e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services nibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1AON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Your the Volre réfdrence

Qur e Notre rdletence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumice au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A CAD System for Acoustic Physical Modelling

Christopher Bruce Lea

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements for
the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

May 1992

©® Christopher Bruce Lea, 1992

PRI L e T IR e

L Ry

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
aliowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your e Volie tdférence

Out e Note idlérence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer cu
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celle-<ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN @-315-80938-8

Canada

Abstract

A CAD System for

Acoustic Physical Modelling

Christopher Bruce Lea

An Audio CAD system is presented that provides users
with tools to graphically design sound generation objects.
The objects synthesize the acoustical properties of real or
imaginary audio instruments using physical modelling. The
physical modelling synthesis method is based on inter-
connectable resonator modules in hierarchical waveguide
networks. Waveform samples are generated using parallel
processing hardware to accelerate the design cycle. The
system iz implemented as a set of MAX objects on a Macintosh
ITIfx with a network of INMOS Transputers used to drive the
waveguide network and a Sound Accelerator board used to

audition the resulting waveforms.

In memory of my mother

This work was made possible due to the generous support
and facilities provided by the people in the Electronic

Music Studio at McGill University.

Table of Contents

1 Introduction . . ¢« ¢ ¢ o+ o o s o s s o o o o

2 Sound Synthesis . . . ¢« « ¢ « ¢« ¢ ¢« ¢ ¢ o o o
2.1 Additive Synthesis

2.2 Non-linear Synthesis « .« .

o v

3.2 Conceptual Design . . .

2.2.1 Frequency Modulation

2.2.2 Waveshaping

2.3 Physical Modelling

2.3.1 Subtractive Synthesis

2.3.2 Waveguide Networks .

2 L 4 Summary L] - L4 . L] - . L] L] L d

3AUdio CAD . . « + & ¢ ¢ ¢ e o o o

3.1 Module Definitions

3.2.1 Waveguide Editor . .
3.2.2 Network Editor . . .
3.2.3 Loader
3.2.4 Conductor

3.2.4.1 The Score . .

3.2.4.2 Time and Synchronization

3.2.4.3 The Connection Scheme

3.2.4.4 Conductor Actions

3.2.5 Sound Manager

vi

10

12

12

14

18

21

24

29

29

32

36

38

38

40

41

43

44

4 The Implementation

4.1 Parallel Processing .

4.1.1 Increase in Throughput

4.1.2 The Transputer Network

4.1.3 The Sound Accelerator Board

4.1.4 Summary
4.2 The Waveguide Editor .
4.3 SUMMAry . « « ¢ o & o«

5 Conclusion . . ¢ ¢« « ¢ « o «

6 Bibliography

vii

46
47
48
51
61
62
63

73

77

80

List of ¥igures

Figure 1 A junction with two waveguides.
Figure 2 A waveguide subnetwork representing a string.
Figure 3 A waveguide subnetwork representing the
soundboard of a piano. . . .« . . ¢ ¢ ¢ 0 e s e
Figure 4 Example of a derived network through
substitution of editor definitions. {(a) original
room, instrument, and subnetwork (b) derived
instrument, (c¢) derived network.
Figure 5 General configuration of the communication
SYStEM. ¢ ¢ ¢ ¢ o o o o o o o s o s o o o & o
Figure 6 Example of a Room Network Editor's Window. .
Figure 7 Example of an Excitation Object's Dialog. .
Figure 8 Example of a Parameter Dialog for Fourier

Synthesis. « ¢« v ¢ ¢ ¢ ¢ ¢« ¢« o s o o« o o o o o

viii

16

25

25

37

52

69

71

74

-

List of Tables

Table 1 Editable Network Objects. . « . . « « ¢« « .+ . .
Table 2 Rules for logical port connections in a Network

Editor. - . . L] . -

ix

32

35

1 Introduction

The work presented here discusses the issues related to
the physical modelling of sound. It identifies the problems
of creating and using models of sound generation systems
whose purpose is to derive sounds that are considered
acoustically interesting and predictable. A solu'ion is
proposed illustrating that it is possible to do this in a
modular design environment that allows simple and intuitive
constructs to be easily manipulated. Two main subject areas
are covered that are considered to be the relevant points of
interest to this topic. They are:

(1) the synthesis of digital sound by computer

(2) the conceptual representation of a general

synthesis model.

A problem related to physical modelling of sound
systems in a digital computer environment is that a user is
often required to create new programns to test out a
theoretical model. This is due, in part, to specific
properties of the model that are not totally incorporated in
any single sound generation design system. Another problem
is that the majority of available sound generation design
systems do not incorporate a user interface that allows easy
and informative manipulation of the inherent ideas of the

system being designed.

The requirements of a user of a design system to model
sound can be stated as follows:

1. A means of visualizing (graphically representing)

the sound that will be created.

2. A method of breaking the sound creation process

into a series of sub-processes that are easily

manipulated and can be viewed as complete entities on

their own.

3. A method of testing partial or whole designs to

see if the system behaves as expected. The designs are

tested rather than verified because the available

verification tools are weak and because the basis of

evaluation is more often qualitative rather than

quantitative.

4. A synthesis method that does not restrict the

range of sounds possible. A general design system

should not place a restriction on the models being

created.

5. A language (set of input values, set of triggers

to a model) that can be used to drive the models.

The work in the following chapters presents a proposal
for a system that attempts to meet the requirements of a
designer of sound generation models. The contribution by

the author is focussed on two aspects: (1) the design of the

graphical computer aided design (CAD) environment, and (2)

the parallel computation engine.

An overview and comparison of well-known sound
synth.esis models is provided in Chapter 2. The concept of a
wavequide network is then defined and presented as a viable

alternative to the other synthesis models.

A method of graphically representing and manipulating
sound generation modules is presented in Chapter 3. 1In the
discussion, the general design cycle is examined along with
a proposal presenting what is needed by and satisfactory to
a user during the design cycle. A software specification
for a system to implement the two main tools for this method

is then presented.

The implementation of a prototype of the generalized
design system is presented in Chapter 4. The hardware
platform is presented with the mapping of the appropriate
modules from the software design presented in Chapter 3 to
this hardware. This includes a discussion of the increase
in throughput that is possible by employing parallel
processing in the computation of the results (the digital

representation of the sound wave).

SRS, RN B Y 8

2 Sound Synthesis

Sound synthesis by computer is the algorithmic
generation of digital waveforms that represent the time-
varying pressure of the air being moved by an acoustical
wave. These digital waveforms can be converted to analog
signals, and broadcast through an amplifier/speaker system

to be auditioned.

The primary domains of application of sound synthesis
by computer are music and speech. Some examples of the many
disciplines using synthesized sounds are Composition,
Cognition, Human-Machine Interaction, Psychoacoustics,
Psychomusicology, and Telephony. These domains and
disciplines require that sound generation be computationally
efficient, and that the algorithm specification that

describes the sounds be relatively easy to compose.

This chapter surveys several existing methods of sound
synthesis by computer, and contrasts them by their
computational and compositional requirements. The methods
discussed are additive synthesis, non-linear models, and

physical modelling ([8,23]).

2.1 Additive Synthesis

Additive synthesis is a process where basic sound waves
are combined to create more complex waveforms. This method
is derived from a theory by Fourier in which he describes
complex periodic waveforms as combinations of harmonically
related sinusoids. 1In additive sound synthesis, the complex
waveforms desired are created from sets of harmonic

components, or partials.

Fourier's theorem states that if f£(t) is a waveform
with a period of T seconds (V t; £(t) = £(t + T)), then
£(t) = Zy 0. .mASin(kwt+e,)
where
A, is the amplitude of the k' sinusoidal component
of f£(t).
w is the fundamental frequency of the waveform

(

®, is the phase offset of the k" sinusoidal

2r/T) .

component of £(t) (relative to sine phase).

If the only interest in sound synthesis were in the
production of non-varying periodic waveforms, then a sound
synthesis system could pre-generate one period of each of
the desired waveforms through the specification of a set of

input parameters. An efficient table look-up method could

RS

then be utilized to produce any version of the waveform
using frequency, amplitude, and phase as the parameters to

the look-up method.

This method, while being able to produce qualitativeiy
rich waveforms, does not support the independent temporal
evolution of harmonics that appears in all naturally
occurring sounds. Simmle spectral changes, such as the
rapid decay of higher frequency components relative to the
lower frequency components observed in most naturally

occurring sounds, for example, are lost in this method.

To permit time-varying waveforms, the spectral
components can be represented by independent functions of
amplitude, frequency, and phase, rather than simple value
parameters. The output from these functions at time t would
then be used as parameters to an oscillator (a simple sine
table look-up method), and then the resulting sine
components would be added together to produce the waveform
at time t. The problem with this method is the need for a
large data set for each function to describe the waveform
accurately. Research in psychoacoustics, however, has shown
that the number of components required to describe a
waveform can be reduced while producing no objectionable

effect on the resulting sound ([22]).

Another reduction which would have more effect involves
the data sets of the functions defining the envelope of the
spectral components. Here, a piece-wise linear
approximation to a sound's time varying power spectrum is
taken. These approximations are then stored as coordinates
of the break points of the functions. Studies of orchestral
instrument tones have shown that as few as five to seven
line segments per envelope are needed to generate tones
which are difficult to discriminate from tones generated

using detailed amplitude and frequency functions ([44]).

In summary, additive synthesis is a powerful and
general technique for producing waveforms, but it normally
requires a large set of control parameters to specify a set
of waveforms to be used in any controlled setting. Further,
these parameters are not derived by simple observation, but
are usually extracted through the analysis of sounds by
short time spectrum measurement techniques. Thus, though
powerful and general, additive synthesis requires much
analysis and input from the composer, and is therefore
somewhat limited in application as a good sound synthesis

alternative.

2.2 Non-linear Synthesis

Non-linear (or distortion) synthesis uses aggregate
non-linear functions with oscillators to derive output with
many more components than the number of oscillators used.
These non-linear functions are usually applied to only one
of the inputs allowing for control of the sounds using only
a few parameters. This enables the user to develop rich
sounds while requiring few calculations for the parameters
to be made. Two of the more widely accepted subclasses of
Non-linear Synthesis are frequency modulation and non-linear

waveshaping.

2.2.1 Frequency Modulation

sound synthesis by Frequency Modulation (FM) is a
method of producing complex audio spectra first introduced
by John Chowning ([6]). In its simplest form, FM is
achieved by adding the output from one oscillator to a
carrier frequency to be used as the time-varying frequency
parameter of another. The frequency f(t) at time t can be
stated as

£(t) = £, + Scos(2mtf /R)
where

f is the carrier frequency

<

§ is the peak frequency deviation from the carrier

frequency
£, is the modulating frequency
R is the sampling rate.

The waveform y(t) derived by applying such a function to the
frequency parameter of an oscillator of peak amplitude A is
given by

y(t) = A sin(2mtf /R + &/f;sin(2ntf /R)).

It can also be stated for clarity that the components
in such a waveform are given by the series f_tf ,6 £ i2f,
f.+3f,.... This is seen by examining the trigonometric
identity that states that

sin(e+asinf) = J,(a)sine

+ ...k [Sin(6+kp) +(~1)*sin(e-kp)].
where J,(x) is an order n Bessel function of the first kird

evaluated at point x.

FM is not restricted to using a single oscillator as
input to another. Many combinations of modulating
frequencies are often used from cascades of oscillators (in
series), to using a simple form of additive synthesis to
produce a complicated waveform as the frequency parameter
input to the oscillator. It is also worthwhile to note that

if the value of the modulating frequency parameter is large

with respect to the carrier frequency, some of the resulting
components will be negative and others will be at frequency
rates higher than the Nyquist frequency: the Nyquist
frequency is defined to be the frequency at one-half the
sampling rate. Frequencies in waveforms that are above the
Nyquist frequency are reflected around the Nyquist frequency
such that their perceived frequency is indistinguishable
from a lower unreflected freguency; this is known as
aliasing. The perception of the negative and aliased
frequency compeonents will interfere with the other
components in a manner that is difficult to predict, often

producing interesting, if not unobjectionable, results.

The number of calculations required for producing FM is
much lower than for that of Additive Synthesis, and the
sounds derived from FM systems prove to be extremely rich.
For these reasons, a number of FM based synthesizers have
been marketed, and have enjoyed great commercial success.

It must be stated, however, that to manipulate the
structures necessary for FM and to predict exactly what

sounds will be derived is not an obvious task.

2.2.2 Waveshaping

Waveshaping can be described as the class of sound

synthesis derived by the post-manipulation of a waveform.

10

This is usually done using a non-linear function g that is
composed with a waveform function f (representing the
oscillator). The most popular form of waveshaping uses the
output of oscillators as input to a function g composed of a
set of Chebyshev polynomials. Their popularity might be
seen by examining the relation

T, (cos®) = cos(ke)
where T,(x) is the kth Chebyshev polynomial. Stated in
simpler terms, this means that the composition of the kth
Chebyshev polynomial with a cosinz waveform produces the kth
harmonic of that waveform. A waveform having predictable
harmonic components can be derived by using a function g(f)
composed of Chebyshev polynomials as follows:

9(f) = B mWiTi ()
where the w;, are the weights we wish to give to each
harmonic and the f is the output of an oscillator having a
frequency of the desired fundamental. If the desired
harmonics are known beforehand a look-up table containing
the weighted sums of the polynomials for each possible value
of cos8 can be pre-produced. This will reduce the number of
computations necessary. This method is not easily adaptable
to producing time-varying sounds and has not enjoyed the

commercial acceptance of FM.

11

)

2.3 Physical Modelling

Physical modelling is the process of examining the
physical properties (frequency response, etc.) of known
devices (instruments, resonance systems, etc.), and
replicating their behaviour such that certain input will
produce results that exhibit a similar set of ocutput
properties of a known device. This is usually accoumplished
by taking the output from a system modelling an excitation
source, and passing it through a resonance system. The most
common synthesis method used for physical modelling is
subtractive synthesis. Another method, taking a radically
different approach, uses waveguide networks. These two

methods are discussed in the following sections.
2.3.1 Subtractive Synthesis

Subtractive synthesis is based upon the process of
passing a harmonically rich signal through a time-varying
digital filter. The purpose of the filter is to remove
undesirable frequency components from the signal to produce
the desired waveform. Generally, the source for the signal
comes from either white noise or a pulse generator, both of

which are rich in harmonics and are simple to produce.

12

Unfortunately, the computational costs of producing a
time-varying digital filter are enormous. Even when
implemented as infinite impulse response filters, they
require continual recalculation as the twc main parameters,
bandwidth and centre frequency, are varied, since the
behaviour of a time-varying filter must be speciried, and
therefore interpolated, in the frequency domain and not the
time domain. Subsequently, the mapping between coefficient

variables of two time domain filters is not a simple task.

Another problem with time-varying digital filters is
that their stability is not easily predicted during their
migration from one frequency domain to another. Thus, in
addition to the calculations necessary, checks must be
performed on the parameters to ensure that the poles of the

new filter do not wander outside of the unit circle.

These problems are not insurmountable, however.
Digital filter theory has been well researched, and
ther:fore, users of such subtractive synthesis systems will
have access to a multitude of material to assist them in the

design of their "instruments".

The standard use of computationally intensive digital

filters for the resonance systems in Physical Modelling

13

detracts from this otherwise conceptually attractive

methodology.

2.3.2 Waveguide Networks

A new theory using Waveguide Network Filtering put
forth by Julius 0. Smith ([33,35,37,38)]) demonstrates a
different approach to filtering, which is more efficient and
easier to control. A waveguide can be thought of as a
weighted undirected graph where the weights on the
waveguides (bi-directional edges) represent the resistance
and delay that a travelling signal will encounter p '.ssing
through a medium. The junctions of the graph are
constructed so as to produce lossless signal scattering in a
manner that would preserve the total stored signal energy in
the network. A hierarchical waveguide network is a view of
a waveguide network that allows the manipulation of sub-
networks as if they were basic junctions ([10])). This
@llows the encapsulation of characteristics in a sub-
network. To construct a full network with a desired effect
from sub-networks is similar in theory to creating a fully
connected graph out of a set of disjoint graphs. Of course
this is more complicated than simply plugging an edge of one
sub-network into a junction of another, but it can be shown
to be almost that simple through an informal understanding

of the functioning of waveguide networks.

14

Conceptually, waveguides represent the medium through
which a sound travels, and the junctions of a waveguide
network represent the points of interaction between these
waveforms. In instrument modelling, junctions represent the
resonance chambers of instruments, while the edges represent
the delays a signal encounters while travelling through a
medium. Furthermore, the edges represent the directed
manner in which these signals travel from one resonance

system to another.

More formally, if the signal travelling through a
system is given as pressure, then the instantaneous power IP
of a given sample is IPg = As%/Z: where A; is the amplitude
of the sample and 2 is the impedance of the medium through
which the sample is travelling. If the sum of the
instantaneous power throughout the system is taken, then
this represents the total stored signal energy of the

network. A lossless network preserves total stored signal

energy.

The main computations within a network take place
within the junctions where the scattering of the signal
occurs. This is as defined below:

Consider a parallel junction of N lossless

waveguides of characteristic impedance 2;

(characteristic admittance I'; = 1/2;). 1If the

15

AN e e AR ey W o

pPressure waves entering the junction are given as
Px, ie[1..N], the pressure waves leaving the

junction are given as P’; = P; - P*, where P is
defined as the resultant junction pressure given

by P; = 2(2r;p%;)/(Zr;) (see Figure 1).

| it it b |

, delay 1i \

) delay Lnes i p-2

[} 1

1]

> L3> 3 >
]

: ' PJ

1]

1]

: \ P-1 P+2

b reccee e = J) .

waveguide Junction

Figure 1 A junction with two waveguides.

This represents the calculation needed at each junction
in the network. The time complexity C of the calculation at
a junction is found to be

C=NB + (3N - 2)a
where the elementary operations considered are
a floating point additions, and
B floating point multiplications.
The factor for the additions can be reduced when it is taken
into account that the denominator for P; does not have to be

calculated for each computation cycle. This can save a

16

number of steps, but the total junction pressure will have
to be recalculated if the admittance of an incoming
waveguide's pressure value changes. The admittance will be
changeable if time-varying changes to the network are to be
included. Generally however, such changes are not performed
often, and the computational price is not a heavy one to pay
for the added bonus of simple control in a time-varying

system.

The benefits of constructing recursive digital filters
from lossless waveguide networks are described in Smith
([33]) and summarized here:

(1) the scattering junctions can be made time-varying

without altering stored energy,

(2) an "erector set" for lossless networks is obtained,

allowing any number of branches to be fitted together

in any desired confiquration (with changes allowed in
real-time),

(3) limit cycles and overflow oscillations are easily

eliminated, regardless of interconnection,

(4) an exact physical interpretation exists for all

signals in the structure (this is difficult to achieve

simply with standard digital filters), and

(5) the implementation is computationally efficient.

17

.

These closed structures of waveguides and junctions, by
themselves, represent a lossless waveguide network. Losses
are introduced into wavequide networks to properly model the
effects of such things as I/O with the system and a medium's
resistance to action within the real world. The points of
I/0 can be represented by edges where one of the directions
on the edge is, in effect, turned off to rroduce sinks and
sources of information. The calculations within a waveguide
become ones which represent losses introduced by way of gain
factors of less than 1 and/or low-pass filters with

frequency responses strictly bounded by 1.

Waveguides must also be tunable to have specific
harmonic properties. The frequency response fr of a
waveguide is directly related to its delay length of D
samples, which can only be an integral value, and the
sampling rate R by fr « D/R. To be able to "tune" the
waveguides, small all-pass filters are introduced and
applied to the data stream coming into each end of the
waveguide. The parameters of these filters may be

controlled by the user.

2.4 Summary

One of the main problems encountered by a user

attempting to perform any form of sound synthesis is that

18

the causal relation between the specification of the system
to produce the sound, and what the actual result will be is
usually not obvious. The standard techniques for sound
synthesis demand a good understanding of digital signal
processing in order to produce intelligent and interesting
results, but normally, the people who are interested in
sound synthesis are not necessarily interested in the field
of Electrical Engineering. Another more insidious problem
is related to the actual time required for the computation
of complex waveforms; often calculations take minutes, not
seconds, to perform. This, coupled with the fact that much
sound testing is required before a satisfactory result is
obtained, naturally augments the level of frustration
experienced by the user during the design cycle. Thus, a
sound synthesis system requires that its design and output
results be conceptually simple to unde.stand and easy to

manipulate.

Traditional physical modelling techniques are
conceptually simple to understand, but most unfortunately
require knowledge and use of computationally inefficient
digital filters. Thus, to successfully model sounds with a
natural quality under such systems, either a high speed
computation engine, or a simpler, more efficient method of

generating the time-varying waveforms is required.

19

Filtering using waveguide networks provides a simple,
efficient sound synthesis technique, while affording a

conceptually natural representation of sound sources.

20

3 Audio CAD

In this chapter a computer-aided design system for
sound synthesis using waveguide networks is defined. The
goal of this system is to simplify the design process in the
creation of sound systems while not restricting the range of

systems or sounds possible.

After defining the specification of a desired system a
typical design cycle for a designer can be as follows.
First the system's specification is translated into its
basic elements and their interactions with each other.
Next, the designer designs and tests these basic elements.
Finally, these bas.~ elements are tested within the context

of the global design.

The testing of a system is done using a set of inputs
set up by the designer either statically or interactively
and then by examining the results. This examination can be
through aural inspection or by using one of several static
analysis tools available for digital waveforms. The cycle
is repeated until the system as a whole meets with the
designer's specification. The stage for the derivation of
the basic elements from the specification is considered an

integral part of the design cycle because the elements

21

needed to satisfy the specification may become clearer or

change after a pass through the cycle.

The input needed to drive such a system must be easily
interpreted by the system as well as easily manipulated by
the user to allow the user correct utilization of the sound
synthesis module that has been created. Furthermore, if the
system is to be interactive as well as allow for stored
values to be entered, the language that represents the input
values should be easily translated and interpolated into the
possible set of actions that can occur as a result of its

use.

Typically, CAD systems for audio are used within the
domain of audio engineering. They are created to aid the
recording engineer with the processes of recording, editing,
remixing, and remastering segments of audio. One general
system that performs all of this is the software and
hardware provided in a package entitled Soundtools created
by DigiDesign. Other systems have uses that are more
specific by having interfaces and tools that allow the
manipulation of audio segments that are also to be included
into film and video. Two examples of these systems include
the Syntrex DPR44 system and the Sigma system by Digital
Audio Research. The DPR44 system allows for graphical

objects to be related to segments of audio. Not only do

22

these objects have shape but they also contain class
information that aid in the task of relating the sound
segments to other segments such as frames of film. The DAR
SIGMA system also offers a graphic interface but this

software is usable only with proprietary hardware.

CAD systems for sound synthesis have been slower to
come to the markets. Most have been set up as language and
input file based systems. Systems of this type can be
traced to the MUSIC-N languages of sound synthesis such as
csound from the Massachusetts Institute of Technology.
There have been, however, some attempts to create graphical
interfaces for these types of systems. Other more complete
CAD systems for sound synthesis have been towards creating
control languages for synthesis systems by representing the
control constructs as graphical objects. One successful
application of this has been with MAX (see section 4.2).
This system has been applied and ported to at least three
different hardware platforms. The original platform is for
the musical workstation environment at the Institut de
Recherche et Coordination Acoustique/Musique (IRCAM) in
France. The other two platforms are for the more general

Macintosh II and NeXT lines of computers.

In the following sections, the design of a graphical

oriented audio CAD system based upon waveguide networks is

23

described. The discussion includes the fundamental points
for achieving the goal of a design system that incorporates

a "user-friendly" design cycle.

3.1 Module Definitions

Systems are best conceptualized if they are broken down
into self-contained well-defined modules. This is just as
true for sound systems as it is for any other system studied
by humans. Therefore a desirable property of a design
system for sound synthesis is the ability to encapsulate the
concepts of a basic structure into a single module.
Consider, for example, the modules that could be used to

construct a model of a piano.

A piano has many strings, all of which are connected to
a soundboard that exhibits a frequency response. To
simplify the design a user could model a single string
(Figure 2) and then attach the necessary strings to a mecdule
that represents the soundboard (Figure 3) ([9])). The string
denoted in Figure 2 is represented by two waveguides one of
which is a self-loop and an excitation source all attached
to the same junction. The string is excited by a Hanning'

pulse at a point in the string that represents where the

‘Each entry w; of a waveform in a lookup table of size N
representing a Hannlng pulse is defined by:
W, = 1/2[l-cos(2mj/(N-1))] ; 03§ <N

24

Y A
N

Hanning Pulse

Figure 2 A waveguide subnetwork representing a string.

» =]

<
< <

KB ® O ADE O

Figure 3 A waveguide subnetwork representing the soundboard of
a piano.

string would be struck. This models the action of a string
by allowing the returning pressure wave to interfere with

the action of the excitation source while the action of

25

striking the string is taking place. The excitation would
simply reflect the values of the pressure flowing through
the junction when it was not in the process of exciting the
string. The effect of this would be that the two waveguides

would seem to be one longer waveguide.

An added benefit of modularity in such a system would
be the possibility for reuse of the modules in more than one
design; using the same strings in the model of a guitar, for
example. To achieve proper modularity in a system the
interface to any module must be well-defined and simple to
understand. Even though waveguide networks seem to fulfil
that purpose quite effectively, a more complete system
should allow for a higher level of abstraction than the

simple coupling of waveguides and junctions.

The basic elements of any sound system based upon
physical modelling can be generalized as being a set of
excitation elements and a set of resonance elements through
which the sound pressure waves travel and interact. The
control of the system, and therefore the point of entry for
the input language, is thrcugh the excitation elements.
Without loss of generality, the global resonance chamber can
be conceptualized as a "room" and its excitation elements as
a set of "players" performing upon "instruments". The input

to the players can be conceptualized as a score. The "room"

26

will consist of a set of resonance chambers through which
the resultant sound pressure waves will travel, two (for
stereo) of which will be labelled as the points for the
sound to leave the partially closed system. An instrument
can be further broken down into having a set of excitation
elements that will react to the same set of input values in
a possibly distinct manner from other instruments and a set
of resonance chambers. If this train of thought is
continued, then an instrument can contain, within its set of
excitation elements, a set of instruments. This recursive
definition can be extended to resonance chambers as well,
allowing a user to define a set of modules that have
distinct and clearly defined rules and are easily

conceptualized and manipulated.

For example, consider an instantiation of a concert
hall as being composed of a set of players performing upon
instruments within a room. The room and instruments within
it all have a specific set of reverberation properties. An
instrument in the hall, the piano from the previous example,
is composed of a set of strings each distinctly reacting to
a set of inputs caused by hammers and pedals each connected
to a common well-defined resonance chamber. This resonance
chamber, the soundboard of the piano with a specific set of
frequency responses, is in turn sending its output into the

concert hall to be mixed with the other instruments and the

27

returning signals (feedback) of the previous output. The
feedback of the concert hall, along with the waveform
resonating in the soundboard, will also have an effect on
the strings of the piano through sympathetic vibrations. 1It
is this natural feedback, which is easily and naturally
defined in waveguide networks, and which is absent in most

models of sound synthesis.

In summary, the definition of an instrument contains
the definition of its manner of excitation and its resonance
properties. The definition of a player refers to the
section of the score to follow and the instrument to perform
apon. The definition of a room contains its players and its
resonance properties. Therefore, it can be stated that the

specification of a room completely defines a system.

28

3.2 Conceptual Design

The conceptual design of the system is presented in the
following sections. The presentation is given in a top-down
manner starting with the Waveguide Editor module, which

represents the entire system.

3.2.1 Waveguide Editor

The design system accessed directly by the user is
called the Waveguide Editor. The Waveguide Editor consists
of modules that perform the necessary operations for the
user to create and edit sound synthesis networks, and to
have them tested using input from a MIDI file (score) or
from an interactive input device. A brief overview of these
modules and their interactions is given in the following
paragraphs. They are detailed more fully in the sections

that follow.

As stated above, the specification of a room and the
players within it completely defines a unique sound
synthesis network. Thus, to specify a network, a room
description is created. The module that is used to create a
room is the Room Network Editor. Contained within a room is
a system denoting its resonance characteristics and the

definitions of the players who are to perform in the roomn.

29

PR RGN 3 2 st i ch el el Lo dient Sa /PO PN

amze T

e VAP s AT,

The Instrument Network Editor is used to create the players'
instruments and define their resonance properties. The
Instrument Network Editor is accessed through the reference
to it by the player. The definition of the resonance
properties of the instrument may contain subnetworks. The
Subnetwork Network Editor is used to create the subnetworks
referred to in the instruments. The resulting definitions
created by the Network Editors are high-level descriptions

of room, instrument, subnetwork elements.

Once these elements and their interactions are defined,
the resulting descriptions must then be transformed by a
Loader module into a valid waveguide network consisting of

waveguides, junctions, and excitation nodes.

Once loaded, a network may be performed. The module
used to control the performance of a waveguide network is
the Conductor. The Conductor dispatches control data from
the score and/or any attached interactive input devices to

the appropriate excitation nodes within the network.

While playing, the resulting waveform of the
performance is "heard" by the Conductor and passed to a
Sound Manager module. The Sound Manager may then either

transfer the data to a Digital-to-Analog Converter so that

30

the results can be auditioned interactively, or write the

data to a sound file for storage.

The requests that the Waveguide Editor accepts from the
user and transforms into actions by the modules are given as
follows:

Edit The edit command is a request by the user to edit

a room. This command causes the Waveguide Editor
to invoke a Room Network Editor with the name of
the room as its argument. If the room already
being edited is different from the one requested
it is closed.

Load The load command is a request by the user to set

up the referenced network to be played. If the
user does not specify a room the current room
being edited is used otherwise the specified room
is loaded into the Room Network Editor.

Play The play command is a request by the user to
generate sound using the currently loaded network.
The user is prompted for a score file and the
start and stop time limit for the performance.

Stop The stop command is a request by the user to
discontinue the current performance.

Quit The quit command is a request by the user to exit
the system. Any room currently being edited is

closed before exiting.

31

3.2.2 Network Editor

Three Network Editors allow the user to edit the system
at each of a network's conceptual levels: room, instrument,
and subnetwork. The editors share facilities that
manipulate the objects of the network as described in
Table 1. The Network Editors are invoked by the Waveguide

Editor at the request of the user.

Object\Editor I Room " Instrument ' Subnetwork

Waveguide I

Junction | "
Excitation 4" v/ "
Player ‘_JI 4

Subnetwork | v / v/

I/0 Port I v v v/

Table 1 Editable Network Objects.

The Waveguide, Junction, Excitation, and I/0 Port
objects are the base, non-divisible objects within the
system. The modularization of the system is done through

the Player and Subnetwork objects.

The I/O0 Ports designate the specific entry and exit

points for the data flow within a given Network Editor so

32

that the input and output to the given subsystem can be
fully defined. The room editor has two output ports for the
stereo output. The instrument editor has a single port
designating its exit point. The instrument editor does not
have a port for the entering data to it because the data to
the instrument is from the Excitation objects defined within
the editor. These Excitation objects receive their
designated input from the section of the score that pertains
to them, as defined by the Player object that refers to the
instrument. The subnetwork editor is restricted to having a
single input and a single output port to represent its data

flow coupling.

The Player object references a Network Editor at the
instrument level. The Player allows the association of a
given instrument at a given location within a room with a
specific set of instructions to react to. An analogy
describing the use of a Player object can be to have two
players who are both playing the same type of instrument,
the violin, but each player is reading from a different
section of the score. Another analogy could be to have two
players who are each playing two distinct instruments but

both players are playing the same section of the score.

The Subnetwork object references a Network Editor at

the subnetwork level. The Subnetwork object allows the

33

encapsulation of a resonance system by associating itself
with a network definition consisting solely of Waveguides,
Junctions, and possibly further levels of subsystems using

Subnetwork objects.

For each of these objects to be visually manipulated in
a Network Editor, they need a descriptive shape and a means
of describing the coupling to other objects within the same
editor. They must also allow the user access to an object's
variable set of parameters. The Network Editor then has
four types of data managers to deal with each of these
points of information as well as the global editing window.
They are

Window Manager: The operations of this module are
devoted to the manipulation of the editor's windowing
environment, which is general to all editors. The
operations include scrolling, resizing, opening,
closing, saving of contents, etc...

Icon Manager: The operations of this module are
devoted to the graphical manipulation of individual
network objects within a window. This allows the
association of an object's appearance to its meaning.

Port Manager: The operations of chis module are

devoted to the manipulation and control of the
connections between graphical network objects within a

window. It validates all attempted connections between

34

two objects. Table 2 lists the valid connection map
that is used.

Parameter Manager: The operations of this module
are devoted to the editing of the variable parameter
data pertaining to each object within a window. The
Junction and I/0 Port objects do not need to be
manipulated by this manager because they do not have
any variable parameters other than their couplings,

which are handled by the Port Manager.

[eryr Jonctn] wave | mxctn | sun | /0 |

o |e jo N[N |®

illegal connection

valid connection

input port of Subnetwork or I/0 Port
designated as input port

o & output port of Subnetwork or I/O Port
designated as cutput port

Legend::

F-Ne
[

Table 2 Rules for logical port connections in a Network
Editor.

35

3.2.3 L»nader

To produce waveforms, the separate conceptual
specifications of the room and its players as defined by the
user in the Network Editors, must be first transformed into
a fully-connected waveguide network. The Loader, invoked
through the use of the Load command, performs this
transformation. (The Loader could be viewed as a parser of
the conceptual specifications, and the specifications viewed

as a language.)

The main operation of the Loader is to create
executable instantiations of the nodes of a waveguide
network through the substitution of network editor objects
for their corresponding nodes. The Player and Subnetwork
objects are repeatedly replaced by their constituent
subnetworks, i.e., Player objects are replaced by their
instrument definitions, and Subkietwork objects are replaced
by their corresponding subnetwork definitions. The I/O0
Ports that are found in the corresponding instrument and
subnetwork definitions are replaced by direct couplings to
the specified network nodes. Care must be taken by the
Loader such that an associated set of subnetwork definitions
are not recursive and that the resulting network is fully
connected. The latter restriction is not always necessary,

when there are isolated networks not connected to the I/0

36

Ports, but would result in a network definition that
contained unreachable nodes. Figure 4 demonstrates the
substitutions for a room with a single Player. The
associated instrument contains the two types of valid
connections for an Excitation object plus a Subnetwork

object that refers to a minimal subnetwork definition.

left right out in out
Q S F1™ W
5
" ()
4
j2
NS
Room Instrument Subnetwork
(a)
left right

o_ut
©
E1l
D ()

w w
3

\i2)
Instrument’ Room'
(b) (c)

Figure 4 Example of a derived network through substitution of
editor definitions. (a) original room, instrument, and
subnetwork (b) derived instrument, (c) derived network.

37

3.2.4 Conductor

The purpose of the Conductor is to synchronize the
actions of the waveguide, junction, and excitation nodes in
a waveguide network, and the data being passed among them.
A connection scheme is defined that is used to aid the
Conductor to perform this synchronization. The two main
data structures, which the Conductor manipulates, are the

waveguide network and the score.

3.2.4.1 The Score

The score is given to the Conductor as a parameter to
the Play command as issued by the user to the Waveguide
Editor. The structure of the score is given as a set of
Musical Instrument Digital Interface (MIDI) channels
([19,21)). Each channel represents a temporally ordered set
of MIDI events. A MIDI event's structure consists of an
activation time, given as the difference between its
activation time and that of the preceding event, and a MIDI

control command.

The advantages of using MIDI as the control language

are:

(1) there are many software packages in existence that

allow graphical editing of MIDI data,

38

(2) the input devices that communicate using MIDI data
are numerous and diverse,

(3) it is flexible enough to allow meaning to be
derived from a number of control statements that can be
customized as the need arises,

(4) the language is well-defined by a standardization
committee; included in the standardization is a format

for file storage ([20]).

To be used as the control language for a waveguide
network, MIDI commands must be interpretable by the
excitation nodes within the network. The Note On command,
for example, can be easily interpreted in the synthesis
environment. The command consists of note-velocity pairs
whose corresponding meaning is given as a fundamental
frequency whose peak amplitude is relative to the velocity
on a scale of 1-127. There exist, however, some desired
actions for which there is no direct correspondence of MIDI
commands to the action. Consider, for example, the actions
required to emulate the implied phoneme actions required of
a set of voiced words. MIDI allows for this sort of
information to be coded through the use of user defined
commands, but there does not exist a system that can

automatically produce the necessary interpretations.

39

3.2.4.2 Time and Synchronization

The concept of time that is used at the waveform sample
level is not based upon a real-time clock. The time given
by the sample clock is based upon the number of samples that
have been processed and the sampling rate to be used to play
the waveform. For example, if the sampling rate R = 48000
samples/sec and there have been 1600 samples generated then
the sample clock (relative to zero) should state that the
current time t = 1600 samples / 48000 samples/sec = 1/30

secC.

To synchronize the dispatching of the score events, the
Conductor must keep track of the sample-time within the
execution by updating the sample-clock for every sample
generated by the network. The events of each MIDI channel
are queued in time-ascending order. A channel is considered
active as sample-time reaches or exceeds the time scheduled
for the MIDI events at the heads of the channel. There may
be several events at the head of any active channel that may
be considered active at the current sample-time. All of
these active events are sent to the appropriate excitation

nodes by the Conductor.

The synchronization of the nodes in a waveguide network

occurs naturally by the data flow dependency between the

40

junctions and waveguides. This is due to the fact that a
junction will wait for input from all of its connected
waveguides before sending its output. The same is true for
a waveguide; a waveguide will wait for the data from its
associated junctions. In section 4.1, a protocol is defined
that avoids a possible communication deadlock under such a

scheme.

3.2.4.3 The Connection Scheme

To aid the Conductor in utilizing the natural
synchronization of data flow between waveguides and
junctions, while introducing excitation nodes and a means of
extracting the output from the system, a connections scheme

is defined.

A true closed waveguide network consists solely of
waveguides and junctions. The connection scheme used is
defined as:

Waveguides can be connected to junctions, and

junctions can be connected to waveguides. No

other connections are valid.

To permit network input (i.e., to allow for a flexible
inputting of excitation data to the system) connections are
required to both waveguides and junctions. To limit the

network information needed per node, and to keep the

41

connection scheme valid, a conceptual view of excitations is

defined as:

If an excitation node is connected to a junction,
then it is viewed as a pseudo-waveguide. If it is
connected to a waveguide, the excitation node is
viewed as a pseudo-junction. These pseudo-nodes
have only one connection to the network with an
external connection used for the control data

input.

Without loss of generality, the output, or "tapping",

of the system can be taken from the waveguides only. Thus,

for a stereo image to be produced, the system must be tapped

from two waveguides. A conceptual view of a tap is defined

as:

A tap is a pseudo-junction with two connections.
The two connecting waveguide nodes are the
waveguides from where the output of the system is
defined to originate. An external connection is

used by the system to retrieve the stereo samples.

42

3.2.4.4 Conductor Actions

The set of command: received by the Conductor, their
related data and actions are given as:
Load Network:

Load a network specification into the Conductor's
network structure and initialize the modules necessary
for the management of this network. This command must
be the first command the Conductor receives.
Afterwards it can be received at any time by the
Conductor. The Load Network command causes the
execution of any currently loaded network to halt and
its specification to be cleared. The clearing of a
network specification does not affect the Conductor's
score structure except to reset the sample-clock to
time O.

Read Score:

Read a score into the Conductor's score structure
and initialize the sample-clock. Because of the
possibility for interactive input of control data, it
must be assumed that any score that has been read is
not necessarily complete. 1In fact a null score is not
considered to be an error. This implies that the
Conductor must make allowance for the asynchronous
receipt of control commands during the execution of a

network specification.

43

Play:

Play the currently loaded network using the
current score. This command causes the Conductor to
initiate the actions of the network by firing the
appropriate waveguide network nodes. All of the
network nodes valid for the current specification are
set to be at their zero state. That is, the waveguide
nodes all contain zero samples with their filters set
to time 0, the junction nodes are awaiting their first
set of samples with the associated admittances
undefined, and the excitation nodes are not currently
in a state of excitation.

Stop:

Stop the execution of the currently executing

network specification. This command has no effect upon

either the network structure or the score structure.

3.2.5 Sound Manager

The output from the system is a sequential list of

integers representing the digital waveform that is playable
through a digital-to-analog converter (DAC). Through the
use of the Sound Manager module, the user has the option of
either storing the samples in a file for future play, or
playing them immediately while the samples are being

generated.

44

Like the Conductor, this module also keeps track of the
elapsed sample-time from the beginning of a session. The
sample-clock here allows the user to predesignate a limit to

the data in a meaningful unit of measure.

45

4 The Implementation

A prototype of the waveguide design system discussed in
Chapter 3 has been implemented and tested. The hardware
platform used for the prototype is comprised of a Macintosh
IIfx, a board containing a set of INMOS T805 Transputers,
and a board containing both a DSP chip and a DAC. The
Macintosh is used for the basic editing, all user input
(including interactive MIDI device input), and file
management. The Transputers are used to perform the sample
generation c:lculations and the DSP board is used for the

output of the sample waveforms to an attached audio system.

The Macintosh was chosen for the implementation because
of the availability of a large set of support software.
This support software includes extensive development tools
for the manipulaticn of files containing MIDI data and for

the play and study of digital audio sound files.

In the following sections a description is given of the
structure of the implemented design system, the operation of
the modules, and other major details of the implementation.
The discussion is divided into two major sections with the
first section dealing with the two auxiliary boards that

allow a certain amount of parallel processing to occur and

46

the second section dealing with the editing environment as

implemented on the Macintosh.

4.1 Parallel Processing

If waveguides and junctions are viewed as processes
then, following Hoare's model of communicating sequential
processes ([13]), a connection between a junction and a
waveguide represents two channels of communication: one
channel for each direction of data transfer. The
synchronization of the processes in a waveguide network
occurs naturally by the data flow dependency between the
junctions and waveguides. This is because a junction must
wait to receive the pressure data from all of its associated
waveguides before being able to perform its computation.

The same is true for a waveguide so that the two sets of
processes can be seen to work in tandem. To ensure that the
model works without deadlock is a simple matter of having
all of the waveguides, including the pseudo-waveguides
(refer to section 3.2.4.3 for their definition), begin their
execution by sending zero pressure values to their
associated junctions before commencing their normal

functioning.

47

ST

4.1.1 Increase in Throughput

The increased throughput offered by utilizing a
parallel architecture is measured by the differences between
the parallel and sequential algorithms used. The elementary
operations used for the analysis of parallel algorithms are
the computational and routing steps ([4]). It is assumed,
in this case though, that the computations of a node in the
waveguide network will be the same whether they are
implemented on a sequential or parallel architecture. This
is also true for the other necessary operations of the
controlling system. These operations include the updating
of the sample-~clock and the management of the stream of
samples. Therefore, the main difference between the two

algorithms is the steps needed for the routing of the data.

The parallel implementation of a network containing n
nodes can be mapped to a set of m processors. If n is
greater than m then multi-tasking is used where the
scheduling is controlled by the synchronization of the
communications. This means that the inter-process
communication and the process swapping must be included in
the overhead for the parallel system. The Transputer
includes these steps as part of their set of basic commands.
Therefore, it is assumed that the cost of the intra-

processor communications will be minimal and is comparable

48

to the cost of a function call. Subsequently, the
difference in time complexity between the sequential and
parallel algorithms implemented per processor is negligible.
It is further assumed that there is not a physical
one-to-one mapping of connections between processes on
different processors and physical channels of communication.
This means that a separate inter-processor communication
process is necessary on each processor to manage the
resource of the physical channels. This inter-processor
manager has access to the network configuration and is able

to reroute data packets to the appropriate processes.

A problem can occur during communication with and
within the Transputer network. There is a possibility for
deadlock when two processes simultaneously attempt to
perform the same write or read operation with each other.
The problem does not exist between waveguide and junction
processes linked directly because of the inherent
alternation of the data flow that occurs, but it can show up
between two processes on different processors. A solution
is given such that there exists, on each Transputer, a
process for receiving data externally for internal
distribution and a process for sending data externally on
behalf of the internal processes. This solves the problem
because the data flow for these processes is in only one

direction and while one process on any processor may be

49

blocked waiting for the receipt of data the other process is

available for sending and vice versa.

The increase in throughput T offered by a parallel
implementation can be shown as

T

TC; / TC,

nc / ((nC + I(m,p))/p)

where

TC; is the time complexity of the sequential
algorithm,

TC, is the time complexity of the parallel algorithnm,

n is the number of nodes,

C is the average time complexity of the computation
per node,

p is the number of processors available,

m is the number of nodes having connections to
processes on different processors; m £ n,

I is the time complexity of the inter-processor

communications which is a linear function of m and

p.

The limiting factors in the increase in throughput
possible are given as the number of processors available and
I(m,p). This implies that a linear increase of n processors
is possible if I(m,p) can be minimized. The means of

minimizing I(m,p) is by reducing the amount of inter-

50

processor communication required by nodes within the
waveguide network. The major criterion in the allocation of
processes to processors is the minimizing of the number of
connections that span processors. Another criterion is
related to the load-balancing of processes to processors
where an equal distribution of processes would mean that
processors would be idle less often waiting for data from

other processors.

4.1.2 The Transputer Network

The current implementation makes use of a board
containing 3 INMOS T805 Transputer processors ([45]). These
processors are high speed floating-point CPUs with multi-
tasking, inherent in the machine language, based upon C.A.R
Hoare's view of communicating sequential processes ([13]).
The Transputers are limited to 4 external physical
communication links each with the link map between them

being arbitrarily set at load time.

The system implemented on the Transputer network
represents the Conductor as discussed in Chapter 3. There
is one processor, processor 0, that is allocated for the
communication between the main system and the other two
processors. The main process on processor 0 is viewed as

being the Conductor and the main processes on the other

51

TS

processors are viewed as being SubConductors. In addition
to the passing of commands and pressure values, the
Conductor handles the buffering of digital sample data and
the transferring of the buffers to the main system. The two
remaining processors are then free to handle the bulk of the
processing performed by the nodes of the waveguide network.
All three processors have their physical communication links
set up so that they represent a fully-connected network. A
diagram illustrating the communication links between
processors, including the Macintosh and Sound Accelerator

board, is presented in Figure 5.

Macintosh

' h

Sound
Accelerator

T805 Transputers

Figure 5 General configuration of the communication systemn.

The output generated by the Conductor will be the
samples of the waveform resulting from the control

language's actions being performed upon the network.

52

Reducing the overhead that is incurred by communication
within any system implies that the samples be buffered at
some point. This becomes even more evident when it is taken
into account that almost all DACs require buffered data.
Another argument for the buffering of the sample data is
that file systems are known to have a higher throughput if
the data is buffered before being written to disk.
Therefore, to lower the overhecd of communication between
the Macintosh and the Transputers, the Conductor buffers the

sample data before sending it to the Macintosh.

The Conductor sends the buffers upon demand due to the
fact that the data is possibly being forwarded to a DAC.
This is because the DAC generates an interrupt to request
for a buffer of data. There are two cases to consider
related to the rate of sample generation:

(1) The Conductor is generating samples at speeds

greater than real-time. If this is the case, it is a

simple matter to suspend execution of the network,

after a certain number of buffers have been filled,
until the demand for samples has caused the number of

buffers held by the Conductor to drop below a

predefined limit.

(2) The Conductor is generating samples at speeds less

than real-time. If this is the case and the DAC is

making demands for buffers that are not available, then

53

the resulting sound from the audio system will be
unintelligible because the DAC must work in real-time.
A valid response by the Conductor, therefore, to a
demand to send buffers of samples is a response
signifying that no samples are available. This allows
the process on the Macintosh making the request to take
an appropriate set of actions. The appropriate set of

actions are discussed in section 4.2 on page 66.

The Conductor process receives commands and data from
the system running on the Macintosh. The main purpose of
the Conductor is to distribute the commands along with the
necessary data to the rest of the network. The data flow
with the Conductor is from the Macintosh and to the other
Transputers in the network. This avoids deadlock with the
other processes on the Transputer network by not allowing
the Conductor to receive from the other Transputers. The
Conductor also sends the buffers of samples to the
Macintosh. The possibility for deadlock that exists with
the Macintosh through both parties sending or receiving at
the same time is avoided because a transfer from the
Conductor to the Macintosh occurs only after receipt of a
command specifying that the Conductor send any available
buffers. This is the only occasion the Conductor has to
send data to the Macintosh. The communication by the

Conductor to the other Transputers is received by

54

the resulting sound from the audio system will be
unintelligible because the DAC must work in real-time.
A valid response by the Conductor, therefore, to a
demand to send buffers of samples is a response
signifying that no samples are available. This allows
the process on the Macintosh making the request to take
an appropriate set of actions. The appropriate set of

actions are discussed in section 4.2 on page 66.

The Conductor process receives commands and data from
the system running on the Macintosh. The main purpose of
the Conductor is to distribute the commands along with the
necessary data to the rest of the network. The data flow
with the Conductor is from the Macintosh and to the other
Transputers in the network. This avoids deadlock with the
other processes on the Transputer network by not allowing
the Conductor to receive from the other Transputers. The
Conductor also sends the buffers of samples to the
Macintosh. The possibility for deadlock that exists with
the Macintosh through both parties sending or receiving at
the same time is avoided because a transfer from the
Conductor to the Macintosh occurs only after receipt of a
command specifying that the Conductor send any available
buffers. This is the only occasion the Conductor has to
send data to the Macintosh. The communication by the

Conductor to the other Transputers is received by

54

SubConductor processes, which reside on the other
Transputers. There are two commands and one type of data
packet left to consider where the Conductor plays a major
role other than to simply reroute the command to the
necessary parties. The commands are the Load Network
Definition and the Load MIDI Tracks commands and the data

packet is the Buffer Sample data packet.

The Load Network Definition command causes the
Conductor, after retrieving the necessary data from the
Macintosh, to stop all current activity within the network
and to reinitialize data structures and send portions of the

network to the appropriate Transputer.

The Load MIDI Tracks command causes the latest set of
control input data to be deleted and the new data from the
Macintosh to replace it. This data is then used when the
Conductor receives a Buffer Sample data packet. The receipt
of this data packet causes the Conductor to insert the
stereo sample data into the current Sample Buffer and update
the sample-clock. The time in the sample~clock is then
checked against the time for the next set of MIDI events to
occur. If there are events pending then they must be
removed from the list and sent to the appropriate process
within the network. A single event has the possibility of

being sent to several processes within the network.

55

The process that implements the tapping of the stereo
output for the network is the only other process that
resides on processor 0. Its data flow is from the other
Transputers to the Conductor and subsequently avoids the
possibility for deadlock. The tapping process receives
sample data packets from the rest of the network; a sample
data packet contains the pressure value of the sample and
the admittance that is associated with the sample. The data.
that the process sends to the Conductor is the resulting
sample data packets that are being returned to the network
and the Buffer Sample packets being buffered by the

Conductor.

The functioning of the SubConductor is similar to that
of the Conductor in that the SubConductor distributes
commands and data from the system to the portion of the
network it is servicing. The SubConductor consists of two
processes: one for the receipt of data from an external
source, and one for the sending of data to an external
source. The process that receives from an external source
is also be called upon to perform the system initialization
and to enact the birth and death of processes for the
portion of the network it is servicing. When the
SubConductor processes are simply acting as distributors
they can be viewed as if they were acting as proxies for the

respective processes that wish to communicate. For

56

instance, if a waveguide node on processor 1 wishes to send
a data packet to a junction node on the same processor it
will simply send the data packet directly. However, if the
junction resides on another processor then the waveguide
must first send the packet to the outgoing process. This
process will identify the Transputer on which the requested
junction node resides by referencing the network definition
and then will forward the packet to that Transputer. The
incoming process on the subsequent Transputer will then

reroute the packet to the appropriate junction node.

The processes are considered proxies because they act
on behalf of the processes residing on the same Transputer.
The details of deciding to send directly or not are hidden
from the waveguide network nodes. This is done by giving
the network nodes a set of anonymous communication channels
through which they will communicate. The nodes cannot
identify if the channel given to them is one directly
connected to another network node or to a proxy process.
The inter-processor communication is done by proxy because
of the limit of physical channels between Transputers and
because of the need to avoid deadlock. The remaining set of
processes on the Transputers, other than Processor 0, is
made up of the nodes of the variable sized waveguide

network.

57

The junction process implements the definition of a
junction in a waveguide network. When the junction receives
a sample data packet, the junction stores the pressure value
and adds it to the current total. When all of the data
packets necessary to calculate the junction's total sample
pressure have been received by the junction, it sends the
resulting data packets that represent the outgoing pressure
values from the junction to the associated waveguide
processes. If the admittance value of any incoming sample
has changed, a new junction admittance must be calculated,
otherwise the previous value is used for the calculation of

the outgoing pressure values.

The process representing a waveguide node sends the
latest pressure values from its delay lines to the junctions
to which it is associated. The waveguide process then waits
for each associated junction to respond with the pressure
value that is travelling in the opposite direction. The
process will pass this pressure value through the filter
associated with the delay line and add the result to the
gueue of pressure values that represents the given delay
line. The cycle is then repeated. The waveguide may also
respond to other commands sent asynchroncusly which alter
the parameters of the waveguide. The variable parameters

are the admittance, the gain factor, the filter parameters,

58

o

and the length of delay for each delay line in the

waveguide.

In the discussion of the implementation of waveguides
and junctions references were made only to communications
with these two types of processes. This is consistent with
the conceptual view of an excitation node as being a pseudo-
junction or a pseudo-waveguide and the processes

representing the excitation nodes maintain this view.

When an excitation process is first started up it is
given a reference to a lookup table that is used for ﬁhe
creation of waveforms to be entered into the waveguide
network. These waveforms are the manner in which the
excitation processes excite the system. It is the
responsibility of the SubConductor to initialize and to
assign the appropriate tables needed by the excitations
residing on a Transputer. The information to perform this
task is found in the portion of the network definition sent

to it by the Conductor.

The control an excitation process has on the network is
through the waveguide or junction associated with the
process. An excitation process can only be in one of three
states: passive, exciting, or decsying. The state an

excitation process is in determines the type of control that

59

is applied to the system. An excitation process begins its
execution in the passive state. When an excitation process
is in the passive state it simply returns the sample data

received to the sending process.

An excitation process is instructed to excite the
network, and thereby enter a state of excitation, by the
receipt of a MIDI data packet from the SubConductor. While
in a state of excitation, the process ignores the data
contained within the sample data received from its
associated process. Instead, the excitation process
responds to the receipt of sample data packets by creating
new admittance and pressure values that are to be returned
in the data packets. The excitation uses the note wvalue
contained in the MIDI data received to establish the
frequency of the waveform being entered into the system
through the sample data. The velocity value in the MIDI
data determines the gain factor applied to the samples of
the waveform in the calculation of the individual pressure
values. The velocity value also determines the admittance
value that accompanies the pressure values in the sample
data. If the excitation is connected to a waveguide, the
excitation will also instruct the waveguide to alter its
parameters. The resulting frequency response of the
waveguide will then reflect the new values determined by the

excitation. If the excitation is connected to a junction,

60

then the admittance values will automatically alter the
network's total stored energy as a result of the
calculations performed by the junction process. The
excitation process remains in a state of excitation for a
period of one cycle of the resulting waveform after which it

will enter a passive state.

The excitation process enters a state of decay either
after the number of cycles designated for it to begin the
decay has been exceeded or after the receipt of a Note On
command that contains a velocity value of zero. The
excitation process causes the decay of the stored energy of
the system by altering the gain factor that is applied to
the pressure values it returns. If the excitation is
connected to a junction it will also alter the admittance
value in the sample data being received by the excitation

process.

4.1.3 The Sound Accelerator Board

The current implementation makes use of a board called
the Sound Accelerator containing a DSP56000 CPU chip and a
DAC for its audio output. The Macintosh acts as a mediator
between the Transputers which generate the data and the
Sound Accelerator, enabling full parallelism to occur with a

minimum of system interference.

61

The process implemented on the Sound Accelerator board
contains 2 buffers of a fixed size containing sample data.
When initialized it performs some necessary hardware
initialization and then repeatedly fills the two buffers by
interrupting the system with a request for a buffer of
samples. The requests for buffers of samples are
synchronized with the DAC so that a request is made every t

seconds. t is related to the buffer size and the sampling

rate by
t=N/R
where
N is the number of samples in a buffer
R is the sampling rate (samples/sec).

4.1.4 Summary

The benefits derived from a parallel implementation of
a waveguide network are summarized as follows:

1. It is relatively simple to implement due to the

inherent parallelism of the nodes of the network.

2. Changes in the topology of the system are

easily affected by changing the destination

channel in the sender process. The sender process

need not know to which process the message is

being sent. This allows a standard generalized

view of the communication interface for a process

62

ST Re A

S thaind A SaA

and implies that the system can be distributed
with a minimum of centralized control.

3. The data-flow through the system regulates the
synchronization of the processes. Care must be
taken, however, to ensure that deadlock does not
occur.

4. A linear increase in throughput over the
sequential implementation is possible by
allocating the processes to the processors in a
manner that minimizes the amount of inter-

processor commuinication.

4.2 The Waveguide Editor

The driver and editors for the design system were
implemented as part of an interactive graphical object-
oriented programming environment called MAX ([7]). MAX was
developed originally to be used as a control language for
sound synthesis and has now been developed for use on the
Macintosh line of computers as a control language for MIDI
applications. It is a data-flow language where the
graphical images represent objects that can receive and send
messages through their ports. MAX provides numerous objects
that manipulate MIDI data. MAX can also be extended by

users who wish to create their own customized objects

([46]).

63

The current implementaticn is developed as a set of MAX
objects where the Waveguide Editor, the only object
explicitly accessed by a user of the system, receives the
MIDI input and user commands through its ports. The other
objects implemented for the system represent the three types
of Network Editor. The Network Editors inherit from a
windowing class for graphical editing that MAX also

provides.

The Waveguide Editor object handles the loading of and
communication with the two boards as well as the maintenance
of the Network Editors. The maintenance provided is for the
referencing and dereferencing of unique instantiations of
Network Editors; the dashed lines in Figure 4(a) denote
examples of object to editor references. Lists are kept of
the unique instantiations of Network Editors that are
available in memory. The instantiation of a specific
Network Editor occurs only when a reference to a definition
of a module is made and it does not already exist in memory.
The removal of a Network Editor and its contents occurs
after a dereferencing operation brings the number of
references to the specific editor to zero. The requests for
referencing and dereferencing of a Network Editor can occur
as a result of an action in another Network Editor. These
requests, therefore, can come from a child of the Waveguide

Editor. Because of this and also because the Network

64

e ap—

Editors must take their requests from the user directly, the
objects must be considered as active independent objects and
not as passive objects that react only to requests from the
Waveguide Editor. Care must be taken, therefore, to keep
the data structures consistent. For instance, an editor may
receive a request to die from the user directly and or
indirectly through the Wavequide Editor and so the

destructor for the object must take this into account.

The Loader module as discussed in Chapter 3 is
implemented as a method within the Waveguide Editor. It
makes requests for the pertinent data from the Network
Editors starting with the room definition. If a definition
is not in memory at the time of loading it will also cause
the instantiation of the subsequent Network Editor needed to
contain the definition. If at any time the resulting
partial network does not constitute a valid network then the
action of the Loader is halted and the user is informed of
the error that caused the inconsistency. The partitioning
of waveguide network nodes to Transputers is also the job of
the Loader. The Loader transfers the resulting network
definition to the Conductor residing on the Transputer
board. T!.e communications necessary for this and all other
communications with the Conductor are managed by the

Waveguide Editor.

65

The receipt of the Play command by the Waveguide Editor
may require that a score (MIDI data) be transferred to the
Conductor. Therefore, to retrieve the score from disk a
module to read and transform Standard MIDI File ([20]) data
is implemented in the Waveguide Editor. This module must
also make use of the Waveguide Editor to Transputer
communication subsystem. In addition, the Play command,
depending upon whether the user wishes to listen to the
results directly or store them into a file, may require the
cooperation of the Sound Manager residing on the Sound
Accelerator board. 1If the user has requested to listen to
the results directly and the Conductor is not producing
samples at a rate greater than or equal to real-time, the
Waveguide Edi'or will keep a queue of buffers of samples and
while accumulating new buffers, will continuously send the
buffers in the order of entry into the queue. This queue
has a fixed size determined through testing. The size of
the queue was determined on the basis of allowing the sound
produced to be long enough to give reasonable snapshots of
the resulting sound while not using up all of the available

nemory that may be needed by other processes.

The Waveguide Editor keeps track of the real-time clock
as well as updating the version of the sample clock kept in
the Macintosh. The need to keep track of the sample-time is

to aid in the estimation of when the next request for

66

——

-~ -

FAPRNF ~aky e ae

buffers of samples from the Conductor can optimally take
place. The Waveguide Editor attempts to minimize the number
of requests for buffers when the results are sent to a file
or when the Conductor is producing sampl¢ at rates less
than real-time. This is to reduce the interference with the
operation of the Conductor and the communication overhead

between the Conductor and the Macintosh.

The Network Editor, as discussed previously, represents
a class of editor objects. It can represent a subsystem of
a waveguide network at the room level, the instrument level,
or the subnetwork level. A reduction of the design was
implemented such that the room level editor could not
contain Subnetwork objects. An instantiation of a type of
Network Editor results in a specification of a subsystem of
a waveguide network being loaded from a file that contains
the list of network object definitions for the
specification. The definitions contain the type of object,
the location of the object within a graphic editing window,
and the object related parameters. Included in a
specification is the map denoting the coupling of the

objects.

The Network Editor class makes use of a class of object
for a graphic editing window environment that is provided by

MAX. This windowing environment provides the derived object

67

with a system where user input is translated into a
predetermined set of methods being invoked with the
appropriate parameters. When an object of the windowing
class is instantiated the system will make a request from
the derived object whose results will determine the subset
of services that are to be provided for the windowing
object. The services provided require that the resulting
set of methods to be invoked for a service be defined within
the derived object. This enables the designer of a graphic
editor object in MAX to customize the environment to suit

the object's needs for the style of editing required.

The Network Editor's window is divided into two
regions; one for general editing, and one containing the
icon frames for the available waveguide objects for a
specific type of editor. Also contained in the icon frame
window are the fixed set of I/0 port objects for a specific

Network Editor (see Figure 6).

When the user selects a point in the window by a mouse
click, the type of action requested will depend upon whether
the point selected is within the boundaries of an editable
item. An editable item is defined graphically by an
object's frame boundaries or a line connecting two objects'
port icons. Either the Object Manager or the Port Manager

can be invoked depending upon where in the selected object's

68

le Edit New Max Font UWindows Options
wavetst

|table tes*table|

testorc E%
&

............ AR A
AT AT A I AL A A A A I A A A I I R A R R A U L

Figure 6 Example of a Room Network Editor's Window.

frame the selected point resides. If the selected point is
not within the object's port icon then the Object Manager is
invoked; otherwise the Port Manager is invoked. The last

editable item to be selected is considered the default item
for the availability of further actions to take place. The

69

default item, if one exists, is accentuated graphically

within the general editing window.

To create a new object within the general editing
window, the user selects a point within the boundaries of an
icon frame. A new object with default values is then placed
in the general window the position of which will depend upon
where the object's frame is dragged to by the cursor
movement controlled by the mouse. To alter the position of
an object, the user selects a point within the object and
drags the object's frame to the new location. To delete an
object the delete command is invoked and the last selected
object's icon along with the information related to that

object is removed.

To create a connection between two existing objects, an
object's port icon is selected and then the cursor is
dragged to another object's port icon. If the connection
scheme does not violate the rules for the coupling of
objects then a line connecting the two objects' port icons
is drawn. A connection between two objects is deleted by
selecting a point that resides along the line connecting the

two objects and then invoking the delete command.

The Macintosh's Dialog Box environment allows the user

to alter the variable set of parameters of an object. A

70

specific keystroke is used to invoke the set of Dialogs for
the last selected object (see Figure 7). These Dialogs are
different for each type of object available but are not
available for the Junction and I/0 Port objects.

Edit

Source Excitation Info

] NoteOffs Decay Time (in cycles):| 150

Dalid Note Range:
Lowest: | 3¢ Highest: |94

Wave Table Generation: | Fourier Synthesis

([ok] (cancel)

l]
®
'

9i<

=

Figure 7 Example of an Excitation Object's Dialog.

71

The Dialog for a Player object contains editable
entries for the name of the file containing its instrument
definition and the track number for the MIDI data to be used
to drive the instrument. The Dialog for a Subnetwork object
contains only a single editable entry for the name of the

file containing its subnetwork definition.

The Dialog for a Waveguide object contains editable
entries for its delay and admittance with another Dialog,
accessed within the first Dialog, being used for each of the
filters that are related to each of the delay lines. The
Dialog for a Waveguide's filters contains editable entries

for the gain and a Dialog for its list of filter parameters.

The Dialog for an Excitation object contains editable
entries for its table 1l.okup creation function, the range of
notes that are valid for the instrument, and a parameter
denoting the number of cycles for the decay of the waveform,
with another Dialog available for the list of parameters to
be used for the table lookup function. The types of table
lookup creation functions available are listed below:

Chebyshev

Cubic spline interpolation

Straight line interpolation

Exponential curve interpolation

Fourier synthesis

72

A MAX Table
This does not denote a function but rather a set
of points that can be created graphically within
MAX and therefore does not need a list of
parameters but the name of the table to be used.
The user can use a MAX table editor provided by
MAX to create a fixed wave shape graphically.
Random
This does not require any parameters because the
table to be used in the lookup method for this

excitation will be filled with random values.

The Dialog for a list of parameters of any type will
differ depending upon the view of the parameters as being a
list of single, double, triple, or gquadruple parameters.
This is related to the function that uses them. For
example, the Dialog for the filter parameters in a waveguide
regards them as duples while the Dialog for the parameters
of the Fourier Synthesis table lookup creation function

regards them as triples (see Figure 8).

4.3 Summary

The prototype design system described above was able to
produce results that proved satisfactory. One test was to

produce one simple network and continually modify it with an

73

Fourier Synthesis Parameters

Number of parameters: |3
Harmonic Amplitude Phase
0 1.000000 1.000000 0.000000
1 3.000000 0.333333 0.000000
2 5.000000 0.125000 0.000000
3 0.000000 0.000000 0.000000
R
([Prew) Nept |

(Cancel)

ok)

I

Figure 8 Example of a Parameter Dialog for Fourier Synthesis.

expected resulting waveform to be used as a guide for the
modifications. Throughout this test the same MIDI input

file was used so that the aural comparison would be easier
to make. The ease of modification of the resonance of a
room was as expected but the design ard implementation of

74

instruments took more than simple intuitive manipulation to
produce approximations to the desired sound. It became
obvious though that the more experience that was gained
manipulating the elements of a waveguide network the easier

it would be to produce results according to specification.

It was not deemed necessary to implement the full
design to be able to establish its legitimacy. The subset
of the design did not allow the rollowing concepts that
could be considered an essential part of a full system:

(1) recursion at the instrument level

(2) variable number of ports across subnetworks

(3) cascaded waveguides

(4) a more flexible method of defining an excitations'

set of actions

The prototype was not able to generate waveforms at
rates greater than or egual to real-time. A test was made
of the communication bandwidth across the Macintosh to
Transputer link and this showed that this was not the
bottle~neck of the systemn. Th;s test was useful, however,
in demonstrating a limit that could be achieved. Buffers
were sent upon demand and the number of buffers sent per
demand was a factor of the speed at which the process on the
first Transputer could fill them with values representing a

repeating sine wave. When a small change in the algorithm

75

was made the real cause of the slower processing rates was
discovered. The change was to have a second process
actually do the transfer and the first process' Jjob was
simply to f£fill the buffers. The request for buffers to be
sent was received by the first process and passed on to the
second which then enacted the transfer. This resulted in
buffers being generated at rates that were less than real-
time. The cause for the reduction in throughput was
therefore seen to be the overhead of the inter-process
communication and process rescheduling that is inherent in

the Transputer command set.

The fact that waveforms were being generated at rates
of less than real-time also had an effect on the waveforms
that were produced during interactive input. The sounds

were quite interesting but not what was projected.

76

S Conclusion

Waveguide networks represent an efficient method for
computing resonating systems for sound synthesis. They also
lend themselves well to simple conceptual manipulation that
eases the design process for creating general sound

generation systemns.

A system for the design of general sound production
systems has been presented that incorporates waveguide
networks. A higher level of conceptualization is presented
to aid in the composition of modules consisting of waveguide
networks. A prototype of the system has been implemented
that further eases the process of design through efficient
computation of the resulting waveforms. The prototype is
implemented in an environment that allows a user flexible
access of the system by incorporating it as an addition to
an already existing system (MAX) designed specifically for

the manipulation of elements for sound synthesis.

The inclusion of the system into the MAX environment
entailed the creation of the editors and the creation of the
system for including the code and the control of the added
peripherals used by the Audio-CAD system. Even though MAX
provides some basic tools for a user to create new objects

that perform graphical editing, these tools are only a frame

77

for objects to be built upon. The code used for the
Transputers and the Sound Accelerator was built in a
different environment from that used for the MAX objects.
This posed some problems when it was found that it was
necessary to include the code for all three systems into the
same object that controlled them. A library and set of
tools had to be created simply to aid in the development of
the prototype. These tools along with the library of
functions for the communication interface between a MAX
object and the Transputers proved to be successful not only
for the work presented here but also for projects being

explored by other people using the same platform.

Future possibilities for research in waveguide network
theory could include the development of a formal theory of
coupling and contrcl of subnetworks. This would allow the
mathematical prediction of the set of results of any given
configuration. This is still an intuitive process which is
enhanced through experience but it may also be that this is
sufficient for its general use. It should also be possible
to develop a specific system for speech synthesis based upon
waveguide networks that would model the actions of a vocal
tract during human speech. This would promise to be a more
dynamic system than the present methods that sinply

concatenate phoneme parameters.

78

:
.
|
a
3
H

A question worth investigating is whether the physical
modelling of sound systems using waveguide networks is
limited to synthesis or is it possible to be used for
analysis as well. For this to be true the data path of
samples in a network would have to be invertible in order to
be able to predict the set of actions a system would have to

take to reproduce a sound.

79

6 Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

Jean-Marie Adrien and Xavier Rodet, "Physical Models ot
Instruments: A Modular Approach, Application to
Strings", Proceedings of the 1985 Internaticnal
Computer Music Conference, Computer Music Association,
1985, 85-90.

Jean-Marie Adrien and Rene Causse and Xavier Rodet,
"Sound Synthesis by Physical Models: Application to
Strings", Proceedings of the 1987 International
Computer Music Conference, Computer Music Association,
1987, 264-269.

Jean-Marie Adrien and Rene Causse and Eric Ducasse,
"Dynamic Modelling of Stringed and Wind Instruments:
Sound Synthesis by Physical Models", Proceedings of the
1988 International Computer Music Conference, Computer
Music Association, 1988.

Selim G. Akl, The Design and Analysis of Parallel
Algorithms, Prentice Hall, 1989.

K. Mani Chandy and Jayadev Misra, Parallel Program
Design - A Foundation, Addison Wesley, 1988.

John M. Chowning, "The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation", in
Foundations of Compufer Music, Curtis Roads and John

Strawn eds., The MIT Press, 1985, 6-29.

80

(7]

(el

[9]

[10]

(11]

(12]

(13]

[14]

Christopher Dobrian and David Zicarelli, MAX User's
Manual, Opcode Systems Inc., 1990.

Charles Dodge and Thomas A. Jerse, Computer Nusic:
Synthesis, Composition, and Performance, Shirmer Books,
1985.

Guy E. Garnett, "Modelling Piano Sounds Using Waveguide
Digital Filtering Techniques", Proceedings of the 1987
International Computer Music Conference, Computer Music
Association, 1987, 89-95.

Guy E. Garnett and Bernard M. Mont-Reynaud,
“"Heirarchical Waveguide Networks", Proceedings of the
1988 International Computer Music Conference, Computer
Music Association, 1988, 297-312.

John W. Gordon and John M. Grey, "Perception of
Spectral Modifications on Orchestral Instrument Tones",
Computer Music Journal, 1978, 2(1):24-31.

J.W. Gordon and J. Strawn, "An Introduction to the
Phase Vocoder", in Digital Audio S8ignal Processing: An
Anthology, ed. J. Strawn, William Kaufman Inc., 1985.
C.A.R. Hoare, Communicating Ssequential Processes,
Prentice-Hall International, 1985.

David A. Jaffe and Julius 0. Smith, "Extensions of the
Karplus-Strong Plucked-String Algorithm", Computer

Music Journal, 1983, 7(2) :56-69.

81

(15]

(16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

Kevin Karplus and Alex Strong, "Digital Synthesis of
Plucked-String and Drum Timbres", Computer Music
Journal, 1983, 7(2):43-55.

Otto E. Laske, "Considering Human Memory in Designing
User Interfaces for Computer Music", Computer Music
Journal, 1978, 2(4):39-45.

Joseph Marks and John Polito, "Modelling Piano Tones",
Proceedings of the 1986 International Computer Music
Conference, Computer Music Association, 1986, 263-268.
Stephen McAdams and Albert Bergman, "Hearing Musical
Streams", in Foundations of Computer Music, eds. Curtis
Roads and John Strawn, "The MIT Press", 1985, 640-657.
MIDI 1.0 Detailed Specification, International MIDI
Association, 1988.

S8tandard MIDI Files 1.0, International MIDI
Association, 1988.

B. Moog, "“MIDI: Musical Instrument Digital Interface",
Journal of the Audio Engineering Society, 1986,
34(5):394-404.

F. Richard Moore, "Table Lookup Noise for Sinusoidal
Digital Oscillators", in Foundations of Computer Music,
eds. Curtis Roads and John Strawn, "“"The MIT Press",
1985, 326-334.

F. Richard Moore, Elements of Computer Music, Prentice-

Hall, 1990.

82

[24] James A. Moorer, "About this Reverberation Business",
Computer Music Journal, 1979, 3(2):13-28.

(25] Dexter Morrill, "Trumpet Algorithms for Computer
Composition", Computer Music Journal, 1977, 1(1):46-52.

[26] Michael J. Quinn, Designing Efficient Algorithms for
Parallel Computers, McGraw Hil1l, 1987.

[27] Curtis Roads, Composers and the Computer, William
Kaufmann Inc., 1985.

(28] J. Rodgers, "Digital Simulation of the Piano",
Proceedings of the 1982 International Computer Music
Conference, Computer Music Association, 1982, 358-366.

[29] Julius O. Smith, "Synthesis of Bowed Strings",
Proceedings of the 1982 International Computer Music
Conference, Computer Music Association, 1982, 308-340.

{30} Julius O. Smith, Techniques for Digital Filter Design
and System Identification with Application to the
Violin, Phd. Thesis, Stanford University, 1983.

[31] Julius O. Smith, "Spectral Pre-Processing for Audio
Digital Filter Design", Proceedings of the 1983
International Computer Music Conference, Computer Music
Association, 1983, 57-79.

[32] Julius O. Smith, "An Allpass Approach to Digital
Phasing and Flanging", Proceedings of the 1984
International Computer Music Conference, Computer Music

Association, 1984, 103-110.

83

(33]

[34]

[35]

[36]

[37]

[38)

(39]

Julius 0. smith, "A New Approach to Digital
Reverberation Using Closed Waveguide Networks",
Proceedings of the 1985 International Computer Music
Conference, Computer Music Association, 1985, 47-54.
Julius O. Smith, "An Introduction to Digital Filter
Theory", in Digital Audio S8ignal Processing: An
Anthology, ed. J. Strawn, William Kaufman Inc., 198..
Julius 0. Smith, Waveguide Digital Filters, Technical
Report, Center for Computer Research in Music and
Acoustics (CCRMA), Stanford University, 1985.

Julius O. Smith, "Efficient Simulation of the Reed-Bore
and Bow-String Mechanisms", Proceedings of the 1986
International Computer Music Conference, Computer Music
Association, 1986.

Julius 0. Smith, Elimination of Limit Cycles and
oOoverflow Oscillations in Time-Varying Lattice and
Ladder Digital Filters, T=ch. Report #STAN-M-35, Dept.
of Music, Stanford University, 1986.

Julius O. Smith, "Waveguide Filter Tutorial",
Proceedings of the 1987 International Computer Music
Conference, Computer Music Association, 1987, 9-16.
John Strawn ed., Digital Audio Engineering: An
Anthology, in The Computer Music and Digital Audio

Series, William Kaufmann, Inc., 1985,

84

[40]

(41]

[42]

[(43]

(44]

[45]

(46]

John Strawn ed., Digital Audio 8ignal Processing: An
Anthology, in The Computer Music and Digital Audio
Series, William Kaufmann, Inc., 1985.

John Strawn, "Orchestral Instruments: Analysis of
Performed Transitions", Journal of the Audio
Engineering Society, 1986, 34(11):867-880.

John Strawn, "Editing Time-Varying Spectra", Journal of
the Audio Engineering Bociety, 1987, 35(5):337-352,.
John Strawn, "Analysis and Synthesis of Musical
Transitions Using the Discrete Short-Time Fourier
Transform", Journal of the Audio Engineering Society,
1987, 35(1-2).

David L. Wessel, "Timbre Space as a Musical Control
Sequence", in Foundations of Computer Music, Curtis
Roads and John Strawn eds., The MIT Press, 1985, 640-
657.

Colin Whitby-Stevens, "The Transputer", The 12th Annual
International symposium on Computer Architecture, IEEE,
1985, 292-300.

David Zicarelli, Writing External Objects for MAX,

Opcode Systems Inc., 1990.

85

