g |

Naticna! Library
of Canada

Acquistions and
Bibliographic Servces Branch

395 Wellington Street
Ottawa Ontanio
K 1A ONg

Bibliotheque nationale

du Canada

Direction des acqusitions el
des services hibhoaraphigues
JU5 rue Wetlimalon

O a(Ontan)

K 1A ONA

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in fuli or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. (C-30, and
subsequent amendments.

il

(Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfilmage. Nous avons tout
fait npour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A Debngginig Support Based on
Breakpoints for Distributed Programs
Running Under Mach

Christy Yep

A Thesis
in
The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

November 1992
©Christy Yep. 1992

A

National Library
of Canada

Acquisiions and
Bibliographic Services Branch

Bibliotheque nationale
du Canada

Direction des acquisitions ¢
des services biblographigues

395 Weliington Street 95 e Welhngton
QOttawa, Ontario Oitawa (Ontaro)
K1A ON4 1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriéte du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-84635-6

Canada

ABSTRACT

A Debugging Support Based on Breakpoints for

Distributed Programs Running Under Mach
Christy Yep

Debugging a distributed program is a non-trivial task because of the inherent non-
determinism and the real global time being absent in distributed systems. Also there
arc multiple threads of computation. As a result, specification of breakpoints, moni-
toring for their detection and halting, stepping the execution in the code space, and
the assimilation of the vast amount of trace information all become difficult. Research
in distributed systems is actively pursued in the last ten years by several active re-
search groups. Experimental debuggers have been built to support various types of
rescarch in this field.

This thesis is a part of the whole project called CDB, which involves a team of
graduate students whose collective aim is to design and implement a distributed de-
bugger. Unlike many other implementations of distributed debuggers, CDB is an “in-
tegrated system”. It integrates the concepts of non-deterministic replay, distributed
breakpoints, rollback and recovery, white-box to black-box approach, and the user
interface to support interactive debugging. Several theses have been written and the

work is still on going. with regards to CDB.

ot

Every concept discussed in this thesis is implemented under Mach, tested, and

-

documented. Thus one of the contributions of this thesis is the implementation of
ideas for conducting experimental rescarch. Based on the research reported in litera-
ture, a specification language called PDL (Predicate Definition Language) is proposed
in this thesis. Distributed breakpoints specified using PDL can be detected by the
present implementation and the distributed computation can be halted. PDL as-
ststs the user to specify breakpoints at different levels of granularity, thus facilitating

white-box or black-box tvpe inspection of the computation. We have implemented

1

two subsystems of CDB: breakpoint and user interface. They are designed such that
future breakpoint and user interface methods can be incorporated. In developing,
these two subsystems. we have identified building blocks which can be e used
building other CDB subsystems. The two building blochs, vector clock server and

local debugger are designed in such a way that their re-usability is maximized

Dedication

This thesis is dedicated
to my parents
Albert
and

Judy

Acknowledgement

First and foremost 1 would like to thank my supervisor, Dr. Radhakrishnan, who
guided me through every step during the master’s program. Without his help and
patience. the work presented in this thesis would be of less value, T would also like
te take this opportunity to share my experience in having Dt Radhakrishnan as my
supervisor. Dr. Radhakrishnan was always available whenever [needed help on both
academic and social levels. His knowledge in computer science and his methods of
teaching inspired me where these two years seem to pass very quickly. Aside from
computer science, Dr. Radhakrishnan taught me a lot about life and culture and gave
me the opportunity to see life outside of North America. This is probably the most
valuable learning experience he has ever given me Again I would like to thank Dr.
Radhakrishnan for his supervision and for being a great person.

I would also like to thank Bell Northern Research for their financial assistance.

I'would like to express my thanks to Alain Sarrafl who s also part of the distributed
debugging project. Alain and I had many brainstorming sessions, both theoretical and
practical. that were beneficial for both of us. Also. his moral support and anmicable
personality made the project more enjoyable.

I would also like to give a special thanks to Juliette D’Almeida who was always
there whenever times became difficult. 1 deeply appreciate her care, warmth, and
moral support during both my bachelor and master degree.

Other very special people in my life also supported and encouraged me during
the past two yvears. I'd like to thank Craig Mathewson, George Papalconidopoulos,
Mitsuo Matsushita, Le Huan Tran. and Fdward Battershill for their irreplaceable
friendship.

Last but not least. I'd like to express my deepest gratitude to Mom, Dad, Yinl.ei,

Tony. Dolly. Andy. and Sally for their enconragement, love, and patience.

Vi

Contents

1 Introduction

I.1 Terminologies . . . 0 .00 oL e
I.1.1 " Sequential and Distributed Programs
1.1.2 Bug, Testing, and Debugging,

1.2 Conventional Debugging Techniqueso ...

1.3 Debugging Tools o o000 00000 o o

1.1 Problems in Distributed Debugging

1.5 Related Work . .

[.6 CDB -The Project © 000 0 0000 00t e e s e e
6.1 Mach . o oo o o e
1.6.2 The Project . ..o o o o0
1.6.3 Related Work (Concordia) o .

1.7 Contribution of this Thesis toCDB

2 System Arcl’tecture of CDB

2.1 CDB's Architecture . . . 0 . oo L0 Lo s e e
22 USER-TO-CDB Sesston . . . o o0 o000 oo oo o
23 Modulesof CDB . o000 0o
2.3.1 Vector Clock . .. oo o e
2.3.2 Local Debugger o 0 oo
233 Recordand Replay . .. o 0. oo oo
231 Checkpointand Rollbacko oo 00000
2.3.5 Breakpoints oL

WO o0 00 O U W W NN N =

10

13
13
15
17
18
19
20
21

29

[S

3.6 Stepping

(B

o

3.7 Monitoring
User Interface
2.11 Related Work .
242 Tyvpes of User Interfaces

2.1.3 User Interface of ('\DB

Two Building Blocks for CDB’s Implementation

3.1

3.2

Vector Clock
3.1.1 Related Work
3.1.2 Vector Clock Algorithin

.................

3.1.3 Vector per Process Vs, Vector per Machine
3.1.4 Vector Clock Server

Local Debugger

3.2.1 GDB and its Functionalit s

3.2.2 Mach’s Extensions to (i .8

3.2.3 Our Extensions to GDB

Distributed Breakpoints

4.1

4.2

4.3

PDL : Predicate Definition Language

4.1.1 The User and the Breakpoint Relation

4.1.2 Types of Predicates

4.1.3 Relation Amongst Predicate,
4.1.4 Non-Temporal Relations
4.1.5 Filtering Facility
Detection and Halting

4.2.1 Typesof Halting
4.2.2 Difficulties in Obtaining these Cats
4.2.3 Detection/Halting Algorithm

Comparison with Haban and Weigel .

Vil

.........

20
20

.)\\

at

30

=t

6

Implementation Details

D]

g }
[

g}
o

Lower Laver

J3.0.1 Veetor Clock Server . .

")1.2 l,()((l]

Higher Layer

5.2.1 Breakpoint Module
5.2.2 User Interface

Code Stiucture

Debagger o000 0000000

Summary and Future Work

0.1

6.2

Summary .

Future Work

....................

....................

............

............

............

............

64
64
61
70

-~ =1 =
S N

List of Figures

[V
—

[
~

8]
)

3.1
3.5
3.6

Svstem Architecture of CDB L L.
Modules of CDB

User Session with ('DB
Interactions of Modules of CDB

ST Diagram

Breakpoint Specification User Interface

Iixample of vector clock
Vector Clock
Simultaneous Region
Vector (lock Servers . .0 oL L.
Local Debuggers

Our Extension to GDB

Global Predicate

Time Stamp Inhenit oo 00000000 o000

Simultancous Predicate oL

Distributed Breakpoint00 000000 L
("ausal Breakpoint

Maximal Breakpoint

Immediate Breakpoint . . .00 0000

Global predicate:= A —= B00

A is unaware of B's ocentrence .

[.:1)('1"‘] Structnare , L.

Vector Clock Server with angmented user code . L.

GDB with o modification

Maodular Design of Breakpoint and User Interface Modules o000

PDL Spedification . .
Man xodh Window | .

Detection of Breakpoint
State Sub Window

ST Diagram Sub-Window

xi

........

oL
\V]

Chapter 1

Introduction

The interest in parallel and distributed programming has grown dramatically in recent
vears. The added complexity of expressing concurrency has made debugging parallel
and distributed programs even harder than debugging sequential programs

One of the most important facilities in any debugging system is the ability to halt
a program during its execution. Once halted, the program state may be inspected to
different levels of detail in order to find the error. This facility of halting is called a
breakpoint. In sequential programs. specifving a breakpoint is straightforward since
all program events are linearly ordered. A breakpoint would specily any one of those
events where the program is expected to halt. Distributed proprams, on the other
hand. pose new problems for breakpointing. Since the nature of the program consists
of many threads of control and determining the order of program events is difficult,
specifying a distributed breakpoint becomes non-trivial. Detection of the occurrence
and halting at a breakpoint are to be studied carefully since many threads of contiol
arc present. Certain protocols must be developed in order to make detection and
halting meaningful to the user. Another factor in debugging is to provide an eflective
user interface. With the large number of processes being present. a user could be
overwhelmed with unmanageable amounts of information. New methods of displaying
information must bLe ¢ ldressed.

This thesis is a design and implementation of solutions to the problems stated
above. The implementation is within the context of CDRB. Concordia Distributed

deBugger. where the main ohjectives are to provide a debugger that wall ke e

of the nser’s knowledge of the program. provide a set of flexible tools. and provide a

user interface that will enable the user 1o effectively use these tools [LRK90].

1.1 Terminologies

Belore introducing the issnes of debugging. some of the key terminologies are ex-

plained below:

1.1.1 Sequential and Distributed Programs

A scquential program is a set of program statements or events that occur in sequential
order, all within the same machine and address space. A distributed program, on
the other hand, can be seen as a set of sequential programs dispersed among several
sites execnting simultancously. cooperating. and communicating to achieve a common
tash. “Fxecating simultancously™ would refer to processes running in true parallel
on separate sites or in pseudo-parallel on the same site. “Cooperation” refers to all
processes coordinat ing their actions so that they do not nullify or contend with each
other. “Communication™ could he based on shared memory or message passing,.
The IPC model considered in this thesis is message passing. Processes communi-
cate with cach other by sending messages to each other. The IPC primitives are made
up of a non-blocking send. a blocking receive, and remote procedure calls (RPC). Mes-
sages are sent to ports which are essentially message queues. Messages received are

taken from these ports.

1.1.2 Bug, Testing, and Debugging

Any eaperienced programmer has and wiil encounter a bug in his/her program. A bug
is any deviation in the actual program behavior from the expected behavior. Finding
a bug starts with festing. Testing is the action of exercising all possible paths a
program may take during execution. It is this phase that will reveal if a program
contains a bug. When a bug is known to exist. debugging is performed. Debugging is

the action of pinpointing the exact location of the bug. This involves using different

&~

debugging techniques and tools which will be explained in the following sections,

1.2 Conventional Debugging Techniques

Essentially. there are two methods of debugging a program. They are known as fop
down and bottom up.

Top down approach requires that all characteristics of the program be well defined
where a theoretical behavioral pattern may be developed. During debugging, the
actual program behavior is compared with this theoretical pattern. A bug will is
said to occur when one of the two behavioral patterns deviates from the other. The
problem with this method is that the user must know all details about the behavior of
the program. For a large software system. this may be too voluminous. Also, knowing,
exact behavioral characteristics of a program may be difficult to grasp. With this m
mind. the bottom up method may be more advantageous.

The bottom up approach is more of the classical way of debugging as we commonly
practice. It assumes that the user is not quite aware of all the details of the behavioral
characteristics of the program. The user is expected to know that a bug exists and
there is a hunch of where the bug could be. With this information. the user wonld
execute the program to the anticipated point of the bug and perforna step by step
analysis. Tn doing this. the user will gain more knowledge ahout the program and
thus determine where the bug is. To make this method effective, eyelie debuggmyg
techniques is usually applied. Once the step by step analysis is done. a new anticipated
point of the bug will be determined. Henee, the bottom up method is apphied again.
With every cycle. the user gains more knowledge abont the program and spirals into

the location of the bug.

i

1.3 Debugging Tools

Both methods described above requite some tools, This section deseribes the mam

tools found in sequential debuggers.

Trace

The trace tool supports the top down method of debugging. Program events are
gathered and stored in a file or displayed on the screen during the execution of the
program. Usually the type of events may be predefined by the user such that only

those events of interest will get recorded.

Breakpoint

The breakpoint tool is one of the tools that support the bottom up method. A
bieakpoint is a location, within the program, of where the program will be suspended.

Fasentially, it is a point in global program time.

Stepping

Stepping is a tool used in collaboration with breakpoints. Once a breakpoint 1is
reached, the stepping tool may be used to incrementally advance the program to

support detailed inspection.

State Recording

The state recording tool is simply a tool that will return the current state of the
program. For example, state information may be gathered at a breakpoint as well as

alter cach step of the execution.

User’s Intuition

User’s intuition is very useful in debugging. No matter what method of debugging is
usedd, thete is no guarantee that the bug will be found. Basically. debugging is an art
becanse more than half the job of debugging relies on the user’s intuition and his/her
ability to understand the faulty program. A debugger is simply an extension to the

user's intuition.

1.4 Problems in Distributed Debugging

The above tools are also needed in distributed debugging in order to apply the de
bugging methods. But. due to the nature of a distributed program. vatious problems
arise which make these tools difficult to obtain. It also requires that other tools be
created to deal with these problems. The following sections will outline the problens

in distributed debugging.

Lack of Global Time

The concept of a global state or time becomes misteading or even non existent with
out some kind of synchronized global clock. Since each process within a distribated
program conforms to its own local clock. the global clock would consist of the syn
chronization of these clocks. But. this svnchronization is didlicult to achieve since
it would rely on an unpredictable communication network. However, without global
time it would be diflicult to determine the order of program events occurring on

distinct parallel processors.

Non-Determinism

Since distributed programs rely on communication, unpredictable delays in the net
work will make the programs non-deterministic. Every run of the program may
experience different message delays which may cause a different computational paths

to be taken.

Breakpoints and Stepping

Basically, a breakpoint specification implies a reference in time. "This is no problem
a sequential program since it spans within a single process ona single processor. On
the other hand. global time in a distributed program does not exist. which makes the
specification of breakpoints difficult. Also. we need some way to specity hreakpoints

that do not overwhelin the user with too much detail bat is effective.

Stepping experiences similar problems. A «tep in sequential programs refers to
moving the exeention to the next reference in local time. Stepping in distributed
prograins refers to advancing the execution of all processes to the next reference in
global time. Since global time is difficult to achieve, stepping becomes a non-trivial

task.

Probe Effect

Since the distributed debugger itsell is another program that executes within the
same system as the application program. the debugger will induce an extra load on
the system. This extra load could cause more message delays and affect certain race

conditions.

User Interface

Since a distributed program is made up of several tasks, there is a potential scaling
up problem. For each task. debugging information must be displayed to the user
where the size of the physical monitor and the user’s ability to comprehend become
the limitation. What is needed is a means of displaying this data in a meaningful

manner within the limitations of the screen and human cognition.

1.5 Related Work

Distributed debugging has been researched for at least the past ten years where
several experimental systems have been developed in both theory and practice. The
following work coucentrates on “complete debugging systems” that influenced the
design of Concordia’s Distributed deBugger. CDB. CDB is a set of debugging tools
designed to debug distributed programs. Section 1.6 discusses CDB in more detail.
Garcia-Molina, Germano, and Kohler [GGRE1Y] explains the key problems in dis-
tributed debugging and propose a bottom up approach methodology for debugging.
Fach single process is tested individually, then tested all together as a whole. Their

system focuses mainly on a trace tool where events are logged during the execution

i\

of the program. The testing phase will let the user compare the expected behavior
against the actual behavior. The disadvantage is that a user can not always hnow
the expected behavior. Henee. testing against expected behavior becomes ditlicult

Miller and Choi [Miller-Choi®®-1] propose a mechanism for debugging parallel
programs where it incorporates replaying the system vithout ce-execution. Detailed
trace files are taken during one run of the program where they are used to recreate
the distributed computation. Hence, a slow pace view of the system behavior can be
inspected by the user. This method puts a high dependency on the trace files since
it determines t . replay detail in the recreation of the program.

Leblanc and Mellor-C'rummey [Leblanc-Crummey87] state that the most diflicult
problem in distributed debugging is reproducing the execution behavior. They go on
to describe a method of replay called Instant Replay where suflicient trace information
is taken from the processes to ensure that subsequent program executions are the
same. This method permits traditional methods of debugging (hreakpoints, stepping,,
etc.) to be inserted since the execution may be slowed down without affecting the
behavior.

Bates and Wileden [Bates-Wiledens3] take a high level view of distributed debug,
ging where they propose EDL. EDL. Event Definition Language, is a means of stating,
what events are of interest to the user during the computation. With this definition,
monitoring is performed where the user is expected to compate actual behavior with
the expected behavior. This work has been influential to our contribution to CDI3

Baiardi, De Franchesco, and Vaglini [BDV86] deseribe a debugper for the con
current language called ECSP. Like Bates and Wileden, they take a high level view
where a behavioral specification of the system is supplied by the wser aned it is com
pared against the actual behavior during exeention. Their behiavioral specification
language. called BS. provides a facility where a user may speaify the program’s he
havior at diffeient levels of abstraction. Depending on the user’s knowledge of the
program. a BS specification may be created corresponding to the nser’s view of the
program. The BS specification may range from a coarse to a fine grain specification.

Joyee. Lomow. Slind. and Unger [JLSUST] propose a debugging system that con

-1

centrates on providing the user with a means to compose any program behavior. This
form of debugging is more of a testing phase since it exercises all requested execution
paths. ‘T he disadvautage of this system is that it is only suited for users who have a
broad knowledge of the program. During the carly stages of debugging where the user
has limited knowledge of the program, the user may not know which execution path
the bug may occur. Also, determining all possible execution paths is non-trivial. An-
other disadvantage is that there is a lack in assisting the user to gain more knowledg.
abont the program such that their debugging system may be useful

Fach of th above works is focused on one or more “basic” concepts of distributed
debugging. namely, trace, record and replay, event specification, fine grain to coarse
grain variability. and behavioral abstraction (top down). CDB, on the other hand, has
taken an integrated approach to these concepts. A complete implementation under

Mach is equally emphasized in CDB.

1.6 CDB - The Project

Before introducing CDB. the Mach operating system under which it executes will be

described briefly.

1.6.1 Mach

Mach [MACH-1T [MACH-2] is a distributed operating system which provides an in-
tegrated cor puting environment that consists of networks of multiprocessors and
uniprocessors, Mach's goal is to design a Unix compatible system as well as to add

mechanisms that other distributed systems do not have. Major mechanisms involve:

Support for multiprocessor architectures.

o A generic micro-kernel architecture where other operating systems may be built

on top of.

Distributed operation where the network is transparent to the user.

Itlicient memory management and interprocess communication modules.

Organization according to the object oriented paradigm.

Mach provides an environment made up of simple basic abstractions. One of such
abstractions is its process model of fasks and threads. A tash is the address space
and a collection of system resources, .\ thread is a basic unit of computation and can
only run within the context of one task. A task may have many thicads running,. in
parallel. within it. Another abstraction is the IPC model. Essentially, it is a message
passing model made up of messages and ports. Messages are actual data in transit
where ports are message destination queues. With this model tasks and threads niay
casily communicate transparently through the network. with a single construct.

In short, this operating system provides many facilities which directly support
distributed computing environments. Also. it provides well defined abstractions and
simple programming tools which make these facilities casily accessible. For these

reasons NMach has been chosen as the operating environment for CD1.

1.6.2 The Project

Solutions for the problems of lack of global tiine, non-determinism, breakpoints and
stepping. probe effect. and user interface are presented in the design of Concordia’s
Distributed deBugger. CDB [LRK90], project. CDB, is a project suited for the mach
programming cnvironment and it is designed to debug distributed programs written
in C or C++4. Essentially, CDB is made up of a set of debugging tools which are
monitoring based tools, re; 'ay related tools, breakpoint related tools, display and

interaction oriented tools, and blackbox and whitebox facilities.

e Monitoring based tools basically gather important information during the exe
cution of the program.

e The replay related tools provide a means to re-execute the program from any
point while ensuring that every run will exhibit the same behavior,

e Breakpoint related tools enable one to specify a breakpoint to halt from where
step by step analysis may be performed.

e The display tools create a meaningful user interface.

e The blackbox and whitehox facilities are embedded in the other tools such as
monitoring and breakpointing. Fssentially. it 1s a facility which lets the user

specily the granularity. fine to coarse grain. view of the system For example.

monitoring the system with respect to the synchronization space would be a
blackbox or coarse grain view since finer details are ignored. A finer grain or
whitebox view would be a view with respect to the source code space.

1.6.3 Related Work (Concordia)

(‘DB is an on going project that started in 1988 and is supported by Bell Northern
Research at Ottawa. Prior to CDB, other related work had be done in distributed

systems that were influential to CDB. They are:

Ph.D. Thesis 1988: Krishnarao Venkatesh proposed a formalism for classifying
different types of global states of a distributed system as well as developing new
message eflicient algorithrns for detecting cons 'stent and stable global states. In
relation to this. he examined certain algorithms that depend on global states.
More specifically he examined in detail two applications, discrete event sim-
ulation and backward error recovery, where he identified and proposed new

solutions to the inherent problems within such algorithms.

Master Thesis 1988: Chris Passier provided experimental evaluations of two roll-
back and recovery (R&R) algorithms. He had implemented a R&R kernel which
serves as a basis for building the R&R algorithms. The bulk of his work focussed

on more theoretical issues of the algorithms.

Master Thesis 1988: Ioakim Hamamtzoglou also contributed to the implemen-
tation of the RER kernel with Chris Passier. His work describes the problems
related to distributed debugging and proposes solutions that are in the frame-
work of distributed computations based on partial ordering. He also describes

the usage of debugging tools and presents a model of a distributed debugger.

Master Thesis 1989: Minh Dang Bao proposed a methodology and tools for dis-
tributed debugging. His methodology consists of a two stage process. The first
stage is a top down approach where a given synchronization specification is

compared with the actual synchronization behavior unti} the error is located.

10

The sccond stage is a bottom Lp approach where examination of internal states
is performed to locate the bug. He had also implemented a prototype debugger

on a sct of Unix based machined to exercise his methe dology.

The implementations provided by Chris Passier. loakim Hamamtzoglou, and Minh
Dang Bao were “throw away prctotypes”. Further extensions to these systems were
not feasible. But their work and the work of Wrishnarao Venkatesh provided a good
base for the evolution of C'DB. The following are direet contributions for the CDB

project.

Master Thesis 1992: Victor Krawczuk proposed and implemented a record and
replay module where it addressed the problem of non-determinism in a dis
tributed program. Essentially, all non-deterministic choices are recorded during
one run of the program where all subsequent replay will conform to the recorded

information. Only partial implementation is achieved.

Master Thesis 1992: Honna Segel based her research in the arca of monitoring,
She developed a new logic for expressing safety properties in distributed predi
cates. Safety properties refer to predicates being stable or unstable throughout
the process execution. She also proposed algorithms for detecting these safety

properties so that they can be monitored efficiently.

Master Thesis: Alain Sarraf is currently working on a checkpoint and rollback
mechanism. Once an error has been detected, his system will rollback the
execution to a state or checkpoint that is considered error free. From the rolled

back state, interactive debugging may be performed to locate the bug.

1.7 Contribution of this Thesis to CDB

The contributions of this thesis lie in the specification and detection of distributed
breakpoints. An extendible user interface is also developed. Al the proposed facilities

are fully implemented and documented,

We propose a specification language called PDL (Predicate Definition Language)
which enables the ereation of hierarchical breakpoints ranging from a very fine to
a very coarse granularity. We also implemented a breakpoint module which detects
a PDL specification and halts the system upon its detection. The user interface is
another problem that we addressed. Here, we implemented a user interface module
that adopts the Space-Time diagram method of capturing meaningful data during
the execution of the program. In order to make the breakpoint and user interface
modules possible, two underlying generic building blocks were implemented. One
building block is a vector clock module which provides a solution to the lack of global
time. Here, we adopt the vector clock algorithm where temporal relations between
events may be determined. The other building block is a local debugger module.
Essentially, this module has total control of the execution of a single process to which
it. is assigned. The local debugger can be controlled from any site where it provides

hooks to the application program.

Chapter 2

System Architecture of CDB

Distributed debugging systems vary in terms of their design. Some are designed
such that their modules are highly dispersed among many sites and some are more
centralized. The following chapter describes the architectural design of (‘DB which

takes the latter approach.

2.1 CDB’s Architecture

Essentially. CDB is made up of several interacting modules and “servers™ which are
organized in a centralized manner. The philosophy behind this architecture derives
from the sectting in which we expect the user to work in. We assime that the user
doing the debugging is situated at only one site. This site. we call the dobugging
site, plays a very important role during debugging since it is expected to contaimn all
debugging information. For this reason, we have organized CDB o be centralized af
the debugging site. All non-debugging sites sitnply contain generic servers that contiol
and extract information from local processes on that site. These generic servers have
no dependency with any other modules and can be considered as building blocks,
Modules of ('DB depend on these servers in order to obtain contiol and informition
of application processes. Figure 2.1 illustrates the system architectire of CDB.

The modules on the debugging site form the actual debugger and consist of break
point. stepping. monitor, record and replay. checkpoint and rollback. and user inter

face modules. The servers consist of a veetor dock module and o local debugpe

Node X l)chugmqg Site

4 CDB N
r ™
- Debugger Modules)
. oA)
. /I \\ J
] Network \
Node Y Node 7

. / \. J

Figure 2.1 System Architecture of CDB

Node X
(- ChB ™

P s
IR AR AN

'
S

™
ol TN
)
\

P

\§\\'\\“

A

[Network]

Node 7.
4 Mach \

Fipure 2.2 Modnles of CDHH

module. Figure 2.2 shows the placement of all the modules withm CDBLThese mod

ules are deseribed in more detail in the following sections.

2.2 USER-TO-CDB Session

In order to comprehend the facilities that each module provides. a general wser to
CDB debugging session is deseribed.

Before doing any debugging. the user is reguired to compile his/her progras
the debugging mode while hnking in a special CDB Tibaryv. This will prepare e

program for the debuggmeg session.

Becanse of the inherent problem of non-determinism in distributed programs, the
debugging session can be viewed as two separate stages. The first stage involves
recording the program exeeution and the second involves replaying.

During the vecording stage the user is required to run his/her program until ter-
mination. Here, CDB will record and store all non-deterministic events in its own
local database. This record facility will ensure a deterministic replay.

Having recorded all events. the user proceeds to the replay stage where the actual
interactive debugging is performed. Here the program is executed and will replay
exactly the same sequence as recorded. CDB provides many debugging tools similar
to traditional debuggers and supports both top-down and bottom-up debugging tech-
niques. The tools include monitoring. breakpoint, stepping, checkpoint, and rollback.

Monitoring involves specifying certain events to be monitored. Here, the user
is required to specify the event, via Predicate Definition Language or PDL. CDB
will deteet such events and notify, the user, of its occurrence. The notification can
cither be inan interactive or file form. This facility supports the top-down debugging
technigue where the user may compare the monitor's trace against the expected
behavior of the program.

("losely related to monitoring is the breakpoint tool. Again using Predicate Defi-
nition Language. the user may specify at the occurrence of what event(s) the program
should halt (as oppoused to what events should be monitored). Once the program is
halted, the user may investigate more detailed aspects of the program. This facility,
as well as the ones that follows, support the bottom-up technique of debugging.

In both monitoring, and breakpoint. Predicate Definition Language, is used to
specify events to be detected by CDB. PDL allows the user to construct hierarchical
events fromn a very coarse grain to a very fine grain specification. Here, the user is
expected to have some knowledge of PDL in order to interact with the monitoring
and breakpoint facility.

Stepping 1s a tool that is used in collaboration with breakpoints. Once a break-
point is reached, the user may incrementally advance the program’s execution and

examine the state of the program after each step (or group of steps).

16

Record

Replay

Register pro-

\ | Detine program
-gram 1o record

to debug

/[

Detine
momtor events

Mode

Step / Execute

Recod
program

Detine Rollbach
breakpoints (Checkpont)

y
(HALT ’

Figure 2.3: User Session with (DB

Checkpointing and rollback are two tools that work together to provide a means
of bringing the execution of the program back to a previous state and to re exeente
from that point. Checkpointing is the action of recording cnough state information
of a program so that re-execution starting at that point is possible. Checkpointing
is transparent to the user and CDB, at this stage, arbitrarily chooses points where a
checkpoint is taken. With these checkpoints. the user may use the rollback facility to
re-execute the program from any one of the checkpoints. Also, when finding an erroi
in the system. the user may ask CDB to find a checkpoint prior to the ervor.

To illustrate the user’s perspective. figure 2.3 shows a llow diagram of a session

with CDB.

2.3 Modules of CDB

The basis for CDI consists of two generie building blocks, organized as servers, vector

clock server and the local debugger. 'These servers support the higher level modules

Node X
é CD3 S

f
]
3
:
T :
\ 3 : : 3
\ b ' |
Hi H I
1 H)
32 rs 4
1| s
i) + Network !}
il 3 §
L]) L
JRPRDR LI S LA g
lecY |1 ' ' |
4 : Mach! |) - b
™7 1 1 !
L P .}--_---—-L-:_---_
...................... b
_____) Rttt 4y R
1 [}
1 1
Il]
]]
)
]
]
]
b
SN e Jememceeeed e
y q y

Figure 2.4: Interactions of Modules of CDB

of nser interface breakpoint, monitoring. checkpoint and rollback, and stepping. We
intentionally left out the user interface module from this section because it deserves
to be mentioned in a section of its own.

The following sections ave all with reference to figure 2.4 which shows the inter-

actions between all modules of CDB.

2.3.1 Vector Clock

As mentioned carlier. one of the problems of distributed debugging is the lack of
global time. Inorder to obtain true global time we need a mechanism to capture the
exact times when each and every event occurred relative to each other. This will give

us the total order of the system. Unfortunately total ordering is impossible since the

I8

modules of a distributed program are dispersed and the concept of time is different
at each site. However, providing a mechanism that can determine the partial ordet
of events is uscful and possible The term partial ordering refers to being able to
determine the temporal relationships between some of the events (as opposed to all
the events in total ordering).

This will be discussed in more detail in section 3.1

Vector Clock with CDB

The vector clock module provides an interface to CDB. to determine the partial oreder
between events. It functions entirely transparent to the user, and consists ol one server
per machine. The user’s program is augmented, at compile time, such that special

vector clock commands are inserted. These commands interact with the servers.

2.3.2 Local Debugger

A distributed program is made up of several sequential tasks communicating with
each other. For cach sequential task a local debugper is attached to contiol that
program’s execution and to obtain local state information. The local debmggers are
very important since they can be used to control the total exceution of the distributed
prograin.

This will be further discussed in more detatl i seetion 3.2

Local Debugger with CDB

The local debugger module provides an interface where CDB has total contiol over the
functionality of a sequential task. This module functions totally transparent to the
user where for every sequential task within the disttibuted program. a local debogger
module is created and attached to it. CDB will contiol all such modules and thue

will have full control of the distributed program.

19

2.3.3 Record and Repilay

One aspect in debugging sequential programs is that for a given a fixed input, the
execution path will always be the same for every run. Distributed programs, on the
other hand, do not exhibit this characteristic of determinism. A major cause for
non-determinism is the IPC model as explained earlier. Messages passing through
the commumication medinm may experience certain delays due to various loads on
the system. These delays are non-deterministic which imply that any receiver of a
message could wait indefinitely. A simple example of this non-determinism is where
a process is expecting a messages from several other processes. With every run, the
receiving process may receive the messages in different orders because of different
communication delays. Hence, a different execution path may be taken for every run.
This makes locating a bug difficult if it occurs in only one of the many paths, and
that path is not followed during debugging.

What is needed here is a way to ensure that for every run. the same execution
path will always be taken. The solution, adopted by the record and replay module, is
to record all non-deterministic events during one run of the program. All subsequent
runs will conform to the recorded information to ensure that the same execution path

is taken daong every debug run.

What is Recorded ?

Messages are recorded. Fssentially, for every process, all message contents received
are logged in sequentia' order. Though this method seems sensible, the overhead due
to copying the message contents to its respective log must be considered. This over-
head may cause a serious probe effect that may alter the execution path since extra
debugging statements are included in the program. Also. there may be a potential
overload in logging the messages, since they may tend to be very large. Another
alternative is to tag every out going message with a unique “id” and to record only
these id's within the log. This method will have less probe effect since there is less

information to log and the log will be relatively smaller.

20

During re-execution of the prograni. every message received will be cheched with
the respective logs. If the message received does not mateh the message it should
receive, according to the logs. then that message is put in storage until its turn
arrives. This ensures that messages received are in the same order that they were

recorded.

Record and Replay with CDB

The record and replay. RER. module functions transparent to the user. During,
the record stage all out going messages are re-routed to the RER module. These
messages are then logged and re-sent to the actual destination. At the time of replay,
all outgoing messages are re-routed to the RUR module where they are compared
with the corresponding logs. This will ensure that incoming messages will be in the

correct ()I‘d(‘l'.

2.3.4 Checkpoint and Rollback

('heckpoint and rollback are two facilities that suppott the eychical appioact to de
bugging. The checkpoint facility records enough state informetion of o distributea
program so that the rollback facility may restart the execution from that point. Hence,
certain critical areas of a program may be consistently re exceuted while under the
observation of the user.

One characteristic of a checkpoint and rollback unit is to antomatically rollback
the execution to an error free checkpoint after detecting a bug. This is a non trivial

task since it involves determining which is the correct cheekpoint prior to the bhug,

Checkpoint and Rollback with CDB

The checkpoint portion of the module is transparent to the user where checkpoints
are tssucd by CDB. In taking checkpoints. the module instructs the local debugper
module to return all data pertaining to the eurrent status of the task where it is stored

for futare use. The rollback section provides the facility of either selectively rolling

batk to a checkpoint or to have the module locate a correct checkpoint prior to the
bug. Fssentially during rollback, the module supplies the local debugger module with
the checkpoint data where the the task is re-fitted with a new execution environment.

The local debngger will then re-attach to this new space.

2.3.5 Breakpoints

Fssentially. a breakpoint represents a particular point during a program’s execution,
This is straight forward for sequential systems since programs consist of a single pro-
cess on a singie processor. But, since distributed systems involve multiple prucesses
and multiple sites, breakpoints become unobvious. Breakpoint specification and de-
tection must incorporate all processes where a “new notion” of a breakpoint in the
distributed program must be addressed. We developed a Predicate Definition Lan-
puage, PDL, as a means to defining events occurring on several tasks with temporal
or non-temporal relationships so that a breakpoint can be stated. With this, the user
may construct hierarchical breakpoint specifications ranging from very fine to very
coarse granutarity.

This will all be discussed in further detail in chapter 4.

Breakpoints with CDB

The breakpoint module requires that the user input a PDL specification. With this
input, the breakpoint module will spawn jobs for the local debuggers for setting and
detecting local breakpoints. Upon the occurrence of these events, the local debuggers
will notify the breakpoint module and send to it the corresponding data of the event.
With this information. the breakpoint module will determine if the breakpoint has

heen reached.

2.3.6 Stepping

Stepping, s used in collaboration with breakpoints. Once a breakpoint is found and
the system is halted. the stepping lacility may be used to incrementally advance the

program for detailed human inspection. This facility is straight forward in a sequential

-

environments since a single step is local to one process only. But distributed systems
pose new issues that must be addressed. One such issue is the granulanty of cach step
With a large number of processes. stepping cach process in the sequential conventional
way will prove to have too much data for anyone to keep track of. Also.since stepping,
includes many processes. we need to decide what protocol should the processes follow,
if only a subset of all processes are required to advance. Two protocols, causal and

maximal. are explained in the following sections.

Fine to Coars> Grain Stepping

Stepping as we are familiar with involves advancing the program to the next line of
exccution. This would be censidered as a fine grain step because it is the smallest
possible program advancement that could be issued. But, this granularity may not
be of any use if the distributed program is very large and performs many tedious
operations. Perhaps a higher level of abstraction must he viewed in order to compre
hend such a program. For example, one may take a view of the system with respect
to only the IP(operations. This would be considered as a coarse grain view of the
system since many of the finer details are ignored. The cortesponding, coarse praim
step would involve advancing a process to the next IPC operation. We can even take
a coarser grain view by considering only outgoing messages of the systeni. Sumilatly
a step would advance the process to the next message ontput operation As we can
see there are different levels of abstraction that a user may view his/her program in
order to gain a better understanding. The stepping facility mnst also support these
views in order to assist the user by providing stepping from a very fine to a very

coarse level of granularity.

Causal and Maximal Stepping

Stepping in a sequential prograin. regardless of granularity. simiply involves advanciug,
one process to the next event. Distributed programs pose a new probicin of know

ing which processes should advance and which shonld not. For example. consider a

distributed program made up of processes P1. P2, and P3. If P1 has been chosen to
step to the next event. what protocol should P2 and P3 follow? Two protocols are
explained below and are called causal stepping and maximal stepping [H.F. Li.].
Causal stepping functions is as follows : P2 and P3 are advanced to the earliest
event possible which will permit P1 to reach its next event. In other words, if P1’s next
step has a dependency with P2 and P3, like P1 is waiting for a message from P2 and
3. then P2 and P3 are advanced only until the dependency has been satisfied, i.e., P2
and P3 are advance until the messages are sent to P1, thus permitting P1 to advance
to the next step. This form of stepping is the most desirable since it is the natural
extension for distributed programs of a step in conventional sequential programs.
The problem with this method is that there must be some previous knowledge of the
dependencies in order to know which process must advance and which should not.
The other method. maximal stepping, works the following way : P2 and P3 are
advanced until it reaches a dependency on blocked P1. In other words, P1 is advanced
to the next step and halted whercas P2 and P3 are proceeded until it hits an event that
requires a future event to be issued from Pl. For example, P2 and P3 are advanced
and halted at a message receive event since they both need the corresponding message
send event 1o be issued by PL. Pl has not yet reached the send events during the
stepping. This form of stepping is simpler to obtain since no previous knowledge of

the dependencies are needed.

Stepping with CDB

The stepping module of CDB provides all the features described above, namely fine to
coarse grain steps. with causal and maximal stepping protocols. When the breakpoint
module halts the system, the stepping module communicates to all the local debuggers

where it decides which task should be stepped.

2.3.7 Monitoring

Monitoring supports top-down debugging where it notifies or extracts certain behav-

oral aspects, or events. of a program that are of interest to the user.

2]

Couceptually. the front end of monitoring and breakpointing are similar. This
front end involves the specification of the event and its detection. Following these
two phases. monitoring would involve notifyving or recording relevant information from
the event without halting the system. Breakpointing, on the other hand, does halt
the system at the occurrence of the specified event. All issues addressed by break
pointing also must be addressed by monitoring. These issues include specification

and detection of the event.

Monitoring with CDB

The monitoring module requires that an input specification (PDL) be supplied such
that jobs will be spawned to the local debuggers. The local debuggers are required
to detect specific local events. Upon detection of a local event, the local debugger
will notify the monitor module of its occurrence where it is then verified if the PDI,
specification has been satisfied. The monitoring module will either notify the user of

the PDL occurrence. via user interface module, or retain data for further investigation.

2.4 User Interface

In common sequential debuggers, the user interface usually consists of a prompt where
the user is requited to enter a command. A more useful display would be to show
the source listing while indicating which line is currently being execnted. With this
type of user interface one may follow the flow of control where its bhehavior is being
anaiyzed with the help of the other debugging facilities. This form of user interface
is simple to achieve since we are only dealing with one process. But, a distributed
programming environment presents many fodi of control and attempting to follow the
flow of control of all these threads may become overwhelining an thus meaningless.
Further—are. even if following the flow of control were possible, representing all of
this information in a meaningful way presents another problem.

Since the debugger is an interactive tool. any user interface developient shouled

alwavs keep the user in mind. The main goal is to create an interface that 1 casy

to use and represent debugging information in a meaningful way. Outlined in this
section are related works in user interfaces and a description of CDB's user interface

and how it achieves this goal.

2.4.1 Related Work

The following are related works in user interfaces for distributed debuggers. They
provided a basis for the development of CDB’s user interface.

MecDowell and Helmbold [McDo-Helm89] present a debugging system that is best
suited for distributed programs communicating via shared memory. Their user inter-
.ace consists of sequential textual lists of processes that interacted with a particular
shared object. The sereen space is shared by multiple listings.

Harter, Heimbinger. and King [HHKS85] describe the IDD debugging system where
its user interface consists of a two dimensional grid: one axis represents processes
and the other represents progression of time. They use diagonal arrows to represent
messages. The problem with their system is that it was designed with the assumption
that global time exists. This is really not a valid assumption for all distributed
svstents.,

Socha. Bailey. and Notkin [SBN8B] present a system called Voyeur which is a
debugger whose user interface is based on animation. Here, whenever the state of
the execution changes. Voveur graphically redraws a new image representing the new
state, Hence, an amimation ol the program is displayed during execution. This 1s
suitable to view one aspect of a program in slow motion.

Hough and Cuny [Hough-C'uny87] present a system, called Belvedere, which is
similar to that of Socha. Bailey, and Notkin [SBN88]. They support animation with
multiple viewpoints. The viewpoints can be taken with reference to a processor, a

channel, or a data item.

2.4.2 Types of User Interfaces

Fssentially, there are three main types of user interfaces found in distributed debug-

gers whieh are testual representation. space-tinie diagram. and animation.

26

Textual Representation

Textual representation is prohably the most common form of user intetface found in
all debuggers where it simply displays the debugging information by means of test.
The main disadvantage of this technique is that the overall hehavior of a comples
distributed system can not be easily captured. More spedifically, since common e

rors in distributed programs are due to message communication and syuchronization,
providing such information only by means of text is inadequate. On the contrary,
textual representation also presents some advantages where states of particular pro

cesses may casily be inspected. Infact, most graphical user interfaces include some

textual representation to display state information of processes.

Space Time Diagram

The space time diagram (S-T diagram) is a two donensional representation where
one axis indicates the processes while the other indicates time. Figure 2.0 dlustrates
the space time diagram. This form ol display is very useful for displaving the overall
behavior of the system where it shows all occurrences of events with respect to each
other. Since global time is diflicult to achieve, the distances hetween events do not
represent time intervals to any particular scale. For examples refernmg, to figure 2.0,
process PO had occurrences of A followed by D {ollowed by I where ot “seems™ that
interval A to D is larger than 1) to k. Since these intervals do not have any reference
with time the interval A to DD mayv not have taken longer timne than) to I What
this diagram does show is the causal ordering of events oconrring i the svstemor e
which event came before which other event. The characteristic ol this method s that
it is best suited to display the overall behavior of the svatem State imtormation a

well as finer details of individual processes are not presented i this display

Animation

Animation is another method that displavs the overall behbavior of the vatem Far

every occurtence of a program event. o graphical tinaee < drawn on the soreen Ax

PO | ||
) |
Pl i
F
P2 !
B C

Figure 2.5: ST Diagram

many events occur during the program’s execution, many graphical images are drawn
which give the effeet of an animated view of the programs execution. The animated
view of the program hehavior is done by placing objects on a two-dimensional display
and having them graphically and dynamically interact with each other. For example,
objects may represent processes where message send events cause the sender process
to draw an arrow from itself to the receiver. Here. the user is always viewing the
cnrrent state of the program. But a “tewind”™ facility may be added to view previous
states, This may be considered as a disadvantage since a history of all states can not
be viewed simnltaneously. As in space time diagrams, animation is best suited for

displaying an abstracted behavior of the system,

2.4.3 User Interface of CDB

Since textual representation best displays the states of a process and the space time
diagram best represents the overall behavior of the program, we use both methods to
achieve a meaningful user interface for CDB. Essentially we have three sub-interfaces
that service to defining breakpoints, viewing state information. and viewing overall
process interaction (space time diagram).

Since om breakpoint specification language consist of hierarchical breakpoint. we
ptopose a graphical interface in which these breahpoints may be created. Basically.

the user s able to interactively and graphically draw the desired breakpoint. see

Create Breakpoint

< >
©e)
S,

'

(&

CHCEENCHCEENNC

- vy

@
@ . u
CICICICICICIGICICIS,

@)

~—

Figure 2.6: Breahpoint Specification User Interface

figure 2.6.

Since state information is best represented by text, we adopt this method by
providing a textual display for the state information obtained from a breakpoint cut,
As for viewing the overall process interaction, we use the space time diagram

method of representing the process hehavior. The space time diagram will display all
1 g B

cvents that occurred during the execution.

Chapter 3

Two Building Blocks for CDB’s

Implementation

Ihis chapter deseribes two generie servers called the vector clock server and the
local debugger server that are used in supporting the functionality of other debugger
modules. The veetor clock provides a facility in which the order of program events
may be deduced. The local debugger provides the total control of a single process

assigned to i,

3.1 Vector Clock

Determining, the global time in a program is a very important factor for debugging
svstems sinee most of its facilities depend on the notion of time. Issuing a breakpoint
iefers to a reference in global time. Stepping involves advancing the execution to the
neat time interval. Monitoring refers to testing certain predicates at specified times.
Trace informavion is captured at certain times. Checkpoint and rollback involve
taking checkpoints and rolling back the execution at specific times.

Thus. the global time plays a big tole for any distributed debugging system. More
specitically, programs are mapped against global time which allows the debugger to
determine the order of events that occurred within the system, we call this total
ordering. For sequential systems, the total ordering is straight forward since there is
onhyv one process and one clock. On the other hand. distributed systems introduce a

new problem where there are many processes each containing their own clock. The

problem arises in synchronizing these clochs. Since these processes communicate v ia
messages and the communication medivm imposes an arbitrary communication delay,
perfect synchronization is diflicult to achieve. Hence. the concept of a global ¢lodh
in a distributed system becomes mpossible which in turn makes obtaining the total
ordering of the system diflicult to achieve.

Partial ordering of events in a distributed system is possible to achieve and is also

very useful for debugging systems.

3.1.1 Related Work

The following related work are relevant to clocks in distributed systems that were
most influential to the implementation of (‘DI3.

Leslie Lamport [Lamport 78] introduces partial ordering, total ordering. and the
happens before relation which lead to the notion of logical clocks. He then proposes
an algorithm that determines a total ordering of the system. Simultaneity has not
been addressed correctly since simultancous events are forced to he ordered by his
algorithm. In other words. all events have an ordering with respect to cach other.

(. J. Fidge [Fidge] introduces Lamport's [Lampotrt 78] happens bhefore relation
followed by an algorithm to determine the partial order of the system. This dlocking,
system is an extension to Lamport’s logical clock and it uses vectors io tepresent the
local clock values of all processes. He later presents techniques for detecting tempaonal
errors in both centralized and distributed systems,

Meldal Sankar and Vera [MSV91] propose a more efficient vector elock algorithm
compared to that presented by . J. Fidge [Fidge]. Fidge's method states that each
clement within the vector represents a process whether or not 1t does any comrmun
cation. Meldal Sankar and Vera reduce the size of these vedors where cach element
in the vector represents oniy processes that actually do communicate. ‘The problem
with this method is that a dependency graph of messages must be created before haned
in order to calculate the minimal vedtor size. Also. dynamically allocating processes
require that a dependency graph be re-generated. Though this method saves space,

it adds more computational overhead.

31

Haban and Wegel [Haban-Weigel®8] propose a vector clock algorithm similar to
that of CL 00 Fidge [Fidge]. With this clocking mechanism. they provide definitions for
happens before and simnltancity and they show their definitions can be used within

a debugeging envitonment,

3.1.2 Vector Clock Algorithm

Our algorithm is taken from C.). Fidge [Fidge] and Haban and Weigel [Haban-Weigel88]
which are hoth extensions of Lamport [Lamport 78] logical clock system to provide
partial ordering. It is as follows:

o Let MAN P ROC be the maximum number or processes.

o Lvery process has a local clock that ticks after every occurrence of an event.

o Lach process, . has a local vector clock, VO, of size MAX PROC elements
where cach element of the vector refers to a local clock of a particular process
and s initially set to zero. Vi) refers to the local clock of P, and VC,[j).
where + £ . rvefers 1o the local clock of P,. For every occurrence of an event on
P, the local elock is updated.

Vel = VO + 1

o Ivery message sent by P is appended with the local vector clock V(.

o Fvery message received by Pouses the appended vector clock. Vi msy, 10
update its own vector clock with the following method.

For) = 1. MANPROC
iV ld] > VO]
”l(‘ll ‘(',[}] - "('1.1_77‘511[.]]

Figme 3.1 illustrates a distributed program with the vector clock algorithm.
As seen from the fligure, every occurrence of an event is associated with a unique
ock tich called a tonestamp. A timestamp can be defined as simply a snapshot of a

vector clock for a given event. Or
o I'S,.; =V (' at the occurrence of event k) on process P,
For example. referting to figure 3.1, event E1is has the timestamp [2 3 1],

32

P2 |
- | .
0 3 3
iR
El E3
PI_— %
0 0 0 0
TEIEN
o) (9 1 AERRN
E2 B IS
PO — b }

P2
Vector == Pl J
PO

Figure 3.1: Example of veetor dlock

Happens Before

The happens before velation was originally developed by Lamport [Lamport78] and is
as follows:
o il I, and I are events within the same process and £, happens before E, then
I'/‘, 4 I'/‘I.

e il I\ and L, are events from different processes where F, is the sending event
and I s the receiving event, then I, — .

ol Iy — I and I, — Iy then [, — [y,

Since o veetor clock algorithm was based on Lamports [Lamport 78] logical clock
system and the happens before relation. determining the order of events are done in
the following manner:

o Let event [, occur on process [, with timestamp 7'S,.r and E, occur on pro-

cess IPpowith timestamp TSy, Let ALAX PROC be the maximum number of
clements in the timestamp.

Assertion | lm k=1 MANDPROC,

WIS e[h] < TS, yk] then

I, — I,
Assertion 2 For b= 1.MANXPROC.

WIS, yld) < TS, e[k then
I, - I,

Now. referring back to figure 3.1, we cansay that E'l — F3. F1 - F4. E'l — E5.

3 > My and B2 — IS,

Stinultaneous

Since we are determining partial orders there may be a situation where Assertion 1
and Assertion 2 are not satisfied. Take for example E2 and E3in figure 3.1. According
to the diagram, it scems that E2 happened before E3. Without changing the diagram

in figure 3.1 we can redraw the diagtam as shown in figure 3.2 Now it scems that E3

31

P2 I
- | :
0 3 3
El E3
pI_——]
01 (o 0 o] To
o] : 3| |4
of |0 / 1 1RE
IS
PO I
0 0 0
0 0 S
0 ! 4
P2
Vector == Pl
PO

Figure 3.2: Vector Clock

happened before 12, Tn reality. perhaps E2 did happen hefore F3 o vise versa o 12

happencd exactly at the same time as E3. According to the vector cdock algorithm,

there is no wav of knowing their exact order. We define sunultancous velation as

the case when both assertion | and 2 fail. Simultancity refeis to a region where two

events may or may not have occurred at the same exact time. Figure 3.3 illnstrates

the notion.

3.1.3 Vector per Process Vs. Vector per Machine

One of the main disadvauntages of the vector clock algorithinis that for every process

there exist an element within the veetor. ecetor per process. As distiibuted programe

becomes very large. the vectors occnpy more space. Also since the vedtors are ap

35

// Region of Simultaneity

Figure 3.3: Simultancous Region

pended to messages. the messages themselves grow which induces a greater probe
cflect. Another disadvantage is dynamically allocating processes. For every process
dynamically allocated. all vectors must be re-adjusted in order to incorporate the new
process’s local clock. This again would induce a large probe effect since additional
overhead is needed.

One remedy to this disadvantage is to have every process maintain a vector in
which cach element represents a machine. vector per machine. In other words, each
physical machine witl maintain one local clock which all processes of that machine
will share. The size of the veetor is thus reduced sii.ce the number of machines are
usually less than the number of processes. Also dynamically allocating processes
simply involves having another process share the local clock of the machine.

The disadvantage of this solution is that it forces processes on the same machine
to he totally ordered. In other words, any two events from any two processes running
in parallel on the same machine will always be ordered. This solution would be
acceptable if the machine contains a single processing unit. Here, processes are really
running in pseudo-parallelism where events are being executed sequentially anyways.

But. on the other hand. if the machine is a multi-processor system, forcing total

36

Vectr Clack
Server

Network

Vector Clock

Vector Clock
Server

Server

Figure 3.4: Vector Clock Servers
ordering is unacceptable.

3.1.4 Vector Clock Server

With respect to CRB. we have built a veetor clock system that follows the vector
clock algorithm stated above. Sinece CDB’s environment consists of several single
processor machines. we adopted the veetor per machine solution. Fassentially, for
each machine. a vector clorck server is ercated where it maintains one veator for all
processes on the machine. Any occurrence of an event causes the process to poll the
corresponding vector clock server to either canse the machine’s local elock to tick o1

to get a timestamp of the event. Figine 3.0 iHustrates the vector clock servers.,

37

3.2 Local Debugger

Recall that a distributed program consists of a set of sequential programs communicat-
ing with cach other. If we extend this definition to encompass distributed debuggers,
we nay define a distributed debugger as a set of sequential debuggers communicating
with cach other. We call these sequential debuggers as local debuggers.

Lssentially, the job of a local debugger is to control the execution of one sequen-
tial program. Since these local debuggers are similar to sequential debuggers as we
commonly know , they perform the functions of halting and continuing execution,
breakpointing. stepping. examining data, obtaining state information. and altering
execution.

Local debuggers play a big role in a distributed debugger since it services the
development of all facilities such as distributed breakpoints. distributed stepping,
checkpoint and rollback. monitoring, and vector clocks.

Figure 3.5 illustrates local debuggers with respect to the overall CDB.
EE I

3.2.1 GDB and its Functionalities

The local debuggers in CDB were built from a GNU product called GDB which is a
sonrce level debugger for ("and ('++. Essentially, we have modified the GDB source
code while niaintaining all of its original functionalities. The features of the standard

GDB are as follows:

Breakpoints. Diflerent forms of breakpoints may be set. such as break at a specific
line number, break upon entry to a procedure, break at a particular address,
and break at an offset from the current line. Conditions may alsc be used
to augment the stated breakpoints, for exaniple, break at procedure X if its
arguments are less than 10, Also any breakpoint may be labelled as temporary
where they will he deleted after the first occurrence of the breakpoint has been

satisfied.

Stepping. Stepping involves advancing to the next line(s) of execution, advancing
the program until a selected “stack frame” returns. executing through an entire
procedure, advancing the program past a loop. or advancing the program to a
selected label, Tt also provides execution of one machine instruction at a time.

[, \

Locst {| Local
bhugger| Debugger
C1 C2

_ J

Network

Figure 3.5: Local Debuggers

39

4 N
Laocal Local
shupger] Pebugger

Bl B2

@

Stack Examination. This facility provides information on the stack frames where
selected frames may be analyzed. Information such as address of the frame.
addresses of the called by and the caller frames. arguments of the frame. and
local variables of the frame are provided.

Source File Examination. Source code from any file may be displayed at anytime.

Data Examination. Ixamination of the data involves displaying values of certain
variables, evaluating debugging expressions, and displaying arrays of specific
types. Also examination of the memory may be done without reference to the
program’s data types where registers, such as the program counter, and memory
contents may be obtained. GDB alse saves all data examined throughout the
debugging session.

Symbol Table Examination. Symbol table examination provides the information
of addresses of certain symbols stored, the type of symbols, the names and data
types of all defined functions or variables, and the names and data types of all
functions or whose names match a given regular expression.

Altering Execution. This facility allows modification to existing program vari-
ables. modification to a specific memory location. and continuing the execution
from a different address.

3.2.2 Mach’s Extensions to GDB

Originally. GDB is designed to debug single threaded Unix applications with no ex-
tension for multi-threaded tasks that are commonly found in Mach. For this reason,
Caswell and Black [Caswell-Black89] provided an implementation of a debugger that
supports multiple threads. They modified GDB version 3.4 for the support. With
the modified version. the user may choose any thread to analyze during a debugging

SOSSION.

3.2.3 Our Extensions to GDB

Since Mach's version of GDI suits best the Mach environment for tasks and threads,
our extensions were done on this version. Basically, we kept all functionalities of GDB
and converted it to a local debugger where it can be executed and be controlled from

a remote site

10

Network

/—\

Msg snd : request

Local
Local bugger
Pebugger GDR

Controller /

Msg rev :reply

Figure 3.6: Our Extension to GiDB

Basically, we removed the user interface of GDB and replaced it with Mach 1PC
primitives. All input commands are replaced by a mesaage 1eceive anh all outpnt
commands are replaced by message sends. This will enable the contiol of GDB to he
situated at any site and a GDB command would consist of 1equest micssage to the
local debugger and its reply would be received in the retuming message. Fignre 36

illustrates the our extension to GDEB.

Chapter 4

Distributed Breakpoints

A distibuted bicakpownt can be viewed as a collection of sequential or local break-
points. It is different from sequential breakpoints in specification. detection. and

haltiug the underlving distributed program.

New Dimensions in Distributed Breakpoints

sice we are dealing with several concurtent processes. keeping track of the detailed
aspects of all processes becomes an unmanageable task for the user. The user may
not even hnow all the detailed aspects to define a precise breakpoint. However. the
user will have a particular view which may be at a higher level of abstraction than the
program’s code space. For example. the user may have a view point with respect to
the sy ndironization space. it is this view that will help specify a breakpoint that will

be useful in debugping. Once the user gains more knowledge about the program. a

mote detailed hreakpoint may be constructed. We define fine breakpoints to be those
breakpoints that speafy more details about the program and coarse breakpoints to
be breahpoints that tahe a higher level abstracted view of the svstem.

Another type ol breakpoint is called conditional breakpoints. The program is
halted at some point in its execution if the specified condition is satisfied. In sequen-
tral sxystems. conditional breakpoints may be constructed as follows: “Break when
vartable X« 1070 Distributed programs. on the other hand. introduce an addi-

tional dimension whete conditions may span across multiple processes. For example.

“break when X< 10 in process PLoand Y < 9in process P20 This breakpomnt can be
viewed as two sequential (conditional) breakpoints with an added 1elation (condition)
between them. This relation may be temporal or non temporal

In sequential programs, a breakpoint is associated with only one process Dis
tributed breakpoints. do not have this imitation They may be associated with some
or all of the processes. Then a question arises: What protocol should the processes,
not associated with the breakpoint, follow when the breakpoint is detected™” Shonld
they continue to run or stop? Protocols outlined in this chapter ate the causal break-
point [Fowler-Zwaen90]. marimal breakpomt [ILF. Li]. and the imnecdiale breakpoomt

In summary. the distributed breakpoint is a subproblem in distributed debugging,
where it introduces four major new dimensions of specification, protocol for termina
tion. halting. and managing the vast amount of information generated. The rescarch
done by various groups in the area of distributed breakpoints revolve around the
above four issues. In this thesis we address the first three dimensions where the ioith

needs further study.

Related Work

Miller and Choi [Miller-ChoiSS-2) present a specification method for distiibuted hreak
points and algorithms for its detection and halting Their bieakpoint specification is
made up of semple predicates which are ty pical predicates used insequential debugpers
Simple predicates form the basis for other predicates called dispunetioc, conyunetiod,
and lenkad. A disjunctive predicate is satisfied when one or more of its sunple pred
icates occur. A conjunctive predicate is satisfied when all of its simple predicates
occur. Linked predicates speciiv an ordering hetween disjunetive predicates and s
satisfied when this odering occurs, ‘This spedification method is sufficient if the user
is only interested in breakpoints based on the happens before relation. What ths
method lacks is dealing with aspeets of simultancous predicates. Since linked predi
cates comprise simple and disjunctive predicates. Miller and Choi present o detection
algorithm based on linked predicates, T heir algorithn is as follo.os “The hinked pred

icate starts on the process where the fust simple predicate is expected to oconr. Alter

14

its occnrrence, the linked predicate is sent to the next process where the next sim-
ple predicate will oceur. This pattern continues until the last simple predicate has
ocomied where the systen s halted. This algorithm provides a sufficient means of
detecting a linked predicate bhut lacks in halting the system soon enough to be mean-
imglul. Once a hinked predicate is detected. the processes are halted at a state past
the specification point.

Bates and Wileden [Bates-Wileden82] describe an Event Definition Language,
DL, for specifying important events in monitoring. Essentially, it provides users
with a means of clustering and filtering a system’s event stream in order to obtain a
behavioral abstraction. KDL defines a set of primitive events that characterizes the
lowest level events possible within the system. These events are clustered together to
construct higher Tevel events which again may be clustered to form even higher level
cevents. As mote events get clustered. the more detailed the specification becomes.
Fach defined event may also be qualified by placing conditions on certain variables
associated with the event. A problem with this form of specification is the potentially
vast amount of event variables. As the EDL specification grows large. the amount
ol event variables grows very large which may become unmanageable for the user.
Though DL is designed for monitoring, its semantics fit very well for breakpoint
specilication,

Fowler and Zwanepoel [Fowler-Zawaen90] present an algorithm for achieving causal
breakpoints, They assume that a breakpoint specification consists of a set of inde-
pendent local breakpoints on a set of processes. This is a very simple view of a break-
point since it does not incorporate dependencies between local breakpoints. Their
algorithm lets cach process containing a local breakpoint advance until it reaches the
breakpoint. All processes without local breakpoint advance to the earlicst state which
permits the other process to reach their local breakpoint. This algorithm assumes
that some previous knowledge of all events exist such that the earliest state may be
calculated The algorithm also induces a large probe effect since all processes must
verily for every event whether it should halt.,

Haban and Weigel [Haban-WeigelS3] implemented a debugging system based on

il

breakpoints which consists of a special debugging hardware environment, This env

ronment has two separate networks. one of which is dedicated for debugging purposes
whereas the other is for the application. Ulius eliminates the probe effect within the
main application. T'hey propose a miethod of specifying distributed breakpoints in o
hierarchical format that is similar to EDL. of Bates and Wileden [Bates-Wiledens2).
The specification method provides a means to qualify primitive predicates but lacks in
qualifying an event to more finer detail. For example, the se nd prinutive can only he
qualified by its portID. Further qualifiers such as message contents, message fength,
message type, ete. would be useful to further refine the event. Haban and Weigel also
propose a detection and halting algorithm is as follows : Every process maintains a
copy of the distributed breakpoint. Fvery occurrence of a primitive predicate results
in a broadcast message sent to all other process to indicate that the event occurred.
Eventually. as all primitive predicates occur, one of the processes will deteet that the
distributed breakpoint has been reached and the systemis halted. This detection and
halting algorithm is distributed which does not casily map to the typical centralized
debugging model of a user performing the debugging at one site. The 1esearch of
Haban and Weigel has been the most influential for CHBB and is the dosest work to

our implementation.

4.1 PDL : Predicate Definition Language

As mentioned above. breakpoint specification is an issue that must he well addressed,
It should be flexible enough so that different types of breakpoints may be formed
as well as they be meaningful to the user. With this in mind, we propose PDIL,
Predicate Definition Language which is a breakpoint specification language. "To put
PDL into context with the needs of breakpoint specifications. we will fitst deseribe

the relationship between the user and the breakpoint.

4.1.1 The User and the Breakpoint Relation

‘The breakpoint specification and data examination are two activities performed by
a nser who is debugging a program. The user may perform these two activities
altermatingly and repeatedly. The nser first starts off with a broad idea of where
the bug may ocenr and sets breakpoints at those deduced areas. The system halts
at these arcas and displays redevant data, The user examines them to obtain more
knowledge about the program. Then, new breakpoints can be re-inserted based on
this knowledge. Thus a breakpoint can serve as a coarse comb to narrow down to the
region of the anticipated bug.

In eyelic debugging. the two crucial parts are the definition of the breakpoint and
the examination of program test results since these are the tools that the user will
use to locate the bug. Ultimately, it is left to the user to use these tools effectively
in order to locate the bug. Hence, debugging tools such as breakpoints assist a user

in finding a bug but provides no guarantee that the bug will be found.

What the User Knows? Before attempting to specify a breakpoint in a dis-
tiibuted systen it should be clear what the user is expected to know about the

program hefore execution. In general. the user is assumed to know:

. The distributed program structure and behaviour of the program.
2. The imports and exports of each module.

3. Tovariants.

4. What are communicated between processes.

5. Port structures.

6. Data structures.

. Critical regions.

4.1.2 Types of Predicates

When a breakpoint is set. the debugger monitors the running program for the break-

point’s occurrence. A breakpoint is considered as a predicate as it evaluates to “true

16

or false” depending on the program state. The term breahpoint and predicate are
used svnonymously hence forth.

A predicate is composed of promtive predicate s, evaluation methods of which ate
known a priori to the system. .\ composed predicate is called a global predicate. Fou
this thesis. the composition is represented in form of a binary tree. Predicates <loser
to the root of this tree encapsulate more information about the system whereas pred

icates closer to the leaf nodes which are primitive predicates specify less information.

Primitive Predicates

Essentially. primitive predicates describe code level system hehavior such as an as
signment to a variable. entry to a procedure. ete. At this level, one can define very
many types of primitive predicates. But, not all of them may be nseful within the
context of definiug a global predicate. One must keep in mind that the set of selected
primitive predicates must he useful for constructing meaniugful global predicates.
The size of the primitive predicate set is another factor that must be considered. A
very large set puts a burden on the user to learn more about theni, A very small set
may b~ casier to learn and manage but may not he adequate. One must must weigh
these pros and cons and by experience come up with a useful set.

Based on what the user knows, section .1.1, we propose a first draft of fourteen
primitive predicates which may expand o1 contract based on further research and ex
perience. These predicates may be subdivided into three categories based on message

transmission. internal state, and program code.

Type 1 (Based on Message Transmission) : send. receive. port allocate, port

set allocate. port deallocate. port set deallocate. port set add, port set remove,

Type 2 (Based on Internal State of Process) : assignment to vatiable, process

start. process stop.

Type 3 (Based on the Code Level) : function/procedureenter function/procedme

extt. line number exeention,

Global Predicate P

Global Predicate X Receive (from process Q)

AN

Send (from process Y) Assignment to var. W
(at process Z)

Figure 1.1: Global Predicate

Global Predicates

A global predicate is a tree of several predicates, the leaf nodes of which are primitive
predicates, For example, see figure 1. The predicate X is composed of primitive
predicates send (from process Y) and assignment to variable W (at process Z). Au-
other example would be global predicate P is composed of global predicate X and
primitive predicate receive (at process Q). One may intuitively feel that the higher
the predicate tree. the more knowledge the user is required to have (in order to con-
struct the tree), and the less output data will be produced by the debugger. We call
this type of predicate as a fine grain predicate. Also. a flatter tree requires less user

knowledge and results in more output data and it is called a coarse grain predicate.

4.1.3 Relation Amongst Predicates

Global predicates are formed from other predicates. primitive or global, by combining
them using relations. These relations can be divided into two groups: temporal
and non-temporal. Temporal relations involve the happens before and simultaneous

relations. Non-temporal relations involve alternation. and conjunction.

Temporal Relations

In a sequential system. temporal relations are clear since the execution of a prograi
is limited to (conceptually) one processor where the order of prinntive predicates can
easily be determined. On the other hand, determining order of prinutive predicates
for a distributed system is not as trivial since execution of a program is dispersed
amongst many processors. We can mahe use of Lamport’s [Lamport 78] happens

before relation that defines causal relations between predicates.

Happens Before Relation

We denote the happens before relation with a right arrow:
global predicate X := predicate A — predicate B

where predicate A and B can either be a primitive or a global predicates. This
relation implies that global predicate X is true only if predicate A is true before
predicate B becomes true.

Predicate A and predicate I3 both have timestamps indicating when they became
true. In the case when global predicate X evaluates to true, it will inherit the times-
tamp of predicate B since it was the last predicate that made X tiue. Figure 4.2

illustrates this.

Simultaneous Relation

Since exact global time is impossible to obtain in a distributed system, simultaneous
relation amongst predicates adopts the definition stated in section 3.1.2. Predicates
are considered simultaneous if there are no causal (or temporal) relation hetween
them. Take for example figure 4.3 where:

global predicate X := predicate A && predicate B.
In realitv. A and B may not have oceurred simultanconsly. But since A and B have

19

!
A(tl)

Global predicate X := predicate A —> predicate B

Global predicate X will inherit timestamp t2
Figure 4.2: Time Stamp Inherit

no causal relation, i.e., their timestamps cannot indicate whether one came before
the other, A and B are considered simultaneous. If global predicate X evaluates to
true. it will inherit the last predicate that caused X to become true, which could be

A or B.

4.1.4 Non-Temporal Relations

Two non-temporal relations used in PDL, as of now, are conjunction and alternation.

Conjunctive Relation

The conjunctive relation is denoted by a A. For example,

Global predicate X := predicate A A predicate B

where predicate A and B can either be a primitive or global predicate. Global
predicate X will evaluate to true if both predicate A and predicate B evaluate to true
regardless of their causality.

The global predicate X will inherit the timestamp of the last predicate that caused

X to become {rue.

B(12)

Global predicate X := predicate A && predicate B

Figure 4.3: Simultancous Predicate
Alternative Relation

The alternative relation describes the occurrence of either one or both predicates

evaluating to true. For example.
Global predicate X := predicate A | preddicate B

where predicate A and B can either be a primitive or global predicate. Global predi
cate X will evaluate to true if either A or B, or both. evaluate to true.
Global predicate X will inherit the timestamp of the first predicate that cansed X

to hecome true.

4.1.5 Filtering Facility

Filtering is a facility provided as part of PDL. The objective is to reduce the ontpuat
data generated that has to be digested by the user. Filtering is accomplished by qual
ifving the primitive predicates. An unqualified primitive predicate has a tendancy to

produce a large amount of output. Take for example the PDL predicate

ol

predicate X o= send

which means that nser defined predicate X consists of the occurrence of primitive
predicate send. ‘This may not be detailed enough because for every send during the
program cxecution the predicate will evaluate to true. What a user needs is a way
to filter ont unwanted sends. PDL provides this filtering facility where occurrences
of predicates can further be refined. For example, a more meaningful PDL predicate

(()Hl(l])(’

predicate X = send
condition : sendliength < 10

send.task_name == PJ

This states that predicate X consists of the occurrence of primitive predicate send
from process Pl and whose message length is less than 10.

Hence, for each primitive predicate, there are associated variables that are acces-
sible by the user such as send.length and send.task_name.

In PDL. cach primitive predicate is considered an object, much like an object in
the objeet oriented paradigm. Kach object encapsulates a set of variables which is
updated every time the predicate evaluates to true and the values are accessible to
nsers. For example, "send™ has its associated variables of task name, destination task,
destination port, message contents, message length, message type. message id, and
message return port. When the send primitive occurs, all of the variables are updated
and aceessible through the notation send.a, where a is the name of the variable.

The following is a list of variables that each primitive predicate encapsulates.

Send: task name. destination task, destination port, message contents, message

length, message type. message id. message return port.

Receive: task name, source task. message contents, message length, message type.

message id. message return port.,

Port allocate, Port deallocate, Port set allocate, and Port set deallocate:

task name. port name.

Port set add, and Port set remove: task name, set name, port name,

Assignment to variable: task name, value of variable, encapsulating procedure/function,

Process start, and Process stop: task name. pid. parent pid. processor number.

Function/Procedure enter and exit: task name. passed parameters, the calling,

function/procedure. return value.

Line number execution: task name, source code at that line number.

PDL provides a filtering facility for the primitive predicates so that "meaningful”

breakpoint specification of varying granularity may be created by the user.

4.2 Detection and Halting

Once the breakpoint specification using PDL. is defined. the task remains to detect

for its occurrence and halt the system.

4.2.1 Types of Halting

As mentioned earlier there are three types of halting protocols: Cansal breakpoint,
maximal breakpoint. and immediate breakpoint. Briefly, all three protocols require
that all processes participating in the global predicate are required to halt at the
location of the corresponding primitive predicates. And, the remaining processes, if

any, (non-breakpoint processes) must halt at the location determined by the protocol.

Causal Breakpoint

To obtain a causal breakpoint, non-breakpoint processes are halted at the earliest
point in their execution that will permit the breakpoint to be achieved. Consieler

figure 4.1 where the breakpoint is marked in processes P1oand P2 (square hoxes).

03

PO

Pl B

P2 -

P3

Figure -1.-1: Distributed Breakpoint

The causal breakpoint is shown in figure 1.5 by the solid black line. Processes PO and
P33 are halted after the respective send command which Enabled P1 and P2 to reach

their respective breakpoints.

Maximal Breakpoint

Maximal breakpoints are the opposite of the causal breakpoint. All processes not
within the breakpoint are halted at the latest point possible in their execution. Halt-
ing may detive from one of two scenarios. The first is from a receive statement. If
a process 1s waiting for a message from a process that is already halted due to the
breakpoint. then this process is halted at the receive statement. The second scenario
is if a process has no further dependencies, i.e.. waiting for a message. from the pro-
cesees halted due to the breakpoint. then the process may execute until termination.

For the breakpoint in figure 140 the maximal breakpoint is illustrated in figure 4.6.

Immediate Breakpoint

A causal breakpoint shows the earliest point of execution and the maximal breakpoint

<hows the tatest It may be desired that all processes not within the breakpoint be

S

v /
. X P\
VRN \\

s

Figure 1.5: (lausal Breakpoint

A

TN J
S, \f/ J
., =

Figure 1.6: Maximal Breakpoimt

ot
-t

PO

Pl

. s \
N),/

Figure 1.7 Immediate Bireakpoint

halted whenever the bhieakpomt has been detected. This is called an imimediate
breahpoint Hereo the exeention of the non-breakpoint processes may halt anvwhere
~vithin the area denoted by the corresponding causal and maximal breakpoint cuts.
Fimne 1.7 shows the areal shaded rectangles. of where PO and '3 may halt with

tespect to the original breakpoint in figure 4.

4.2.2 Difficulties in Obtaining these Cuts

Ol ali theseo the canusal breakpoint is the most difficnlt to obtain. The difficulty
atises hecanse a non breakpoint process is required to have knowledge of the future.
In fiewe 130 PO at point X should have knowledge that Y (which follows X)) will
cause a breakpoint and thus PO should stop right after X We call this halt point
the carliest state Exenf this future knowledge were available. there would still be
a consderable amount of probe effeet sinee all non-breakpoint processes are required
to petform some verification at every event occurrence. With the record and replay
approach. tuture knowledge is achievable

Fhe masimal and immediate breakpoints are casier to obtain since no further
knowledee s required

One pnoblen that all thiee protocols exhibitis when a breakpoint predicate eval-

ah

PO | —

Pl \ |

B

Figure L8 Global predicate ;== A » B

uates to false. Up until now we've talked about setting, detecting, and halting break
points assuming that the breakpoints are reachable. In a realistic environment, an
impossible o1 unattainable breakpoint may have been speafied. Constder figue 18,

where the global predicate is defincd as

Global predicate := A — B,

Here we are looking for the occurrence of prinntive predicate A tollowed by primutive
predicate B. Sinee there is no way to know it A or B will ocanr, there is no guarantee
that the breakpoint will be reached. Therefore. for any occurtence of a primitive pred
icate, the cortesponding local process should not be halted, For example, refering
back to fignre 1.8, let primitive predicate A ocomn finst - Since there is no guarantee
that B will occur. A will be permitted to executer Onee B oconrs, the global predicate
is satisfied and the system is halted, The resualt os shown i figure 19

This cut is neither causal. maximal. not immediate One mav even cassify ths
cut as meaningless sinee process PO has advanced past point A and has potentially
lost any state information at the desited location Stepping one PO now start= ot o
new unknown location which may again be meaningless

A solution to this problem would be to use the cheekpoint and rollback mmechanian

Once we know that a global predicate s obtainable, we canrollbacd, the enecution and

PO !,\; _____________________________]
Pl J./
B
cut

Figure 1.9 A s unaware of B's occurrence

re execute under the assumption that all primitive predicates will occur in the same
way - Dreakpoint processes may then halt at respective locations to achieve causal,
maximal. ot immediate cuts,

An alternate solution which avoids rollback is implemented in CDB. It records
1elevant state mformation at the occurrence of every primitive event. For example,
m hgme 190 Since there is no guarantee that B will oceur. state information at point
A will be recorded Henceo when B does occur and the system is halted, we have
meamngful data pertaic ng to the occurrence of A. Similarly. we can extend this
soivcon by cecording a trace from t' s primitive predicate. AL up to the halt point.
‘This method does not allow us to obtain causal. maximal. or immediate cuts. but

stull provides meaningful information when the system does halt.

4.2.3 Detection/Halting Algorithm

I he following algorithins are for detection and halting global predicates within (DB,
Smee plobal predicates are not guaranteed to occur and there is no checkpoint and
tollback unit tmplemented. we do not provide causal, maximal. nor immediate forms
ol cats These ate m fact considered as future extensions after the checkpoint and
tollback unit has been built. Instead. we adopt the alternate solution of recording
state mformation at the occurrence of the primitive predicates.

For every node within the breakpoint specification tree. a detection and halting

task is created. This task manages all breakpoint information within the node. It
communicates with other nodes to find the global predicate. Thete are two separate
algorithms. called “operator™ and “leaf™. 1f the node s a non leaf node, then the
task adopts the operator algorithm. I it 15 a leat nodeo then the leal algorithn
is used. Since global predicates are constructed at the debugying site, all operaton
algorithms are expected to execute at this site. But. since primitive predicates are
particular to processes. the leaf algorithms execute on the same sites as the processes

Communication between operator and leal atgorithms is through message passing,

Operator algorithm

loop
if (child is teaf node) then
receive message {rom child
else (child is non-leaf node)
sleep until waken by child
cvaluate operator
iH(NOT ROOT NODE) then
il (Operator Satisfied) then
record timestamp of child
store timestamp and event type for parent (operator) node
wahe parent
sleep until waken and notified by parent
if (Signal == Continue) then
if (chald s leaf node) then
send Continue to child
else (child is non-leal node)
wake and notify ehild with Continue signal
else {Signal '= Continne)
i (child s leal nodey then

send Break to child

)}

clse (child is non-leaf node)
wake and notify child with Break signal
clse (Operator Not Satisfied)
i (childis Teaf nodey then
send Continue to child
else (child is non-leaf node)
wake and notify child with Continue signal
clse (ROOT NODE)
if (Operator Satified) then
il (child is leaf node) then
send Break to child
send Break to all leafl nodes
else (child is non-leaf node)
wake and notify child with Break signal
send Break to all leal nodes
clse (Operator Not Satisfied)
il (¢hild s feaf node) then
send Continue to child
clse (child is non-leaf node)
wake and notify child with Continue signal

(‘Il(”(mp

6l

Leaf Algorithm

loop
if (primitive predicate occurred) then
Record timestamp
Record state information of this predicate
Send timestamp and event type to parent {operator) node
Receive message from parent
if (Message == Continue) then
continue task execution
return to main loop
else (Message '= Continue)
halt task execution
if (Break signal received from ROOT) then
halt task execution

endloop

4.3 Comparison with Haban and Weigel

Our solutions and that of Haban and Weigel [Haban-WeipelS8] both view a distiibuted
breakpoint as a hierarchical tree. But. our detection and halting algorithm differ:,
from their algorithin. Essentially their detection and halting algorithm is as lollows
Every process has a local debugger attached to it in which a copy of the distubuted
breakpoint is maintained. For every occurrence of a primitive predicate, it s marked
within the local debugger and a message is broadcasted to all the local debngpers
to notify of its occurrence. Eventually, the last primitive predicate will oconr which
will cause a halt signal to be broadeasted. Let us compare the inessage complexity
of these two algonthms.

In both cases. let the distnbuted program consist of N tasks and the distibuted

breakpoint contain M primitive predicates.

01l

Haban and Weigel

o Qcantrence of any one primitive predicate will send N-1 messages

The total number of messages is @ M(N = 1)
~ MN
if N> 1

Our algorithm
o Qcenrrence of any one primitive predicate will send 2 messages

(node to central site and acknowledge back)

o Occurrence of last primitive predicate will send N-1 messages

All primitive predicates, except for e last predicate will generate
200 — 1) messages.

I he last primitive predicate will generate (N ~ 1) messages

Hence, the total number of messages is :2(A = 1)+ (N — 1)
~2M+ N
HfAM>land N > 1

Haban and Weigel's method generates many messages which may cause a large
probe effect. But, sinee their system has a dedicated network for debugging messages
only, their algorithm will induce virtually no probe effect. Our system, presently.
consists of a single network where both application and debugging messages are sent.
The probe eflcet in this system is an important factor which required us to design a
detection and halting algorithm that has less message overhead.

Fhis comparison is really not fair since their algorithm is decentralized whereas

62

ours is centralized. The rationale for centralized system s derived from the fact that
the user performing the debugging has to sit ai one central site; nnless computer

supported cooperative debugging 15 done by many users working togethe

Chapter 5

Implementation Details

This chapter desceribes the major issues of the implementation and presents the design
and functionality of cach module. The implementation consists of the following four
modules: veetor clock. local debugger. breakpoint, and user interface. They have
been orgamzed in a layered format, see figure 5.1, There are two layers where the
lower layer contains the veetor clock and the local debugger modules and the higher
layer eontains the breakpoint and the user interface modules. The lower layer has
been designed i a generie way so that distributed debuggers. like CDB, may be built

nsing them. The higher faver contains more CDB specific modules.

5.1 Lower Layer

The lower re-usable layer consists of a vector clock server which maintains a dis-
tributed global cloch and a local debugger which controls the execution of the local
process, Together, these modules could support the implementation of breakpoints.
stepping, monitoring. checkpoint «and rollback, user interface. and other distributed

processing coneepts.

5.1.1 Vector Clock Server

Fhe vector cloek server is a malti-threaded server that is designed to be invoked on

every machine. The executable is named reef_screer,

Higher Layer C coB >

Lower Layer Local Debugger Vector Clock Server

Mach

Figure 5.1: Lavered Structure
Data Structures

The vector clock server maintains the following data structures:

Vector The vectoris an array of five integers, one for cach machine in onr distributed
system. In our case the five machines are: jupiter. curopa, carme, thebe, and

ananke.

Port There is only one port allocated to the server to which all requests are directed
to. While invoking the vector clock server, the port name is required to he given

as a parameter. i.e.. vectserver < porl _name >,

Operation of the Vector Clock Server

There are four types of requests that can he made to the vector clock server and they
are: initialize. terminate. increment. and 1eceive, Initialization causes all elements of
the vector to be set to zero and termination canses the server to tetminate Tncrement
causes appropriate clement in the vector to be incremented and receive canses the
current vector to be updated with the received vector. "The algonthm used i as

follows:

Vector Clock Server Algorithm

Receive next request from port
If (request = initialize) then
Fori=11t05)

\'('('l()l[i] =0

If (request = 1('1'mindt(') then

terminate server

If (request = inerement) then
machine = current host machine
If (machine = jupiter) then vector[l] = vector[l] + 1
I (machine = curopa) then vector[2] = vector[2] + 1
If (machine = carme) then vector[3] = vector[3] + 1
If (machine = thebe) then vector[1] = vector[4] + 1
Il {machine = ananke) then vector[3] = vector[3] + |

send veetor to back requester

If (request = receive) then
machine = current host machine
If (machine = jupiter) then vector[l] = vector(l] + 1
[(machine = europa) then vector[2] = vector[2] + 1
[f (machine = carme) then vector[3] = vector[3] + 1
Il (machine = thebe) then vector[] = vector[d] + |
I (machine = ananke) then veetor[d] = vector[5] + 1
Fori=11tod
Il (received vectorfi] > vectorli]) then
vector(i] = received vector|i]

send vector to back requester

66

Interface to the Vector Clock Server

All interactions with the server is done throngh Mach 1PC. Hence, to properly com

municate with the server. all messages must have the following Mach data structure:

struct msgstruct{
msg_headert h:
msg_type_t t:

long inline.datal6):

where they should be initialized to

h.misglocal_port = thread_reply():
h.msgremote_port = poit of sever,
h.msgsize = sizeof(struct msg struct);
humsgid = 0x12315678:

homsgtype = MSG_TYPE_NORMAL:

h.msgsimple = TRUL;

t.msgtype_name = MSGTYPEINTEGER 32:
t.msg typesize = 32;

t.ansgtyvpenumber = 6:

t.msgtypednline = TRUE;
t.msgtypedongform = FALSE:

t.msgtypedeallocate = FALST,

The first element. inline datal0], should be set to -1 for initialize 1equest. 2 o
terminate request. -3 for increment request. and -4 {or 1eceive request,

For initialize and terminate requests. a Mach “message send™ js used 1o send the
request. For increment and receive requests. a Mach “message 1pe”™ s nsed 1o send

the request and 1o receive the current veetor clock values,

67

Determining Partial Order of Distributed Program

The vector elock server alone is not sufficient to implement the vector clock algorithm
in section 3.1, In order to determine the partial ordering between events within a
distributed program, the user’s code must be augmented for interaction with the
veetor elock server, see figure 5.2. The vector clock server and the augmented user
code will implement the vector clock algorithm.

To augment the user code, the user must first include the header file debug.h
at the top of the code. This will allocate memory within the user’s address space
which will be used during interaction with the vector clock server. The header file
will also redefine message send. receive. and rpe such that they will interact with the
appropriate parts of the vector clock server. The user is also required to include an
additional constant. DEBUG_MSG, within all message structures so that the vector
clock values may be appended to outgoing messages. All message structures should

he written as:

struct simpomsg_struct {
misg _header_t h:

DEBLU G ASG

The user code is also required to be compiled with an additional library ddebug.
Invoking the execeutable will result in the user’s program transparently interacting

with the vector clock servers.,

Cxample of Vector Clock Server Interface

For the user program to interact with a vector clock server. we developed a utility
program called serverutel EFssentially it is a program that sends either an initialize

ol tetnnnate message to a specihied server. Its semantics are

6N

~
,’ Node Y| s QT Node Z
V4 L
V4 - -~
/ ~q
7 -
’ Node Y o
‘\
Vector Clock
Server

/ \

Augmented
Portion

-------- L X s X N1

User Code

User Code

Figure 5.2: Vector Clock Server with angmented nser code

6H9

T

coserunll - AN ERMINATE o« nameofscrverport >

5.1.2 Local Debugger

The docal debuegper i« based on GDHB ver<ion 3.1 We had modified GDB <o that all
the imput and ontput of GHEB nonnally obtained from an interactive user are now

done through Mach IPC The excontable is named edbgdb

Data Structures

Port "There is ouly one port allocated to the Jocal debugger where all requests are
directed to Upon invoking the local debugger. the port name is required to be

ginen as a parameter, e edbgdh < portoname >.

Operation of the Local Debugger

See hgure 53 Lssntially the operation of the local debugger is same as that of to
GDB except that its reguests are tahen from incoming messages and its output is

sent as an outeoing 1eply message. The overall algorithm is simples:

l()u[)
FeCOe next message
patse message to form a GDB commend
exeaute GDB comimand
pachage GDI ontput into an outgoing message
send outgomg, message to requester

(‘l“l]()()])

Interface to the Local Debugger
Mrequests sent o the Tocal debugger have the followine Mach structure,

stract stmp s sid struct

e header 14

—_

CDBGDB

! outgoing replies
Modification

incoming requests

GDB
version 3.4

Figure 5.3: GDB with onrinodilication

msg_type_t t.
chat inline_data[125]:

and should be initialized as.

h.nsg Jocal_port = myxeply port:

homsg remoteport = local _debugger_port:
h.msgsize = sizeof(struet simponsgsnd struct).
homsglid = 0x1231567%:

Imsg ty pe = MSGUTYPENORMAL

honsgsimple = TRUL:

t.ansgtvpename = MSGUTYPE CHAR:
tansgiyvpesi/e = N

t.nse ty penumber = [2x8,

tansg tspeanhne = "TRUE:
tansg type longform -2 FALSE.

tansg tvpedeallocate = FALSE:

e dataf1.28]1s a string that contains any vahid GDB command specified in [Stallimang9].
The teply message from the local debugger is expected to be buffered in the

following data structure:

sttt simp nsg revostrict
msg header t h.
msg_tvpet t:
char inline datall021]:

b

inlene _dataf102]] contains the output to cotresponding request.

5.2 Higher Layer

I be higher Tayer consists of two modules of brealipoint and user interface. Following
the general design philosophy of CDBL we have organized these two modules in a
modular foriat. see figure 5.1 Portions within these modules may be replaced so
that new breahpomt or user interface related work may be rapidly supplemented.
For example, detection and halting units may be replaced such that new detection
and halting routines may be studied. This will encourage the re-usability of these
modules in the future. Referving to figure H.4. all units within the breakpoint module.
specification. detection, and halting. have been implemented. Also. the first two
modules. graphical representation of processes and /0 for breakpoint module, have

heen implemented for the user interface module

5.2.1 Breakpoint Module

Fhe hreahpomt module is multi-threaded where it relies on both the vector clock and

the Tocal debueecers.,

to

Breakpoint Module User Interface Module

Graphical
Representation
of Processes

Specification Unit

1O for Breakpoint
Module

Detection Unit

VO for Checkpoint
and Rollback
Module

/O for Stepping
Modulc

J/O for Record and
Replay Module

/O for Monitor
Module

Figure 5.0 Modular Design of Bieahpoint and User Tnterface Modules

Data Structures

The hreakpoint modile niamtains the following data structures:

Breakpoint Tree Given a PDL specification. the breakpoint module generates a
data stincture that 1epresents the breakpoint. This data structure closely maps
to the hierarchical stineture ol a PDIL specification where it is built as a bi-
naty tree lach node either represents an operator. such as — and &4, or
a primitive predicate and has a vector clock value that will indicate the time
of 1ts occnrrence. All leal nodes maintain a linked list of state information of
the given primitive predicate (ie.. when a primitive predicate occurs) and state

information mayv be recorded in the linked list.

Trace During tun-time, as the breakpoint module attempts to detect the given PDL
specihication, a data structure is dyvnamically generated and stored that reflects
the events that occurred. For every event detected by this module, whether it
be part of the PDL specification or not. a node is created and added to the data
structme, his data stracture will be the basis for a graphical representation

ol all events that occurred whichis generated by the user interface module.
Operations of the Breakpoint Module
Basicallve the breahpoint module performs two operations of breakpoint detection
and huilding the trace data structare,
Breakpoint Detection Algorithm

The first step is to generate the breakpoint tree. This involves using the sub-

aleonthms, “operator” and “leal” . deseribed in chapter 4. The algorithm is as follows:

Read PP Specification
Generate breakpoint tiee
For every node withim the tiee do

[l (node = operaton) then

Create a thread that will maintain the node and
follow the operator algotithm m section 123
cndif
If (node = leaf) then
Create a thread that will maintain the node and

follow the leal algorithm in section 12,3

lnvoke a local debugger whnch will assist leal algorithm.
endfor

Wait {or signal to commence deteetion of breakpoint.

Building Trace Data Structure:

The second operation is the generation of the trace data stincture which proceeds as

follows:

Set up all local debuggers to deteet any prinntive predicate
Loop
Receive message upon occurtence of any primitive predicate
('reate node representing the primitive predicate and add
it to the trace data structure,
Mark node if primitive predicate is part of PDL spedfication.

cndloop

Interface to the Breakpoint Module

ThLo input is a PDL specification. As of now. this spedification is i the forny of an
ASCI file and not in true form. Fach linem the file represents a node watton the PDI.
hierarchy and has a nmuanber assigned toit, T hese numbers deternmme the placernent of
each node. i.e.. which nodes are parents of which other nodes. For example refernng,

1o figure 5.5, this simple PD1L specification would look fike

1 function name_ty pe <-

I node type operator

Vindicator 1oof

[l
P11
1]

Pinetion name type &&
node type operator

imdicator left

function_nametype DUMMYg
node type leal

indicator 1ight

~ T1af llill(‘“«'llll(‘ carme

directory /mitech /home/gead/chiristy /Machexamples /IPC
tashname cquad
patameters

state list

function_name type <<
node type operator

indicator left

P12 function_name_tvpe DUNMNMYe

[12 node_type leal

[12 indicator right

112 machinename ananhe

L2 divectory /mitech /home/grad/christy /Machexamples /1P C

L2 taskname aguad

12 patameters 2

)

112 state list

iy

F funcion name ty pe DUNMMYa

6

T node_type leaf

1111 indicator left

1111 machinename jupiter

L1 divectory /mitech/homeZarad/chinsty " Machesamples/ 1P
1111 taskname jquad

1111 parameters |

1111 state list

1112 function name type DUNIMY D

1112 node_tyvpe leaf

1112 indicator right

1112 machinename thebe

112 directory /mitech/home/grad/christy/NMachexamples/1PC
1112 taskname tquad

1112 parameters 3

1112 state list

The output of this moduale are the two data stinctures namely the breakpoint
tree and the trace data structure. The hreakpoint tree will contain timestamps of all
nodes as well as captured state information of primitive predicates that became tine.

The trace data stiucture contains a hastory of the user program execntion

5.2.2 User Interface

The user interface module provides the user with a means< of interacting with all CHB
modules. Presently. referring to fignie 5.0, this module contains only those units for
breakpoint 1/0 and graphical representation of processes ‘The design of this module
permits its re-usability when checkpoint and rollback. stepping. 1record and 1eplay
and monitoring are integrated together.

This module i~ based on the X windows system with the athena widget et by

sentiallv. we have designed the X portion of the neer interface to be a rare where all

-1
-1

Figure 5.5: PDL Specification

[xcdb

Hain ocutput uindow

[LoAD BREAKPOINT : Enpty file]

[Eontinue || }ivieu States] [S-1 Diagran]]]|quit

Figure 5.6: Main xedh Window

the current and future buttons. windows, and sub-windows will be properly managed

New buttons. windows, and sub-windows need only be specified within this frame,

Operation of the User Interface

Upon invoking CDB. the main window will appear as in figure 5.6, which contains
two sub-windows and a set of buttons. The first window is called the Mam oufput
window. This contains all error. warning. or acknowledge messages displayed for the
user. The second sub-window is the curvent breakpoint display arca and contains
button for loading a breakpoint ASCIH file. The display area displays the current
breakpoint that (‘DB is looking for. The set of huttons are used to execute the
program. continue the execution. view state information. view ST diagram. o 1o
quit CDB. They are explained below.

The Load Breakpom! button reads a PDL specification file and feeds it to the
breakpoint module. As an example we consider the PDL specification file to he that
of section 53.2.1. Upon sclecting this breakpoint. the PDL spedification is displaved

within enrrent breakpoint display area. See hguie 5.7 Simce this PDL specification

T

(@] %cdb

rain out.put. uindou

loading “breakinput5”

1 function.nane_type <<

1 node_type oper ator

1 indicator root

11 funcLion_none_typo 8B

11 node_type operator

11 indicator left

1?7 funclion_nene_type breok DUMMYe
12 node_type leaf

12 fndicator right

12 nachinenane thebe

1? directory /nnt./nach?/ jupiter home/ugrad/cheist.y/Hachenanples/IPC
|12 taskname quad

[L0AD BREAKPOINT : breaskinputS |

fu;c—;i;n‘,.nnne_l.upe «
node_Lype operator
1 indicator root

H
11 funcLion.nane_type 88

[Foad Breakyorn |
[@E [(f_().nhinnlc] fVlcu St.ot.es] iS-T Biagran] quit]
T

llfla 90402204k : S5555555555555555555555555556555555555555555555H casecaasscttctsossstrccansonse

R R R R R R R R R X R R 2

R R N R R R R R R X

[{1?859431023 < 5555555556555565555555555555555555 555555555555 M 4 1 vureonrravaeseesstrcancsrsrs

PID 1768728753 : 555555655H, ivreueennocecssessrvacssccras

e840 000 ratitoseess ssttetetestrearttetbitstseoitiaseronsscesessocanccsecnsevetoesess

PID 1699850056 : 5558555M . ¢ ceeetevrnccccscerorcncnnesns

tess e s eseetstrssenacsassscsrsbsccancen edssecssessssvscrsnscscsssoas

-

Figure 5.7: Detection of Breakpoint

incorporates four processes, four actordy sub-windows are created which indicate the
activity of ecach process. Within these sub-windows. the S deuotes that a process
is setting up to deteet the given primitive predicates and the Windicates that the
process is ready and waiting to start detection.

Phe Run button simply raises a signal which will notify the local debuggers to
commence execution of the program and to start detecting the current breakpoint.
Referting to tigure 5 7. the activity sub-windows contains a series of ”." (dots) which
are generated dynamically to indicate the process is in execution state. Eventually,

the breakport will be teached where one of the processes will detect the final primitive

prompt §

[l YWV VVVYVIVYIVIVY YV VYVVVVRUVYVVVVRYY

B PID: 984822046

BiMachine name : ananke

Bllirectory ¢ /ant/nach2/ jupiter hone/ugrad/christy/Macheranples/1PC
RiTask nane : quad

IPuranet_ers t 1

Bl S.Request : list

8S.Response ; 101

B102 }

Bi103
104
i105 void DUMNYa{){
5106 print ¥ DUMNYa\n™) 3
5107]
108 void DUMNYLO)(
109 printf ¢ DUNNYbAN™) 3
110 3

traceval = 13
traceval = 21
traceval = 22
traceval = 13
Lra‘:ceval =‘21

ARA AAAAA ~

VYV VY YYRYYVYRUV YU VIVERVY VYR

PID: 1859431028

Hachine nane : ananke

Directory : /mnt/nach2/ jupiter. hone/ugrad/christy/Hachexanples/IPC
Task nane ! quad

Paranecters : 3

S.Request ¢ last

S.Response ! 104

105 void DUHMYal) ¢

Figure 5.8: State Sub Window

predicate and will result in the other processes to halt. This is denoted by an 11,

The View States button pops up a textual sub-window in which the states ol
primitive predicates. from the PDL specification, are displayed, see figmie 58 Ba
sically the breakpoint tree. from the breakpoint module, is traversed and the state
information retained in leal nodes are printed. Also, a list of events from the primi
tive predicate location up until the halt point is displayed. Presently. refernmg, back
to figure 5.8, this list is displayed as fraccral = re where e has o numencal value
that represents a particular event. Future work would require that these minbers he
parsed and the corresponding event names he displayed.

The S-7 Dwgram button pops up a sub-window where the S'I diagram is graph
icallv drawn. see fignie 5.9, The trace data stiacture genetated by the breakpoint

modnle is traversedd where each node is mapped to the window. The dotted ine rep

5l

ey K
L R R R R T R T e e ——]/, =
axle)
- T St aph b 097 R o] r L _ e 1
AT T o
ST T Al o 4, W al pet s, DA vt kND
— Al e e B v & -
N Gk (e e A N AT TR
.. \
N - \
-8 —=8—n 4 - . - \ N
FIREIRNT T A el et 0 oy Twal o Su D D \\ /
\)
o . = = = .- .- e S P A
Loteyrors 8, W @& " wal

Figure 5.9: S-T Diagram Sub-Window

resents the breakpoint specification cut where a solid line. not shown, represents the
actual system halt ent.

The Confimue button raises a signal that indicates, to all the local debuggers, that
the program may continue execution. The activity sub-windows will thus continue to
dynamically ereate a series of 7.7 (dots).

The Quit button terminates all CDB modules.

5.3 Code Structure

This seetion descrtbes the contents of each file which is useful for those who continue
tmplementation of other subsystems of CDB.
Vector Clock Server

debug.h is expected to beincluded in the users code. It contains all the declarations

necded m the user code to include the vector clock.

debugb.c contains all the operations that the user code will transparently invoke in

otder to communicate with the vector clock server.

libddbugb.a 1~ the library built from debugh.c.

o4
[

vect _server.c is the code for the vector cloch server. The exeeutable s veet soree:

serverutil.c is the code for the utility program that may be used to mitiahee or

terminate any servet. Phe executable is serecrufsl

Local Debugger

main.c is originally from GDB 3.1, Al modifications done to the nset wntettase are

found here,

cdbgdb i« the executable for the local debugger.

Breakpoint Module

externals.h contains all the external dedarations

global.h specifies all the global variables.

local.h contains all the comimon declarations that all files have.
struct.h contains all data stracture dedarations,

breakpoint.c contains operations to build breakpoint tree, spawn detection thieads,

and imoke local debuggers.
gdb_leaf.c is the code that implements the leaf algoiithm from section 12,3
gdb_operator.c is the code that implemients the operator alporithin o sectiar 423
init.c contains all initialization rontines.
invoker.c invokes local debugeer on remote site,
message_oper.c contains all message operation routines
port_oper.c contains all port operation 1outines,

utils.c contaius all miscellancous cupport rontines,

User Interface Module

ST_INT.L contains alt declatacons for the ST diagram

xcdb.h contams header information for sedb (.

xexternals.h contain< all the N window external declarations

xglobai.li specifies all N window global variables,

xlocal.h contains all the common declarations that all N window tles have
xcdb.c is code for generating the user mterface

xutils.c contains all X window miscellancons support routines

Chapter 6

Summary and Future Work

6.1 Summary

CDB. Concordia Distiibuted deBugger. is an ongoing project that started in 1988
and is expected to continue for some more years. lts main goal is to develop a set
ol debugging tools catered for experimenta’ research in distributed debugging in the
Mach environment. I hese tools perform monitoring. record and replay. breakpoint.,
checkpoint and rollback. stepping. and user interface. The research support that these
tools provide will be 1o experiment with new algorithms or compare algorithms by
taking measurements on certain vatiables. Of these tools. our work concentrated on
brcakpoint and user interface and we have developed two CDB modules, breakpoint
and user interface. and two rensable generic support modules vector clock and local
debugger as a contribution to the CDB project.

Oune of the problems in distributed breakpoints is its specification. Yet another
dithculty of distiibuted breakpoints stems from the potentially large scalability of
a distributed program. As the program increases in size. a breakpoint specification
tequires o larger amount of information and also provides a larger amount of output
data tor inspection by the user. It would be unrealistic to assume that the user is
capable of knowing his/her needs exactiy so that a meaningful breakpoint may be
speciticd. Thus, interactive use is inevitable. For this reason we presented the PDL
hreakpoint specification language and it allows the user to view the program from

vations levels of abstraction and construct a breakpoint based on such abstracted

views. As the user gains more mtormation about the progtam. other view pornts ma
he taken such that a finer breakpoint may he constrncted Mong with PDLL we
presented halting and detection algorithms that closely tesenble the work of Haban
and Weigel [Haban-WeigeIRs! but their aleorithms are less efticient commpared to oms
for the distributed computing environment we have chosen

The user interface is another area that we addiessed. Basweally, thete are two
different types of user interfaces: textual and graphical Both mtertaces have then
advantages and disadvantages but neither by stself seets to be ideal for distributed
debuggers. We feel that a combination of both intetfaces will st the needs of the
debugger. Essentially. our user interface module adopted the graphic] Space Tine
diagram technique for displaying the message level interaction between multiple pro
cesses. It displays all the events that occurred from all processes as well as the
interactions between them, Om textual representation is reserved for more intricate
details of a program.

Global time is an impottant issue in debugging distributed systems since it de
termines the temporal relations bhetween process events ‘The veetor dlock aleortinm
reported by [Fidge] and [Haban- WeigelsX] is one form of keeping track of plohal time
where it determines the partial order of the system. We found that the algornthm
tends to take a large amount of space and have little support for dynamically aliocated
tasks. For this reason we adopted the algorithm reported by [laban WeigelSs| and
implemented a vector cloch module that reduces the space requitements and pernnts
dvnamie task creation.

Local debuggers are necessary modules inany distiibuted debugping system since
they control the execution of a given sequential task. We have implemented a local
debugger module which is essentially a conventional debugger, GDB. with o Mach
interface. Processes tun within the context of this local debugger which can be invoked
and controlled remotely.

In the scope of onr work. we can conclude that this thesis presents the development
of a flexible and integrated software svsten, hased on breahpoints, for debugging

distributed programs rnning under Mach, Our development resulted iy i set of

N0

rencable modides thar are integratable into the CDB project and they are flexible

cnough 1o =apport new algorithms and the development of new modules.

6.2 Future Work

The tollowing are sugeestions for future work on the cunent implementation of the

breakpoit and ueer mterface modnles,

Breakpoint module

o Piesently. the breakpoint module can only accept PDL specifications that in-
chude the happens before and simnltaneous relation. Further extensions to the
module are needed to incorporate alternation. conjunction, and the filtering

facility,

o resenthy. the bicakpoint module only deteets one breakpoint for every run
of the program. Extension to this module should allow multiple break point

speatfication and detedction.

o Presenthv. when a breakpoint is detected. the systenris halted as soon as possible
forming an arbitrary cut past the point where the breakpoint was specified.
Other form of cuts. such as causal and maximal. should also be implemented

pnen a breakpoint specification.

o Presently. it is assumed that the distributed program being debugged does not
dynamically spawn tasks. Hence, breakpoint module has no means to bind to

spawned tashs. Future versions of this module should incorporate this.

User Interface

o Presently the breakpoint module expects the user interface to input a breakpoint
specitication file from the user. A more meaningful interface would be to provide

a means to graphically enter the breakpoint.

o [heS-T diagram simply display < all prinntinve predicates that ocontred with all
message interaction. More data should be made available so that the user mas
view finer aspects of the program. For example, extia mouse dinven windows

<hould display the code space of cacv individual program.,

CDB-The Project

Since CDB is an ongoing project, there s much work feft to be dones O modules
are the second set of modules completed for CDB which provided a solid plattorm for
future modules to be added on. Presently. aside from our modules, the record and
replay module has also been completed and imtegration of these two sets of modules
should be considered in the near future. Other modules such a chedhpoint and roll
back. monitoring. and stepping remain to be built in the future. Alsol algonthims
implemented in cach module should he compared with other related work and eval
nated based on key metrics such as message complenity, space complexity, or othe

suitable metries,

5X

Bibliography

(MACH 1] Adadis Tevanian, Ji.. Richard . Rashid. “MACH: A Basis for Future
UNIX Development™ . Department of Computer Sewenee, Carneqie Mellon Uni-

rersddy

[MACH 2] A Silberschatz, J. Peterson, P. Galvin, “Operating System Concepts. 3rd

ed."Cpublished by Addison-Wesley. Third Edition. pp 597-629. 1992,

[MSVO1] Sigurd Meldal, Srivam Sankar. and James Vera. “Exploiting Locality in

Maintaining Potential Causality™. 1O 1991,

(LRRO0) THE Lo 1 Radhakoishoan., and V. Krawezuk, *A Toolkit for Debugging

Distiibuted Programs™. Concordia University. December. 1990,

[Fowler Zwaen90] Jerry Fowler and Willy Zwaenepoel. “Causal Distributed Break-
point ™ TR 10th Intcrnational Confercnee on Distribuled Computing Systemes,

Rice University. Houston, Texas. 1990,

[Stallmans9] Richard M. Stallman. “*GDB Manual™. The GNU Source-Level Debug-

gor, Thitd Edition, Version 3.4, OGcet 1989,

[Caswell Black&9] Deborah Caswell and David Black. “Implementing a Mach Debug-

por For Multi-threaded Applications™, USENIX, Winter ,1990.

IMcDo-Helm®9) Chatles 1 NMeDowell and David P.Helmbold, “Debugging Concur-

tent Programs™. Computeng Surve ys. Vol. 21, No. 1, pp. 593-622. December 1989.

89

[SBNRE) David Socha. Mary Lo Baily. and David Nothin, *Voveur Graphical views
of Parallel Programs". Procecdimgs of Workshop on Paralle) and Distrivuted De -

bugging. ACNL pp. 200 215, 1088

[Haban-WeigeISs] o Dicter Haban and Wolfgang Wergel, “Global Fxvents and Global
Breakpoints in Distributed Systems”™. 205t Hawan International Conforence of
System Secenees, University of Kaiserslautern, Kaserslantern, West Germany,

1988,

[Miller-Choi88-1] Barton P. Miller and Jong-Deok Chor, *A Mechanisin for i
cient Debugging of Parallel Programs™. Procecdings of the ACM SIGPT AN and
SIGOPS Workshop on Parallel and Distribuled Debuggmg. University ol Wis

consin. May H-6. T9SS,

[Miller-C'hois8-2] Barton P. Miller and Jong-Deok Chor. *Breakpoints and Halting
in Distributed Programs™. TEEE Sth International Conference on Iistribuled

Computing Syste ms. University of Wisconsin, 19SS,

(Hough-Cung87) A.A. Hough and J. Cunv. *Behederes Prototype ol o patiern
ortented debugger for highly parallel computation™, Proceedings of the Intey
national Conferenee on Pavallel Processmg. Penn. State University, pp. 735 738,

1987,

(Leblane-Crummey87]) Thomas J. Leblane and John M. Crumney, *Debugging Pat

allel Programs with Instant Replav™, IEEE Transactions on Cowmpule rs, Vol. 36,
g play . I})

No. L opp. 4714820 April 1987.

[JLSURT] Jefltey Joyee. Greg Lomow. Konrad Slind. and Brian Unger, * Monitonnyg,
Distributed Systems™. aem Transactions on Computer Systems, Vol 5. No. 2.

pp. 121-150. May 1987.

[BDVE6G] Fabrizio Baiardi. Nicoletta De Francesco. and Gighoal Vagling, “Develop
ment of a Debugger for a Concurrent Language”™ . [EEE Transactions on Softwar

Enginecrang. Vol 12 Noo AL pp. H17-353. April 1956

90

(HITR=S) PO Harter o DAL Hennbigner and R.King, “IDD: an interactive dis-

tributed debugoer™ Proccedings of the 3th International Conference on Dis-

tedvuted Compuling Systoms, TEEED pp198-306. 1985,

[GGIST Teetor Garaa Mohma, Frank Germano Ji.o Walter H. Kohler. “Debugging
a Distubuted Compnting System™, JEELE Transaction on Software Engincering.

Vol. 10, No. 20 pp. 210-219. March 1951,

[(Bates Wiledenss) Peter Bates, and Jack ¢ Wileden. “An Approach to High-Level
Debugging of Distributed Systems™, Proccedmgs of ACM SIGSOFT / SIGPLAN
Symposcum on Hligh-Leved Debuggng. pp. 107-111. March 1983.

[Bates Waleden®2] Peter Bates and Jack . Wileden. “EDL: A Basis For Distributed
Svstem Debugging Tools™. Proceedings of the 15th International Conference on

System Sciences, University of Mas<achusetts, Amherst. Massachusetts, 1982,

Lamport 78] L Lamport. *Time. Clocks. and Ordering of Events in Distributed Sys-

tem™ . Communications of e ACM. Nol 21(7). pp. H558-565. July 1978.

[Fidge] €O Fideeo “Partial Orders for Parallel Debugging™. Australian National

Unevcrsdy. Canberra, ACTT. Australia,

[T L] Personal communication with Dr. ILEF. Li. Professor of Computer Science,

Concordie Uneee rsity.

[ALAIN] Personal communication with Alain Sarraf. Computer Science Graduate

Student. Concerdia Uneecrsity.

9l

