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ABSTRACT

A Characterization of Reversible Markov Processes with Applications to

Shared-Resource Environments

Vassilios Koukoulidis, Ph.D.

Concordia University, 1993

The connection between reversible stochastic processes and product-form queueing
networks is examined from a graph-theoretic perspective. The result is a characteri-
zation of reversibility and a methodological tool called the state multiplicr. The use
of state multipliers, in mmodeling the state dependencies of arrival and departure rates,
is demonstrated both theoretically and by example. Next, multi-server queues with
multiple classes of customers and general service requirements are considered. Using
the state multipliers and assuming work conservation, a non-egalitarian processor-
sharing discipline is analyzed. This discipline is called the extended shared-resource
(ESR) model and has a product-form solution under finite or infinite queue sizes.
Applying a complete analysis, a computationally efficient algorithm for the normal-
ization constant, the moments of the population and the blocking probabilities is
derived. Finally, state multipliers and work conservation are used in the analysis of

circuit-switched networks and further generalizations are suggested.
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Chapter 1

Introduction

Efficient and effective use of a system’s resource is generally accomplished through
some means of sharing the available resources among the users of the system. Re-
source sharing has been a central issue in the design of computer and communications
systems since their inception. It is a truism to say that the notion of sharing is gen-
erally directed at the most expensive resources and hence, the bottlenecks limiting a
system’s performance tend to focus around these critical resources, As technological
innovation alleviates one problem, making it possible to engineer new systems with
higher performance, the sharing of the previously crucial resource may be rendered
unnecessary. However, the focus of the bottleneck typically shifts to some other
system resources which are now considered crucial for sharing in order to achicve
the higher performance objectives. This is clearly exemplified by the computation-
communication bottlenecks encountered in computer networks. If communication is
slow relative to the speed of computation then distributed processing is communica-
tion bound. On the other hand, the advent of fast communication can shift the foens
of the bottleneck and distributed procsssing becomes compute bound. In bhoth of these
cases, sharing of the critical communicating or processing bandwidth is nsually the
preferred solution and it is, in fact, necessary in order to tune the performance of the
system to balance any disparity between the communication and computation speeds
inherent in the system. It is evident that efficient and effective sharing of resources is

of considerable concern to computer communication network planners and operators.



From a dynamical point-of-view, the optimal or, at least, intelligent allocation
of resources to users and/or processes is a complex problem, requiring sophisticated
mathematical models of the system and of the demand for its resources, in order
to quantify useful performance measures. Any such model can, of course, only ap-
proximate a system’s behavior. For a system’s engineer, it is sufficient and highly
desirable to have a model which is capable of describing the relevant performanre
measures accurately enough for design tolerances, yet which is relatively easy from a
computational perspective. Therein, lies a tradeoff between accuracy and computa-
tional simplicity.

The advent of large expensive mainframe computing facilities motivated a great
deal of research in the area of computer resource sharing during the 1960s and 70s.
Consequently, a rich body of results now exists for the analysis and control of sys-
tems’ resources. Some of the deepest work in this area concerns the sharing of a
single high-performance processor among many users of a mainframe computer. The
analysis of such single-resource-sharing systems is well understood with characteriza-
tions of their achievable performance which are sufficient to determine optimal control
strategies, many of which are now commonly implemented in existing computer op-
erating systems. However, multiple-resource sharing systems are less understood and
much more complex than single-resource-sharing systems. This is evident from the
lack of a solid theoretical foundation for multiserver queueing systems. In general,
queueing systems and networks are so complex that analytical results exist only for
very restricted systems and only under certain, rather unrealistic, assumptions. As
of yet, no solid characterization of achievable performance exists which would allow
systems engineers to devise optimal control strategies for such systems.

The models applied to the analysis and design of resource-sharing systems range
from deterministic to stochastic in nature and a wealth of knowledge on the topic
can be found in the literature. The fundamental difficulty encountered in studying
multiple resource systems is one of complexity. The complexity is introduced due to
the dimansionality of the associated models. General queueing network models can

typically be solved for their performance behaviors only approximately or, perhaps ex-



actly, but only numerically and for systems of limited scale. It is virtually intractable
to solve such models exactly and in a form suitable for further investigation. There
is, however, a large class of Markovian queueing network models whose equilibrinm
state distribution factors into a product-form solution. These network models can be
associated with efficient algorithms for the computation of performance measures of
interest to the analyst.

The current state-of-the-art in product-form queueing network models of multiple
resource sharing systems has culminated in the works of Gordon and Newell [10], Jack-
son [13, 14], Baskett, Chandy, Muntz and Palacios [2], Kelly [19] and others. These
models are appealing from the two perspectives of a desirable model as cited above.
Firstly, they represent queueing networks from an initially Markovian framework and
they are, therefore, conceptually extensible to a large class of processes. Secondly,
if they posses a factoring into a product-form solution for the state distribution in
equilibrium, then they are at least potentially tractable from a computational point-of
view. Emphasis should be placed here on the phrase “potentially tractable”, as even
with a product-form network, the computation of performance measures may still be
extremely difficult, requiring state-space enumeration. However, these networks may
posses efficient recursive algorithms for their solution and they are usually amenable
to asymptotic analysis for further simplification.

The objective of this thesis is to explore the possibility of developing models
of resource-sharing systems which are computationally efficient and yet sufficiently
sophisticated to capture the relevant behaviors. The basic wnderlying approach is
that of Markovian queueing theory and the focus is on product-form maodels.

A fundamental property that results in product-form queuecing disciplines is the
M = M or quasi-reversibility property [19, 39]. The most important implications of

quasi-reversibility are:
o Arrivals and departures from a quasi-reversible queue are Poisson-distributed.

¢ The equilibrium distribution of the occupancy for certain quasi-reversible gqueues

is insensitive to the distribution of the service requircment.



These properties have lead researchers to study whether it is possible to parameter-
ize the transition rates of a quasi-reversible queue. Several authors have studied the
conditions under which quasi-reversibility is satisfied and discovered simple criteria
for testing this fundamental property. Furthermore, they have shown that a queueing
network of quasi-reversible queues can be described by a reversible process. In this
thesis, I present the results of their work and produce a characterization of reversibil-
ity by viewing a Markov process from the perspective of graph theory. Then, I ap-
ply this characterization on a work-conserving system and produce a non-egalitarian
processor-sharing discipline that admits product-form solution. This discipline is use-
ful in the modeling and performance analysis of network problems such as resource

allocation and multiplexing.

1.1 Overview

First, I examine the topology of the state-transition diagram of a reversible pro-
cess from a graph-theoretic point of view. An immediate consequence of this ap-
proach is that reversibility can be verified by checking whether a well-known crite-
rion, namely Kolmogorov’s criterion, is satisfied around the fundamental circuits of
the state-transition diagram. Even though this result seems trivial, it has an impor-
tant consequence: It explains why it is possible to use state multipliers or weights
for the modeling of state dependencies of the transition rates. State multipliers or
weights have been widely used to model state-dependent arrival and service rates
[2, 20, 28] and recently have been shown to be useful in controlling the arrival rate of
different types of traffic in ATM networks [34]. 1 extend their range of applications by
using them as a tool for parameterizing arrival and/or departure rates in a manner
similar to raising the node potential in an electrical network. 1 extensively discuss
the theoretical aspects of this technique and explain it with examples. Finally, I
summarize the technique in a simple theorem called the Characterization Theorem.

Next, I consider the notion of work conservation for multi-server queues with

multiple classes of customers. The setting is as follows. An arriving customer may



request more than one server. Customer requests are granted for as long as there
servers available or the sharing policy permits it. Otherwise, customers may have
to share the servers. In this context, work conservation means that no server is idle
when the total number of requests exceeds the number of servers and no customers
depart before their service is completed. Using the Characterization Theorem and
work conservation, | show how a non-egalitarian processor-sharing discipline can be
derived. This discipline is called the ertended shared-resource (ESR) model and has a
product-form solution under finite or infinite queue sizes. A similar model has been
proposed by Kaufman [17]. In Kaufman’s model processor sharing is not allowed.
If a customer’s request cannot be met, then this customer is blocked and lost. The
ESR model generalizes Kaufman’s results in a natural and intuitive way. My anal-
ysis results in an efficient computational algorithm for the normalization constant,
the moments of the population distribution and the blocking probabilities. I demon-
strate the behavior of the ESR model with a simple asymptotic analysis and several
numerical examples.

Finally, I apply once more the Characterization Theorem and work conservatiou,
in order to expand the circuit-switched network model of Dziong and Roberts [8].
Here, when the offered load exceeds the capacity of the network, the bandwidth
requirement of each traffic type is gradually reduced until all traffic is accommodated.

The analysis of the ESR model has some important implications:

e The infinite-server and processor-sharing disciplines, with multiple customer

classes, are unified in a single model.

o It defines a non-egalitarian processor sharing discipline admitting product-form

solution.

¢ As a node in a queueing network, the ESR model expands the class of queneing,

networks with product-form solution.

o It defines a practical method for approximating non-product-form disciplines or

creating new reversible disciplines from known oues.



1.2 Plan of the Thesis

In Chapter 2, | present the basic concepts of graph theory, reversibility and queueing
networks used in the thesis and give some motivating observations.

In Chapter 3, I show the thinking that lead to the development of the state mul-
tipliers, discuss their modeling capabilities and demonstrate their use with examples.
Appendix A complements Chapter 3 and presents an interesting analogy between
Kirchhofl’s voltage law and Kolmogorov’s criteria for reversibility.

Chapter 4 contains the major contributions of the thesis. Here, I analyze the
extended shared-1esource model and produce the algorithms needed to obtain per-
formance measnres. The behavior of the ESR model is also examined in Chapter 4.
The proofs and algebraic manipulations that are not essential to the development of
the model are given in Appendices B and C.

In Chapter 5, I present a further generalization of the ESR model and apply it to
the analysis of circuit-switched networks. Closing this chapter, I show some problems
raised by the generalization and requiring more research.

Finally, in the Epilogue, I discuss how the ESR model could prove useful in the
synthesis of communications networks. This discussion defines a range of potential

applications of the ESR model with theoretical and practical value.



Chapter 2

Background Material and

Previous Work

The sources of theoretical results in performance analysis and modeling are Hayes
(11] and Kleinrock [21, 22]). A more descriptive text is Bertsckas and Gallager [3).
Kelly [19] gives a rigorous treatment of reversibility.

The graph-theoretic notation and results used throughout the thesis follow Swamy
and Thulasiraman [43].

A detailed presentation of queueing networks and their stochastic processes, ac-
companied with a rich bibliography, is given by the survey of Disney and Konig [7].

Some of the theoretical results appearing herein have been published or submitted

for publication (4, 24, 25)].

2.1 Graph Theory

A basic graph-theoretic notation and some elementary results are given next. More
advanced material is needed for the proofs in Appendix A but is not necessary for
understanding this thesis.

A graph G = (Q, E) is a set Q of vertices and a set F of edges, cach edge connecting
two vertices from 2. A walk 1y — i, — -+ — 4 in a graph G is a finite sequence

of vertices iy,25, -, 2k, such that #; and 7;4;, 1 <1 < k=1 are connected with an



edge. The vertices 3 and ¢, are called the end vertices of the walk. A walk is closed
if its end vertices are identical; otherwise it is open. A walk is a trail if all its edges
are distinet. An open trail is a path if all its vertices are distinet. A closed trail is
a circuil if all its vertices except the end vertices are distinct. An Euler trail in a
graph G is a closed trail containing all the edges of G. A graph having an Euler trail
is called Eulerian. A spanning tree T of a graph G is an acyclic subgraph of G having
all the vertices of G. The edges of T are called branches and the edges of G — T are
called chords. The circuit created by adding a chord e to 7 is called the fundamental
circuit of G with respect to the chord e of the spanning tree 7.

A directed graph has a direction associated with each edge and therefore, each
edge of a directed graph corresponds to an ordered pair of vertices. A directed walk,
direeted trail, divected path, or directed circuit is defined as a walk, trail, circuit, and
path where the direction of traversal agrees with the direction of the edges. A vertex
v in a directed graph G is a root of G if there are directed paths from v to all the
remaining vertices of G. A directed spanning tree of a directed graph G is a spanning
tree of G having a root. The orientation of a fundamental circuit of G with respect
to a chord ¢ of a spanning tree 7 agrees with thc orientation of e.

A directed circuit € of G = (2, E) can be represented by a vector [c,)g), each
clement ¢, i = 1,...,|E|, corresponding to an edge of G as follows. Assume that

has an orientation assigned to it. Then,

0, if the zth edge is not in C,
€ = 1, if the orientations of the ith edge and C agree, (2.1)

—1, if the orientations of the 7th edge and C disagree.

The circuits of a graph form a space with rank |E|—|Q] + 1. The fundamental circuit
vectors of a graph G with respect to the chords of a spanuing tree of G torm a basis

of the circuit space.



2.2 Reversibility

In this section, I introduce and discuss the concept of reversibility, Theorems are
given without proofs. However, 1 present an interpretation influenced by Bertsekas
and Gallager [3]. The proofs can be found in Kelly [1Y)].

Let X (k), & € Z be a time-homogeneous, stationary, irreducible, apetiodic and
discrete-time Markov process with a countable state-space 1 and state-transition
probabilities p(7, j) = P(X(k + 1) = j[X (k) = 2), i,j € Q, k € Z. In the rest of the
thesis, the term Markov chain will be used for discrete-time Markov processes. The
word process will be reserved for the continuous time Markov processes. Furthermore,
I shall consider only time-homogeneous, irreducible and aperiodic processes, unless it
is otherwise specified.

Process X (k) has an equilibrium probability distribution if and only if there exists

a set {m({), 1 € Q} summing to unity and satisfying the global balance cquations

wi) = Drlilii), i€ (2

J€Q

to
t~

Then, the equilibrium probability distribution is {x(i), + € Q}.
Assume that X (k) is in equilibrium. Imagine that we trace the sequence of states
of X(k) in reverse time. Let {m.(7), i € Q} and p,(i,)), i,j € £ be the equilibrium

distribution and the transition probabilities of the reversed chain, respectively. Then

P(X(k)=j,X(k=1)=1i) = P(X(k=1)=1|X(k)=J)P(X(k) =)

= m.(J)pld, ) (2.3)
We also have

P(X(k) = j,X(k—1)=1i) = P(X(k)=jlX(k—1)=)P(X(k) =i)

= w(i)plir)- (2.4)

Since the chain is in equilibrium (& — o0), equilibrinm probabilities equal time av-
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erages or, equivalently, X(k) is ergodic. The concept of ergodicity is often used to
provide intuitive interpretations of theoretical results. Then. 7(7) is the proportion

of time the chain spends in state j. Hence,

[
oy 4
~—

(1) = (7). (2.

Then, from equations (2.3), (2.4) and (2.5) we get

w(Dpr(sd) = w(Op(i5), 1,7 €1, (2.6)

and the reverse transition probabilities are given by

po(ini) = %—’—) ijeq (2.1)

I p(4,7) = p(),7),Vi,j € , the chain is called time-reversible. So, for a reversible

chain, equation (2.6) becomes

n(p(.i) = (@)p(is), 4,5 €1 (2.8)

and we can say that the chain satisfies detailed balance.

The ergodicity of equilibrium distribution can help us derive an intuitive interpre-
tation of detailed balance and reversibility. Since n(7) is the fraction of time spent by
X (k) in state ; and p(7,7) is the fraction of transitions from state i to state j given
that X' (&) is in state 7, the quantity =(Z)p(z, j) is the fraction of transitions from state
1 to state j. Similarly, n(j)p(j,7) is the fraction of transitions from state j to state 1.
Hence, if detailed balanced is satisfied for every pair of adjacent states, the forward
and reverse chains are indistinguishable. The following definition and Theorem 2.1

formally state the connection between reversibility and detailed balance.

Definition 2.1 (Reversible Chain) A stationary chain X(k), k € Z, is revers-
ible if (N(K). X(R2).. ... X(k,)) has the same equilibrium distribution as (X(k —
kM) N(h=R2)o o o XA = k), YRy kg, hy k€ 2.

10



Theorem 2.1 A stationary Markov chain is reversible if and only if there erxists a
set of positive numbers {w(i), 1 € Q}, summing up to unity, that satisfy the detaded

balance equations

() ==(@p( ) i) €.

When the set {m(2), i € Q} exists, it is the equilibrium distribution of the chain.

The equilibrium distribution of a chain can be derived from the global balance

equations and is the solution of the equation

m=7P, (2.9)

where 7 is the row vector (7(i))eqn, I is the

Q] x |9] identity matrix, and P is
the transition probability matrix [p(i,j)oxp with p(i,i) = | = & cqoy 10, 1),
2 € Q, and p(1.J) being the transition probabilities. Consequently, we should he able
to determine whether a chain is reversible from the transition probabilities alone.
Kolmogorov’s criteria, which are presented in the sequel, let us to do exactly that,
Let C = (f1,%2,... i, 1), be a finite sequence of adjacent states in 2. Withont
loss of generality, it is assumed that the length of ("is k> 2. If the chain is in state

71, it will traverse C with probability

pla,i2)plaizyia) - plisoy, i)p(ig, 1y ). (2.10)

Suppose that, while X (k) is in equilibrium, we trace the sequence of states back-
wards in time. If the reversed chain is in state 7;, it will traverse (! backwards with
probability

pr(21,t)pe(ins th-1) - - prlis, 22)pe(in, ). (2.11)

If X(k) is reversible, expressions (2.10) and (2.11) are equal. Conversely, assume that
pliv, 22)plias a) -+ plincy, ik)p(ik, 01) = pliv,in)p(inyinon ) - plis, 12)plia, 1),

for any finite sequence (' = (7;,23,...,%,21) of adjacent states in 0. Then, the

11



probability that X (k) traverses circuit C starting from state z; is independent of the
direction of traversal. Hence, there is no net circulation which would make the forward
chain distinguishable from the reversed chain. The relationship between reversibility
and the transition probabilities around any closed finite sequence of states is formally

established by the following theorem.

Theorem 2.2 (Kolmogorov’s criterion) A stationary Markov chain is reversible

if and only if its transilion probabilities satisfy
Plin 02)p(iayia) - - plin-1, 0k )p(ins 1) = plin, ta)p(ins 1) - - Plis, 2)P(22,11),  (2.12)

for any finite sequence of states iy,2,,...,1 € 1.

The previous presentation of Markov chains and reversibility can be extended to
Markov processes. Let X(¢), ¢ > 0, be a time-homogeneous, stationary, irreducible
and aperiodic Markov process with a countable state-space €. The necessary and
sufficient condition that X (#) has an equilibrium probability distribution {=(7),: € §1}

is that the global balance equations

n(1) 3_q(i,5) = 3_7(i)a(i,i), i€, (2.13)

JEQ JEQ
are satisfied and Y;cq 7(¢) = 1. Now, the transition probabilities are replaced by the
transition rates ¢(7,7), 7,7 € Q, and equation (2.9) becomes

Q= 0, (2.14)

where 7 is the row vector (7(i))eq and Q is the transition rate matrix [q(z,7)]iax|a|
with ¢(i,7) = =¥ e (7, ), 7 € Q, and q(%, j) being the transition rates. The rest
of this work deals only with continuous time Markov processes. Definition 2.1 and

Theorems 2.1 and 2.2 have analogues for continuous time Markov processes.

Definition 2.2 (Reversible Process) A stationary process X(t), t € R, is re-

versible if (X (1), X(t2),..., X(1.)) has the same equilibrium distribution as (X (7 —

12



tl),X(T— tz),...,X(T - f,,)), Vi],f-),. ..,t,,,T Z 0

Theorem 2.3 A stationary Markov process is reversible if and only if there erists a
set of positive numbers {m(i), 7 € Q}, summing up to unity, that satisfy the detailed

balance equations

m(7)q(.8) = m(i)g(i,j). 1,5 €L (2.15)
When the set {n(i), i € 1} exists, it is the equilibrium distribution of the process.

The quantity 7 (z)q(z,7) is called the probability flur from state 7 to state j since it

represents the fraction of transitions from state 2 to state j per time unit.

Theorem 2.4 (Kolmogorov’s criterion) A stationary Markov process is reversi-

ble if and only if its transition rates satisfy

q(21,22)q(22,73) -+ q(Fk=1, 1) ik 1) = qli1, 18) Gk k1) - -+ @iz, 12)q(iny £y). (2.16)

for any finite sequence of states iy, 1, ...,1% € S2.

A Markov process can be associated with an undirected graph G = (€2, IV) whose
set of vertices is §, the state-space, and E is a set of edges, cach edge joining two
vertices, say ¢ and j, if there is a positive transition probability from 7 to j or from j
to 2. Irreducibility guarantees that the graph is connected. Then, the process can be
viewed as a random walk on G.

Consider a cut (¥, Q@ —¥) of G, where ¥ C €. During any time interval (1,1 4 7],
the number of transitions from ¥ to  — ¥ differs from the number of transitions
from © — ¥ to ¥ by at most 1. So, in equilibrium, the fraction of transitions from W
to @ — ¥ is equal to the fraction of transitions from ¢ — ¥ to Y. Hence, the following

is proved.

Lemma 2.5 for a stationary Markov process, the total probebility flur in one dirvee-
tion across a cut equals the total probability fluz in the opposite direction. That is,

for any ¥ C 1

>3 w@a =3 X ). (2.17)

1€V eN-V i€V JEN-Y
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Lemma 2.5 implies that if the graph associated with a process is a tree, then
balance of probability flux across a cut is equivalent to detailed balance. This proves

lemma 2.6 and provides a sufficient condition for reversibility.

Lemma 2.6 If the graph associated with a Markov process is a tree, then the process

1s reversible.

2.3 Queueing Networks

Next, I present the concept of queueing networks within the framework defined by the
BOMP theorem and its characterizations and extensions. For traditional purposes, |
shall call this framework the BCMP framecwork. In the original work of Baskett et al.
[2], which extended the models of Jackson [13, 14] and Gordon and Newell [10], the
BCMP framework included networks with four types of nodes. Each type is defined

by the service discipline of the service center associated with the node:
1. First-Come-First-Served (FCFS)
2. Processor Sharing (PS)
3. Infinite Server (IS)
4. Last-Come-First-Servea Preemptive-Resume (LCFS-PR)

The advantage of these service disciplines is that the equilibrium state probabilities of
the network could be expressed as the product of the equilibrium state probabilities
of the nodes multiplied by a normalization constant. The class of service disciplines
yielding product-form probabilities was characterized by Kelly [19, 20] and Chandy
et al. [37, 38] and further expanded by Noetzel [40] and Le Boudec {32, 33].

In Chapter 4, I shall analyze a queueing discipline that can be included in the
BCMP framework. The rest of this section presents the formalism needed to prove
that such inclusion satisfies the criteria for product-form equilibrium state probabili-

ties.
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2.3.1 Preliminaries

A network, N = (U, A), is a directed graph with a finite nonempty set {7 of vertices,
called nodes, and a set A of edges, called arcs. The number of nodes is 7] and nodes
are numbered so that U = {1,2,...,|U]|}. A queueing network is a network with a
service center associated with each node, where customers arrive, receive service and
flow over the arcs without delay. Customers can be of K < oo different types. A
queueing network is said to be open if all the customers arriving at a node follow
a directed walk of finite length through the network and then depart. A queueing,
network is said to be closed if there are no arrivals and no departures but only a fixed
number of customers circulating in the network. If a network is open for some types
of customers but closed for others, is called mired. In order to unify open, closed and
mixed queueing networks define a special node A is defined.  All arrivals originate
from A, which is then called source, and all departures end to A, then called sk,
Now, I introduce the notation needed to describe the circulation of customers
in the network. A customer may change its type when it moves from one node to
the next. Let B = {1,2,..., K} be the set of all types and By be the set of types
that a customer of type & may assume while moving through the network. Clearly,
BiUB,U:--U Bk = B but the sets By, k = 1,2,..., K, do not necessarily form a
partition of B. A customer of type k who is visiting node 7 as type r is said to be
in class r. The probability that a type & customer in class » at node 7 visits, upon
completion of its service, node j in class ¢, is pi(é,7; J, q). The transition probabilities

pi(1,757,q) are called routing probabilitics and form a stochastic matrix
P, = [])k(i,7‘;j,q)], 1 < Z,] <K,re B,k,([ € I}Jk,

where By is the set of classes that a type A customer may belong to while in node 7.
Matrix P, is known as the routing chain for type k customers,

In the sequel, I deal with a particular class of queucing networks called product-
form queueing networks. In order to analyze such networks, it suffices to study the

queueing behavior at each node separately. The presentation of concepts follows
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Figure 2.1: A service center as a set of distinguished class queues.

closely Chandy and Martin [38]. Only the notation has been changed in order to

maintain consistency with the rest of this thesis.

2.3.2 Queueing at a Node

Assume that customers who visit node 7 can be in R distinguished classes. Without
loss of generality, assumne that there 1s a queue for each distinguished class. Each
queue consists of stations and each station is occupied by at most one customer
(Figure 2.1). The ith station of the rth queue is referred to as (z,7). If there are n,

customers in queue r, they occupy stations (1,r),(2,7),...,(n,,r). The population

of the service center is defined as

nqﬁ-f(n], Nye.n ., NR).
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Let v(i|n,r) be the probability that an arriving customer enters station {2,1) given
that the population prior to the arrival was n and the customer is in class ». Fur-
thermore, let £(i,7|n) be the service rate for the customer at station (i,r) when
the population is m. Then, given that the population is n the total service rate for

customers in distinguished class r is

Z(rn) = SO€G, rlm).

1=1

The following notation is needed.

{
n; (naynay ooy temy iy — Linpgq, .o nip),

f
= (NN ey oy e + Llegy, o ).

The fundamental property that results in BOMP-type queueing disciplines is the
M = M property. It was first identified by Muntz [39] and termed quasi-revcrsibility

by Kelly [19]. The implications of quasi-reversibility are summarized as follows [20)].

1. The state of a quasi-reversible queue at any time ¢, is independent of the future

arrival times and past departure times.
2. The arrival times of class » customers form independent Poisson processes.
3. The departure times of class r customers form independent. Poisson processes.,

4. Insensitivity property. Assume that the queue is balancing or symmetric in the
sense that, the relative frequency at which a class » customer visits station (7, 7)
is equal to the proportion of service allocated to this station. Then, the equi
librium distribution of the population depends on the the service requirement,

of a class only through its mean.

The following definitions and theorems are based on quasi-reversibility and define

formally the BCMP framework.
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Definition 2.3 (Balanced) A queucing discipline is callcd balanced if there exists

a posilwre function x(n), defined oner all feasible vectors n, such that

E(r|n) = %(—(%:)l, Yn,r:n, > 0.

Function x(n) is called the characteristic function of the discipline and x(0) = 1.
Definition 2.4 (Station Balancing) A queueing discipline is called station bal-
ancing for distinguished class v if it is balanced and

E(rn)y(in,) =€, rn), VYn,i:in,>0Ai=1,2,...,n,.

A station balancing discipline is also called symmetric [19].
Lemma 2.7 gives a simple criterion for the balanced property.

Lemma 2.7 A qucucing discipline is balanced if and only if
Z(rln)E(qln;) = Z(qln)=(r(n;),

Jor all feasible n, n-, n_.
Corollary 2.8 The characteristic function of a balanced discipline is unique.

Next, I give a version of the product-form theorem for the equilibrium probabilities
of the population process. The product-form theorem has a more general form and
holds for systems whose state descriptor includes the remaining service time of each
customer. However, in this thesis, as in most practical applications, it suffices to

know the equilibrium distribution of the population only.

Theorem 2.9 (Product-Form Theorem) Let the following assumptions be true

for a queueing network node.
[. The sermce discipline depends only on the population vector n.

2. The process of arrivals of class » customers is Poisson with mean ),.

18



3. The routing probabilities in the queueing network are constant and independent

of system population.

4. The service-time distribution of the customer at station (1.K) is difforentiable

and its mean is p(i,r)"".

Then, the equilibrium probabilities m(n) of the population process satisfy the product-

form equation
R u, /\

M |n r) g tu
m(n) = ) [Tl —F—— (2.18)
et 1(GT)
where G(N) is the normalization constant. if and only if the queucing discipline 1

balanced and for a distinguished class v

(i) the service times of all customers of this distinguished class have the samq

exponential density, or
(ii) the queueing discipline is station balancing for distinguished class r.

Theorem 2.10 (Preservation Theorem) Let D, j = 1,2, be a queucing diser-
pline with distinguished classes 1,2,..., R, population v, and paranmcters y(ijn,,r)
and £(i,r|n,). Let D be a queueing discipline obtaned by combining Dy and D, so
that the population of D isn = (n,n,;),

(7 |my, 1), forr=1.2,... I,
")’(il‘"uz,?'* R]), f07' = Ifl -+ ],. ..,ll’] + It’,g,

7(i|m,7)

and

£z, r|my), forr=1,2,..., I,
f(l r - H,]n; f01 r= h’] + l h’| + H;

£, rn) =

Then D is balanced if and only if Dy and D, are both balanced. The characlirishe
function of D is the product of the characteristic functions of Dy and D,. Further-
more, if D is balanced and Dy or D, is station balancing for a distinguished class,

then D is station balancing for the corresponding distinguished class,

19



The equilibrium state probabilities at each node yield the equilibrium state probabil-
ities of the queneing network in the way shown by the next theorem. The queueing-

network state considered is the population vector
def
n= (n,, n,,... ,‘n|U|),

where my, is the population vector of node 1.

Theorem 2.11 Assume that the queueing discipline at each node satisfies the as-
sumptions of Theorem 2.9 or can be presented as limits of a sequence of queueing
disciplines satisfying these assumptions. Then the equilibrium state probabilities n(n)

of the network have the product form

m(n) = G(Q)™" I m(n.), (2.19)

wel!
where U = U for closed networks, U = UU{A} for open and mized networks, m,(n;)
arc the cquilibriuin state probabilities at node i assuming Poisson input and G(§2) is

the normalization constant,

Comment. It is obvious that the population distribution can be easily obtained if
the characteristic function can be determined. However, this is not trivial. The main
difficulty is the size of the state space associated with the population vector. The
next chapter shows a technique that helps to determine the characteristic function
of a queueing discipline. This technique is based on the fact that the population
process of a balanced discipline is reversible. Additionally, reversible processes can be
combined in order to yield a reversible process whose equilibrium distribution can be
easily derived from the component processes. This is analogous to the preservation
theorem. Qur result is more general because it allows us to modulate the arrival

process while maintaining the balanced property. |
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2.4 Motivation

The goal of this section is to present informally the observations that lead this work
to the study of reversibility.

First, the graph-theoretic framework for treating the state transition diagram of
a queueing network is presented. This framework has been sketched by previous
authors and is outlined next. Lazar [30, 31], Robertazzi [41]. and Wang [4-1] have
discovered that the state transition diagram of a product-form quenecing network can
be decomposed into elementary subgraphs. Conversely, they also showed that local
balance in a queueing network leads to graphs whose geometric replication forms the
state transition diagram. These subgraphs can be further simplilied thus producing a
building block or cell of the state transition diagram. [ explain the concept of building,
blocks by means of an example and give the basic theorems that characterize this
concept. Next, I show that the probability flux around an elementary subgraph can
be expressed by a flow graph and provide an algorithm that solves the local balance
equations corresponding to such a subgraph. The result is a building block whose
geometric replication derives a reversible process. So far, there is no graph-theoretic
method for identifying cyclic flows in a queneing network and their corresponding
balance equations.

The relationship between reversibility and product-form solution is well-known in
the queueing network literature [38, 5, 7, 19, 37]. Conway and Georganas [5], for
example, show how a reversible process, equivalent to a closed BCMP network, can
be constructed. The approach presented in this section is not concerned with the
type of queueing disciplines comprising the network, but rather with the relationship
between probability flows and product-form solution.

In the context of our research, the decomposition of the state transition diagrim,

resulting from the independent cyclic flows, has two advantages:
1. It facilitates the analytic solution of a product form network.

2. It results in a reversible process whose solution is the marginal equilibrinum

distribution of th * queueing network.
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The reason for seeking an equivalent reversible process is justified in Section 3.1.
There, a practical tool, the state multiplier, is developed and used for transform-
ing a reversible process.  Using the state multipliers, we can create new reversible
systems from known ones or approximate non-product-form networks with reversi-
ble processes. The advantage of using state multipliers is that they allow a gradual
modification of the initial solution until the desired level of approximation has been

reached.

2.4.1 The Geometry of the Transition Diagram of Product-
Form Markov Processes

Consider the closed queueing network in Figure 2.2. The state of the network is
described by (2,4, k) where i, j and A denote the numbers of customers in queues
1, 2 and 3, respectively. There is only one class of customers. The service time of
a customer is exponentially distributed and each server has a rate pu,, ¢ = 1,2,3.
After departing from server 7, a customer is routed to server j with probability p,,.
Generally, if local balance is satisfied, the probability flux into a state due to the
arrival of a customer equals the probability flux out of this state due to a departure
of the same type of customer. Let us examine a customer arriving at queue 3 and
the corresponding probability flux into state (2,7, k) of the state transition diagram
(Figure 2.3). An arrival to queue 3 could come from queue | or queue 2, two events

corresponding to transitions
(41, 0.k=1) > (4,4, k) and (¢,j+ 1,k —1) — (3,5,k)
and bringing into state (7, 7, &) an amount of flux equal to

(i 4+ Lk = Daprs+ 7(2, 5+ 1,k — 1) pzpaa.
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Figure 2.2: A closed queueing network.
g ] g

>12,0,2 ¢

mria N/ M nips

Figure 2.3: The state transition diagram for the network in Figure 2.2 with N = 1
customers.
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When a customer departs from queue 3 the flux of state (¢.j. &) 1s reduced by the

same amount. Then,

m(i+ Lok = Dmpa+ 74,5+ 1L k= Npapa = 7 (2, 3, k)us. (2.20)

Now this flux is directed towards state (2 + 1, 7, £ — 1) and corresponds to a customer

leaving queue 3 and going to queune 1. Local balance at queue 1 means

W(iaj + ]al‘ - 1)’l2l)ll + W(iajvk)/‘-? = ﬂ(l -+ la.j\ k — l)l‘l (221)

A departure from queue | can either lead to queue 3. where local balance is described

hy equation (2.20). or to queue 2, where local balance implies that

i+ 1, k= Wpra =7w(i,j+ 1 k= s, (2.22)

Following a departure from queue 2 for any number of transitions, would result in one
of the equations (2.20)-(2.22). These three equations define an elementary subgraph
whose geometrie replication reproduces the state transition diagram. Since equations
2.20)-(2.22) are not linearly independent, we can only solve them to derive the
probability of a state with respect to a neighbor state. Such a solution is given in
Figure 2.4. The graph associated with this solution is called a building block or a
cell. The graph derived from the geometric replication of a building block is called a
consistency graph (Figure 2.5). If the following theorem holds, the cousistency graph

can be used to derive that equilibrium distribution [31].

Theorem 2.12 (The consistency condition) A system of local balance equations
is consistent if and only if the product of any circuit of the consistency graph is equal

to one.
Not every circuit has to be checked, as the following theorem shows [31].

Theorem 2.13 The minimum number of independent circuits needed to verify the

consistency condition is given by Betti’s number.
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Figure 2.4: (a) A building block of the state transition diagram in Figure 2.3 and

(b) the subgraph associated with its solution.
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Note that Betti’s number of a connected graph is |E| = [©2] + 1 (the nullity of the
graph) The relationship between cyclic flows in the state transition diagram and

circuits in the queneing network is formally stated in the next theorem [44].

Theorem 2.14 Cousider a Markovian queuecing network with its state described by
the total number of customers in each queue and having a consistent set of local
balance cquations. Then, a circuit of N queues corresponds to a cyclic flow of length

N and a path of N queues corresponds to a cyclic flow of length N + 1.

Wang and Robertazzi conclude that there is an one to one correspondence between
the existence of local balance in the queueing network and the presence of isolated

circulations in the state transition diagram [44].

2.4.2 Derivation of Building Blocks

The general form of the local balance equations associated with an elementary sub-

graph is

®Q =0, (2.23)

where, Q is the transition rate matrix of the graph representing the subgraph and =
is the un-normalized probability distribution of the subgraph vertices with respect to

a reference vertex, say r. Equation (2.23) is equivalent to

Z(;?r(i)q(i,j) =0, J €1,
1€
& (-9, N = Y 7)), 7€,
1€0-{;}
N VPN () B

w(r)=7n(r)

Counsider the state transition graph G = (Q, E) defined by (2.24). Each vertex i €
2 has a probability n(7). The set F is a set of directed edges (7,7) with weights
a(i,j} = q(i,J)/[—=4q(j,J)]. Then, the probability = () of vertex i makes a contribution
of m(7)a(’,)) to the probability m(j) of vertex j. Thus, the graph associated with
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(2.24) is a Mason flow graph [43]. Therefore, the solution of (2.24) can be obtained
by the following method [43].

Let G be the Mason graph associated with a system of lincar equations. Then,

(a) we can remove the self-loop of weight a(k, k) # 1 at verter k simply by mul-
tiplying the weight of every edge incident into k by the factor 1/[l — a(k, k)],

and

(b) we can remove a verter p with no self-loop by doing the following: for all 1 # p

and k # p, add a(k,p)a(p,i) to the weight of the edge (k,1).

A question that naturally arises is whether a self-loop removal is always possible,
Initially, our Mason graph does not contain any self-loops.  After the removal of a
vertex j € Q — {r}, such that a(j,7)a(7,j) # 0 for an i € @ — {r}, the resulting graph
will contain a self-loop of weight a(&,7)a(7,j) on vertex i. Note that, the matrix
A = [a(7,j)], 7,j € Qis a transition rate matrix and remains a transition rate matrix

after a vertex removal. Additionally, a(7,¢) = 1, Vi € §2. Then,

a(j,i)a(i, j) = p(J,)pli,J)

where, p(7,7), 7,7 € Q are the jump chain probabilitics. The Markovian property
implies that the probability of the process moving to state ¢ from state j and then
back to state ¢ is p(j,7)p(z,7). Then, 0 < p(J,7)p(7,J) < 1, hecause of the irreducibility
assumption, and the self-loop removal is possible.

So, it is proved that a unique solution to (2.23) can he obtained by the algorithm
in Figure 2.6. This algorithm is not claimed to be optimal.  The optimization o
replacement with a more efficient algorithm is presently under study.

The consistency graph of the state transition diagram is produced by the geometrie
replication of the building blocks resulting from the above algorithm. To prove that,
simply note that the probability =(z) at any vertex ¢ is always #(7) = w(j)a(y,1),
where j is a vertex adjacent to i. Lazar’s consistency condition [30] is equivalent to

Kolmagorov’s criterion for the consistency graph. Thus the original process, which in
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Definitions

Let G = (R, E) be a weighted directed graph with edge weights a(z, j).
Define N+ (v) = {u|(v,u) € £ Aa(v,u)# 0} and
(v) = {ul(u,v) € E A a(u,v) # 0}.
Input

A Mason flow graph G = (Q, E) with the following properties:
1. It is quasi-strongly connected and the reference vertex is a root.
2. a(z,2) # 1, Vie Q- {r}.
Output
A row vector (a(r,1))ieq-{r) such that =(z) = = (r)a(r, 7).
The Algorithm
Initialization
Ve N*(r);
Ne—=Q-V;
do { remove(V,W);
Ne—0-W;
V—W;
} while (Q # 0);
end;

Main routine
remove(V, W)
W« §;
for each 7 € V do
for each (i,j) € E: a(i,j) # 0 do {
ifjgV)We—Wu{j}
for each & € N~(i) do {
a("”]) A (l(l\,,])/[l - (l(),])],
a(j,j) < 0;
a(k,j) « a(k,j) + a(k,?)a(z, );
}
a(i,j) « 0;
}

return;

Figure 2.6: An algorithm for computing the weights of a building block.



general is not reversible, is equivalent to a reversible one. Therefore, the consistency
graph can be further reduced to a tree which spans the state space and has the

equilibrium distribution of the queuneing network.

Example 2.1 (A Closed Queueing Model of a Multiprocessor Architecture)
Consider the simplified queueing network model of Figure 2.7 (more detailed models
of parallel and multiprocessor architectures are given by Hwang and Briges [12] and
Ajmone Marsan, Balbo, and Conte [1]). Two processors service requests al rates
p1 and py.  Local memory requests have probability a. Global memory requests
are allocated to the appropriate memory by a memory allocator with service rate
A1, A global request is directed to the first or second memory with probability /3
or 1 — f3, respectively. The service rate of each memory is v, 7 = 1,2, Serviced re-
quests can returned to the local processor with probability 4, or directed to a server
with rate A, (representing the users) with probability 1 — 5. Users request processors
1 and 2 with probabilities é and 1 — §, respectively. The general system state is
(ny, ng,n3, n4, 15, n6), where n, is the number in queue ¢, 7 = 1,...,6. An elementary
subgraph of the state transition diagram and the corresponding building block are

given in Figures 2.8 and 2.9, respectively. B
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Figure 2.7: A multiprocessor queuneing model.
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Figure 2.8: A building block of the multiprocessor model in Figure 2.7. The first edge

weight is the transition rate and the second one is the weight defined by equations
(2.24).
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Figure 2.9: The Mason method solution of the building block in Figure 2.8,
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Chapter 3

Characterization of Reversibility

3.1 The Class of Reversible Processes with a Given

State Graph

Let X(1),1 > 0, be a time-homogeneous, stationary, irreducible and aperiodic Markov
process with a countable state-space {1 and transition rates q(i,j), i,j € Q. Assume
that X(#) has an equilibrium probability distribution {#(2), : € }. Irreducibility
implies that #(7) > 0, V7 € Q. Then, if the process is reversible, from the detailed

halance equations we have
q(i,7)>0 & ¢(j.1) >0, 2,j€q. (3.1)

Equation (3.1) is a necessary (but not sufficient) condition for a process to be reversi-
ble. Hence, in order to establish a characterization of reversibility, we need to consider
only the class of processes that satisfy (3.1). Note that, if process X(t) describes an
ergodic subchain of a BOCMP queueing network, (3.1) is equivalent to Lam’s sufficient
condition for product-form solution [28].

Let G, = (Q, E,) be the undirected graph associated with the process. Then,
the process can be fully described by a weighted directed graph, the state transition
graph, G = (), E') defined as follows. Derive E from E, by assigning an arbitrary

orientation to each edge in E,. A directed edge inciden* out of vertex 7 and incident
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into vertex j is denoted by the ordered pair (i, j). For cach edge in F, define a weight

function p(z, j) such that

q(i ) /g5, () € E,
pli.J) =14 qU.)/qli ). if (i) € E, (3.2)
1, ift=).

Notice that G has neither parallel nor anti-parallel edges. Equation (3.1) gnarantees
that, for each pair of adjacent vertices 7 and j, p(i,j) and p(j, i) are positive. The
state transition graph should not be confused with the state transition diagram of a
process. The state transition diagram is a weighted directed graph with adjacency
matrix P, if the process is discrete, or Q, if the process is continnous.

The weight function p(z, j) will help us understand the intuitive ideas that lead
to Characterization Theorem 3.4. One such idea is that Kolmogorov's eriterion is
analogous to Kirchhoff’s voltage law, as shown in Appendix A. The definition of edge

weights allows us to provide an alternative statement of Kolmogorov's eriterion.

Theorem 3.1 (Kolmogorov’s Criterion) A slationary Markouv process, with a stale
transition graph G, s reversiblc if and only if the product of wcights around «very

closed walk i1 = iy — -+ — iy = i in G is one.

Corollary 3.2 A stationary Markov process is reversible if and only if the cquilibroum

distribution satisfies the product-form cquation

o~ h-1

m(ix) = 7(2) H ZMJH = (i) [T p(iyyi541), (3.4)

1=1 J+l’ J) =1
for any walk iy — i, — --- — i} in the state graph G.

Proof

Necessity. Repeated application of the detailed balance equations along the walk
results in equation (3.3).

Sufficiency. From equation (3.3) follows that Kolmogorov’s eriterion is satisfied

for any closed walk. Q.E.D.
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Theorem 3.3 A stationary Markov process, with a state transition graph G, is re-
versible of and only if the product of weights around every fundamental circuit of a

spanning tree T of G is one.

Proof

Necessily. Necessity follows from Theorem 3.1.

Sufficiency. Let w be a closed walk 33 — iy — -+ — 4, = 2447 = ¢ in G. Walk
w defines a new graph G’ = (V/, E'). Notice that G’ is not necessarily a subgraph
of G = (V, E), since G’ may contain parallel edges. The direction of each edge in G’
agrees with the direction of traversal of w. Then, the weight p/(z, 7) of a directed edge

from vertex i to vertex 7, in G' is

p(i,g), il (4,7) € E,
1/pli,]), otherwise.

p(i,J) = (3.4)
By construction, G’ is directed Eulerian and therefore, it is the union of some edge-
disjoint directed civeuits Cy, Cy, ..., C. So, the product of weights around w can be

expressed as

k l
H Plins tagr) = H [ H ,0'(2',].)} . (3.5)

n=1 m=1 | (1))€Cm

A directed circuit of G’ can have leugth at least two. The product around a directed
cirenit of length two is one. Each directed circuit of length greater than two, corre-
sponds 1o a circuit in G and has an orientation that agrees with the direction of the
traversal of w. Every such circuit can be represented by a vector C in the circuit
subspace of G.

A circuit vector (7 can be expressed as a linear combination of the fundamental
circuit vectors i, 7 = 1,...,|E| — ||+ 1, with respect to a spanning tree of G. That

is,
JEI-IR]+1

C= 3 ap, (3.6)

=1
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where,
0, ifgNC=0,
a, = 1, if the orientations of 3, and (" agree, (3.7)
=1, if the orientations of 3, and (7 disagree.

Then,

|E}-|9+1 T
I etii)= 11 [ II P(M‘)} = I, (1)
(

(ra)eC 1=l 1KIED,
where, (7, 7) € C or (4,7) € f, means that circuit (" or f,, respectively, has a non-zero
entry for edge (¢,7).
Thus, the left-hand side of (3.5) is one. Sufficiency now follows from Theoren bl

Q.E.D.

Theorem 3.3 suggests that reversibility can be verified by checking, whether Kol-
mogorov’s criterion is satisfied for each fundamental cirenit of a spanning tree 7T of
G. The number of equations needed is || — [Q] 4+ 1, the nullity of G.

Theorem 3.3 allows us to generate all the reversible processes associated with the
same graph G = (Q, E). Let T be a spanning tree of G. A reversible process can be
derived by assigning |Q] — 1 arbitrary weights p(i,)) to the branches (o, )) of T, The
weights of the chords of 7 can be uniquely identified using Theorem 3.3 That s, if
Cl..) is the fundamental circuit with respect to chord (2, j) and is arbitrarily oriented,

the weight of chord (i,j) is
-1
pli,7) = [ I1 /'(L'-l)] : (3.9)
(ke ;)= (1)

It is assumed that all the subscripts in the above product have the orientation of
the circuit. Now, from Corollary 3.2, we can calculate the equilibrinim probabilities.

There is a unique path P, in 7 from a reference vertex r to every vertex i Then,

7(1) = =(v) H plk, ), (3.10)

(k.)ebr

where the path is traversed towards 7 and 7 (7)is the normalizing constant,



So, we have derived a reversible Markov proress with state transition graph G and
calculated jts equilibrium distribution. Now, we can move to a new process with the
same state graph by assigning an arbitrary positive multiplier £(7) to each vertex 7.
Let

7'(i) = () e(D)w(s), €, (3.11)

where (() is a normalization constant. Define new edge weights p'(z, j), so that

detailed balance is satisfied for each edge of of G. Then,
n'()p'(i,7) =7'(5), (i,j) €T. (3.12)
Since detailed halance is satisfied for the original process, we have

w(@)p'(7,4) = x(G)o(t, 5), (4, 5) €D (3.13)

Thenew chord weights can be chosen to satisfy Kolmogorov's criterion for each funda-
mental circuit of 7. The new equilibrium distribution is {7'(2),: € Q} with G'(€2)™!
being the normalization constant.

The transformation of a process to a new one, with the same associated graph,
can be done with more than one set of multipliers. Thus, different kinds of state
dependencies of the transition rates can be modeled. For example, in a birth-death
process, we can model state dependent birth rates with one set of multipliers {r(z),7 €
2} and state dependent death rates with another set {y(7),7 € 2}. Then, equations

(3.11) and (3.13) become
(1) = () (i )y()n(i), €9, (3.14)

and

(') = x((eGg), (L)€ T. (3.15)

Now, | extend the scope of a state multiplier to a set of states W. Define the state
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multipliers as

(V) = >0, for every state in ¥, (3.16)

where r is the same for every state in V. We call 2 (W), ¥ C Q, the state multiplicr
associated with the set W, or simply the set multiplier +(W). The state multipliers

x(2) are related to the set multipliers through

= J[ «(). (3.17)

{VI¥CAeV)
If we substitute . (2) according to (3.17), equations (3.11), (3.12), and (3.13) are still
valid. Equations (3.11)-(3.15) are also valid when some of the state multipliers are
zero. This corresponds to truncating the state space as shown later in this section.
So, we can generalize the discussion that lead to equations (3.11) (3.15) with the
following theorem. The proof is based on detailed balance, thus making the theorem

self-contained.

Theorem 3.4 (Characterization Theorem) Le* {n(i), ¢+ € Q} be the cquilihrium
distribution of a rcversible Markov process with transition rates q(i, y), 1,5 € 82, W b

a subsct of ) and r(V) = 0 the sct mulliplicr assoceated with the sct W, |f

(i) = H (W), (:3.18)

(YN COAIEY)

the process with transitions rales ¢'(1, ), 1, € §, satisfying

q'(3,)) q(,7) .
(l)———==r — (3.149)
( q'(3:1) (J)(/(J, 7)
is also reversible and ils equilibrium distribution is given by
7'(1) = G'(Q) " e(i)n(e), (:3.20)
where
Sy = r(iymli) (:3.21)

€42
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ts the normalizalion constant.

Proof

The numbers 7'(), » € €1, sum to unity. They also satisfly the detailed balance
equations:

w(i)q(z,5) = =(j)q(j,7)
q¢Gg) a9, g) 9, g)
YIRIETY LW )
q0'(J,17) q(5,7) " q'(j:7) (3.22)
= 7(7)r(j)

& ©'(i)q'(d,7) = 7'(j)q'(5,7)

& w(i)r(z)

Henee, {#'(7), ¢ € 02}, is the equilibrium distribution of a reversible process. Q.E.D.

The next result is a direet consequence of the Characterization Theorem and gives
the constructive means for determining which transition rates are affected when a set

multiplier is applied.

Corollary 3.5 Let (V,§2 — W) be a cut of the stale transition graph G = (2, E) of a

reversible process X(t) and (V) a set multiplier associated with . Then,

( ] (l(isj) p .
——, f1eVAJEN-V,
o .r(\ll)(l((J,?)) / J
ZE;JI)) - .r(\v)z(;.’f.), fieUnieQ-1, (3.23)
il i,' J) \ otherwise.
L q(us 1)

3.1.1 Discussion

Given a set of multipliers {r(¢)]: € Q}, there are infinitely many choices of ¢'(i,)s
that satisfy equation (3.19). Recall that state multipliers are introduced in order to
model state-dependent transition rates and they could be superimposed. In many
cases of practical interest, it sufices to model one state dependency at a time, thus
affecting transition rates in one direction only, and then to superimpose the resulting
multipliers. In this context, it is reasonable to assume that if at least one of r(z) and
xr(j) in (3.19) is non-zero, the fraction ¢'(z, 7)/q¢'(J.?) does not have an indeterminate

form 0/0 or oo/o0. Nevertheless, such forms satisfy reversibility trivially.
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What makes the state multipliers useful as an analytic tool is that they can be used
to modify the state space of any reversible process without removing the reversibility
property. For example, truncating of the state space 2 of a Markov process can be
modeled as follows. Let W be the subset of Q to be truncated. Define (W) = 0.
Then, by Theorem 3.4, #'(i) = 0. Let’s verify this result and see how the transition
rates are affected from the introduction of the state multipliers. From equation (3.19)

we have

~q(1,7) . .
—~— =r(y)———. 16V, j € Q- VY, 3.4
760 = UG J (3.20)

with (), q(7,5) and ¢(7, ) being positive and finite quantities. Sinee x(2) = 0,

equation (3.24) can be satisfied only in two cases:
1. 0 < ¢'(2,7) < 00 and ¢'(j,7) = 0.
2. ¢'(1,7) = o0 and 0 < ¢'(j,7) < oo.

From the global balance equations

7'(7) z q' (71, k) = Z (k) (k,i), €W, (13.25)
keR ke
we can verify that #'(7) is zero in both cases. Furthermore, the jump chain probabil-
ities ¢'(7,2)/ 2 iea ¢'(1, k) are zero in both cases.

In the first case the hehavior of the process is clear.

Now counsider the second case. Since the residency time in state 7 is exponentially
distributed with parameter ¥ ,cq ¢'(7, &), the mean residency time in any state i € W
is zero. Then, ergodicity implies that 7'(Z) = 0. It scems as if a transition to a
non-permissible state is allowed as long as the residency time there is zero. However,
this is not true. The transition rates of the process describing such a quenecing model
are generally proportional to the arrival and service rates. Furthermore, the basie
assumption behind the definition of transition rates is that only one transition is
possible during an infinitesimal time period. Then, if it is assumed that a finite
capacity system is in a boundary state when a new arrival occurs, the probability

that the system moves to a non-permissible state at a finite rate and returns to
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a permissible state infinitely fast is zero. In other words, during equilibrium the
transition from a boundary state to a non-permissible state is blocked an infinite
number of times. So, setting ¢'(z, j) = oo is equivalent to a customer arriving at the
system and immediately departing with no service.

Additionally, the symmetry condition (3.1) is satisfied by the truncated process

for any pair of permissible states.

3.2 Examples

Example 3.1 (A Movable Boundary Model) Consider the following variant of
a well-known traffic access control strategy [26). Two types of traffic arrive at a
service facility at Poisson rates A and w. Their bandwidth requirements are b; = 2
and b, =1 and their service times are exponentially distributed with means 1/ and
/1. The facility has one server dedicated to the narrow-band (b, = 1) customers
and six servers for the wide-band customers. All the servers have the same speed.
Queneing is allowed only for the narrow-band customers. Narrow-band traffic may
spill into unoccupied wide-band servers but it could be preempted by wide-band
traffic if necessary, Figure 3.1. Preempted narrow-band customers wait in queue until
their service can resume. The Markov process for this system is not reversible, Figure
3.2, The reversibility property is destroyed by transitions causing preemption of the
narrow-band traflic.

Since the arrival rate and service requirement of the wide-band traffic cannot be
altered, 1 will try to develop an approximate reversible process by modulating the
arrival rate of the narrow-band traffic. Let’s start with a two dimensional birth-death

process with birth rates A and w, death rates u and v and equilibrium distribution

m(ny,ny) = 7(0,0) (%)’“ (-‘E)nz . (3.26)

Using the Characterization Theorem 3.4 and Corollary 3.5, the departure rates for
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Figure 3.1: A movable boundary model. Wide-hand traffic has preemptive priority
over narrow-band traffic. The modulating function ¢ may be used to reduce the
narrow-band arrival rate if preemption occurs. If ¢(ny, 1) = 1, Vi, ny, the model is
not reversible.

Figure 3.2: The state transition diagram of the movable boundary model. This

process is not reversible.

41




the wide-band traffic can be adjusted to become

q'((ny,mg), (my = Lng)) =mp, 0 < ny <3,

with the set of state multipliers

{:rt(rtl,n2)|x(n|,n2) =—,0<n < 3} .
Then, the state space can be truncated by setting

1, for 0 < ny €3,
y(ni,n,) =

0, otherwise.

A first adjustment for the departure rates of the narrow-band traffic is

nyr, for 0 <n, <7
q’(("h"l),("hﬂz -1)) = ’ ,

Tv, forny>T,

which yields the multipliers

1
—_, for 0 <n, <7,
z(nm,ny) = 712!1
W’ fOT ny > 7.

But for 2ny + ny > 7 we can only have

¢ ((ryym), (y,my — 1)) = (7= 2ny )

and we cannot use the multipliers z(ny,n;) in this region for adjusting the narrow-

band departure rates. Applying the Characterization Theorem 3.4, for 2ny + ny > 7,
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Figure 3.3: The state transition diagram of the modulated-arrival model. This process
is reversible.

we get
q'((ny,ng — 1), (nyng))  — z(nyne) w
(T—=2m)v z(nyyny— 1) v
7T—2n
’ L—————l—zw, for2ny +n,>7TAn, <1,
& ¢'((n,ny —1),(n,ny)) = (7 _"'énl) | i o
-—-——_f——-—-w, for2ny +n,>TAn, .- 7.

The resulting reversible process is shown in Figure 3.3, Its equilibrinm distribution is

( 1 A n n;
7(0,0)— ,(—) (5)", oo
nying! \ v

'(n,ny) =3 1 M ey -
) T (0,())'—————-7“!7!7n2_7 ; " , for0< ny <3An, -7,

L 0, otherwise,

IA

:;/\()§7'Zi7\

where 7'(0,0) is determined by the normalizing condition 3¢, ..,y (1) = 1. A

Example 3.2 (A Load Balancing Queueing Discipline) In this example, I show
how set multipliers can be used to approximate a non-reversible process with a 1e-
versible one.

Two types of traffic with Poisson rates A and w and service requirements g and

v arrive at two infinite length queues, each queue being dedicated 1o one type of
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Figure 3.4: A load baiancing multi-server facility. The number of servers corresponds
to the desired load. In case of imbalance the spare server is activated.

traffic only. The queues are serviced by a multi-server facility, which allocates a fixed
number of servers, s and sy, to each type. Let ny and n, be the number in the system
for the two types. When queneing begins the facility tries to maintain the population
ratio of the two types at s;/s;. For this purpose, the facility maintains a number of
spare servers which are used to remedy any imbalance.

Figure 3.4 depicts such a system, where the desired population ratio is 2/3 and
there is one spare. When an imbalance occurs, the spare is allocated to the queue that
canses this imbalance. As shown in Figure 3.5, the occupancy process of this system
is not reversible. The meshes that do not satisfy Kolmogorov's criterion are the ones
containing the almost load-balanced states These meshes lie on the line 3n; = 2n,,
m > 2Any > 3, and their common characteristic is that they contain pairs of
neighboring states with opposite imbalances. These states cause abrupt changes in
the transition rates. For example, the service rates for type 2 traffic at states (4,5)
and (3,5) are 3v and 4», respectively. Such changes increase the probability that the
process circulates in oue direction while do not affect the probability of circulation in
the other direction.

Next, 1 develop an approximation which “smooths out” the abrupt changes in
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du

Figure 3.5: The state transition diagram of the queneing model in Figure 3.4, Kol-
mogorov’s criterion is not satisfied only in the marked meshes, namely the meshes on
the line 3n; = 2ny, ny 2 2 A0y, > 3.




the transition rates by balancing the probability flux around each mesh. Consider a
reversible system, e.g. a two-dimensional birth-death process with birth rates A and
w and death rates g and v and equilibrium distribution

7 (n1,n3) = 7(0,0) (5) (3) (3.27)

1 v

I shall adjust the transition rates of this process, by overlaying sets of multipliers, so
that the resulting reversible process approximates the one in Figure 3.5.

For 0 < ny <2 there is no queueing for type 1. Similarly, for 0 < ny < 3 there is
no quencing for type 2. So, the first obvious adjustment is to speed np the departure

rates in these regions, that is

¢'((m,n2), (ny — 1,n,)) = nmyp, for 0 < my <2,

' ((m,n2), (myymy — 1)) = nav, for 0 < ny < 3.

Then, the Characterization Theorem 3.4 and Corollary 3.5 yield the sets of multipliers

1 1
{.r(n.,7)2)|.r(n|,nz) = 0<m < 2} , {y(n],712)|y(n,,nz) == 0<n, < 3}.
1: 2

Now, I adjust the departure rates, in the regions of queueing for either types, to

become
g ((n1yn2), (1y = 1,ny)) =3u, for ng > 2,

J'((nyamy), (ny,ny— 1)) = 4v, for ny > 3.

These rates are achieved by the sets of multipliers

1

1
{11(11,,712)[14(711,112) = Jigase ™ > 2} , {v(m,ng)lv(n],nz) = gt 2 > .3}

The adjusted process is shown in Figure 3.6. Observe that for n; > 2 An, > 3, the
transition rates of the process obtained so far, cannot be met by our load balancing

system. The transition rates imply that our system has seven servers. A reduction
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Figure 3.6: A first (reversible) approximation of the non reversible process in Figue

3.5.
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in the service rates is necessary by a factor ¢,(ny,n;), i = 1,2, so that
3y (g, 10) + dda(ny,my) = 6, Vg, nag:ng > 2An > 3.

By the Characterization Theorem 3.4, the reduction factors ¢,(ny,n2), ¢ = 1,2, can

be expressed as

2(m — 1,ny)

z(ny,ny)

z(ny,ny— 1)

27 a) =
) ¢2( lh”l) :(71«],"2)

¢1(ny,12) =
Thus, the equations

13- . _ . -
13z(m — Ling) +4z(ny,ny — 1)], for my >2An, >3, .
z(ny,ny) = (3.28)
1, otherwise,
define another set of multipliers. Equation (3.28) represents work conservation and
is examined, in a more general form, in Chapter 4.
The process obtained so far corresponds to a system that allows the spare server
to be shared when both types of traffic are queued and uses it as before in any other

case. This system is reversible, Figure 3.7, and its equilibrium distribution is

¢ ny ny
7'(0,0) ! (i) (i) , for0 <m <2A0<ny; <3,
jt

1y ! v

_ -~ M. A n 12
m'(ny,my) =4 7'(0,0) (1, 12) (_) (E) , forny >2An, >3,

13 =34lgna—4 | v

0, otherwise,

\

where 7(0,0) is obtained from the normalizing condition 3=, ..,y ™ (71, n2) = 1.

Comment. Depending on which region we want our approximation to be better,
we can introduce another set of multipliers to adjust the rates locally. If, for example,
we are interested in the region near the line 3n; = 2n; and it is imperative that type

2 gets only three servers for 3n; > 2n, and type 1 gets only two servers for 3n; < 2n,,



Figure 3.7: The state transition diagram of the approximation system. This process
is reversible.
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we may set,

636, .. 1380 1380 4908
2(5.6) = ——— " 2(5.7) = : .
3179 © (40 =359 # 5 7) = 575 3. 1403

Z'(4,6) =

and

162 454
— 2'(4,7) = e
273 (4,7) 2.195

2'(3,6) =

In other words, we define another boundary affecting the behavior of the process
along the line 3ny = 2n,. When such boundaries are defined, we may have to check
whether the physical constraints of our system are satisfied. Formal methods for the
development of approximations based on the physical constraints of a system, as well
as analytical and software tools for their solution and evaluation of errors, constitute

an interesting research topic. Unfortunately, they are beyond the scope of this thesis.



Chapter 4

Extension of the Shared Resource

Model

The shared-resource (SR) model presented by Kanfman [17] possesses a product-
form solution for the equilibrium distribution of the population of the system. This
product-form admits a simple one-dimensional recursion for the normalization con-
stant and the blocking probabilities under the complete-sharing policy. 1t is this
feature of the SR model which makes it particularly attractive when state-space ex
plosion is an issue.

This feature is further exploited by extending the model through the use of state-
dependent service rates to allow sharing of the resource hetween customers that wonld
otherwise be blocked and customers already in service. The resulting model is called
the extended shared-resource (ESR) model. The analysis of the ESR model results in
the equilibrium distributions and the probability generating functions for the popula
tion and occupancy of the system. Even though these results are in elosed from, it is
the computation of the normalization constant that makes the problem intractable,
This issue is resolved by a one-dimensional recursion for the occupancy distribution
with the same computational requirements as Kaufman’s recursion. Additionally, 1
present a recursive algorithm for the moments of the population and discuss its space
requirements. Finally, I show the behavior of the ESR model by taking limiting cases

for the population, studying several examples and comparing my results with those



of similar existing models.

4.1 The Shared-Resource (SR) Model

Kaufman considered a shared resource of finite capacity S (Figure 4.1), where the S
units of the resource are shared by customers with different spatial and/or temporal

requirements according to a resource sharing policy. Customers are derived from

Shared Resource (.5 servers)

[
(

Arrival Streams

type D [ [} L1 L]
type 2 [1] [(1J [TJ

A

type r [TTT] (I ———— (11 (D (7T [T

lost lost admitted admitted

GEEEEEED)

type ]I T 1) [LLLT]

Figure 1.1: The shared-resource model. Type r customers arrive at a rate A, require
b, miits of the resource and have a random service requirement with mean p !,

r=12,..., K

a Poisson process of stationary rate A. There are R customer types. An arriving
customer is of type r with probabilitv A /A, » = 1,2,...,R. Type r customers
require b, units of the resource and have a random service requirement 7. with mean
1/pr. The distribution of 7, may have an arbitrary rational Laplace transform.

A customer’s spatial requirement b, can be satisfied if and only if at least b,
units of the resource are available upon arrival. An arriving customer whose spatial
requirement can be satisfied is admitted into the syster: and allocated any b, units

available. Otherwise, the customer is blocked and lost. Thus the model assumes, for



instance, that a message can be distributed in non-contiguous storage units or that
a reshuffling is possible and permissible without a time penalty. The performance
measures of interest in this model are the blocking probabilities for customers with
spatial requirements b,, r = 1,2,... R,

The resource may be shared by customers according to an arbitrary resource-
sharing policy in the sense that the policy may give rise to an arbitrary conneeted
set of allowable states. This follows from Lam’s symmetry condition [28] on the loss
and trigger functions for networks with population size constraints.

When all residency times are exponentially distributed, the SR model is a multi

dimensional birth-death process whose state

n(-l_if(nl,nz....,rm) (1.1)

is the population vector of the system; n, is the number of type » eustomers in the
system, r = 1,2,...,R.

Depending on the resource-sharing policy in effect; a customer may be blocked
from departing when the customer’s residency time expires. If this happens, then it
is assumed that the customer commences another residency-time realization from the
same exponential distribution or, equivalently, that the customer’s departure at the
end of his first residency-time realization triggers the immediate injection of another
type r customer into the system. This {riggercd disposition assumption allows us to
view the SR model as a single-node queneing network with population-size constraints
[28] and hence to assert that the model possesses the insensitivity property of being
valid for all residency-time distributions with a rational Laplace transform,

The equilibrium distribution is

H pn,.
r(n) = G(N)~! H s (4.2)

oy !

where p. = A /p,, 1 is the state space (defined by the resouree sharing poliey) and



(/(§2) is the normalization constant

Ny

Gy =Y ﬁ ey (4.3)

|
nefl r=1 e

In the case of complete sharing policy, the number of busy servers s is equal to the

occupancy of the system J, i.e.

R
s = J = anb,,

r=1

and its distribution «(s) is given by the one-dimensional recursion
LAl
sa(s)=Y bpral(s—b), j=1,2...,SAalk)=0,Vk <0, (4.4)
r=1

This recursion can be casily computed and yields the normalization constant aud

blocking probabilities P, for type r customers:

G = a(0), (4.5)
br—
b, = Z]a(ﬁ'—i). (4.6)

4.2 The Extended Shared-Resource (ESR) Model

The following notation is needed.

b Y (by,0s,...,bp),

R
d
n-b & Zn,br.

r=1

Now, I give a simple and intuitive extension of the SR model. The main idea is
to allow processor-sharing for customers that would be blocked in Kaufman's model

(Figure 4.2). Then, the set of permissible states is

Q={nn>0r=1,...,R}. (4.7)



Shared Resource (. servers)
O]
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Arrival Streams (J
type 1 [T17] [TT] " Q
type 2 [T] [1] (1] Ya)
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wee » [TTT] (I T——>—= [0 [0 (0 0.0 \@/

all the arrivals
Ar share the resource

T

type RETITT) LD

Figure 4.2: The extended shared-resource model.

Since processor-sharing is equivalent to time sharing when the qnantum of time goes
to zero, our extension is a reasonable one and it is based on the work conserving,
constraint introduced next. Qur use of work conservation is first explained by means

of two example models.

Example 4.1 Consider a message transmission system with S output channels. Mes
sages of R different types arrive according to a Poisson process with total rate Ao An
arriving message is of type r, r = 1,2,..., R, with probability ¢,. A type r message
occupies b, channels for a time period 7, drawn from a probability distribution with
rational Laplace transform and mean g,. The maximum number of packets that can
be transmitted at the same time is S. Assume that the system is in state mowith
n-b < S and a new message of type k arrives. If nf-b > S, the new message is
not blocked but it shares the channels with the messages already in serviee. This
can be done by reducing the number of channels allocated 1o a type r message to
bde(n) < by, v =1,2,..., R The transmission rate for type r messages slows down

to prdr(n) < ;. B

Example 4.2 A time-sharing transmission system exhibits similar model hehavior.

Messages of R different types arrive at a Poisson rate A, Messages of type 7 ocenpy

N
iy |




the transmitter for b, time units during each transmission cycle. The time 7, required
to transmit a message of type r has a probability distribution with rational Laplace
transform and mean g,. Let S be the duration of a transmission cycle. Under
increased load or noise in the communication channel, the system can reach a state
n with n - b > 5. The transmitter devotes a time b,¢,(n) < b, to each message of
type » during each eycle, until the system reaches a state n such that n -+ < S. The
reduction of the time devoted to a type of messages can be implemented by reducing
the size of the message packets dynamically (i.e. according to the load). Then, the

average time required to transmit a message is increased to [u,¢-(n)]™'. B

Whenever i+ b > .S, the resource requirement of type r customers is reduced by a
positive factor ¢,.(n) and their service rate is decelerated by the same factor ¢.(n)
so that, Zf:, 1.0, (n) = S resource units are occupied. The reduction factor ¢.(m)
can be modeled using a set {r(n)|n € Q} of state multipliers. The above discussion
implies that the state multipliers should be defined so that, the transition rates from
state 7 to state m (arrival rates) remain unaffected and the transition rates from
stale i to state m; (service rates) are reduced by a factor ¢.(n). According to

theorem 3.4, we ' ave

((mn;) _ x(ng) g(n.ng)
q'(ftf:,(n; r((n_)) q(n;.n)
nepi g (n)  x(ng)nep, .
A B ;r((n)) Ar (4.8)
I
=~ qf),(n) = T(-T—L)—'

Then, the set {r(n)|n € Q} of state multipliers that satisfies the work conserving
constraint ZTR___, n.b.¢.(n) = S,ifn b > S, isunique and can be computed according

to the multidimensional recursion

1, fn-b<SAn>0,
) 1 & .
r(n)¥ S Lonbee(ny), ifn-b>SAn20, (4.9)
o=t
0. otherwise.
x4



The function r(m) acts as a service rate slowing function, attenuating the service
rate of all customers with increasing occupancy. Using these rates, the global balanee

equations for the equilibrium distribution are

n)z [)\ +nr;tr ] Z/\ (n +V(n, Dy ——= ) r(nt).  (110)

r(n
r=1 ( l' )
4.2.1 The Distribution of the Population

Since the process is reversible, the detailed balance equations

g(n,n7)n(n) = gy, n)r(n) (1.11)
are satisfied. Thus,
ity S ) = A (n)
r(n)
& nr(n)r(n) =pr(n)r(n), (-1.12)

where p, = A /p,. The solution is

(M—MUNnHTP (1.13)
where the normalization constant is given hy
R /)u,
Gy = r(n) ] —. (4.11)
nefl r=1 ”'!

Notice that the equilibrium distribution can be directly derived from the equilibrinm
distribution of an infinite server (type 3 BCMP node [2]) with the use of theoremn 3.4

The product-form equation (4.13), although appealing, suffers from the fact that
r(n) is not in product-form. Thus, at the outset, it looks as if the entire state space
must be enumerated in order to compute the normalization constant G/(€2). However,
this is not the case, as it is demonstrated next.

Multiplying the detailed balance equations (4.12) by b, and summing over r, we

Yy




obtain

Zb,n,r(n yr(n) = Zb,p, n;). (4.15)

When nesatisfies i« b < 8 (i.e. o(n]) = r(n) = 1), equation (4.15) reduces to

R R
Y ber(n) = Y bepm(ny),
r=1 r=1

= (4.16)
& (n.b)r(n) = > bpr(n;), n-b<s.
r=1
When n satisfies n+ b > 5 (i.e. 2(n) = ZR ben,r(n;)), equation (4.15) becomes
R
Sr(n)r(n) = .E(n)Zbrp,n'(n
r=1 (4.17)

& St(n) = f:b,pﬂr(n‘)

Therefore, the following theorem is proved.

Theorem 4.1 The equilibrium distribution m(n) of the populalion in the ESR model

sahisfies the multidimensional recursion

w(n) = b, )- 4.18

(n) mm{n min{n - b, 5} = Z P (4.18)

In Appendix B a solution for «(n) is given based on the boundary defined by 5. This
solution yields the equilibrium distribution

Ny

Q -1 H pr
71'(1'1) = R R Ny —My pn'
(! E {Z (ny = m, ]' II ( ) T . ifn.b>.>5,

mez+ Lo e W, —m, )
(4.19)

fnb<>s,

where the normalization constant is

R br Ny =1y P”r
=y ¥ Zn,——m 'TI < . . (4.20)

| —_ |
nelmet Lo ] ol m ! (n, —m,)!

o |
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and the boundary is

bln-\‘_‘
I= |J {mlm-b=25-1) (1.21)
1=0
The set
bm.u
It=J{mm-b=15+1i} (1.22)
1=

contains the immediate neighbors of 7 in the direction of increasing population. 1t is
only used for technical purposes, as explained in Appendix B.

Equations (4.18), (4.19) and (1.20) are of limited practical value since their use
for the computation of the normalization constant would have significant time and
space requirements. As Kaufman [17] shows, the Buzen-type recursion

rJ/br] {

Gir)= Y. Bl'l(.'(j—lb,,r—l). r= 1,2 Ry =01, S,
=0 ‘

fa/011 pl
G, )= Y = J=0,1.....8,

‘1
= !

which applies to his model, requires that the elements of a S x B matrix are computed
recursively column by column. In the extended model, the problem can only worsen.
However, as we will see later, the ESR model cannot only he truncated, bhut also the
normalization constant aund the blocking probabilities can be computed by a simple

one-dimensional recursion.

4.2.2 The Occupancy Distribution

The occupancy distribution for the ESR model is defined as

q(7) = P{miby+mb,+ -+ npby = 4}
= Y r(n) (4.23)
{njn b=}
The terms n,b,, r = 1,2,..., K, arc random variables representing the number of

resource units occupied by customers of type . Then, the number of servers allocated



to eustomers follows the distribution

y Pin-b=2s) ifs< S,
de 9
a(s) S Pin-b=j}, ifs=6, (4.24)
{2b25}
q(s) if s <9,
- S q(j), ifs=S. (4.25)
{21225}

Note that Kaufman’s definition of occupancy is different from the one given here
and corresponds to the allocation distribution a(s). Qur definition of occupancy
is consistent with the BCMP framework (section 2.3) and represents the space, in
bandwidth units, occupied by the customers in the system.

Let’s sum the multidimensional recursion (4.18) for w(n) over the set of states

{n|n-b=)}. Then,

R
> min{n-:b Sir(n) = Yo Y obepem(n

n b= b= }r=1 oy
{n|n s} {';tln 7} (42())
& min{y, 5} Z m(n) = Zb,p, Z m(n; ).
{njn-b=} r=1 {nln-b=3}

The quantity ¥ g b=, T(12) is. by definition, the probability ¢(j). A little manipu-

lation shows

Y rm)= ¥ a(n)=qli-b). (4.27)

{nn b=} {n|n-b=7~-br}
Therefore, the multidimensional recursion (4.18) leads to a simple one-dimensional

recursion for the occupancy distribation ¢(J), as stated in the next theorem.

Theorem 4.2 The occupancy distribution of the ESR model satisfies the one-dimensional
recursion
min{j, S}q(J Z b p-q(j — b)), (4.28)

where ¢(0) = 7(0).

Equation (1.28) is a natural extension of Kaufman's recursion.
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4.3 Blocking in the ESR Model

Next, the state-spacc of the ESR model is truncated to permit processor-sharing, up
to a certain occupancy. Again, a complete sharing poliey is assumed: a customer
is blocked and lost if and only if its arrival increases the occupaney above a limit

T < 0o. Then, the set of permissible states becomes
={nl0<n-b<TAn>0}. (1.29)

The following results are valid for T'> §.

The state space 2 can be truncated to ' by introducing the state multipliers

L] L ifnb<TAR>o0.

(-1.:30)
0, otherwise,
Then, the equilibrium distribution of the blocking model is piven by
( R
Z;,p, (n7), fn-b<SAR>0,

n =

rn)={ 1< o " (1.381)

§Zb,pr( n’), ifS<n:b<TAn>0, :

-
i

ol

otherwise.

f
-

The occupancy distribution can be derived as in the previous section. The resalt is

( 1 i
= bepeqli = be), il <8,
J r=1
S 1 R ' e
107) = | G2 by =), (N <G 2T, (1.32)
L0, otherwise,

with ¢(0) = 7(0). The normalization constant can be casily derived from

G =q(0)7 = ¢0), (4.133)

til



where r B
1
;Ebrﬂr(/’(j -b), ifj<5,
r=1
] K .
¢()) =41 ", o_ G T (4.34)
S ;hrﬂr(/ ()=b), ifS<j<T,

0, otherwise,

\

and ¢'(0) = 1.
The blocking probability £, is the probability that a type » arrival is blocked.

Then,
P= 3 a(n) (4.35)
{n|n-b>T-b,}

Sincer(n) = 0forn - b > T, it suffices to sum the equilibrium probabilities over the

set,

br—1

Il —b,<n-b<T} = J{nn-b=T-1i}.
1=0

Then, equation (4.35) becomes
|

by —1 by—1
Pyo=3 Y wm)= > qT—1i). (4.36)

1=0 {njn b=T~1}

4.4 Performance Measures
Theorem 4.3 provides the probability generating function 77(z) for n(n), where

def ny n n v
I(z)= 2311322"‘31{"77(71) (4.37)

nesl

and




Theorem 4.3 The probability generating function of the cquilibrium population dis-
tribution {m(n).,n € Q} is

R
Sllos(2) = D 2bepr (Moo, (2) + Hrop, 41.0(2))
(z) = =1 - . (-1.38)
S = Z 3rbr/)r
r=1
where
Moo(2)¥ 3 =g zjim(n). (-1.130)

{nju<n-b<v}
The proof is given in Appendix C.

The probability generating function @Q(z) of ¢(j) has a similar form.

Theorem 4.4 The probab:lity generating function of the cquilibrivm occupaneyy dis-
tribution {q(j), ] =0,1,2,....T} is

R
SQo.s(z) = 3 =" bepr [Qusat (2) + Qo 41.7(2)]
Q=) = = i , (1.40)
S — Z ot b, pr
r=1
where
Qua(2)E Y =q())- (1.41)
I=u

The proof is given in Appendix (.

The form of the probability generating functions is not convenient for computing
the moments of the population or the occupancy. The reasons are explained in detail
in Appendix C. Fortunately, the joint mor nts of the population can be efficiently

computed from the recursion given next.

Theorem 4.5 For k = (ky,ky..., kg), lc!

ek, /) Ebnke b lG), 0SS Tk =00, r= 1200 0,
(4.42)
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and

ke (0= (e Ky onke £ kg, k). (4.43)
Then,
] K
—Z brpr(l(j - br)a lfO S ] S SAk = 07
[
/’rZ (Tl )E(k_(kr_l)ﬁj"'br)’ ifOSjSS/\k,-;éO,
=0

e(k,)) = < R ke—1 .
T ss e [dkd )+ 3 ( ) ~ (ke =D —b,)] ,
=l

f§<y<T,

0, ifj<0or)>T,

(4.44)

where €(0,)) = q).

Proof
For k, = 0, forall » = 1,2, ..., R, the result follows from (4.42) and (4.32).
Without loss of generality. let’s assume that &, #0 for r=1,2....,7. 7 < R, and
by = Oforr =i+1,7+42,...,R. Ishall prove equation (4.44) in the dimensions of
nonzero k.

First, notice that

i

S myinbe ok Plain - b = j}q())

{n|rn b=}

= 3 af'nkanbrn(n) (4.45)

{n|n-b=y}

E{nyrnl - nlk)ile())

and

nf =, -1+ = Ek: (t) (n, — 1), (4.46)

{=0

For b, <j < 8, let’'s multiply the detailed balance equations

n,r(n) = pw(n;) (4.47)
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k k 1k A N
by oyt etk ot and sumoover {njn - b = g} Then,

k k —_ ‘\ kv k' Al k'- N
Z ny' -oong'w(n) =p, Z ny' coent IR AR A TR TCT R N
{n|n-b=7} {n|n b=}

Substituting equations (4.45) and (-L46) into (LA8) gives

ke—1
) : k. -1
e(k,j) = ﬂrE( , ) Skl o = D k()

=0 {n|nb=}

e k-
- A i,
pr ( ’ l ) > e g (n)

=0 {njn-b=;-b,}
ket (=1 .
= pr 12 ( | )e(k—-(k,—l),.j) (11
=0

For j <0orj>T,q(y) =0 and the result follows,

For § < j < T, substituting the recursion 7(n) = 1 Z,_ yhopem(m; ), into (1L1D)

gives
| 4
elk,y) = E nyng "'711"'—5-, bepe(2])
{n|n-b=;} Flor=1
l 1
=3 Eb'/’r Z niteee (= 1+ DA b))
for=d {njn-b=,}
+ Z b.py Z nf‘ ---nf"?r(n,‘)
S r=1+1 {n|rn-b=,}
1.46) 1 & ke k,
M LS () B whentn < it bt
o= = {njn b=,}
+q Z > b .. b (n])
r=it1 (n[n b=3}

ky—1
=y
S 2720 ol (i BB SRR R

=0 {n|n b=;-b}

+gaT/’T > nf ki (n)

r=1 {njn-b=;-b,}
ky—1 k
= gzb’pfz(I)E(km(k'_l)”‘}“h')
- or=1 =0



R
+‘—i]§brﬂr€(k-j "br) (450)
The proof is now complete. Q.E.D.

The joint moments of 1., 1= 1,2,..., K, are
. T
E{nb - onj) =Ze(k,j). (4.51)
1=0

Let’s derive some special cases. For k = (1),. after some algebraic manipulation,

cquations (41.51) and (4.41) give the average nuinber for type r:

S5-1
E{n} = p,+———”1———{ S (- S)g) + b (P, = Py)

R
AS' - E ])zﬂ. J=S_br+1
1=1
R T 1
+ Y b D lg()— =) )]} (4.52)
1=1 g=T=-b+1 Pr
wliere
S—by
P, =1- q(J) (1.53)
=0

is the probability that a type » art val has to share the resource units (i.e. rednce its
bandwidth). For k = (2),. the result is the second moment of the population for type

r:

)T S—l . . .s‘—] . .
E{ni} = l’r(]+/'r)+_/—,r—{ Yo =S+ X (= 8))

S - bip, 7= bet 1=5-2br41
%
§—-2b, T
ool = B) £ 20 [E{nr}—p,qu—- )3 5((1)nj)]
=0 3=T—b+1

R T 1
F3 b Y LN+ p)glh) - —f((2)r,j)]} : (+.54)
=1

1=T=b+1 Pr

Implementation Issues. [ close this section by presenting an algorithm and dis-

cussing the space requirements for the computation of the occupancy distribution.

66



the normalization constant. the moments and the blocking probabilities.

The algorithm is given in Figures 4.3 and 4.4. The values of g(3) and - (k. )) can
be computed in the same iteration as the algorithm loops from 3 = 0 to j = 1", For
the computation of ¢(j) the algorithm needs the by, most recently computed values,

where byax = max{b,, r = 1,2,..., R}. For the computation of (ko)

o If 0 < j < 8= byax, the algorithm needs the &, valnes of the terms « (&
(ky =Dy = b)), I=0,100 00 ks, for cach = 1.2, .. R, These values require

(bmax + )&, memory positions.
o If S < j < T, the algorithm needs the b, most recently compnted values
o 3] )

of e(k.j) and all the values s(k',) — b)), for cach r = 1.2, . R, such that

ko< ke = 1.

IN

-~

So starting from e(u,J) at w = 0 and incrementing v until w = k., the maximum

space requirement is (byax + 1) [T, (A, + 1), Additionally they are needed:

e One variable to accumulate the sum 35_,¢'()'). for j = 0,1, T, (the no

malization constant).

e One variable to accumulate the sum 370, <(k, '), for j = 0,1.....T,

e R variables to accumulate the sums 30y 0ig()'), g = 1= b 4 10T,

r=1,2...., R (the blocking probabilities).

It should be noted that even though the moment generating recursion is multidimen
sional, its space requirement is constant for given bandwidth requitements. In most
cases of practical interest it suffices to compute only the variance for the population
of a single customer type or the covariance for populations of different types. In those
cases the worst-case space-requirement, is (')(2”/),,,,,,)

The time complexity grows linearly with the oceupancy. 'The issue of time opti

mization is not addressed in this thesis.



Input
The parameters of the extended shared resource model:
o  The bandwidth requirement b, and load p, = -}‘f’-
for type r customers, r = 1,2.... K.

e A vutur k= (k,,l.z ..... k) defining the joint moment
E{ntinbe . onbi to be computed.
Output
e  The normalization (unst ant (.
o The joint moment E(k) = E{nfrnkz .. bk},

e The blocking pmlmhl]ltles P, for type
r customers, r = 1,2,..., K.

The Algorithm
b — max{by,by,..., b} + 1;
(/' —0; E(k) « 0; £(0,0) = 1;
for ) — 0to .S do {
u — 0;
e(u, jmodb) « }}:f:] bepre(u, (j — b, )modb);
(; — (i + e(u, yjmodb),
for » — | to R do {
u— ut;
while (incr(u,r, k)) do {
e(u, jimodb) «— p, 37! (“’I_I) e(u - (u, — ), (j — by )modb);
}

(k) « E(R) + ek, ymodd);

e ——

}
for j — S+ 1to 7 do {
u «— 0;
e(w, yjmodd) — %Zf:] b.p.e(w, (j — b, )modd);
(' — G+ e(u, ymodb);
while (incr(u, 1,k)) do {

e(u, jmodb) — L YH b p[e(u. jmodb)

Y (Ur l) ..(u = (ur = U)ry (j = b )modbd)];

}
E(k) — E(k) + (k. ymodb);
}
E(k) — GTVEk);
for r < 1 to K do {
Py, — G (0, (T = d)modb):
}

L

Figure 1.3: An algorithm for the computation of performance measures for the ex-
tended shared resource model. The function iner() is defined in Figure 4.4,
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Input
Two vectors w = (uy g, .. cug) and k= (A ka0 kg
and a subscript o, | <+ < K.
Effect
If the occupancy J is j <8 — byay, 1t increments u, by 1;
this causes a lexicographic increase in w.
Otherwise, it increments i, in modulo &, artthmetic and
passes the quotient to k.
It returns true if an increment is possible and false otherwise.

function incr(u. 7, k):boolean
Let » be the subscript of the first nonzero element of k;
if (# < ror: > R) return(false);
Inerement u, lericographically,
if (<5~ I’max) {
if (u, = k,) return(false);
else u, « u, + 1:;
return(true);
}
or, increment u, in modulo k, arithmetic,
else if (v, = &, and incer(u, r+ 1,k); {
u, — (u, + I)mod(k, + 1)
return(true);
}
or, fail (u, cunnot be incremented).
return(false;;
return,

-

Figure 4.4: The function incrementing the veetor associated with the joint moment
to be computed.
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4.5 The Behavior of the ESR Model

4.5.1 Special Cases

Next, I show how the ESR model can reduce to some well-known queueing disciplines.

The results can be verified from Lavenberg [29).

M/(/]S with Processor-Sharing and Loss

For b, = 1, r = 1,2,..., i, the boundary defined by the capacity of the resource
bhecomes

T ={mlm, +nmy+--+mp=5}

Let o= ' =y "re Then, forn > 5.

(n—S)

r(n) = _ET:T > ﬁ(rn)

{m|m,++mp=85}r=1
(n-S) /n
- ‘g'u—.s‘ S’)
!
n! =
= S (4.55)
Then. the population and occupaney distributions are
Ty
(, ) IHPT ifn <8,
r(n) = r=1 7'1, N (4.56)
, nt L
Gy~ Jion=s LT if S<n<T.
¥ i
Gy L ifj <9,
() = J-p ) oS (4.57)
A -1 ' M 1 N 2]
(r(ﬂ) (;,) ';,T, if S < <T,
where p= TR o The normalization constant is
T
GO = Y ql)
a=u
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S=1 Pas e N
B §07+?'(—~—7—)[(?> - (£) ] (1.5%)

The probability of blocking becomes

p) N - SS r T
Po=G(Q) ‘ﬁ (:) : (4.59)

}
_ (:(Q)‘]pr—./—)—l— if j <N,
e((M)r, 1) = pr(J; ,)_‘. ' (1.60)
GG (“) [+ 857G =9) Ty s 1.

Then, the average number in the system, for class r, is

(/)>-"(q+ L~ ) (")T('l'+ | T )

S=1 <) U —r)—\z =5l os

- _ » 5 S S S .

E{n}=pd S+ o SCTRCEY
=0

M/(i/S with Processor-Sharing (Infinite Population)
For T' — oo, the previous results are further simplified to

R,

O - P o :
G()! — itn < S,
m(n) = oot Eoee
(I(Q) WEF, TRTI

Sp -~

, -7
G(Q) -+ m»

Il

5

Sy
SUS — p)a(Q2) '

E{n.} = p, |1+

The probability of quencing is equal to the probability 12, that new arrivals will initiate
} y ! g | ) Y

processor-sharing. Then, for R =1,

- o (St
P, = Z‘w(n) = (;(12) TR

n=>s

(Erlang C Formmula).
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M/(/]S with Loss (The Truncated Infinite Server)
For T' = 5, the results for M/(//S with processor-sharing and loss reduce to

Ny

R
nr(n) = Gy~ I 2

r=1 Ny

s
G = Y ﬂ'
J=0 J‘

p.s‘
[D{Nr} = pPr [] - S—'(m] s

S

P, = (:'(SZ)_IP—,, (Erlang B Formula).
St

4.5.2 The Limiting Behavior as 7' — oo

The ESR model behaves as an infinite server for as long as the occupancy does not
exceed its capacity S and as non-egalitarian processor-sharing when the capacity is
exceeded. Next, I show that, as the population increases, the ESR model behaves
asymptotically as an egalitarian processor-sharing model.

The egalitarian processor-sharing model corresponds to the cases where b, = 1,
r=12,..., or T = {0}, i.e. when the customers share all the available servers.

The first case has already been examined. In the second case,

K R b nr
r(n) = (Z 7),)! H (I,L) .

r=1

Then, for either case, the fraction of the bandwidth requirement allocated to type »

customers is
r(n;) S
(f) (’n) = = .
' r(n) (E;‘;, nq) b,

Now consider the behavior of the ESR model far from the sharing bandwidth. For

> m,, r=12..., K,

-1y

(n, —m: ! = nn;

N, n;m (4.62)
and ( ) s .

m, m,!

¢

-1
[



Then,

K IR (1.6:3)
and r(n;) = an —1)1— (—q> d(m)
g=1 b‘l q=1 S
where .
R ”Zq=lm" R nMa 0\ T
i =% (T, I (%) (16
meIl+ \g=1 q=1 7”‘)' S
The reduction factor, for type r customers, becomes
r(n; N (n,
d)r('n) = ( )) 51 T . .)( ! ) (1.“5)
FCII T VAT
Since n, > m,, r=1.2,..., K, ¥n;) = dn). Thus, we finally get
S
PN R — (1.66)

R :
( g1 n,,) b,

So, in the vicinity of the sharing boundary Z, the ESR model behaves accovding, to
its original specification, i.c. non-egalitarian service. This behavior is delined by the
irreguladties in the shape of the boundary. As we move far ftom 7, i.e. under heavy
loading conditions, the effect of these irregularities diminishes and the system behaves

as if Z is a single point in the origin of Z¥.

4.6 The ESR Model in the BCMP Framework

The next theorem shows that the ESR model can be included in the BCMP framework
and satisfies the criteria for network product-form solution. The proof is hased on

the Product-Form Theorem (Section 2.3, Theorem 2.9).

Theorem 4.6 The queucing discipline of the ESR model is staleon balancing and 1ts

characteristic function s given by

yv(n) :.r(n)H—I—', Vn € (1. (4.67)



Proof

The parameters of the discipline are

y(i|n,r) = —-]—, Eivr|n) = ¢ (n) and Z(r|n) = n.é.(n), VR € QAT =1,2,...,n,.

lr

If the characteristic function exists it must satisfy the equation

x(ng) _ s(n;)
x(n) 7

and, therefore, should have the form
\(n) = f(n)r(n),

where fis a function of the occnpancy n. Then,

1 AT
fmy=—f(n;)=1]

1y r=1

n,!

and equation (1.67) follows. Since the discipline also satisfies the definition of station

balancing, the proof is complete. Q.E.D.

The work conserving constraint introduced in Section 4.2 and expressed by equation
(-£.9) results in a unique solution for the state multipliers and guarantees the existence

of the characteristic function.

4.7 Numerical Examples

ln the following, I show the behavior of the ESR model by means of examples and
compare it with similar models that exist in the literature. The measures of perfor-
mance used are the throughput, average number in the system, delay and average

number of busy servers. The throughput for each type is A (1 — P, ), » = 1,2. Then,




the average delay for type r is derived from Little's formula as

E{n.}

)r = T T
D= -

r=1.2..... K.

Further design issues are addressed by studying the effect of the oceupancy and butler

size on the bandwidth and blocking probability of each customer type.

Example 4.3 Consider ¢

=

resource with S = 32 servers. Two types of customers
arrive at rates A; and A, = 2A;. Their bandwidth requirements are by = 4 and b, = |
and their residency times are p7' = 2 and p3' = 1. The load on the system is
p = bypy + bapa, where p, = A [, r = 1,2,

The average number of each customer type versus the offered load, for different
occupancy boundaries T', is plotted in Figure 4.5, The average oceupancy and average
number of busy servers, for various occupancy boundaries, are given in Figure 16,
The blocking probability, as a function of the load, is shown in Figmie 4.7, The
delay-versus-load curves are drawn in Figure 4.8.

As expected, the average number of type | customers decreases as the load passes
the capacity of the resource. The eflect of heavy load on the average number in the
system and the delay is shown in Figure 4.9. This behavior is due to the fact that ens
tomers of type 1 have larger bandwidth requirements and therefore experience higher
blocking probability than the customers of type 2. Subsequently, the throughput for
type | customers can only reach a maximum value and then start dropping. In Figure
4.10, I show the average delay as a function of the thronghput and indicate the values
of p that maximize the throughput for type 1. The effect of different mixes of load
on the delay and the blocking probabilities is shown in Figures 4.11, 4.12 and 1.13.

Finally, in Figures 4.14 and 4.15, I show the fraction of the bandwidth allocated
to each customer class and the fraction of the bandwidth that wonld be allocated if
the discipline were egalitarian processor-sharing. The effect of processor sharing on
bandwidth reduction is felt more hy the enstomers with large bandwidth requitements.
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Figure 1.5: The effect of load on the average number in the system for different
occupancy boundaries.
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Figure 4.14: The fraction of bandwidth requirement allocated to type 1 customers
for the extended shared resource (ESR) model and the egalitarian processor sharing

(PS).
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In the following examples, we compare the extended shared-resource model with
the shared resource [17] and retry models [18]. The retry model is based on the idea
that a blocked customer retries to enter service with reduced bandwidth requirements.
A customer of type #, with bandwidth requirement b,, may retry only a fixed number
N of times to enter service. Each time, its bandwidth requirement is reduced to
a fixed amount by, { = 1,2,..., N. There is no time penalty associated with each
retry. Generally, such a model does not accept a product-form solution. Nevertheless,
Kaufman produces a product-form approximation assuming that the occupancy in
the system due to retrials is negligible compared to the total occupancy. A variant of
this model is to introduce a threshold in order to model state dependent bandwidth
requirements. Then, a customer has a bandwidth requirement b, that is satistied if
j < Jy and a contingency bandwidth requirement b, to be used if j > Jo. Generally.
multiple thresholds and contingency requirements may be applied.

The examples that follow consider the single-threshold case. The performance
results for the retry model are the simulation results provided by Kaufman [18]. The
limits T’ for the occupancy have been chosen so that the different models result in
approximately equal values for the average number of busy servers. In general, the
extended model gives better utilization of the resource and lower blocking probabilities
but reduces substantially the bandwidth of large customers.

Choosing the appropriate values for S and T is a design issue that depends on
how well customers of different sizes are packed in the memory of the system. The
effect of packing is associated with the periodic shape of the blocking probabilities
and the average fraction of bandwidth when drawn as functions of the buffer size 7.

Recall that, the work conserving constraint requires that the product

(bandwidth) x (residency time)

remains constant. Let @, be the average fraction of the original bandwidth require-

ment given to type r. Then, the average bandwidth allocated to type » is b,¢, and

o
-1



[ System Parameters: S =32, b= (1,21, A = (12,0.3), g~ " = (1., 1) ~]

Model E{s}] P, P [ P T B [ 0] Pl | T
SR 12.84 [ 0.019] 0.852

Basic Retry, by, =4 18.54 1 0.014 | 0.964 | 0.063

Multiple Retry, by; = || 16.61 | 0.067 | 0.883 [ 0.642 | 0.367 | 0.201 | 0.282 [ 0.279
46 -D,01=1,...,5

[ESR, T = 40 16.72 | 0.018 | 0.315

ESR, T = 68 18.53 [ 0.002 | 0.090

| System Parameters: S = 32, b = (1,24), X = (6,0.3), p~" = (1, 1) ]
Model E{s}| P, P, P, 1 P, 0 1 P T B
SR 10.72 1 0.025 | 0.325 i
Basic Retry, by, = 4 12.44 ] 0.026 | 0.551 | 0.190 i
ESR, T = 10 1521 10771 0.233

ESR. T = 55 12.41 { 0.009 | 0.102 -

must satisfy the equation

Table 4.1: Example 1.1,

b,

e
p-(L—-F)
E{n} =

Example 4.4 The system parameters, the average number of busy servers and the

blocking probabilities are presented in Table 4.1, P, refers to the probability of

blocking for the Ith retry of type r customers.

The system is examined for two

different values for ;. The average delay, average fraction of bandwidth and hlocking

probabilities are shown in Figures 4.16 and 4.17, respectively. The plots explain the

high variation in the blocking probability of type 1 customers and show the effeet of

buffer size on packing. W
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Figure 4.16: Delay and average bandwidth-fraction allocated versus occupancy limit
for the system in Table 4.1,
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I System Parameters: S =30, b= (3,7), A = (2,2). o~ = (2.5,1) |
Madel E{s} P, Po, | P Poy| Poa| P,
SR 20.89 [ 0181 0.39
Basie Retry, b, =3 2074 | 022 0441 0.83
Multiple Retry, b,y = || 21.83 | 0.247 | 0.431 | 0.940 | 0.854 | 0.707 | 0.577
T-Ll=1,...,4
State Dependent, Jy = || 24.09 | 0.296 | "{j > S — by} = 0.478

18, 1)2,‘ =)

ESR, T' = 32 21.79 | 0.141 | 0.364
ESR, T = 40 27.07 | 0.106 | 0.238
| System Parameters: S =30, = (3,7), A = (10,10), p~' = (2.5,1) |

M()(I(‘l E{S } Pb, Pbg Pb“ Pbm Pb:z,a Pb“
SR 27.99 | 0.668 | 0.956

Basic Retry, by, =3 28.30 | 0.738 | 0.950 | 0.962

ESR, T'= 32 28.94 | 0.691 | 0.918

ESR, T = 40 29.95 | 0.664 | 0.932

Table 4.2: Example 4.5.

Example 4.5 In the next example, Table 4.2, the bandwidth requirements, of both
customer types, are prime numbers and cannot be together in any factorization of
S = 30. Notice that, in the diagram for the blocking probability, Figure 4.19, local
minima for one type correspond to local maxima for the other. This effect subsides as
T increases and the model’s behavior approaches the behavior of egalitarian processor-

sharing. The delay and bandwidth fraction curves are drawn in Figure 4.18. 1

Example 4.6 In the final example, Table 4.3, the values of the buffer size and the
bandwidths as well as the light loading remedy possible packing problems. The

Figures with the diagrams of interest are 4.20 and 4.21. W
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Figure 4.18: Delay and average bandwidth-fraction allocated versus ocenpaney limit,
for the system in Table 4.2.
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08 |

08

07

06 |

l l\’l()(l(‘] E{\} P[,l P52 Pb3 Pb‘ Pb3,1 Pb“
SR 95.10 | 0.0095 | 0.041 | 0.088 | 0.201
Basic Retry, b3; = 6, 96.1 | 0.016 | 0.062 | 0.117 | 0.224 | 0.534 0.512
by =2
State Dependent, Jo = || 97.24 | 0.0097 | 0.042 | P{j > 5 — b3} = 0.041
104, ()3(- = 4, 1)4‘- =8 P{] > S - I)4L-} = 0092
State Dependent, Jy = || 96.67 | 0.013 ] 0.055 | P{j > S — b3} = 0.56
112, b3, =4, bye = 8 P{j>S—b4}=0.112
ESR, T = 132 96.21 | 0.0080 | 0.034 | 0.073 | 0.170
ESR, T = 137 97.32| 0.0065 | 0.027 | 0.059 | 0.138 ]

Table 4.3: Example 4.6.
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Figure 4.20: Delay and average handwidth-fraction allocated versus oceupaney limit
for the system in Table 4.3.
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Chapter 5

Further Generalizations

5.1 Analysis of Circuit-Switched Networks

Kaufman's SR model introduced in Section 4.2 was extended by Dziong and Roberts
[8] for circuit-switched networks with finite capacity links and, independently, by
Stamatelos [42] for circuit-switching in broadband networks. In the sequel, 1 present
a further generalization, where time-sharing replaces blocking when the capacity of a

link is exceeded.

5.1.1 Definitions and Notation

Consider a network of L links, each link having a capacity of S; channels, | =
1,2,..., L (Figure 5.1). There are R independent traflic streams of calls. Let o,
be the number of type r calls, » = 1,2,..., R. Call arrivals of type r form a Pois-
son process with rate A, » = 1,2,..., B. The residency times (call holding times) of
type r calls are independent identically distributed random variables with mean 1/p, .
Note that the residency times are not necessarily exponentially distributed. Each call

requires b,y channels on link [ through its holding time.! Define the 1 # L matrix

B Y [ba)irs- (5.1)

In a circuit-switched network, each call requires the same number of channels in each link.
However, this condition is not necessary for my analysis.
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stream 2

stream 1 stream 3
b link 1

Fignre 5.1: A circuit-switched network with different types of traffic streams

The row and column vectors of B will be denoted by

br- déf (brhbr‘Za'--abrL)y r= 172a""R9
and by ¥ (b by, b)), 1=1,2,... L

The state of the system is defined by the vector
def
n = (NN, ..., NR). (5.

The state space is

Q={nn>0AnB < S}, (5.0

where

S X (5,,8,,...,5L). (5.4

The occupancy in link [ is defined as

R
jl = Z"rbrla l= 1,2,. ‘-$L‘ (5
r=1
If
i (ranedn). (5.6)
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the occupancy distribution is

qd) = P{n-by=j.1=12....L}

= P{nB=j}
= Z m(n),
{ninB=j;}

where {7(n)|n € Q} is the equilibrium distribution.

5.1.2 The Extended Model

Assume, for a moment, that each link has infinite capacity (type 3 BCMI node). The

state space of such a system is
Q) ={njn>0,r=12...,R}. (5.7)

Local balance states that, the probability flux due to an arrival of a call is equal to
the probability flux due to a departure of a call of the same type (i, a call from the
same traffic stream). Given our definition of the system state, local balance implies
detailed balance. That is,

m{n )\ = m(n)npu,, (5.%)

where {7;(n)|n € £;} is the equilibrium distribution of the infinite capacity model.

Recall that

Ry
mi(n) = m;(0) 1;[] ot (5.9)

Assume that the links are arbitrarily numbered 1,2,..., L. Starting from link

1 and ending at link L, gradually reduce the bandwidth requirements of each traffic
stream in order to satisfy the capacity constraints. At each link, the infinite process is
modified by defining a set of state multipliers {z/(n)|n € Q;}, 1 =0,1,2,..., L, and
using it to model deceleration of the service rate or reduction of the bandwidth. The
set {zo(n)|n € 1} corresponds to the process of the initial infinite capacity system.

Again, the principle behind the definition of state multipliers is work conservation.
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The sequence {1 =0,1,2,..., L} contains the history of the modifications. Term
my is updated at the [th step and assigned the number of the link where congestion was
most recently alleviated. This sequence is needed for the derivation of the recursion
for the occupancy distribution.

Let’s initialize:

zo(n) =1, ¥n € Q; and me=0. (5.10)

At link 1, reduce the bandwidth allocated to each type of calls by a positive factor

¢r1(n) such that

if, for some ¢, by; =0 then ¢,(n) =1,

R

it ) nby <5 then ¢.(n) =1, (5.11)
r;l R

if Zn,brl > 9 then ¢,(n) satisfies 27z,b,.1¢,1(n) =.9;.
r=l1 r=1

Reduction in bandwidth should be associated with an equal increase in residency time
so that the product

(bandwidth) x (residency time) (5.12)

remains the same. Assuming that call set up is instantaneous, the total residency
time equals the residency time in each link. Then the reduction factor for each class
must be the same for all links. This condition is satisfied by (5.11).

Using the Characterization Theorem 3.4 and work conservation, define a set of

state multipliers {x;(n)|n € £, }, such that

$a(n) = I;l((':;)). (5.13)
Then,
1, fn-b,<SAn>0,
.r,(n)d=°r %in,bﬂr,(nr‘), fn-b,>5An>0, (5.14)
0, - otherwise.

Note that, for all the states n along the qth dimension such that b,; = 0 recursion
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(5.14) will produce the same value. This means that ¢,(n) = 1, i.e. no slowing
occurs for streams that do not use link 1. Also set

me. ifn:b;, <S5 An >0,
my = (5.1

I, ifn:b,>5An>0.

In link 2 the demand ¥R 0,00 (n7)/r1(n) may still exceed the available ca-
pacity S;. Let’s remedy the situation with another set of multipliers {ry(n)|n € )},

such that

Zn o) () o (5.16)

Ly n) ra(m)

if link 2 is congested. Using the same reasoning as for link 1, we get

1, ifé, < S, An >0,
2y(n) % ‘u:r] En bawr(n)ra(ny), if 6> S2An >0, (5.17)
0, otherwise

and

my, if 62 S .q) An > 0,
My = (H.18)
2, ifé>5,An >0,

where

R -
PRy ") pe (5.19)

Generalizing, the state multipliers obtained at the {th link are

1, if & < S An >0,

)def

r(n)= Zn, vl H rnn ) ifé >S5 An >0, (h.20)

lSl ‘_1 J:g(n

0, otherwise.

mi_y, 6 <S5 An >0, )
my = (h.21)
I ifé;> 5 An>0.
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The nitial values are
ro(n)=1,¥ne Q and my, = 0. (5.22)

The state multipliers at each link can be analytically derived using the results of
Appendix B.

Thus, a sequence of recursive terms has been defined and used to modify the origi-
nal process without loosing the reversibility property. The detailed balance equations

of the modified process are

my, .I'J(n:)

r(n])A = n(n)np, [] . or=L2,.... R (5.23)
r I=] ,rl(n) b
Observe that
my L'l
Sy Z”rl’rmLH r=12,...,R.
r=1 i w(m

Then, algebraic manipulation of the detailed balance equations (5.23) results in the

cquilibrinm and occupancy distributions.

T(n.), fnB<SAn>0,
= ] ) "
=) — Z b,,,lbp, n7), inBZSAn>0, (5:24)
my r=1
L 0, otherwise.
4 ] R
J_-Zbrlpr(](j—br)y lfOSj S 57
L=
@) = 1L« . e (5.25)
< Zbr1:szrq(J - br-)a 1f.1 j<_ Sa
Yy =l
L 0, otherwise,
5.2 State-Dependent Arrival Rates
Let arrivals of type r form a Poisson process with state-dependent rate
AM(ny) = a, + B, r=1,2,....R. (5.26)
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This type of process has been termed by Delbrouck [6] as Bernoulli-Poisson-Pascal
(BPP). For 3, < 0 and a, /3, being a negative integer, the arrival process is Bernoulli.
For 3, = 0, the process is Poisson and for 4, > 0 it is Pascal. Bernoulli arrivals have
been shown to approximate smooth traftic. Such traffic is offered by a video souree
generating scenes without abrupt movement [35]. Pascal arrivals provide a good
approximation of peaked traffic. The Poisson distribution has a limiting relationship
with Bernoulli and Pascal distributions and is used for modeling the so-called regular
traffic. The state multipliers that allow us to move from Poisson arrivals with rate
A, to BPP arrivals are
ny =1
o(n) = ar + /i,/\(nr - 1) _ s j:[ (0n + i), (5.27)
r

N
/\Tr 1=0

Equations (5.24) and (5.25) can be generalized for BPP arrivals when 0 < 3 < S [8].

In this case,

1 E =)

m(n) = — y Z‘: . bam(n;) (5.28)
and 1 R 4 k-1
05) =~ ; b,,:—: ; (%—) q(j - kb,.). (5.29)
where

k=1,2,...,max{[ji/b), 1 =1,..., L}. (5.30)

For j £ 8, the equilibrium distribution of the population hecomes

R p—
m(n) = gl > A l)l),nr(n,’). (5.31)

my r=y Hr

Comment. Since, for 3 £ S, the residency time is also state-dependent,, the deriva

tion of a simple recursion for the occupancy distribution is not easy. Such a recursion
would expand the range of applications for our model and permit eflicient computation
of the normalization constant. Consider, for example, the extended shared-resouree
model. A buffer with size a5, @ > 0, increases the state-space by O((a” — 1)5%).

Then, the space requirement for the computation of the normalization constant grows
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at least linearly with the size of the resource. |
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Chapter 6

Epilogue

6.1 Summary of Contributions

In this thesis, a structural characterization of reversibility is developed and used
to synthesize a non-egalitarian processor-sharing queueing discipline that admits a
product-form solution. Let’s recall and summarize this procedure,

The first key result is Theorem 3.3. It states that a stationary Markov process,
with a state transition diagram G, is reversible if and only if the product. of transition
rates balances around every fundamental circuit of a spanning tree 7 of . This
result defines a minimal set of equations needed to test. reversibility and is derived

from Kolmogorov’s criterion. Its importance lies on the following three facts.

1. It bridges reversibility and graph theory.
2. It permits the study of a process only on a minimal set of edges.

3. It is essential to the understanding of the Characterization Theorem sinee it
provides the intuition needed to explain why the state probabilities of a revers-
ible process may be modified in a manner analogous to raising or dropping the

node potential in an electrical network.

The natural consequences of this graph-theoretic point of view are the Character-
ization Theorem 3.4 and the concept of state or set multiplier. Their significance is

due to the following.
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6.

. The state or set multipliers, when used according to the Characterization The-

orem, maintain reversibility.

Multipliers are used to parameterize the transition rates and the equilibrium
distribution of all the reversible processes associated with the same transition

diagram.

The state or set multipliers are very powerful in modeling blocking and state

dependencies of the transition rates.

. Superposition of multipliers allows the definition of different sets of multipliers

for different kinds of dependencies.

Non-product-form queues can be approximated through successive overlays of

multipliers.

When the Characterization Theorem is applied on a with work conserving
queneing discipline, the existence of the characteristic function is guaranteed.

The queueing discipline can be included in the BCMP framework.

An application of the Characterization Theorem is the analysis of shared-resource

models. The result, the extended shared-resource model, is a generalization and

extention of existing models. The use of state multipliers facilitates the analysis and

provides the intuition needed for the development of the model. The normalization

constant and the moments of the population distribution can be efficiently computed

by a recursive algorithm which is also contributed by this work. The most important

implications of the ESR model are:

It unifies the infinite server and processor sharing disciplines.

It defines a non-egalitarian precessor sharing discipline admitting product-form

solution.

As a node in a queueing network, the ESR model expands the class of queueing

networks with product-form solution.
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Given the applicability of the shared resource model in problems such as multiplex-
ing, message storage and network problems, the ESR model can be used to analyze

variants of practical interest.

6.2 Further Research

6.2.1 Extending the Analytical Results

A reading of this thesis may raise a number of questions:

o Can decomposition and aggregation techniques he associated with the topology

ot the state transition diagram and treated as graph-theoretic problems?
o Is it possible to define state multipliers for a non-reversible process?
e Besides work conservation, what other constraints preserve reversibility?

e Which resource-sharing policies can be modeled by state multipliers, have prac-

tical value and remain computationally tractable?

¢ How do performance measures for different scheduling strategies relate to cacely

other?

The answers to these questions constitute intriguing research topics. Further, I de
scribe an approach that might lead to a solution of these problems,
Given the performance requirements of a communications system the designer

faces the following problems:
e Specification of the physical characteristics
o Traffic characteristics
o Scheduling strategy

e Resource allocation policy
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Optimization of the scheduling strategy is a synthesis problem [22. 9] which is defined

as follows.

Assuming certain physical characteristics for a system with K traffic types
and the freedom to chose the scheduling strategy, what are the achievable

delay vectors D = (D, Dy, ..., Dg)?

A similar question concerning also the blocking probability and throughput can be
posed for the resource-allocation policy.
Such issues have been sufficiently analyzed and resolved for single-resource sys-

tems. The basis of this analysis is the conservation law stated next [9].

Theorem 6.1 (General Conservation Law) For a work conserving scheduling strate-
gics S applicable to a singlc-server queueing systemn, there cxists a constant V- depend-

ing on the arrival and service-time processes, such that
R
> Vs(r)=V. (6.1)
r=1

where Vs(r) is the steady-state average unfinished work of type » customers under

scheduling strategy S.

Assume that scheduling strategy depends on the residual service-times of type r cus-
tomers only through their means v,. Then. Kleinrock [22] shows that for a multiclass,
work-conserving and non-preemptive (+//(7/1 system the general conservation law be-

comes

R R 1
ZP'D":"-}-Z/H —l--—l/,. . (()2)
r=]

r=1 r
Based on the information regarding the service-time process, a system designer may
use the conservation laws to obtain an optimal scheduling strategy.

The conservation laws do not apply for multiple-resource systems. Such systems
are difficult to analyze under general scheduling strategies. Consider for example
a FOFS queue with customers of different bandwidth requirements and a multiple-
server resource. This system is not work-conserving since servers may be idle in the

presence of work in the queue.
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It may be possible to develop a special conservation law for a class of multiple-
resource systems, as | explain next. Consider the service center given in Figure 2.1
of the Introduction; each queue is served at a variable service rate depending on the
occupancy and the scheduling strategy. The whole system is not necessarily work-
conserving even if all the queues are. In the ESR model for example, some servers
are idle when the occupancy is less than the system capacity. Therefore, it is possible
that a conservation law could be established conditioned on the oceupaney or the

population. The necessary constants, such as the work load accumulated in a queue,

can be determined from the ESR model.

6.2.2 Applications

State or set multipliers allow the development of reversible quenes that approximate
non-product-form queues. The method of successively applying layers of multipliers,
until a certain degree of accuracy is reached, is appealing; the reason is that it reflects
the physical differences between the exact and the approximate models. This is clearly
demonstrated by Example 3.2. In this context, further study is required to formalize
a method for developing such approximations and establish error margins.

Systems with large populations can be approximated by a continnous state-space,
The development of continuous analogues for the state multipliers and equilibrinm
distribution and their them in asymptotic approximations are important rescarch
problems. Their solution has both theorctical and practical value since it can lead to
efficient algorithms for performauce metrics in large population systems.

The ESR model and its variants are applicable in a wide range of problems in
operating systems and communications networks. Even though the KSR model can
be adapted to such environments by additional sets of multipliers, computational
tractability remains an issue. This problem appears in the analysis of circuit-switehied
networks when the arrival rates are state-dependent (Section 5.2). Other state de-
pendencies that need to be considered are class priorities and /or preemptions.

Finally, the analytic results of the ESR model can prove useful in the design of

a shared-rescurce system, since they may be used in determining system parameters
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associated with delay, blocking probability and throughput. Such parameters are the
total nmber of bandwidth units (\5), the buffer size (occupancy limit) and maximum
service degradation. Examples, requiring study, of such applications of the ESR model
is the issue of providing quality of service guarantees in a high-speed network [27] or
cell multiplexing in ATM networks. The latter example is presented in more detail
since i is of practical importance and provides the testing ground for several of the

rescarch issues presented so far.

Example 6.1 (Cell Multiplexing in ATM Networks) Fiber-optic channels en-
able broadband poiunt-to-point communication. Furthermore, since memory is inex-
pensive, congestion and buffer overflow are not interrelated issues in network flow
control {3]. Then, a call acceptance is based primarily on the the delay constraints
for this call. In this context, point-to-point single-access links and virtual paths of-
fer better utilization of the available bandwidth than datagrams {15]. Asynchronous
transfer mode (ATM) networks implement virtual paths with packet-switching. Cells
that flow along a virtual path are stored at the switching nodes of the network and
forwarded through the appropriate link if contention for the link permits. The method
of huffering and multiplexing the incoming traffic at a switching node involves issues
such as fairness, link utilization and delay constraints. Katevenis [15] shows that the
allocation of the bandwidth achieved by a round-robin multiplexing method is fairer
than FIFO multiplexing. In this method, each congested node buffers incoming calls
allocating one buffer to each virtual-cirenit passing through the node. The round-
robin method distributes equally the available link bandwidth to the virtual paths
that can use it. Also, if some virtual paths cannot use their share of bandwidth,
they are allocated as much bandwidth as permitted and the rest is distributed to the
other virtual paths. The round-robin method can be further extended to weighted
round-robin that supports multiple types of traffic with different service requirements
[16]. Since, the ESR model behaves as an egalitarian processor-sharing model under
heavy load and large buffer size, it is expected to provide an approximation for the
performance of the round-robin method. Further work is required to determine the

load composition, buffer size and bandwidth requirements that minimize the approx-
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Appendix A

A Graph-Theoretic Interpretation
of Reversibility

Let X(t),t > 0, be a time-homogeneous, stationary, irreducible and aperiodic Markov
process with a countable state-space Q and transition rates ¢(¢, j), ¢, € 1. Further-
more, let G = (), E) be the state transition graph of X (1), defined as in Section
3.1.

The weight function p(7, j) can be used to show that Kolmogorov's eriterion for
reversibility is analogous to Kirchhoff's voltage law (KVL). This analogy is derived
from the results of Chapters 6 and 11 of Swamy and Thulasiraman [43]. Electrical
network theory has been previously used by Chandy, Herzog and Woo [36] in the
hierarchical decomposition of queueing networks. Their work resulted in a method of
obtaining performance metrics for a network of queues. In this Appendix, clectrical
network theory is used to explore the structural properties of a reversible process that
explain why the Characterization Theorem 3.4 exists.

Define the voltage of directed edge (i,j) € E and the rclative polential (or simply

potential) of vertex i € §, respectively, as

(i, 7)) p(ij), (i) € E, (A1)
e, 70D - '
@(z)=In ) 1€ (L (A.2)
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where 7 € () is a reference vertex and In is the function of natural logarithms. Then,

the detailed bhalance equations (2.15) are equivalent to the voltage balance equations

w(i) +v(ij) =), (i,j)€E. (A.3)

Henee, (i, j) represents a voltage drop from vertex j to vertex :.
The definitions of edge voltage and vertex potential allow us to provide an alter-

native statement and proof of Kolmogorov’s theorem.

Theorem A.1 (Kolmogorov’s Balance Law, KBL) ! A stationary Markov pro-
cess, with a stalce transition graph G, is reversible if and only if the algebraic sum of

vollages around evcry cireuit of (v is zcro. That s,

B.V. =0, (Ad4)

where B is the circuit matrir of G and V, is the column vector of edge voltages.

Proof
Neeessity. Let (O be an arbitrarily oriented circuit of (7. The voltage balance

cquations around ' can be written

@(e)+v(i,J)=¢(y), if the orientation of C' agrees with (z, j),
w(1)—v(i, )= p(J), if the orientation of (" disagrees with (z, 7).

Summing up equations (A.5), for all 7, j € C, we see that the algebraic sum of voltages
around (7 is zero. Since (7 is an arbitrarily chosen circuit, the result is true for every
circuit of (.

Sufficiency. Since B.V, = 0, the cutset transformation theorem applies. So, there

exists a column vector ® = (¢(7)),eq-(r}. such that

V.= AT,

'The term “Kolmogorov's Balance Law” is a successful suggestion by Marc Comeau of Cioncordia
University.



where A is the incidence matrix of (7 with reference vertex r. Consider a row vector
[(7,7)] of AT that corresponds to edge (i,j) € E. Clearly, only the ith and jth entries
of [(¢,/)] can be non-zero. If (7, ) is not incident to r, then the ¢th and jth elements
of the row are | and —1, respectively. Otherwise, only the entry corresponding to the
vertex adjacent to r is non-zero; its value, 1 or —1, depends on the direction of (i, J).

Thus, if we set (1) = 0, we have

U(isj) = Q(l)—-(p()),
o e‘“"‘i)p(i,j) = ¢¥U),

& w((i,)) = =())e(.0)

where (¢,7) € E and (i) = w(r)c™?®, i € 1, with () being a constant. Since the
numbers 7 (7) satisfy local balance, they also satisfy the equilibrium equations. Vheir
sum is finite because the process is stationary. Therefore, we can choose 7(r) so that

2iea (7)) = 1. Sufficiency now follows from theorem 2.3. Q.E.D.

The next result allows us to continue the analogy between Kolmogorov's eriterion

and KVL.

Corollary A.2 A stationary Markov process, with a statc transition graph €, s
reversible if and only if the algcbraic sum of voltages around coery fundamental eiveud

of a spanning tree T of (i is zevo. That is,
B;V. =0, (A.6)

where By is the fundamental circuit matrir of GG with vespect to T and 'V, is the column

vector of edge voltages.

Proof
Necessity. Since the process is reversible, equation (A.4) implies that, the inne
product of each row of B, with V. is zero. Necessity now follows because By consists

of |E|— || +1 rows of B..
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Sufficicney. Every circuit vector 3 of G can be expressed as a linear combination
of the fundamental cireuit vectors with respect to a spanning tree. Then, equation
(A.6) implies that BV, = 0, V8 € . So, B.V, = 0 and the process is reversil;le.
Q.E.D.

Kolmogorov’s Balance Law allows us to generate all the reversible processes as-
sociated with the same graph (G = (€, E'). This can be done in a manner similar to

raising or dropping the potential of a node or a set of nodes, as explained in Section

3.1
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Appendix B

Solution for the State Multipliers

A solution for the multidimensional recursion for the state multipliers is presented
next. The analysis followed can be applied to any sharing, policy and is based on the
results of Section 6.11 of Swamy and Thulasiraman [13].

Consider the system of linear equations

R
(k) =Y wk; k)r(k]), m<kl<n, r=1,2.. K, (B.1)
r=1
where w(k;, k) is the coefficient of the unknown (k) and k. m, n are veetors in

ZH. The relation k < n is defined so that
k<nek<nA3k: k<, (BB.2)

where < is the usual partial order in Z®. 1 shall use I to denote a low hound of a finite

subset of Z®. Assume that the sum Y% w(k>,k)r(k]) contains only those terms

I

w(k, , k)z(k;) satisfying m < k7 < n. Then, system (B.1) has [/, (0, = mn,) - |
equations and [T%.,(n, — m,) unknowns.

Define a weighted directed graph 5, = (V, £) with

= {k

m< k <nj

E = {(k;.k)

m<k <n,r=12... I}
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w(e) = w(k], k). the weight of edge ¢ = (k]

r*

Then, (s the Coates flow graph associated with system (B.1).

Lemma B.1 A solution of the system of linear equations

J?(k):Zm(k:.k)J‘(k:), m<k:<n,r=12,...,R (B.3)
r=1
is given by
r(k) = r(m) }: w(p), m<k<n r=12...,R, (B.4)
PEP

where Py is the set of dirceted paths in G from verter m to verter k, and w(p) is

the weight-product of path p.

Proof

Since for cach edge (t.7) € E 1 < 3. G i directed acyelic. Then. the weight of
a l-factor of (7. is one and the weight of a I-factorial connection of (7, from vertex
m to vertex k is equal to the weight-product of the path from m to k contained in
the I-factorial connection. Note that, by definition. the weight of an empty graph is

one, while the weight-product of an empty path is zero. Thus,

r(k) = ua(m) z w(p). m<k<n, r=12...,R. (B.5)
P€F Kk

Q.E.D.

’

Theorem B.2 Let (5. be the Coates flow graph associated with the system of lincar

cquations
r(m) = r(m), mel7,
(B.6)
(k) = Y wky k)e(ky) I I<k <m,r=12..,R

r=1



Then,
r(k) = Z r(m) Z w(p) v<k<n. (B.7)

meT "Eprn.k

is a solution of the system.

Proof
Add a vertex v <m, Ym € T. to (i, and convect it with a ditected edpe (v, k) 1o
every element k of . Furthermore, let w(v.m) = r(m)/r(v) and r(v) # 0. Then,

G. + v is the Coates flow graph associated with the system

r(m) = w(v,m)r(v). me 7,
.r(v) = .I‘(U), (“J\-)
R
(k) = D wlky k)e(kD). kgT. LSk <n,r=1.2... 1
r=1
From Lemma B.1,
r(k) =r(v) Z w(q). v<k<n. (B.9)

YE€T 1

Since the sets {(v. kYU p|p € Poi}. m € . form a partition of Py,

r(k) = r(v)z Z w((v,m)U p)

mel 7’€rm,k

= .r(v)z Z w(v, m)w(p)

mel pe Py k

= Z Z w(p)r(m).

mel pePy, i
Q.E.D.

Next, I define formally the set T of boundary states for the complete sharing

policy.

Lemma B.3 A marimal set T of states m such that m b < S andn-b S, for

n > m, is dfined by the customer class with the greatest bandwidth roquiremonls,
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That 1s,

l'm.u -1

I=|J {mm-b=5-1}, (B.10)

1=0)

where byax = max{b,, r = 1,2,..., R}.
Proof

A maximal set of states m such that m}-b > Sis

I, = {m|S-b <m-b< S}

{fmm:-b=S5-b+1,5-0,4+2,...,5}

= {mm-b=S-4/=12,...,0, -1}
by—1

= U {mlm-b::h'—i}, (B.11)
t=0

where the sets {m|m b= S-i},7 = 1,2,...,0,— 1, form a partition of {m|S—0b, <

m b < 5} For a customer class ¢ with by < by,

I, = I,u ( U {nzlm-b:.‘a’—i})

1=br—by

(B.12)
= I, C I.

ThenI, C I, forall r =1,2,..., R. Q.E.D.

Let I be the set of the immediate neighbors of 7 in the direction of increasing

occupancy; that is,

It ¥ (mim.b>SA(Fr=1,2,....R: m] €I)}
blll-ll

= Y {mm-b=25+i}). (B.13)

The need for the definition of I will become apparent in the proof of Corollary B.4,
where I use the combinatorial properties of Z® to collectively treat the paths from
m to n. There, we need set It in order to avoid counting paths that begin from a
point m € I, touch the boundary and end to n. It should be clear, that in order

to calculate #(n) at any point n: n - b > 5, we only need to consider the values at
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the elements of T as it is defined by (B.10). Set T* is introduced for purely technical

reasons.

Corollary B.4 For the complete sharing policy, the solution of the recursion

1, fneZandn >0
R
1 N
r(n) = G Zb.n,.r(nr o Yng T andn >0, (B.11)
' or=t
0, otherwise,
is
R
”" [’u,——m,
mo—my Ay —my et —mp\ 2ot
r(n) = g r(m)
iy My — My, Ny — My, N — My FOBMMUEITS
R R n b Ny = MNiy
= Z [Z(n, — mr)]! H < r) (—5) r(m), (B.15)
meIt Lr=1 r=1 MM )
where

I
[Z(n, - m,)}!
r;—{!

H(n, -, )!

r=1

(n,-*m,+712—-7712+---+7m—mn) _ (13.16)

Ny ~— M,y — .oy — MR

is @ multinomial cocfficient.

Proof
The number of directed paths from m to m in Z! is given by the multinomial

coeflicient [23]

K
{Z(n, - mr)]!
(n] —my+ng =yt np - 7"1{) _ Ar=1 (1.17)

R

H(n, — 1, )

r=|

MWy — My, Ny —Myy... . Np—Mp

If m € I, a path from m to n may contain vertices in Z, thus not contributing to

r(n). This cannot happen if Tt is used instead of I as a set of initial values,
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The factor in the weight of a path from m to n due to type r transitions is

Np~My . kr br r! br Ny —Mmy
i (m +' )b, m ( ) ‘ (B.18)

S m,!

S

ky=1

So, each path from m € I* to n has weight

R 717! br Hr—1My
I .(—;) z(m). (B.19)

sy M

The result now follows from Theorem B.2. Q.E.D.

Then, for o« b > S, the equilibrium distribution is

R pnr
r(n) = G()r(n) []

sop el

Ty

R br Ny =My p
= G S [2(1“—7”,)]!1__[(?) r

! — 1’
mez+ Lr=t ot m,(n, —m,)!

(B.20)

where

R R b Ny =My ny
((Q) = Z Z > (n, - m,)]!H (?r) o~ Py ;- (B.21)

nelnert Lr=1 r=1 '(n" - ")T)’



Appendix C

The Probability Generating
Function of the ESR Model

Theorem C.1 The probability generating function of the cquilibrium population dis-
tribution {r(n),n € 1} is

R
Sllys(2z) — Z 2 bepr [[IU,H-—b, (z) + Hyo, +l,'l'(z)]
M(z) = = m , (C.1)
S — z 2.0, p,
r=1
where
def ny Ny n "
M. ()= 3 2y ziitn(n). (€.2)
{n|u<n-b<v}
Proof

Multiplying both sides of equation (4.18) by =z'23% -+ z; and summing over
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[n|S <n-b< T} we get

1 R
Z z;uz;tz “e ;;;;Nr(n) == Z z;uz;tz N z};ﬂ Z br/)rﬂ’('nr_)

{n|S<nb<T) *7 {n]S<nb<T) r=1
1 R
& [](z) — ”0'5(z) = .-S-' zrbrﬂr Z z;nz;lz e Z:‘:;'z:_"‘—]z:_‘;':' v z}}"rr(nr')

r=l {n|S<n-b<T}
] R

= 3 Z 2:bep, Z R ziEn(n])
| {n|S=br<n-b<T-b,}
1 R

= 5 2 arbepe [[1(2) = Mo5-6,(2) = M7-p,11,7(2))]
Cor=l

and equation (C.1) follows. Q.E.D.

The probability generating function Q(z) of ¢(j) is derived in a similar manner.

Theorem C.2 The probability generating function of the equilibrium occupancy dis-

tribution {q(j), j =0,1,2,...,T} is

R
SQos(z) — Z :"'b,pr [Qo.5-6, (=) + Qr-b,41,7(2)]
Q=) = = = : (€.3)
S — Z b, p,
r=1
where
Qual )= X 2q0J)- (C.4)
j=u
Proof

Multiplying both sides of equation (4.28) by z? and summing over j = S +1,5+

2,..., T, we get

T ] T R
> A0) = g X # 2 beeali~br)
1=5+1 =S+ r=1
1 - .
& Q)= Qos(z) = =3 oo T gl — by)
=l >8

hi
n| -
M=

b p, [Q(2) — Qo5—b,(2) = Qr—br41,7(2)]




The first and second moments of n, are

0?
E{II,} = F”(Z)'
~r =1

and
(' 2

=2
022

E{n?} = (=)

+ E{n,}.

n=l1

Let’s derive them. Equation (C.1) can be rewritten as

R K
(S - Z 200 )1(2) = Sy s(z) - Z sbop (Mo s-6,(2) + Hpop e (2)]. (CL5)
=1 1=1
Differentiating both sides of (('.5), with respeet to z,, we get
R . ) It .
. 7} L0 )
(S~ Zzzl’:ﬁz)a_”(z) = So—TMlys(z) - zlul'xl’x':‘(—”u,.s‘—h,(z)
= o Jz, = dJz,
+b,p [11(2) = Hos-0,(2) = o g00(2)]
dl )
._Z:,[),p,. Ily_y 41, 1(2). (C.6)
e iz,

Differentiating once more, with respect to z,, we have

R (-)'2 (-)2 R HY
(S —- ;:;b,p,)—a?rzﬂ(z) = S g los(2) - g zb,p, g o s-1,(2)
4] Jd 7]
+2b,p, [(.—);”(Z) - ;E”u,.s’—h, (z)— 5:”'1'-!.,“;/'(3)
K it
- 311)1/’1._'_2[]7'—!),-}-1.'l'(z)- ((.7)
py— 0zt
The quantities of interest are %flu_,,(z)lzr=1 and %II""'(z)|z,=|'

D lta)] = 2 X mepseiwie)
Oz zy =1 “T {nju<n-b<n} sl
v
= Z n,m(mn). (C.%)

1=u {njn-b=;})
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o 1

— —_— e 2_ny 2, ., LMR

azznu,u(z) = = 2, nizta?eezptn(n)
“r {njugn-d<v}

]
-5 L nA' e zf(n)
“r {njugn-b<v}

T zr=1

zr=1
= Y > alr(n)- Yo 3 n.w(n) (C.9)
r=u {nlnb=) 1= {njn-b=;)
For j < S, using the detailed balance equations, we get
Y mer(n) = po ), w(n))
{n[n-b=;} {n|n-b=j}
= peali-b). (C.10)
Y, nin(n) = p, Y ner(n])
{njn-b=)} {njnb=y}
= pr Z (n, = Dmw(n;) + pr Z m(n;)
{nijnb=,} {njn-b=;}
= pealj - 20:) + prg(G — b). (c.11)
For S < j < T, using the recursion n(n) = -l—,z,ff;, b.pm(m; ), we get
i R
Y wr(n) = S Z:I',p, Y nr(n])
{nn b=} 1=1 {n|n-b=,}
1 R br/)r -
= 35 z b,p, Z n,m(n)+ a Z n,m(n,)
' :-;l {njn-b=;-b,} 7 {nind=3}
l i l),-ﬂ,- . LR
= EZb,p, Z n,w(n)+ < q(j —b). (C.12)

=l {nln.b=)-b,}

R
S oanlnn) = -i-,szpi Y nin(n])

{nln-b=5) =T A

1 & )

= Ezbtl’l }: (ne = 1)*n(n])
= {n|n-b=;}
T An-DalnD)+ ¥ w(n:)]

{n|n-b=,} {nin-b=3}

_ 1y, 2 2 —

= -GZ YRS n,7r(n)+-§;brp,. > nw(n)
'l {n|n-b=7-b,} ) {njnb=)—b.}
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1 .
+‘;brl7,-(](_] - I’r)' (("l:‘)

As equations ((".12) and (C.13) indicate, for general bandwidth requirements, we can
compute ¥ ninb=;} e T(R) and Tinpm.b=y) 177 (n) recursively only. Sinee, for j > 8,
these sums need to be evaluated in the interval T — b, + 1 < j < T, the recursions
would have to scan the entire state space. Then, the use of the probability generating,

function is unnecessary:

T
E{nf}:Z D nir(n),  k=0.1.2,....

1=0 {njn-b=,}
Thus, for finite population systems, the nse of [1(z) to generate the moments of
ne, v = 1,2,..., R is of limited value., A more eflicient approach is the recursive
computation of the sum 34,062 n¥r(n). As a matter of fact, we can exploit the
structure of our model even further and produce a recursive formula that is used to
derive the joint moments E{n¥1n% - ¥} # < R, of the number in the system for

different customer types. The recursion is given hy Theorem 4.5 in Section 4.4, where

its computational requirements are also discussed.

Comment. For the extended shared resource problem, the probability generating
function cannot generate the equilibrinm distribution efticiently. Furthermore, it as-
sumes knowledge of the normalization constant. However, studying H(z) and its
drawbacks guided us to develop a space-efficient computational recursion for the mo-
ments of the population. As a result, we can get the derivatives of 1/(z) at z = 1.
Given the generality of applications for the probability generating function, this result

may prove useful. [l
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