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A COMPARATIVE STUDY BETWEEN TWO—DiI*IENSIEONAL AND AXTISYMMETRICAL
TURBULENT BOUNDARY LAYERS WITH RESPECT TO THE LAW OF THE WALL,
THE VELOCITY DEFECT LAW, AND THE AVERAGE SHEAR COEFfIClENT'

. Jos;ph jh;let:
’ Tfle objective of thie; dissertation .is to enable selection of the

optimmm method for solution of axisymmetrical boundary layer problems

* . for turbulent flow with re?pect to the law of the wall, the velocity

defecc 1aw',. and the average shear coefficient. No consensus presently

exists on t:he appropriate similatit:y lavs for axisymmetrical flow. The’

v
\/ ’

competing axisymmetrical hypotheses previously proposed by various-
authors are analyzed and compared with the accepted classical two-dim-

ensiorial similarity laws. Each similarity law hypothesis is examined
“with respect to 1ts accuracy of. predicti«on in comparision to published
expefimental results, its range of aoplication, and the constraints o
existi‘ng on its respective utilization. .

An experinfental and theoretical analysis of axisymrietrical average
i - .

shear coeffiaients for a ecircular thread subjected to a steady jet of,

D

water discharging from,a conlcal annular nozzle is perfaormed. The ex- .

perimentally based axisymmetrical shear coefficients are ‘compared with

A

theorgtical average shear coéfficients derived utilizing the 'class.:lcal

4 )

L]

two-dimensional equations and an axisymmetrical approximation apﬁi‘ogch.‘

The experimentally based average jet velocity at the end of the conical

atinulus \132 compara' with theoretical values derived using an integral

momentum method and a macroscopic energy balance method. The various

'parameteﬂrs a'ffecting the conical annular nozzle perfoi-mance are dis-

cussed.
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local velocity parallel to the wall....ccesvacuoverss.. m/8

)
-~

mean local velocity parallel to the wall.svivievcsssass m/8
» L
velocity at boundary layer edge......ecveeessncnvcsasss m/8

. / -~

friction velocity.;.......;...;.l...................... m/s .

Upreosoerasoesnosassosnsransss®ioasssssnssscssonaananss M/8
‘»
free stream VeloCity.. . veseeesisetianrannsnsnannsnssen M/
. N
velocity fluctuations parallel to flow.........ﬁf..(Z:Ti m/s
-, /\ _ ‘ ;
velocity ratio u/u*...........................;........ -

? .
mean flow velocity at any position Z.v..isveveeeseeasss m/8
injection or suction velocitYeisneeorsinasersnsenaceres Mm/8

local velocity normal tO Walle.eeesesssesseosssasnssess Wm/8

mean local velocity normal to wall.....eeveeessnsecsesss Mm/8

" yelocity Fluctuations normal £o FLlOWe..eeeeessseenenenny \m/s

mean jet velocity at exit.l........}......i...f...:;... m/s
L4
wake component variable.......ceveverrrenvcntanonanenss’ -

length scale along Wall...ue.oeevenesonennnnsoenaaannns cm

thread length from end of nozzle protusion.e.vevesasvss cm
distance between Xp and X e et et eititatian, cm

-

nozzle protrusion length......oeiiisviiianes®firennnnnn, cm

mﬁximum‘nozzle protrusion length...c.ivvivivieniiaeeess  cm
maximum length of air pocket with thread incl ding
effect of vortices........................../Pa........ 'QE
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maximum length of air pocket with thredd............... om

total length of XNT plus R LR R

maximum length of air pocket with threld including

effect of vortices...'.l‘.'I.'......"l.'...'....'...'.., cm &
A M .‘\ -

maximum length of air pocket without thread......i..... cm

ot

length parameter at In (r+/a+)......................... - .
\ [ ' R WS
length scale normal to WAll.ceeevevsesnrscosanasscccnse cm
¢ ¥ ¢
coordinat ratio U, ¥/Vieceiiieiiiieeiriiicacniiieniniten -

length coordinate as defined in Fig. 3.2............... -
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. i
angle...-.-.oooot-c.ooo-n.-aoooo.ct'.s.-no‘u.-co-..oo-o-

\ . -
COnStant-....--.-..........¢..-.’..-».-.-...--..,....... -

' r

-

displacement thickness.....vesesesasosccsnceacssannsane cm

eddy viscosity(Cpefficient.......un-...........'...... m2/8

s

»

int‘emittency ’factor...‘..............;.....--..-..--a. -

density of a,ir.........................................)cg/m3

3

®

density of water.....c.ivlevviianenilonnnssciarsasnes..kg/m

2
Shear BLIeSS......vstererrsserconssssanscssscsarsssnaess N/m

@

shear stress at shifted ‘axi8..uevuieeeeenenaniesecsoanns N/m2
2
shear 8tress at WAll, ..vveeeeoeveoseonscosccsssnnesensss N/m

shear stress ratio 1/rw...................L......J..... -

dynamic viscosit&.............;..2...{.................Ns/'z

kinematic viscosity......a.............................,mzla

COnStant..-l-.....-..-..-uu----.'..........-......-.;.y -

momentum thicknesS...eieervencevevernsensrnrosscensvsace =

velocity ratio U/u*...............«......

parameter. (ue/x )iy...........z:.....;................. -

&nst&nt.....‘................:f'........-..u-........... -

¥

CONBLANL ¢ tascttssssesosssssanssssnssssannssatsssassnssss -

¢

stream function--....-............................-.... -
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.

The earligst\studies on the boundary layer prpperties'forAéxfal

flow along cylinders revealed that they were sufficiently different in

r

Qymparisibnvwith the two-dimensional flat-plate values to warrant a

separate theoretical analysis which would take into account the effects

of the Pransverse curvature. When compared to a, flat plate for the same

. [}
R;? the Reynolds'number based on the distance from the leading edge,

i

" these first cylindrical studies reported that the shear coefficients

. * -
Y .
and the momentum thickness values were higher and that the displacement

tﬂicﬁhess values were less: These transverse curvature effecﬁ& have
been confirmed by all subsequent reports. Disagreement sqill exists on
the va%iousltheoretical methods of solutiﬁn of axigymmetrical boundar;
layer problems with respect to the similarity laws. The previous insym-
metrical studies, which are based on modification of the the\afguments
of the similarity function and variation in the empirical consta:xts of
the classicél two-dimensiopal velocity laws, are ciassified according
to six hypotheses for the law of the wall and four hypotheses’for the
velocity defe¢% w, The merits and drawbacgs of each theoretical axi-
symmetrical approach are évaluated and comparision is given to the two-
dimensional laws. Three‘semi-empirical c;mposite correction terms fgr ¢
* the eddy viscosity‘ﬁﬁﬁjthe mixing length for the sublayer and tramnsi-
- {

tion flow regions are examined. The effects of transverse curvature on

the size of the turbulent eddies, relaminarisation, and the division of

» mean flbw properties #nto a wall and wake region are investigated.

-

A series of experimental tests are performed on a circular th
- (_‘," e A } 'l
subjected to a steady jet of water discharging from a conical annular

read

~—
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nozzle utilized in the(fgitile industry in shuttleless fluid jet looms -

for weaving fabric. The test parameters which are varied include the .

~supply pressure, the wa(e: flow rate, the thread length,‘and the clear-
il ’ .
V7 ance between the inner an : dii_;dflzg;(;;;;iz;j>ozzle. Experi- \

.

mentally based shear Acoeffic ’for the thread are compared with the »

b N1l .
théoretic&l values derived from the two-dimensional equations for the
e

average shear coefficient and White's‘axisymmetricpi\approxiﬁation
. .

average shear coefficient equation. Two theoretical methods are used

..

for comparision with the experimentally based average jet velocity at
the end of the conical annular nozzle. The first method is based on the
integral ﬁomentum eéquations for the inmer and outer bodtdary layers of

the con;Lal annulus. The second-is based on a macroscopic energy bal-
¢

A
ance between the annulus entrance and exit while incorporating a head

- . “ A » B
loss to account for the friction loss for flow in the nozzle passage.

The various parameter8~affécting nozzle performance are examined ,

including the entrainment 6f air, the effect of Gatgr vortices, and

e -

[N

. e

choice of nozzle protrusion length. 4y
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! CHAPTER 1
s n

THE LAW OF 'I'HE WALL

1.1.0 Introduction

No agreement presently exists regarding the apPropriate similar-
ity laws for the mean flow along cy}inders,as some discregancies still
remain between réported experimental results and the various theoretic-
al predictions, especially when bdth the cylinder radius and the free
stream velocity are small. In this éﬁapt;r it will be shown that all
previous cylindgicgl studies for mean velocity can be classiéied into
. one of six major approaches. The first fas based on the assumptit;n of a

’

power law velocity profile. This has been long abandoned due td its
inACcuraé§ §hd therefore, will not be examined; The five remaining mod-
ern methods are based on mod{fication of the classical two-dimensional
velocity law, with various proposals of alteratiqn of the argument of
the similarity fanction of the two-dimensional wall law and variation
in the empigical constants. Eggh of the five methods will be examiﬁed
with reSpect‘to their prediction accuracy in comparision with experi-
mental results and also to see if any constraints exist on their usage

and, if so, under what conditions the various parameters control these

limitations.«Discussion will include the justifngtion of the wvarious
»

authors for their selection of one method over ‘another and thier eriti-

cisms of the various competing methods not chosen.” Because of the vast
amouﬁt of'disagreegent on the choice #f ‘the abprogriate similarity laws

ythis chapter will staft with basic brief derivations of the two-dimen-

sional law of the wall and the later axisymetric alterations to it pro-

posed by each method, to examine any constraints on application due to

1

the definition of the derivations.

Y

L
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Several of the studies in the various five methodg include the -

sublayer and transition flow regions as well as the fully turbulent
zone through‘the use of one of three different seml-empirical composite d

correction terms for eddy viscosity and mixing length, those by Deiss-

ler (1), Van Diiest (2), and a recently proposed method by Landweber
"and Porch®presented by Patel (3). These three correction terms will be

+ examined and a comparision will be made with previous experimental re-

N » LN
sults.

¢

1.1.1 Literature Search of Six Competing Hypotheses

LY

-

The first attempts at cylinder flow theories all utilized the-.
assuption of a power law velocity profile: Millikan'(h), Landweber (5),
Eckert (6), Karhan (7), and Sakiadis (8). These power laws were pre-
sented in the form |

1/n ,
ut=A, (v))

»

1.0

where u' was the dimensionless velocity ratio, y* was the dimensionless 4

coordinate ratio and where Al and n were Adnstants which had the values

-

of 8.74 and 7.0 respectively for the two-dimensional case but were mod-

ified for axisymmetric flow. Their drawbacks were the limited Reynolds

!
number range of application and predicted traﬂiferse curvature effects

which were too small by an order of magnitude.

e
e

«~ ' Presently five modern methods are in use for the study for the
mean velocity profile without a pressure gradient along a cylindrical
body for turbulent flow.One of these assumes that the classical fwo—
dimensionéi law of the wall is valid under certain conditions. The

five competing hypotheses for mean velocity in a functionaf form as
@
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v
)

suggested by Chase (9) are shown in Table 1.1. Their respective'eddy
viscosities and actual wall laws, except for the derivative wall law,

L}

are %1so shown. Chase(9): only presented the derivative law in a func-

—-

tional form.

The first of the modern hypotheses was the assumption of the N

classical two—dimenpional law of the wall which is

w*a Al In y++A 4 (1.2)

. 2
T L\\ /
‘ where»Al and Az are constants. This planar hypothesis“approach was

N

taken by Yu.(10), Chin et al (11)(, Afzal and Narasimha (12), Afzal and _
Singh (13) and Willmarth et al (14) oﬁgver ag Table 1.2 shows they

‘glsagreed on their respective values for Al and A2. Several authors

{
found A1 and AZ were functions of eilther Ra’ the Reynolds number based
on radius a, or the radius based parameter af. Also shown in Table 1.2

is the range over which a sbecified pgfémeter was varied,

The streamline hypothesis proposed by Richmond (15) is based on
an alteration of the argument of the similarity function of the two-

dimensional wall law for axisymmetric flow so that the mean velocity is

in the form . {

+ + \ ‘
£+ y g
s B R I : (1.3)
-——;. ‘
’ 2a ////

Also ugsing this method were Yasuhara (16), Willmarth and Yang (17), and
Huffman and Bradshaw (18) as shown in Table 1.3. o
An alternate hypothesis proposal was submitted by Rao (19) that

“the axisymmetric wall variable is the one that will preserve the linear

form of the law of the wall in the wviscous sublayer so that the equat- -

ion.1is

<« -
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- glven y and friction velocity U*qhh/p, that. is independent of cylinder

‘ d}ﬁ cenceived the mixing length theory with the "assumption thpt 's par-

‘ 1 : o e < ad

.

. A
‘ :
u'aa In { a’In (1+ Y)}+a, (1.4)

\ at ’

Later, Rao and Keshaven: (20) showed that A

LA

1 and Azuwere not constants

but functions of Ra and b,* (seé Table 1.3). Other cylindrical sﬁ'udie‘s

— 4
using Rao's method were also conducted by White (21), (22), and Chase "
(9), (23). i

- o
The local similarity hypothesis used by Patel (24) and Patel and

Bradshaw (25) in thé form ’ . . : ‘*

@

! ’ + + 1 * i 2 B
u -? In {4y /(1+1+Y )y} +a, (1.5) -
s +

.. a . / |

and 1is shown in Tablé 1.3. Sparrow et al (26) and Ginevski and Solokin - ;

\

(27) also used this method. : ;

The derivative hypothesis corresponds to an eddy viscosity,'atvg

ol
;aﬂiuét Only two authors have used this hypothesis, Cebeci (2%) and . ‘
’ ! ’ 1
later on, Chase (9) and (23) who only used it in showing the superior-
- ~
ity of another method. | - A

'S

NI Y O

1.2.0 DERIVATION OF CbMPETINé ANPOTHESES

1.2.1 Derivation of Planar Hypothesis N

. . . /‘

*
. In order to express the momentum shear stresses in terms of mean

e i

e

velocities, Prandtl introduced the concept of a mixing length. In a gas
;Pne molecule, before striking another, travels an aferage distance .

Enown as the mean free path of the gas. Using this as an analogy, Pran-

N :
ticle of fluid is displaced a certain distance before its momentum’is

w

changed by the new environment. In this section, a brief review of the ’ '

»
1

P
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by

original mixing length theory is given and'an extension of this theory

to obtain the mean velocity for two-dimensional flow is shown.

t

-

1.2.1.a Derivation of Mixing Length

o

Because of the difficulty in describing turbulent motion exact-

% ly due ‘to its random’ nature, the instantaneous veldcity is set equal to

-

the sum of a mean value plus a fluctuating component. Therefore, for

the xy coordinate directions,

' u" u+u and ve v+ vy’ , ‘ . (1.6)
. ~ '
l A ) A T

i -

-1 5 7 -
! where u T o udt and v

L L

N

T : .
. vede (1.7

R

with T being a long time in comparision to the time scale of the turbur
" lence examined. The mean values for u' and V' which are u' and v' resp-
’ * !

ective]ﬁy, are zeroc by deﬁnition, but this is not true for the meaﬁ va-

lues of the squares and products of u' and v'.

. For a two-diine/hsional boundary layer developing im a pressure

) gradjent, the equations of motion are

- !
- —_ - _— - - vy 9t~

’ Momen tum udu + Vv Ju= - l%& + 1= ‘ "(1.8)
: ax 2 o '
E . Continuity _§: +_3__—\Z =0 ‘ . (1.9)
; o x 3y B s
g When there is no pressure gradient,the pressure term-is équal to zero. ‘

When the Navier-Stokes equations are w;it‘ten in terms of mean

4 ‘ s .
1 ' velocities and fluctuations from the mean are then averaged with res-
1 pect to time, re-arrangement of the resulting equation enablés the to-
3 tal shear stress 1, to b\e\vﬁitten as
3 ' 3u ' | ‘
. Trugy T pu'v’ : . (1.10)
3 5 ‘ ’ ’
*/ A i

_r

.
»
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where u is the mean velocity parallel to the wall, u' is-the instantan~

eous fluctuation of veloci;:yiin the direction of u, v the cross fluctu—»

-

ation of velocity in the direction normal to the wall, y the len}th

scale normal to the wall and measurezl positive\fmm the wall, p the

-
«

density of the fluid, and y the coefficlent of viscosity of the fluid.
The first term, the apparent molecular 'stress', on the right-hand side
of Eqn. 1.10 represents the effect of viscosity on thé mean flow, wher-
eas the second term is the Reynolds stress dependent on the state of
turbulent motion. For laminar flow, the Reyn>olds stress term is zero..

For turbulent flow away from a wall, thé Reynolds stress is of consid-

erable greater magnitude than the viscous stress so th3t often the fir-

st sc‘resév term is neglected. However, as the wall is approached, the

‘portion of the viscous stress increases. At the‘wall, viscosity predom;

v

inates. . . ‘

The second term can be explained on the basis of the momentum
interchgnge between Jfl}ﬂ.d eleuents as they fluctuate. In Fig.l.1l the
flui'd in layers a and b moves with dififerer\xt mean veloci't:iea. with ;aﬁ
having a smalier vaiue than —‘;b If the smaller’velocity fluid in laye?:

a were to fluctuate with a v' velocity 11.nto layer b, its Velocit‘y in
J

i o

thé direction of the stream would be 1%8 than -‘:b by an amount ;-u',. The
drag of the faster moving surroundings Mould accelerate the element'am,i
therefore in‘crease‘its momentum. The fﬁ\ux crossibg from a to b, p V' ,
;nass/sec—mz, when multiplied by -u' tes\t\fl't‘ﬁ":iﬁf;gw}'u"which is the

change of momentum per second for this flux. The rate of change of mom-
-
entum is an effective shearing stress. Over a period of time the aver-

e—————

age value would be-pu'v'. Now Prandtl also defined

AN
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Fig. 1.1 Notation For Mixing Length Theory -
By E
J . .
u'v' =-R ]u'z { v? : (1.11)

where R is the correlation coefficfent. Introduction of the mixing lex'x- .

gths b’l and g,z'defineq! by

———

|2_ 30 P . ’ . ' . ”
) u P . . - - (1.12a)
» ’ ) N § "
‘ 2 2 \
1a ou .12b
. &and v L, 3y , . . (1 )

respectively, then gives

T 'u( ) ML ( ) , , (1.13)

¢

The quantity R¢, 1, is set equal to g2 and ?herefore '

-

2 —2 : '
4 'r} _u(a; )_ ot (_:_;_)’ (1.14)

A}

which fepresenta the total shear stress for mean fully daveloped'turbu-

PR o ————— A

oo




‘ y, at u = 0. Setting

lent flow near a wall.

1
'

1.2.1.b Two-Dimensional Law of the Wall . '{f’

* In the laminar sublayer for two-dimensional flow, the velocity '
W = u and thé velocityv gradient —% i; nearly constant. Therefore, the
shear stress may be assume;i' constant and equal fo T, ;.s follows

o
T T . u-g-;l,- =y 2 ! (1.15)
y=0 y

Substituting u*-hw/p where u, is the friction velocity and v=u/p
which is fhe kinematic viscosity, the following dimensionless relation

is obtained

-

' s u M - (1.16)
' u

*
<
~

, » M UgY
Setting u+'- L. and y+- —_— : (1.17)
“Q v
. L + _ . )
then u=y (1.18)

In the turbulent boundary layer zone for two-dimensional flow
‘with the approximation that the mean shear stress remains nearly equal

to the wall shear, then in terms of Prand;;l"s mixing length
N
u 2 -

2
T '=t-.-p$l.(%-)-’ll

T, (1.19)

~

Integrating this: formula with the basic asmnnptiod that 2 = ky for the

14 {

fully turbulent region
i
5. ifavne (1.20)

u, :

i

[

Extraﬁolated- towards ti\e' all, the”logarithm ‘gives» a definite value y=

\ 1 P oportiog?l to v/u* which is a characteristic

RO
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length at u= 0, then

v

- L !‘. - A - _]L N
¢yt A ol o (Ley

A

Substituting Edqn. 1.21 into Eqn. 1.20 gives the djcensioniess equation

T 1 Us ’ ‘
_-_ = = + ’ .
oy X 1n 5 A2 (1.22)
whi }’vean also be written with A1 = 1/k as
+ +
u = Al ln vy o+ Az ' . (1.23)

%

which is the two-dimensional law of the wall for fully turbulent flow
over smooth walls. ' f

1.2.1.c Comparision of Sublayer and Tramsition Region Equations k

Three semi-empirical relationships for the two—-dimensional

P

sublayer and transition region by Deissler- (1), Van Driest (2), and
L&ldweber and Porch which was presented by Patel (3) are shown in Table _
1.4. The equatians for the dimensionless velscit:y ratio u+ as a,»f’mctf \
ion of the dimensionl'es's vertical length y+ by Van Driest and Landwe-

ber are valid also for the fully turbuiegt region while Deissler speci-\,

fies that his equation holds true until a demarcation point at y = 26%

and u*u 12.9, afterwhich he recommends using the clas‘sic two-dimension~

al law of the wall with the constants Al and Az specified in Table 1l.4. +-

A compa;'ision of the results of the two mixing length exﬁress-
ions of Van Driest and Landweber and Porch obtained from writing a For-
tran program were plotted in Fig. 1.Z. The latter takes
on the linear mi:;ing length relation 2t lcy+ for vglues of "y+ of ap-
proximately 50. The mean \.Ie;l.ocit:y ‘distribution using the three relat-.
ions was plot:t\ed in Fig. 1.3. Since no experimentﬁl sublayer data is ~—
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¢
available for the boundary layer flow along a flat plate, data for flow
through a smooth two-dimensiondl channel and a smooth circular pi;e ob~-
tained by Reichardt (29) and I;aufer (30) are used. No defini}:e conclus—
ioﬁ can be drawn concerning a preference for any of the three semi-
empirical rel%ons because of the relatively large scatter of experi~
mental data. None of these relations appears to be in strong contradic—
tion with the experimental data. The results of the three relatioms
overlap in several sections and probably could be made to coincide fur-

ther through sTight modification in choice of empirical constants.
! v

i.Z.l.d Van Driest's Relation

As a modified version of Van p#Mest's relation is used in the
gtudy of the viscous sublayer and transition region for axisymmetric

conditions later on in this chapter, a brief derivation of his two-dim-—

ensional work follows.

s
/

The Eqn. 1.14 supposedly represents mean fully developed turbu—

A

lent flow near a wall. However, such fully ciieveloped turbulent motion
occurs only beyond a distance sufficiently remote from the wall that
the eddies themselwves are not damped in tur:.n by the nearness of the
wall. The viscous effect of the proximity of the wall.may be pstimated
in the following manner. Consider an infini;:e flat plate undergoing .
simple harmonic oscillation parallel to the plate in an infinite fluid. '
As shown by Stokes (31), the amﬁliude of‘ the motion diminishes. £rom the
wall as a consequence of the factor exp(~y/A) where A is a constant de-
pending upon the frequency of cscillation of tpe plate and the kinema-
tic viscosity vy of the fluid. Hence, when the plate is fixed and the
fluld oscillates relative to the plate, the factor (l-exp(~y/A)) must
be applied to the f£luid oscillation to whtain the damping effe’cg: on the

¢
’

4

~\ é
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wall. Hence, Eqn. i.l4 should be modified from
" :

s 2

- ¢ du Z oduy v . .
Teu(E et () o
- 22 7 2 =2
to ,1=u(%§-)+,pky{l—-exp(:%—)}(%;j)' o (1.24)

in order to take into account the mean motion all the way to a smooth

. wall.

PPV

One could argue that the presence of the wall modifies the uni-

versal, constant in that

|
/ Ke k-{1 - exp (-y(A)} (1.25)

PPVIVE RRPLRNY S

or that the mixing length must be\changed to )

L» ky {1-exp (-y/A)} " (1.26)
Writing Eqn. 1/(25 and 1.26 in a dimensionless form in which & 1s a

constant of turbulence equal to A u*/v, then

ool

K= k {1-exp (-y /&) (1.27a)

and JL+=- ky+ "e‘xp (—y+ /A% )} (1.27b)
o+ 3
where L =u, /v and y+~= /v 3
Thus Eqn. 1.24 would beco;n'e .
+ 2 *2 , gt /
Lo @y iy - entan Ep (1.28
¥ 3y . 3y ‘
. ¢

e
For a boundary layer flow with zero pressure gradient,dt/dy, -
* ) . A /’\
equal to zero at the smooth w}all and therefore, T = T, Through inte~ -
. ’ M 13 .
gration of Eqn. 1.28 one then obtains the expreaaion for ut which 1s

_ / at v* 24y+ \

(1.29)\
0 N\

‘ - 1 /(:fkly*'z{l - exp (-y*/a* )}Y'
L . N . * »
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Fig.l.4 Definition Sketch for the Thick Boundary Layer Along a Cylinder-

. 1.2.2 Axisymme t ric Equations of Motion

The equati?h of motion for axisymmetric flow over a cylinder
of radius a (See Fig. 1.4) with all the symbols the same as for two-

dimensional flow, are given by .

Momentum
- — 3u = du 1 dp .1 a{r(lr?i-puv)} ‘
u‘a';"-!-‘l‘a_y'-"";dx-b ;‘FTY- 3y (1.30)
“ Continuity '
1.2.3 Derivation of Rao's Method -

Rao (19) developed a law of the wall for thick axisymtrie
L e~ )
turbulent boundary layer in which the sublayer thickness is comparable /

o
to the radius of transverse curvature. He stiates that very close to the

wall, the mean velocities as well as turbulént fluctuations will be so
N\

i

&

-
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small that the inertia and stress terms in the a:iisymetric momentum

v .
equation may be neglect:e’d. Therefore, in the absence' . of a ny pressure °

K

B

WIS -

gradient, then " i

ir = 1(y + a) = T2 ‘ ] (1.32) !

wl;ich éuggests the absence of a constant st:re.ass layer. This e_xprgseion_
indicaﬁes tha/m the decrease in the \;iscous stress a\way. from the wdll ts
not fully compensated by the corresponding increase in Reynolds stress
\in axi;ymetric flows, unlike in two-dimensional flows. The t dffect
is is the existance of a shear g’t&dient, which .can be expectéd to ex—

N

tend the effects of vigscosity to regions farther away from the

than in two-dimensio%al flows. N g )
. . .
: -\
Substituting the equation for shear in the viscofs Hlayer,
T = pou/ar (1.32a)
into Eqn.l.32-and integrating one obtains
T ml, 8., 8 2 .
i u, Uy S log - ” log (1 + ) ) (1'.33)

I'{ao states Egqn. 1.33 is .the iinear relation of the law of tlge wéll ’ \
which must hold very close -to the wall and suggests it is ‘}alizi for va-
lues of his axisymmetric subla\ay‘er equation when y"' is less thén 5.‘

Rao makes the assumption that the correct law of the wall in
the turbuleut region for a:d.syunnetr;:fc flow is in the ‘same fom as in -~
the two—dimensionalycasje. When the right side of Eqn.1.33 is greater ' ‘(
than 30, it is substituted for y  in the two-dimensional law. There-
fore, with this special scaling, the 1aw of It:he wall in Rao's form
with égand A, as constants is ’ ' '. Lo

b )

. .
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4 /.r"J . —
.
£ -
é-
. .
.

o, -

it o Yo i il e WA 45 s T S e i Ar




v | =

u, a '

u * i o
u, - Al log ¢ = log a) + AZ 9 (1.;34)
which can also be represented by '
+ + Lo
u = Al log{a log(l+ ‘Y:-)} + AZ- (1.35)
- a

1.2.4 Derivation of Richmon‘;'s Streamline Method

Richmond (15) assumed that there was.a tegion:mear :the wall
where the mean flow was dominated by the wall. He obtained a law of the
. =

wall for the axisymmetric bov.mdarymlayexwusring«Cc\lesl0(32). stteamline

Mhypothesis in that region. In the region near the wall of a two—diﬂlér’l:-"' -

sional turbulent boundary layer, Coles has pointed out thab the ‘mean
streamlines of the flow are given’'by lines of constant ut. Therefore,

Rickmond's procedure for the wall region of the axisymmetric boundary

'layer should be valid in the reglon near’the wall where the turbulent

flow is essentially two-dimensional as in the case when the ratio y/a
is small. .ptherwise ‘the similarity law derived from the streamline hy~-
pothesis may be incorrect. .

His proc;adure assumes that u' is constant on the mean stream-

lines. Therefore, ,using the stream function y

©

, _ .
] u+ = —3— a ¢ (C w) R (1-36)
* T - .
inverting this expression .
» . L 4
1
A &) / : (1.37)
. U .
. - .. /
The continuity equation defines the stream furiction .
- N - ‘
. ur o and vr oo (1.38)




If the Eqn. 1.37 and 1.38 are (sadyined then

\

—_ ' .
- Low & ) o )

At any given position, if the stream function interpreted as
. : . ,
a measure of the fluld flow betweén the wall and thé line at a distance
y from t':he wall, the same stream function must vary in axisymet;rical
flow as {(a + y)z- az}. where a is the radius of tl}'e circular cylinder

used. ‘i’herefor'e, integrating u, in Eqn.1.39 “over the area Between the

wall and radius term (a + y), yeilds -

1 "2 2 u ) e
‘ EC“*{(a' +y) -a}s= G(;:) | - (1:.40)
/ <9
u ool 2 2 ' . .
or u F{5Cu,{(a +y) - a }} . (1.41)

S

The constant C is evaluated at the wall (assume F'(0) = 1) and C = ilva

. Introducing the factor 1/2a to let the result tend to the two-dimen-"

sional value as a+~ with y fixed then Eqn.l.41 becomes ot
« yu* - .
. F{— X
u, F{ v .(.1 + Za)} : (1"'2.)

s

- '

{!si,ng the new coordinate (u,y/V)(1 + y/2a),(gne czwrite the of
the wall in Richmond's form as

»”
4
/ . . . .

2

-
+ ' #
W = Adnlyt L+ 1) 4 A (1.43) 7

2a

N

1.2.5 Detivation of Local Similarity Method

Y

Bradshaw and Patel (25) base this method on the similarity ar-
guments di.scussed by Townaend (33) of which the basic assumptions are

that the eddy length acales are proportional to ('r/p)i wvhen 1 is the

. . shear stress at height y. These assumptions are fqund\!:o be valid for .

BRI s i St e ¥ b B et B e AlF Bl N e T T ek



23 .

y/§ <0.2 in a plane boundary layer where .6 is the displacement thick-

ness. From these assumptions

3

L
oy (D)

Ky B (1.44)

Substituting'Eqn. 1.32 into Eqf.1.44 and integrating with A1 = 1/k,

A

u,y . T , ) .
. 2 e A In [ 4 I ]*- A,  (1.45a)
Ux V(1 +(1 +yla) -

which can also be represented as

u+ = Al In [y+ 4 4+ o+ i _-]4‘ A2 , (l‘a.sb) '
- ) (L +(1+ y/a)7) .o
or equivalently . .
. &
) ‘ % .
N R y/a)i =1 {ra, 50
(L+ y/a)° 1
. .
1.3.0 DISCUSSION OF COMPETING HYPOTHESES
1.3.1 7Two-Dimensional Hypothesis
P The basic assumption of all the authors using the two-dimen-—

>

sional wall law for'axisyﬁmetric flow was tpat the total shear stress,

T, was equal to the shear stress at the wall, Ty, spereby ignoring the

effect of the transverse curvature on the shear stress. The effects of

the transverse curvature increase with decreasing cylinder fadius, a.

“

The two-dimensional hypothesis is of sufficient accuracy only for rela-

tively large cylinder radii. The transverse curvature effects were par-

tf

tly taken into account through variation the values .given the cons-

tants A; and A, in the two-dimensional wall law.
| . )

As with other authors, Afzal and Narasimha (12) reverted back

to -the two-dimensional laws because of their'simplicity but they used
+

-
t
- ;ﬁ. ' .
-
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« . \
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asympotic expansion fé?ms. Theyliﬂmdted tﬁeir work though, for at>1
and 6 /a of the order wity. They justified their hse'of the two~dimen-
sional laws by saying that if’ a+ is large in fhe equation for the total
shear stress T in an axisymmetric wall layer,T ==1:w/(1'+ y+/a*_) s then
T can bée taken as cogstant_equal tO'rw. Conéequently, the sublayer pro-
file is linear so that the effects of transverse curvature on the inner
layer must be capable of being regarded as'higher order perturbations .
t; a basically two-dimensional flow. For modefgtely large values of a+,
they suggest that the additivé term in the wall law is a linear fumcti-

on of 1/a+ but because of the scattering of the existing experimental

data, they could not conclusively verify this hypothgsis.

- 1.3.2 Richmond's Stréamline Hypothesis .

From Richmond's derivation (15), he assumed that éoles' (32)
hypothesis, (that in the region near the wall of a two-dimensional tur-

bulent boundary layer the mean streamlines of the flow are given by

.
* 1lines of constant u ,) should be valid for axisymmetric flows if the

flow is essentiéily two-dimensional as in the case of smalll values of

»

y/a. Othérwise its usage may be incorrect and the accuracy of the re”

»

sults questibnable . o

Willmarth and Yang (17) suggested that if the amount of trans-

‘'verse curvature is not too large, 6/a <<1, then the most logical ap-

proach would be to assume the two~dimensional law of the wall. Since

14

their work dealt with ‘6/8"2, they chose Richmond's method to take the
curvature into account but questioned its validity for large y/a for
the same reasons' as mentioned above.

4

Huffman and Bradshaw (18) also utilized Richmond's

-
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y/8 or y/a < 0.2.with the reasoning that"though it is not uncontrover-

sial, it should suffice for calculation'of the mean velocity profiles

by

within the limits imposed.

1.3.3 Rao's liypothesis

Rao's hypothesis (1Y) was derived on ‘the basis that for a slen~
der cylinder','thé s;xblayer thickness is comparable to the radius of
transverse curvature. He states that for small y/a, the Ecé.l. 33 (q‘h -

au*/v log r/a) reduces to u = u/ul- (yu,/v)(1-y/2a). Therefore, the use

‘of the streamline hypothesis or the ‘two-dimensional law of the wall

near the surface to estimate skin fricti&n assuming a linear relation
is incorrect unless y/2a << 1. The error increases as y/a beéo;es com-
parable to unity. Physicall§ this means that, as the thickness of the
sublayer becomes cgmparable to, the radius of transverse curvature, it
is more corr?ct'to use Rao's eqhation fof the ;eéion very close to the
wall than either th; two—dimensional wall law or thm streamline hypo-
tﬂesis as a ligear ielgtion. A graph of a compa;ision he:wqen the
streamline hypothesis and Rao's.is shown 1n.Fig.l.Si,and'Fig. 1.6..
Willmarth &nd"Yang.(17) agree with Rao that Eqn.1.33 is cor<. i
rect in the region very near the wall, but ﬁoﬁbt that it ;an be valid

in a region extending from the wall as far us the radius of curvature

of the cylinder:whenﬁla >1, Their.conception.of the sublayer is a

i ¢ 1 1 .
regivn dominated by wall effects and that no matter how large the ratio

-
&/a becomes, the aublayer thickness 1s always small co?pared to the

radius of curvar.ure of the. surface, a. If this were not true, they

state th.at fle t:urbulent eddying flow would wash the fluid in the sub~-

layer completely off the cylinder. They also question Rao's velocity

) ’ptu"ile law used throughout the boundary region, because 1:: takes the

4

}
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logarithm of r/a which reduces the scatter of data points for large r

and requires extremely accurate measurements to determine the validity
, A

of the formalation.

1.3.3.a Validity of Rame's Hypothesis for Transpiration Flow

Bradshaw and Patel (25) state that the argument on which Rao's
formula is base? is unreliable and cite the example of the turbulent

boundary layer flow with transpiration as a case of the’ failure of Rao'

s hypothesis that the same scaling laws that apply to the sublayer

should persist into the region of the law of the wall. The suﬂlayer

’

equation for transpiration (for two-dimensional boundary layers with

suction or injection at velocity Vw ) is

. u v {1.46)
u * wy._
;-* = V‘; (exp (-—2— 1) )

When the above sublayer value of u/u* was substituted for u*y/v in Eqn.
1.22 (.the usual two-dimensional logarithmic law of the wall for the '

turbulent region) then

-
v

U m Ux va
-‘;: Al In .\_I; fexp (—2-") - 1) +~A2 (1.47)

r

‘Patel and Bradshaw showed this equftion resulted in vastly different

s

- values of h/u* compared to the ones‘obtained from the bilcgarfthmic law

-

~
2u
%* + + i‘ +
v;—-{(l +Vu) -1} = Ajlny + A, (1.48)

which is generally accepted as a good fit to experimental data outsifie
the viscous sublayer. ) ‘ \
Rao (34) contends that 1f the transpiration equation was recast

in the following form .
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\ 1]
- Vu yu,

u w *
G In @+ =) = — (1.49)

w u, .,

then the law of the wall would be
- l

u, Vu yu, ' .

G 1o (1+X%) = Kln () +C , (1.50)

[ * 2
With the known variation of the constants, C and K, with suction and

injection, Rao therefore set Kxhalf its normal value and C=6. This re-

" sulted in a difference of only £ when the above equation was solved

for u/u* gnd coﬁpared with the u/u* value obtained from the bilogari-
thmic ‘Jaw. Unlike Eqn. 1.48) the Eqn. 1.50 tends to the ordinary log-

arithm for small values of (un/u*).

1.3.4 Local Similarity ypothesis

The similgrity arguments discussed by Towmsend (33), based on
the basic assumptions that the eddy length scales are proéortional to
(r/b)i, are valid for y/6< 0.2 in a plane boundary layer. In a slender
axisymmetric boundary layer,\Bradshaw and Ratel (25), who used the lo-
cal similarity hypothesis, predicted an.upper limit on y/a as well as
y/§. Their reasoning was that if y/a is larger, the lateral length
scale of ;he eddies will be much larger than é, so that the eddies will
not be constrained as they would by an effective infinite wall. Then
any wall law analysis including'Rao's will be invalid'with y/a=3 given
as an optimistic figure for the upper limit. Chase (23) states that
Rao's hypothesis yeilds excellent agreement with the measured profile
even apt to y/a=50, (see Fig. 1.6), even though one has no right to ex-

pectany wall law analysis to retain validity at such a large y/a.

Rao (34) believes the eddy structure, at least in the region o

—

N

o mm———
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X

of the wall, czanot be considered in isolation from the effects of the
wall and that the wall effects appear to be stronger than hithefto
assumed. Rao also questions the assumptioﬁ that the eddy length scale

is proportional to the distance from the wall in &tsymmet:ric flows. He'

'doubts that the eddy structure on cylinders of 5mm and 50mm diameters

should be the same at 2mm from the wall even if the thickness of the
turbulent boundary layer is the same in both cases. For example, the
velocity induced by one ring vortex on another :I;n the two é:ases wivll be
'dii.fferent even if the strengths of the, two vortices are the same in
both cases. For this reagom,Rao justifies the use of his alternate for-
mulation for the mixing length and law of the wall for axisymmetrical.
flow;. \ |

Two of the repo.rts,published before Rao,attempted to improve
results over the two-dimensional and Richmond's method. Ginevski and
Solodkin (27) adapted Prandtl's mixing length the.ory to the t:\hick cy-
lindrtcal boundary layer and included consideration of concave and
convex surfaces, pressure gradients and.flow separation. They divided
the flow field into a purely laminar one and a fully turbulent omne.
After examining this approach; Sparrow, Ec.kert and Minkowyez (26) hsug.-
gested that the use of. local turbulent transport coeffients would im-
prove results and used the two-layer ed‘dy viécosity formulation of
Dieésler(l) to take ﬁhe transition region into account.

Patel(3) and (25) explained his choice of tl}e local similarity
method over Rao's method in that he de/sig:ed' to avoid Rao's special
scaling ‘assumption that th; laws applyiﬁg to the sublayer should per-

sist when substituted 'in' the equation for the region of the law of the

wall, He used a recently introduced mixing length formulation by Land-
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weber (5) to reflect the trarsition region.’

1.3.5 Derivative Hypothesis

4

Only two authors used the derivative hypothesis, Cebeci (28)and
Chase (9); with the latter only to show that it was less accurate sthan
Rao's method. Cebeci (28) used an imq@}cit fgnitf difference method for
solving Zhe equations of continuity and momenlum after a combination of
Probstein-Elliot and Levy Lees co-ordinate ;ystem transformations while
also incorﬁorating Van Driest's mixing length. The derivative hypothes-

-

is corresponds to an eddy viscosity at é given y and uy that is inde-
pendent of the cylinder radius. The use of this planar formulation when A i
solving axisymmetric problems i1s critized by Coles(32) and White (21),
, who suggest that a cylindrical body has less ability to influence tur-
bulence than a flat plate. Therefore, the mixing length used by Cebeci
should be propartional, not to y, but to Rao's variable, (a 1n(1l +y/a), -
which is less than y for thick boundary layers. Cebeci(35), the only
proponent of the derivative hypothesis, followed these suggestions and

abandoned the derivative hypothesis to use Rao's variable, correcting

Van Driest's eddy viscosity for axisymmetric flow.

1.3.6 Comparision of Competing Hypotheses With Experimental Results

|
f
H
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|
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4
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Chase (9) ana (23) examined competing hypotheses for the mean
velocity profile of a turbulent boundary layer on a cy!IﬁaéE'in éxial
flow. Rao's, Richmond's, the planar, and the derivative hypotheses were
discussed and their results explicity compargd with experiment. Chase
plotted the various alternate hypotheses in Fig.1.6,1.7, and 1.8 after
computing the profiles using Squire's tramsitional profile for the pla-

nar limit given by

Fiy50) =y - for 0< y< ¢, . (l.5la)

BT, -
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+ F(y*,0) = A, 1ln(y -J,) +A forC.<y"  (1.51b)

'L L) 1
. - ‘J

with Al = 2'5. and A2 = 5.1

and C1 - Al In Al +~A2- 1.4 N

! . - . - ' - ' 5 L\
and Jl Cl Al 4,9 .

"The results were compared with Richmond's (15) experiments with
a‘a' 0.3048 cm and u = 1240 cm/sec with natural transition and u =460 cm
/sec with clay~centerbody and enveloping stovepipe. Since the friction
velocity, u,, was not measured and not rellably derivable from the slo-
pe of the measured profile at small wall distances, this parameter was
regarded adj@table for each of the hypothesis and was adj;:sted in two
different ways for each set. I&\the first instance (see Fig.l.6 and 1.7
), the values of u, were chosen to yeild a comman value of u(y) in ag-

4

reement wi’ti.h the measured result at a chosen y well out in the boundary
iayer (b:t at a minor fraction of boundary layer thickness). In the
second method (see Fig.l.8), tt;e values were chosen instead to yeild a
common value in agreement with the me‘asugred u(y) at the measured point
nearest the v'lall. f) . ‘

./bs 11llustrated in Fig. 1.6, 1.7, and 1.8, the Rao hypothesis
suceeds best in’ des‘ci'ibing the expeiimental profile over most of the
thickness, even at very large y/a. The advantage 18 not s'ubst:ant:i’.ally

weakened if the result is compared with that' of Cebeci (36). Cebeci

}eéumed an eddy viscos:iu.ty independent of y/a,.as in fhe derivative hy-~

pothesis, but integrated the mean momentum and continuity equatibns in-

[ P
s
-stead of assuming shear force per unit streamwise distance of ¥,

"A recent compafiston by-eebeci(SS)‘;after he rejected his defiv-

. A

CHE
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ative hypothesis, between the calculated and experimental values for

.velocity and Mach number profiles, can be seen in Fig.1.9. Here the

two~dimensional hypothesis using Van Driest's planar equation is com—

pared w;.th Cebeci's present use of Rao g8 variable modifying Vam.Driest:'
8 equation. As can be gseen, the two—dimegsional hypothesis inadeqhately
predicts the condition of thick axisymmetric turbulgnt: boundary layers
where 6 /a is large‘whi‘ch emphasizes the limitations of its gpplication.

Chase(23) states that even if the local similarity hypothesis

for the logarithmic range with parameters u,
was plotted along with the four other methods,
the measured one in Fig.1.6,1.7, and 1.8 over Such a large range of y/a
atel (24) compared tile

(outside the sublayer) as does the Rao curve.

values obtained from the two terms from the local similarity and Rao's

equations (see Table 1.3)

+3 .
\ 4 (1 + y "/d) with In(l + y /a%) \
(L+y /a")

and discovered"that the disagreement %s of the order of 1% for°y+-a+
and less than 8% for y+-6a+. ‘For larger y+/.9.+ the difference between
A

these two terms increased.

1.4.0 EFFECTS OF TRANSVERSE CURVATURE

1.4.1 Influence on Wall Law

A

In respect to the wall regions of a thick axisymmetric boundary
layer, small values of a+ bring significant variations °in stress thro-

Id
ughout the region as a consequence of the flow geometry, The stress

continues to fall monotonically from its value at the wall, This can be

compared to the situation in ‘a two-dimensional boundary layer develop-

~

ing in a favourable pressure gradient, where the. st:rese falls . from its =

T

< vy




g g v e

[

24f
)

b e e PHESENT  FORMUL ATION
cmean TWI-0 FORMULATION

DatA CF RICHMOND (1957}
Dt} ey
. a 1 |

QO Qs | 4] /;
S ’/ -
12F A /

;
° ) oF G¥ 04
h y* 0 [

“ .

Fig. 1.9 Comparision of dalculated and Experimental Dimensionless Vel-
ocity Profiles for Two Cylinders. The Experimental u? Valyes
were Obtained by Normalizing the Measured u Values by the Cal-
culated Velocity ug. The Lower y ' Scale Refers to the 0.06096

- cm Cylinder. (Ref 35)° °

-

\ k ~
: '
30| Bl TR r T Y =TT vrr R
S—— )
< 3
. R .
0"004
- Ho~-
20}- e
o s 000 -
%00
' » L ",/ . 4
t' 'ﬂ °
s -
! ';‘.’
- . 00
y e & N
o+ T
- Iy 0 .
d—‘-‘ ’ i
"""" 20 ~
s 10
= 09 «
354
ol A A lLAAAlln 1 L lfL_LlAlnl. s . lLIllln‘ .
f . .
' y -
-

Fig. 1.10 The Influence of Transverse Curvature on the Law of the Wall.
(Ref. 24)




e

B\ T .
A
35 4 .

]
. 1
'value at the wall as a result of the pressure gradient and<the accomp-

.

anying flow accelerat‘ions, The influence of transverse curvature on the
P i . .
,law of the wall can be seen.jn Fig. 1.10 which uses the local similgr-b
ity hypothesis with a*equal to infinity being the flat plate case.
' ’_

1.4.2 Relaminarisation

AH the pjsented methods have been found somewhat inaccurate:

in predicting the.Stress and velocity distribution in comparision with

xpegmeﬁtal results for low values of a'. Patel (24) -proposed an ex- ° .

planation for the discrepency based on the éimilarity between the in-

fluence of transverse curvature and a favourable pressulre gradient on.’
. -5

the stress and velocity distributions in the wall’ region. Patel and L
&

\

(ﬁead (37D h"ad reported that there is a definite limit to the favou! able

. Ppressure gradient thatétan be imposed on a turbulent boundary_ layer s
wifhout destroying the essential equilibﬁrium tliat exi‘;sts betwee;l the
production and dissipation of the turb’uler'xt‘kinetic energy in the wall
region, &n\d thereby provoking relaminarisation. They had suggested a
limiting value of -0.009 .“for the :tress gradient parameter,1+ , as the
’critetion for the onset of this reverse transition prc;ge‘ss. Patel (24)
proposes that 3/ similiar limiting value exists for the curvature para-
meter, a'. Computing the str;ass gradient, T et/ L f::r the axisymmet-
rical bom;dary layer on a slender cylinder from .the equation 'r+-1/(1'+

. y+la+) and setting it equal to -0.009, he found the corresponding lim-
1tit;g value of a+ was about 28. Below this value, the flow would there-
fore be considered as transition'gl ~za:‘u-l not fully turbulent as assumed

by the various methods. Therefore, T, and u,,,.('rw/p)i woul.d be less,

-~

* 4 while u'= u/u, would have a greater value than if the flow was fully

» .
. turbulent. Since the shear would be less, the shear coefficien,t‘, would

‘
/

3
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also have a smaller value.

Rao and Keshaven (20) propose a limiting value for the onset of

relaminarisation in terms of Ra less than 15,000. This value 1s close ..

“to the value of 11,000 calculated by Rao(38) below which all small dis-

turbances to laminar axisymmetric boundary layers will damp out.

In a recent experiment by Willmarth et al (14) no tendency to-
. \
wards relaminarisation was found at the lowest value of at tested which
" T -
was 33.4. Their measured shear stress at that value on a 0.0508 cm dia-

meter cylinder was sliglitly more than a factor of 6 larger than the

laminar valu}e predicted from the Tml'cminar theory of Glauret and‘Light-

hill (39). Their velocity profile mcasuremnts showgd’consistent behav~

iour as the cylinder radius was reduced. It was veriﬁied that the boun—

ary layer profile on a cylinder is very full. Howéver,this was po;(t:ula- '

ted as a result of the cylindrical geoﬁé try of the flow. In the bound—
ary layer on a cylinder there 18 no qcceleration of the i‘:'ree stream,
which in two-dimensional flow is directly responsible for the favour-
able pressure gradient which produces a full velocity profile. -~

T V{l_illmarth (40) has q;roposed a mechanisp for the cyclic occur-
rence oé bursts in a plane boundary layer which may be uscful in under-
gtanding the differcnce betwee;l the turbulent production mechanisms 1n/
a plane boundary layer with a favourable Eressute gradient and a boun~
dary layer on a cylinder with zero pressure gradicnt. The pressure f:l;-
1d from the large eddies in the outer flow} is i:hought to produce’ a mas-
saging action on the sublayer flow and prepare i.t: for ‘t:he occurence of
a burst, The massaging action of. the large eddles [;assing over the

sublayer is presumed to create, during random periods of time,” an un-

stable inflexional px;of:l.le in localized -regions near the wall. Bursts

H

[
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\v{hich generate new turbulence occur in these regions of locally unst‘a-
ble inflexional profiles. When there is a very favourable pressure
gradient, the outer flow cox}taining the large eddiéslis strongl; ace-
ele;:ated 80 that the large eddies pas‘s more quickly over the sublay-
er flow field , s;q that. their ﬁzassaging actic;n at a given point near
the wall has {:.‘a greatly reduced time scale. Then,ghe flow near the wall
- f!.s locally mél,re stable since the degree of instabilit; and therefore
‘ the number of locally unstable regions in the sublayer dre” reduced.
The result is that theknuniber and intensity of bursts are redtjced.
‘ Ultimately, a reversion to laminar flow oc;:urs.

\
/1/'3/ Variation in the Viscous Damping Constant At

The vis‘co-.us damping constant, A"’, represents the effect of the

F4

viécousysdblayer , (y+ >40), as it determines the additive constant A2
: '

in the logarithmic law of the wall. Huffman and Bradshaw (18) made a

/ comparision study on. the change in A+ and k with respect to the dimen-

.

sio'nle s shear stress gradient, 3¢ +/ 3y+, in the inner layer where'yls
< 0.2‘ :f\or two—-dimensional and ‘axisymme(:r'ical flows. As the data for
the boundary layer itself has been shown insufficient in accuracy to
rgach a conclusion to whether k and A+ have varia\,ble\ values as sug-
gested by Simpson(4l) and Cebeci and Mosinsk;L (36) or comstant values

as suggested by Coles (32) and Herring and Mellor (42), their compar-

' <

ison analysis was based on flows in which low Reynolds number .effects
. are expected to be.larger than in a boundary layer. They staté that if

the value of k were varied but assumed constant in the profile fitting
o .

process, one would expect the optimum At to vary‘ to compensaten .lf this

+
optimum A were found to be constant even in the presence of rather

« ]

écronge: Reynolds number effects than those found in low Reynolds num-

¢
- -~
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ber bbun;lary layers, then the assumption of constant A* and constant
k would be confirmed with fairly probability.

Th?ir plotted velocity profiles for axisymmetrical flows, al-
though found legs in agreément ‘with- experimental values than the two-
dimé_nsional plots,. were of sufficient accuracy to  ascertain that the
generai trend of At to ar+/ay*‘for qxisymmetr’ical flows was' to vary in
the opposite sense to the two-dimensional c;ase (see Fig. 1.11).~ The
best-fit value of A' maintained the basic value of about 26 in a wide
range of low Reynolds number flow if the shear -g;adignt‘, ar / ay+, is

3

numer1Gally less than 10 . At larger values of the dimensionless shear

stress gradient, the damping constant &epatts from this basic value but :

the best-fit value of Von Karman's constant, k, appears to remain at
0.41. The value of ar+/a y+ at which the values of A+. diVergé: corresplmd
to Gsub/a =0.1 wher'as the ratio of the inner layer thickne;s' to a is
about 0\,2.

The "local-equilibrium" analysis for the inner layer described
by Townsend(33) .suggests that the first effect of external influences
will be A'felt by a;/a y+ and the consistenc/y"of results from differént
flows for 3'r+/ay+ less than 10"3 shown by Huffman and Bradshaw (18)
support this. These results contradict Simpson's (41)‘ suggestion that
k and A2 ( or A+) vary, éompensating each other to maintain the same
velocity ;;rofile, in a constan;: pressure boundary for 1000 < Raf 6000?

+, + : -
because 31 Ay 1is numerically less than 10 3 throughout th,i_s_l range.

’
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Fig. 1.11 The Viscous Length Scale A" for Two-dimensional and Axisym-
metric Flows. Axisypmetric Flows on Concave Surfaces, Fully
Developed Pipe Flow:o,e, Patel- & Head; ®, Laufer. Two-dimen- ¢
sional flows: M@, Bradshaw & Gee, Two-dimensional wall jet; m,
Patel & Head, Fully Developed Channel Flow; #, Laufer, Fully
Developed Channel Flow; o, Julien et al, Two-dimensional
Boundary Layers; @, Badri Narayanan & Ramjee; Two-dimensional

~ Boundary Layers. Axisymmetric Flows on Convex Surfaces:¢p,

—_— Starr & Sparrow, axisymmetric wall jet; @ , Lawn, Fully Devel-
oo oped Annular Flow;{>, Cebecl, Axisymmetric Boundary Layer.
(Ref. 18) ! ’

»,

.

., Since A' varies for large at¥/ 3y* and the apparent constancy
of k, it is implied that the viscous sublayer is more sensitive to ex~
ternal influences than the fully turbulent part of the inner layer.
From the consistent differences in the values of A* between two-dimen-
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sional and axisymmetric flow for 1arge\81+/ ay+ it can be concluded

i

that the transverse curvat:ure/ may affect the viscous sublayer. It is

generally accepted, however, that the transverse curVature does not ef-
//1/ .

fect the rest of the innepfiayer since the ratio of the inner laye

thickness to the .radius of. curvature is in&ependent of Reynolds number.

The reasons for the sensitivity of the sublayer to tranéve;ge
curvature remain conjectures. A possible clue comes from the obse‘r\ia-
tion by Kline et alj (43) and hGupta eml (44) of a tendency to trans-.
verse periodicity in the sublayer with a wavelength A given by u*}\/v;
':+= 109. Moreover, \/a =368ub/a =100(3't+ /ay+); consequently, A/a is'
about 0.3, 1.e. one transverse wavelength subtends about 20°, when
significant curvature effects begin. This tramsverse scale is quite
large when compared wit‘h tEe eddy length scales just outside the vis-
cous sublayer, i.e, zsub ~ 16 when y =~ 40, so that it is plausible
that the éublayer is affected while the remainder of the inner 1aye;' is
not. .

1.4.4 Reduction in Turbulent Eddies Size

Willmarth and Yang (17) suggest that there aré two primary eff-~
ects in a boundary layer with transverse curvature that reduce the size
of turbulent eddies. The first effect causing this reduction is the in~
creased fullness of t;he velocity profile when compared with a flat
plate (se; Fig. 1.12), where §/a =0 is the flat plate case. In ‘a boun-
dary layer with a fuller velocity profile, the turbulent eddies near
the wall moving at any given convection speed must be smalle;' bécause
the mean velocity corresp_onding t:o that convection speed is reached at

a point nearer the wall. The second more direct effect where the large

eddies suffer a greater reduction in transverse scale than small eddies

toa
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Fig. '1.12 Comparision of }:he Mean Velocity Profiies, e , 8/a =« 2, Ria
) .26,000;0 , /a = 0, R =38,000. (Ref. 17) 6

is because the wall is curved transversely. Thus if one visualizes a
large eddy adjacent to the curved wall, it is apparent that in the
transverse direct;ion at either side of the periphery of a large eddy,

the mean ‘velocity is higher than it would be at the sides of the same
eddy in a plarﬁa bondary layer. This shearing motion also acts to reduc@

the transverse scale of large eddies. '

1.4.5 Intensity of Turbulence ’

Afzal and Singh (13) made measurements of mean velocity pro~ .

files and turbulence characteristics such as longitudinal velocity
fluctuations, Reynolds shear stress, transverse correlation and spec-
trum. They reported that f;n:' a fixed x/a, as y/8 de;.:reaaes from outside
the boundary layer, the intemsity of the longitudinal velocity fluctua-

tions increases to a maximum value ver}; near the wall after which it _
4

‘decreases to zero at the wall. Also for a fixed y/§, it was found as

\
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¢
yx/a increases, which also means §/a incresing, the turbulence 1nténsity

decreases. Compared with the flat plate case, th;a effect of the trans-
verse curvature decreased the intensity of turbulence.
1.5.0  Conclusions '

This chapter examined the law of the wall for axial turbulent
flow aiong a cylinder without a pressure gradient. Previous studies
were classified according to;six major approaches. As no previous
agreement existed regarding the appropriate similarity 1‘aws for the
mean flow, these competing hypotheses were compared with respect to
accur;c;' of p;ecl,iction, the range of application and the comstraints
existing on their respective utilization. ) '

This chapter considered’ the sublayer end -transition regions as
well as the fully turbulent flow region of thé inner iayer. A compari-
sion of the thrée‘ semi-empirical composite correction térms for eddy
viscosity and mixing'lengtb; used in previous studiés was examined.
None of the three relations were found to be in strong contradiction

with experimental data. Their results overlapped in severgl instances

and could possibly coincide further through slight modification in
L

o

Modifying Van Driest's equation through substitution of Rao's
v'?riable improved cor;el‘ation with experimental resulit's’ . It should be
noted that the viscous damping constant, N , variesAfor large values
of 31+/ay+ and that the transverse curvature may affect the viscous
subla};er but it'generally 18 accepted that the rest of the inner layer
is not affected. |

The first attempt at axisymmetric flow theories, based on the

assumption of a.power law velocity profile, has long been abandoned due

wr
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: 4
to limited Reynolds number ramnge application and its inaccuracy. Therer
fore it was not examined closely.

Of the remaining five moderm hypotheses, the one often chosén

because of its simplicity is the two—dimensional hypothesis. The effect “ f

i

of the transverse curvature was, partly taken into account through var=:

iation in the values of the constants Al and A, for different radii in

2
P

the two-~-dimensional wall law. The total shear stress though, was assum—
4

ed equal to the shdar stress at the wall as in the plan‘ar' case. The?e—‘.
fore, this hypothei\s becomes increasingly more inacct'xrate. for smaller
radii as the transve\ se curvature efﬁect increases and théreby places a _
limit on its applica;on. Comparison with experimental results revealed °
tha;'.t: this hypothesis was sufficiently accurate for use with large cyl-

{

@

inder radii.

2

Y Richmond's stre

ine hypothesis was based on the assumption ’
W o

o 2
the, flow is essentially two-dimensional, as in the case of small values

‘o \

of y/a. Otherwise, its usage may be incorrect and the validity of it's

%3
results questionable. kfn comparison with experimental results, it pro-

ved sufficiently accurate for use with small y/a values but because of -

this restriction on its use, this hypothesis is not often utilized.’

Variation in its values of AI and A2 improve its aq?racy somewhat.

- Rao's hypothesis was derived on the basis that for a‘slender
cylinder, "the sublayer thickness is comparable to the radius of trans-
verse curvature. Unlike the previous two hypotheses, Rao's appears not

limited by the size of the radius and was found valid £8r large values .

\\
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of y/a. This hypothesis was also proven valid for tramspiration flow.

He also assumed a special sca*ing that the laws’ applying to the sub~-
layer 'should-persist when substituted into t:ixe equation for the region
of the law of the wall. In comparison with the other hypothéses, Chase
9) founc; )that: Rao's results most closely ag'regd with%erimental re-
sults over a large range of values for y/a.

The local similarity hypothesis is based on the similarity
arguments that the eddy length scales are proportiomal to (‘t/p)i which

have been found valid for y/6< 0.2 in a planar layer. The axisymmetric

‘shear is the same as used by Rao. The results were found to be relat-

ively close to those of Rao's without Rao's special scaling.
The derivative hypothesis corresponds to a two layer ‘eddy vig-

|
cosity model where at a given y, the value of u, is independflent of the

cylinder radius as in the planar case, but with certain ofhei“ paramet-

I3

ers changed for cylinderical theory. As a result, there woulé be great-

er inaccuracy for sma‘ller values of radii expected. This method shows

no advantage over Rao's or the streamline hypothesis, The Emly\author

. \
wvho suggested 1ts use, Cebeci (28) , recently abandoned it in favour of

an eddy viscosity which places Rao's variable into an axia}mmet:rical

4

modification of Van Driest's equation.

0f the five modern hypotheses investigated, three ( the two-

dimensional, the streamline, and the derivative) have been found ade—

quate when used within fheir specified limits of use only for large \. )

values of a and consequently smaller values of y/a. When studies are
required over a larger range of values of radius, a, and consequently

y/a,’ the Rao and the local similarity hypotheses have been found to be

o -

¥
superior. - .
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All the pre"sented methods have been found somewhat inaccurate
. in predicting the velocity distrii:ution in comparism:‘z with experimen?— .
al résults for low values of q+. Patel (24) proposed that there was a °
definite limit that can be imposed on a turbulent boundary layer by
transverse curvature effects ;vithout destroying the essential equilib—-
N rium that exisfs between the product;ion and dissipation of turbullem:
icinetic :anergy in the wall region and thereby provoking relaminarisa-
tion. Patel proposed that this limiting vaiue of a was about 28. Rao

and Keshaven (20) also proposed a relaminarisation in terms of Ra less

than 15,000.
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CHAPTER 2 - '

THE VELOCITY DEFECT LAW AND THE-WALL OF THE WAKE

2.1.0 INTRODUCTION

o

Presently no agreement:: exists regarding the app-ropriate simil-
arity laws, the law of the walliand‘ the velocity defect law, for the
mean flow in a axisymmetrical boundary layer wipth no pressure gradient, ———  —
In contrast ’Yith the axisymmetric vall law, very little attention llas
been given to the axiaymme_trica'l veiocity ;lefect law. This chapter pre-
sents the various proposals for modification of the two~dimensiomal
of vg\locity defect law to take into account the transverge curvature ef-
kSeﬁct‘.. - . - ) /.
As can be seen in Table 2.1, previous studies on the velocit): .
defect law c;ln be classified according to four major'approaches.' Three

of these methods are based on modification ¢f the clazsical two~d{men-

sional velocity defect law

U-u g log & +3 2.1

uy 1 2

with respect to variation in the empirical constants B, and B,. Chin et

1 2
al (11) suggestedwsing nodifications of the constants to values which(\

were obtained by curve-fitting his experimental data. Yu (10) stated
that B2 was a function of Ra’ the Reynolds number based on the cylin-
der radius a. Willmarth and Yang (17) A Willmarth et al (14), Afzal and

s
Narasimha (12), and Afzal and Singh (13) stated that B, was a function

2
of &/a where § was the displacement thickness. For these three methods
the authors plotted the experimental velocity defect in the two-dimen-

sional form of U - u/u, versus y/§. However, only three reports (Ref.

10, 11, and 12) actually suggested values for the constants (see ’rablz
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:' This chapter also.deals with the existance of a specific outer

. files into a single curve because the viscous-dependent part of the

A .
. N
48 .
“

\\_\' : '2:2). In the fourth n;ethod Rao and Keailaven ‘(20) found that there was L\
not any similarity when the velocity defect curves were plotted aga;inst {

\:‘\—-/\/ y/s but similarity was obtained for each R value when plotted against

" a local Reynolds number, r,+¥No velocity defect law was suggested in

“ Ref. (20). o B :
S | | @
’ In the following secf:tiona the various met ods will be exaninéd . ‘
in comparision with experimental(;eaults to find ény restrictions that
may ‘exist on their respective utiiizatidn. Discusgions will include the
justification of the various'autﬁors and their criticisms of the com-
petixig approaches. As the various methods are based on the two-dimen- ’
sional defect law, a brief discussion of that law) will first be given
for’comparative purposes. t
\

\\
layer eddy viscosity, enabling calculation of velocity profiles gs was

. |
'examined by Cebeci (28 and 35) and Sparrow et al (26). Their observa-;/

tions are compared with White (21 and 22) who stated, without substan-

tiation, that no.law of the wake or velocity\defect law was necessary

for thick axisymmetrical boundary layers as no por¥ion of a truly thick

axigsymmetrical velocity profile exiSted that was not wall-related. The
“validity of this statement will be examined.

*

2.2.0 DISCUSSION OF COMPETING HYPOTHESES

2,2.1 The Two-dimensional Velocity Def;ct ‘Law
For flow along a flat plate it is necetsarl to treat the two—~
' dimensional turbulent boundary 1\ayef as a composite layer consisting of
'ix‘mer gnd outer regions. For turbulent boundaryiayers there is no sin-

’ gle dimensionless y to—ordinate that collapses all the velocity pro--

@ [}
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profile and the Reyno!.ds—sttess-depedent part of the profile require ‘¢ .

»

different length scaling parameters.

The inmer,region which contains 10 to 20 % of the enfird boun- |

LS
dary layer th'iskness can be diwided into threeoseccions as indicated in
Fig. 2.1': 1) the viscous, sublayer, 2) the Vtransitiou region, and 3)

the fully turbulent regionm. 'I'hVe outer ?e‘gion co:it:ainsfthe remaining

80 to 90 X of the b'omi'dgry laygr thickness. In the outer portion of the
turbulent i:oundary layer thg Reynolds stresses d?inate the Vj.scm..:s )

st':reases to produce the velocity profile. Ac‘cordi:x to experiments it

was observed that the mean velocity distribution_in the ,t;uter region

>
s )

. - ' o
can be described by the velocity defect law (see Fig.2.2)
: \
U-u_ ey o . .
o ED . (2.2)

-

This equation 1is invalid close to the wall vhere fhe viscosity becomes

important. Therefore, the flow must depend on a Reyno,lds number (Gu*/v)

B Y

as well as the ratio (y/r/G) The velocity defect law does overlap into

the f\i].ly turbulent region where the logarithmic law of the wall

/
- U 2.3 i
= = %2 log (——)+ A, o @3

n

applies. A logarithmic relation for tl‘e right: side of Eqn. 2.2 can be

FINSRERE R PRY R0 Phas SR g

obtained by assuming that the Eqn. 2.3 will give ualU if y =§ and A2 is

modified. Then by subtraction one obtains

’%
:
i
)

‘u-u -2.3 : '
L Shadl_ SR XE | oA / -
™ i 108 () +. By ~ =

vhere k and 82 are empirical: constants.

A semilogarithmic plot of velocity defect data for zero

A
4
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Fig. 2.1 Semilogarithmic and Linear Plots of Mean Velocity Distribution

" Across a Turbulent Boundary Layer with Zero Pressure Gradient.

' The:Linear Plot is Included to Show a True Picture of Various
v Portions. (Ref. 46)
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Fig. 2.2 Universal Plot of Turbulent Boundary Layer Profiles in Zero
. Pressure, Gradient. (Ref. 46)
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Fig. 2.3 Velocity Defect Plot With Fperimental Data From Various
e Sources (Ref.47)

-

pressure gradient flow aléng flat plates can be seen in Fig. 2.3. Al-
7 ©

though the experiments closely‘correiate on. the velocity defect basis, oot
]

a single logarithmic equation does not fit the data over the entire ;

. . L 4
bounday layer. One equation is necessary for the inner region over-

lapping with the law of the wall equation, while a second approximates

: §
the outer region. Therefore, 1f k=0.41 and 82-2.5 then )
4 ' - ¥
V-8 _ 56108 @ +2.5 ;% .0.15 (2.4
Uy, ) -8 .
, ¥ '
_and when k=0.267 and BZ-O . p

V- ._g8.6 1log (3 s L.0.15 . (2.5)
Uy, 6 § | - '

2.2.1a Chin's Variation

L

In the study of the axisymmetric i:urbuleut: boundary layer, Chin

et al (11) started with Coles (45) two-dimensional law which is

~
4 £y
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U-Y 551 & +1.3802w) (2.6)
) 6

vﬁé/r'e w=l-cos(y/é) and did a curve%ﬂtting (Fig. 2.4) to better |reflect

the effect of wall curvature on the profile shape far their experiment-

al data. They there%o,re suggested the following velocity defect !law for

the single cylinder that was tested \ 4

. .
- U= vuae 3,951 &) +0.925(2-w) | 2.7
U* [ ‘
\ o

where w has the same definition as above. They did not check 1if I:his

equation would change for othetr cylinder radii. . .
} N
2.2.2 Yu's Hypothesis I

Among the first to study axisymmetrical flow was Yu (10), who
assumed that the similarity 1aws' for a circular cylinder with radius a
were dependent upon ‘the/ radius Reynolds ‘number,.Ra. Therefore, the vel-

ocity defect law proposed in functional form was.

U-u_ ¥ Ua :
o A , (2.8)

where L was the length scale. The resulting equation was

v

U-u,_ _ e ‘
o B, In(}) + B, (2.9)

in which Bl is independent of Ra and where

- 0lk -
L=e v (2.10)
U* “\
: @ : , l
and — o S (2.11)
, U, , !

t
From his experimental mean velocity distributionms, Yu found |

U PP N e T PR [

4,
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at sections 1.2192 to 2.4384 meters were plotted on semi-logarithmic

paper according to Eqn. 2.9 as shown in Figs. 2.5 to 2.7. The linear

region on the semi-log graph was well defined in the outer law plots

with a sl%ght scattering of their data , otherwise they would collapse

on one profile for their respective Ra values.

2.2.3 Willmarth and Yang's Hypothesis

Willmarth and Yang (17) state that if the amount of tramsverse

. curvature is not large, the most logical approach might be to assume

that the usual two-dime;sional 1aw\of the wall and the velocity deﬁecf
law aré still valid but with consideration given to an additional diml
sional length parameéer, a, the cylinder radius. Therefore, with the
addition of parameter a, the velocity defect law in functional form

!
;

would be

U-u_.y8$ .
0 . f(G’a) (2.12)

yThey state ihatupossibility the traditional division of mean
flow properties into w;11 and wake regions might not be valid when the
transverse curvature is large, §/a »>1. Visualizing a very small radius
of wall éurvature, the reglon occupied by fluid motions obeying the: law
of tpe wall is always a very small fraction of the regionm occupied by
the turbulent boundéry layer flbw. In other wgords they propose that the
boundary layer oﬁ a slender rod (a/§+0) be considered all wake-like
flow. The region near the wall (which, 1f it is called the wall regiom,

must be independept of free stream conditions) would be‘évéery small

b ATRVEEL, 1 B S Wkt E D s
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. with values of §/a ranging from 1.8 to 42.5. For large §/a the profiles

57

\

\

“tregion containing the viscous sublayer. They state that it is possible

that in the limit (at a/§s0) the wall region contains only the viscous

sublayer., As their work was reatriq}ed to boundary layers\in which
§/a=2, they felt that their modified wake region equation relation-

ship was valid.

2.2.3:a Willmarth et gl's Application

In a later study,Willmarth et al (14) state that f¥om'th. geo—~
metry of &he boundary layer flow along a cylinder it is apparent that
as the cylinder radius, a, decreases, the perimeter of the boundary

layer adjacent to the wall becomes small in comparision to the peri- \

\\
meter at y=§, adjacen; to, the freg stream. Therefore, when §/a is largei
the wakelike outer ,portion of the mean'velocity profile should have a
struc:ure quite independent of the wall region. They found that almost
the entire profile apparently obeyed the two-dimensional wall law for
values of § fa< 9.4 in Fig. 2.8. It was also observed'in Fig. 2.8 that
for the cylinders of smaller diameter the profiles d;part from the log
portion by falling below it. Yet, in analogy with two—dimens}oual flow
with zero pressure gradient, tbe wakelike outer flow should obey a de-
fect law and suggest the same functional form as Willmarth and Yang (17

.). The velocity defect is plotted in Fié. 2.9 as a function of y/§ as

_ in the two-dimensional case fq} a representative set of eight profiles ‘ @

are very full with a small velocity defect. For small values of §/a the ’
B

defect profiles approach the flat plate universal data shown by the
solid line. ' ‘ o

2.2.3.b Afzal and Narasimha's Application
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. Afzal and Narasimha (12) examination of avallable experimental -

data from various sdMirces (Richmond (15), Willmarth and Yang (17), and

Rao and Keshaven(20) when plotted in the two-dimensional defect law co-

¢

ordinates, as can be seen in Fig. 2.10 to 2.12 respectively, reveal the
clear existence of a substantial logarithmic region. Previously a log—

arithmic outer law region had been reported by Yu (10) and Chin et al

" (11).‘Therefore, Afzal and Narasimha (12) state that all available

measurements overwhemingly appear in favour of a logarithmic law in
clasaical ciefect co-ordiﬁates. Unlike the two-dimensional case the‘v#l—
ue of their intercept D (D is equivalent to BZ) was not a universal
constant. They ;uggest that to, the lowest order D could be a function
of &/a. To ve’ri'.fy this hypotilesis the values of the intercept from the
varlous sources previously mentioned and that of Afzal and Singh‘(l3)
were plotted against 5/a in Fig. 2.13. As \3/ahapproaches zero the val-
ues of D approaches the flat plate value. From the above results it

follows that the classical defect law can therefore describe axisym- \ :

metric turbulent boundary layers -provided tha 1/a¥ and &/a are small.

et A s

For moderately small values of 1/a+, and §/a of order unity the inter-:
¢ R ' i

cept in the defect law seems to depend on §&/a.

b n L €,

Rao and Keshaven (20), on the basis of their own measurements,
however have concluded that the two~dimefsional defect law co—ordinates
do not show any promise. Afzal and Narasimha (12) dispute this. They’

attribute the scatter of the formers data points for the same,Ra and \

8/a as shown in Fig. 2.12 to the artifically tripped boundary layer {

20). In view of the known slow recovery of boundary layers from the,

4

effects .of tripping devices, they claim it is likely that at least the
. ' "
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Fig. 2.10 Velocity Defect Law: Willmarth & Yang's Measurements

R =70,200: 0,x 7.135m, x,x 9.7536m ;
r2 =134 000 : e ,x 7.135m,% ,x 9.7536. (Ref 12)
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Fig. 2.11 Velocity Defect Law: Richmonds Measurements.
"40 200 : x ,x 2.4384m, ¢,x 3,048m. (Ref 12)
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initial stations the boundary layers may have not acheived a natural
state, This would also explain negative wake components on Rao and

'Keé.txaven's wall law plots at ‘the initial stations. Afzal and Narasimha
< (12) also commented that even though Rao and Reshaven (20) had found
that for a given Ra’ the velocity defect (U-u/u,) yeilds similarity in
terms of the vdti‘\able r,, based on the radius r=at+y, their wall and
.defect _laws‘cannot be matched as can be.seen in Fig. 2.12., Therefore, a
f skin friction law does not follow and Rao's law 18 not complete.
e ' Afzal and Narasimha (12) concluded that except in ‘those extreme
, situations where a+ is small (in which case the boundary layer may not
be in a fully developed turbulent state anyway), the simplist 'an.alysis
of axisymmetrical flow would utilize the two-dimemsional laws but with
parameters that :akre depen;ienc. on a”tand §/a for the inner and outer

laws fespectively. Using the equations of asymptotic expansions they

formulated a veloci ty defect Glaw valid for conditions when "a’»l which

was®’ given by
L—_u__ [ - -]; X
n n ln\(s) + D (d-a) + o (2.13)

e k and D are constants and 0(1) is the order of error.
R i
2.3.c Afzal and Singh's Application

. Afzal and Singh (13) utilize‘:i the velocity defect equation pre- -

viously dezfived by Afzal and Narasi&ha (12). When the former plotted
(U-u/uy) versus y[/TS as seen in Fig. 2.14 no universal line was obtained
. The parallel sh';élft was explained as a function of §/a. The variable
in the ddditive constant D in the velocity law is shown in Fig: 2.15

with the flat plate value of D being:egual-to 2.5 obtained from Hinze

1 (//

R T . e = = R et
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(48). Therefore, for their experimental data for §/a <2, they present
the correlation expression ’ @ |
D= 2.5- 0.72% ’ e (2.14) ! ~
which they state is alsol coneist‘ﬁg with all previous work’. Therefore,

if Eqn. 2.14 is substituted into Eqn. 2.13 the velocity defect is
/.l L}
&¥ .

-4, .55 108 ()6'7) +2.5 -0.2% (2.15)

Uy

2.2.4 Rao and Keshaven's Hypothesis

Rao .and Keshaven (20) i:westigated the velocity profiles meas-
ure'd farther downstream of the ntarginal profile, (expleined/in section ‘
2.3. 2)‘for the existance of simiiarity. A checi on the two-dimensional
form, v - u)/u veraus y/8 did not seem promisingo\'l‘hey state that ° ¢
since the turbulent boundary 1aye>r is already uhder >the influence of R
,similarity can be sought using two techniques. First) ‘with R, fixed,

similerity may exist in terme of some suitably forme Reynolde nu;nber

~

_which includes the outeér flow variables. The second possibility is that .

similarity might exist for all values of Ra at a given value of . the .

local Reynolds number, r,. The ﬁ?&t technique with' r, plotted versus
» 1 - /‘“\ {

3

(U - v)/u, in Fig. 2.16 gn{z\ 17 reveals that -similarity exists only

'for the variou)s‘in‘dividual R' values. No aimilarityi'was obtained in

terms of the generally used geometric parameters y/s, r/rs, 6/8, d@nd

r /a when the velocity defect at various values of R was plotted.

18

They reason "that ‘the difference between axisymmetrical and two-

dimenaional flow 1s the penetration of the wall shear to regions far-

Pl

ther’ from the wall in the former case. For axisymmetrical flows near

P .

-

" the wall ‘t-'r a/r and for twm-dimensional flows near the wall, 1--;-; ‘I'hese

f : oo 4 Y
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expressions indicate that the reduction in the viscous stress away%iom :

-

the wall is not fully compensated by the corresponding increase in Rey-

nolds stress in axisymmetrical flows as is the case in two-dimensional
. A"
flows .The net effect is the existance of a shear gradient, which can be °

:.xpect:ed to accentuate vigcosity to régions farther away from the >wall,'
than in tyo-dimensional flow. This viscosity effect becom;e; progress~

ively marked as the xtriéckness of the boundary layer increases in com~
parision with the radius. When the entire axisymmetrical turbulent

g

boundary layer is-affected by the viscosity throughout, it is not a

pure turbulent boundary layer.

2.3.0 AXISYMMETRCAL WAKE \ .

2.3.1 Existance of the Axisymmetrical Wake ) ‘

Cebeci (35) states that it has been well established that at :
sufficiently high Reynolds numbers a turbulent boundar}; layer has a
wake component. For two-dimensional flows the lower limit for this- Rey-

“holds number, Rg, is approximatelyl 5000. A;:cording to Coles (32) the

wike component varies with Re in the Trdnge 425 to 5000 becoming zerd at

- . v

Rg=425 (see Fig. 2.18). Recent studles (Ref. 18, 49,'50, and 51) con-
firm this result. Cebeci (35) assumes that {St axisymmetrical flows

R 4
L that the trend is the same and that a wake component exists. For two-

o

“S/i,mensional flows the wake regioh in Pig. 2.19. can be seen rising above

the solid line, representing the law of the wail, for large values of
. \ .

+ B
y . In two reports, Cebeci (28 and 35) assumed the two-dimensional eddy

viscosity’ for the outer region ° i ~
- " . eonguedk*y o | (2.16)
(. which is: assumed to be constant exéept for the, intermittemcy factor vy,
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‘ 6 -1 -
Y= 14+55@ (2.17)%

In Eqn. 2.16 the kinematic displacement thickness is

§4% [£1-CO) & " (2.18)
k 0 e
d
The parameter Q in Eqn. 2.16 is an universal constant at high Reynolds

numbers; at low Reynolds numbers (RO <5000) it: varies in accordance

: k
] : ¢ 4
with Eqn. 2.19

. 2= 0.0168(1.55/(1 +I)) | (2.19)
where )

. II= 0.55(1 - exp(-o.zz.afsi - 0.2988)) (2.20)

' 8= (R, /425) - 1 ‘ (2.21)

- k * N

‘\ For two-dimensional incompressible flows, a complete velocit:y

distribution excluding the aublayer and the transition regiom across’
|

the boundary layer can be d%ribed by Coles (32) law of the wall and

wake expression which is
p g ?

sl o+ |
. ,U‘-k.lny +c + kw(G) / (2722)

LI
» "

'ihs:e k and c are conatants. For a flat plate flow, the ptofile para-
meter n is a gnstant equal to 0.55, provided that RB>5°00 At Reynolds
ndmbers g ! than this value, it varies according to Eqn. 2.20. The
addition of Iw_y to the law of wall is a correction for the velocit:y

k
di{stribution given by the lgw of the wake.

L]

For axisymmetrical boundary layet'ﬁq;’, Cebeci (35) ¢msidered -the

der cylinders of various diameters, in the co-ordinates proposed by Rao

e " 'y
3 . L} . . -

[P S

- experimental data.of Richwond (15), for incompressible flows past slen-—
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(19) which 1is (u ,Y+) where Y'= a+1n(r+/a,+). The #elocity profiles in
Fig. 2.20 for a 0.06096 cm, (0.024 inches) diameter cylinder at RB .

= 2100 and for a 2.54 cm. (1 inch) diameter cylinder at Ra =: 8750, re-

veal that the former has no wake componet while the latter does have

one. Calculations for the former show that its entire boundary 1layer . -
was represented with only the inner layer eddy viscosity expression so
that the entire velocity profile was represented by the law of the wall

. Calculations for the latter revealed the necessity of the use of both

inner and outer layer eddy viscosities so that the velocity distribu-.

tion was given with both the law of the wall and the law of "the wake,
For axisymmetrical flows Cebeci (35) felt that £ should be ex-
pi:essed as a funct:io!n of the two-dimensional definition of the momentum
thickness Reynolds numbe?,'Re, because ]| decreases with decreasing Re,
ano:lf2 in Egn. i.19 increases, g:aking tﬁg‘wake component smaller. As a
result Cebeci (35) uses the two-dimensional definition for the outer
eady.viséosity formula for thick a;tisymetrical boundary layers.

For thick axisymmetrical turbulent boundary layers excluding

" the subla}er region White (21 and 22) utilize Rao's law of the waii :

U = 2.5 1n (Y) +5.5 (2.23)

| ) (2.2&)\"

Cebeci (21) pointed out that neglecting the wake contribution leads to

s

appreciable errors that may be especially noted for large cylinders and.”

where

Y "a+].n(§)

e

‘suggested that White take the wake into account and change Rao's equa-

\ -

tion to .




N TR i A N e g A T 4 ooy g e

A

et m e okt e e A WA LY WA LI e R N R O 3 n S g
+ A o 1 % g TR EOT ponr i gt st e D gy v

v

. 3
: ) ” : .
- , L\‘
. 70 ) (
. ' ‘ ‘
28
e PRESENT FOWLATION 7 ;
----- TWO-0 FORMILATION 4”
20t DATA OF MICHNOND
CYLINDER DIA [INCHES) , !
|
(7333 g 0.024
u‘v
. 12s
._l
4}
% 0 T P N
Y.' 1 i 1'
I v 10 ‘ 0
/
Fig. 2.20 Velocity? rofile Comparision (Ref. 35)
|
. 3007 , v ’
2501, '
L2004 - .
+ . |.. \
f
1504. '
1004
50 .
o X -
0 4 ‘ +
0 . 1000 2000 . 3000 .- 5000 . 5000
R B
a
+
Fig. 2.21 Marginal value a versus R, (Ref..20) . ‘
b




T —r =

GY

Ty w : (2.25)
max

* 22.5In Y4+ 5.5 4

i

where k and G are constants and w-281n2 (ry/2 ) according to Coles (32)
. White's rebuttal, which he admits suffex;s f.rom a large credibilicy
gap, was that there is no law of the wake in a thick axisymmetrical‘
boundary layer for turbulent flow. He suggested that the parame;:er G in
Eqn. 2.25 tmi:iormly vanishes as the cylinder boundary layer becomes
thicker and that there is no portion of a truly thick cylinderical vel-
ocity profile which 1is not wall related. By a thick layer he means when
a* << 1000, while £lovs with a° >1000 are effectively two-dimensicnal

2

and do show a wake.

.

2.3.2 Negative Wake and Marginal Profiles

Rao and Keshaven (20) reported that at low values of R their

velocity profiles obtained through their wall law

g S U =25 (@' D)+ 55 (2.26)

-

" R . . -

revepled a negative wake component initially as the flow developed in

N

" the downstream direction. At a certain position in the axial directiom,

\

all the negative wake portion apparently disappeared. They termed the

~ velocity profile corresponding to this.condition as the " lmarginal pro-
f41e ". Farther downstream, positive.wake componenta similar to the two

) -dimeusional wake components appeared developing with the ﬁlow An the

+
downstream direction. The valug of. the friction Reynolds number, a ,

at which the marginal profile appeared was plotted against R in’ Fig.

2.21. The variationappears to be 1inear except at very low values of Ra

» All their experimental velocity prefiles confirmed chau vhen the loc-

N

al value of at* is less than thé marginal value a positive wake compon-
3 -

[ & "%
-
.

- st B
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ent appears.

' The axial extent of the flow which exhibited the negative
wake was confined only to the first two or three stations 'in the‘ test -
section at the lawer Ra values. 'he disappearance of the negative wake
at higher Ra values was extremely rapid and therefore they assume that
the axisymme trical turbulent boundary layer starts with the marginal
profﬁile, if Ra is more than 5000. Thé appéarance of such marginal pro-
files at' low Rg values -in thie two-dimensional flows has been discussed
by Coles (32). A plot .of‘the measured Ry of the marginal prgfiles ver-
sus Ra in Fig. 2.22 reveal that their me ureme;lts tend to the two—dim-%
epsional Ry 'value of about 500 given by Co R+ =

. Afzal and Narasicha (12‘& state that the negative wake qoﬁ\pop—
ents ¢n Rao and Keshaven's wall law plots at the intial stations were a
result ;ﬁ the experimental data, being obtained by artifically tffpping
the’ boux;d‘ary .layer. The i;litial stations may not have reached a natural
state because of the known slow recovery of boundary layers from trip-
ping devices. ' ¥ .

‘The point of departure of the wake portion from the logarithmic

- portion 1s also of interest in predicting the wake portion. It was ob-

served that while B (which is equivalent to co&%ant AE) increased in
the downstre\_dj.rection, the point of departﬁre in terms of Y+‘ decre- .
ased and the product BY* tended to be constant at a particulat R . A

’few trials indicated that bett:er correlatton is obtained if l(BY+ was

. plotted against Ra which is showm in Fig. 2.23.

2.4.0 ALTERNATE OUTER LAYER VELOCITY EQUATION

“

Sparrow et al (26) did not suggest any velocity defect law. nor
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did they drav specific plots for the outer region but they did obtain
the veloci t’i profiles in the outer region away from the wall through
utilization of Diessler's(l) two-dimensional turbulent eddy viscosity

relationsh ip
Y~

) 3
c = KZ (du/dy)

2.27)
(@u/ay®)?

where KZ was a cons tant of proportionality determined experimentally.

This equation indicates that e, the mechanisms for the turbulent trans-

fer of momentum at a point away from the wall, can be comsidered to be

dependent only on the derivatives of the velocity with respect to dis- '

. \ /
tance from the wall. In other words,on the velocities in the vicinity

of the point felatiye to the velocity at the point, and to be unaffect~ .

ed’ by the wvelocity relative to the wall or the distance from the wall. ‘

In dimensionless form the equation 2.27 be\comes

3 .
A¥

where K is an empirical constant equal to 0.36. Within a turbulent
boundéry layer the expression relating the time averaged shear s tress,

» and the wvelocity gradient is

= ( utpe )—%;'7 : \ (2.29)

The first term within the parentheses in Eqn. '2.2Q represents the lan-
inar contribution to the shear, while the second term represents the
turbulent confributiﬁon. Eqn. 2.29 can also be written as
+ .
—matd du . r (2.30)
dy )

K

4
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Using thé shear stress distribution for a circular cylinder given by

? T a o
. == (2.31)
Tw a+ ¥

N MY

integrating Eqn. 2,30 once Sparrow et al (26) obtained the follow-

4 ! :

ing dif ferential equation for the velocity distribution away £rom the

and;

wali

3

.
ayt -%ka+ @+ -1 a’ (2.32)
a

where

‘ N |
AL DL (2.33)

<
©

The demarcation between the reglons mesr the wall and, away from the
wall as detemined b.y Deissler (1) frou pipe flow data with y+=y1+-26‘
and u = u1+-1;'2‘_9. Sparrow et al (26) used u,"=12.9 as their demarcation
“point. Thg velocity profiles in the form of y+ a8 a function of u
wérg obtained by numerical integration of Eqn. 2.32 for parametric val-

ves of a’ . Numerical values of a@ were selected according to the iden-
§
I d

tity‘ .- % ‘ !
4
ua Gt ..hb) R » :
o oM .8 | : (2.34)
vou u‘:

»

"in which u is the free stream velocity., For a éiven Ra, a sequence of
«x

,equally spaced values- of u‘: was assigned and to each of these corres-

Ponded an a+. For each of the assigned u: values, Eqn. 2.32 was integ~

-’ +
rated from u+ =) to u=u .
o«

They also suggested the following closed form solution for the

g




!
I
"

o — e

. ymmetrical similarity laws for the mean flow in the “outer turbulent

76 -

-

outer layer veloé:f.ty diffential equation ,although{lthey did not use it

themselves
s b+l
+ 1 - Zbel -1 1
u - ul - 3 (tan X ) - tan ( —3-;— )
l2 b+ T
) k by -1 b2+ b,+1
1 "1
where s i
i
a ‘' -
+ 3 ' ¥
-1+ =) .37
.a ¢ ~
- *

2.5.0 CONCL

The objective of this chapter was to examine the velocity defect

law for axial turbulent flow along a cylinder without a pressure grad- >

ient. A8 no consensus presently exists regarding the appropriate axis-

boundary layer region, the various competing hypotheses were compared

and classified acc'titc'ling to four major approaches. ) “«

Three approaches are based on modificaiion of the classical
two-dimensional velocity defect law with respect to variation in the
empirical constants Bl_and Bz. In the first method Chin et al (11). ob-

fai,ned new énpir:l.cal constants simply by curve fi'cu.ng from the:lr' ex-
o 4

- perimental data for the single cylinder radius tested, while not veri- “

fying if the new constant would be applicable for other/radii. The se-

md method Yu's (10), stated that constant B, was a function of R ’

2
the Reynolds number based on the cylindgr radius,a « The third method .

s

BRIPRARES o IR N y W a o g LD el Al PN T ud F Y P Y b e =
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2 was a ' -
"fmction of &/a where <S was the displacement thickness. All three of .

’ P ’ e
‘. these modified two—dimen%ional velocity defect laws are therefore ap~:.* }

)«which was suggested K‘y W:Vflmarth and l‘ang (17), states that B

oarently dependent on the ‘cylinder‘radius, taking into account'that’the
Tirst method modified the e’é(uat'ion for.one particular radius.
PO 5 ~ R .

- >

/ . For ‘each of these thrée methods, (the respective reports, where -~
- L4 ) 1 . -

. v © B, was presepted not only in functional form but given specific valugs).‘

\ g

‘the velocity defect plots in. twe-dimensional co-ordinates of (U-u)/u,
) _ versus y/$ closel): coin‘cided withexperimental results. The only ex-~ .
o 2 . ., : 2

/ ception was Rao and Kesh@ven's (20) data, which did not collapsehint'o a

single  curve for the same R and §/a vé"],.ues: Afzal and Narasimha (1‘2‘)

~

explained that ‘the discreperlcy was due to the fact that the data was .

. N A
obtained thrOugh artifically tripping the boundary layer and in view of

the known slow recovery of boundary layers from tripping devices, the Lo

”i};xitial stations may not have acheived a natural state therefore inval-

€

.
wr !
'

I

idating those initial resplts. As,the. functional \relationships of each

of the three methods are appgrently eqlﬂally valid, the only difference ‘ )
, ’ A\ - g

» appears to be in terms of'the presentation 6f (U-u)/u, versus y/§ with

[ ’ v .
variables a, Ra’ and §/a. lgor increasing values of cylinder radius, a,
»> , .

S A w'hi%also means increaging values of Ra' and decreasing values of ¢7a,

' ) 4
: Py the velocity defect plots approached the two-dimensional values-\',‘ -
’ *
In the fourth approach, Rao and Keshaven (20) found that the

T . two-dimensional velocity defect co-ordinates -did not reveal any:simi+

g larity for their experimental data. When the velocity defect was pYot-

e
’
.
(3

> L ted against a 1oca1 Reynolds number, r*, similarity did exist for each

-~

¢ - individual value of cylinder radius Reynolds number, Ra' - QO
) . I . ). . - ' s R = [ , /

- h—wvvw-:w B = i SR NE PV
.
-
-
+
f
4
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flow properties inte @ wall and wake “region is

*Questiohs remain. on’ whet;her the traditional divisions of mean
'valid‘ when the tréns-

verse curvatyre effect is 1arge- i.e. s;na,ll values of a and large yal—

« ¥, Y

/'\
.ues of §/a. Willmarth and Yang(l?) proposed that the boundary layer on

a slender rod ' (a/6->0)ﬁ is almost all wake—l.ike flow and the region n,aQr

¥ ,

the well, which must be independent of the free stream conditions, a

would be a'very small region of* the turbulent boundary layer flow con-
tainix‘Pg the viscousé{sublayerMate that possibly for the limit
aj"O tt_le wall region.contains only the viscous sublayer'. ’ o
W;Lllt;arth et al (14) é~taté that from the geometry of the bom\l_
dary flow along a/zyltinder lt' is apparent that as the radius c{ecrea.ses
E the perixlneter ot:' the” boundary layer edjaceht to-the wall becomes .
small’ in\cohlparision to the perimeter at y=§, adjacent to the free _

stream. Therefore, when §/a is large,the wakelil&e outer portion should
R - g .

\ A N
have a structure quite independent-‘of the wall region. For larger §/a—

» 4

vakues their resulting respdctive 'velocity -profiles departed increas—

ingly l;elow the two-dimensional logarithmic wall position. i
r
Afzal and\Yarasimha (12) comment that in those extreme situa-

o

tions where a+ is small, the boundary laypr may be in a fully developed

turbulent state and therefore for those conditions their modified two=
-

dimensional velocity defect laws may be invali,d
. < 4 .
Rao and Keshaven (20) state that since for axisymmetrical flows
. . : ’
near&:he wall the, shearr=twa/r and for two-dimensional flow near the .

£ '

.

. Le.
“wall rafw, the reduction in the viscous stress away from the wall is

not fully compensated By the corresponding increasé in Reynolds stress

v

in axisymmetrical flow.as it is in t:wo—dimension'al flows. The net ef-

g s | P

_—

&
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' thick axisymmetrical turbulent boundary, layer as the wake component in

/and wake reglons may be igvalid when th'ereris a large transverse «curva-

- & * V - A !
¢ 79 ) ' »
a
N ‘ ) i . -

-

o - ° A
fect 18 the existance of a shear gradient which accentuates viscosity

-t i N

effecés in reglous farther away from the wall than Jin two-di: nsional oy

" flow. They suggest that since the entire axisymmetrical t:urbulept boun~- »

da;?y layer is apparently affected by the. 'viscosity thr-:oughout,‘it:‘i is

notea pure turbt‘xle'n‘tu bo&dgry layer. The vis'cos'ity effe:ct becomes pro~

gr*vel; noticable ‘as 8/a inereuses. ’ /2 - v
) Ceb‘ec‘i (35) tested forl the 'existance of a wake region ih the

velocity, profiles fo.r a 0.06096 cm. diameter cylinder at Rg=2100 and N

on a 2.54 cm. diameter cyiinder at R6=8750' 'E‘he velocit}; plot for. the-

former had no wake component and therefore could be described just us- .

-

ing the law of the wall, while the 1étter did have a wake component

wnecess:l.tat:ing_the use of both the law of the¢ wall and the law of the . ;

wake. ' y ‘ ' ;

' White (21) and (22) states that there is no law of the wake in' .

Coles law of the wall and tt:e wake uniformly-vdnishes as the cylinder

/ T

boundary layer becomes thicker., Also he%&ates that there is no portion -

. . ) ) . ’ g
of 'a truly thick axisymmetrical velocity profile whiz:h is not wall re- L \
lated. He specifies a thick boundary layer occurs whep a*<<1000, while o,

. ® . ¢
flows with a*>1000 are effectively twb-dimehsional andNdo show a wavke.

Therefore, agreement apparently exists between the various re- .

p'brts that the traditional diwvisiaon of‘mea.n flow pfoperties into wall’

L ,\. [y
ture effect as when a 1s very small or §/a is-very large or for thrick

’ . .
boundary layer. Unfortunately, not enough data presently exists to spe-

-

cify a precise value at which the traditional division -of the law qﬂ\

-

{
—
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, L (CHAPTER 3 " S

S ) s . kY
COMPARIS OF EXPERIMENTAL ., AND THEORETICAL. TURBULENT‘SHEAR

.-

COEFFICIENTS AND- MRAGB CONICAL mms EXIT VELOCITY

| .
»

-

\ 3.1.0 9INTRODUCTION ‘ ' ’ .

" oy <

‘\" This chapter deals with the experimntal and theoretical " analy- ¢

" N

sis of shear coefficients of a thread subjected to a steady -jet of weths':

-

e; dischdréing»from a conical annular nozzie'degignbgtilized in indnet-“
/ry in shuttleless flnid jet looms for weaving fabric. The various para-

meters affecting nozzle performance are examined thereby enaling poss—
ible optimization of nozzle design for specific operatidn conditions. .
" 'Two th_eéretic;l‘ appro,aches are used in -comparison with the averaée

¢
s

" shear coefficients based on experimental data. .The first uses the s‘ten- -

¥ - - ' N
dard two—di}zénsionﬁl equation for the average sheflt coefficient while

la ' . ' :
ﬂh@ second'is White's (21) axisymmetri‘cal approximation average shear

‘ c;oefficient..i LT , . = . \ o ‘
‘ The predictive capacity of two theoretical mebthods by Kwok and ) ’ %
™ Lee (52) for calculating values for the averﬁge jet velocity ancf flow S | %
. N at the end of a conical annulus for an incompressible fluid were also v 5
examined in comparison with experimental data. The first method con- - v )) Y x
sisted of obteining the integral momentum equations for the' inner and :

J

outer bongdar;' layers of the conical annulus so ghat the displacement

-

N ‘ thickness and the jet velocity could be determined! In the simpler sec-

7 ond solution c&nsi?@fration was given to a macroécopic energy balance |
N L - L . ' ‘ ' f
between the annulus entrance and exit, while incorporating a head loss -
. . . L3 o ’ . . B )
to‘account for the friction loss for-flow in the nozzle passage. A

a ¥

brief summary of each theoretical method is presented in this i:'epott. *,




dAnnular Nozzles oo o .

Whiledthe majority of modern induftries have leapt forward with

technological advances and newly perf ted t%'chniquee of design and

[N

production, the textile industry's production techniques still remain .
 firmly in the early 19th century The ﬁxachinery designed at that per-
/
iod has been somewhat refined, but is still in use at the present time.

This experiment is part of a series to modemize and greatly increase
the potential‘production\ctapacity of the looms utilized in m; ing fab-

"
ric. In parti(’lar, it deal’ with replacing the mechanical shuftle which

brings the tread horizontallyL"from one side of the loom to : e\oppoaite
o

.side. The speed' of the mechanical shuttle ha.s been lximitéib\ the force

a

required, fricticm fadtors, mechanical wear and the actual-~ /

%

the device. Maximum spe'édsﬁusing this part are unlikely to be incre ed

by a very large factor indicating the necessity for a new approach of

- . moving the from one point.to another. The mechanical shuttle was aban- ’ ‘

doned in this e.xperiment and .replaced with a.system that shot the -
7 g B ° - . .

\‘Lt:lx/r_ggd\“)t:n(rough a2 nozzle and across the loom with a 'jet of water, poten-
. ~ T - . v . . ‘1

tially jm%asiné the produc'tion by a factor of two. (Ref. ¥53) ,{

\A/basic description of the operation of a fluid jet loom follows

\(Ref. '54).+Figure 3.1 is a perspective view showing the position of a
* ’

.. nozzle (part 20) as)a part of a shuttleless fluid jet loom. It shows -

the weft yarn (10) drd&wn out from,the bobin (11), then going through . I
- ; . N 4 . « ‘ i I ? &
thread.tensioner-(12) with’ thread guides (13 and 14) to measuring drum

&

- ¢ -
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Fig. 3.1 Perpective View of . Shuttleless Fluid Jet Loom

ES-T I L

% Y

.
T

SoR

)
e

e GG,

oy s sl L

«

e .

WO CEN PN



e e — A i a e S ¥

Ky N M N
©
a L
Nt . . .
- M ° . “ - -
- | . .
) ' '
[ . .

- i

(15) driven in a continuous manner by the ‘loom at a predetermined rate.
1] > N .

Finger (‘16) mounted on the frame (17) separates the" yarn (10) on the

a

circomferencial surface of the drum (15). The yarn (10) 1s then tempor-—

A

arily detained in the storage dev‘icé (18) between each weft inserting

cycle. The weft yarn (10) leaving the storage device (18) rus thé'o;!gh/ ,

o \ .
gripping device (19) into nozzle (20). Each time’ the fluid under pres-
suré 1s admitted from the inserting dﬁvice, generally indicated by

& N
reference (21) to the nozzle (20), a jet of fluid with the weft yam
- .I ‘ -, - L3

?

. (iO) is thrgwn i.nto the shed of the warp yarms (22). In practice, the

thread would be subjected to a pulsating flow of water shooting one
. . ‘ .
thread with each pulse. In the experiment presented here the study of

’

2} I3 N -
the nozzle was conducted using steady flow rather than pulsating flow.-

3.1.2 Liferature Search For Previous Work ’ ' ’

”

o
3.1.%.a Review on Flow From a Conical Annulus

Literature on tfxe‘flow from a. conica'l.'annulus was found to be

3

scarce, although' flow for a concedtric annulus has been investigated by

+ Brighton éx{d Jones (55), Fredrickson and Bird (565, Okiishi and KSer,voy

(57), Rothfu@(SB and 59), and Sparrow and Lin. (60)." A report ‘on the

water jet exit velocity from a threaé shooting conical annulus nozzle,
oA .- . - !
/ having minor differences in dimensiong and the conical angle in compar-.

¥

ison to the one utilized in the “pz:esen{ experiment, was publishéd by
Kwok and Lee (52). Their repor't:: investigated twd theoretical methods .
previously described in Section 3.1:0 for calculating the aver'age jet
velocity at the exit of a conlcal annulus for an incompressible fluid.

Both predictions were préctically iéentical ( having a variation of

less than 1% ) and both dii:"fering from their experimental values by

¥

dmaint msm e s

-



ol

~

der was towed By a line attached to its nose, but was completely free

N
~
(

ljess than 3% over the” pressure range of 310:.3 to 379.2 kPa which: they

4
-

examined. As the predictive capacity of the methods (Ref. 52) produced
apparently excellent resul s, the nethods were chosen for comparison

with the pre‘nt experimenta work, As a greater range of flow and

pressure conditions are present
-
ed to find if the same predict:ive accuracy is maintained.
L ®
3.1.2.b Review on Flow Along a Circular Cylinder in Experiments

nvavled, the' two methods ' are examin-

‘

The majority of experimental work for'flow along a cylinder has .

been umder turbulent conditions beginning with qhat performed by Kempf

(61). S'ubse\clueptudata'v‘was reported by Telfer (62), Hughes (63), Rich-
< .

mond (15) Yu (10), Yasuhara‘(la), Selwood (64),” Willmarth and Yang

"(17) , Willmarth: et al (14) Rao and Keshawen (20), ahd Afzal -and Singh
(13) ., (See Table 3. l)

Only three of the above reports obtained the skin friction from

direbct measurements‘. I.[ogal frict:ion factors were measured by Kempf (61)

for water flowing along a cylinder of rndius 1.7526 cm. and lengths of

3

.up to 9.144 m.. The cylinder was rigidly attached to an outside towing

deyice which moved it horizontalfly through the water. The range of len-

" "gth Reynolds number,Rx,extended rom 3,5 x 10% to 2.4 x 107, while the

3
cylinder Reynolds number ,R ,ranged from 2.3 x 10* and 5 x'104.' Hughes

(63) measured average friction factors for watér flowing along 5 cylin-
der with & rgddius of 1.27 cm, and lengths up to 25.6032 m,. The cylin--

of constraining support. During the towing, a slight yaw was noted (-1°

); which 1is small in view of the lack qf constraints. No observations -

. of sidewise motions were mentioned and there was not any s‘tatementa’ as

| g

s @
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AUTHOR (KEF.) R. N {E‘“. of x/a
’ Richmond (15) 93.8 = 1600
, 253 1600
b - 40,200 +16 to 20
 » Yu (10) . 15,250 ° 12 to 96
: 30,740 12 to 96
4 43.060 12 to 84
Yasuhara (16) f 218,000 100
Willmsrth and Yang 68,800 ’ L s
am, - . 136,000 128
70,200 192
115,000 192
134,000 192
Rao and Keshaven 425 96 to 640
(20) 825 96.to0 640
1,320 48 to 320
1,420 24 to 160
’ ’ 1,620 48 to 320
% 3,940 24 to 160
106,000 5.3 to 16.4
- 218,500 5.3 to 16.4
! Villnarth et al 482 21,960
(1%) ; 736 21,960
899 21,960 .
- 1,439 10,380
4,330 3,513.6
. 6,203 1,756.8
. 9,494 1,756.8
. 11,693 . 1,756.8
. 12,790 ° 878.4
19,230 878.4
23,100 878.4
36,680 - 439.2
. ) 74,260 219.6
\; : . 92,310 219.6 -
N Afzal and Singh ~ 11..2\00 30 to 162
(13)
Présent Work 2,189 272,72 o 2181.82
. 2,306 - "
2,571
i 2,693 7
2,922 ’
3,085
. 2,862
3,260
3,428
3,198
‘ 3,822 .
3,942 b
) , 4,040 .
4,046
. 4,285

~

Table 3.1 Experiﬁ:entai Work. gan Flow Aloﬂg a Circular Cylinder

-
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\ ' : v ‘ e
to whether the cylinder remained horizontal. The mea_suriements were
‘o v A ¢ v
corrected for possible effects of the wake, yay or %{.dewi:se motion
P4 N N

3 ¢ - - . .
%hich. result.in higher readings than for pure skin fyiction measure-
: , : p

\

ments. The range of Rx was from 7 x 106 toL158, and Rafrom 3.5 x 103 to

,104. The only other direct skin fr‘iction measured was by Selwood (64) -
on moving nylon fibres thréu\gh air betwéen 5m/sec §nd 20m/sec. There~ i
fore at present there e:gists the n‘éct’assity of more expe’ar:.imehltq‘l data,
includdng that data with:f.n this chapter, to verify previous ;xperiment-,
. al wogk. . |
The other author-s obtaineld the skisn friction and shearlco—effi- -
cien‘ts by differer{t indirect metheds. Yu (10)-and Willmarth anél Yang (

4

17) determinined the wall ‘shear frlom a preston tube, using the calibra-
tiﬁoné of Landweber and Siao (65) and Patel (66)6. Richmond (15) obtained -
- tt:e wall friction Iby fitting data to his wall law. However, Rao' and
Kesh;ven (20) found that in some of Richmond's flows :the momentur thick -
’;ness increased downstream,‘suggesting that tﬁe _flov; may not have been N
axisymmetric. Extensions of Head's (67) two—dimensiar;él integral meth-: ’
ods. were done by Patel (68) and Shax;;ab;ook and Summer (69) for thick
and thin axisymmetrical th'fbulept boundary layers respectively. Chin et
"al (11), Rao and Keshaven (20), Sparrow (26), and White (21, 22) ob~ .
tained the sk‘in friction fromhothe‘r momentum integral éethods. Patel (

N 24) "and.Afzal and Narasimha (12) deduced the wall friction from Clau—

:ser's plot method {70). A differential computer method was presented by

’
~>

. Cebeci (28,35, 36, 46, and 51).

3.2.0 EQUATION FORMULAT ION
l

-

+3.2.1 Averégg Exit Velocity From an Annulus and Averdge Shear

f. ) ' / (/\_,\r

J
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Cpoeffichent A:lcmg a‘Cireular.Cylinder Using Experimental Data ¢

z

For the experimental thread shegr coefficients with various

&

nozzle conditions, the following assumptions for the flow of the water

jet from a nozzle into a stationary atmosphere were made:

a) The pressure along the jet boundary and across section of the

"{et is atmospheric. f '

-

b) The jet has no extgamal forces acting on 1it.
c) The jet flow is uniform at the nozzle exit.

d) The velocity of the jet remains consqgant.

e) There is no mixing of the jet with the surroumding atmosphere

o . £) The friction be}:ween the jet and the air can be neglecpe&.

S '

The Reynolds number R is the ratio of the in‘ertial'forces .t:o the

, Viscous forces and is.applicable in situations where these forcl:es are
the dominant ones. At low Reynolds number, :the viscous forces are dom-
inant, an\d the interial forces negligible, and at high Reynolds numb?r

the inertial forces are dominant and the viscous forces tiegligible. The

formula for Rb, the Reynolds number based on DH’ the hydraulic diameter

'

-

r DU ' )
RDn _1__“ et ~ (3-1)

v

.

and Ujet is taken as the average wvelocity in the direction of flow, and

and v 18 the kinematic viscdsity of the fluid., The hyd;:aulic diameter

" is four times the ratio,of cross section to wetted perimeterL.'l{erafore

for the nozzle annulus area in this experiment,

o DH = 2¢ i # . (3- 2).

L, J
. where c is the nozzle clearance. With Do as the outer diameter and Din

-

a8 the inner diameter of the nozzle through which the flow passes. The

PR

¢

L
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where a i1s the radius of the thread and %X. 1s the length of the thread

) h ’ -
~. ’ o r
. ’ i ‘ 89 ¢ — - ’[/ P
annular area An is g:l.\:en by. ' . p ~x.
ﬂ Aw X ‘( D -D ) | ‘ ’
n 4 ) in 5 . . (3..3) v
-

The average velocity was obtained from the rate of flow, Q@ and An with

- Q. ' '
Ujet A « . N (3.4)
o e n . . !
The\experimental stress T on the thread is a function of the me.a'suréd
force and the thread surface area ATS h . 'l

-

F

&

F . ‘ ‘ PN
e e

* v “

from the end of the ndzzle protrusion. The experimental shear stress )

- \

can be expressed in terms'_of an average shear coefficient, C» times

\ 2 N ‘ .
the, dynamic pressure pijet /2, where pw_is/the density of t:h(e wate
¥ * ' 4

Y

p U, .2
™ = Cf—w-ile—t-. (36)

c 27T

The two-dimensional theorectical average shear coefficient formula is

- T

-

'

oo Sy ( 3.8
R, . ' '

% ! . - R
vhere R is the Reynolds number based on thread length, x.

3.2.2 .White's Axisymmetric Shear Coefficients

In comparision with .the other methods discussed im 3.1.2.b on
. P4
theoretical shear cgefficients ,, White's approximation average shear -

coafficient ‘compared véry favourably with experimental results yet did

¢

L)
»

[ [ }

, v 4
- .
.
M -~

£ T , | <. T
pwujet . ’ . '

N
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not involive complex calculatiomns. There, as his plethod is apparen'ﬁly as

accurate in prediction and is more efficient, 1% was' chosen over the

. other methods for the initial comparision with experimental data ob~

tained for t:utb/lent flow along a qircuﬁr thread.

White (21) suggested an approximate forfnula for ergineering use

. r i s
based on modifylng Téfler's (62) pr0posed‘forngxlay based on drag data -

for floating cylinders which

‘w)

) Cf- 0.0012 + {O. 3l4+ 0. 07(“) }R %/\‘ (3.9)

-

where Cf 1s the average shear coefficient, x is éme( lengt:h of the cy-

linder, and a is the cylinder ,’cadiué. Altering 5\2 constants to better

fit with more extensive data studies White recommends

6 9 6 ‘
for 10.<Rx< 10 and for x/a% 10 . For the range indicated, this formula
is within + 57 of his’empirical results. For long cylinders and low Ra,

the Iasy“mopt:ot:ic series of Glauret and Lighthill (39) 1§ added ya

v Y N ’

¢ f_ (L, X572, 0, e ) we~( 3. 10b)
£ R_'G Z .
a G . :
\ L]
where . .
' »
. AR . - e .
\ ¢ =ln () . : , (3.10¢)
R i

for G> 6 and Ra< 20. For larger Ra’ the :formula drops too low. These

{ e
two expressions cover the %ange of interest for turbulent flow calcula-

tiohs, and also Eqn. 3.10b is wvalid for laminar flow.
,\‘) N *

‘c-00015+ 0.30 + 0015(—’5)‘4 R% (3 0).
P £ (\ {- » a} X ./13
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1 ' Fig 3.2 Definition Sketch For Conical Annulus (Ref. 52)

.

) 3.2.3 Two Theoretical Metho_b;:for Coflculation of Average Exit
L

Velocity at thg End of a Conical Annulus g
- ]

-

The equation utilized in the the following two methods are for a
develop;tng turbulent boundary layer. Such conditions are shown to exist
for r1/r2= 0.5;31 v;here\the boundary was still developing at the poiﬁt

of’ 35 DH (Ref. 57). The lattef\'length f}xrther increases ;rith'larger r1/
.- L, ratios. For the nozzle; utilized in this experiment 1:1/r2 = 0,10287
cm:/0.1295 cm. = 0.7942. Even when the length is assumed to be 35 D, =
1.8669 ca., this vaftie is greater than the length (L) of the. channel
(sec; Fig. 3.2) whicﬁx/i‘s equal to 1.3208_\ cm. ., 'l?;le;.'éfore the methods a.re
valid for “thhe p/;eéé;;,t ‘experiment:al ;:onditions. \ .

B.2.3.a Method 1 - Integral Momentum Equations

e .
/'Fgr the fnner boundary layer, the force and momentum—flux

« ‘
ye ' ’ '

-
:
' {
i .
1 .
s
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, relation in the flow ditrectiop™is glven by Py )
. Cee T Tl g
L . , réy
© =T (anldz ‘seca) - dp{ f . 2yr dr sec q}
o o1 R . ) Iy . '.‘ . )
r., r. S
b ¢ & -le N . /61 N
8 ot dJ {pu (2rr dr sec'a)}u - Ud s u(2ner dr seca)(3.11)
, " 1 1
[ -4

the contin®ity equation is,

N . S |

"

‘ d . .2
' - dz {U(r

-

The clearance, ¢, 18 much smaller in magnitude compared with the

Ty . inner radius . Therefore, the flow can be considered as that between

o N .
8 parallel plates in the presence of a pressure gradient. With the»shape

~

factor H defined as the ratio of displacement to momentum thickness

*
i.e. H =6 /0 then the shearing stress at the wall is . o
T vid % 3
’ —4-=0.0128 )" =0.0128 H* (=) (3.13) -
7] : *
pU ' . us
Qhoosing H =1.4; the resulting integral momentum eq{ation are:
) * X ' .
/ ds 8 7 ‘
1 . 1 du L
\ 2 + 3.4 T 0.0195 (Ud*) (3.14)
' 1
- da* \ * '
5 * .
2 2 du _ v &
Gt e gt g - 00095 c)° - (3.15)
Us ,
2
The solution to the above are:
* * 1 _1..? L 4 %
§,=8,=0.0512v5 U 5 (s Udez)S$ (3.16)
¥ ) Lo

2, _ o LA ,
f:) ] ) ZrldlU 2r252U}- 0 (3.12)
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practicaily constant (Ref. 57)\.\ Therefore, assuming that : :
B ) L
Pem=—=2+P . (3.17)
. L I, N - A 2
and : L# : T . /
o uzf : :
P ol P +L"‘ s (3' 18) ‘
I 2 .
~ . ~ '
then Eqn. 3.16 becomes . R
3 "8
1 3 315 5
* . '\ S L - Lo P
5, = 6, =0.0644 v |~y | -—p— (3.19)
{pL } 3 /o
U
also
NS ZPI i . "

€ . N
4
- Therefore, from the continulty equation the u& jet velocity at the

exit 1s given by

—~d

*
- 2P 26
Y o .
UeII ( ~p ) (1 - c ) . . (3‘21)

3.2.3.b Method 2 - Head Loss Equations

The macroscopic mechanical energy baldnce between section I

(efftrance) and section II (exit) in Fig. 3.2 is given by: ‘ ‘
P, Vi B, U N )
_r s I = II + II + h e (3‘ 22‘)
Y 28 Y 2 L : !

v

To evaluate the head loss, hL, the fgh:!'bihon factor, ‘f',’ has to be deter-

mined. Where R.D, the Reynolds number based on hydraulic diameter,ranges

from 0.4 to 1.7 x 10“, f can be approximated (Ref. 55) by
B )

-

!

’ ¢ (3.23)

-

With V equal to the mean flow velocity at any position z, it can be

f_=0.087 RD_'\'

Ry

2

shown that ’ 4 \

il ok
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' ' 95 A
- 4
- : L -2 -1 ' .
. V = ({2 (tana) p+ 1) v (3.24)
1] it - B
- /
Considgr'a length of passage dx=dz seca. The associated tiead loss 1is
» 2 N
= -L g gy (3.25a)
. P D, ]
«H
) -k g—x- 2 | “l “,ﬂ ' ‘ .
) dhL 0.087 RD DH VA ) J\. (3.25b) . ‘
. ; . * v -
Therefore, with DH=2c as stated previously then N
. AR U T
! L | _ 4BVII : > C 75
hL- J dhL- T {1 - {A(L - Ly)*1} '} . (3.26)
Lo
where
& N ]
A = 3tane . (3.27)
1,II , ' ‘
and
» ' ‘ / 4
- 0.087 'sec a TR \
B g ( e p) . (3.28) i
Therefore, ) . !
2 . 3
o2 ) {1 -{ AL ~ Ly ~Tjy 178 s 0 (3.29 y
T Le) * IL ", (.29,
> : i
The jet velocity VII and the head loss hL are solved in the computer ;
program by iterationn with all the oE@;‘pertinent parameters known. . 1
‘ ‘ ¥ ' N
3.3.0 EXPERIMENTAL INVESTIGATION ‘

¥ 3,3.1 Experimental Apparatus .

[}

* A schematic diagram of the experimental apparatus used ia&shown

in Fig. 3.3. The water flow was obtained from the standard municipal :

water supply system (l). The water was contoiled through the use’of ‘a

)

< shut~off valve ((2), Jenkins 3" NPT), and a pressure regul'at:or‘((.‘i),




3
rrm g o

o e

-’ .
- steady flow of water was passed through the nozzle at a constant supply °

96
Watts - U-5 AB 3" NPT). The flow was measured ﬁith aroﬁaineter «(n, 1.
Fisher and Porter Co., Precision Base Fldwmeter Tube No. FP-3- 5( o-c- '
9183) with an accur_:acy of 2% of maximum flow and a range from 0.281
to 3.52 gpm (1.064 ,‘?13.32‘ lpm). The pressure after the rotometer was

obta:l,ned through the use of a pressure‘ gauge ((5), Solfrunt U.S. ‘Gauge

€at. No. 33504) xrth an’ accuracy of « 0. 051 of full scale and ‘'a range

of 0 to 100 psi (0 to 689.5 k.Pa) The rest of t:he flow system consists

of an elbow (3" NPT), a reducer bushing (3" NPT x k" NPT), a Polyflow

] 'fi‘tting (2" NPT xé'" Polyflow Tube), plastic tubing (30 in. (0.762 m)

o4

af. " Polyflc?w Tubing 66-P-;§-) and the nozzle (6) itself also shown in

greater detail in Fig. 3.4.. The force on the thread ((7), 0.011 inch

(0~.2"'794 cm) diameter Bérklef Viking monofilament) p’lz)-xced within the -

noizle was measured by a *foéé:e t;mter ((8) , Ametek Trim éeries Model T~
.‘?06-—"1'0) with an accuracy ot: 2% of full scale and a range of 0-50 gra.’és .
. The length of thread and the nozzle protrusions were obtaine(i using a,
vernier (Kar Stainléass Hardened Vernier Caliper). X }

3.3.2 Experimental Procedure

RIS SESE P SIE VR PRUE LRI

-

After the exper;infental apparatus was set up-as in Fig. 3.3, the.
’ B

nozzle protrusion was set at its intial value of 0 cm through measure- B
. " o '] : ' , .
ment by the vernier caliper. The three nozzle protrusidn wvalues that 2

would bé tested were 0 cm,“Oin?.? cm. ,. ahd 0.254 cm. reéspectively. With

*

. ~ .

the initial value of nozzle protrusion set, cne end of the thread-'was

attached to a force meter and the other end inserted through the cen-
. y

ter of. the nozzle so that there was a thread length of 30.48 cm.. All

thread lengths -were measured fronfn;the end of the nozzle protrusion. A
’ +

/ - -

I3
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‘pressure of 206.85 kPa with only very minor fluctuations on the pres- : -~

—
"

sure gauge due tc the municipal w&ét;gr supply system used. The force on

Y

1 that length of thread due to water jet was then measured with the force

= Q meter. After this measurement w taken the flow was sh off. Then the"

flow was returnéd to L

P . & “‘

the same const iyessure. This procedure was repeated until the final .

., thread. lengtﬁ wag shortened bp 1.27 em.,

thread length was 1v27-cm.. Then,a new 30.48 cm. length of thread was " .

L

inserted- and another set of readings for the same supply pressure con-
' L K

‘ ditidns was taken. Three sets of force readings for three different
0 .
\ ‘ threads with the same 0.2794 cm., diameter were taken, maintaining the '
. _ same supi)ly Pressure and protrusion. The average value of these three

. sets was noted in Table‘,s 3.2 and 3.3 which <an be found in Section 3.4.
[S

.o

. ' The entire procedure was’ then‘.i'eﬁeated using protrueions of 0.127 cm.

\ and 0.254 cm. while maintaining the same supply pressure. The supply

pressure was increased in st:eps of 68.95 kPa and force‘w.:f:iings at

o 275.8 kPa, 344.75 kPa, 413.7 kPa, and 482.65 kPa were recorded for.the

,\ ) three nozzle protrﬁsioﬁs of 0.cm. ,\ 0.127 cm., and 0.254 cm.- )
\ _ N .

<

3.4.0 EXPERIMENTAL RESULTS

\ 3.4.1 Comp arison of Experimental gTheorecical Results

\ ' In Ehis expgriment the shear force on a circular thread,centered
within a specific noz;le configuration 'and maintained in a certein pos—
ition while subjected to various flow conditions, was measured and tab-

\\ ulated in Tables 3.2 and 3.3. The pressure and flow were also measured

\\\for each set o;f readilngs enabling the computation of the two series of '

. yndlds numbers; Rx,’which is based on the length of the thread and R,

', Which -18 based on the radius of the t;hr'ea‘d. The shear stress and the

g

. . ‘«. L4
o .
‘ . N .
\ . ,

\ «

she§< coefficiént for the various lengths of thread was then obtained

\
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from a computer program which used the equations found in sectios{s

3.3.1 and 3.3.2. Grgﬁhs were plotted (see Figs. 3.5 to 3.19) for flow
Vt‘arsus pressure and shear c’oef_f‘icient: versus Rx for varidus Ra valu’es
and pressures. ' ~ ' * .

Two theoretil,cal methods for the. calculation of the ;averageﬁ eid.t.
velocity at t:he‘ end of a ;:onical ;xxnulus reported by Kw‘aok and Lee (\52)
were used for z‘bmparison with the presentl; obtained experiment:al re-

ult:s (see Fig. 3 20) It should be noted that in their report the var-

1 :
iation in theoretical results.for their nozzle hfftween the two-methods

was less’ than 1%, while their expérimental results varied less than 3%

. / e
S

from the theoretical. In the present study the two theoréticil methods
‘were found to vary up‘t: 10Z; a significant 'dié_ference from their” find=
m‘gs. Although the curves obtained by the two methods-have the same

tr.eud, the curve using the héad lost (hL) ec;uations had higher values

than hA’ that g:alcu\lated using the- displacement thickness. Except for

" one point, the experimental results varied from the theoretical ones by

less than 10%.A set of curves exists for each protrusion. It can be

seen that the flow increases with pressure while 1h9reasing §he profru—
s;; shifts the curves downward. As the flow has bec;n seen to be ex-
tremely sensitige to pr?trusion variatidm, a possib‘le éour.:ce of et;'or
explaining the scattering of values for eaﬁh curye was the difficulty
in obtaining exact protrusion lengths during the experiment.

Two performance pz;rameters affecting the annular water-jet ‘are;
1) the %pply pressure and 2) the length of the nozzle protrusion which
affects the annulus -area and changes the R, value: While(,,mainiaining

the same supply pressure, the shear coefficient varied with various -

¢ -
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protrusions for the same Reynelds hum}:er, Rx’ but no consistent pattern

@

to the variation could be observed-that satisfied all supply pressure

conditions. Although there wag scattering for the point\g of

protrusions, which can bé partially attributed to the limitation of the

the three

accuracy of the force guage testing instrumentation utilized, the re-

’

sults were not affected to the extent as when the supply pressure para-

meter wa(s changed.

:  The graphs of shear coefficient, Cf versus R showed

that the

plots of the experimentally M_C values shifted downward with n-

creased supply pressure. Although with increased supply pressure for

the same protrusion the shear coefficient was found to decrease, it

should be noted that the force increases as seen in Tables 3.2 and 3.3.

As the supply pressure was increased for the same protrusion, this re-

sulted in the flow and consequently the velocity also being
“ ¥

increased.

In Eqn. 3.7 representing the experimentally based Cf, even though the

value of T in the numerator increased, the denominator contained a vel-

€

ocity squared term which wa§ the dominant factor in that equation.

o
As well as the experimentally based C from Eqn. 3.7,

retical curves 'were drawn; the two-dimensionél average shear coeffici-

ent using Eqn., 3.8, and White's average axisymmetrical shear coeffici-

based Cf values were greater than the two-dimensional plot.
Y .

closer in value to White's coefficients for lower pressures

tending to the two-dimensional for higliet presgure. Neither

theoretical plots fully represented the experimental values

o

N

o

two theo-—

ent using Eqn. 3.10. For all the pressure readings, the experimentally

P

They were
while

of the "two

&
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ag this study based on the assumption of a zero pressure gradient and
only studied the transvers® curvature effect. A further dtudy to verify

the experimentally based readings woyld have to takévthe pressure gra-

3

dient into account. ; - . ’

3.5.0 DISCUSSION OF THE LlARIOUSi PARAMETERS AFFECTING NOZZLE

»

PERFORMANCE

It l;as bee;i previously shown‘in section 3.4.1 that theuparamet-
er which most substantially affects nozzle performance is the watg'r
supply pressure., This discussion centers on the effect of pressure on *

7 ""\—"/ \
the other performance parameters while concentrating on the intial flow

region.”

" 3.5.1 Creation of a Air Pocket

'3.5.1.a Effect of Nozzle Angle

At the end of the nozzle protrusion an air pocket exists around
the 1nit':ia1 length of thread\ having a diame&er, a, before the annular
vater jet from the nozzle comes in cogé:act with the thread. This is
SHO‘WH in Fig. 3.21 and 3.22. This point of contact is dependent on the
.  angle o at which the water jet leaves the nozzle and the water pressux.'e

used. In'Fig. 3.21 one can see the h;rpothetical case 1f the water jet
continued at the samé angle g as that leaving the nozzle and was unaf-
~ fected by any external influences, then the maximum length from _the end
of the nozzle protfu.sion ;)f the a:ir pocket without thread e'wou]..d‘ be p
For the same conditions but haviﬁg the thread would bJ X ‘I’h'erefore‘,
.if these conditions existed in the real casé, there would be jno shear
| force on.the thrgad due to the water jet‘for |\:he 1eng‘th of thfead X

With angle o equal to 3.1218 , the distance X WOuld be 1.886 cm. and
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x,r’would be 1.63 cm.. Experimentally, it was fqund that there was shear
forces at thread lengths smaller than 1.27 cm., which 1s less than Xp
in Fig. 3.21, Tﬁex:efore, some external factors must exist and be taken, .

into consideration. , °

3.5.1.b Effect of Water Vortices and Air Pockét Shape
In the a;}ocket region close to the point of contact, x;r, in

Fig. 3.21 water vortices are initiated, thereby creating shear forces
b

on t;hé thread within that region and reducing the maximum length of ‘phe’f
air pocket to Xy It was experimentally noted that the size of the air
pocket and therefare the point of contact of the water jet with the .
thread, Xp, Was a function of the operating pressure. A parabolic decay
with decreasing operating pressure was noted (see Fig. 3.22). The val-.

ues -of Xy » Xy Fpors and X which are shown to be smaller in Fig. '

3.22 than In Fig. 3.21, are reduced further with decrgasing pre?ure.

As the operating pressure is increased, the water jet is projected fur«

ther and the size of the air pockei: is increased as more air is drawn

through the open central section having the diame(:er DI’ which ruas the

<

entire length of the nozzle. .

3.5.2 Entrainmeﬁt ‘of Alr

\

Another.factor invovled is the entrainment of air across the

boundariesh of the annular water jet. The rate of entrainment of gases
fr;cyn the surroundings into a jet is due to friction and is dependent
upon the density‘and velocity differences between the jet and its sur-
roundings. When jet densitiga\are pade higher pthan those of the sur-

roupding gases, the effects of entrflinment is reduced in impoi:tancg.

For the present experiment, the density of the water jet, p‘;‘, is signi~
# .

v
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ficantly greater than the density of the stationary surrounding air p A

o
)

-~

3.5.2.a Effect of Nozzle Protrusion

The entrainment is also dependent on the nozzle protrusion. The
thi;:kness of the annular water ‘jet 1s equal to the clearance;, ¢, bet- -
ween the inner and.outer nozzle. As the length of w;' - .
ig increased, the clearance is decreased (see Appendix 4.2). I1f the ‘ B
flow i8 maintained constant as the clearance is reduced, the water jet
velocity is.increased si;u:e it passes thfough a smailer annular area ﬂ

—

and the rate of entrainment is changed.

Py

3.9.3 Choice of Coordinate Axis
The efﬁéct of p?esqure on the eiperimentally based ;\,hear coe f~

ficients can be partially explained through examination of the choice

of the coordinate axis, The point of orig;l.n of‘ the horizontal axis for

the measurement of the thread length, x, was at the end of the nozzle

protrusion. This length was used in Eqns. 3.5 and 3.7 for the experi~
. Y ' .
mentally based ‘shear stress,T and average shear coefficient, Cf, res~
\ : ; .
J
pectively. ? -

From Fig. 3.22 , it can be seen tha‘ﬁ if a thread of length x,
was_inserted within the nozzle, there would be no force exerted by the/
water jet on it. Therefore, if the origin of the axis was shifted to

. #
the point where the water jet exerts a direct force on the thread, Eqn.

1

3.5 would be changed and the shifted shear stress would be

F

s TR lx-%) (% = xv) (3.31)

éince the force,F,remains the same and the denominator is reduced, the

?

value of ‘rs would be greater. than 1 for the same length, x. Similarly
. L'
” — y
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Eqn. 3.7 would be modified and the shifted average shear coefficient

would be
b . ’
Ts
ons= 'p——i-———- . : (3.32)
r w_jet
L
which would be greater than Cf for the same value of x at the same pre-
ssure. As discussed préﬁously, wvhen the supply pressre was increased,
A 4

so wereé the values of X, Substituting larger values of xv" in ‘the above

equation would increase: the difference between Cf

. ' -
ence is therefore greater for higher supply pressures than lower ones. -
When comparing the graphs for 206.85 kPa (see Fig. 3.5 to 3.7)
with those for 482.65 kPa (see Fig. 3.17 to 3.19), the experimentally

based Cf values shiftea noticeably downward with increased suppiy pres-

sure. This downward shift can be partially explained if the Cf values

were replaced with those for Cfs' 'Although all the Cfs values woulq be
greater than the C \’ralues“, the higher supply pressure C £s valueg are

f's'values.L Therefore, the down-
ward shift when comparing graphs of 206.8;3 kPa and 482.65 kPa would be

inéreased more than the lower pressure C

reduced.
Although a theoretical value for xv was not obtained, it was ex-
perimentaldy observed that it was less than 1.27 cm over the suppl'y

pressure range utilized. Precise experimental values of x, could not be

and C. . This differ-
fs .

obtained due to the difficulty in observing exactly where the air-water-

f

interface occured due to water jet tutbulénce. The values of x varied

)

from 1.27 to 30.48 cm. Therefore, in Eqn. 3.32 for the same value of‘

would be affected more whern the values of x were

X, the values of C
v fs y
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" .
close to the wvalues of X, than 1f x was much greater than X, There-
fore, a graph of (!fs versus Rx would not have the plot curving dovn~

ward to the same extent at low R:i values as shown in the graphs of Fig.

' S
3.5 to 3.19 when plotting Cf versus Rx' ) (J

3.6.0 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

This chapter has dealt; with the experimental and ‘theoretical
analysis of shear coefficients of a thread subjected to a steady jet of -

water discharging from the conical annulus nozzle utilized in a shut-

A

tleless fluid jét loom. The various paramete;s affecting nozzle perfor-~

mance were examined (i.e.: consideration of changes in supply pressure,

.
_the length of nozzle protrusion, the entrainment of air by the water

-

jet, the shape of the water jet, the point of contact of the water jet

1 .
. with the thread, and the water vortices created).

In the graphs of Cf voan:sms-Rx the plots of the expegimer(t?aliy 4
based cf, obtained from Eqn. 3.7, shifted downward with increased supply
pressure whil:a the force for the same protr@sion incretm;l. This can be
partially explained by the dominamig of the Uget term in Eqn. 3.7 which
increased greatly with greater gqpply pressureé.

' White's axisymmetrical iaverage shear coefficients obtained from
Eqn. 3.10 ;,zere _)found to be closer :fn value to the experimentally based
values than the theoretical two~dimensional values from Eqn. 3.8 for the
lower supply pressures. For higher pressures the experimental C £ values

tended towards the theoretical two—dimensional plot.” The most influencal

performance parameter was the supply pressure,with the nozzle protrusion
: N
length having only a minor effect. Therefore, the necessity of *an adjust-

able protrusion for industrial purposes is questionable. A fixed protru-

N
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2

sion length would simplify the design, thereby facilitating the proD'-
duction of a thread shooting conical annulus jet nozzle and important-
1y reducing costs per unit.

3.6.2  Suggestions For Further Work

The first additional study should take the pressure gradient. .

into account as well as the present effect of transverse. curvat:ure dis—

cussed within this chapter. Further investigation could be directed

I

into taking fim:o account the velocity decay of the water jet along the

| o
length of the thread in shear coefficient calculations, retesting the
effect of the protrusions with more accurate testing instrumentation to

L

obtai.n optimum protrusion dimensions, and examination df the effect of
modifying the nozzle angle.

Anqrther additional study which could be performed would be with

threads having different surface roughness valued. Schlichting (73)
“ |

has stated ) that for two-dimensional flow with the same Rx value, the ™.

i
average shear coefficient would increase in value with increasing surface

roughness . For axisymmetrical flows a corresponding increase would

-

occur. Therefore, substitution of a rough thread woild increase the C

values of" the average shear coefficients vhich were obtained in the .

present experiments which used a smooth t:hread. A series of tests with

various (threads utilized in the textile industry could ‘be performed.

-~

e

£
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GENERAL CONCLUS IONS

The previous axisymn;etrical studies for the law of tﬁe wall
were classified according to six hypotheses. The first reported hypo-
thesis, baseﬂ/on the assumption of a power law velocity pr'ofile, has
long been (ab/and‘oned due to limited Reyqolds number range applicatioy
and ité Anaccuracy. Of the remaining five modern hypotheses, t[hree (
the tﬁo—dimensioﬁal, the streémline, and derivative) can be recommend-
ed é’or abplica;tion only if~ the radius, a, is'large and for smaller
values of y/a. The local similarity and Rao's hypotheses have been
found superior to the preceeding three iIn describing the experimental ™
profiles foxr the entire range of values of a and y/a examined. A1l the
hypotheses inave been fourd inaccurate in predicting t‘he velocity dis-
tribution in comparision with experimental results for low value:..?. of
a . P atel (24) postulated that this was the result of relaminarsation -
of the turbulent boundary layer due to transverse curvature effects
and proposed a:a+ val,ue of approximately 28. Rao and Keshaven (20)

suggested that relaminarisation occured for Ra values less than 15,000,

The'previous axisymetrical studies for the velocity defect

A

N

:; \ it
I e o PN " .
LR TC IR S IR WU RS .

laws were classified according to four hypotheses. Three (Chin et al's
(11) , Yu's(10), and Afzal et al's (12)) are baséd on ga’difica.tion of
the -classical two-dimensional velocity defect law with respect \to wvar-
iation in empirical constants, Bl and ‘Bz. All three had B2 constants
dependent on ,the\cylinder radius, in texrms ‘of a, Ra’ and § /a respect-

' ively..Each method's velocity defect plots in two-dimens:l:bnél coord-

t

inates of (U~-u) /u, versus y/§ coincided closely with experimental re-

sults, with the only difference being that of presentation. n the
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fourth approach, Rao and Keshaven (20) found that the velocity defect

plots with the two-dimensional coordinates did not revedl any similar-
ity for their experimental data. Their data did not collapse into a

single curve for the

same R and §/a values, Afzal and Narasimha (12)
attributed the distrepency to f£he slow recovery of\t\he boundary layer
used, . which invalidated the experimental re-

sults aS the :Ln'itial.data reading stations. When Rao and Keshaven (20)

pl

s

the veloc:@ty defect agaé.nst a local I‘(eynolds nunber , r*; simi~
larity was found for each individual value of Ra' Agreement exists’be-
tween the various reports that the traditjonal division of the mean

flow properties into wall and wlalie regions may'be invalid when there

is a large tramsverse curvature efifect, for conditions where a is very

| |
'small or §/a is extremely )yrge. resently there is insufficient docu-

mented data to specific exact a and §/a transition .point values where

~

the traditional division ceases to hold.

Experimentally based axisymmetrical shear coefficients were
e ' .
obtained for a circular  thread subjected to a seri of \tests with a

-

steady jet of, water d;ischarging from a cbf\lical annular nozzle. For

4

the same Rx’ the Re’Smolds number based on thread length, the experi-

- mentally based axisymmatTlsal shear coefficients decreased in value

for increasingf‘isupply pressure but still remained greater in value

than the twq,-fdimensional average shear coefficients. White's (21)

. ' .o
. theoretical axisymmetrical average shear coefficieiitr represented the

1
experimentally based coefficients more closely for the tests at the

lower sypply pressures. At the higher pressures and the res;xlting
é. id

higher wvalues of Ra’ the Reynolds number based on the cylinder radius,

2l
’ L
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the experimentally based coefficlents tended towards the th;oretical'

' two-dimensional coefficient values. With the excéf;t;lon o‘f one data .
point,.the.experimental ayerage éxit velocity at the end of the coni-
cal annular nozzle varied by 'les's than 1X from the theoretical values
obtained using an integra;1 momentum method and ‘a mac.roscopic energy

balance method. The major parameter affecting nozzle pefformance was

. . [
found to be the sugbly pressure. '
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. APPENDIX A CALCULATION OF ANGLEa

4

.

, . ‘
In Fig. 3.21 -

D:

il = 0.0405 in. = 0.10287 cm

D ‘ .
‘52 = 0.0510 in. = 0.12954 cm, / (A.2) /
. . [

’ —_— —_—

When DIN equals DO’ then Xy is at meﬂx
2 .

If a=3° as in tﬁe specifications of the nozzle and N ymax

Therefore,
tamo= Py = Ek; , , (A.3)
Pyor PXpor
“ry D
= Y0 ‘ , . .
“ro1 2tang ) - (A.4)
D ' . ]
= I '.
i i | w9
. ~ xo= P "D = 0.12954 - 0.10287- N
Wmax *TOT T W —— : - = 0.5089 cm  (A.6)

tan 3° .
4

but experimentally me;x was measured to be 0,1925in.> 0.48895 cm

Therefore, '

D, - Dy 0.12954 - 0.10287 : . (A7)
tana =_ gL = 0.05454" , -
Nmax * - , '

a = 3,1218° ]
r , f
- ~
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Fig. B.l Protrusion-Clearance Relationships

tana="m " 01

ZxN ‘ .
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(B.3)
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APPENDIX C CALCULATION OF Dy
In Fig. 3.2
D 4( cross—-sectional flow area )
H™ ' wetted perimeter
E(D D, 2¢ cosa)c'
D= 4211 -
“<D1,Dl 2¢c cosa) -~
~/~Dﬂ<2c

e rr MRS AR A

(C.2)

(C.3)
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