 t11 t9 t10t17t20
tl t3 t11 t9 t11t17t20

tl 3 t11 t11t17t20
tl t3 t11 t9t17t20

tl t3 t11 t10t17t20

tl t3 t12 t8 t8t17t20
tl 13 t12 t16t17t20

tl t3 t14 t8t17t20
tl t3 t14 t8 t8t17t20
tl t3 «14 t16t17t20

Note: Postfix ¢1¢5 to all the tours in UFTQUR

Table 5.7: Data flow coverage in the AP-module (Contd.)

(t1, 1, prop_opt) (t1, 1, dest_add) (t1, cl, opt) (th, c2, r_credit)

(t1,¢3) (tl,¢cd) 1, cd)
(t1, c1, opt) Cb l I

(tl, c3)

DFGitL, t1]

Figure 5.4: Data flow graph fc the transition 11 in the AP-module

of the transition where the def-use association occurs. Data flow graphs for all the
transitions in the AP-module are obtained using the procedure Construct DEFG. The
data flow graph for the transition {1 with respect to the same transition is shown in
Figure 5.4. Recall that. in the data flow graphs, rectangles represent the i-nodes as
well as the o-nodes, wheica: the cireles and diamonds represent the e-nodes and the
p-nodes. respectively. The procedure Construct Preamble is illustrated by considering,
its fourth iteration of the repeat..until loop on the AP-module. At the end of the

third iteration. P has the foiiowing walks.

PLE3ES I3 T H3E1 2, 8163013, 113U AL 13D,
TLES T A TEBEL8, L1421, 1 184120, 120 T119, 128688, 1206211,
L2068 12,82068 13,1216 14, 216815, L2617, 1206118

By the end of the third iteration, the procedure has successfully found preamble
walks for the control flow coverage of all the transitions except t9. The procedure also
maintains the data flow graph for each transition in every walk in P. Let W = 111315,
Figure 5.5 shows the data flow graphs for the transitions in W with respect to W,

The system of interpreted constraints associated with W is given below.
NI!TrCCyoptiand = UTTCONregy.prop_opt <0 (5.1)

204

(t1, 4 prop_spt) (11, I, dest_add) (t), cl, opty (thc2,r_credit)

{t}, cl,0pty
1,¢3 (tl,cd) (tl, cd)
' (3, P)
i1,)
DFG[t1, t1s318]

(t3,1, opt ind) WL en) (el TRsq) (3. €2. Tdsq) {13, ¢, opt) . ¢4, §_credil}
(13, €3, 0pl) 11, ¢4, S_credit)
.¢3,0p

(8. c2) (B.e3. Thsqr WS (8. LS aedit g p

(18, c1.S_credity

(13, ¢8
DG, 1318}

(18, L Udata) (8. LEoSDL) (18,c1,S_crediy {18, <3, TSsq)

DEGIS, t1L318]
Fignre 5.5 Data flow graphs for (1.63.48 with respect to the walk t1#3¢8 of the
APmodule

N2Tr(Coaer > 0 (5.2)

The subseripts of the input interactions represent the transitions in which the in-
teractions occur. From the previous iteration it is known that the above system i«
{casible. In order to extend W. Computc Preamble considers all the transitions from
sq (the tail state of W) one by one. Following is the interpreted predicate of t8. an

outgoing transition at sy, subject to the context set by W',

N?2Tr(CCz.er—1>0 (5.3)

Wi, en

(13, 1, opt_ind) WL TR g 2. Tosq) W3ocd S credity

(L3, €3, optt

(13, ¢4, &_credit)

(18, 3, Thsy)
(t3, c3. opt)

(R, ¢l S_credit)

8, P
[(RE] b

S

(13, ¢5) (18, ¢, S _credit) (18, c2) (18, <3, Thsy) (18, ¢, S_credit)

(8, Py
DFGIG, BB}

(8. 1. Ldatu) IBLESDY) (KcLS_cred) .3, Thag)

ool S cregm (AP {18, ¢3, T5eg) {th, 2y
DEG{S', 11LtHi8)
(8.1 1 duta) 08, LEoSDU} (18,cl,9_credity (14, €3, Theg)
(12 cl, S _credut)

- W“LP

DEG[8, 133112)

Figure 5.6: Data flow graphs for #3 and 18" with respect to 1138184 and (8 witl)
respect to F1E3IN]2

The system of inequalities (5.1). (5.2). and (5.3) is feasible since W is feasi-
ble. (5.1) and (5.3) are independent, (5.3) is feasible and (5.3) implies (5.2). Let
1172 denote the extended walk £1£3¢8'¢8%. The superseript of a transition in a walk
denotes the order of occurrence of the transition in the walk. The data flow graphs
DFG[t3. W2]) and DFG[t8!. W2] obtained by extending the graphs in Fignre 5.5 over
the transition ¢8 are shown in Figure 5.6. Note that DFG[t], W2] is the same as
DFG[tl. W]. Observe from the figure that the walk W2 covers (£3.¢4,18.¢1)S_eredit,
(13.¢2.18.¢3)T Ssq. (18.c1.18. P)S_ercdit. and ({8.¢3.48.¢2)T S«q for our def-use-ob eri-

terion.

206

Transition | Preamble | Set of walks Tour
() CFPRE[t] | for testing t UFTOUR

t] t1t5 t1tH
t1t25 t1t25tH
t1t26 t1t26t5
t1127 t1t27t5

t2 t2t7 t2t7
t2t28 t2t28t7t19
t2t29 t2t29t7t19
t2t30 t2t30t7¢19

t3 tl t1t3t17 t1t3t17

t1t3t3] t1t3t31t17t20
t1t3t32 11t3t32t17120

t1t¢3t18 t113t18t19
t-4 tl t1t4t21] t1t4t21
t1t4t33 t1t4t33t20
t1t4t34 t1t4134120
t114t35 t1t4t35120
tH t t1thHtl t1t5t1thH
t1t5122 t1tHt22
t1t5t23 t1t5t23
t1t5t24 t1t5t24
t6 t2 12t6t17 t2t6t17t20

t2t6t31 t2t6t31t17t20
t2t6t32 t2t6t32t17t20

t2t6t18 t2t6t18t19
t7 t2 t2t7t19 t2t7t19
t2t7t36 t2t7t36t19
t2t7t37 t2t7t37t19
t2t7t38 t2t7t38t19
t8 t1t3 t1t3t8t17 t1t3t8t17t20

t1t3t8t31 t1t3t8t31t17t20
t1t3t8t32 | t1t3t8t32t17t20
t1t3t8t18 t1t3t8t18t19

Note 1: Obtain the entry for each of 110...¢15 by replacing t8 in its entry
Note 2: Postfix t1t5 to all the tours in UFTOUR

Table 5.8: Preambles and control flow test tours for the transport protocol

207

Transition | Preamble | Set of walks Tour
(t) CFPRE[t] | for testing t UFTOUR
t9 t1t3t11 t1t3t1119t17 t1t3t 11Ot 17120
t1t3t11t9t31 | t 136 31117120
t1t 3119132 | t1t3t T 13217620
1136111918 tIL3t1119t 18119
116 t1t3 tItI6LLY L1316t 17120
t1t3t16t31 t1t3t10t31117120
t1t3t16¢32 1830161321 17120
t1t3t16t18 tIL3IGLISLTY
t17 t113 t1t3t17t21 LI 1T12]
tIt317133 t1t31L17633t20
t1t3117t34 t1t3t17634120
t1t3L17t35 1163017130120
LIS t1t3 tIt3tISLI9 t1t3tI8L19
t 13t 1836 t1 638136119
t1L3L18t37 t1t3LINe37119
t1t3t 18138 L1t 311838119
t19 1247 t2t7119t1 1217119t 1tH
L2t 7119122 20T 9122
t2t7119423 t2t 7819123
t2t7t19124 1217619124
t20 t1t4 £114t2011 t 1141208115
t 114020122 t 114120122
t1t4120t23 1114120123
t1t4t120t24 t1t4120t24

Note 1: Obtain the entry for €21 by replacing t20 in its entry
Note 2: Postfix t1t5 to all the tours in UFTOUR

208

Table 5.9: Preambles and control flow test tours for the transport protocol (Contd.)

Let us consider another transition. t9. from s4. The predicate for 19 is R_credit #
OAsend_sq = T Rsq. As per W = 11318, she current value of R_credit is zero. There-
fore the walk W followed by 19 is unexecutable. However, the walk W followed by 110
is executable for the current value of R_credit. W followed by t11 is also executable
since 111 has no predicate. These extended walks neither cover any new def-use pair
for data flow nor any new transition for control flow (the preamble (¢1¢3) for 110
and {11 is alrcady obtained in the previous iteration). The system of constrair‘s
(5.4),(5.5) and(5.6) (given below) correspond to the interpretation of the predicate in

t12 with respect to the walk W

NITrAK 2. XpSsq < 1 (5.4)
NITrARKy.er + NITrARK,. XpSsq > 1 (5.5)
NITrAK 3.0r + N?7TrAKN 1. XpSsq < 16 (5.6)

It is casy to sce that the above system is feasible. Since this system is independent
from the constraints (5.1) and (5.2), the walk t1£3t8t12 is .Iso executable. The
data flow graph DFG[t8, t1t3t8t12] as given in Figure 5.6 shows that ¢1¢3t812 is
a preamble for the def-use pair (#8.¢3,112.P)T'Ssq. Similarly, the walks t1¢3¢8t13,
£11318114 and t1¢3t8t15 are found to be the preamble walks for the def-use pairs
(18.¢3.113.P)T Ssq, (18.¢3,t14. P)T Ssq, and (¢8.¢3.t15.P)T Ssq, respectively Though
W followed by {17 is exccutable it does not have any additional coverage for the
control or data flow criterion. The above step is repeated for all the walks in P,
before moving on to the fifth iteration. A preamble for transition t9 is also obtained
in the fourth iteration. The preamble walks obtained for the control flow coverage of
all the transitions are shown in the second column of Table 5.8 and Table 5.9. Note
that only U?TCONreq(dest_add, prop_opt) - the first part (CIUS part) of the cyclic
CIUS of sy - is applied at the tail state of the transitions.

By the fifth iteration. the procedure successfully finds the preamble walks for all

the feasible def-use pairs for our def-use-ob criterion. The preamble for each feasible

209

def-use pair as obtained in this procedure is shown in the second column of Table 5.5
through Table 5.7. Observe that the bold faced transitions appended to a walk in
the table is for confirming the tail state of the previous transition whose predicate
uses the value of the variable in the def-use pair. Note that this is a requirement of
the def-use-ob criterion. Also, observe from Table 5.5 through Table 5.7 that some of
the def-use pairs are infeasible. The preamble walks computed in Compute Preamble
are collected into the set UFWALK. It consists of the walks in column 2 of Table 5.5
through Table 5.7 as well as column 3 of Table 5.8 and Table 5.9 of those entries
which have valid tours in their last column. It can be seen that all other walks in
the tables are either duplicates or subwalks of those in UFWALK. Tours covering, the
walks in UFWALK are computed by the procedure Compute Tour. The procedure
is fairly straight forward when it is applied to the AP-module. Since all the incom-
ing transitions (15.119.420 and #21) at state s; do not have predicates, in the first
iteration. all the walks in UFWALK which terminate at the starting states (s,, s,
and sg) of these transitions are completed into executable tours by concatenating
the appropriate transitions from {#5.119,120.¢21}. Among other walks, P has the
single transition walks 719 and {20 at the end of the first iteration of Compute Tour.
Note that the incoming transitions {7 and {17 to the starting state of 119 and £20.
respectively, are predicate-free. This implies that the walks t7¢(19 and 117620 are al-
ways satisfiable independent of the context by which their starting states are entered.
Therefore. all the walks in UFWALK which terminate at s3 and s4 are augmented
into executable tours by concatenating them with the postamble walks (719 and
t17t20, respectively. In this manner, tours are successfully found for all the walks
in UFWALK. Thus, the procedure Compute Tour terminates in the second iteration.
The resulting tours are shown in the last columns of Table 5.5 through Table 5.7
Table 5.8 and Table 5.9. The tour t1t5, the CIUS of s; is finally postfixed to all the
selected tours. This set of tours satisfies both the trans-UlO-set eriterion for control

flow testing and the def-use-ob criterion for the data flow testing,

210

Let us examine the fault detection capability of the generated test tours through
examples. Suppose that an [UT has a simple control flow fault at the transition {6.
which originally ends at s4. Let the tail state of this transition in the IUT be s,.
While applying a test data along the tour ¢2¢6¢17120 which is one of the tours for
covering the trans-CIUS-criterion for 16 (refer to Table 5.8). it shows an output

mismatch. Following is the the expected sequence of outputs.

TCONind(pcer_add,opt) N'TrCC(opt. R_eredit)
N'Tr D R(*User initiated’, false) Nlterminated UNT' DI Scon f

However, the IUT produces the output sequence given helow.
LYTCONmd(pecr_add.opt) N'Tr('Copt. Reeredit) NYerminated UT DI Scon f

Therefore the fanlt is detected.

Suppose that the IUT has a variable definition fault at 73.¢1 where the variable
S_eradit is defined. Let us assume that the default value for all the integer variables
is zero, Take the def-use pair D = (13.¢1.18.¢1)S_credit. From Table 5.6. we se« that
LHE3ESISHET covers 1) and T = 1131818417120 1t5 is the required tour for covering 1)
with respeet to the def-use-ob criterion. Observe that for any feasible test data for

T, the expected sequence along the touvr is

U7TCONveg(dest_add, prop_opt) N'Tr(C R(de st_add, opt. R_credit)
NITrCClopt_ind.cr) UNTCONcon f(opt) UTT DATreq(Udata. EoSDU)
N'TrDT (T Ssq. Udata. EoSDU) UMT DATreq(Udata. EoSDU)
N'TrDT (T Ssq.Udata, EoSDU) U?TDI1Sreq
NTrDR(Useritiated’, false) N?TrDC Nlterminated U'T DIScon f
['TCONveg(dest_add, prop.opt) N'TrC R(dest.add, opt, R_credit)
N?TrDR(diseoreason, swilehUT DI Sind(disc_reason)N'terminated

However, the sequence of inputs and outputs as per the IUT is

[?TCONveq(destadd. prop_opt) N'TrC R(de st.add.opt (R_credit)
NITrCCopt_ind, er) UNTCONconf(opt) UTT DATrcq(Udata, FoSDU)
(T DATreq(Udata, EoSDU) UT DI Sreq
NTrDR(Uscrinitiated’. false) N?TrDC Ntarmimatcd UNTDISeon f
["TCONreq(dest_add. prop_opt) NVT'rC R(dcst_add, opt, K.credit)
N?TrDR(disc_reason, switch)U'T DI S d(disereason)NUernumald

Thus. the presence of the fault in the IUT is detected.

5.7 The Feasibility Problem

In this section we propose an approach for solving a special type of the feasibility
problem encountered in the algorithins for CIUS computation and test case genera-
tion. Let the predicates in the transitions along a walk starting from the initial state
he expressed in terms of some constants and the input interaction parameters along
the walk. The input interaction parameters in the predicates of the transitions are
referred to as decision variables. We consider a restricted class of the feasibility
problem where the predicates are linear (in terms of the decision variables). We also
assume that all the decision variables are of type integer, real. or hoolean. For the
sake of test case generation. a boolean decision varinble can be considered as an -
teger variable over the domain {0, 1}. Thus, every decision variable in a protocol
considered in this section is either of integer or of real type only. Let W ohe a walk
starting from the initial state (arbitrary walks in the SPEC can also be handled nsing

the proposed approach). Let t be a transition starting from the tail state of W

The feasibility problem is to find if the walk W’ obtained by
postfixing ¢t with 1’ is feasible given that W is feasible

Assume that the predicates in all the transitions in W as well as the predicate in £ are

already interpreted as per W'. Consider the Disjunctive Normal Form (DNF)

212

of the conjunction of the predicates along W. It is easy to see that each product
term in this form can be expressed as a system of linear equations and inequalitics (
heneeforth referred to as a system). Let Cy, Cy, ..., Cy be the family of systems for
W. In addition to the equations and the inequalities of the ith product term of the
DNF for W, C, also contains constraints on the upper and the lower bounds on the
decision variables. Similarly, let Dy, Dy, ..., D, be the family of systems for t. Clearly.
cach (,, 1 €7 < wand each D,, 1 € j < zis a mixed integer programming
feasibility problem [PS82, ('hv83]. Here, we simply refer to the above problem as
the Integer Programming Problem (IPP). The IPP in standard form is to
find the column veetor r of size n satisfying the following constraints, where A4 is an
m x n matrix over R, the set of all real numbers, and b, {. and u are column vectors

of size m1 over R,

44-" = b~
I <ur < u,
£H € Z. 1 < i < k.

r, € R E+1<i1<n.
Here, b is an integer between 1 and 7 and Z is the set of all integers. In general, if y
is a matrix, then y,, denotes the (7, j)th element of y. Before presenting the method
for solving the feasibility problem on hand. we need to provide a method for solving
the IPP. We propose an approach. henceforth referred to as GC-PET, for solving the
IPP by combining the Gomory Cut (G(') [PS82] and the Partial Enumeration
Technique (PET) [PR88]. Consider the following Linear Programming (LP)

relaxation of the IPP.

Problem(0) Ar = b,
[<r < u,
r € R,

We shall solve Problem(0) using the first phase of the two-phase simplex method

[Chv83]. If Problem(0) is infeasible, so is the original IPP. Any integral solution of

213

Problem(0) is obviously a solution for the IPP. Suppose that the solution % obtained
for Problem(0) is not integral for some integer variables. Then, let &), be one such
variable. Let A;r = b; be a system of Gomory cuts [PS82] for pruning some of the
feasible regions of Problem(0) which do not contain any point with integer components

for all the variables x,, 1 £ 7 < k. Now. consider the following subproblems of

Problem(0).

Problem(1) Ar = b,
Apr = by,
o <)
<o < u,
rn € Z.o1<i<hk,
r, € Rohk4+1<i<n
Problemi(2) Ar = b,
Air = by,
Iy 2 MTJ +1,
[<> < u

r, € Z,1<i1<k,

rn € R, k+1<1<n.,
Find a solution to the LP-relaxation of one of the above two problems, say Prob-
lem(1). If the resulting solution is integral, then we are done. If the LP-relaxation
is infeasible, then choose the other IPP, Problem(2) and, as before, proceed solving,
its LP-relaxation and so on. However, if the solution to the LP-relaxation of Prol)-
lem(1) has a non-integer solution to some integer variables, then split Problem(1)
into Problem(3) and Problem(4), just as we split Problem(0) and start solving the
LP-relaxation of one of the subproblems. This process continues recursively, as the
feasible regions for the subproblems get finer and finer. This process will stop in a

finite number of steps as there are only a finite number of variables and cach of the

214

integer decision variables has explicit lower and upper bounds. This approach of solv-
ing an IPP can be used to solve any of the systems €, 1 <¢ < wand D,,1 < j <z,
while solving our feasibility problem at hand.

At the starting of the given feasibility problem, it is known that C, is feasible
for some p,1 < p < w. Let us assume that C, was solved using GC-PET. Let B be
a feasible basis for the LP-relaxation of C,. Since C, was solved using GC-PET, B
is also known. In order to find if W is feasible, first check if any one of the systems
D, 1 < j <=z is independent of (7, and is feasible. If there exists one such system.
then let it be Dy, for some 5.1 < s < z. In this case, W' is obviously feasible and the
solutions for (7}, and 1), together form a solution for executing W”'. Also, the basis
for the LP-relaxation of 7, and that of the LP-relaxation of D, together form a basis
for the LP-relaxation of the combined system of), and D for W,

If noneof thesystems N1 < j <z, is independent of C), and feasible, then pick
a feasible system. say 1), arbitrarily. Let £, be the system obtained by combining
(', and D, Using GC-PET, we need to check if the system E,, is feasible. As
explained below, the basis B could be used as part of the starting basis while solving
the LP-relaxation for E,,. We just have to add one artificial variable to Xpg, the
set of basic variables, for eacl of the constraints in D,. We then invoke the revised
dual simplex method if the resulting basis is dual feasible; if not we proceed with
the revised simplex method until we obtain the optimum solution to the auxiliary
problem of the first phase of the two-phase simplex method. If E,, is found to be
feasible, then we are done. Otherwise. other feasible systems for ¢ have to be similarly
checked for feasibility when they are combined with C,. If ', is not feasible with any
of the feasible systems for ¢, then we need to replace C, with another feasible system
for " and repeat the above procedure. Note that the proposed approach for the
feasibility problem achieves the reduction in the complexity of the feasibility problem

since the solution obtained from a system for W is vsed in solving a system for 1{" ¢.

215

We shall illustrate our approach of solving *he feasibility problem using the
transport protocol given in Figure 5.1. We would like to find whether the transition
8 is executable when it is reached using the walk W = #1433, Following is the system

associated with W,

Lp—ry < 0,

ry > 0,

1 < ooz <05,
I <3 < 15,
Lporry € 2.

Here, i, and 3 correspond to the protocol’s decision variables N2T'r('(y.opt i,
(MTCONvqr.propoopt and N1TrC Cy.er, respectively. The bounds on these decision
variables are normally set by the tester based on the specification of the protocol,
By adding the slack variable r4 and the surplus variable rs, the above 1PP can be

cxpressed in the standard form as shown below.

TPl oy —ay+4 0y 0.
ra—rs = 0.
I < ryyry <05,
1 < oy < 15,
0 <ry £ 4,
1 <0y £ 14,
r, € 2, 1<1 <5,

We will first check for the feasibility of the problem IP1 using GC-PET.

Let LP]

denote the LP-relaxation of IP1; LP1 is obtained from IP1 by simply replacing Z by
R in the last constraint of IP1. LPI is solved using the first phase of the two phase

simplex method. In other words, LP1 can be solved by solving the following auxiliary

216

problem APL.

APl Martmize —TIq — 7
s, ri—aryt+ag+arg = 0,
r3—ua5+rr = 0,
1 < ryory <05,
<oy <15,
0 <ry < 4,
1 <o < 14,
0 < rger7 < o0,
r, ¢ R1<1<7T.

itlere, both g and w; are artificial variables. The initial solution for the problem
as per the revised simplex method is given as Xg = (re.27)7 = (4,0)7 and Xy =
(o gers gy rs)T = (1,5,1.0,1)7. The basis B is the identity matrix. It is easy
to sce that oy enters the basis and xg leaves the basis in the first iteration. As a
result, we have Xg = (0, 07)7 = (5,0)T. Xy = (23, 13,14, 15, 76)7 = (5,1,0,1,0)7.
I3 still remains as the identity matrix. In the second iteration, rz and x; becomne
the entering and the leaving variables, respectively. B continues to be the identity
matrix. Also, the iteration produces the following solution: Xp = (zy.23)7 = (5,1)7,
Ny = (rprgrsorgrr)T = (5,0.1,0.0)7. The third iteration. in fact, confirms
that the above solution is optimal. As the optimal value of the objective function is
zero, it can be concluded that the problem LP1 is feasible and (&4, 2, 23,14, 15)7 =
(5.5,1,0,1)T is a solution. This also becomes a solution for the original problem IP1
since it is integral. Therefore. W (= ¢1t348) is feasible.

Suppose that W7 is the walk obtained by postfixing 8 to W. Then, our fea-
sibility problem is to check if the walk W’ is executable. Note that the constraint
“ry > 17 of the transition {8 (after the execution of W) in isolation is feasible. We

need to add this constraint to the problem IP1. Let us record the resulting problem

in standard form as 1P2.

I1P2 ri—uw,40ry = 0,

ry—urs = 0.

ry—rg = 1,

I < oy <05,

I <oy < 15,

0 < ry < 1,

I € wsorg < 11,
o€ Z 1 <ilh,

rye € Z

Note that rygis a surplus variable. Let LP2 he the LP-relaxation of 112, Tn order 1o

solve LP2. it is enough to solve the folowing anxiliary problem.

AP2 Marimizc —r, = 27— Iy

s.1. £y — I +- £ +.r, = 0.

£Iy— o +ae o= 0.
ry—axtary o= 1,
I < ryoay < 5,
I <y <15,
0 <y < 41,
I < rpory <M
0 € rgorqyry < o0,
ro€ RoI<i<9.

A starting basis for AP2 can be obtained from the optimum basis of APL. The
columns corresponding to the optimum basic variables of AP and the column corre

sponding to the artificial variable &y together form the starting basis for A2, ‘The

218

starting basis B and the basic feasible solution «re given below.

100)
0 I 1

Ny = (.r,..r;,..rg,)T = (5. 1. I)T & Xa = (.1'2..I'“..I'r,..l‘(;..l";..Tg)T = (5.0.1.0.0. nT.

Since the above suiation is feasible but not optimal. we proceed with the revised
simplex method, I the first iteration. 5 enters the basis whereas g leaves the
basis. The resnlting solution is Xg = (ry,23.25)7 = (5.2.2)T. Also. we have,

NA = (rporqergo s g rg)! = (5.0.0.0.1.0)7 and the hasis matrix is

1 0 0
B=|o 1 -1
o1 0

The second iteration confirms the optimality of the above solution. As the optimal
value of the objective function is zero. we conclude that the above solution vields the
feasible solution (. rp0rprgors.)’ = (L.5.2,0.2.1)7 for the problem LP2. As
this solution for the LP-relaxation LP2 of IP2 is integral. it is also a solution for our
problem 1P2. Therefore. the walk W’ = 1113t8:8 is feasible for N.TrCCs.optand = 5.

UTCONreqy.propoopt =5 and N.TrCCaer = 1.

5.8 Summary

An approach for generating test cases for both the control flow and data flow aspects
of an EFSM is discussed in this chapter. A new type of state identification sequence.
namely, the Context Independent Unique Sequence, is defined and an algorithm for
computing a CIUS of a given state in an EFSM is developed. The trans-ClUS-
set eriterion used in the test case selection is superior to the existing control flow

coverage criteria for the EFSM. In order to provide observability, the “all-uses™ data

219

flow coverage criterion is extended to what is called the def-use-ob criterion. A two-
phase breadth-first search algorithm is designed for generating a set of executable test
tours for covering the selected criteria. The approach is also iHustrated on an EFSM
module of a transport protocol. Finally. the feasibility problem encountered in the
above algorithms is discussed for the restricted case where the constraints are lincar

im real and integer variables.

Chapter 6

SUMMARY AND PROBLEMS
FOR FUTURE STUDY

In this concluding chapter. we summarize the work reported in this thesis and suggest

a few problems for further study.

6.1 Summary

(‘onformance testing of communication protocols is cssential for achieving inter-
working of heterogeneous systems in a computer network. Cenformance testing is
done by generating a set of test cases from the specification of the protocol stan-
dard and applying them on the implementations to verify if their behavior is as per
the specification. Finite State Machine (FSM) and Extended Finite State Machine
(EFSM) models are the ones widely used for automatic test case generation. As the
quality of the test results and the efficiency of testing depend on the test cases se-
lected, the test case generation problem has been an active area of research. This
thesis is concerned with some of the important open issues in test case generation
from the FSM and the EFSM models.

Fault coverage and the length of a test sequence are often conflicting factors to

l)c) l

be considered while generating test sequences. Ideally, one would like to minimize the
length of the test sequence and maximize the fault coverage. The U-method [ADLUSS]
and the MU-method [SL92] minimize the length of the test sequences by successfully
applying the techniques for the asymmetric Rural Postperson Problem (RPP) and the
minimum cost maximum flow problem, respectively. The test sequences generated by
these methods h: ve reasonably high fault coverage [MC'S93]. The methods requite
certain auxiliary graphs constructed from the specification FSM to he connected for
an assignment of an Unique Input Sequence (UIS) for each transition. Unfortunately,
not all the protocols satisfy this requirement. In Chapter 2, we have addressed this
problem and presented an extension of the MU-method [SLY2] so that our method
can be applied to any protocol which is represented as a strongly connected FSN
having at least one UIS for every state.

Our new method selects a minimmm number of transitions and an assignment of
UIS for them from a set of UISs such that the resulting auxiliary graph has a minimum
number of connected components (If the auxiliary graph has exactly one component,
then it is connected). This problem. defined as the Basic UIS Assignment Problem
(BUAP), is formulated as a Maximum Cardinality Two Matroid Intersection Problem
(MC2MIP) and an efficient algorithm based on the works of Lawler [Law75, Law76)
and Edmonds [Edm79] is presented. In order to obtain an optimal test sequence,
the problem of assigning the UlSs for the remaining transitions is formulated as a
maximum flow minimum cost problem which does not affect the solution for the
BUAP. To handle the case when the auxiliary graph is not connected, three heuristic
algorithms are proposed for the gereral RPP. For one of them an explicit hound
on the cost of the approximate tour is established. The proposed method carefully
combines these algorithms with the MU-method [SL92] for generating a test sequence
for any strongly connected FSM-based protocol which has at least one UIS for cach
state. The fault coverage of our method is the same as that of the MU-method.

Chapter 3 and Chapter 4 consider the fault detection and the fanlt diagnosis

222

aspects of testing for protocols based on the FSM model. In Chapter 3, the existing
FSM-hased test case generation methods are analyzed for their fault detection and
diagnosis capabilities when the implementations have at most a single output or
transfer fanlt. It is observed that the C-method [KRK74, Koh78] does not have
complete fault coverage. Some guidelines for developing a method with better fault
diagnosis capability are also proposed in this chapter.

In Chapter 4, two new methods based on the Wp-method [FBK*91] are pre-
sented for diagnosing the fault in implementations with at most one output or transfer
fault. Our first method. called the UIDD-method. uses an UIS set and a state cover
tree which satisfy what is called the TUISD-property. An algorithm based on the
one given in [SD8Y] is presented for finding such a state cover tree and an UIS set.
whenever they exist. In order to minimize the length of the test sequence, the UIDD-
method uses solutions to the RPP proposed in [ADLUSS] as well as the heuristic
algorithms for the general RPP presented in Chapter 2 at appropriate places. It is
proved that the fanlt diagnosis capability of this method is better than that of all the
UlS-based methods analyzed in Chapter 3. The method is illustrated by generating
a test sequence for the NBS TP4 transport protocol [Nat83] as specified in [SL89].
Our second diagnosis method, namely the CSDD-method, uses a state cover tree and
a ('S set with a special property. It is proved that the fault diagnosis capability of
this method is superior to that of the Wp-method. An adaptive technique is finally
proposed in this chapter for further improving the fault diagnosis capabilities of the
UIDD-method as well as the ("SDD-method.

In Chapter 5. we present a methodology for generating test cases for covering
both the control flow and the data flow aspects of protocols which are represented as
EFSMs. In contrast to most of the existing methods, we consider the feasibility of
the test cases during their generation itself. A new type of UIS, called the Context
Independent Unique Sequence (CIUS), is defined and an algorithm is provided to

generate a CIUS for cach state. CIUSs help in reducing the complexity of test case

223

generation. We also define, what is called a trans-C'IUS-set criterion which requires
application of a CIUS of e\ 'ry state at the tail state of every transition. This criterion
is superior to the existing control flow coverage criteria for the EFSM. In order to
enhance the observability of the def-use associations. we have extended the “all-uses”
data flow coverage criterion to the “def-use-ob™ criterion. This criterion facilitates
external observability of the def-use associations established by the implementation.
In vrder to track the data flow coverage of different watks in an EFSM, a new type of
data flow graph is defined and a number of procedures are developed to manipulate
the data flow graphs.

Finally. a two-phase algorithm is presented for generating test tours for covering,
the trans-CIUS-set criterion as well as the def-use-ob criterion. Starting from the
initial state the algorithm scans the feasible walks in a breadth-first fashion and
selects them if they contribute to the coverage of the trans-ClIUS-set criterion for a
transition or the def-use-ob criterion for a def-use pair. In the second phase all the
walks selected in the first phase are completed into feasible tours ending, at the initial
state. This task is also done by traversing the feasible walks ending at the initial
state in a breadth-first fashion; this is achieved by traversing the walks in the reverse
direction. An incremental approach based on Integer Programming tedhimiques is
discussed for solving a restricted case of the feasibility problem when the predicates
are linear in terms of real and integer variables. This approach demonstrates how
the breadth-first search approach in the test case generation algorithm reduces the
complexity of the feasibility problem. The methodology is illustrated by generating,
test cases for the EFSM representation of a major module in a simplified class 2

transport protocol [IS8073] as specified in [Boc90).

224

6.2 Problems for Future Study

In the test case generation algorithms of Chapter 2 as well as in the UIDD-method, we
have used the heuristic algorithms for the general RPP. Thus the optimality of the test
sequence depends on the optimality of the solution obtained by the RPP. Therefore.
designing heuristic algorithms for the RPP with an optimality bound better than the
one given in this thesis deserves further study. To the best of our knowledge. app._rpt
presented in Chapter 2 is the first heuristic for the RPP with an explicit bound on
the optimality of the solution.

The fanlt diagnosis methods proposed in this thesis assume that the implemen-
tations have at most one ontput or transfer fault. Developing diagnosis methods with
a multiple fault model is an important research problem. Thus one of the future
research directions is to study how the approach taken in the UIDD-method and the
CSDD-method can be applied for diagnosing multiple faults in an implementation.

In order to evaluate the fanlt detection capabilities of the proposed methodol-
ogy for the test case generation from the EFSM model. the algorithms presented in
Chapter 5 need to be implemented. As the EFSM model considered in this thesis
is similar to the underlving model for the FDTs Estelle and SDL, such implemen-
tations can then be integrated with the existing FDT tools such as PET/DINGC
[SS91h, SS9ta). EDT [Bud92} and SDT [Tel93].

As indicated in [LHHT94], automatic test case generation problem for the EFSM
model is diflicult when a general UlQO-sequence is used. Chapter 5 shows that the
problem is more tractable for protocols which have a CIUS for every state. Therefore.
for an EFSM. the ratio of the number of states which have CIUSs to the total number
of states in the EFSM can be considered as a measure of testa*ility. It would be
interesting to see how to design a protocol such that this measure is maximum. Also.
the methodology presented in Chapter 5 needs to be extended so that it generates
test cases for protocols which may not have ('IUSs for a few states.

A thorough analysis of the fault detection and diagnosis capabilities of the

l) l)5

existing EFSM-based test case generation methods is needed. Such an analvsis would
help in achieving a better understanding of the issues involved in the fault detection
and diagnosis of the implementations which are modeled as EFSMs.,

Test case generation for the communicating EFSM model is an interesting open
problem in conformance testing. The methodology proposed in Chapter 5 can be

imvestigated for its applicability in this extended model.

Bibliography

[ADLUSS] A.V. Aho, A. T. Dahbura, D. Lee. and M. U. Uyar. An optimization tech-

[B1NT)

(BD87]

[(BDD*91)

[BDZ8Y]

[BGS8T

nique for protocol conformance test generation based on UIO sequences
and rural chinese postman tcars. In S. Agrarwal and K. Sabnani, edi-
tors. Protocol Specification, Testing and Verification, VI, pages 75-86.

Elsevier Science Publishers B. V. (North-Holland), 1988.

T. Bolognesi and Ed. Brinksma. Introduction to the 1SO specification

language LOTOS. Computer Networks and ISDN systems, 14:25-59, 1987.

S. Budkowski and P. Dembinski. An introduction to Estelle : A specifi-
cation language for distributed systems. Computer Networks and ISDN

systems, 14:3-23, 1987,

(i. v. Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi. and G. Luo.
Fault models in testing. In Proc. Jth International Workshop on Proterol

Test Systems, Leidschendam, The Netherlands, October 1991.

G.v. Bochmann, R. Dssouli, and J. R. Zhao. Trace analysi. for confor-
mance and arbitration testing. IEEE Tr. Soft. Engg., SE-15:1347-1356.

November 198.4.

G. v. Bochmann, G. Gerber, and J-M. Serre. Semi-automatic implemen-
tation of communication protocols. I[EEE Tr. Soft. Engg.. SE-13(9):989-
1000, Sept (987,

[BocT78]

[Boc90]

[BPY94]

[BU9I]

[Bud92]

[CA91]

[CCK90]

[Cho78]

[("hvi3]

G.v. Bochmann. Finite state description of communication protocols.

Computer Netrworks, 2:361-372, 1978.

G. Bochmann. Specifications of a simplified transport protocol using
different formal description techniques. Computer Nctworks and ISDN

systems, 18:335-377, 1989/1990.

G. v. Bochmann, A. Petrenko, and M. Yao. Fault coverage of tests based
on finite state models. In 7th Intcrnational Workshop on Protocol Tist

Systems, Tokyo , Japan, November 1991,

5. C. Boyd and H. Ural. On the complexity of generating optimal test

sequences. [EEE Tr. Sofl. Engg., 17(9):976 978, September 1991,

S. Budkowski. ESTELLE Development Toolset (EDT). Computer Nei-
works and ISDN systems, 23(5). 1992,

W. Chun and P. D. Amer. Test case generation for protocols specified
in Estelle. In J. Quemada, J. Manas, and E. Vazquez, editors, Formal
Dceseription Techniques, 11, pages 191-206. Elsevier Science Publishers

B. V. (North-Holland), 1991.

M. -5S. Chen, Y. Choi. and A. Kershenbaum. Approaches utilizing seg-
ment overlap to minirize test sequences. In Proc. 10th International Sym-
posium on Protocol Specification, Trsting and Verification, pages 67 84,

Ottawa, Canada, June 1990.

T. S. Chow. Testing software design modeled by finite state machine,

IEEE Tr. Soft. Engg.., SE-4(3):173-187, March 1978.

V. Chvatal. Linear Programming. W.H. Freeman and Company, New

York, USA, 1983.

228

[Cla76)

[(:592]

[('VIgg]

[CZ93]

[DS88]

[DSU90x]

[DSU90]

(Edm79]

[EJ73]

L. A. Clarke. A system to generate test data and symbolically execute

programs. [EEE Tr. Soft. Engg., SE-2(3):215-222, September 1976.

A. Chung and D. Sidhu. Applications of sufficient conditions for efficieui
protocol test generation. In Proc. 5th International Workshop on Protocol

Test Systems, pages 196-205, Montreal, Canada, September 1992.

W. Y. L. Chan, S. T. Vuong, and M. R. Ito. An improved protocol test
generation procedure based on UlOs. In ACM SIGCOMM, pages 283-294,
1989.

S. T. Chanson and J. Zhu. A unified approach to protocol test sequence

generation. In Proc. IECE INFOCOM, pages 106-114. 1993.

A. T. Dahbura and K. K. Sabnani. An experience in estimating fault
coverage of a protocol test. In Proc. IEEE INFOCOM, pages T1-79,
March 1988.

A. T. Dahbura, K. K. Sabnani, and M. U. Uyar. Algorithmic generation
of protocol conformance tests. ATET Technical Journal, 69(1):101-118,

January/February 1990.

A. T. Dahbura, K. K. Sabnani, and M. U. Uyar. Formal methods for
generating protocol conformance test sequences. In Proc. IEEE, Vol 78,

No 8, pages 1317-1326, 1990.

J. Edmonds. Matroid intersection. Annals of discrete mathematics, 4:39-

49, 1979.

J. Edmonds and E. L. Johuson. Matching, Euler Tours and the Chinese
Postman. Mathematical Programming, 5:88-124, 1973.

229

[EMS5)

[FBK*91]

[FGMS2]

[FMC93]

[FS92]

[FW93]

[Ghe92)

(Gil61]

[Gil62]

[GonT0]

H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1, EATCS
Monographs on theoretical computer secience, 6. Springer-Verlag, Berlin,

1985.

S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi.
Test selection based on finite state models. [EEE Tr. Soft. Engg., SE-
17(6):591-603, June 1991.

A. M. Frieze, Gi. Galbiati, and F. Malffioli. On the worst case performance

of some algorithms for the asymmetric traveling salesman problem. Nit-

works, 12:23-39, 1982.

ISO SC21 WG P54: Information Processing Systems - Open Systems
Interconnection - Formal Methods in Conformance Testing, Working Daoc-

ument, June 1993.

B. Forghani and B. Sarikaya. Semi-automatic test suite generation from

Estelle. IEE/BCS Softwarc Enginecring Journal, 7(4):295-307, July 1992,

P. G. Frankl and E. J. Weyuker. Provable improvementson branch testing,

IEEE Tr. Soft. Engg., SE-19(10):962-975, October 1993.

A. Ghedamsi. Diagnostic tests for protorol implementatior:s modeled by
finite state machines. PhD thesis, University of Montreal, Montreal,

Canada, December 1992.

A. Gill. State-identification experiments in finite auotomata. Information

and control, 4:132-154, 1961.

A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill,
New York, USA, 1962.

G. Gonenc. A method for the design of fault detection experiments. TEEEE

Tr. Computers, C-19:551-558, June 1970.

230

[Hen64]

[Hoash)

[Hog92)

[(HowsT]

[1S7498]

[1S8073)

[1S8807)

[159074]

[1596416)

[1389]

F. C. Hennie. Fault detecting experiments for sequential circuits. In Proc.
Sth Annual Symposium on Switching Cireuits Theory and Logical Design,

pages 95-110, Princeton, N..J., U.S.A., November 1964.

C.. A.R. Hoare. Communicating scquential Processes. Printice-Hall Inter-

national, Englewood Cliffs, New Jersey, USA, 1985.

D. Hogrefe. OSI formal specification case study: the Inres protocol and
service, Revised. Technical report, Institute for Informatics, University of

Berne, May 1992,

W. E. Howden. Functional program testing and analysis. McGraw-Hill,

1987,

ISO 7498: Information Processing Systems - Open Systems Interconnec-

tion - Basic Reference Model, 1984,

ISO TC97/506 8073: Information Processing Systems - Open Systems

Interconnection - Connection Oriented Transport Protocol Specification.

ISO/IEC 8807: Information Processing Systems - Open Systems Intercon-
nection - LOTOS - a Formal Description Technique Based on the Tem-

poral Ordering of Observational Behavior, June 1988.

ISO/IEC 9074: Information Processing Systems - Open Systems Intercon-
nection - Estelle - A Formal Description Technique Based on an Extended

State Transition Model, 1987.

ISO/IEC' 9646: Information Processing Systems - Open Systems Inter-

connection - Conformance Testing Methodology and Framework, 1991.

C'. Jard and J.-M. Jezequel. A multiprocessor Estelle-to-C compiler to

prototype distributed algorithm on parallel mechine. In E. Brinksma,

231

[JL87]

[IW74)

[Kar83]

[KK68]

[KL67]

[Koh78]

[KRK74)

[Kua62]

[LawT75]

G. Scollo, and C'. A. Vissers. editors, Protocol Specification, Testing and
Verification, L\, pages 161-174. Elsevier Science Publishers B, V. (Noith-
Holland), 1989.

J. Jaffar and J. -L. Lassez. Constraint logic programming,. Iu 14th ACM

Principles of Programming Languages Conference, 1987,

K. Jensen and N. Wirth. PASCAL: User manual and reporl. Lecture

Notes in Computer Science. 18, Springer-Verlag, Berlin, 1971,

G. Karjoth. Implementing process algebra specifications by state ma-
chines. In Proc. 8th Inte rnational Symposivin on Protocol Speeification,

Testing and Verification 1988,

I. Kohavi and Z. Kohavi. Variable-length distinguishing sequences and
their application to the design of fanlt-detection experiments. TEEE Tr.,

Computers. 17:792-795, August 1968.

Z. Kohavi and P. Lavallee. Design of sequential machines with fault de-
tection capabilities. IEELE Tr. Elcetronic Computers, EC-16(4):473 484,
August 1967.

Z. Kohavi. Switching and Finite Automata Theory. MeGraw-1h1L New

York, 1978.

Z. Kohavi, J. A. Rivierre, and 1. Kohavi. Checking experiments for se

quential machines. Information scicnees, 7:11-28, 1974.

M. -K. Kuan. Graphic programming using odd or even points. Chinese

Math, 1:273-277, 1962.

E. L. Lawler. Matroid intersection algorithms. Mathcmatical program-

ming, 9:31-56. 1975.

232

[LawT76]

[LIHT94]

[LinRY)

(LI1192]

[LL91]

[LRK76]

[Mae?7]

[M(S93]

[Milxo]

E. L. Lawler. Combinatorial optunization : Networks and Matroids. Holt.

Reinhart and Winston. New York., USA. 1976.

X. Li. T. Higashino. M. Higuchi. and K. Taniguchi. Automatic genera-
tion of extended UI0O sequences for communication protocols in an EFSM
model. In 7th International Workshop or. Protocol Test Systcms, Tokyo.

Japan. November 1994.

M. T. Lin. Proto ol Engineering. In M. C. Yovits. editor. Advances in

Compultcrs, pages 79-195. Academic Press. 1989. Vol. 29.

7. Lidong. L. Jiren. and L. Huatian. A further optimization technigne for
conformance testing based on multiple UIO sequences. In Proc. 5th Intcr-
national Workshop on Protocol Test Systams. pages 206-211. Montreal.

(‘anada. September 1992,

D. Y. Lee and J. Y. Lee. A well-defined Estelle specification for the
automatic test generation. IEEE Tr. Computers. 40(4):526-542. April

1991,

J. K. Lenstra and A, H. Gi. Rinnooy Kan. On general routing problems.

Networks. 6(3):273-280. July 1976,

A. K. Mackworth. Consitency in networks of relations. Artificial Intelli-

genee, 8:99-118. 1977,

H. Motteler. A. Chung. and D. Sidhu. Fault coverage of UIO-based meth-
ods for protocol testing. In Proc. 6th International workshop on protocol

test systems. pages 23-35. Pau. France, September 1993.

A. J. R. G Milner. Communacation and concurrency. Addison-Wesley.

Reading, Massachusetts, USAL 1989,

[Mor90]

[MP91]

[MP92)

[Nai92]

[Nat83]

[NT81]

[NW8Y]

[Pap76,

[PR3S)

[PS82]

L. J. Morell. A theory of fault-based testing. [FEE Tr. Soft. Engqg..
SE-16(8):8144-857. August 1990,

R. E. Miller and S. Paul. Generating minimal length test sequences for

conformance testing of communication protocols. Iu Proc. IEEE INFO-

COM, April 1991.

R. E. Miller and S. Paul. Generating conformance test sequences for coms-
bined control and data flow of communication protocols. In Proc. 12th
Iuternational Symposiumn of Protocol Specification, Testing and Verica-

tion. 1992,

IN. Naik. Vertfication of test cases for protocol conformanee testimg. Phl,

thesis. Concordia University. Montreal. ("anada. 1992,

National Bureau of Standards. Washington. DC. Speeification of a trans-
port protocol for computcr communicatons, vol. 3: class | protocol. Jan-

uary 1983, Report: [CST/HNLP-83-1.

S. Naito and M. Tsunovama. Fault detection for sequential machines by
transition tours. In Proc. 11th IEEE Fault Tolerent Computing Confor-

ence. pages 238-243. 1981.

G. L. Nembauser and L. A. Welsev. Infcger and combinatorial optimiza-

tion. John Wiley & Sons . New York. USA. 1988.

C. H. Papadimitriou. On the complexity of edge traversing. J. ACM.,
23(3):544-554. July 1976.

R. G. Parker and R.L. Rardin. Disercte Optimization. Academic Press.
San Diego, USA. 19885.

C.H. Papadimitriou and K. Steiglitz. Combmatorial Optimization: Algo-

rithms and Complerity. Printice-Hall. New Jersey, USA, 1982,

234

[RayR7]

[RDTa]

[RDTH)

[RDT93)

[RT93]

[RTDY1]

[RWS5]

[Sab8y]

D. Rayner. OSI conformance testing. Computer Networks and ISDN
systoms, 14:79-98, 1987,

T. Ramalingam, A. Das, and K. Thulasiraman. Analysis of fault detection
and diagnosis capabilities of test sequence selection methods based on the

FSM model. To appear in Computer Communications.

T. Ramalingam, A. Das, and K. Thulasiraman. On testing and diagno-
sis of communication protocols based on the FSM model. To appear in

Computer Communications.

T. Ramalingam. A. Das, and K. Thulasiraman. On conformance test an
fault resolution of protocols based on FSM model. In S. V. Raghavan, G. v.
Bochmann, and G. Pujolle, editors, Computer Networks, Architecture and
Applications, pages 211-222, Elsevier Science Publishers B. V. (North-

Holland), 1993.

D. J. Richardson and M. (. Thompson. An analysis of test data selection
criteria using the RELAY muodel of fault detection. IEEE Tr. Soft. Engg.,
SE-19(6):533-553, June 1993.

T. Ramalingam, K. Thulasiraman. and A. Das. A generalization of the
multiple UlO method of test sequence selection for protocols represented
in FSM. In 7th International Workshop on Protocol Test Systems, Tokyo,
Japan, November 1994.

S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Tr. Soft. Engg., SE-11(4):367-375, April 1985.

K. Sabnani. An algorithmic technique for protocol verification. IEEFE Tr.

Comm., 36(8):924-931, August 1988,

o
-~
1

[Sar93]

(SBS6]

[SBCST]

[SD85)

[SD88]

[SDLSS]

[SF87)

[SL89]

[SL92)

[SLDSY]

B. Sarikav=. Principles of protocols engineering and conformance testing.

Ellis Horwood, NewYork, USA, 1993.

B. Sarikaya and G. v. Bochmann. Obtaining normal form specifications
for protocols. In Csaba, Tarnay, and Szentivayni, editors, Computer Nel-
work Usage: Recent Experiences. Elsevier Science Publishers B. V. (North-

Holland), 1986.

B. Sarikava, G.v. Bochmann, and E. Cerny. A test design methodology
)) B

for protocol testing. IEEE Tr. Soft. Engg.. SE-13(5):518 531, May 1987.

K. K. Sabnani and A. T. Dahbura. A new technigue for generating pro
tocol tests. In Proc. 9th Data Communication Symposinm, pages 36 43,

IEEE Computer Society press. September 1985,

K. Sabnani and A. Dahbura. A protocol test generation procedure. Cone-

puter Networks and ISDN systcns, 15:285--297, 1988,

CCITT/SGx/WP3-1, Specification and Description Language, SDL.
CCITT Recommendations Z.100, 1988.

B. Strausser and J.P. Favrcau. User guide for the NBS prototype compiler

for Estelle. Technical Report ICST/SNA - 87/3, NIST, October 1987,

D. P. Sidhu and T. -K. Leung. Formal methods for protocol testing: A
detailed study. IEEE' Tr. Soft. Engg., SE-15(4):413-426, 1989.

Y. -N. Shen and F. Lombardi. On two graph algorithms for the rural chi-
nese postman tour problem in protocol verification and validation. Tech-
nical report, Department of Computer Science, Texas A & M University.

College Station, U.S.A., 1992.

Y. -N. Shen, F. Lombardi, and A. T. Dalbura. Protocol conformance

t ~ting using multiple UIO sequences. In E. Brinksma, G. Scollo, and

216

[SLDY2]

[SS9Y1a]

[SSO1D]

[Sta93]

[SU90]

[Tar83)

[Tel93]

[TRC93]

C. A. Vissers, editors, Protocol Specification, Testing and Verification,
IX, pages 131-144. Elsevier Science Publishers B. V. (North-Holland),
1989.

Y. -N. Shen, F. Lombardi, and A. T. Dahbura. Protocol conformance
testing using multiple UIO sequences. IEEE Tr. Comm., 40(8):1282-1287,
August 1992.

R. Sijelmassi and B. Strausser. The Distributed Implementation Gener-
ator: an overview and user guide. Technical Report NCSL/SNA-91/3,
NIST, January 1991.

R. Sijelmassi and B. Strausser. The Portable Estelle Translator: an
overview and user guide. Technical Report NCSL/SNA-91/2, NIST, Jan-
uary 1991.

W. Stallings. Nctworking Standards: a guide to OSI, ISDN, LAN, and
MAN. Addison-Wesley, New York, 1993.

M. H. Sherif and M. U. Uyar. Protocol modeling for conformance testing
: Case study for the ISDN LAPD protocol. ATET Technical Journal,
69(1):60-83. January/February 1990.

R. E. Tarjan. Data Structures and Network Algorithms. Applied mathe-
matics. SIAM, Philadelphia, USA, 1983.

Telelogic, Malmo, Sweden. SDT reference manual, 1993.

M. C. Thompson, D. J. Richardson, and L. A. Clarke. An information flow

model of fault detection. In Proc. International Symposium on Softwarc
Testing and Analysis, pages 182-192, Cambridge. USA, June 1993. AC'M

press.

237

[Tri92)

[TS92]

[Tury3)

[Ura87]

[Ura92]

(W3]

[UY91)

[VI90]

[Wey84]

[Wey90]

|WL3)

P. Tripathy. A unified model for protocol test suite design. PhD thesis,

Concordia University, Montreal, Canada, 1992.

K. Thulasiraman and M.N.S. Swamy. Graphs:Theory and algorithms.

John Wiley & sons, New York, USA, 1992,

K. J. Turner, cditor. Using formal description techniques. John Wiley &

Sons, Chichester, England, 1993.

H. Ural. Test sequence selection based on static data flow analysis. Cloni-

puter Communications, 10(5):234-242, October 1987.

H. Ural. Formal methods for test sequence generation. Computer Com-

munications, 15(5):311-325, June 1992,

H. Ural and A. Williams. Test generation by exposing control and data
dependencies within system specifications in SDL. In Proc. FORTI’9:3,

October 1993.

H. Ural and B. Yang. A test sequence selection method for protocol

testing. IEEE Tr. Comm., 39(4):514-523, April 1991.

S. T. Vuong and K. C. Ko. A novel approach to protocol test sequence
generation. In IEEE Global Telecomm. Conference and Ezhibition, pages

1880-1884, December 1990.

E. J. Weyuker. The complexity of data flow criteria for test data selection.

Informaticn processing letters, 19:103-109, August 1984.

E. J. Weyuker. The cost of data flow testing: an empirical study. IFEFV
Tr. Soft. Engg., SE-16(2):121-128, February 1990.

C.-J. Wang and M. T. Liu. Generating test cases for EFSM with given
fault models. In Proc. IEEE INFOCOM, pages 774-781, 1993,

238

[YPB93] M. Yao, A. Petrenko. and G. v. Bochmann. Conformance testing of pro-
tocol machines without reset. In Proc. 13th International Symposium on

Protocol Specification, Testing and Verification, 1993.

[Zaf78] P. Zafiropulo. Protocol validation by duologue-matrix analysis. /EEE Tr.

Comm., 26(8):1187-1194, August 1978.

[ZWR*80] P. Zafiropulo, C. H. West, H. Rudin, D. D. Cowan. and D. Brand. Towards
analyzing and synthesizing protocols. IEEE Tr. Comm.. 28(4):651-661.
April 1950.

