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ABSTRACT |

A’ Cubic Spline Approximation for Fusion-Welding Problem

in the Presence of Natural Convection

¢ ' . Weiliang Dai

A study of the characteristics of a fusion-

natural convection in .the liquid region, . i volving melting and

solidification processes, is conducted. Theé fgoverning equations that
describe the behaviour ‘of the problém are formulated, and a cubic

spline nume;'ical approiilgation technique is developed and applied to

’

- < solve such problems.

Results were obtained from aluminium ™ and lead 'fusion welding
processes for the moving - mterface, the temperature’ dlstnbutlon in the
, liquid and_solid regions, and the stream line pattern in the liquid
/ o region. - The ejfect. of dimensionless parametgs, such as the Biot

number, the superheating coefficient, the subcoohng coefficient, and
" the aspectratio on the average moving lnt,erface, was also studied. It

" has been found that the position of the moving interl'ace varied

, that the effects of natural convection should be considered in metal

fusion welding processes. It. also. reveals that the temperature in the

; . - aftér th ovink interface reaches its maximum position. Therefore a

o one-dimensional model could be ‘ adupted, ~and the time
in calculation would be reduced dramalically.

@ug ‘problem with

aandl

considerablely along the vertical direction. These ﬁndmgs indicate -

liquid region was uniformly distributed at the meltnng point shortly '
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CHAPTER ONE‘ o ' ' L

INTRODUCTION

Fusion welding involves the welding together of two sheets' of -

metgl throﬁgh .thew infusion of molten metal (1}. Depending on such

. factors as the welaipg set-up and the ph;sical properties of the metal,
~ there are two possible outcomes of a fusion weld.iné heat' transfer
‘_ process [2]. Omne outcome is solidificaﬁon of the molten metal only,
~usually a process akin to common soldering. Another ‘outcome w;vhiéh

is more desirable, however, is solidification following the mel¥img of a *

small portion of the parent plate. This thesis proposes to examine
the heat transfer behaviour of just such a fusion-welding process..

“ As"is the case with phage-change 'problems, the most notable

characteristic of the funion-weldjﬁg process - is the existence of a

. moving interface between the liquid and solid phases. Prediction of

-ti.he maximum mov'ing interface position, as well as the temperature

distribution and the rates of melting and solidification is & critical
aspect of the control of the fundamental parameters of the
fusion-welding process. It is such predictive sbility -that the thesis
attempts to develop. | '

During the heat transfer process in phase-change problem, the
intense heat posééssed by molten metal is transferred to the
surrounding, material through conduction, and to lesser extents,

convection snd radiation [1]. As shown in [3], a review paper on the

' \
5 CN
\

}
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previous heat transfer literature, conduction is considered to be the
only mode of heat transfer in the analysis of the most phase-change

problems. A series of analytical solutions has been reported m the

 literature. A list of references for various analytical and numerical

methods, when only the conduction is considered, has been provided
by Wang et al.[2].

In recent years, more attention has been focused upon the

 associated convection flow developed in the liquid region during the

heat transfer process. However, due to mathematical complexities, few
nﬁmerical results have been produced. The natural convection flow
developed in the liquid region due to the thermal gradient s very4
important as it can have a great effect on the moving interface [4),
Wark | pertaining to the phuéfcﬁ;;nge problg}n involving natural

convection can be found in Sparrow et al[4], Ramachandran et al[5};

and Rieger et al.[8]. | -
“"\é\ . '

Sparrow et al.[4] ’dmoped, an implicit finite difference scheme to
solve a melting problem with a solid maintained at the fusion
temperature. Rather than dealing with a transforméd non-orthogonal

computation grid, assumptions were made to drdputerms related to the

“curvature of the phase boundary to obtain s solution with reasonable

computational efforts. The phase position was ﬂetermined at the end

/
of each time step during the numerical computation, thus requiring

.adjustment of the depéndeny variables.

Following Sparrow’s lead, Ramachandran et al[5] carried out an
analysis for the solidification in a rectangular enclosure with a

subcooled solid region.. A finite difference’ numerical analysis' based on

~




~— 3

, o . ‘
the same asfumptions made in [4] was used to ease the computation.
’ \_‘\ .

| However instead of calculating the phase position at the end.of each

time step mthn a concomltant sdjustment of the other dependent
variables, Ramachandran et al proposed 2 scheme to determine the
phase position at the beginning of each time step without adjustment.

Rieger et al.[6] attempted to solve the melting process. aroﬁ{ld 3

heated horizpntal cylinder. The 'solid regibn was assumed to be at

the melting temperature, and the diffi¢ulties of the hmid]ihg of the
moving interface were overcome by applying the so called *body-fitted
coordinates numerical mapping” technique. )

Fusion welding inzolves even greater complexities than those of

the previously described .cases. In fmion-wéldiné problem, both

~melt.mg and sohdlficatmn processes appear, one followmg the other.

In addition thé superhesating in liquid region and subcooling in sohd

'reglon must also be considered. Unfortunately there appears “to be a

complete lack of published information to- fusion v&elding problem with

natural convection in the liquid region involving melting and:

.9 v N
solidification processes.

As formulated in’'[4,5,8], fusion-welding problem involving natural

convection incorporates two spatial coordinates, as well as time. The

~ complexity of the two-dimensional unsteady flow and "heat tr;nsfer

pxjoblem calls forl the use of a numerical solution procedure. In 'this‘ I~

thesis, a cubic spline. approximation numerical procedure was derived

and adopted.to solve the present fusion-welding problem.
“ . / :
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‘The cubic spline gpproxiination nnmeric:.al technique has 'b’een'
applied t.c: fluid mechanics by Rubin and Graves [7], Panton and
Sallee [8], and Wang and Kahawita [9]. "It has also been used in
fusion welding analysis, but without consideration of the natural
convection [2] The principle advantages of using cubic spline

approximation are as follows [2,7]:-

1) High order accuracy for the first and second derivatives ‘even
with a non-uniform mesh. It is expected that for a uniform mesh,
tl;e spline ai)proximatién. provides fourth order accuracy for the ﬁrst.'
‘derivativé, with tﬁird order accuracy for a non-uniform grid, The
second order accuracy for the second derivative is maintaiiied fox" both

uniform and non-uniform mesh.

o

2)  The governing matrix system, obtail;ed ‘with the implicit ”
formulation, will contain either the values of the functoin, its first |
derivative, or its second derivative at the node points. Such matrix
system is always tridiagonal, thus facilitating any efficient inversion

‘procedure. ,

3) A direct evaluation of spatial derivatives leads to an accurate
_détermination of the gradient boundary conditions.

4) It is easy to adopt the non-uniform grids.

* To employ the cubic gpliné approximation ‘numerical #procedu"re‘ in
s‘oﬁing ‘the fusion-welding problem, a further study 'for the mixed
boundary conditions has been made. A study of previpusly developed
solution. procedure using cubic spline tec:hn_iques in [2], has shown that
the trid?;gonal matrix system is limited” to the solution of - transient




problems. In the direct evaluation of the steady-state solution using
cubic spline numerical techniques, a8 band matrix having six c.liagonals,

two above the main dlagona.l and three below, has' found.

In chapter two, s mathematical model of the fusion-welding
problem is presented. A bfief introduction _to the cubic spline
approximation technique is presented ‘in chapter three. Chapter four

presents the cubic spline approxithation numerical procedure as

employed in the nelution of . the fuiion-welding problem. The ]

- numerical results of the fusion-welding problem under investigation are
"presen{;ed and discussed in chapter five. In the final chapter, the

concluding remarks and suggestions for extension of the work done in.

this thesis are presented.

——
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CHAPTER TWO

MATHEMATICAL FORMULATION
OF THE FUSION-WELDING PROBLEM

formulatipn of the fusion-welding problem with natural convection in
the liquid regio;z.. Section 2.1 contains & description of i‘.l;e'
fusion-welding problem. In section 2.2, the  governing differential
equations r§.lating to the co_nsel;vation of mass, momentum, and.energy
. are given. A vorticity and stream function representation is ‘adopted
to simplify the mathematical formula@ion. In the last section of this

chapter, section 2.3, 3 dimensionless representation is made to

-

generalize the derived model. ' -

o

The subject of this chapter is to derive the mathematical

s
i
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is high enough, a thin layer

<

'2.1. Problem Statement And Assumptions . -

As shown in Figure 1, consider two metal sheets formed of the
same material of thickness d2, height H, and infinity in 2-direction,
having identical dimensions. They are separated .by a distance of

2d,. s'is the position of the moving interface.

Initially, the solid metal is kept at a temperature Tao which is
lower than the melting temperature T of that material. These two
sheets are welded together by mfusmg molten metal of the same
material having a uniform initial te perature T‘!0 (>Tm). If the Tto

f melting on the parent metal sheets

will occur during the fusionwelding process. Under the influence ’of

the buoyancy forces, there is a recirculating flow within the liquid

region. As the melting and solidification processes progress, the

liquid-solid interface becomes more sloped (as .indicated schematically

in figure 1).

In the analysis, the top and the bottom surfaces of the two
metal sheet.s and the top and bottom surfaces of the gap between
those sheets are kept adiabatic. The outer vertical surfaces of the
two metal sheets g{re exposed to an environment of temperature

Ta” (<T80) with a heat transfer coefficient h.

¥

The analyses and solutions were carried out according to the

following objectives:

" {1) Determination of the position of ‘the moving interface’ during the

melting and solidification.

|

(RS 1L S
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(2) Determination of the rate of the melting%hdxsolidiﬁcatioﬁ.

(3) Determination of the time required to cool down the liquid region | /
" to solid state. \ |

(4) Investigation of thé effects of ‘the nhtural convection in the

fusion-welding problem.

(6) Investigation of the fluid flow in the liquid phase and th

temperature distributions in the liquid and solid phases /
/

In the formulation of the fusion-welding problem, the followmg

a.ssumptrons were made: AN
' A}

(1) All thermophysical properties, i.e. thermal conductivity, specific
heat .and viscosity, with the exception of the density of t.h/e’ liquid,
were 'as:;;umed to be independent of the temperature in_the liquid
" and solid regions. The density variations in the liquid regic?n/t;ere .
considered only insofar as they eontributed to the btroyaxrg:y forces,
but were otherwise neglected in accordence with the Boussinesq
model [10]. - .Copsequently,‘ the “flid was considered to be

incompressible.

" (2) The density difference between the liquid and solid regions was

neglected. N

(8) The fluid in the liquid regnon was assumed to follow a Newtonian go
flow (i.e. shearing stress is linearly propomonal to the rdte of

‘straim).

1
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(4) Radiation in both liquid and solid regions was negligible. g
) )\ . -
Due to the symmetry of-the problem shown in Fig. 1, only ome. .
half of it was studxed n ~ R ‘
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2.2. Derivation of the Governing Ei;uations Based on
©  Temperature Model - , ' ‘
/,A/ . . > :

Literature dealing with phase chan'ses~ in heat transfer sproblems -

. can be divided into two groups depending ofi the variables selected in
" the formulation of the problems (11,12]. In one 'gfoup, based.on t

entimlpy model,, the specific enthalpy is chosen as " one of 'the
dependent variables. An energy comservation equation is writfen for-
> both liquid and solid regions, and the position of the liquid-solid
J’Tnterface is not determined exphcltly but only approximately, by an
examination of the enthalpy distribution. In the second group, the .
formuiation is based on a temperature model, where the energy
.conservation equations are writlen separately for the liquid and solid
regions in terms of the depen,deﬁt. va’ri‘ab’lg, namely temperature. The

liquid-solid interface is explicitly determinéd by making an energy

.
-~

balance on it.
‘ 7

In the problem statement in the last section,. one -of the main
objectives was to determine the’ position of the moving interface. A
temperature model was therefore used to formulate the fusion-welding

problem in order to relfder an explicit determination of this position.

Usmg the Cartesian coordinate system, w1th the ongm x, ¥, and

v axes are located as shown in ﬁgure} and note the system ’is
extended from B to in 2 du-ectlon The system . of equations
govermng fluid flow and " heat transfer in two-dlmenmonal llqmd-sohd

. fusion-weiding problemu (with assumptlons As per preceedmg), is given
as: follows [13)..

.
i A

. -
» 3
N .
t . € 4 A \ ’
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In the solid lregion, only the temperature disotribution needs - be
considered, as conduction.is the only mode of heat transfer in_this
region. The temperature distribution §s governed by the eliérgy .

.7

‘equation,

"o . 8T et ¢ fJ,\
. B8 8 8 . .

— = a( + )y « ' (22.1)
at 8 87(2' . 8y2 - ER b
Where y .
Ts =~ temperature within the solid (o C)
ok | o, e
! a = ;—é—, thermal diffusivity of the solid (m"/s) : 1
. Tos . o

k = thermal (éonduct

ivity of the solid (W/m°C)

.8
P, = density of the material at the melting f.emperature (kg/ms) * ,.
¢ ‘““\\/ N ‘
) ¢, = specific heat of the.solid (kJ/kg’C) . 7 -
ion 22.1 is subject to the following initial - and boundary ;
el ’ v . . ' f
-3 * . ° “ o ’:ﬁ
Y ’ ‘ . - ° ‘ g
- at { = 0," TS cxx TSO . ‘ (22.2) ‘ '}:
. oo
. atx=s8 T =T, @23 W
. -~ 8 m By . - . o 1

aT.

S 8 - . :
st x = D, -ks - h(T'sTTa) . - (2.24)




) L ' &,
¥ 13
. 8T, o . |
-— "'—'1- l ) Y
| at y = 0, 3y 0 ‘ ~ (2.2.5) N
L . ) ] -
\ L ’ S B
S . sty = H, j,?- -0 " - (2.2.8) i
g Where '
) Lo . $ w
8 = position. of !iquid—solid interface (m)
P D = di+d2, width of half system (m) :
- | * | I
H = height of the system (m) ‘
o . ; o o )
: Tm‘ - meltlfa(g‘( tgmmratme of the patenal ("C)
‘\' ! . ’ - ‘ -
' , T, = ambient temperature (°c)

" b = heat transfer coefficient of environment (W /{11200)

Tso - initial temperature of solid region (OC.)

Tl L In the liquid region, with the Boussinesq apprqximat;ion [10], thg

» * effect of temperature on density is confined to the bouyancyo‘ force
| term of the momentum eqilation: It is assumed to vary iinearly with
L ' ‘temperature: .
| o = poll-B(T,;T )] T e
Where, < , '
. . ﬁ = ;hg/mal volumetric éxpansioff coefficient -
- " of the liquid region (1/°C) -
| - ‘ Tt'- temperature within the liquid IOC) | e
. 9 Lo ' ‘ VRS

«

e
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. The equations, which -gofern the fluid flow

~ the liquid region, are as "_tollows,

Continuity equation:

Bugl

and heat transfer"in ‘

Bx By - 0 ) ’ . (228)
Momentum equations: )
4 in the x-direction, R
* mo o, o 1t o ”
Bt 8X + 8y - po ax +‘ 2 + ‘2) (2.2.9)
and in the y-dir
-gﬂexwex; e L PR T
8y y. 2 23' 2 m)] A(".' )
8y o
> e
Energy equation:
o, AT ‘a'r 02 2 |
’ l . t( T 8 Tl‘ @.211)
+u - 0 e
ot dx
3?
, . - Where, y "
~ ) u = velocity component in x direction (mjs) -

V = veloclty component in 'y direction (m/s)
p = pressure [N/m’| ,
k —
o
‘ PoCe

.= -—L thermal defusmty of the lxqmd (m /s) *

k .= thermal conductivity of the' liquid (W/m °0)

,B\

-
-

T

. T
RETRaRA A 30N * .

R .
W -

v
- .
’ L
‘
.
\
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¢, = specific hest of the liquid (kj/kg’C)

[

The boundary and initial conditions for equation (2.2.8) to

(2.2.11) are:

att =m0 U=y -0 (2.2.12)
T, = T, . (2213
st x =m0, uw=0, -g—x! 0 " (2214
8Tt
— o 2.2.15
e ’ ( @)
Bt X msg Vel u=0 (2.2.18):
T, = T, , (2.2.17)
ity = 0, andy—H 4 "
u = 0, ) . \
V - Ojor ' -g';- -0 _ (2.2i8)
. 8T£ “ .
: — a0 2.2.19
% (2:219)

. where T&) represents initial teniperaﬁure of the liquid region (0 C).

’ﬂ:e second condition in eq.(2.2.18), ---0, is purely due to the

.consxderatlon in the srmphficatlom in later stream and vorticity

representations. Mathematlcally speakmg, the conditions. ve=0-. and ‘
g';-o differs from a constant. However, by spgcxfymg rmtrally v—()

/
and applymg %—-0 as boundary condltlon, the result will be' the same

{ 88 given vae( as the. bo‘undary condition.
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The energy balance at the liquid-solid interface can 7be‘_de9cribgd
as follows]5],
¢9TB 8T
(ksax - l ax}[l+( )]"L Bt

(2.2.20)

where Lq represénts the latent heat of fuslon (ki/kg), and the initial .

1

value of s is equal to dl' ' '

Note. that the term [l+( 8y ) ] is necessitated by the cumhnear
liquid-solid interface. If the initial temperature in the liquid region is
higher than the ineltnng temperature, dunng fusion welding, the liquid
region will release :‘“hea.t. to the solid region through the liquid-solid
interface, at which the teﬂmperature remains at the melting

temperature. Thus the temperature in the liquid region near the

interface will decrease According to the Boussinesq model ‘[10], the

densnty of the material in the liquid region near the interface will be

increased. As a result, there is a natural convection in the liquid
region. This natural convection produces a vertical temperature

-gradient, in which the temperature bordering the interface is higher at

the top than.at the bottom. Cbnsequently, more molten metal will

be formed at the top. %l’hese factors culminate m the formation of a2

curvnhnear lnterf ace.

(
The formulation of the problem can be simplified by employing

#orticity w and stream funétion ¢. By first | derivating .equations
(2.2. 9) and (2.2.10) with respect to y and x respeﬂvely, and then
combining them by employing equation (2 2.8), a vorticity equatlon

can be denved as follows,

o
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T, 2 2 ’ .
fw - Ow dw [4 dw 8w
T 4V = - gl +1 + ) (2:2.21)
| at ox ‘ dy Ox \ 8x2 8y2
where,
oy oy
_ w = o —-2"3 + —-‘2'5) (2.2.22)
ot T 8 oy . C
L .9 ‘
u gy 7 Bx (2.2.23)
The boundary and initial conditions for: equations (2.2.21)-(2.2.23)
may be written as, ‘
[}
attm0 Ym0 (=0 (2.2.24)
i oo O
ax=0 F=0 w=-=F (2.2.25)
& 8x 8y ’ t
w_ o, L, O ‘
fabx =3 =0 W - g * 2) ‘ (2.2.26) f
S et . 3
' at y- 0 and y = H, ’ ;
, %Ii‘- 0, w}- - g"g . ,(2'2'27)
' Oy ! : s
Therefore equations (2.2.1)}-(2.2.68), (2.2.11), (2.2.13), (2.2.15),
(2.2.17), (2.2.19) together with equations (2.2.20)-{2.2.27), form the
" mathematical representations qf the fusion-welding problem cpﬁcerned.
B ¢
¥

M



2.3. Dlmenmonless Representatmns of Govermng Equstions

To make the results more general, the following quantities are

+ X x X8
) s’ Xg D-s
' “aLt .
£* - _t_ . y* = &
D2 ’\\ ¢ H
0¥ - u;H" ’ \ A (!ZE | (2.3.1)
[ A [A -
2
gt o D’
a,’ a
L 2
Tt'Ta '!a
* . - m#
Tl=T7x T =T 7
m a 8 .
4 - T lo'Ta y - Tao'Tu ’ -
h T .T ? c T -T )
m a m a r

" Based on above transformatxon, the coordinate variables x, y, ¢

are replaced by x t ,y X *, v*, t*. Thus

2_ %o a o | s
8t~ 2 6t* s B8t x}* . 4B
% p t ,
[2) 1.8 0 1 8
x"sbx; T Dabxi (23.20)
. ; 8 '
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8 108 * 9s-s .
\b—; - Hoy s 8y ox* . - (23.2¢)
Sparrow et al. [4] pointed out ‘that in making the first
approximation m a phase-change problem with natural convection, the
terms 8:/0t‘ and ds/8y can be neglected. His reasoning follows from
the -assumptions listed below, . '

(1) The liquid-solid interface remains stationary for the time interval
At, in which heat is extracted from it in the numerical solution

procedure. Therefore 9s/8t appeared in equation (2.3.2a) can be
neglected.

(2) The change of slope of the moving interface along y-direction in
the time interval At is minimal. ‘Therefore 8s/8y can be
neglected. ’

Consideration of the above assumptions results in the following

relations,
2 - I—‘:i 2 | | o (2.3.3a)
2.t ""—Li" or - 51'_3 ax-i’—; ‘ | (2.33b). |
% - % % | . | . (?.3.3(:)

The ' following dimensionless parameters are used in the late
gystem of equations, ° ’

]
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Pr - Prandt!- numbe
-Q -
(4
Ra = GrPr, Rayleigh number
o '
Gr —‘gﬁ(Tm-Ta) :2- Grash;)f number

'St.e - ~lq __ Stefan number
c (T_-T)
P ' 'm a-

‘Bi ‘mm 1;-2 Biot number
8

, o \
N - % dimensionless position of the liquid-solid interface

LY

R = % aspect ratio °

a , ) .
o = ;5 ratio of thermal diffusivities
. S a,
ks '
‘kr = K ratio of thermal conductivities’
L -
d .

Rs = T)l ratio of liquid width to total width.
Substituting equations (2.3.3a) to (2.3.3c) into the governing
system of equations derived from the last section, the -transformed

dimensionless system of equations are expressed as -follows.

| In the solid region, . ‘ ' - ) N




the energy equation,

- the vorticity equation,,

21

L 4
2 N
* , * *
aT a[(-l,-’)HT' +_1—8Ts
* - _
ot r 1 . 0x;2 R2 8y*2
with the initial condition,
Bt =m0, T* = )
"and the boundary conditions,
at x* =0, T* =1 .
7 s
\
OTS"‘ -
* = -Bi(1.m\T *
at x_ 1,' B Bi(1 n)TB
ot y* = 0 -and y* = 1,
8Ts*' .
-é-yT -0
In the liquid region,
the energy eq'uation,h )
oT, - . T} T * 8t
* * * *
at . nR 8xe Rz. 8y 2 B 2

' (2.3.4)

(2.3.43,.)

 (2.34b)

. (é.3.4c)

(2.3.4d)

. ‘

U,
. .




1 8t .

° where,

- v = . RO
oy*’ ‘ 1

and the stream function equation,

2
- J» _1’: 1 ._L]
8x£“‘2 R? oy
with initial .conditions,
at t* = 0, “’* - W e 0, Tt*— ¢h

and boundary conditions,

. at x,* = 0,

[/

: -
-_2 0’1"
2. 't 2 2’ ox,*

2 2"

T* =1

¢

.

(2.3.6)

(2.3.6a)

(237)

(2.3.81)

(2.3.8b)

(2.3.8¢)




a}\'}“—OMdy‘-l, o < ' . ‘a C

: 2 8T ,* - -
av* 1 8%%* - [ 4
R N
In the liquid-solid interface, !
8T* . 8T, |
kLt . 1__¢ on (2:3.9)

- = ) = Ste
r 1-n 8xs* n 8;; o

The initial condition for the position of liquid-solid interface is
" 0{0) = d1/D = Rs,

Having derived the mathematical formulation, attention is now

turned to the numerical method to be used in the solution of the

© fusion-welding problem.
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' CHAPTER THREE :
" CUBIC SPLINE APPROXIMATION METHOD

The finite difference and finite element numerical techniques are
extensively used  in the solution of enginsd#ing pr;xblems. In dealing
~ with high order accuracy of solutions, lower cost in computer stor#g’é
and computatlona.l time, derivative boundary conditions, me<g'ular
boundary,’ and so on, vanow different finite difference schemes were
developed to satlsfy different reqmrement.s It is difficult to design
one finite dxfference scheme which can - satisfy all of th'gsé‘
requireméxita. With the aid of the finite element technique, derivative
boﬁgdary conditions are more'. "easily solved, and "the choice of
" non-uniform e}éments lead;s to the _easy treatment of the irregular
boundaries. However, as the complexity of the problem increases, the
" number of elements should also increase leading‘ to a trestment of a
. very large- coefficién‘t. matrix which contains many more noﬁ-zero K
' entries than the usual finite difference technique. __Therefore, it is also -
difficult to obtaip such a finite element scheme which satisfies all

those requirements stated above.

-

. ‘More recently, the cubic spline ‘interpolation technique - is
introduced into the numeﬁcﬂ solutions, of pirtial differential qquatioxis _
[7,89]. A tridiagonal - coefficient matrix, which is diagonal dominant,,
can be derived by applylng cubic splme technigne in solving the
transient problem of any kind of specified boundary conditions. This

allows a use of an efficient inversion algorithm. And the cubic spline.
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w is of high order accuracy even mth a non-umform -; weh.
studied by Rubin et al. in [7], )fo?erall second order accuracy

will be easily obtain? in solving partial differential equations (PDE)

regardless the type of mesh and the boundaxjy conditions. Hence, a
»well designed scheme, ;vhich leads to a' high order accuracy , lower
cost, easy tre;itmeﬁt of derivative boundary and ‘irregular boundary,
can- be e:cpectgd by using cubic spline technique.

\ln this chapf:er, s brief introduction to cubic spline theory is
~made first 'in section 3:1. Followed in section 3.2, a cubic spline
approximation procg.sdumaL for solving the PDE of: different prescribed
boundary conditions are dé;ived. 'In section 3.3, .a spline alternating
. "direction . implicit (SADI) ‘procedure s . given for eolving the
two-dimensional problems. In the section 3.4, sttady state solution of
one—dxmensnondal PDE by ‘ using cubic ‘spline techmque is dxseussed
And a tridiagonal coefficient ma‘t}nx derived from the, solution
procedure of the ttansient problem no longer exlsts instead a band
coefficient matn}( having' width of six’is found A truncation error
analysis and the 1mprOVement of accuracy for umform mesh are made
in, the section 3.5 é}g/ section 3.8, respectively. In section 3:7,\\%;?

ch

cubic spline approximation for solution of a simple phase-

.problem is ,présented. And its numerggal ‘result is compared with the

exact  solution. For more numerical examples, refer to
Rubin et al. [7] and Wang et al. [0}
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31. Basic Cubic Spline Theory

x

As mentioned in chapter one, Cubic Spline lB a polynomial which
\m continuous, together with xt.s ﬁrst and second denvatlves, over the
) exitire region intérested, ie., -

subinterval, but it may discontinue for higher derivatives on the nodes

it*is a cublc polynomial -on each

P

/\
’u\ '

-
«’

o h = x-x, .>0.
i ifi-1

¢ ¢

1 4

: I;(xi) -u

satisfies

~ Sp(x) = u,

~

9 -
z?*ﬁ @

\ |
| Spk(X-’) - Spk(x*.)

" connecting two subintervals [14].

-«

In mathematical expression, consider a region [a,b], and

L) . '-\-

a '-l x' <*x.......<xn <x P - 'b’ ' N ‘ \\,
" 1 |2 T N N+1 i

. . . ."\" . ;,’\\
jwhere .xlh,xz,,.‘.,xN +1 é.r?“ nodal points. insidg region {a,b], md ;

Ay

-~

1<i<N+1  * - ﬁ

A ~¥

Sp(x). is a cubic polynomial on each mtergval [xi-l’xi]’ such that

9

1<i<N+1

A »

a1 P 2

Nd

»

Y
: .
R R
.

- A

And consider fuhcfiop u(x) € [a,b], hguch that at the nmodal point

Therefore, the cubic spline is defined as a function, Sp(x), which -

-

\here the superscnpt k- denotgs the k-th demratwe, and with 0<k<2
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. Then, in general, if Sp(x) is a cubic polynomial on [xi-l’ xi], then

. XX x-xi‘l
- Sp(x) =M (. -"") +M-( =)

Where M - Sp (x.)

Integrating twice ’and evaluating the constants of mt.egratlon by
considering Sp(xi) -, Sp(xi-l) -u,a usefal spline interpolation
‘formula can be obtained as follows:

D ey’

sp(")' SENTY M 'Bh, +

i T M’_lhi2 XX Mhi2 x-x;l
Gy —5 )t O gD R o B1
1

By consldermg Sp (x.) = Sp (x. ), a relation between the second

 derivative and function is obtained [14],

, o
. e ‘
, _iM i b7 S, 15 N, O o, e v 51
Y it 76 Vi+l ™ h, h, |
C " ‘ i+1 1
e 2<i<N (3.1.2)

Additional ‘reiations obtained from equatidn (3.1.1) and (3.1.2) by -

uging the compatibility on them, are- list.ed‘below [14]):

Lo +2( 1,1 Jm.+ 1o =3 S +3 25! v
B Rl R TR b2 b2
i i+1
»




- = = [ ——— - - '-__—T-'— P T ——
‘ SRy ]
— B A A -
s v i V r '
¢ 28 X
\ . # i
' 2<i<N (3.1.3)
’ & . ; -
where m, =Sp(x. g T
p(x) L ,,(
| B ‘ g = -
mi_’_l m, == T(Mi M1+1)' 15:5N, (3.1.4)
b, hi 4 %1 B
m, = <M.+ =M Y 2<i<NHl (3.1.5)
i
h, W -0 -
‘ i+1 i+1 i+l i, . .
‘or m o= -, Ml 6‘,Mi+l b oo 1<i<N (3.1.68)
A ' i+1
2m 4m. u-u, ‘ . : . R R
M o —L, 1 g 1K 2<i<N41 @1 e
i h, h, 2 , - , .
v A i ) : oo '
. 1 '
\
e s T T e o o
or M = - - +6 ~ 1<i<N ’ (3.1.8)
! hi+1 11i+l 2 -
. . ‘ hi+1
With the above relation of equations (3.1.2) - (3.18), a
development of the numerical solution procedure by mlmg cubic spine !
is mtroduced in the next section. .
s
* ‘ ﬁ; *

%
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3.2. Cubic Spline Approximation for Solving Partial ~ 0
Differential Equations

Consider a one-dimensional Quasi-linear ‘second-order» partial

JOSNNP

differential equation, - R C

u, - f(u, U n’m-) ’ , ‘ : (3.2.1)

An approximate solution for u may be obtained by considering

the solution of ) .

4

where the f.ime derivative can be discretized in 8 manner as in the

finite difference scheme, i.e.

D+l g0 .
ol L ot _ (3.2.3)

.o-1t has | to be noted that this is mot the only way to discretize
the time deri'vative, some Oth(;l' schemes may also be taken when one
considers the .accurncy or stability, etc. This will be discussed briefly
in‘sectio'n 36. And here if ¢ - 0, an explicit ‘scheme is obtained,
§ = 1 will result in s fﬁlly implicit scheme, and while § = 1/2 a
Crank-Nicolson scheme will be obtained [9]. .

2

Equation (3.2.3) msy be rewritten as fbllows,

u.:Hl -=-,u;1 + At(l-ﬂ)f;1 + _Am‘;l +

- F + RoPho gt (3.2.4)

-

A M ¥
3
7 2




four conditions can be obtained by msking use of ‘the spli;ie reléi:ions
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where,

l Fi - gl(u.?, m?, M?, x, t, At, §) .‘ (3.2?43)
: Ri - 32( x, t," At, 8) . ‘ (3‘2'41’).
. Qi - ga( x,.t, At; ) . ‘ . (3.2.4¢)

< /
For a given functi‘on of f, the functions of Fi’ Ri' and Qi can be

defined.

Since i is equal to 1 to N+1 in equation (3.2.2), there are
3(N+1) unknowns to be determined. However, from equations (3.2.4),
(3.1.2) and (3.1.3), a system of 3(N-1) equations can be obtained. To
close this sy’stem, another six conditions are necessary. Two of these

can be derived from the given boundary conditions. The remaining

of equation (3.1.4) to (3.1.8) and the governing equation (3.2.4). The
f:ollowing example will explain the discretisation of a given system.
Example 1 |
Consider_g one-dimensional heat conduction equation, )
oo o W/
" '812"‘ | ‘ N /‘\_) ‘
- A possible discritisation of this equsation is,
“;M’“? NP SR ¥ | : e
b i . . . »
At . o (1'0)Mi +‘Mi . . . \, . ‘ . ‘,;“n- ';

oo e P AtgM] 4 o X :
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This results in the following ‘values for the coefficients of
equation (3.2.4),

+

Fi - u? + At.(l—ﬂ)M;1

R =0
-1

| Q = A
If an implicit scheme is considered, i.e. § = 1, it foiloyva t.hat3
’ : n . - . ‘ ' .
| Fi —.ui, ‘Riy-‘o, Qi-At _
_ If an’ explicit scheme is used, i.e. § = 0, it follows that
‘n n , -
Fi_ui\+ AtMi, Ri—ﬂ, Qi-ﬂ
- When the Crank-Nicolson scheme is adopted, it follows,
, >

R =+ AMYZ, R -0, Q= Ay
In section (3.2.1), a compact equation is éiveh for o rep;eaqn‘;;el
in a single tridiagonal system. It can be directly solved,, together
with \tl;e prescribed boundary conditions for L. In sections (33.2),
(3.2.3), ahd (3.24), the solution procedures for a given system of

' equations are derived for the prescribed boundary conditions given in
the forms of m,, Mi’ and mixed, respectively.

) —
/
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3.2.1. Prescribed Bonndary' Conditions for 11i

A single t;idiagonal t;ystem for U can be derived by first using

governing equation (3.2.4) and the sphne relatlons (3.1.5) and {3.1.6) °

to obtain the express:ons for M Ml and M1+ in terms of LT

and u, . Subst.ltutmg these expressions into equation '(3.1.2) gives’

1+1
‘ n+l - n+l n+l1 ; : '
. Au, "+ Bu "+ Cu. = D, 2<i<N (3.2.5)
‘ 1i-1 , 1 i+l i o

\ * where ' /

_Sh1
\ i fk:_hi

\ A b, . &, 1(hith q) L : o j

i .&‘i-kl

P
P
o
-

1+1( 1+1+3R1h|+1 Q) Bthi,

+ -
36e; 11 o hhy : ‘
c - l(h'+h1+l) 1, S
! 3ci+l hi+1' ' oL
3
o -Ri(zh\iz 1+1) 1+16Q(h1+1 1-;-1)
~ L 368¢,
L i+l
' 2 ‘ L v -
v\)D;ai'x*_ x+l(+1+1)_ .
g 6e. 3e. -
) i i+1

¥

™ following results (15}, o ——




T ST
’ - ) . m‘ ' .
l"‘i+1(2!.iih‘ °Q)+Fl i+l 1+l o - .
is1 +1 /
Fini_l’hl R,
& 6 1( "T +Q?W -
_ RE b _ (Rb+3QR, 1b-3Q; )
i. 36 3
d' (&_551_9.1.)“ —y a'
B SR Y , /
. .<
R& &5 Qeh
% = g /T Iy ,
N\ S
by = XXy |
>

Equation (3.2.5) can be' solved together the prescribed

boundaxsy conditions for w by any efficient inversion algorithm.

To determine m, after solving for , the governing equation
(3.24) may be employed by .replacing M with equatlon (8.1.7) for
" isél, or equatxon,&i .1.8) for iml. The followmg relation is obtained,

© [Alm)T - T ; . R (3.2.6)




34
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' 8y by 0 0 ., 0 0
8, by, 0, 0 ., 0 0
0, sy by 0 ., 0 0
MAl=f0 0 8, b, 0o 0

0! 0) q, ° o’ aN’ le 0

‘JA ‘-’;'
-0, 0, o o0, .., a_.N+l, bN-i-ld
] : n+1
s e e O e
D] ~ ldyy dgs dgp o Ayl
where, * i
N a 4Ql
a; = R+ Tz" )
B v - )
L9
1 1h2 .
) v b+l n+l
’ n+l . 2 1
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2Qi'
sEan n
i
4Q.‘

b - -R- T 2<i<N+1

i ‘“Q:

1\“ n+ -uff';l

i d. F- n+ -6Q i 1.
1 i i h.2

Thus equation (3 2. 6) can be solved by followmg recursive

relatlons - )
P W e , |
1 alb2 a.zb1 o .
n+1 di'aim:-{-l ‘ ‘
e 2<i<N+1 ,Q(a.z.sa)
. i . o

Aud it is easy to obtain' M, for given known values for both u,
and m,, by dlrectly evaluatmg equation (3.1 7) for ist1, and equatlon
(3.1.8) for fml. "

3.2.2. Prescribed Boundary Conditions for m . “

IS Y

By first ‘using equations (3.1.7) and (3.1.8) to eliminate M from -

the governing equation (3.2.4), the expressionm for (u.-u. l) and

(l+1 uw) in terms of m ., m and m _, can be obtained.

',Substltutlng these expressions into equation (3 13), permits the -
Q L

derivation of 3 single tndxagonal system, as shown below [15},

———g
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ATl By o™ D, 2<icN (3.27)

i l+l

_g(_l_+ 'l\_mi +4R
13 lli hi+1}‘ h.3'
TS | i+1

29 MR, AR

h?e.

! 1 2Q +4Qx+l+R1+lhi+l \ ,
i 3h, 3 ’
. . Hl . Ahi+1°i+1 |

Fia®i B

T, TR
i+1i+1 i,

Q+Q,

(11.2

i
Eqnatlon (3 2 7) can be solved together vnth the prescnbed

e = 1406 -
i

boundary condxtnons for m, usmg any efficient inversion algorithm.

‘When mi is known, deter;nxnatnon of u, may be accor_nphshed by

means of a simple relation between L and m.. This involves . -

replacing M, in ‘the governin& equation (3.2.4) with equation (3.1.7) for
igl, or equation (3.1.8) for i=ml. The relation can be .stated in the

2
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matrix form as follows, g : A
T T .
| [A] U] = [D] (3.2.8)
PR : |
where
— ‘ - {
By by 0 0 .y 0, " 0 )
By b23 0, 0 .., 0 0 ‘
0, 8g, b3, 0, , 0, 0 -
Al =|0 0.s,b,., o 0 —
L O 0 o0 0 0O B\ bN’ 0
-‘-0, 0, 0, 0, seey .3N+1, bN‘f‘lJ -
n+1l .
[U] - [ul' P2v .u3’ veey uN-!-l] i ﬁ.g ~
\ [D] " '[dl’ d2’ d y ey §N+l] N ;
where,
RN 6Q
' 8, = 1 + -‘l <
1 h2
2
' 6Q
01 [}
by =- ) A
2
o~ :
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o ' 4 D+l n+1' ‘
. . 2m, “+4m
d = F.+R mn+1-Q 2 1
1 -.17171 - ™1 ]12
8Q; .
1 .
. GQ | :
b = 1 4+ -—2- ) 2<i<N+1
h, L o
n+l n+1
a =F, +mm“+1 Q. s Hmy
i i h.

, i
Equatxon (3.2.8) can be solved by using the followxng nmple
\seneruf’Fe?umve relations, '

!

-

un+l dlb2 d2b1
e BbrRhy
d-a.u.n*lr ,
Qm:‘*ll-' —‘-—‘b——‘i—. . 2<i<N+4l S (3289)

R 1.
In the determination of Mi’ equation (3.1.7) for j»€l, and
eqnatioix (3.1.8) for i=1, can be directly evaluated for Mi without

compﬁcation. : g

3.2.3. Prescribed Boundary Conditions for Mi‘

e
i



39

) As was done ‘in arriving at equation' (3.2.7), elimina'tion of m.
from the governing equation (3.2.4) through the employment of #he
spline relation of equations (3.1.5) and (3.1.8), permits the derivation
of the expressions for (ui+i-ui) and (ui'?li-l)'/ Substituting Jthem into
(3.1.2), gives a tridiagonal system containing only the second
\derivatives, and is derived as follows [15], | |

n+le o o n+l n+l . > 0.0y
AiMi-l + BM. " CAiMi+1 = Di’ 2<i<N (3.29)

where,

i-1 1. 1
Be, + Qi‘ e. h. + e‘.h.) '
i i+1i+1 1

e RtR Uy
18 Be, b BiniGiar

D. — i+1 i | *

! ei+lhi+1 el i
. — 1 Rt ' _
i h

A
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Equation (3.29) can be solved together with .the piescribed
'boundnry conditions for M..by any efficiept inversion 'algorithln.

&

Havmg obtamed values for M, it is posslble to determine n. by
‘: means of 3 sunplq relatlon between w and M which can be dernred
. by replacing mi in the governing equat.:on (3.2.4) with equation (3.1.5),
_ for isl, or equation (3.1.6) for iml. The result can be given in the

. matrix form as follows,

‘e

T T - SR o
Al - Df, . . (32.10)
where
- ) 1 - 1
al) bl) ol ol ] ol‘ = o ‘\' .
. - o b, O, o w0, 0 '
| N
0, 85 b3, 0, .., 0 0
A ={0o o a, b;, -y j, 0,
B \ )
0, 0, 0, 0, a, H;N, o
__0’ 0, 0 0 ., =y, bN+L-
n+l v
O] = lup 9 ug oo iy g
- ‘ ) ’ ' ' ' , '
s [D] et [d‘r d2! daﬂ sy dN+1] ?
! , (\Where, . i
| ] : i

—

e
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! "R )
1 ‘ ‘
8, = ] 4+ . . ' -
e
b, = E']'L'
1 - h2 ’
N
2 Antl 3‘_2; n+1 +1 \ Lo
d, = F- R)( 5 My 3 ) + qlu" :
B
R, '
- =t
5" h
] * l
Ri
b=ty T -
i
o
d‘f - F+ R( Mn+1 n+l) n+l
. A simple recursive_relation can then be denved to solve eeuahon
(3.2:10) as follow,
R0 dlbz bydy : .
N x. 1 81b2 bla2 - e - -
. o+l . Y :-;1 o
e R L (3.2.10a)
~ The va.lnes of m, may then be evaluated du'ectly from equat:én ‘
- (3.1 5) for ixkl, a.nd equatlon (3. L 6).{01' imel. ' ‘
’ - W
’ ‘ . » 7 )
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3.2.4. Prescribed Mixed Boundary Conditions

I \previouz sections, the prescribed boundary conditions are the
same at both ends, either bot.h in u, or both in m., and or both in
Mi' However, there are also other kinds of boundary conditions. For
example, if one end of the boundary condition is specified in u with
the other end in m, or Mi' or even at the same end, a function of
u and m, is specified. Hereafter, such kinds of boundary conditions
will be referred to as mixed boundary conditions.

In this section, we introduce a method to transfer a given mixed

boundary condition to T The procedure specified in section (8-2.1)

can then be adopted to solve the given system Two types of mixed
boundary conditions will be discussed as follows. '
Mixed boundary condition 1. \

Consider the following form of mixed. boundary condition,

ox

where " p and'q éan bo'functionz of time,
nﬁf:?
The correspondmg dmcretlzatlon of equation (3.2.1 2 'by using

cubic spline approximation may be in following form, .

m, + pu; = q , (?.2.12)

1Y

To transfer the above boundary condition to = relation bin. ni

-only, the governing equation (3.2.4) is employed. First, spline
relations (3.1.7) and'(3.1,.8) are substituted into the. governing equation )

(3.2.4) for i=2 and imel, respective‘ly;k Two equations can be obtained

» - )

0u: nwiy atx =2 - (3211)

st




m,, and m from these

p Y Dy 9 Elgmmatlﬁg
two equations produces a relation between u, T and m

which only contain u_,, u

1
substituting equation (3.2.12) into tlns relation, glves a relation

between u. and u,, as shown below.

1 v
&, .
Blnl+C U, - D1 (3.2.13)
where; .o
6Q h,
2 G238 ¥
B, = 2 - 4( 3] 2Q, * ) +eyp
2
3 6Q B
Cl"’dlh""(l*—i')x ~ X
2 h
2
h - ‘ . o
D, = - =2dF, -F, +eq (3.2.13a)

1020,111 2 1

a b

+ 4Q2

d, = R+ —
17 Bt g,

e =-d(th2 é)’-‘-z—q—z-
s U T

K the boundary condition (3.2.11) is given at xm=b, the diqcrétized
form of the condition (3.2.11) can be as follows, ‘

mN+l~+ Py — 4 (3.2}4)

Finally,
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4“4

In the same faslnon as that usegnto denve the equatjon (3.2. 13),

8 relation between Uy and UN+1 is obtained as follows,

A

3

where,

+ d,( + ) + e p
| N+1 2 2 2QN+1 | :‘N+l_" ..2.

'DN,"’I = '2—6—“— szN-i—l - FN + e2q “ - (3.:2.1158)

Mlxed boundary condition 2. - . - ‘g v
U Cﬁnmder the followmg form of the bonndary cqndltlon, L

Q—;-l' =gq, gt xma

a "o ‘_(3.2,10)

where g can be a function of time.

N+N * BNet®Ner = PN (3.2.15)
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" only W, uy, M, and M,

R, R, . . = "
Y2 e,y
. B =-d(l+R "3 -

" 46
The discretizéd form of (3.2.18) can be,
"~ Ml =-q - T (3.2.17)

‘To transfer abbye boundary condition to a relation in ui‘ only,
the governing equation (3.2.4) is employed. First the spline relations

.(3.1.5) and (3.1.8) are substituted into the governing equation (3.2.4)

for i=2 and i=1, respectively. The resulting two equations contain

Elimination of M, from these two

2 2

equatjons nges a relation between u,, u

r 2

relation between u, and Uy, obtmned as follows

By, + Cpy, = 1),l A (3.2.18)

B ~

_Where,

2 72

e
[
L -]
¥

‘and M Finally,
substituting equatxon (3.2.17) into this relation, producea a further
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If the ‘boundary’ condition, equation (3.&.16),_ is given at x-y, we
may have ' ' ‘
M

LY
rd

Nit =1 , .
Using the sime procedure used to derive equation (3.2.18), a" .

(3:2.19)

" relation between Uy and u can be obtained as follows,

N+1

AN-;-luN + BN+1nN+1 - D (3.2.20)

N+1

where,

N

- 6Qy 2Ry,

d, = R

2

BN B | | ,

v g Mt P
-2 T TeVNGL 3 T8 | 4
Having demonstrated the method of transferring a 'boundary ‘
condition other than specified for u to u, ‘we will now provide an

example showing how to use it in the solution of ‘a given problem.

o o-

1
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L}

Example 2 ]
Consider a one-dimensional heat tonduction equation,

2
L . O<x<l, t>0 ¥
’ . ' \ (l ’ 3
together with the boundary conditions,
o B
u=-u, at x=0 :
. 1
du ,
ol h(u-ub),‘ at Xml &

Equation (3.2.21) can be discretised in the implicit form,

o

o - FaRm e QMM agiaN

‘wileré, '

F, = m:‘, R =0 sudQ = At

o

‘Using equation (3.2.15), the bounda.i'yl' condition at 2 |

discretized as,
- n+l © _n+l
»  ANa'N t Pra™Ner T PNa o
where AN+1f B‘N+l and DN+1 are defined. as in

| /(—3.2.153), which are functions of time.

N T T

(3.2.21)
(3.2.2}3)
(3.2.21b)
(3.2.22)

may' be
A s

(3.2.23)

equation”
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By using boundary conditions equation \(3.2.213) and 3. 2.23)
together thh equations (3.2.5), a system of equations in the matrix

k4 »
vy 0 A

(1, o, 0. 0.
Ay, By, C, 0,
0,. Ay By C,
0, 0, 0, 0
0, 0, 0 O

. form is produced as follows, |, ,
vees o,/ 0 0

w, 0, 0, 0

wy, 0, 0, l 0

» An

N B

N On
N+t BN41 |

P

This tridiagonal system can be solved for ., allowing m, and Mi
2 .
to be calculated as in section (3.2.1).

From this exsmple it can be seen that, a given mixed boundary

condition can be transferred to a relation in o by usmg the

governing equation (3.2.4), wnth the corresponding spline relations,

equations (3.1.5) to (3.1.8).

Hence the solution procedure given in

section (3.2.1)' can be used- to solve W, m, and Mi sequenti};lly.
Thus, this method appears to be very advantageous in the solution of

problems having mixed boundary conditions.

il :

s T
R
M
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3.3. Two-Dimensional Problem Using SADI Procedure  »

As is well known, the Alternating Direction Implicit (ADI)
method can be used in the solution of two-dimensional numerical
problems. Rubin et al. [7] and Wang [9], the first two to use ADI in
Cubic Spline Approximation in two-dimensional problems, have
developed a Spline Alternating Direction Implicit (SADI) ‘method. It
can be briefly introduced here. ~ ‘

N | i

" For a equation with two spatial dimensions, such that

u - uf(u, ., U U n")

. a two step SADI formillation is of the following form,

step 1:

n+1/2 o2, At n+1/2 n+1/2 n
“ij —"f( ‘,.- ij ’ li‘ii: Lij)
step 2: N . "

N

u.n+1 - :1+1/2

lj -——t( n+l/2 n.+1/2 Mn+l/2’ "1?1 Ln+l)

ij S | ™ij

where l. .and L are the spline appro:umatlons to the first and
second denvatxves of u with respectr to y, respectively. The cubic
spline relations (equations. (3 1.2)-(3.1 8)), may be directly expanded to

the above two-dimensional case.
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3.4. Steady State Problems Using Cubic Spline Approximation o

In a manner similar to that used in section 3.2, a tridiagonal
system can be derived to solve a system of equations: through the use

{ - #
of cubic spline approximation. It could be observed that the solution

procedures of those tridiagonal sysi.ems derived in ‘section 3.2, are all
need to have the knowledge of the values of function, its first and
second derivatives from the previous time step. In other words, the

solution procedures so .derived as in section 3.2, are recursive ones. If

'only ateidy state solutions are sought, a diiject method outlined below

'is preferable.

. - y
Consider the steady state solution of 'a one-dimensional.second .
order PDE , \
f(u, LW nxx) -0 ‘ § o :'(3.4.1) ‘

An approximate solution using cubic spline interpolation can ‘e

- constructed by consfdering the solution of, .

{

r(ui, m, M) -0 ‘ (3.4.2)

Q Where u:i, ’mi and M, are the spline function, and its first and

second derivatives, respectively.

 To solve equation \ (3.4.2), m, or Mi can be transferred to a
relation containinging w and Mi (or u mi) by using basic spline
relations of ' equations (3.1.5) snd (3.1.8) (or equations (3.1.7) and
(3.1.8)). | ‘ |

Case 1.
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'If equations (3.15) and (3.1.8) are bincofporated, equation (3.4.2)
can be reduced to, '

gu, M) = 0 | 2<i<N 34.3)

| equation (3.4.3) can be solved together’ mt‘h equation 0(3.1.2) and

the profer boundary c‘onditions'. It is pbvioug that the sfstem under

- consideration* is a8  2(N+1)x2(N+1) spare- matrix. After carefully

arranging the variabl'és, a band matrix ﬁaving 6 diagonals(2 above the
main diagonal, 3 below it) is found rather ‘than a tridiagonal one.

~

‘ . Case 2. i

2

I equations (3.1.7) and (3.1.8) are wused, equation' (3.4.2) is

, _reduced to, ' , . .
. . :
. , . ‘ :
‘ g(ni’ mi) -0 - . D (3.4.4)
" Equation (3.4.4) can be solved togethei':with the equation (3.1.3) | |
and’ the proper boundary conditions. The  following example shows ; )
_Bow to use the cubic spline technique to obtain steady state solutions.
. N ' ‘ - ~
. Example 3 _ S

Consider the solution of the following equation,
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M, +am +b =0 ’ (3.4.6)

The boundary condmons, which are the same a8 in equatxons.

(32 218) and (3.2. 2lb), in the dmcretu.ed forms are,

]
, .
/

u ‘ - u . N . ‘ (3.4.7)

<

and mN_!_1 = huN+l - hnb ‘ (3.4.8)

o Substituting (3.4.8) intd equation (3.17) for iyl, and into

equatlon (3.1.8) for im1, together with the cubic. spline relation,

‘ equatlon (3.1.3), and the given boundary condxtlons, equations (3.4.7)
- and (3.4.8), a 2(N+l)x2(N+l) band matrix having 8 diagonals is

found as followk; o \g}
' - T . T T
[A] [Y]" = [D] (3.4.9)
where
pr— o P —
1,0,000000., 0 0 0 0
p d2,32, by, 0, 0, 0,0 ., 0 0 0 0
Bgs bgs €01 dpy 0,0, 0, 0, oy O, 0, 0,0
eg: Ty By lp ipky 0, 0 s O 0 0 0
C[Al=|0, 0, 8, b3,c dg, 0,0, oy O, 0, 0 .0
0, 0, ety By iz ipky O O O 0
hey . sey e ey esy any .., wy wey  wny " ’ o
0, 0,0, 0,0 0,0, 0 ..,ay by ey ,dy
0, 0.0, 0 00, 0°0,., 0. 0 -h 1




- . ', I
et . Cow
j - —-—-—-—-——
/ ' )
T . ' 53
[Y]w=fu,, m m,, ..., U, m ]n+1
' r Ty By B Ny TN
Dl=lu, -b,, -b,, 0, -by, O, ....., 0, '§N+1’ ‘ihno]
. . L
and with
3 9 ’
8, ==, b = =
i hz N hi | 4
1 J
R /
Sy A=yt
. ° h' . i
) i
L ) e, w= -:-;- ) L S
@ 172 iTh J
- 1 Lot ‘
- —
‘ 3 .
L 8--'(‘5-"2:}—),’ 1-2(E+1_1.L
; |
B oha oo :
L °
, U S
. ' b ' i+l 0
S e i+1 2
4'°j Ly L Any efficient - inversion algorithm can be used to solve the
' ' \) equation (3.4.9). As -discussed in the next section, a second ' order
accuracy can be expected ngt only for , but a for m, and M
_ However, as the. number of' the node pomta is very large, the du'ect
™. :’ .. evaluat.lon of equatlon (3.4.9) is rather tlme-consummg An alternatlve . :
o scheme is consldered in chapter four.
< i




3.5. . Truncation Error

" To examine the aceuracy of the cubic spline app;oximation,

expanding u, m, and M in a Taylor series with the assumption of ~

» the necessary contmmty of denvnthes for u, the spatla.l accuracy of
he cubic splme approxxmatxon for interior points can be directly

estimated from the splme relahons, equatlons (3.1.2) .and (3.1 3),

o -

" follows (8], . °
3 .3 |
: h, .+h :
M-(u)-‘i-‘—;h-;( )12 - s
i+1 ‘ Co
’ , (hi+l h')( i+1 l) :
(um)i[‘:/' 9_9 . +
iy h)(hn+l+h?) 4 - |
O(h. (3.1
\36(hi+1 +hi) ] + O l) , ( )
]
(b 1+1 l) 1+1 4 :
m = (o)- 7 (u xxxx)i + O‘(hi) \ 1(3.5.2)

where u -denotes the first exact derlvatwe of, u with respect to x,
and uxx the second exact derivative of u with reapect to x, and so

on.

It is obvious that the cubic spli.ne qppréximation is third-order
‘accuracy for m, with a non-uniform mesh and fourth-drddr for m,
with 2 uniform mesh And regardless of the chonce of h, ®second
order accuracy can be always achieved for M by using cubic spline

interpolation.
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v " Truncation error associated with the time discretisation can be Ce

obtained by using the same technique outlined above. ..
3
Consxder ’

v - f(n., m,, b/) " \ ". (3’;5.3)'

A pomble dmcrltlzatlon using lmphclt scbeme can be of f?l@ \ \
form, ’ I ¢

S |

‘n+l. D 1 T \ o,
u.+ . - ni+¢+\At' ,

A Taylor series expansion leads to, ) S 4
| . (n,). = f+ O[AL { : 3549 ., .1
/ . L. ( t)l - l'.|' [ t] . . ( ) a L
T T SN g S o ‘ ‘
‘ : i.e. a first-order accurscy will result when employing an. implicit K
scheme. - . ~ | | (\
"~ ' ’ ) = - - r hd 1.
L.
1] , *
4 '
- “‘_? * ;
N i ‘ . ¢ % ‘c.
14 i §
1] - 5 x% . ’
b ) [ : )
* ’ LY > . ' ;,
N . / ' . - L
‘ ¢ f . m
-l . g
0( : b/ , ’ ¢«
* e % ‘ L ]
o ’ ‘
\‘ ‘ ‘ e .
.~ L . il -“ ;":‘}
v ' 4
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\

36 High-Order Accuracy Cubic Spline Approﬁmation

v

EE

In the lsst section, it was shown that with a uniform _mesh the
cubic sphne mterpolatlon is fourth order accuracy for m, and second
order accuracy for Mi' "Non-uniform mesh produces thlrd order
accuracy for ml and second order accuracy for M From section 3.2,

0

we may observe that when 3 cubic sphne mterpolatxon is applied to a

"“system of equations, the function ul, its first derivative m,, and the

second derivative M are all ‘included in the solution procedure
Therefore an overall Jecond order accuracy can be expected. The |
main bottleneck of this procedure is, the accuracy of the second

derivative.

In this section, we mll present techmmxea to improve the
accuracies of the spa’ual second—derlvatlve with 8 umform mesh, and

the time derivative approxxmatxon [16]

Consider a utandard’ t.hree‘ point flpite-difference approximations of

. the second derivative for a uniform mesh, -

Y
)

3% _ %y Ju+u
ot n?

The accuracy of this scheme can be found by applymg Taylor

expansion on 1t The result is, .

-2u, +u ' 2

Tl = (). + (n ) O(h) 361

h

Combining equation (3.5.1) with (3,0.1), it gives -




(3.8.2)

Stibstitn‘tihg eqimtion (3.1.2) into above equation, it yields

P e

- ( n)#O(h‘)

o=

- 2[M$Y 6M1-1+ "M+ |+l)]

or

M. . +10M_+M. I S
b1 il opd - . (363)

S * S - |
Equatlon (3.8. 3) demonstrates that an overall fourth order

 sccuracy can be achieved with a uniform meah.

of the tme derlvatlve,. the

\ To ~ improve the accuracy
Crank-Nxcl.son scheme used in the finite-difference approxlmatnon can

be adopted. Applying Crank-Niclson: scheme, the discretized form of
equatlon (3.5.3) can be written as follows, ‘

: u;1+l - un + ___ (fn+l f;l)
. It can be shown that, after Taylor series e;(panmon about
- (n+1/2)At, | - o
.' ‘ »‘ . ’ 2 . l ‘
°. | o 4 (u) -f +0[Atf ]- (364)
This prowdes second order accuracy for the time derm:txve

. In section 3.7, the cubic spline approxxmatlon for the solutxon of
a simple phase-change problem is presented. And the numerical result -

is compared with the exact solution.
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5.7 Numerical E;nmple N
In this section, we consider a simple case of solidification of
 metal ‘which is initislly st its melting temperature, '”r\-'rm. It is
’Vmumed that at a certain time, tw0, the temperature at x-dl drops
to T (<T ) and remsins constant thereafter. ‘The system of
equation, the initial and boundary conditions can be stated as follows,

B T

. and initially the liquid-solid interface s is located at xed..

If the following trmforiilation“re/anployed, , -
‘ ‘ S T-T . S
. .

*-"'—"' *—
=3 T =57
1 ~ o m
. «
S BT
¥ dl‘ S |

%‘{_ - 8;% ’ | (3.7.1)
8t te0, 'r -T, B cX2)
s xs, T T, . o o (5.7.3)
rmd), T - T - = o r4)
‘Th? energy balance at the phase front is, « /l/ﬁ e
qu/g'—; ~x L T e /P'

_4___(__..§__.~__..
.
N o



ATt 1x* 8g o1+ 2’1 1

8% =~ T aF 8x.* oot o 10
t*-o,;'r*-o_‘jn o NN € X &)
$ =0, T* = 0 B e “(3.7.8)-
x‘il,';‘*-l," - ' (3.7.9)
A ;én. Ste 8T* (3.7.10)

dt* T 1 ox*

By using cubic -spline approximation technique stated in this"

chapter, the descritised form of above system is as follows,

:,n+l_ el At"‘[ 1- #mnﬂ —_EMMII

(1-n)
F n+l A+l . '
=F+Rm" " +QM - i (3.7.11)
where
FeT*"
C x*1 9 oo o
Reatt = o ‘ . (37.119)
, . 4
At* -
Q- A - C
(l-n)

e gy
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The exact soluhon of tlus sohdiﬁcatxon Process is gwen by [17],

erf]\ (1-111

T* - -1+ erf(Y)

and 5 = 2\/4*
with ‘the Gaﬁss error function defined ;;s,
‘ 2 x S a
er{(x)-v_;f;e dy. - - | ' R
where the value of ) is detern.l\inedAfroml o

s Xz * .

Table 1 shows the comparison of the results obtamed from the
cubxqf spline numerical approéximation mth those obtamed from the
exact solutlon for the- location  of the- movmg phase front. The data

used in obtaining the numencal resnlts in Table 1, except speclﬁed in

" Table 1, are as follows,

At*=0.001
'Space Ratioml.5 (ﬁee chapter 5 foot note for detail)‘

Ste = 0.5 l  ."Fﬁ
number of grids N = b, | )
The results mdxcate that, the maximum relatwe error is less than

l% for the case of St.e-() 1 and 0.5 while less than 3.4% for the case
of Steml.0.:

3
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CHAPTER FOUR

CUBIC SPLINE APPROXIMATION ‘
. FOR SOLVING FUSION-WELDING PROBLEM

In this chapter, the spline alternating direction implicit procedure

is applied to solve a two-dimensional fusion-welding problem involving .
natural convection in the liquid region, as formulated in chapter two.
‘Section 4.1 gives the entire reformulation in the discretized form. A °

numerical solution methodology is introduced to solve the problem
(section 4.2). The stability consideration and truncation error analysis

are ‘made for this problem in sections 4.8 and 4.4, respectively.
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41. Cubic Spline Approximation for Solving Fusion-Welding Problem

In this section, the governing eq{mt.ions for -the fusion-welding
‘problem derived in chapter 2 are discretited by using the two step
SADI cubic spline approximation technique presented in chapter 3.

Energy equation in solid '

Using the two step SADI procedure, the emergy equation (2.3.4)

in solid can be discretized as follows,

Step l, at t* = n+l/2,

,,n+1/2 o At* n+1/2,
(5= e S —L- Pl K ey
N

pRtl/2 gutl/2nelf2, . onal/2ynsl/2 -
y 4 4 LY y ;
where
Co+1/2 n_ At*
e G K
Lo
'Rﬁ“’“ 0. s . (411s)
n+l/2  At*
Qu 2R2 ar

Step 2, at t* = n+l,

(Ts‘)_in',-'.l (T ¢)n+l/ 2 __tr_[( n+l ) Gn+1 ;;2' K;;-Q-l/ 2Iar
l

A
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n+l n+l a4l 4l n+l
- Fij +R'ij gij‘ +'Qij Gij ) (4.1.2)
where
n+l on+1/2 At"‘[ _1_ n+1/2
Fu (Ts )u ) 2 J )ar
| Ri‘;"l -0 B | (4,1.23)
n+l | At* (2
ijoo —2_( n+1 ) %
1-n.
I_/ \
and where v
T o1 » oT ! A X
= Cm— km—=—2 K=u—
| ox o, 2 T oy?
v The initial and boundary conditions, eqs.(2.3.4s)(2.3.4d), are
discretized as follows, —_ ‘
n° : |
T =4 . o (4.13a)
(T, ‘)Ml | ~ I (¥
n+l1 . n+l oo+l
ngl,j - Bi ( ‘ )(T )N-!-l,j ‘ , (4'1'3c)
(B2 ‘ n+1/2
ki,l =0, ' ki,N-f-l =0 -(4.13d)

Tae®

The solution of eq (4.1.1), the fmt time step in y* dlrectlon, can -
L now be considered. Since the boundnry conditions, eq.(4.1.3d), are
specified in the values of the first derivatives in both ends, the
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solution procedure given in section (3.2.2) can be employed. By

evaluating eq.(3.2.7) together with the prescribed bound;ry conditions,

where the values of F, R and Q used in the solution of eq.(3.2.7) are

given in eq.(4.1.1a), the values of the first derivative of T * can then
be solved. Following this, the values of T * and 1ta second derivative
K can "be obtained in a manner mmxlar to that described in section
(3.2.2). For the second time step in the x* direction, because of the
‘ 'mixed boundnry condition at l-N-!-l, the solution procedure given in
) sect.ion' (3.2.4) for mixed bound;ry condition is adopted IThe mixed

.....

* * ( ‘
only (T' )N.j and (T' )N+1,j as given in eq(3.2.16). Equation:(4.1.2)

can then be solved as described in section 3.2.4. Following the same
procedure outlined in section 3.2.4, the first derivative &; and the
second derivative Gij can be determined. Again the values of F, R,
and Q used in the solution procedure in section (3.2.4) are specified
in eq.(4.1.2a). ' - |

- Energy equation in liquid

The energy equation, equation (2.3.5), is discretised by the two
step SADI procedure as follows,

Step 1, al t* = n+1/2,

n+1/2 n AY, -1 I
(= O G T
n R
1 n+1/2 1 n 1 .n+lf
(v, " G+ == K2/
"?+1R X ij (ﬂ?“)z ij Rz i)
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o Fn-;-1/2 n+l/2 n+1/2 n+1/2 n+l/2 1
lJ lJ +Qi,| lJ (4.1.4)
where
PO M |
¢x axt-t - R v :
) . .7
. * M - ‘ ya ‘
| . “by By‘. u‘
P ‘
~ n+1/2 9B, At .. n,
Fij, ('P) 2[n+l (¢ )+(31+1)G] -
’ n \Q‘
/2 _

R ¥, *) * . (41lda)
ij | q Zn:H'lR §
n+1/2. - At*

%o
Step 2, at t* = n+l,
n+l1 n+1/2  Att n n+l ‘
7 @ = @ KL n+1R % )nj+
| K
{ . n+1/2 n+l, 1 _n+l/2
n+l (* g - ij+ (nn+l)2 Gu + R? Kij ]
1 . .
J ¥ 1 n4+l 1 1
| - FL 4R et 4t et 1.
ij Ry & +QlJ qu (4.1.5)
where i}
o+l n+1/2_ Att
A Sl —-( 8 I Ly
R :
- :

P Ty
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- ' L
1 -At* n ,
RET - ==t (%) L \ (4.1.53)
ij 2";1+1R ) y ‘ij. | ) ‘
el AR
SRt a2
1,2 i
T
| - and where T
oty oy emp . ey
g 8x¢"‘ Bx 2 oy* 0y"’2

The ' initial and boundary conditfons, for the- dimensionless

| temperature, can be obtained from egs.(2.3.8a)-(2.3.8d),
. . : :

no T ” .
(T = 4y ) - (1)
gt -0 ' | | | (4.1.6b)
L \ 1
. L =+
wotl ’ ' Lo ‘ q '
(T, )N“’J 1 S 9.\ (18
n+1/§ nelf2 -
x,l =0, ki,N+1 -0 4L bd)

Equation (4.1.4) together with the bonndn.ry eondntxon, eq(4 1.6d),

can be solved in & similar manner to; that used to determine the
energy equatnon in solid in y* direction. To solve eq.(4.1.5), the
secénd time step in x* direction, the boundary conditions, eq.(4.1.6b)
and eq.(4.1.0c) have to be used. It can be seen that the specified
boundary conditions at i=1 and imN+1 are not the #ame, Therefore,
none of the procedures given ‘in section 3.2.1, .3.2.2, or 3.2.3 can be
.used. However, the’ ‘:Boupdary condition at i=l in eqs (4.1.6b) and

s
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(4.1. 6c) can be cénsidered a8 a special case of mixed boundary

condition, case 1, ngen in’ section (3.2. 4) when P and q m eq.(3.2.11)

are set to gero. . The mixed boundary condition at 1—1 can be

transferred t.o a relation contmmng (T ‘)1 and (T )2 a8 given in

'eq (3.2.13). Hence, the eq.(4.15) can be solved. together with the
" ‘transferred boundary condition and the boundary condition at jm=N+1
" - in eq.(4.1.6¢).

“Yorticity equation ,

~ The discretised form of the vorticity equation, eq.(2.3.8), using'
the two step SQADI procedﬁre, is as f(;ilov;u,

- Step 1, at t* = n+1/2, ‘ }

Ra 1 8n+1
Rsa ',n+1 ij

Fn+l/2+Rn+1/2 Ln+1/2

n+l/2 n+1/2

ij i G Y Ly

(4L7)

3
where ‘.

1/2 ‘ At

1. Ra 1 'n+l ”

Pr( MY, =2l _.n )
1.2 3 1
(n;l:) Y R _niN
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z° ' ‘\a . . o .
% ~u - . N .
. h Rfl"i'l/ 2 __Av “, t)n > o (4.1.7a)
1 n+l i / :
. ' 2n., ‘R S/ . \
. L S " ‘ , \
. '(/ - ‘ \
il gt a1 A\
. y P o " _ : .
g moN N
. ‘ : . \ J
b Step’?, at t* = n+1 ‘.‘ ;
. n+l o+l 2 At* 041 1 n,0+1/2
wij* - wu* / [———(q‘: * ')i'+ —l—w o0 / ):-
" . j qn+ R X ij
) . R i ' i o
' ) Ra 1 n+l 1 D+l n+l/2
( ' +Pr{ —¢ ——g. + —— M., 4+ — )]
, 3 n+l By n+1,2 2 -
Rs" g, ! (n. ") YR E
: ! . - F31.+14R31.+1mf+1 +Qn+l n+1 ,‘p (a 8)
ijoa ) ij - i) o .
T ! . - I,/”" ? ' .
! * where _ . : St "
_ ool ' ,n+1/2 " At* TN N
| S [ e Ay T
L v o i *
e d ‘! . a'
- A ©p L . I'114-1/2-'_ R; nl...l : ,@f
o R N Rs " | 3
. 4
1 . . o " | SR , ;
~ - - t " n ! ) - '
" RO m =2 92 . " (4.18s) |
T Ty i S |
" | . ' v . . | | | i . , 3
I S Qi AE e ’
P ij n+12’ / L, c
R '- L
i, { > ‘ ‘ , i 'L/
‘f i \ X “‘ < x :‘ . , r}
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. “and ivherg the following notations are used,
| dw* Bzw‘g dt é’éﬁ C.
X, ”"i . - ay* thc
~ The discretited forms of the initial and boundary conditions for
o the vorticity w, which can' be obtained from eqs.(2.3.8a)-(2.3.8d), are ‘
(wij*)° -0 L (4.1.92) o
gitl Lo g - w1h) °
- by = gy (4.19b) .,
’ ,‘ ¥ e .
- s+l 1 2 ot L w2
SYRRL ( q~n+1) (‘(’:q: INaL,j 72 L\ Sy T y
.o ' . & ‘ oL (4.1.9¢) !
- :
. : L 9\0+1/2 - -1 "2 )
. %‘ . ((f'i,l ) Dt | Rz (‘ty’. )i,l’ V ’ h b} .
IR O YR e
i,N+1n - R2 Yy i,N"‘l . ) ‘ ' -. .
where i
) 82 . t
A . .
‘ xx ‘8,x *2 {
) .
. ‘ ,3, .
. ¢ *IAB 82 g‘ L I .-
' v 8y‘2 o v
g i o % }
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It can be seen that, the boundary c(;nditiom in both x* and y*

. directions,” are all specified in w* as the values of 1:”" and yﬁxx‘ are

taken from previous time step. Hence, the solution procedure given

if secjlon (3.2.1) for prescribed boundary’ condition in w* can be

directty employed. The values of F, R, and Q in the sdlufion

procedure. are taken from eqs.(4.1.7a) a.nd (4 1.8a) for y* agpd x* -

directions,” respectlvely

Stream function equation

It can be recognized that the stream function equation, eq.(2.3.7),
is not explicitly s function of time. It can be considered as the

steady.. state solution of the following . equation, .according to the
| ts

‘Cauchy-Kowoleslea scheme [18]."

: T :
% ; * . 2*
Qétf— == ..15‘8 {2 + _!.E 8 ‘2 ¥ wi . (4.1.10)
n Ox, R™ oy

where 7 expresses the dimensionless tih1e

The dnscremed forms of equatlon (4 1. 10) by using two ntep

L4

SADI procedure are as. jollows,

/

Step 1, at 7 = r+1/2,

. i 4 , ' . *
. ¢H.,r+1/2 -y Ar M. L /2 40 0

L T 5 Mo+ i i
ij 2 n+12 i) .2 1] 4
o e
o e, r+1/2£r+1/2 QU2 iy
o ij ij oo |
_ Where - - ‘
: 4 )




- — ———T— ——— b gnd
- \ . - .
. .t ¢ .
N ’ 4
— . .
o
5 .
Vs .
“a k . . :
2 o - .
|
R ","
) .
.’\ .
’

Fr+1/z
ij =
r+1/2 o | '
R =0 . (4.1.11a),
1} R , .
r+1/2  Ar
QU — 9 - . )
9R* , ﬂ \
. . . o u; . o
Step 2, at 7 = r+l, o
oIl L uT+lf2 Ar 1 el 1 r4lf2 R
bt T g My T et .
N ' (ﬂi ) R )
1 .r+1 r4l r+l1,.r+1
- F 4R M . 4.1.12 o
= Fy By omy o M ; )_ {
where ~ ‘ i
r+l |, +l/2 Ar, 1 or+1/2
- B = o+ Glg Ly ]
| AR | 4.1.12 e
i (41.123) L
|
r+1 Ar
Q.. .
M| 1,2 .
» ¢y
. and where ,
' 2 2 A
. B o* p* X,
m == axi. M - 8 ‘2 l-%% L -0 ‘2x 3'
’ ‘ 3,(‘ ‘| | | Sy ~
.o ~:<|
| - ‘ )
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The initial and boundary conditions for the stream function ¥*,
which can be obtained from eqs.(2.3.8a)-(23.8d) used to solve
equations (4.1.11) and (4.1.12), are discretized as follows,

(¢');; -0 S : (4.1.138)
—— M oo (4.1.13b)
1,j : _— e
2 g o , (4113
N+1,j "
' +1/2 +1/2 N ) :
N & =GN =0 u Gy
The steady state solution of eq.(4.1.10) can be obtained by ' "/
" alternatively iterating egs.(4.1.11) and (4.1.12) until convergence. Y
Attention must be given to the difference between the superscripts r |
and n. n ‘denotes the time used in the numerical solution procedure of' i
the fuslon-weldmg problem, while r expresses the time used in aolvmg
the stream function equation (4.1.10) only. Therefore, the time '(
mterval Ar for the calculation of the stream functnon may not be
necessanly the same as the ome uled in solvmg energy and vorticity,
equations.
Actually, at any given time n, an iteration of eqs.(4.1.11) and
. (4.1.12) will bel required. Hence the initial condition for a given time ' o
n for solving eq.(i,&.lO) can be stated as follows, : P
BN ’ ; 3
. ~ Sl
¥ % n ! - ,
9, )J,,=o - " | s
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- Equation (4.1.11) can be solved in the manner previously used to
solve the energy equation, eq.(4.1.1), in the y* ihrectnon To solve ‘
eq.(4.1.12), the second time step in the x* dn'ectton, the mixed.
“boundary condmons, eqs.(4.1.13b) and (4.1.13c)), are wused. The
‘boundary condition at il can be transferred to a relation containing

' ¢1 and ¢2 8s ‘given in- eq.(3.2.18), ‘and the boundary condition at
i=N+1 can be transferred to a relation containing "N and *N-rl as
given in q{3.2.15). The transferred boundary conditions together Do
with eq.(4.1.12) can then be solved ss described in section (3.2.4).

Energy equation at moving interface B ]
\ ‘

Equation (2.3.9) can be written in the following form to avoid

the singularity at ne=0, : . > . ’
: ’ _ ,
[ . %ty: = gzt;( r lg 04:: - Z‘xrtt: (4.1.14)
or in the ‘discretized form L . ' : ‘ .
L e ]ZA";k i oL ' (n R ) AR (RRT)
i Ste ' 1q;“‘ 0x""l,j Bx,* N+1,, -

This equation can be solved by using the iterstion method, the
values of 8T8"‘/8xa* and 0Tt‘/0xt‘ being taken from the previous.

" time step.
&
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42, Numerical Solution Meth¢dol

Sparrow et al. [4] introduced a scheme called . Quasi-Steady
assumption to solve phase-change problems involving natural

convection. In this scheme, it is assumed that at an instant of time

t, the dependent variables are known. By considering the interface as
fixed for a small time interval At, the dependent variables can be
evaluated for time t+At. The moving interface can thén be
. determined by making use of the currently available values of the- ,
témperature distribufion! But this scheme needs the adjustments of

the computational spatial grid at each time step after the moving
interface is determined and in turn the interpolations of the dependent -
variables. Instead of the calculation of the moving phase position at
the end of each.time step followed by adjustment of the dependent™
variables, Ramachandran et al. [5] suggested another scheme by which
;he position of moving interface is determined at the - beginning of

each time step, and without adjustments: to the computational grid .
" and thé interpolations of the dependent vaﬁ;blgs.

In both Sparrow and Ramachandran’s s;:hemea, potential
computational difficulties al te0 exist, as the presence of the
singularity of n=0. ~ Sparrow assumed the existence of @ very thin
melt regioq for the first time step.. The corresponding time interval

was determined from the Neumann’s solution of the Stefan problem,
In Ramachandran’s scheme, it is assumed that at te=0, there exists a

very small thickness of the solid in a solidification process, with a

linear, temperature profile. The starting thickness of the melt. region
in [4], or solidification region in TS]L was varied to enspre that the o,

” .

] A
- . N -
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" and . xﬁaxlqil-n?|<6 * for all i
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sssumed layer thickness did not affect the subsequent re‘sults.

In this section, the methodology to solve a fusion-welding problem
using cubic spline approximation procedure is introduced. To avoid
the interpolation of the dependent variables used in [4], 3 proce&ure
similar to that described in” [5] is used. At each time step, the
position of the moving interface is computed first, followed by
evaluations of the temperature distributions in both liquid and solid
regions, the solution of the vorticilty equation, and finsily, - the
computation of {he stream function. - This procedure is carried out
repeatedly until the end of the time period of interest (défined as
when any point along the moving interface reaches the center of

o

liquid region).

Unlike [4] and [5], we do mot assume s very small part of the

~ melt layer or the solidification layer. Instead, prior to advancing to-
the. second time step, tw2At, iterative evaluations of the dependent

variabies in the sequence of the moving interface, the temperature
ditributions in the liquid snd solid regions, the vorticity, snd the
steam function, are made until the following condition are satisfied.

| max](qil)Hl- (qil)r|<c - foralli

where r represents the time of iteration.

The first "hondition states for the convergence of the iteration.

‘The sécc;nt”i one controls the movement of the liquid-solid interface. If

the second condition is not satisfied while the first one does, the time
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interval of computation has to be reduced. The iteration of the
dependent variable in the aforementioned seéuence is made again in
orde;' to satisfy both conditions. The values of ¢ and & are
determined by "trisl and error. ' '

More precisely, when the numerical calculation computations at
time t* is completed, the numencnl values of 7, Tl’ T , w*, ¢*
" and their corresponding first and second derivatives in both x* \and y*
directions are available. At-time t*-+At* the variables g, Tt ) T
w* and ¥* are evaluated in the following sequence,

, OT}* .0'1‘8“‘
1. Taking the values of g, gy and T ¥
L s .

locaté the position of the liquid-solid interface by iterating
eq.(4.1.15).

from previous time step,

2. Using tl}e currently - available value of 5, calculate temperature

distributions in solid (T"‘) by evaluating equations (4.1.1) and

(4.1.2), and determine its corresponding first and second derivatives

by employing the cubic spline procedure as described in section

4.1.

v

3. Using the currently available value. of 7 and the values of ¢x‘,

¢ * available from previous time step, calculate temperature

'dmt.nbuhonx in liquid (T *) by evalusting équations (4.14) and-

(4.1.5), and determlne its correspondmg first and second derivatives
by employing the cublc splme procedure described in section 4.1.
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4. Using the cnrrently a“nilable values of n and 8‘} and the values

of ¢ , ¢ * avmlnble from the previous time step, compute the
nlues of vortxcxty by evaluating equations (4.1.7) and (4. 1.8), and

determine its first and second derivalives, as descnbed in section
4.1

5. Usiné‘ the currently available w* and 'q, evaluate equations (4.1.11)

and (4.1.12) iteratively for the values of ¢*, snd its first and
sect;;@ derivatives until a steady state solution is obtained.

8. Return to step 1, and repeat until the end of the time period of

interest.

x

, :
@ § Co




" analysis, only the vorticity equation is taken into the consideration of
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43. Stability Consideration i
By using the methodology stated in the last section, the coupled
system of equations of the fusion-welding problem can be decoupled.

To analyse the stability of such a decoupled system discretised by
using the two step SADI method, there are four equations needed to .

. be examined. These are the vorticity equatied, the stream function o

equation, the energy equation for liquid region, and the energy
equation for solid region. Under direct observation on the structure
of those four equations, it can be found that, the stream" functnon
equatnon and the epergy equatmns for liquid and solid regions are the
special cases of the vorticity equation. Therefore, in the following

the stability ‘of SADI procedure. The vorticity equation (2.3.8) is

rewritten as follows, (for convenience, the superscript *** ‘for
dimensioniless variables is neglected in this section.)

I%h

& 2 )

QE_,__‘LQ&’._,_\_‘LQ&’._ Pr(_l___B___g+_l.__Q_¢g_)+___RaPr_l_ﬂ
gt Ry Ox. R20y "2 2 R2 ) Rsa n o

It the SADI procedure is adopted, the two time steps of

eqﬁations can be rewritten as below.
\
w113+1/2 ; A2t[ =L (u R ) + 2 (vntn+1/2)ij+
. "i R R - 4
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1 n - n+1/2 Ra 1  n+l ‘
™ Mt gy Tt g ) (432)
("?Hf Nog? ol Re> n;Hl ij
n+1 n+l 2 At, -1 n n+1 Iy
T ol it e /)ij+
“ " R R
- n+l n+1/2 Re _1_ ndl .
- Prf (2 M +73 Rz LlJ + = o3 _,,“ +1 5 ] (4.3.3)
i ' i

The values of u and v are taken from the previous time step.
The vnlues of n and g(-BTt/Bx) are currently available ‘as stated in
section (4.1). e

If it is sssumed that u, v, n, and g are peseudo constants,\the
nonlinear equations, eqs.(4.3.2) and (4.3.3), become the linearized ones.

With the basic cubic spline relations, equations (3.1.2) and (3.1.3),
in both x and y directions, and with a uniform mesh (h. -h),
system of 5(N-1) equations of 5(N+1) unknowns for equation (43 2) is

obtained, the gystem bemg written as, Iﬁ . 9 ‘

A VR g B2 o ynslf2 g gn e (4.3.48)
ij 1,;-1 AR ij 1,j+1 yy oy -
where
V. = [0, my M &, LT ‘ (4.3.4D)
i VIR ¥ SR ¢ N Vg ' o

e g AT T W
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0, 0 0 O 0 ] N ‘
a1 h '
Il or 0) oy . E -
A~ |2 0 0 L o (4.3.4¢) ~
lj ) 2) ? ’ h' b
-1 h
-h-' 0, 3’1 0, 0
3 1 L
—51 ir 0, 0, O
Ly -
— . -~ — 'e.‘
' 1,-0, 0 75“ n, Ztpy
* 2R 2R
2 2h
;ﬂ: 0, 0, -3_ | ’
v .4 o S
Bij- 0, 0, 0O B 0 (434(1)
2 2h ‘ .
i: o) ‘ '3'» ) 0 '
0, i‘;, 0o, o0 0
pro— -u’. 1
9, 0, 0 0 -0
-1 B
'Ex 09 0 0O -ﬂ-
-3 1
cij- h2, 0, 0o B 0 (4.3.4¢)
' -1 h
‘ _l;': .0, E: 0, O
3 1
J > O 7 0 g
-h A \ ‘ 5
/ \ , tbji
.‘l ; 1|' * Py
c o
/
A




and where
. — - -
1 xﬁ-tl s 2 nA-:l Pr, 0, 0
2. R 2(n, '
D.. . ~ ‘
u— ' . . . (4.?.4‘)
s | o | —
— o ‘ |
. Pr R;A:-bl 3§+1 |
2Rs -
- E.. == . ( | 43 ‘
T -  (34g)
: 1 (0]
- —d

* And where A, B, C and D, are 5 by b matnces E is a vector

of five, elements .

Considering the stability of the interior’ po‘“ints w:th the‘ ,

Von-Neumann Fourier decomposmon [10], let

b - Vi em(“")h o . (488)
where § = -1, o, or +1 la.nd I - J-f " After substituting. .
eq.(4.3. 5) into , (£.3.48), a.nd conmdenng that the vector E will not’

‘effect the stability of fhe system, equatlon (4.3 4a) becoq;tes

: » L e . ' '
/2 .%" .
'1‘..v"’r - Dy . }[ . (43.68)
T\ IR (3
Q'; - :
0 -7 <
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\ whenre i ’
1, o .o AL Al
- 2R 2R
A \ ) b O 00ty :
1 . 1 '
4
by O by O, 0

e te b, 0, 0 . 0 ]

| | _51’ 52’ ) ] ] _J

} , o !

' And the matrix D, is defined as the same.2s in eq(43.41)

Also
e g -1 » o
l .. t2l t41 -‘h (2 ¢ ¢) -3 (l-cgs?,)l - | (4.‘3.&:‘) .
.3 b 6 I s b . , '
25‘;\% =3 (4+e "4e") -.5(24-,0'“” o (4.3.6d) -
‘ dp I, - 6 .. __ o
byy = by = = (67 d‘) < 2 bing (4389
| h U
. 1 do Ip 2 o
tyy = by = 1 (44 b)) P (@eod) 340
ﬁhere ¢ = Qh. ‘Therefore, *
. . . ‘ - . i . R
vtz g vr e (4.37)
ij - ijij o :
where G,. = T..D,.-is the amplification matrix.
ij - i ,
/ & !..
I 4o <




The exgenvalues ol&G are found from the follovn}xg charactenstic

.Jequat;on o ‘ 4

[ TID | =0
ijoay

where | is the identity matrix.

’
4

The only one nontero eigenvalue of G found i 18,

-ﬁ a-<I> b }
N , .
}, l+ﬂ2a+¢2b - ‘
“ where
P PrAt g - PrAt .
1 h ( n+1)2 2 h2R2
n, e n
T e}
¢ 2. "Rh - - ° 2mR
- S LIS A3 v ~
4 : - w !
4 - 3(1-cosg) b = _3lsing _
‘ (2+cosg) (2+cos¢)

: »

af - ‘
(4.38)

(4.8.8a)

/‘.

Following t.he same procedure in obtmmng equatnon (4 3. 4a),

equation (4.3.3) can be transferred as follows,

DA vn+l‘ +B +1 C Vn+1' D vn+1/2+’E

.oV, ., F+U,.YV, .. == DV, ,
ij i-1,j u 1,j 1j 1, ij i,j-

i (4.3.93)

where  V; Ai C; and E; have the same form 3 defined in

equations (4. 3 4b), (4.3. 4c), (4.3. 4e) and (4. 3. 4g)
in eq.(4.3.9a) can“be expressed by

Matnces B and D

/
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e Atu -At ' 7
1, Pr, 0, O
! 127
: 2Rq?+ 2(11;“}
2 2h
h_) Mor ’ 0, 0, -3_ g ‘
By= | 0, 0, 0, L0 (4.39b) -
‘ 2 2h ‘
E} 0) —3-, 0, 0
p, - 0, 0, 0
(1, 0 o HAp A
IR S o
D= . | X (4.39¢)
o . -
L. o
B S j .
Similarly as arrived at eq(4.3.8a), eq.(4.3.9a) can be derived ss
follows, “ | !
t . - . .
o+l +1/2 T, : N
'rijvg - Din;; S ~ (43.10)
where h \
. . At _n -At ]
1, Pr, 0, O
n+l, " ! n+,2 '
‘20 R 2(n; ) v
T RUTER "
Ty [tar O 0 g, 0 _(‘4.54.10:;)
ﬁ by 0, - bygs 0, 0
\ I Y 0, 0, 0
\ o . . - .
, U .
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" where the coefficients are defined in the samfe way e in

Ceqs(4.3.6c-(4.361). - . .
Further we may write e.qu.ation (4.8.10) as, - —~ -
- . . |
vﬂ*l G v“‘“l/ 2 S (4.311)
~ L ‘ , . 4 \

where Gij - T 1D § is once agam the amphficatlon matrix. Only

one non-zero elgenvalue is found as,

l-ﬂza@zb .
= %
2 .1+ﬂla+d>lb L . . é

!

. Wwhere ,81, ﬂz, ¢>l, <I>2, a and b are defined 28 the same as in °
equation ( 4}.83) | ' ‘

The Von-Neumann’s™ stability consideration for two-dimensional

o problem for the interior points requires that [10], it

AN ET T
where k is for the eigenvaluesv‘ of the ampIiﬁcatibn matrix of the
. first step, as given in, equation (4. 3. 8), and k is for the elgenvalues
of 'the aniplification matrix of the second step as given in equatlon .
(4.3..12). It is not difficult to see that after substituting c;(is.(4.3.8)

and (4.3.12) into Von-Neumann’s condition, the condition

-

\

RN EE U (% 5 )

~is alwgys satisfied.” Therefore the SADI ‘procedure for the decoupled-

vorticity equation is unconditionally stabte. The éame results for the

o
[

¥ 4

B (4.3.12)‘

+
e ¢ ami
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ltr{'am function equation, the’ energy equatlons in liquid and solid can
be obtained by using the same\procedure a8 arrived at equation
(4.3.13). There - are several pomts which need to be emphasized, ‘

1. The Von-Neumann condjtion is' only a necessary'*'one for. preaent
problem, 88 - mentxoned in [10]

¢
. 2. The effect.s of boundary conditions for. the stability are not-

-

- considered.

" For the istuciy of nonlinear equations, l'cks [lb] suggests skipping
.over the problem of stability criteria an gomg du'ectly to the heart.
‘of the matter; 1e convergence, aﬁd theé- stability is of the -second

mterest..
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44. Truncatioxr Error

"

i} . o K
A complete analysis of truncation: error in t\he, SADI, procedure /
for the. solution of nonlinear coupled system of equations \is very

difficult. If the effects of decoupling are not taken into .account, it

. can be easily concluded that ss discussed in section 3.5, an oversll

second order ‘accuracy for the time .intetval will result from using the
two step SADI procedure, regardleas of the unjformity of the spatlal

—~

‘interval. » .

To ensure t.he vahdlty .of the results obt.mned in this thesis, a
result obtamed from a srmphfied fmwn-weldmg problem using 3 hxgh

order accuracy cubic spline numencal approximation [2] can be

.compared with the onme obtained in this ,bhesis. The mathematical

model used in [2] is similar to the one used in this thesis except that

the effects of natural convection are not taken into comsideration. A

.detfliled discussions concerning these comparlsions will be presented in

*

thetnext chapter. !

v
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'CHAPTER FIVE/

" NUMERICAL SOLUTIONS AND DISCUSSIONS

. / -
51 Parameter and Grig Selections - Z o N

Examlnatlon of the governing uatioz‘m'\and the corresponding
lmtxal and boundary condltlons/ reveals that there are ten
dihensionless parameterk whose values have to be speclfied prior to
the computatlon of the num /lcal solutions. These include the
Rayleigh number Ra, the Praq 5 number Pr, the Stefan number Ste,
" the Biot number Bi, the ratio/of the initial liquid width to the total
width Rs, the ratio of therlﬁal diffusivity of solid to liquid @, the

ratio of thermal. conductmﬂy of solid to Yiquid k the superheﬁting

céefficient ¢h’ the subcoolif g coefficient ¢ , and the aspect ratio R.

'}, In aelectlng values for these [parameters, g\ude—hnes were derived
from metal fumon-welfhng process. The properties for some of the
metal materials are / listed in Table 2a. [20,21] and the derived
dimensionless paraméters are given in Table 2b which are calculated

v

.according to equations in section 2.3.

_ Following /t/he determination of some dlmenslonless parameter

values, the va}ﬁes of ¢h and ¢ were taken as . equal to 2.6 and 0.46

» fespectively, /so a8 to pbser-ve continuously both the melting and
solidification processes presented in the. numerical results. The values

L of Rs apgd R were chosen both equal to 0.23, so as to get an

H o o

apprynate square initial liquid region. L

.
o/

7 /
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For the 're.mainder of this chapter, except where stated, the

® above-described values of the dimensionless parameters are used as, the

problem. LA P

In order to ensure the validi‘t:y of the 2-dimensional model and

the simulation rgsul‘ two setsof results for alumiﬁium fusion’ welding

process, ome obtai tom one-dimensional model by Wang et al. [2]

t  At*=0.0005 snd s 15x15 pniform grid over each liquid and solid
region. Wang's one-dimensional model incorporated a uniform grid of
siz‘e 21 over ‘each liquid and so{id region. Even there is no way to

compdre directly these two sets of results because of the complexity

involved in the two—dimensional model, it still can be seen in fig.2

that * the averafge value of moving interface obtained by the

* two-dimensional model is  similar " to .. that' obtained by

‘Physically coincidental with the prediction because of the involving of

the convective heat transfer.

o - The computation was carried out on computer CYBER 170/835.

' 4
The elapsed time used to accomplish the "computation of interest’* is

4

(*) the "computation of interest” is defined as the time period before

any discretized point along liquid-solid interface reaches the center of -

liquid region in which case‘the' 2-dimensional model will fail.

AN

essentialh dats in thef-solution of the two-dimeasional fusion-welding.

two-dimensional model were obtainéd using the time interval °

Wang et al. except it has a large value in moving .front, which is

a

and the other for avérage moving front by the two-dimensional model -

in " this—thesis, are presented in figure 2. The results for the

S s v st i Ko o R 5 4 ———




approximately ouiputer seconds for 15 by 15 grids and over, 2000 -
seconds for 30 by 30 grids. To reduce th¢ cost in computation time,

-
J N U VNV

a8 non-uniform mesh mth a larger spatial interval could be used
Flgure 3 showd that t.he tendency of values obtained from the
non-umform 6x06 mesh wnth a *space ratlo”"* equal to 1.08 is
coincide with the results obtamed from the 16x 15 and 20x20 uniform
grids. While the total time reqmred to complete the computatxon of
interest was reduced to approximately 50 computer seconds. And the N

difference betweén\t/hé results obtained ffom 15x15 grid and 20x20

grid is acceptable. =To accommodate between the accuracy and the -

1

cost, of compui:.ation time, 3 15x15 non-uniform grid with spatial ratio
of 1.08 was used throughout the following discussions. The time -

intervals used . were At*=0.0005 for aluminium (Ra.5104) and- ‘

“ . ‘ i
At*=0.0002 for lead (Ra>10"%). . .
1 . . . i

/

-

+

(**) the "space ratio” is defined in two cases as follows,

£

case 1. - space ratio = h 1/h, for 0<y*<1/2 in the calculation

of .y*-direction, or 0<(x . *)51/2 in the calculation of x*-direction.

case 2. space ratio = hi/hi+l’ for I/25§('<1’ in the calculation
of y*-direction, or 1/25(xl*,x8*)$1 in the calculaton of x*-direction. -
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presented in fig.4 to fig.11 resi»ectivel}:

t b4 > *
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5.2 Effect of Ra Numbers : - oL

I . * ]
In this sect.ion> the effect of Ra number on the fusion welding
\

process is studied. The numerical results calculated for the aluminium

and lead fus/';émgvelding processes for the. average vaipe of the moving - _

~

front, the pattern of the moving front, the isothermals, the

temperature distribu{fgns, the stream lines, the average Nu number on

the moving front, and the local Nu number on the moving -front, are

1

As given in Table 2b, the Ra numbers for aluminiu/m and lead
fusio;}lding procdsses are about V ,000 ‘'and 115,000 respectively.

(R

The rést of dimensioniéss parameters calculated for these two processes .

are almost in the same "inagmtudes. Therefote the variation ‘of ‘values
of Ra n}xmbér "will be considered as the main source effecting the

numerical simulations.

The Movement of the qumd-Sohd Interface "~

ln figure 4, the average value of the /focatlon of the movmg

liqmd-sohd interface defined s quz:(q /N with’ time is presented.fpr
i . N .
both the alumlmum and lead fusion welding processes. In thié figure,

the slope of the rrt* curves represents the rate of propogatlon of ‘the

. movmg interface. The positive and negative values ‘of dr//dt.* indlcat.e

the - melting and solidification processes, respectively. The movt{ng

\nterface reaches its maximum value when ‘the meltmg process stops.
The " solidification process - starts following dj/dt*=0; - Au ‘higher«

® .
e . EY
. N ; -
] . - ' ' .
oy .
[ . -
'
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value of Ra presents in the [sad, fusion welding process; a faster -

« melting rate will result (as indicatél 4n figi4) due to the presence of a
stronger patural convection: It \‘(u found that an '%most .the “same

cooling é{te mliyagpear in both i Pprocesses shoﬁyNafter the lmrovi'iig'

front reaches its math;m ‘position.‘ This cgn..‘:xbe considered to be
the result of a flat temperature .distribution: in the liquid region in
the solidification stage and a smaller temperature difference between
the )iquid and solid regions, as discussed late. A longs}" time will be
needed for t_,'l.le' process having a higher value of Ra to cool down the

entire liquid region because of the lﬁm%n region.

The Moving Interface Patterns T4
— }

Disregarding‘ the rate of movement of the liquid-solid interfvé’ a3
study on the. shape of the moving interface w::?’ carried out. The

results are presented in figs.5b and 6 for both the aluminium and lead
-~ S o'

fusion welding processes respectively.

\ l
Examination of figs.5 and 6 reveals that, changing the valued of

L

Ra will result in the change of the shape of the iiquid-solid interface.
Increasing "the value of Ra, will strengthen the non-linearity of the
liquid-solid interface and will have a pré‘l’lgunced ¢ffect on the pattern
. of the liquid-solid interface. . '

The Isothermals - ' . . ;

e
»

The isothermgds for the al;ﬁninium fusion welding process are

presented in. figs.7a, 7b, “and 7c for t*=0.01, 'Q.03, and 0.05,
respectively. The 'n'bﬁhermal of T*=1.0 ~(=(T;-Ta)7(Tm-Ta)), represents

the position ‘of méﬁng interface. It has been. found that the ~

- -~ \

- -~

Moo

~
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isothermals are almost parallel and linear-vertical in the starting

- period as shown in fig.7a. Since there iz almost no temperature

difference in. the ay*-&;iirect_ion, the effect of convection is minimal.
‘Hence, in this caﬁe, conduction is the dominant part of heat transfer.
The- parallelism of the isothermals near the movilfg interface implies
that a uniform heat transfer rate can be expected along the moving
interface. -«Theréforé a linea::-,verticgl interface can be found as shown
bx T*-l.p. Whilg‘ shortly after the starting period, a non-parallel _

and nonlinear-vertical isothermals are presented as shown in Figs. 7b

. and T7e.

% '

EN

(5;:-‘

{

By contrast ili the lead fusion ;welding process, thé isothermals
for 1*=0.01,,0.03, and 0.05 appear as shown in figures 8a, 8b, and
8c, i‘especti%ely It can be observed that even m the early time step
(t*=0.01), the isothermals are no longer parallel and linear-vertical.

As shown in Figs. 7b, 7c and Figs. 8a to 8c, a large vertical

AV temperaturé difference "is particularly evident in the liquid region.

This wdu]d theoretically give .rise to a strong convective circulation.

A non—parallel * isothermal in  the liquid- region will result in a

“ non-umform heat transfer rate along the vertical “direction, and

conseque.ntly a non-linear moving interface forms (as shown by . the
isothermal T*=1.0).

Also it is noted in figs.7 'and 8 that, the spacing of the

isothermals is closer mear the , liquid-solid interface but wide} near

center of the liquid ‘region. The gradient of the isothermals, when .
they are considered as functions of x *,' have their maximum values

near the top of “the enclosure and close to the (liqm'd—solid interface.
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This characteristic can be explp.ined by the flow p;zttern' as shown
later in ﬁgs 12 and 13. The maximum value of the gradient of

isothermals is caused by the downward flow of the lower tempexla&ure
liquid which has been cooled by the liquid-solid interface. v

~ N .
. c N

The Temperature Distributions

The dlmenslonless l;empel'aturer dxstnbutlons along center line
{y*=1/2), for both the liquid and solid regions, are presented for the
alumxmum and lead fusion welding processes in ﬁgures 9 and 10,

respectwely

- Comparmg fig 9 with fig.10, it can be seen that, the temperatures *
near the ‘centre of the liquid region (y*w=1/2), at t"—\& )1, are very
similar. As the time progresses, the temperature drop near the centre
+of the liquid region for lead is faster than that for aluminium f{see
figs9 and lb at t*=003 and 0.05). The reasons behind this

- ‘ phenomena are outlined bélow,,{

- 4 L)

- As the initial temperature is unifo;m in the liquid region, at the -
| beginning of the fusion-welding process, the heat transfer process from
the liquid to the solid phase is primarily due ‘to conduction. Since
. the relevant material properties are very close for both the processes,
t:he conduction rates should be similar. Hence the temperature
reduction near the centre of the liquid region at the initial stage, for

aluminium and lead, are very close.

[}

With the development of fusion welding, the isothermals are no

longer linear-vertical for the process havmg high values of Ra. There

is a large temperature difference formed in the -vertical dxrectnon

o
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Therefore a strong convective circulation appears in the liquid regic:n.
Hence more heat is taken away from the liqui;i region. This gives a
faster drop in. temperature near the centre of the liquid‘ region for the
process having high values of Ra. Because much heat is taken away
from the liquid _region, the teniperature distribution in the liquid\
region along x*-direction becomes flat as shown in fig.10 at t*=0.03
and 0.05. The\ temperature ‘difference between the 'solid ‘and liquid’
regioﬁ i8 then small. Thisw inversly. slows down the heat transfer

process as a small rate of conduction présences in this case.

A 3-dimensional plotting for ‘the lead fusion. welding process at
different times is shown in fig.11. This gives another view of the

temperature distributions in the whole field.

’ R N . : 4
The Streamline Patterns . : N

~ The resultd~of the study of sthe streamline pafterﬂso with respéc;t

- to the change of the values of Ra are ‘pret';ented in ﬁgm:es 12(a,b,c)

~ snd 13(abc). Figsl2a and 13a, 12b and 13b, and 1% and 13c, are
presented for different dimensionless values of time, t*=0.01, 0.03, and"
0.05, respectively. It can be observed thai the general characteristic
of the flow patterns is an upflow near the centre of liquid region, at
xt*==0, where .the molten metal iz hotter, yvith‘ a downflow near the
liquid-solid interface, where the molten metal is. cooler. It is found
from the concentration of the stream lines that the velocities along
the liquid-solid interface are higher than the v'elocitiés along both the

horizontal walls and the center of the liquid ré‘gion. .

g
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As indicated in fig.12b, the maximum value of ¢* for the

¥
alummum fusron welding process which has a smaller Ra value, is
about -2. 23 The maximum value of $* for the lead fusion welding

process which has a larger Ra value, is found to be equal to -19.5, as

. ‘indicated in fig. l3b _ Hence, it can be estimated that the fluid flow

for lead is almost 10. times stronger than that for aluminium . = This
supports the indication in the previous discussion, that when the, value
of Ra is large, a strong natural convective circulation will be

presented.

A

A rather interesting situation appears in the lead fusiori welding
process as shown in figs. 13b and 13c. A secondary flow near the
bottom of the center is developed shortly after the startlng period, at
t*=0.03. The secondary flow develops rapidly and occupies nearly the
half space of the liquid regron at t*=0.05.

Both the stream hnes and isothermals mdrcate that bhe thichness

of the liquid region is greatest at the top and least at the bottom of

the enclosure. It is interesting to note that the streamlines of higher
values are restricted to the top portion of the liquid region and near
the liquid-solid interface, where the temperature gradient is higher and

hence 'the flow is maximum.

)

Nu Numbers. Along the Liquid-Solid Interface

-

The  local Nusselt numbers on the. liquid-solid interface at
drfferent. txmes for the cases of the aluminium and lead fusion weldmg
processes are shown in figs.14 and 15, respectively. Where the local

‘Nusselt number was defined baseg; on the temperature gradient 88
\

L] ' ‘
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follows, S ‘ : ’
\ . .
LT rr
No_ = - x * l *
X, 0%, -]

I is found from figs.14 snd 16 that the local Nusselt number on

the liquid—solid interface decreases considerablely with time.

The variation of the average Nusselt nunibers on  the liquid-solid
interface with dimensionless time t* for the cases of the aluminium
and lead fusion 'welding processes are shown in figs.16 and - 17,

respectively. . The average Nusselt number on the liquid-solid interface

. .was defined as follows,

- N
N 1 * *
Nuy,-=- IO Nuy dy* = L, Nu  Ay*

15 | yx

where N is the number of the grids in y* direction.

The examination of these figm'es. reveals that the natural

convection in the liquid region dominates the heat transfer process in

the early melting stage (except.' the very beginning). The natural

convection will slow down in the tranmsition from the melting process

to the solidification process and then keep‘ minimum afterwards during

the rest of the solidification proce;;s. This phenomenon suggests that .

a pseudo one-dimensional model couldd be applied when the values of

Nu nrgmber reaches i}s minimum during the solidification "process.
‘This means that in such situation there is no need in the calculation

of the fluid flow and the temperature distribution in the liquid reéion

as thgs temperature is at the meiting /point and uniformly distributed

in the liquid region. This will subsequently save almost ome third of

X




T T T T T — m“ "
o - -
. A ‘ ‘ . .
> -~ r
' : - B ‘
- .
‘ 4
1 n 1
4
N .
’
b N -
.

g

\ 102 . '

v . . ' -
s * .
the compytation time. But @hg,mt.emperature gradient in y* direction
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"in the solid region still exist and should be determined from time to
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