du Canada

National Lib
! vl o™

Biblicthéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform s heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

1! pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university senl us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL 339 (r 88/04) C

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont éé dactylogra-
phiées & I'aide d'un ruban usé ou si l'université nous a fa
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme esi

soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canadi

A Decision Support System for Choosing

the Synchronization Method for Distributed Simulation

Jean Marjama

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

September 1991

© Jean Marjama, 1991

—— —————

B+l

National Library Bibliothéque nationale
o’ Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A QN4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, foan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

w

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisfher per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit ¢'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent é&tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-68718-5

LA

Canada

Abstract

A Deasion Support System
for Choosing the Syndironization Method for Distributed Simulation

Jean Marjama

Distributed processing is a growing field. One of the advantages of distributed
systems 1s the extra processing powa avalable, in the form of concurrent processing.
Discrete-Event Simulation (DES) is a time consuming application, making it a natural
candidate for distributed processing. Hence. there has been a large amount of study
on Distributed Discrete-Event Sumdation (DDES).

Clock update is the mwost important issue in simulation. In DDES there are mul-
tiple simulation clocks distributed across several concurrent processes and they must
be coordinated in their advancing. This courdination is known as the synchroniza-
tion or clock update problem. There are two broad approaches to the synchronization
problem: Conservative and Tiune Warp. The Conservative method of synchroniza-
tion ensures that all events m all processes are processed in strict chironological order.
Time Warp allows processes to process events even when the possibility exists that
an event, 1 the form of a message. may arrive from a remote process with a smaller
timestamp than the waiting event. In Tune Warp. processes are allowed to rollback,
cancellng the effects of having ertoncously moved forward in time.

Withuin Tune Warp there ave four variations: Aggressive Cancellation, Lazy Can-
cellation. Lazy Rollback. and Lazy Reeviduation. These four methods vary in the
achievable simulation time speedup and storage costs. A simulation designer, other-
wise called uaer i tlas thesis, 1s faced with the problem of choosing an appropriate
syndwonizat:on method. In tus thesis. the design. implementation, and use of an
interactive softwine, TuneWarpTest (TWT). are presented.

For the sake of TWT. a sunulation problem is characterized by a set of inputs,
namely the munber of processes wid the message traffic profile. The message traffic
profile includes the frequency of cutgoing messages. distributicn of message destina-
tion. and distribution of message attributes.

The user 1s expected to know or guess a range of values for these inputs. The
TWT generates two classes of output: gencral and extended. The gencral output in-
dicates the memory demands and the potential specdup achievable using a particular
synchromzation method. The erfended output includes more in-depth information,
such as the muuher of Time Warp data structures saved and the munber of rollbacks.
These outputs can be interpreted in the context of the intended distributed system
on which the simulation would run. From such an interpretation, the user can decide
on a single. or set of, suitable syncuonization methods.

i

Dedicated to my Grandmother,]

Jean F. Lee

iv

i it O B SRS

© e mpy BEE

Acknowledgements

I thank my supervisor, Dr. T. Radhakrishnan, for his guidance and unfailing
support.

The following people have my sincere gratitude: CLff Grossner for encouraging me
to enter the Master’s program; John Lyons and Dimitri Livas for being involved in the
formative early days of the design and implementation of TimeWarpTest. Rick Clark
I thank on two counts: for his ready technical assistance, and for his expertise and
patience which made him a superlative bridge partner. Raymond Bruton’s techni-
cal assistance is also most appreciated, playing the crucial role of keeping my PC
functional for the duration.

I gratefully acknowledge the partial financial support given by Bell-Northern
Research, Ltd. at Nun’s Island, Montreal. Their research grant has made my

studies and this research possible.

I must also mention (and thank?) Monica, Charlie, and Della for long distance

inspiration, renewed faith, and bills.

AR

Contents

1 Introduction

11 Simulation
1.1.1 Basic Typesof Simulation
112 EventList

1.2 Distributed Simulation L

1.3 What are the issues in Distributed Simulation?
1.3.1 SynchronizationlIssues
1.3.2 Simulation Partitioning
1.3.3 Mapping A Simulation

14 ThesisOutline.

2 Conservative Method of Synchronization
2.1 Limits on Potential Speedup
2.1.1 Berry and Jefferson (1985)
212 Livny (1985).
2.1.3 Nicoland Reynolds (1985)
2.2 The Problemof Deadlock
221 Three Typesof Deadlock
23 Solutions toDeadlock

3 Time Warp
31 Time Warp Data Structures and Basic Concepts

vi

15
15
16
16
19
22
22
23
23
27

30

32 Time WarpMechanisms
321 Rollback
322 FossilCollection.

3.3 Time Warp Optimuzations
331 Lazy Cancellation.
332 LazyRollback
333 LazyReevaluation
334 Other Optimizations

Conservative and Time Warp

Performance and Cost

4.1 Conservative Performance Under
Various Conditions,
41.1 FuyimotosTests

4.2 Time Warp Performance
Under Various Conditions
421 Lomowet. al. tests
422 Gilmer

423 West’'sTests i v i i e

4.3 Conservative versus Time Warp

Description and Typical Use of TimeWarpTest System

5.1.1 Verification of TimeWarpTest Results
52 TimeWarpTestInputs
52.1 Globallnputs
522 ProcessInputs 0.
5.2.3 TimeWarpTest DependencyonInput
5.3 TimeWarpTest Userprofile.
531 GeneralUser
53.2 Time WarpSpedialist
vil

51

)
)

53
53
56
61
68

54 TimeWarpTest Outputs . . .
54.1 Examples

Design of TimeWarpTest

6.1 TWT Basic Structures

......................

......................

6.1.1 Communication Subsystem.

6.1.2 TimeWarpTest Processes

613 Port

6.14 TimeWarpTest Messages

6.2 Major Components of TWT

6.2.1 TimeWarpTest Controller

6.2.2 Time Warp Processes

......................

6.2.3 Global Virtual TimeKeeper

6.3 Report Generation
6.4 TuneWarpTest Software . . .

Conclusion

Bibliography

......................

......................

viii

100
100
100
103
103
105
108
108
111
112
112
113

116

118

List of Figures

-y
fa—ry

e
= W N

RN R Ul)
-] O O = W D =

L w
[S TR S

on ~J O Ot k= W

4.1
4.2
4.3

Model of Simple System
Simulation Program Written in SLAM 11
Program written in SAMOC

Taxonomy tree

.........................
................

..............................

Critical Path of a Network
IP vs. Number of processors {SFN)
IP vs. Number of processors (PLB)
Blocked and Unblocked Processes
Deadlock with lir.iited buffers
Directed Cycle of Blocked Processes
Store-and-Forward deadlock

...................
...................
....................
......................
...................

.......................

Receivinga NewlInput
Aggressive Cancellation Rollback: Late Message ,
Aggressive Cancellation Rollback: Antimessage
Lazy Cancellation Rollback: Late Message
Lazy Cancellation Rollback: Late Message
Lazy Reevaluation Rollback: Late Message
Lazy Cancellation Rollback: Late Message
Sphere of influence W (I, t)

...........

...............
...............
...............
...............

Effects of Varying the Size of Region for Message Distribution .

Process Time Distribution

3
4
13

17
20
20
24
24
25
25

32

37

4.4

3.1
9.2
5.3
5.4

6.1
6.2

6.3

6.4
6.5

Conservative versus Time Warp 71
Memory Requirements: Time Warp and TimeWarpTest 79
Speedup: Time Warp and TimeWarpTest T
Dependency on Percentage of Local Rollbacks 85
Dependency on Percentage of States Recovered 85
Communication Subsystem 102
TWT Processes connected to Communication Subsysten via Ports:
TWT Process’ Viaw o i i it i e v e 102
TWT Processes connected tc Communication Subsystem

viaStatic Port 104
Overall view e 109
Data Collection 114

.
.
3
i
e
¥

ST

PRI T s daak s a8

vy e NDEE TR

List of Tables

2.1 Average Gates Activated during 100 cycles (6.2 time units per cycle) 21

4.1 Level and Number of Nodes and Corresponding Personnel 54
4.2 Input parameters for Health Care System Sim'ation 4
4.3 Aggressive Cancellation Speedup 95
44 Lazy CancellationSpeedup. 53

4.5 Speedup of Files and Readers *Sequential Speedup is normalized to 1 62
4.6 Memory Requirements of Files and Readers *Sequential Memory Re-

quirements are normalized tol0 L 62
5.1 Memory Requirements: Time Warp and TimeWarpTest Results . . . 78
5.2 Speedup: Time Warp and TimeWarpTest Results 80
5.3 Dependency on Percentage of Local Rollbacks 83

54 Dependency on Percentage of States Recovered
*all late messages cause Global Rollback (Local:0%, Global:100%) . . 84

5.5 Generic Synchronization Results 92
5.6 Considering Memory and Communication Constraints 93
5.7 Where to Consider State Recovery 94
58 GVT Results 95
5.9 Fossil Collection Results Case 1 95
5.10 Fossil Collection Results Case 2 96
5.11 Fossil Collection Frequency vs. Remapping 96
5.12 Simulation Processes’ Profiles 97
5.13 Slow and Fast Process Profiles 97
5.14 Different Memory Requirements due to State Size 98

x

i

Chapter 1

Introduction

To know that the effort one invests in a major endeavour will bear fruit, is a comfort
rarely enjoyed. Stmulations are a Computer Scientist’s method of identifying the

fruits of one’s labour before going about the task of performing it.

1.1 Simulation

When a system is designed, sometimes the designer would like to know the effect
of varying the values of different parameters on the system’s performance. The de-
signer could implement the system then, through testing, determine the influence of
parameter values on the system performance. This is expensive. On the other hand,
computer simulations are used to test different designs without actually building the
system.

The values of different parameters of the system are easily varied in a good sim-
ulation model without extensive rebuilding. Once the designer has tested different
parameter values, and determined optimum performance, only then is the physical
system actua ly implemented.

A simulation model is a simplified version, or an abstraction of the real-life sys-
tem being designed. The designer is not interested in all details, but cooses the
appropriate level of abstraction. A queuing model is often used to model a system
for simulation. Figure 1.1 is a model of a simple system. Once the systemn has
been modelled, the programmer writes a simulator. A simulator is a program which

imitates the actions of a model of the system to be designed.

The simulator is usually written using a simulation language, such as GPSS or
SLAM II or with the aid of a simulation package, such as SAMOC.
A simulation language is a special purpose high-level language which is designed

for simulation applications. Examples of simulation languages are GPSS (General-
Purpose Simulation System), and SLAM II (Simulation Language for Alternative
Modeling). Simulation languages are discussed in [Pri86]. Figure 1.2 is a program
written in the simulation language SLAM II, that simulates the model shown in
Figure 1.1.

A simulation package provides higher order abstractions in an existing language.
An example of a simulation language is SAMOC (Simulation And Modelling On
C++). The SAMOC package provides, among other things, simulation primitives,
such as entity objects (or processes), simulation facilities, such as queue manage-
ment, synchronization mechanisms, and statistics collection.[SAM88] Figure 1.3 is a
program written in SAMOC of the model shown in Figure 1.1.

Once the simulator has been built (written), simulations are run onit. On each
run certain variables (parameters) are given different values that might affect the
performance of the system to be designed. Statistics such as average waiting time,
percentage resource usage, and total idle time, are collected on the perforrance of
each design. Design choices are made using such performance measurements. Only
then is the actual system finally built,

During a simulation, two concepts of time exist. The first, real time, is that of
the world. It is unaffected by th simulation. The second concept of time is virtual,
or simulation time. Virtual time is the value of the simulation clock. Virtual time is
not linked to real time. It may advance slower or faster than real time.

Each event has a timestamp that determines when the event is to occur. For
example, an event i has a timestamp t(i). If event j has a timestamp t(j) such that

t(7) > (i), then event j mst occur only after event i has occurred.

o

EXPON(10)

S
W -
Figure 1.1: Model of Simple System [Prit86]:127

NETWORK ,

. CREATE BANK CUSTOMERS
CREATE, EXPON(10), S, WAIT FOR AVAILABLE BANK TELLER
QUEUE(1), 2, 10, TWO TELLERS IN PARALLEL

ACTIVITY(2)/1, UNFRM(6., 12.), END SIMULATION WHEN 100
TERM, 100; CUSTOMERS HAVE BEEN SERVED
ENDNETWORK;

Figure 1.2: Simulation Program Written in SLAM II [Prit86]:127

const int NUM_TELLERS =2;

waitq *bank_line;

bin *finished;

expon *next_cust_time;
uniform *service_time;

class_customer: public entity
{
public:
customer();
}; // end customer

class teller: public entity
{
public:
teller();
}; /7 end teller

customer::customer() : ("Customer”)
{
new customer()->schedute(sim_time(next_cust_time->sample()));
bank_.line->wait();
finished->give(1),
terminate(TRUE);
} /7 end customer()

teller::teller(char *Title) : (Title)
{
while(TRUE)
{
bank__line->coopt();
hold(service_time->sample());
} /7 end while
} /7 end teller()

main()

{
int i
next_cust_time = new expon('Next_cust_time, 10),
service_time = new uniform{"Service_time", 6, 12),
bank_line = new waitq("bank_line");

finished = new bin(“Finished", 0);
for{i=0; 1 < NUM_TELLER; f{++)

{
new teller("Teller")->schedule(0.0);
if (i==0)
new customer()-s>schedule(5.0);
else

new customer()->schedule{next_cust_time->sample());
finished->take(100);
terminate_simulation();
} // end for
} /7 end main()

Figure 1.3: Program written in SAMOC
4

1.1.1 Basic Types of Simulation

There are two types of simulation: discrete-event system simulation and continuous
system simulations. The state of a simulator may change either at distinct points
in time, or may change continuously over time. This behaviour marks the difference

between discrete and continuous simulation.

Discrete vs. Continuous Simulation

In discrete simulations, the state of each process changes only at distinct points in
tur. The simulation of a bank offers a good example of a discrete-event simulation.
A system that simulates a bank changes its state when a customer enters the bank.

Two possible changes in state are:

1. one queue m the bank increases in size

2. a teller moves from idle to busy

In continuous simulation, the state of different processes are constantly changing.
This change 1s often defined by a mathematical function. An example of continuous

simulation 1s the simulation of the air flow over the wing of an airplanc.

Time-Driven vs. Event-Driven

How a simulation clock is updated determines if the simulation is time-driven or
event-driven.

Time-driven simulations have a clock that is incremented (ticks) after a specified,
fixed, time unit. At time i, events with a timestamp equal to ¢ must be performed
before the next clock tick. Since the clock tick is regular, the time unit used by the
system must be of at least the length of the longest event. This means that at time
i, if no events have a timestamp equal to i, the system will be inactive for a full time
unit. Time-driven simulations waste time, as the time unit between each clock tick
does not vary. If many clock ticks occur with no events scheduled, the time is lost.

In event-driven simulations the time between clock ticks may vary from each clock

tick to the next. As soon as all events with timestamp t(i) have been scheduled, the

9

clock will advance te the time indicated by timestamp(j), where jis the event with the
smallest timestamp after event i. This means that no time is wasted due to time slots
where no events are scheduled to occur. This also means that without any events in
the event list the clock cannot advance. [Ung88]:200

1.1.2 Event List

The event list is central to any discrete-event simulation, as it keeps track of the
events that make up the simulation. An event list is an ordered list of events that
are to be simulated on the simulator. The events in the event list are ordered and
processed according to their timestamps.

The event list is dynamic, always subject to change, throughout the simulation.
The event list expands and contracts, due to the insertion and deletion of events to
the list. Whenever an event is executed, that event is removed (deleted) from the
event list, and the list contracts. On the other hand, the execution or occurrence of
an event might generate other events. For example, an event might cause a condition
to Le satisfied. If that condition occurs, then two events are to take place. Thus, one
event, may cause one (or niore) events to be expected. These two newly generated

events will be inserted in the cvent list according to their respective timestamps.

1.2 Distributed Simulation

Increased size and complexity of systems to be simulated has lead to larger sim-
ulations. These larger simulations are demanding increasing amounts of time and
processing abilities. For example, logic arcuits are often tested using simulation. As
VLSI (Very Large Scale Integration) chips are increasing in complexity, so has the size
of the simulator needed to test this design. Also, the increased need for computing
power at affordable cost has led to a corresponding increased interest in distributed
simulations.[MWM89a]:5

A distributed sinmulation refers to a set of sequential processes of the same simula-
tion or independent copies of the same simulation run concurrently on N processors.

In the case of several processes of the same simulation, these processes are capa-

ble of communicating only through message passing, whether they are located on
the same processor or on distinct processors. T'wo processes on the same processor

communicate through local memory, without accessing the communication network.

1.3 What are the issues in Distributed Simula-
tion?

Distributed simulations are run using multiple computers. The amount of centralized
control varies between different designs. Distribution makes the simulators more
complex, and raises many questions in the design of a distributed simulator. Two

major problems face the designer of a distnbuted simulation system:

1. synchronization

2. the division of the simulation problem for distribution

In this thesis we address only the synchronization problem.

1.3.1 Synchronization Issues

In a distributed simulation, two concepts of virtual time exist: local virtual time
and global virtual time. Individual processors in an event-driven system each have a
local clock. The value of the local clock of a processor is called the local virtual time
(LVT). Global virtual time (GVT) refers to the minimun of two values: either the
smallest LV'T of all processors that make up the simulation or the send_timc of the
earliest unacknowledged outgoing message. The message’s send_time 1s the LVT of
the process when it sent the message.[Wes88}:32 The local clock of a particular process
may or may not have the same value as the GV'T. All processes in the simulation are
at least at that value.

With more than one processor, there may be more than one clock. Syndironizing

the execution of events with more than one clock raises the following two issues:
1. updating the clock

2. deadlock

Updating the clock and deadlock are synchronization issues, and are very closely
related.

Two methods to advance clock are available for distributed simulations.

1. Conservative No events are processed as long as there is the possibility of an

event arriving with a smaller timestamp.

2. Optimistic Events on the Input Queue are processed, regardless of the possi-
bility that other events may arrive with a smaller timestamp. Local Virtual
Time (LVT) may have to be decremented and the simulation rolled back,
due to the arrival of a message with a timestamp less than the current
LVT.

'The two main categories of synchronization are Conservative and Optimistic. In
the Conservative synchronization method simulation time only moves forward. All
events are processed in chronological order. In Optimistic synchronization events
may be processed out of order. Ifit is deternined that an event has been processed
out of order, simulation time will move backwards, so events can be processed in
chronological order.

Regardless of the type of synchronization used, one more decision must be made
with regard to time management: whether .o have a loose or tight cdock. Distributed
simulations that impose the same value of the global clock on each of the local clocks,
with all processors advancing their local clocks at the same time, are said to have
a tight clock. A simulati 1 with a loose clock does not have this constraint. For
example, at ¢Zme i, one processor, processor z, may not have any events to process. If
the event-driven simulation has a loose clock, processor may immediately advance
its clock and perform events with the timestamp i + 1, even though another processor
in the same simulation still has a clock value of time i.

In a distributed simulation, each process has its own clock, but each process may
or may not have its own event list. Despite distribution, some DDES still maintain
only one event list. If there is only one centralized event list, all processors’ events

will be ordered with respect to each other in a single event list. This results in the

problem of the event list becoming the bottleneck of the system. We will consider
the DDES'’s in which each processor has its own cvent list, and such synchronization
problems are dealt with.

Suppose there are two processors in the simulation: processors z and y. If these
two processors maintain two separate event lists, care must be taken to respect the
chronology of the events. For example, suppose the event with the smallest timestamp
in processor y’s event list has a timestamp of 4. If processor z sends a message to
processor y at time 2, and a message takes only one time unit to arrive, it will arrive
at processor y with a timestamp of 3. In this case, in order to aveid an error, processor
y must either not process the event with a timestamp of 4 until the message from
processor r is received (and processed) or process y nust be able to recover from the
error of processing the event out of order. These two options will be considered in
the two chapters on the Conservative method of synchronization and on Time Warp

respectively.

1.3.2 Simulation Partitioning

Designers of distributed simulations face the problem of how to partition the simula-
tion so that partitions can be distributed among different computers. Two questions
are asked. The first question to be asked is whether the potential speedup sufficient
to justify the overhead of distribution? And second, how is the partition to be made
and mapped onto the available processors?

Kaudel [Kau87] distinguishes between three types of distribution, in order of in-

creasing complexity:
1. Application level distnbution (ALD)
2. Support Function Distribution (SFD)
3. Model Functior: Distribution (MFD)

Applicdtion Level Distribution involves having several copies of the same simulator
running on several processors at the same time. The parameter values are different

for each copy. The cost of such parallelism is a complete system, including hardware

9

as well as software, for each simulation. Results from a particular simulation are
not generated faster. A simulation demands the same sequential delay as before
distribution. However, in the same time period, more results are generated, as more
than one simulation is being run concurrently.

"The support functions are part of the simulation package that control the event
list, generate random numbers, and collect statistics on the simulation. In a Support
Function Distribution the actual simulator runs on one machine, and the support
function run on a different computer or special purpose hardware.

Model functions are those functions that are part of the simulation, such as cre-
ate(), and assign(). When these functions are distributed to different machines it is
called a Model Function Distribution.

The above three categories contrast with the four solutions to large simulations

presented by Fujimoto in [Fuj87]:
1. vectorizing
2. dedicated processors
3. "execution of independent trials on separate processors” [Fuj87]:14
4. execution of single instance of simulation program on a parallel computer.

Fujimoto does not look at the function of the processing being done, but simply at
different ways to distributed a program, regardless of the functions being performed.
On the other hand, Kaudel bases his distribution specifically on the functions being
performed, and distributes along divisions in the program made by making these
distinctions. As a result of these two distinct approaches to distribution, there is
little overlap in the categories Fujimoto and Kaudel propose. Only Fujimoto’s third
category of "independent trials” matches Kaudel’s ALD category. Kaudel’s two re-
maining categories, ME'D and SFD, fall into Fujimoto’s second category of dedicated
processors. Vectorization and execution of a single instance of a simulation program

on a parallel computer fall outside of Kaudel's categories.

10

PP -

1.3.3 Mapping A Simulation

Process-to-processor mapping assigns a particular process in the simulation model to
a particular processor. Thus, all calculations for that process will be performed in
that one processor. Once a simulation has been divided into parts or processes for
distribution, the problem remains to map these parts to the processors available.

A small grain distribution divides up the simulation into small parts. Each part
is mapped to a processor with limited but sufficient processing capacity and memory
resources. On the other hand, alarge grain distribution divides up the sirmulation into
larger segments, which are mapped to processors with appropriately more processing
abilities and memory resources.

One consideration when mnapping processes to processors is to minimize the de
mands on the communication network. Note that all processes are capable of commu-
nicating only through message passing. However, two processes on the same processor
communicate through local memory, without accessing the communication network.
Therefore, processes with a great deal of interaction should be assigned, where pos-
sible, to the same processor. For example, when using Model Function Distribution,
it 1s often cost effective to also distribute the support functions. This combined
distribution is recommended because model functions are constantly being accessed
by, or accessing the support functions. This interaction puts great demands on the
communication network of the distributed simulation. Therefore AModel Fun ction
Distribution almost necessitates Supporl Function Distribution in order to realize a
cost-effective distribution.

A second consideration when mapping processes to processors, it to balance the
processing workload amongst. the processors. Mapping only one process to each pro-
cessor in a one-to-one apping is not. generally efficient, since processes in asimulation
model have varying workloads. Varying workloads in a one-to-one mapping would
result in some processors being underutilized, while other processors are overloaded.
However, an example of an efficient process-to-processor mapping is in logic sirnula-
tion. Fach gate of a logic circuit is simulated by a processor. This is a small grained

distribution. with each process doing approximately the same (minimal) amount of

11

processing.

Two different types of mapping can be done: static or dynamic. A static mapping
does not change throughout the simulation. Dynamic load balancing means that
processes may be moved from one processor to another during the simulation, in
order to balance the processing load more cvenly amongst the processors.

A great deal of computation is necessary to recalculate the most efficient new
partition. Also, once amore efficient partition has been determined, a cost is incurred
to stop the simulation, and redistributc the workload. Amoeba 1s an operating system
which dynamically allocates processors to different processes.[TanV85] A dynamic
model function sinmalation run on a system with such a capability might be able to
nivimize the cost of stopping the sinnulation dwing recalculation and redistribution
of the work load.

When partitioning a simulation and mapping the partitions (groups of one or
more processes) to provessors. the main consiclerations are to minimize communica-
tion costs and maximize the use of available processing capabilities, with a view to

speeding up the sinndation and obtaining more results in less time.

1.4 Thesis Outline

Figure 1.4 shows a taxonomy of types of simulation syuchronization tech-
niques.[PVWM79) Tlie lowest levd of the tree structure offers synchronization al-
gorithms for the different sinndation models. Of particular interest is the multi-
processor-event-driven-loose branich. Tlus branch, as already seen, makes an
additional fork not shown in Figwre 1.4. The two branches of the fork are Conserva-
tive and Optinstic syndwonizationl.

Time Warp is an optimistic method of synchronization. Certain optimizations
of Time Warp can consistently outperform any conservative implementation.[Ber86)
However, certain chazacteristics of the simulation influence the advantages that can
be gained by wsing the Time Warp method. Several factors determine the advisabil-
ity of a Time Warp implementation. The dynamics of a large DDES system, due to

the interaction and interdependency of these factors, cannot be accurately predicted.

12

SIMULATION

ONE PROCESSOR MULTIPROCESSOR
event time event time
driven driven driven driven (tight)
tight loose scaled unscaled
event numerical virtual blocking SRT Irland's
scheduling methods ring table method simulator

Figure 1.4: Taxonomy Tree [PWM79]:48

13

The benefits and costs can vary tremendously between simulations. Also, different
optimizations within the Time Warp method exist. Depending on characteristics
of the simulation in question, one method could be better than others. The added
complexity and cost of distributing a simulation must result in an improved perfor-
mance which justifies the overhead. A balance must be found between performance
improvements and cost. The need for a tool that could readily identify DDES’s
that would benefit from a Time Warp synchronization was observed, and as a result,
TimeWarpTest (TWT), a simulation software was designed and irrplemented in this
thesis.

It is the aim o "this thesis to introduce TimeWarpTest. TWT is a software package
that, given the charvacteristics of a particular simulation, determines under what
synchroniza ion method this simulation will perform best and at what cost. TWT
helps the user make the final fork in the road to a suitable DDES synchronization
method.

Chapter 2 is about the Conservative Method of Synchronization, examining both
its limits on potential specdup, and the problem of deadlock. Time Warp is described
in depth in Chapter 3. along withits optimizations. Chapter 4 compares Conservative
and Time Warp per” nnance, and the simulation characteristics which are beneficial
or detrimental to each. TimeWarpTest (TWT) is introduced in Chapter 5. Its input,
output and users are desaribed. Chapter 6 takes a more in-depth look into the data

structures and design characteristics which make up TWT.

14

Chapter 2

Conservative Method of
Synchronization

A conservative method of synchronization ensures that all events are processed in
strict chronological order. In order to do this, no events are processed as long as there
is the possibility of an event arriving with a smaller timestamp. T'wo consequences
of such conservative behaviour are a limit to the potential speedup and the risk of
deadlock.

2.1 Limits on Potential Speedup

The upper limit of potential speedup of a conservative simulation is determined by

the critical path of a network that is constructed by following the two constraints:
1. If event i causes event j, then event j must precede event 1.

2. Given two events i and j on processor z, if event i has a timestamp ¢(7) less than

the timestamp ¢(j) of event j, then event i must precede event j.[BerJ85]:58

By assigning a time delay to events and to messages in this network, it is possible
to create a trace of the simulation. The longest weighted path (considering both node
and arc weights) is the critical path. An example is shown in Figure 2.1 and more
fully explained in Section 2.1.1.

2.1.1 Berry and Jefferson (1985)

Berry and Jefferson in [BerJ85] perform a critical path analysis to determine the
lower bounds on the time to perform a distributed simulation. F igure 2.1 shows the
critical path of a simulation run on three identical processors. Each event is assumed
to take only one time unit; there is a delay of two time units for any messages between
processors; but there is no delay between processes on the same processor. In this
example, there are two critical paths weighing 15 time units. The critical path ending
on node B consists of 8 units of arc weight and 7 units of node weights. The critical
path ending on node C consists of 6 units of arc weight and 9 units of node weights.
If the simulation was run on one processor (sequentially), the simulation would take
17 time units. Thus, a speedup of 17/15 is obtainable.

Two options are open to increase the speedup:
e decrease communication delay
o speedup a processor on the crifical path

If the interprocess delay is asswmed to be 0 time units, the potential speedup is
15/9. Nine (9) corresponds to the sum of node weights for the new critical path,
already marked as critical, which ends on node C. This information can be used to
decide on a distribution strategy. For example, if a speedup of 15/9 does not justify
distribution, no attempt will be made to minimize the communication delay, .. w0
distribute the simulation. On the other hand, it may be possible to replace cne of
the identical processors with a much faster processor, and in this way increase the
potential speedup. Referring to the critical path will help determine which process
to replace for maximum speedup.

2.1.2 Livny (1985)

Not only the critical path of a distributed simulation, but as observed by Livny,
the amount of parallelism that exists within a simulation also puts a limit on the
potential speedup. Livny in [Liv85] is concerned with the parallelism factor, (P),ofa

simulation. "P is the ratio between the total processing time of the computation and

16

120
110
100
%
8%
10
60
50
0
o
%
2
10
0
A B c
- - constraint of type 1 (sequentiality)
constraint of type 2 (message)
— Critical Path (2 critical paths of 15 units)
Q) node (all node weights are one)

Figure 2.1: Critical Path of a Network [Berd851:57

17

its ezecution time."[Liv85]:95 The total processing time is the sum of the processing
time of all processors in the simulation. The ezecution time of an event(i) is the time
delay between the start of computation and completion.

However, Livny is not interested in just any P, but in the optimal P. Livny devel-
ops a mechanism to measure the parallelism of a simulation under the most optimistic
conditions. This upper bound is called the computation’s inherent parallelism (IP),
and can be used to determine the viability of a particular distribution. Livny in
[Liv85] uses an algorithm which considers constraints similar to those used by Berry
and Jefferson [BerJ85], to determine the inherent parallelism (IP) of a simulation. TP
1s the ratio between EC and OET. EC is the total processing time of the simulation
up to a particular point in the simulation. The optimal execution time of an event,
OET, is the earhest possible time the event night have been executed.

IP is a measure of the parallelism possible in a simulation under optimal condi-
tions. This measure is used to determine the potential speedup to be obtained by
distributing a discrete-event sirmulation.

Livny simulates concurrent simulations of distributed systems, studying the rela-
tionship between the IP and the number of processors used. All of the simulations
tested by Livny had 32 processes. The IP of each simulation was calculated for two
to 32 processors. Results from two of the five simulators studied by Livny are shown
in Figures 2.2 and 2.3 from [Liv85]:97. These two simulators simulate a Store and
Forward Network (SFN) and a Point-to-point Load Balancing (PLB) system. Two
sets of input parameters as shown, with their respective results marked L1, and L2.
The two inputs show the dependency of the IP on input.

The IP generally shows improvement up to the 16-processor mark. After the
16-processor 1nark, only moderate increases in the IP are seen—except at the 32-
processor mark, where a process-to-processor mapping is implemented.

Livny’s mechanism can be used to determine the potential benefits of distribu-
tion for a simulation. This mechanism works relatively quickly—0.5% of the time
to run a full simulation—identifying the upper bound of the simulation’s P. Livny

also shows that the amount of parallelism, even with a large number of processors

18

available, limits the efficiency of distribution over a large number of processors. This
information is useful when deciding to distribute a simuation, for determining the

optimal number of processors to use.

2.1.3 Nicol and Reynolds (1985)

[NicR85] presents an algorithm for determining the potential parallelism of a sinmila-
tion, automatically partitioning a given simulation system, mapping the partition to
distributed processes, and monitoring the efficiency of the mapping during simulation.
Nicol and Reynolds [NicR85] work with the simulation of logi~ networks. A logic simn-
uiation simulates the logic, for example, of a computer chip. Since the parallelism of
a simulation can be input-dependent, a re-partitioning of the simula‘ion may become
necessary during the simulation. As the processing load of a simulation varies from
iteration to iteration of the simulation, an efficient mapping may become inefficient.
Therefore a quick reaction to changes in the input distributions can improve the
simulation performance. Re-partitioning during a simulation is called dyramic load
balancing. In order to justify dynamic load balancing, the performance improvement
must offset the cost of detecting and of repartitioning an inefficient simulation.

Nicol and Reynolds simulated a 6-4-gate adder. By simulating the adder for 100
cycles, they observed the average number of gates activated a* different stages in
a cycle, as shown in Table 2.1 from [NicR85):54. The uneven work load, measured
in terms of the gates activated, is caused by the precedence relationships between
gates. From these results, they determined that 15 (more than 14.46 average gates
activated) processors would be needed to minimize the mean cycle duration. Note
that the mean work in a cycle is the sum of average of gates activated, 49.86 gates.
With k processors, the lower bound of the minimum mean cycle is MAX[49.86/k, 6.2]
where 6.2 refers to the number of time units to complete a cycle.

Nicol and Reynolds were faced with the problem of efficiently determining if the
input has changed, thus affecting the performance of the simulation partitioning,
"Two histories of 25 cycles in length were kept.

One history is the first 25 cycles since the most recent change in partitioning.

19

10

3

h- - - B - B)]

3

veQavTow W

8
6
~—g— L1
4 — L2
2 4
0 - Y r T r T .
0 10 20 30 40

Number of processors

Figure 2.2: IP vs. Number of processors (SFN) [Liv85):97

IOT

8 4

6 -
—a— LI
—e— L2

4

2 4

0 7 T v T r T Y

0 10 20 30 40

Number of processors
Figure 2.3: IP vs. Number of processors (PLB) | Liv85]:97
20

‘Time | Average Gates
Activated

0.0 9.00

1.0 6.04

2.0 14.46

3.0 11.36

4.0 5.22

5.0 3.39

6.0 0.39
total: 49.86

Table 2.1: Average Gates Activated during 100 cycles (6.2 time units per cycle)

The second history 1is of the most recent 25 cycles. Nicol and Reynolds compared
these two histories to determine if the input distributions had changed. The following

equations were used:

AIC(s) = -4« Wxlog(e)[xxy] — 2+« W + 12

AIC(j) = -4+ Wxlog(e)[z] -2+« W +6

with

x = the (biased form) sample variance from the history at partitioning
y = the (biased form) sample variance from the recent history

z = the sample variance from the union of the two histortes

W = the number of observations in each history

If AIC(s) < AIC(j) then the input distribution was considered to have changed.

An equation was also provided to determine the cost of a partition. Repartitioning
was initiated if the cost of the current repartitioning was greater than the cost of a
new partition.

The algorithm presented in [NicR85] helps optimize simulation performance by

ensuring that processing resources are not overloaded or underutilized.

21

The critical path and parallelism are two determining factors to judge if the
speedup gained by distributing a simulation will offset the overhead. As shown by
Livny, even with a large number of processors available, parallelism is limited. Even
Nicol and Reynolds solution of pre-guessing simulation behaviour by monitoring input

cannot overcome the critical path obstacle.

2.2 The Problem of Deadlock

Once a simulation has been efficiently distributed, there remains the problem of
deadlock. Deadlock occurs in a simulation when no process can advance. A process
that is unable to advance may be in an unblocked or blocked state.

A process is blocked if it cannot process the waiting events because there exists the
possibility that an event with a smaller timestamp might arrive via an empty input
link. An unblocked process knows that no events will arrive with a timestamp less
than that of the waiting event with the smallest timestamp. Therefore an unblocked
process is able to process waiting events, without the risk of processing any events
out of order. Figure 2.4 from [GroT86]:415 shows process D is blocked, by the empty
input link from C. Processes B and C are unblocked as they know that no events will

arrive on their input links with timestamps less than 7 and 6 respectively.

2.2.1 Three Types of Deadlock

Even though a process is unblocked, it may not be able to advance. Tvwo situations
exist that may prevent an unblocked process from advancing. First, in queuing net-
works, when a queue is full, the process that is adding elements to that particular
queue is not allowed to continue processing. Second, a process with an empty event
list cannot advance as it has nothing to process. Both of these situations result in an
inactive process.

Three different scenarios of deadlock have been identified by Groselj and Tropper
in [GroT86]:

1. Deadlock with limited buffers

3V
o

2. Directed cycle of Blocked processes

3. Store-and-Forward deadlock

Deadlock with limited buffers occurs when a processor’s queue is full, preventing
the simulation from advancing. In Figure 2.5, processor D is blocked because of the
empty link from processor A. Assuming a buffer capacity of one, processor A cannot
advance because the queue from A to B is full. Due to the limited size of B’s buffer,
the system is deadlocked.

A directed cycle of blocked processes is a second type of deadlock. In Figure 2.6
processors B, D, and C are all blocked by each other. They, in turn, block A, F and
E when their respective queues become full.

Processors A, B, and C in Figure 2.7 form a cycle of inactive processors in what
is called a Store-and-Forward deadlock. They have no room in their own buffers for

messages to themselves, as they hold in their buffers messages for other processes.

2.3 Solutions to Deadlock

Synchronization algorithms have been developed to deal with the problem of dead-
lock—some avoiding, and others allowing deadlock. These algorithms can be divided

into three categories:
1. deadlock avoidance
2. deadlock detection and recovery

3. no deadlock and rollback recovery

2.3.1 Deadlock avoidance

Systems that use deadlock avoidance are designed to avoid the occurrence of dead-
lock. Earlier distributed simulations used this method. Bryant [Bry79] and Chandy,
Holmes, and Misra [CHM79) introduce the basics of distributed simulation.
Bryant’s algorithm guarantees that the simulation clock always advances, and
that the simulation does not fall into deadlock. Bryant’s system is a combination of

23

| Bt s o

unblocked

blocked

unblocked

Figure 2.4: Blocked and Unblocked Processes [GroT86]:415

3
—.’]
X [

Figure 2.5: Deadlock with Limited Buffers [GroT86):416

24

wr P ey aw iR

O-=

-

Figure 2.6: Directed cycle of blocked processes |GroT86]:416

fos

Figure 2.7. Store-and-Forward deadlock [GroT86/:416

time-driven and event-driven approaches. Two different methods are used by him to
advance the clock: time increment and time acceleration.

The time increment is the minimum amount of time a process needs to process an
event. If a process needs at least z clock ticks to process an event, and it has not yet
started to process an event, the process knows it wili not be sending any messages for
z clock ticks. Therefore, the process sends a message to that effect to all processes
that are linked to its output channel. For example, if a process takes 5 clock ticks to
process an event and it is presently inactive, it sends a message indicating that no
events can be expected for at least 5 clock ticks. The clock value associated with this
input line, according to this process, can be incremented by 5.

If the next event is as far as 100 clock ticks away, 20 increment messages would
have to be sent before an event would be scheduled. In such cases, the time increment
method is inefficient, because several messages are sent.

The second method to advance the clock, time acceleration is used to advance the
clock at an accelerated rate to prevent such a delay. If the process has events in its
event list, the LVT minimum is made equal to the timestamp of waiting events. If
the process has no waiting events, the updated clock value becomes the minimum

clock value of all input lines. Afprocess sends a test message to processes on its input

links.

test message: A test message determines the LVT of the process on the other end

of the input link. This message updates the clock value associated with the
mput link by calculating an updated clock value.

In order to prevent deadlock, as soon as a source process (a source process is a
process which generates events without input from other processes) no longer has any
more events to generate, it sets its clock value to infinity.

Chandy, Holmes and Misra [CHM79) use no-job or NULL messages to make their
distributed simulation algorithms deadlock free. Instead of waiting for the arrival of a
test message, processes keep processes on their output links notified of updated clock
values. Even when processes have no events to process, clock values are passed using

no-job messages. These no-job messages are not treated as events to be added to the

20

event list and processed, but simply serve the administrative purpose of updating
clock values associated with input links.

Deadlock avoidance depends on administrative messages being sent and processed.
These messages create greater message traffic and may keep processes waiting when

updated clock values are delayed. Deadlock avoidance thus results in the under-

commitment of resources as processes wait on the clock.

2.3.2 Deadlock detection and recovery

In a system with deadlock detection and recovery, deadlocks are allowed to occur.
Once deadlock has been detected, a recovery algorithm is used to break the deadlock.

Peacock et al. (1979)

One way to implement deadlock detection and recovery uses blocking tables. Peacock,
Wong, and Manning [PWM79] describe the idea of blocking tables. Entries in the
blocking table indicate which processes are currently blocked. When the system can
no longer proceed, the blocking tables are used to trace the source of the deadlock.
Blocking tables have the advantage of taking up only a fixed, limited amount
of memory space in each processor. (One entry in each table for each input link).
However, this algorithm blocks processes, thus it prevents the system from achieving

maximum parallelism.

Chandy and Misra (1981)

In algorithms where processes must notify other processors of their updated local
virtual time (LVT), communication costs are incurred. Attempts at optimising such
costs are concerned with decreasing the communication costs while synchronising all
LVT’s. Chandy and Misra [ChaM81] in 1981 changed their strategy of 1979. Instead
of using no-job or NULL messages to avoid deadlock, their new algorithm allowed
deadlock to occur.

The simulation may be in two different states: parallel phase or phase interface.

During the parallel phase, processes are allowed to process in parallel until deadlock

27

is reached. During the phase interface, between parallel phases, a central controller
is activated. The central controller detects the occurrence of deadlock and notifies all
processes to perform phase interface computations, which allow the clocks to advance,
ending the deadlock. Since the central controller is only active a small fraction of the

processing time, it is not considered to be a serious bottleneck in the simulation.

Misra (1986)

Misra in [Mis86] also attempts to minimize communication costs. [Mis86] presents a
method to determine deadlock in a distributed manner, by using a circulating marker.
This algerithm is based on Dijkstra and Scholten’s termination detection algorithm.
A marker is circulated. If a logical process (LP) has sent or received message(s) since
the last time the marker passed, the LP’s flag in the marker is set to one, else it is
cleared to 0. With N logical processes in the system, if N flags in the marker are
clear, deadlock has occurred. The marker also kee, s track of the smallest next-event
time. This information is used to determine where the deadlock must be broken.
This algorithm also provides a partial solution to the problem suffered by many
deadlock and recovery algorithms: the problem of a process being blocked for un-
acceptable lengths of time. The speed of the marker circulating in the system can
be varied. A trade-off is made between the overhead of moving the marker around
quickly, and the amount of time the system takes to react to a deadlock situation.
Solutions to the problem of deadlock are most concerned with minimizing the loss
of processing abilities of underutilized processes, and at the same time, minimizing the
message traffic necessary either to update clock values on incoming communication
lines, or to detect deadlock. When message traffic is low, the Conservative method of
synchronization is less cost effective as it demands a greater communication overhead.
The Conservative method of synchronization is most suitable when processes have a
sufficiently high message traffic, so empty input links rarely occur. Therefore, with
regular message traffic, administrative no-job messages are rarely needed in the case
of deadlock avoidance algorithms. Regular message traffic also reduces the number
of blochad processes and the resulting deadlock in deadlock detection and recovery

28

algorithms.

All Conservative methods of synchronization are eventually faced with the reality
of the critical path as upper bound of potential parallelism: none can outperform
the upper bound of parallelism defined by their critical path. In order to surpass
this limit on a distributed simulation’s efficiency, it is necessary to move away from a
Conservative approach to the Optimistic approach. The optimistic synchronization
method has no deadlock, and uses rollback recovery.

29

—_—

Chapter 3

Time Warp

Jefferson in [Jef85] introduces Time Warp, an optimistic method of synchronization
for DDES. This algorithm cannot lead to deadlock but uses rollback recovery.
Optimistic methods of synchronization allow processes to process events even
‘when the possibility evists that an event, in the form of a message, may arrive with
a smaller timestamp than the waiting event. It is therefore possible for an event to
have been processed when it should actually have waited. For Time Warp to be able
to go back in simulation time and undo such errors, it must save all the necessary
information to rollback in simulation time. Time Warp data structures are used to

record the necessary information for rollback.

3.1 Time Warp Data Structures and Basic Con-
cepts

"The two data structures to be examined are the message and the process. The term
message Will be used interchangeably with the term event. This is because messages
are treated as events and are added to the event list of a process.

A message has five fields: from_process, to_process, data, send time, and receive
time. The from_process and to_process fields indicate the source and destination of the
message. The to_process is used by the message delivery system. The from_process
1s used by the destination process so it knows where the message came from. The
data field holds the information relevant to the application being simulated, and is

not accessed by the Time Warp mechanism. The send time is the current value of

the local clock of the process that sent the message. The receive time is equal to the
send time plus an optional communication delay. The receive time is also referred to
as the message's timestamp. The timestamp determines the order of receipt at the
destination process.

A late message is a message that arrives with a timestamp less than the value of
the destination process’ LVT. A late message is also called an out-of-order message.

Computations done while there is the possibility of a late message arriving are
called lookahead computations—in other words, when the LVT was greater than the
GVT.

An anti-message is a "negative copy”[Wes88]:22 of a message. This negative copy
is simply a copy of the original message, with one bit toggled, identifying it as an
anti-message. When an anti-message meets its matching message, the two messages
cancel each other out.

A process has four main components: the current state, the input queue, the state
queue, and the output queve. Figure 3.1 Part A shows a process. Messages are square.
Incoming messages are identified by capital letters, for example, A and B. Outgring
message are smaller squares, and marked with roman nunserals, for example, i and
ii. States are shown as circles, and are labelled with arabic numerals. for example, 0.
1, and 2. The arrows between objects are pointers in respective queues, or between
elements in queues.

The process’ current state includes two types of internal information: first, the
values of the variables within the process, which are irrelevant to the Time Warp
implenientation, but are relevant to the simulation; second, the process’ LVT. The
process’ current state, indicated by shaded circles, is the state marked 1 in Figure 3.1
Part A, and the state marked 2 in Part B.

The input queue is made up of messages that have come from other processes.
Messages on the input queue may be marked as processed or unprocessed. Messages
may be unprocessed for two reasons: first, if the process has not yet reached the
message’s LVT, or, second, if a rollback has resulted in the message being unprocessed.

Each message in the input queue points to the state before the message was processed.

31

Part A: Before the Receive

Input
Queue A M—» B _&it_’
Last
State Last
Input
State 0 Next Next
Queue
Last Last
Output Output

indicates
@ Current State

Output|
Queue| 1

:

Part B: After the Receive

Input Next .
Quecue A | Nex > B Next
Last A
ast Input ast Last
State State Input
State 0 Next 1 Next
Queue
Last Pr : " .
oy Output o e
utpu
Output | . e
Quene |1 [P 11 >

Figure 3.1: Receiving a new input [Wes88]:21

32

The last processed incoming message is message A, which is indicated as the last input
of state 1. Note that message Bis as yet unprocessed in Part A, as no state has been
marked with it as an input.

The siate guev. is made up of states saved by the process just before processing
each input message. A state consists of all information found in the current state, and
a pointer to the last message processed to generate this state, and a pointer to the
last output message generated during the processing of this state. If a late message
arrives, the state qgueue holds all the necessary information to restore the process to
a previous state,

The output queue contains copies of all messages sent by this process to other
processes.

The mput, state and output queues and the current state are all interconnected.
Messages ir. the input queue point within the state queue to the last state generated
before the message 1s processed. The states in the state queue contain pointers into
both the input and the output queues. First, the state points to the last input
message processed in order to generate the state; second, the state points to the last
output sent consequent to the state being generated. The current state is constantly
changing as new input is processed. New current states arc added onto the state

queue.

3.2 Time Warp Mechanisms

The basic Time Warp activities are receiving and processing incoming messages,
sending messages, and rollback.

Figure 3.1, Parts A and B, depict a process receiving a message, and the con-
sequent “anges in the data structures. At the time of Figure 3.1 Part A, the last
message processed is message A; the last state generated is state 1, which is the cur-
rent state; and the last output to have been sent is message ii. Although message B
has been added to the input queue, it is as yet unprocessed.

In Figure 3.1 Part B, state I is no longer the current state. The process has

generated a new current state, due to the computations resulting from the processing

33

of message B. Message B points to the last state generated before message B was

processed, state /. The new current state is state 2, which is generated due to the
processing of message B. State 2 points to message B as the last input received
before this state was generated. Note that when message B is processed, no new
output messages are generated, so states 0 and 1 point to the same message on the
output queue.

As the process continues in time, more messages and states will be added to these

three queues.

3.2.1 Rollback

Rollback is the mechanism unique to Time Warp method of synchronization. By
rolling back, a process cancels the effects of having erroneously moved forward in
time. When a late message arrives, a conflict [LCUW88]:50 is said to have occurred,
and a rollback becomes necessary.

A rollback entails three steps. First, a state with an LVT prior to the late message’s
timestamp must be restored. Second, the process must cancel any messages that were
sent during lookahead computations. Finally, the process must recommence forward
computations.

Restoration of the proper state is done in two steps: first. the state with an LV'T
prior to or equal to the late message’s timestamp is located within the state queue.
This state becomes the current state. Second, all states with an LVT larger than the
late message’s timestamp are discarded. Outgoing messages with timestamps greater
than that of the late message are cancelled by sending anti-messages. Sending anti-
messages is called cancellation. Only after these two steps have been completed,
can the process recommence moving forward in virtual time. Figure 3.2 shows the
changes made to Time Warp data structures due to the arrival of a late message.
Part A shows message B arriving, with a timestamp greater than message 4, but less
than that of message C. Several changes occur between Part A and Part B. Since
message C was processed erroneously, in order to rollback, we must reinstate the last

state to be generated before message C was processed, which is state 1. State 2 and

34

any states following it are discarded, and state 1 becomes the current state.

All output messages consequent to the processing of message C are cancelled.
In order to determine which messages were erroneously sent, the reinstated current
state 1s consulted. This state, state I, is pointing into the output queue to the last
output correctly generated. Any messages after that output have been erroneously

generated, and are cancelled.

Rollback due to Anti-message

When a late message arrives, it may be necessary for more than one process to roll-
back. One late message can cause a number of anti-messages to be sent successively
to different. processes, which might cause a number of rollbacks. Anti-messages are
described in Section 3.1. When an anti-message is received by a process, two different
actions must be taken, depending on whether the matching message has already been
processed or not. If it is not processed, the anti-message and its corresponding mes-
sage cancel each other out, with the result that the matching pair is simply removed
from the process’ input queue, and the rollback goes no farther.

The second case is more complex. An example of the second case is shown in
Figure 3.3. Parts A and B. Suppose an anti-message is sent for imput B. In Part A,
the process has already advanced to state 3 and it has generated a number of outgoing
messages i through vii. The last correctly processed state is statc [. State I's last
mput was message A, and its last correctly generated output was message ii. I Part
B. the erroneously generated states, states 2 and 3 are deleted and outgoing messages
i1 through v1i are cancelled. This rollback process will be repeated, as necessary. until
all correct states are reinstated and the erroneously sent messages cancelled.

One late message may cause several rollbacks in different processes. However, no

cyclic rollbacks can occur, as no message can cause an event before its own arrival.

3.2.2 Fossil Collection

"The Time Warp method must save both states and messages in case of rollback. These

queues can take up a great deal of space. In order to minimize the amount of space

—_——_——_-__————*——_—__—_—'——__“
Part A: Message B arriveslate |- .

Insert late messgage B

Input
Queue

State
Queue
Output| .
Queue
Part B: Rollback to State 1: Re-receive
Next “r=1 .1 Next Next
Input A o f—— (|——p
Queue) . .
Last Last
State State
ll: ":t Delete from
P State Queue
L
State {4 Next Next - =~
Queue
Last
Cancel from
Last \, Outpu
Outpu Output Queue

— T

[oR
=

g 1]

Figure 3.2: Aggressive Cancellation Rollback: Late Message [Wes88):23

36

Part A: Anti-Message ToB arrives Cancel InputB

It o e NN et) _v_m_.f

ueus
¢ N
Last Last Last
State State State
Last Last Last
Input Input Input
|
State Next Next Next
Queue 0 1 2
Last
Last \ Outpu Last Last
Outpu Output Output
Outpu .| I .I I .I I .I l .. 'l
Queul I

Part B: " Part B: Rollback to State 1: Rereceive

Input A Next _Nix.t_.,

Queue

Delete from
State Queue
State PR e —
Queue
Cancel from
Output Queue
e
i
FOutpu :
Queus _

ey —_——

Figure 3.3: Aggressive Cancellation Rollback: Antimessage [Wes88]:25

37

needed to save messages and states, one mechanismis the regular calculation of global

virtual time (GVT) and the implementation of fossil collection. Fossil collection is
the freeing of memory used to save message and states which are no longer necessary
for rollback.

GVT'is set equal to the smaller of the following two values: either the timestamp
of the earliest unacknowledged outgoing message or the clock value of the process with
the smallest local virtual time (LVT).[Wes88]:32 Since no message can be generated
(or received) with a timestamp less than the GVT, all saved messages and states
with timestamps up to the GVT can be discarded and the memory space used by
them can be recovered. This discarding of states and messages for Iemory recovery
1s called fossil collection.

3.3 Time Warp Optimizations

Time Warp takes up a lot of space and also has the temporal cost of rolling back.
Therefore, the two costs of Time Warp that are targeted by optimizations are memory
costs and costs in time.

A major cost in the in, lementation of Time Warp is the saving of previous states
and messages, otherwise referred to as Time Warp's Memory Requirements. A careful
choice of the frequency of updating the global virtual clock and performing fossil
collection, can help keep memory costs down. However, since the calculation of
GVT introduces a time overhead, to perform it too often would affect the overall
performance.

West in [Wes88] recommends three following methods of optimising Time Warp's
speed:

1. Lazy Cancellation
2. Lazy Rollback

3. Lazy Reevaluation
Lazy Cancellation and Lazy Rollback reduce the number of rollbacks whereas

Lazy Reevaluation reduces the amount of time necessary to recover from a rollback.

38

3.3.1 Lazy Cancellation

Lazy Cancellation refers to the second of the three steps in the rollback process
identified in Section 3.2.1. As mentioned earlier, during the second stey f rolling
back, the process cancels the effect of any erroneously sent messages by sending anti-
messages. When the anti-messages are sent, depends on the cancellation policy in
use: Aggressive or Lazy Cancellation. In the case of Lazy Cancellation the process
still marks the outgoing messages as cancelled, but it keeps the messages on its output
queue. It does not immediately send its anti- messages.

After rolling back, the process continues execution, sometimes generating the same
messages as those generated during the lookahead computation. A particular message
may or may not be regenerated. The process waits until the LVT becomes greater
than the message’s timestamp. If the identical message has not been generated, the
antil-message 1s then sent, and the message i1s no longer marked as cancelled. If the
message 1s regenerated, neither its anti-message nor its copy is resent.

Figures 3.4 and 3.5, Parts A. B and C, show Lazy Cancellation rollback due to
the arrival of a late message Figure 3.4, Parts A and B, show the arrival of a late
message. In Part B, messages on the Output Queue are marked, but remain on the
queue. Figure 3.5. Part C, shows the process continuing execution, with the result
that new messages i1 and iv, are generated as well as previously generated messages
v through vu. As a result, no anti-messages are sent, and the rollback is contained
at this process.

Lazy Cancellation 1s an improvement over Aggressive Cancellation. Not only are
there fewer anti-messages, but the sending of anti-messages is more evenly distributed
over time. Overhead is thus decreased on two fronts: message traffic and time. Fewer

anti-messages mean less communication traffic. As there are fewer anti-messages,

fewer rollbacks result, and less time is lost in rollbacks. [Wes88]:47-48

3.3.2 Lazy Rollback

In certain cases incoming messages have no effect on the lookahead computations.

West suggests an optimization that takes advantage of this situation. In Lazy Roll-

39

Part A: Message B arriveslate | . . | .
[: .| Insert late message B
Input Next Next
Queus A Rl ¢ [
Last Last
State State
Last Last
Input Input
State [Next 1
Queue
Last
Output
Last Last
Outpu Output
, A {
Output
Quess El i v vi i
[Part B: Rollback to State 1: Re-receive
anput A ____»Next :: ——bN”t c ﬂ—b
ueue « o o+
Last Last
State State
Delete from
State Queue
NG xt N e
State 0 ext ~_ =~
Queue
Last
Last \ Cutpu Cancel from
Outpu |
Quid ! |>{ 8 |L]—. vi bp! W

Figure 3.4: Lazy Cancellation Rollback: Late Message [Wes88]:41

40

A raedy s

Part C: The same outputs are generated

Next — Next Next
é:gﬁz A . —p C f——p
Last Last
State State
Last Last
Input Input
State [o et 1 | Next
Queue
Last
Last \Qutput Last
Cutput Output
A
Qutput[—, N . - N
Quewe| ' [P VPRI Y -ﬂ" | U
_v‘____,/

Reinserted into the Output Queue but not resent

Figure 3.5: Lazy Cancellation Rollback: Late Message |Wes88]:42

_ e NI PPN
AT TS SR it i

41

R - e

back, processes arc looked upon as abstract data types, with messages acting as
operations on these abstract data types. By considering a message, as well as the
attributes of an abstract data type, it is possible to determine if errors might occur
if a message is processed out of order. Thus, rollbacks might be avoided.

West identifies three message attributes which are significant in reducing the num-
ber of rollbacks:

1. messages that cause no changes to take place in the state of a process, for

example a read, or a null operation

2. messages that modify data might also be allowed out of order, if it can be guar-

anteed that the data modified was not accessed during a lookahead computation

3. pairs of messages which, with either processed first, generate the same final
result, and no outgoing messages indicate the intennediate affected state infor-

mation. [Wes88]:51-52

Lazy Rollback involves the careful definition of abstract data types placing the
tesponsibility on the developer of the Simulation. The user is responsible for carefully
defining abstract data types that will allow consistent results,

Checking for these attributes, or situations, makes the rollback process increas-
ingly complex, with occasionally “inconsistent and possibly unpredictable” [Wes88):53
states occurting in the simulation. Another serious eriticism of the Lazy Rollback
is that it assumes that a distributed implementation of the simulation is no longer
transparent to the user. West recognizes the disadvantage of a lack of user trans-
parency, noting that it would result in a higher "cost of developing an application”
[Wes88]:08.

3.3.3 Lazy Reevaluation

Lazy Reevaluation rolls back on the arrival of out-of-order messages. However, the
rollback does not involve the discarding of all states generated during the lookahead
computation. States which are on the state queue, which are part of the lookahead

computations which have not heen discarded will be referred to as unprocessed states.

42

When execution moves past thean, they will once again be considered processed, or
recovered. After a rollback, as the simulation once again moves forward in virtual
time, the current state (generated after processing the out of order message) is com-
pared with the previously calculated states. If these two states are identical, the out
of order message did not invalidate the lookahead computation. Since the remaining
messages on the input queuc are the same as during the lookahead, the undiscarded
states are exactly the same states that would be generated if the computations were
to be redone.

Lazy Reevaluation saves time by simply "coasting” ahead, or skipping the states
still in the queue, until reaching the state which was current when rollback ocaurred.
Forward exceution s taken up again. The time saved is the difference in time neces-
sary to compare two states, fiom the time necessary to do the necessary computations
to regenerate all states marked as unprocessed in the queue.,

Figures 3.6 and 3.7, Parts A, B, C and D, show the arrival and processing by Lazy
Reevaluation of message A, Message A has no affect on the validity of the lookahead
computations. States 2 and 9 are neuked as wnproccssed in Part B. but are not
discarded. Theit unprocessed status is indicated by a double cirele. In Figure 3.7,
Part C, stale 11s generated, as well as messages 1 and e, Message o 18 regenerated
and is no longer marked as an anti-message. States 2 and 3 will either be discarded
or 1einstated as processed, depending on if state ¢ matches state 1. In Part D, when
state 0 does match state 1. state 2 is skipped and no longer marked as unprocessed,
with state 3 soon to follow suit.

A form of Lazy Reevaluation was independently discovered for read-only mes-
sages by Jefferson’s group. [BIBESS] They called these messages "quiet messages”,
which were processed, then the current state was immediately meade the last state
on the lookahead queue. However, West is the first to make a more generalized Lazy
Reevaluation policy applicable to all messages [Wes88]:58 Lazy Reevaluation follows

the design goal of keeping all aspects of the Sinnidator transparent to the application.

13

Part A: Side effect free message A arrives late

Next
é‘;g:: B |2y ¢ [Nty
Last Last
State State
Last
Input
QS‘t;ate 0 Next 3 Next Next
eue
Last
Last \ Outpu Last
Outpu Output
tput
| ot] o [v |7 |l »
Part B: Rollback to State 0: Re-receive
Ql?lg‘;: m _N°£> B M. c M.»
Last Last
State,”” State Il:“‘t Keepin
pu State Queue
e
X
gut:te (A1) o) Next g PNext g '} Next
ue \':

s S RS R RS

_______/
Cancelled in Qutput Queue

Figure 3.6: Lazy Reevaluation Rollback: Late Message [Wes881:56

44

Part C: Begin State Compare
Input _I&x_t_’ B _Nei’ C ‘_I\f.’.‘t_>

Queue

Keep in
State Queue

State
Queue

Quipal 5 1l i Ll |l |l v | v i

Queud

Reinserted into the Output Queue but not resent

Part D: Continue Skipping [~ -~)
: Next Next Next
[PRyl n [Nt) o [N

Input
Queve o
Last Last
State Last State Last Last
Input Input Input
State 0 Next 1 Next
Queue
Last Last Last Last
Output Output Output Output
Yy .. N
Qud_ L e e e e
——"

Reinserted into the Output Queue but not resent

Figure 3.7: Lazy Reevaluation Rollback: Late Message |Wes88]:58

45

3.3.4 Other Optimizations

Besides West, several other researchers have also suggested ways to improve Time

Warp performance.

Reynolds

Reynolds in [Rey88b] identifies different criteria for classifying DDES synchronization
methods. He observes that conservative methods traditionally have the three follow-
ing characteristics: non-aggressive, accurate, and without risk. [Rey88b}:327
Non-aggressive means messages are processed in strict monotonic order. Accurate
indicates that the final result after all messages are processed is as if the messages
were processed in monotonic order. Risk refers to passing messages generated during
possibly inaccurate lookahead computations.

Reynolds also notes that optimistic methods of synchronization are traditionally
aggressive, accurate and with risk. [Rey88b):327 He recommends the implemen-
tation of an optimistic strategy, but with all rollbacks local. Any messages which
are based on information generated during lookahead computations, and which may
eventually be cancelled, are not sent to other processors. This would eliminate risk

and also decrease memory requirenents.

Gates and Marti

Gates and Marti in [GatM88§] recommend a design which, like Lazy Rollback, re-
duces the number of rollbacks. Priorty requests are implemented. When a nonlocal
value is needed, a priority request is sent. The requesting process continues forward
computations without waiting for a response but using an estimated value. When a
response does return, only if its value does not satisfy certain constraints that would
keep the forward computation valid, does a rollback occur.

Gates and Marti’s design has the benefit of being user transparent.

46

Unger

Unger, in his overview article ”Distributed Simulation”, [Ung88], systematically de-
fines Conservative and Optimistic synchronization methods. In the absence of risk
Unger supports optimistic synchronization over conservative synchronization due to
the greater pa.allelism it enjoys [Jon86]:415. However, in the presence of risk, he
looks at the possibility of combining optimistic and conservative methods in a bal-

ance. [Ung88] Unger recommends introducing

"conservatism into an optimistic mechanism by having a process wait

before taking a risk.” [Ung88]:204

He argues in favour of retaining user transparency. [Ung88]:198 Unger points
out that without transparency, any movement from one simulation environment to
another, or improvement, modification or update of the simulation software, might

result in the necessity of rewriting of the simulation model.

Maddisetti, Walrand and Messershmitt

A promising algorithm, WOLF, was introduced by Maddisetti, Walrand and Messer-
shmitt. [MWM88] They were interested in limiting the effects of late message arrival
throughout the system. By immediately notifying all potentially affected groups of

processes, or processing nodes. A sphere of influence and radius of propagation were

defined as follows:

sphere of influence "number of shells of increasing radii (1-R), each shell consisting

of nodes reachable from 1 within a certain time span.” [MWM8§]:299

radius of propagation "R(i,t) of the sphere of influence W(i,t) is distance in num-
ber of nodes which a message transmitted by node i could propagate in the
time t.” [MWM88]:299

Figure 3.8 from [MWMB88]:299 shows the sphere of influence, W(i, t). W(i, t) is
the set of nodes influenced by a message at time = t, assuming the message completed
its processing at time t = 0, in node i. [MWNMB88]:299

47

Figure 3.8: Sphere of influence W (i, t).
W(, t) is the set of nodes that can be influenced at time t

by a message which completes its processing
in nodei at t=0. [MWM&88]:299

48

WOLF [MWM88], a Time Warp derivative, was designed to limit the sphere of
influence. Preliminary studies show WOLF reduced the number of error messages or
messages cancelled, thus decreasing the number of antimessages and message traffic,

as well as allowing the simulation to recover more quickly from rollback.
[MWMB8S] identified two types of systems:

Static "the message follows one of several different paths and there is no explict de-

pendence of the routing on the states of the transmitting and receiving modes.”

[MWMsS]:298

Dynamic "the probability of transmission of the message from node i to node]

depends explicitly on [the message] and the states of the nodes.” [MWMSS8]:298

[MW\I8S] only worked with static systems, but look forward to applying this algo-

rithm to dynamic systems.

West

West also suggested one other optimization based on Flow Control.[Wes88]:36 Lazy
Reevaluation gains speed when processes perform correct lookahcad computations.
These are future computations done while other processes lag behind in LVT. How-
ever, great discrepancies in time between different processes result in greater memory
requirements in order for the faster process to be able to save all intermediate states.
Flow control, which prevents fast processes from advandng too far ahead in time
with respect to the remaining processes, results in decreased speedups in Time Warp
implementations using Lazy Reevaluation. This trade-off is apparent when looking at
performance results of Time Warp impleinentations in Section 4.2.3. However, West

does not see this trade-off as necessary. He believes the following:

A more closely synchronised system should proceed more quickly, since
the overhead of synchronization (eg. rollback or flow control) is re-
duced...Tighter synchronization provides better ordering of messages and
thus should speed progress. [Wes88]:36

49

West suggested further research into flow control. His aim is to slow processes which
move too far ahead in LVT, without incwrring a large cost in performance.

In summary, most of these optimization methods concern themselves with re-
ducing the risk of the Time Warp algorithm, that is minimizing the loss of for-
ward computations. These design modifications prevent rollbacks from propagating
throughout the simulation, or domino rollbacks. Most optimizations reduce the num-
ber of anti-messages sent. This reduction prevents unnecessary rollbacks of forward
computations already performed which are, in fact, correct. On the other hand, the
optimization by [MWMS88] immediately halts all forward computations on nodes that
might have received messages generated by a process known to have sent or received

erroneous information. Thus, rollback is quickly confined to a limited area.

a0

e L el 3

— S

BRIk

D

Chapter 4

Conservative and Time Warp
Performance and Cost

The performance of the two synchronization methods, Conservative and Optimistic,
depends on several parameters of a simulation. Therefore before deading on a par-
ticular synchronization method, it is necessary to determine the significant aspects
favorable and unfavorable to each of these synchronization methods. Only then can
one observe which aspects exist in the simulation to be implemented, and knowledge-

ably choose a synchronization method.

4.1 Conservative Performance Under
Various Conditions

The performance of Conservative synchronization methods depends highly on mes-
sage traffic. Fujimoto studied several characteristics of a simulation using the Con-
servative synchronization method in nrder to determine which aspects have most

influence over performance.

4.1.1 Fujimoto’s Tests

Fujimoto’s stated aim in [F1j87] is to "identify aspects of workload that have a critical
impact on performance.” [Fuj87):14
Fujimoto looked at the deadlock avoidance, and deadlock detection and recovery

synchronization schemes in distributed simulation. Fujimoto’s tests varied the follow-

ing aspects of the random variable nsed to determining the processing time associated

with each incoming message:

1. distribution
2. mean
3. variance [Fuj87):16

Fujimoto found, despite varying these parameters, little change in performance
was observed. He then tested the efficiency of a dynamic scheduling policy.

Fujimoto tested the scheduling policy, as he considered the possibility that per-
formance was limited by the static scheduling policy currently in use. This limit
would have explained the only slight changes in performance he was observing. How-
ever, Fujimoto found that since he was working with a well matched ("symmetric”
[Fuj87]:17) workload and hardware organization, the static scheduling policy was not
a liability. The advisability of a static scheduling policy was also encouraged, due
to the fact that in order for an inactive processor to locate an available process on
another processor’s queue involved remote memory accesses.

It was only when Fujimoto concerned himself with message traffic that a significant
correlation was found with simulator performance. The first aspect of message traffic
which was found to have a direct impact on performance was the lookahead ratio.
The lookahead ratio (LAR) was defined as the mean timestamp increase divided by
the lookahead value determined by the following lookahead function:

lookahead function is "the minimum timestamp-increase that a message will en-

counter in travelling through a process”[Fuj87]:18

Therefore, if the lookahead is high, the LAR will be low. If the LAR is low, a
process may be forced to delay processing due to the possibility of the arrival of a
message. On the other hand. if lookahead ratio is large, the process can advance in
time safely, sending messages without delay, which increases the number of messages

in the system, thus stimulating parallelism.

92

A second important criteria for Conservative performance noted by Fujimoto was
message population. Fujimoto identified an avalanche point [Fuj87]:16 in the level of
message traffic. When message traffic is below this point the performance is poor.
However, when message traffic surpasses the avalanche point, a sharp performance
improvement is noted.

Message traffic is crudal to simulations using the Conservative method of syn-
chronization. As mentioned in Section 2.3, many algorithms have been developed
to try to circumvent difficulties caused by irregular message traffic on Conservative
synchronization. Fujimoto’s studies have more narrowly defined the crucial aspects:

the lookahead ratio and message frequency.

4.2 Time Warp Performance
Under Various Conditions

Since Jefferson’s introduction of Time Warp synchronization, a number of tests have

been done to measure its performance under different operating conditions.

4.2.1 Lomow et. al. tests

Lomow et. al. in [LCUWSS] ran a simulation of a health care system. They were
interested in the effect of varying the following four parameters on a Time Warp

simulation;

1. number of processors

o

. the assignment of processes to processors
3. the cancellation mechanism (Aggressive vs. Lazy Cancellation)
4. the effects of feedback in the simulation performance [LCUW88]:50

The simulation model Lomow studies is based on the health care delivery system
in Colombia. The health care system is organized in an hierarchical manner, in the
shape of a tree. Each node consists of one health center and one village. Increasingly

important health centres are located at the top of the tree. One reflection of the size

93

-

Level | Number of | Number of Health Care
Health Center- Personnel at each
Village Nodes Health Center

3 1 8
2 4 4
1 16 2
0 64 1

Table 4.1: Level and Number of Nodes and Corresponding Personnel

Parameter Value

assessment time 0.3 tune units
treatment tume 1.0 tune units
treatment probability | 0.9

arrival rate 0.3 patients / time unit

Table 4.2: Input parameters for Health Care System Simulation

of a health centre is the number of health care employees. This information from
[LCUWS8]:52 is shown in Table 4.1. Other input parameters from [LCUWSS):53
are shown in Table 4.2. Lomow’s simulation consisted of 170 Time Warp processes,
modeling 85 health centers and 85 villages.

Lomow mapped processes to processors in three ways, with increasing levels of
randomness. First, groups of closely interacting health centers and villages pairs were
mapped together on the same processor. This mapping was called Sub-trees. Second,
health centers and their corresponding villages were mapped to the same processors
in pairs. This mapping was called Random, Grouped (RG). Finally processes were
mapped randomly to processors—a mapping called Random, Ungrouped (RU).

Lomow et al. also varied the amount of feedback in the system. In the first case,
patients did not return to the village, so no feedback occurred. In the second case,
patients did return to the village.

Tables 4.3 and 4.4 show Lomow’s results. Lazy Cancellation consistently cutper-
forms Aggressive Cancellation. With no feedback, the difference in speedup between
Aggressive and Lazy Cancellation is minimal, staying within one unit of speedup.

o4

Number Aggressive Cancellation
of SubTrees Random Grouped | Random UnGrped
Processors | No Feed. | Feedback | No Feed. | Feedback | No Feed. | Feedback |
1 | 100 | 1.00 100 | 1.00 1.00 1.00
4 3.93 3.92 2.78 2.79 2.90 2.4
8 7.32 7.26 6.92 6.79 5.99 448
16 12.87 12.66 11.73 1146 9.43 5.27
22 15.55 13.21 16.26 15.11 12.59 7.05
43 28.45 23.37 27.86 21.07 21.48 11.90

Table 4.3: Aggressive Cancellation Speedup

Number Lazy Cancellation
of SubTrees Random Grouped | Random UnGrped
Processors | No Feed. | Feedback | No Feed. | Feedback | No Feed. | Feedback |
1 1.00 1.00 1.00 1.00 1.00 1.00
4 3.95 3.H 2.78 2.78 2.89 2.68
8 7.32 7.98 6.95 6.82 5.60 .10
16 13.05 13.04 11.75 11.57 9.33 8.97
22 15.97 15.48 16.46 16.07 12.82 12.16
43 29.24 28.84 28.74 27.92 22,24 20.84

Table 4.4: Lazy Cancellation Speedup

99

For example, processes mapped on to 43 processors, in SubTrees with no feedback,
using Aggressive and Lazy Cancellation have speedups of 28.45 and 29.24 respec-
tively. Even with a random mapping, Aggressive and Lazy Cancellation are closely
matched—with speedups of 21.48 and 22.24 respectively. With feedback, the differ-
ence between the performance of Aggressive and Lazy Cancellation becornes signif-
icant. The performance of the same 43 processors with feedback falls to 23.37 and
28.84 for Aggressive Cancellation and Lazy Cancellation respectively, for the Sub-
Trre mapping, and to 11.90 and 20.84 for the Random Ungrouped mapping. From
this single example, it is apparent that the assignment of processes and processors is
more important in the presence of a lot of feedback:.

Careful mapping of processes to processors not only decreases the performance
cost of feedback, but also reduces the lead Lazy Cancellation enjoys over Aggressive
Cancellation. Even with feedback, Aggressiv~ Cancellation with precesses carefully
mapped to processors in some cases outperforms Lazy Cancellation with randomly
mapped processes.

Lomow’s results show that mapping of processes to processors is important to
Time Warp performance. Lomow found that when the number of processors ap-
proaches the number of processes, the amount of speedup drops off. Also, the effects
of feedback which results in local rollbacks can be minimized by the use of a Lazy

Cancellation instead of an Aggressive Cancellation policy.

4.2.2 Gilmer

Gilmer in [Gil88] studies Aggressive Cancellation, or Time Warp without optimiza-
tion. He uses 1024 processes on 128 simulated processors simulated on a siplified,
time stepped model of the Time Warp system. Gilmer used the two following criteria

to measure effiaency:

¢ number of message events that are not cancelled divided by total number of

message events. Message events refers to both transmissions and receptions.

¢ advance of time for all of the processes divided by theoretical mazimum time ad-

vance. Theoretical mazimum refers to the time advance possible if no rolll ks

o6

occurred.

Gilmer varied the values of three parameters to determine their effect on performance:

message latency, message period and message destination.

message period is the frequency at which messages are sent by a particular process.

Two examples of message period are: constant and a probability distribution.

message latency is defined s message receive time (or the message’s timestamp),

subtract message send time. Message latency is always greater than zero.

message destination Gilmer only considered messages between processes, not mes-
sages with a common source and destination. Unless otherwise specified. all
observations pertain to a system with uniform distribution of messages over all

processes.

Message Period

The message period is significant in Conservative simulations, as it is messages that
advance the cock. If a process does not notify other processes as to the latest LVT,
1t may slow down the other processes (which must wait for notification that no events
with a smaller timestamp will arrive). Intuitively, in a Time Warp implementation,
the message period loses significance, as processes’ LVT advances, regardless of the
possibility of late messages. Gilmer noted only a small change in Time Warp efficiency

due to an increase in message period.

Message Latency

Gilmer expected that an increase in message latency would result in fewer rollbacks.
However, such a dependency was not observed. Gilmer attributed this to a corre-
sponding increase in message period due to the increase in latency. This double
increase corresponds to "changing the time resolution, which has little affect on effr
ciency.” [Gil88]47

cn
~1

Message Destination

Gilmer considers three instance of message destination distribution:
1. uniform probability distribution across all other processes
2. sequential selection

3. "probability distribution over processes in a distance within a neighborhood de-
fined by the process’s index number modulo the number of processes.” [Gil88]:45
The size of the neighborhood determines the proximity of the destination pro-

cessors to the source processor.

Gilmer found that the distribution of message destination had little impact on
system performance. However, he did note that sequential selection results in both
best and worst case performance, depending on how well the sending of messages is
staggered. Such observation is easily explained as all processors sending messages to
the same processor at the same time would be expected to perform poorly compared
to each proces sors sequential selection starting at a different offset, resulting in each
processor sending to a different processor.

When the size of the neighborhood is made smaller, there is a marked impact on
performance. Figure 4.1 shows efficiency improving as a direct result of a decrease in
the size of the neighborhood.

Gilmer also looked at the distribution of process times. A sample of the process
times distributiors is show.a in Figure 4.2. He observed "relatively stable, appearing
as a near normal distribution skewed slightly toward higher time values” [Gil88]:45
An increase in the difference between the GVT and the average LVT was noted. As
the LVT of isolated processes moved farther ahead of the GVT, rollbacks caused an
increasing number of anti-messages to be sent. However, the affect on performance
was not considered to be significant.

A significant factor in performance was load balance, as shown in Figure 4.3. The
decreased efficiency observed may be due to one processor falling behind i LVT, and

sending ’late’ messages to the ’less loaded’ processors. Gilmer, therefore suggests:

58

683 @ =0 =y

«

- Q0

ne om0 0" I

100 o

98 -
]
96 4
] 4000 cycles
128 processors
94 1024 processes

message period = 2
message latency = 2
message destination

92 | distribution:

trianglular neighborhood

P74 *
90 1N\

sequential uniform
distributiondistribution = message distribution neighborhood size

Figure 4.1: Effects of Varying the Size of Region
for Message Distribution [Gil88]:48

T J M 1 v) M J v

32 16 8 4 2 1

1 8000 cvcles

270 4 64 processors

{ 1024 processes

240 .| message period = 2

{ message latency =2
210 4 message destination
distribution: uniform

30 4

Process Time - Global Time

Figure 4.2: Process Time Distribution [Gil88):46
59

R I A O e)

4000 cycles
128 processors
90 | message period = 2
message latency = 2
- message destination
distribution: uniform
80 A
70 -

\‘ : ' ' ’ ' ' ' . i Processors wath
-1 0 +1 +2 +4 +8 +16 +24 +64
OXtra process

1023 1024 1025 1026 1028 1032 1036 1048 1088 Procesees

Figure 4.3: Effects of Load Imbalance
as Number of Processes Varies |Gil188]:47

60

" An implication of the large effect of load imbalance is that practical Time
Warp systems will need automatic facilities for balancing the computa-
tional load. This may include remote evaluation of functions as a way of

reallocating some work away from a highly loaded processor, or migration
of processes.” [Gil88]:47

One might speculate that if Lazy Cancellation had been implemented, such effi
ciency losses might be significantly decreased if careful attention is given to the map-
ping of Critical Path processes. Contrary to such speculations, West who was working
with all Time Warp optimizations makes a recommendation similar to [Gil88]. West
in [Wes88] suggests assigning a processor to monitor the status of each processor of

the simulator.

4.2.3 West’s Tests

West runs several simulations of computer processes accessing shared resources, or
communicating between each other. West ran a series of simulation using "full
implementation of a Time Warp Executive running on a simulated virtual multi
computer”.[Wes88]:71 Each simulation was designed to test specific simulation at-

tributes. and their effect on Time Warp's performance.

Reader and File Processes

The first five simulations involved 8 reading processes accessing 2 file processes. The
time required for setting up a read a file is assumed to be small compared to the
computations done by the reading processes. Results from the first five simulations
are shown in Tables 4.5 and 4.6. All results are with respect to Conservative Speedup
and Memory Requirements normalized to 1.

The first case consisted only of reads taking place, so no anti-messages occur,
except in Aggressive Cancellation. As evident from the results shown for Case 1,
Time Warp excels in this design. Note that Lazy Reevaluation speedup over Lazy

Cancellation is small, this is because Lazy Reevaluation is only recovering the file

61

b

Table 4.5: Speedup of Files and Readers *Sequential Speedup is normalized to 1

Table 4.6: Memory Requirements of Files and Readers *Sequential Memory Require-

10 Processes Speedup*

2 Files, Aggressive Lazy Lazy

8 Readers Cancellatign Cancellation | Reevaluation
Case 1 398 7.82 7.90

Case 2 0.92 2.37 2.49

Case 3 1.15 7.67 7.86

Case 4 1.00 7.29 7.63

Case 5 0.95 6.20 7.06

10 Processes Maximum Memory Size*

2 Files, Aggressive Lazy Lazy

8 Readers Cancellation | Cancellation | Reevaluation
Case 1 1.24 1.95 2.09
Case 2 1.72 7.08 11.92
Case 3 2.06 2.85 3.04
Case 4 3.28 3.67 4.80
Case 0.49 4.83 6.76

ments are normalized to 1

Ceredr mla

B b AL £l

pr N Frw el a | T e s e 4 LA

T ST S S TP S

e A bk S e AN o T Tl YD A a PR e

processes’ time, and this time is so small compared to the time necessary for the
readers to do their computations.

In the second case, again using the 8 reading processes accessing 2 file processes,
the processes are started with a difference of 1000 unit intervals in virtual time on
their clocks (staggered starting times). This means that each time the earliest process
makes a request, there must be a rollback. Two-hundred (200) reads were done by
each Reader.

In this case, Aggressive Cancellation performance suffered accordingly, as all roll-
backs involve sending all anti-messages immediately, as well as discarding all looka-
head computations. Lazy Cancellation and Lazy Reevaluation have comparable re-
sults to each other, because of the situation mentioned earlier, that the processing
time used by the file processes is relatively small, thus the time saved by avoiding
recalculating states is correspondingly limited.

Because of the staggered starting virtual times of the reading processes, the mean
variance of the GVT to LVT was larger. Thus, more states were saved, creating
greater memory requirenients. Lazy Cancellation went from needing 1.95 (sequen-
tial Mode using 1 Max. Memory Size) to 7.08 maximum memory size, while Lazy
Reevaluation went from needing 2.09 to 11.92 memory units.

In Case 3, the staggered starting times were continued but with only a 500 unit
interval in the virtual clocks. Instead of running the simulation for 200 read requests
per reading process, 25 sets of read requests were made by each reading process.
Each set involved 10 read requests, with a clock advance of 4000 units in virtual time
between each set. The aim of tlis design was to decrease the memory requirements.
Despite all processes rurnming at different LVT, fossil collection was possible after each
set of 10 read requests by each process. This results in memory requirements in the
range of 2 or 3, compared to the previous example in the range of 7 to 12.

In the final two simulations of 8§ reading processes accessing 2 file processes, the
500 unit interval staggering of virtual clocks is repeated for the same 25 sets of read
requests. However, the number of read requests in each set varies: 20 read requests
for the 4th test, then 40 read requests for the 5th.

63

Looking at the last three tests, cases 3, 4 and §, Lazy Reevaluation performance
suffers slightly, going from 7.86 to 7.63 to 7.06 as the number of read requests per

set increases, from 10 to 20 to 40. Also, as the size of read request sets increases,

the number of states saved per process increases accordingly, with a corresponding
increase in space requirements, from 3.04 to 5.80 to 6.76. However, memory re-
quir ements never reach the high of Case 2 Once again, this is due to the systern’s
dynamics affecting the effectiveness of fossil collection.

Aggressive Cancellation, while making slightly lower memory demands than Lazy
Reevaluation, performs significantly less than Lazy Cancellation. These results show
Lazy Cancellation enjoys significant speedup over Aggressive Cancellation when roll-

backs are confined to the local processor.

Ping-Pong Processes

West's second system consists of ' vo ping-pong processes These are two identical
processes which pass through two stages, after which a side-effect free message is sent
to the other process. The first stage mvolves advancing their LVT 100 units, using 5
seconds of computing time. In thesecond stage, they again use 5 seconds of computing
time, without advancing their LVT. The two processes have a staggered start, 1/2 a
cycle out of phase. This staggering causes rollbacks to occur each time a message is
sent. The aim of this design is to investigate the performance of Lazy Reevaluation
under almost optimal conditions. hecause theoretically, Lazy Reevaluation results in
highest speedup as the Critical Path is being passed from one processor to the other.
Each process has a lookahead queue of states that will be coasted through after the
processing of out-of-order side-effect free messages.

Only one simulation was done with this system profile. Aggressive Cancellation
results in a 1.27 speedup. Lazy Cancellation has a 1.33 speedup. Lazy Reevaluation
has a 1.82 speedup with only 1.13 Max. Memory size[Wes88):83 Remember, only two
processors are being utilized to obtain this 1.62 speedup. The low space requirements
are readily explained by the fact the two processes were merely 1/2 a phase out of

sync. Thus, GVT was never far behind cither INT, alloming fossil collection to

64

minimize space requirements.

By using tests where all messages were side-effect free, the benefits of the Lazy
Reevaluation mode were maximized: no states saved during a rollback were ever saved
in vain, as a side-effect free message, by definition, does not invalidate any lookahead
computations.

The following tests, namely Feedback cycles, Random Communication, and the
Game of Life, consist of less optimal environments for Lazy Reevaluation performance.
They involve the arrival of out-of-order messages that might invalidate all lookahead
states. In this situation, Lazy Reevaluation must suffer the cost of comparing states,
only to determine that they are non-identical, and that it is necessary to discard the

state on the lookaliead queue. before being able to move forward again.

Feedback Cycles

West’s third system design consists of cycles with heavy feedback. This setup was
created with the intention of gencrating heavy feedback, in order to observe the per-
formance of Time Warp when G\ T is held back by late messages and several rollbacks
occur. Messages in this system are to be thought of as customers. Customers are
served and then move on to the next process. Customers have a 20% probability
of dropping out of the system after being scrviced. Late customers are fed into the
system which also increases the nuniber of rollbacks. However, the changes to the cus-
tomer do not modifv the state of tlie process. Therefore, Lazy Cancellation and Lazy
Reevaluation will both benefit from fewer anti-messages. while Lazy Reevaluation’s
performance will also bencfit from the fact that nmch of the lookahead computation
need not be discarded. This design recalls Lomow’s [LCUW8S] study of the health
service described in Section 4.2.1.

Aggressive Cancellation, despite suffering from rollbacks, still had a 2.08 speedup
at the cost of 3.92 maximum memory requirements. In processing time, Lazy Can-
cellation performed twice as well, obtaining a 4.35 speedup, but at the tremendous
cost of 23.34 maxinum memory requirements. Lazy Reevaluation made major mem-

ory demands, up to 25.97 compared to the 392 of Aggressive Cancellation. Lazy

65

Reevaluation only observed a 4.48 speedup. This is only a 0.13 speedup over Lazy
Cancellation, despite recovering 90.70% of the lookahead computation time originally
lost in rollback. The rather small difference in speedup suggests that Lazy Reevalu-
ation is recommendable over Lazy Cancellation only if the computing costs are high.

With heavy feedback loops such as in this example, Time Warp is impractical. At

its fastest optimization, Lazy Reevaluation, Time Warp makes tremendous memory
demands; and at a reasonable level of memory requirements, offers a speedup of only

2.08 for 9 processes.

Ping Pong Cycle Example

West combined the attributes of the two previous designs—the ping-pong, and the
feedback cycle—to create the ping pong cycle. This test involves 16 processes with
some feedback, but without the large real time delays of the previous example. The
16 processors are divided into 8 sets of 2 ping pong processes. The virtual clocks
of the processors in the cycle are staggered, with 1/8 of a phase difference between
neighboring ping-pong sets. Once again the staggering of the virtual clocks was with
the intention of causing rollbacks to occur.

Speedups with 16 processors for Aggressive Cancellation, Lazy Cancellation and
Lazy Reevaluation were 7.51, 9.59 and 12.64, respectively. Lazy Reevaluation enjoyed
a noticeable performance improvement over Lazy Cancellation, despite the fact that
approximately 50% of the state comparisons failed. This can be explained by the fact
that 83% of the work lost in rollback was recovered. However, Lazy Reevaluation

presented major memory demands—24.70 as compared to Lazy Cancellation’s 9.76.

Random Communication

West then considered a system with random communication patterns. The system
consists of 8 process, on 8 processors, involved in random communication. This design
is used for two experiments.

Each process repeatedly goes through two steps. First, it sends a read only

request to a randomly chosen destination process. Second, it advances it LVT a

66

>

random number of unit intervals between 0 and 100.

In the second case of Random Communication, the two steps of the first tests of
Random Communication were again used, but a third step was added. A random
amount of computation (0.2 to 1.2 seconds) is done between each message.

Maximum memory requirements are low and speedup is good, with a speedup
of 6.91 for Lazy Reevaluation. These favorable results are due to the fact that all
messages are side-effect free (read only) messages.

Despite the randomness of communication, the GVT was able to advance regu-
larly, which kept memory demands reasonable. Also, rollbacks did not counteract
the affects of lookahead computations on the Time Warp performance.

Game of Life
West’s final design consisted of the game of life, as defined by:

Game of Life "The game is played on a board, the edges of which wrap
left to right and top to bottom, forming a torus. The board is ini-
tialised with various cells being alive. Each generation, a cell is alive
if, in the previous generation. it was alive and had 2 or 3 living neigh-
bours or if it was dead and had 3 living neighbours. A cell is dead in

any other circumstance. Each cell has 8 neighbours.” [Wes88):91
Two layouts of the game of life were studiced:

blinker the pattern remains stationary varying its size, blinking,.

glider the pattern is not stationary, gliding over the screen and varying in size.

In the glider pattern, Aggressive Cancellation with a 14.81% speedup outperforms
both Lazy Cancellation and Lazy Reevaluation at 11.53% and 11.58% respectively.
Due to the instability of the patterns created by a glider, less than 40% of the looka-
head states were valid and only 30% of the computation time lost during rollback
was recovered. Memory requirements did not surpass 4.06%.

West also implemented a check on processes whose LVT was above a certain limit

ahead of GVT. This was to control memory requirements. Two tests were run, one

67

with 5 x 5, the other with 10 x 10. Larger than 10 x 10 resulted in prohibitive
memory demands. Results showed that the check to limit memory requirements, also
hindered the speedup.

In the case of a glider, Aggressive Cancellation was expected to fare better than
Lazy Cancellation and Lazy Reevaluation. However, in the case of a blinker, which
results in lookahead computations not being discarded, Aggressive Cancellation was
again expected to fall behind.

West observes that Lazy Reevaluation consistently out performs all other imple-
mentations, at a generally high memory cost. Both Lomow’s and Gilmer’s results
recommend careful load balancing. They both witness marked performance improve-
ment when message traffic is limited to a smaller neighborhood, as described in Sec-
tion 4.2.2. Therefore, careful mapping of processes is also a concern. Gilmer noted
an increased number of anti-messages sent during each rollback when the IVT’s of
isolated processes move ahead of the GVT. This concern is mitigated with the use of
Lazy Cancellation and Lazy Reevaluation. Both of these optimizations respectively
reduce the number of rollbacks, and allow a process to quickly recover lost time due
to rollback. However, such recovery is dependant on the computation time associated

with states.

4.3 Conservative versus Time Warp

Different characteristics of simulations should be taken into account when choosing
between the Conservative and the Time Warp synchronization methods. The cost of

Time Warp is measured in terms of time, memory and message traffic:
1. memory costs to be able to rollback
2. time to recover from a rollback

3. communication traffic of anti-messages and erroneously sent messages

68

Memory

The first cost of the Time Warp method is apparent when an event arrives with a,
smaller time stamp than the processor’s local clock. In order to be able to rollback in
time, Time Warp must keep track of more information than the conservative method.
"The processor must have kept in memory enough information to be able to rollback to
the appropriate time. Therefore, enough memory must be available in order to save
all the information necessary to enable rollback. Depending on the simulation, the
Time Warp method can demand much more space than the Conservative Method.
This can put great demands on the processor’s local memory.

Two optimizations of Time Warp have even greater memory demands. Lazy
Cancellation and Lazy Reevaluation do not immediately remove cancelled messages
from their output queues. Therefore they can demand more space for their output
queue than Aggressive Cancellation. Lazy Reevaluation saves time by not discarding
states on the lookahead queue. Lazy Reevaluation therefore takes even more memory
space for both its state queue ar:d its output queue than other variations of Time
Warp.

A Conservative method of synchronization does not make such extensive memory
demands, as it does not rollback. However, blocking tables do take up a limited

amount of memory as described in Section 2.3.2 on deadlock detection and recovery.
Time
In a Conservative simulation, an event is not processed if there exist the possibility
that it might be processed out of order. A process’ cock monotonicaily increases,
it will never decrease. No clocks reverse, or decrease in value. A process will never
receive an event in its past, or a message with a timestamp less than the processes
current LVT.

As for the Time Warp method, a process schedules already available events, re-
gardless of the possibility that a new event might arrive with a smaller timestamp.

Even with an empty input link, a processor will continue to process events as long

as it has an event on its event list. In the Time Warp method a processor never

69

waits for an input link to be filled. Should an eveat with a smaller timestamp, or
a latc message, arrive, the processor will rollback to the appropriate time, undoing
all of the events with a greater timestamp than that of th: event that just arrived.
Th processor will only then be able to process the newly arrived event, and continue
forward computations. LVT’s are allowed to go backwards or to recede in time. Al-
though in the end, the Time Warp synchronization method does make sure the final
result is equivalent to if events are processed in the order of their timestamp, during
the simulation.

As aresult of Time Warp's strategy, processing time is wasted during a rollback.
Rollback-reinstating a previous state with the appropriate queue pointers-eats up
processing time. An optimistic simndation spends time rolling back that a conservative
simulation would spend moving forward. The optimistic simulation must "undo”
computations made before the arrival of a late message.

Figure 4.4 shows an example the cost in time of Conservative versus the cost in
time of Time Warp. In the two examples shown, message A has a smaller timestamp
than message B.

In the first case, shown in Part A, Time Warp performs better than Conservat.ve.
Conscrvative docs not process message A inmediately as there is a possibility that a
message with a small timestamnp might arrive. This does not occur. Message B has
a larger timestamp than message A. Time Warp had immediately started to process
message A, and its completion time is earlier than the Conservative process, by the
length of the Conservative wait.

In the second case, message B arrives first, then A arrives. In the Conservative
Method, once again the process waits on the possibility of the arrival of a message with
a smaller timestamp. Message A does arrive, and the two messages are processed in
order. Time Warp immediately processed message B upon its arrival, with the result
that when message A arrives, the process must rollback in time before being able
(o process the two messages in order. In this second case, Conservative completes
processing before Time Warp, by the length of time it took to Time Warp rollback.

The number of times a message arrives late becomes a factor in the Time Warp

70

P a1

R

[

Part A

A arrives Barrives
Conservative Wait - Handle A - Handle B .
Time Warp < HandleA Handle B .
S——
Cost of Wait
Part B
B arrives A arrives Cost of
Handle A Handle B Rollhack
Conservative Wait e andic > - andie > ——
Time Warp Handle B | Rollback Handle A R Handle B
- ——————— :

Figure 4.4: Conservative versus Time Warp |Wes88]:28

71

methods efficiency. As each time rollback is necessary, a time cost is incurred. The
cost wmight be the cost of a local rollback or a global rollback with or without recom-
putation.

With respect to the cost of time to recover from a rollback. [MWMS8)] identified

two items which determine the efficiency of Time Warp with respect to time:
o availability of events for forward computations
e speed of recovery

The Time Warp method prevents a processor from sitting idle. Time Warp op-
tinustically charges ahead in LVT. Time Warp realises its time advantage when its
optinusin pays off-—the processing done is not invalidated by the arrival of a late
message. However. this processing is dependant on the availability of events.

In the case where rollback becomes necessary, in order to reduce the time nec-
essary for recovery, Fujimoto, Tsai and Gopalakrishnan. in [FTGS8S). introduce the
design of a hardware chip " to minimize state saving and state management overhead.”

[FTG8S]:81

Message Traffic

Message traffic is also a cost incurred by Time Warp. Sending messages to cancel
erroneously s>nt messages creates conmunication traffic. As explained in the follow-
ing section, Lazy Cancellation has reduced this cost. Conservative synchronizations
can also incur a message traffic cost when sending null or no-job messages to update

LVT's.

Lazy Cancellation Benefits

For Lazy Cancellation, critical path time is no longer a lower limit. [Wes88]:48. Time
Warp optimizations sidestep this Conservative lower bound. Berry in [Ber86] shows
that Lazy Cancellation can outperform a Conservative synchronization methods. This
performance is possible because processes enjoy a speedup when other processes send

accidentally correct messages. Local rollbacks contain the detrimental effects of a

T2

;
P
y
:

rollback. and other processes are not held back. Lazy Cancellation enjoys a decreased
number of anti-messages and rollbacks. Evenif a rollback occurs, certain rollbacks will
not affect that speed of the sinulation, as only a limited percentage of the rollbacks
will be on the critical path of the simulation. [Wes88]:29

Infrequent message traffic is not the problem for Time Warp that it is for Con-
servative processes. Time Warp processes continue to process, even in the absence of
communication from other processes. Also, the extra bandwidth needed for sending
antimessages during rollback in Aggressive Cancellation is reduced, as not all anti-
messages are immediately sent. but stay on the output queue until the process’ LVT

exceeds their timestamp.

Lazy Reevaluation Benefits

Lazy Reevaluation generally saves time by being able to skip ahead to lookahead
states. When an out of order messages does not invalidate these previously calculated
states. they are used to advance the simulation after a rollback.

Lazy Reevaluation can speed up servicing of the critical path process faster than
Lazy Cancellation. For example. of two processes using the same server, one may be
ou the entical path When arollback occurs, and a nen-aritical path process is being
serviced before the critical path process. if the servicing is speeded by the “skipping
ahcad” charactenistic of Lazy Reevaluation after a rollback caused by a side-effect
free message. the critical path process will be more speedily serviced.

Lazy Reevaluation also causes a speed up of the critical path if the actual processes
that benefit from this “skipping alicad™ ae on the cnitical path of the sinulation.
Lazy Reevaluation actually saves time on the critical path of a distributed simulation
when the critical path switchies from one process to another, and the latter process
has done lookahead computations that were not discarded due to the arrival of an
out-of-order message.

For Lazy Reevaluation to be most efficient, processes must not store statistical
data concerning the simulation. Otl.erwise, the state comparisons performed by Lazy

Reevaluation described in Section 3.3.3 will almost invariably fail. Also, the time to

73

recompute the lookahead states must be high encugh to justify saving the state with
only the possibility of recovering the lookalicad computations. Should computation
time associated with each state be low, the time it takes to compare two states and
then skip the existing lookahead comyputations will offset the performuance benefit of
recovening lookahead computations, making Lazy Reevaluation uneconomical.

With correct forward computations, even when feedback is high, Lazy Reevalua-

tion can recover quickly.

Suraomary

The following is a brief summary of different characteristics of DDES to consider
when choosing a synchronization method.

If the system has a low message population. Time Warp is recommendable over the
Conservative method, because local clocks move ahead regardless of the possibility
of a late message. However. Time Warp incurs a memory cost. This cost, only
affordable by a DDES with sufficient memory-. is offsct by an improvement in speedup.
Time Warp shows the greatest speedup improvement over Conservative method when
processes arc not closely synchronzed.

The cost of implementing a conservative method of synchronization is measured
in terms of communication and waiting time. These costs become greater if processes
communicate infrequently. In such cases a high communication overliead is incurred
to keep all processes up-to-date on the IN'T's of the other processes. Also, processing
time is wasted by processcs waiting on other processes with smaller LV'T's.

Fujimoto identified the lookahead function and message traffic frequency as indi-
cators of the efficiency of Conservative synchronization in systems where all processes
are identical. However, message traffic often varies considerably between processes,
as do comnmunication and memory requirements. As a result, analysis using these
simple measures is not always sufficient. TimeWarpTest (TWT), a software tool,
has beeri developed as part of this thesis to perform an analysis of more complex
distributed simulations. TWT is expected to help a user choose between the diverse

synchronization options currently available.

&

Chapter 5

Description and Typical Use of
TimeWarpTest System

When a simulation is to be distributed, it is necessary to decide on the type of
synchronization to be used. The TimeWarpTest (TWT) program is a tool which aids
in the decision of which synchronization method to choose. Its inputs and outputs

are outlined here, as well as the attributes required of a TWT user.

5.1 Why use TimeWarpTest?

The cost effectiveness of the Conservative or Time Warp synchronization methods
depends on the simulation. By using TWT one obtains the information necessary to
make an optimal choice. TWT has been designed and tested to match the perfor-
mance of both a Conservative and a Time Warp inplementation of a DDES. TWT
collects statistics which can be used for making deasions at two stages of the imple-
mentation of a distributed simulation. First, TWT can be used to decide if Time
Warp is a possible choice under a given set of resource constraints. Second, once the
Time Warp method has been chosen, TWT outputs can be used to help optimize
simulation. For example, check if the current mapping of processes to processors is
suttable.

‘The main choice between Conservative and Time Warp synchronization, and the
choice between the different modes of Time Warp implementation rest on two main

criteria, namely, speedup potential and memory cost. The Time Warp method may

or may not offer cost-effective specdup over the Conservative method. The memory
cost incurred by Time Warp depends upon the application. The TWT svstem collects
statistics on these two vanables. First, TWT determines specdup [, ,voatial. When a
simulation is run, TWT records its length. By comparing the length of a Conservative
simulation with that of a Time Warp simulation, it is possible to deduce the speedup
potential. Second, TWT keeps tr~ck of the maximum lengths of the incoming and
outgoing message queucs, and the state queue. Theze statistics are used to determine
the memory cost. With both the potential speedup and the memory cost defined, an
informed decision concerning the method of synchronization can be made.

TWT can also be used when considering the viability of a particular mapping
of processes to processors for a distributed simulation. TWT not only generates
memory costs for an entire simulation, but also collects statistics on memory costs
per processor. If a particular mapping has been chosen, TWT may demonstrate that
such a mapping has resulted in one processor moving far ahead in simulation time,
thus making disproportionate memory demands. This information can be used to

make a more appropriate mapping of processes to processors.

5.1.1 Verification of TimeWarpTest Results

TWT has been designed to measure the potential speedup and memory cost of a
distributed simulation. In order to verify the reliability of TWT results, examples of
Time Warp performance reported in the literature were used. A number of studies of
the Time Warp method of synchronization appear in the literature: [BJBESS, Gaf88,
Gil88, JefESS, LCUWSS, WesS8]. However, none offers the plentitude and diversity
of performance results of West’s paper [Wes88]. West, in [Wes88], includes an in
depth study of Time Warp’s performance in different circumstances. West uscs the
Time Warp Executive and sinulates the distributed system on which the Executive
is run. This system is a multicomputer consisting of a set of computing nodes. All
processors are connected through reliable comimunication lines with a constant 20

millisecond delay. West’s results using the Time Warp Executive are compared to
those generated by TWT,

Four test cases, Case A, Case B, Case C and Case D, with distinct charactenstics
have been used for testing the TWT systan. These four cases are used to compare
the speedup and memory costs of a Time Warp implementation.

Case A is the Readers and Files: Example 1 from [Wes88]. The system is made
up of ten concwrrent processes. Eight of these processes are Readers, and two are
Files. Readers randomly clioose a File after computation times ranging randomly
between 9 and 100 units and send a request. A constant 0.5 units are added to the
computation time necessary to process a response, then the process is repeated. The
two files handle requests consuming a constant 10 units of computation tume. Two-
hunidred read requests are generated hy each Reader and when all Readers and Files
become inactive, the sunulation terminates. Unless otherwise stated, computation
cost associated with a saved state i1s the same as the increase in local virtual time
specified between message sends. The TWT specification of the same systen are as
follows. The Readers access a randomly chosen File after incrementing virtual time
randomly between 10 and 110 units. When a response is received, the coinputation
tune associated with the saved state 1s randomly distributed between 0.5 ard 100.5
units. This is an approximation of the system described in [Wes88]. The difference
m input between West andd us s due to TW being a sunulator. As mentioned
earlier. sunulation models are abstractions of actual systems., TWT does not emulate
the actual process performance. but merely simulates processes’ message traftic and
computation time using random variables. The processes in West’s tests have been
abstracted to message traffic and computation times.

The Ping Pong Example [Wes88):82 is Case B. This example is made up of two
identical processes which pass repeatedly through two phases. In phase 1, virtual
time 1s inaemented 100 units, and 5 seconds of computation time is recorded. Then,
n phase 2, virtual time is incremented 100 units with no increase in computation time
and a side-effect. free message 1s sent to the other process. The second process starts
only after the first process has completed phase 1. TWT input specifies that the two
processes increment their local virtual time 200 units and then send a message to the

other process. When a message is received, the computation time associated with a

—

Synchronization Memory
Method Requirements

Al A2 Bl B2[Cl CX][DI D2
Agpressive 1.24 1381109 118|137 147206 231
Lazy Cancellation | 1.95 229 (111 1.25[140 1.58(285 3.33
Lazy Reevaluation | 209 246[1.13 127[1.74 195[3.04 3.58

Table 5.1: Memory Requirements: Time Warp and TimeWarpTest Results

saved state is 10 units. The starting times of the two processes are staggered.

Case C, the Randoin Communication Example in West's paper [Wes88]:89 consists
of 8 identical processes which randomly communicate with each other. A process
sends a read only request to another randomly chosen process. It then advances its
virtual time randomly between 0 and 100 units. The computation costs of servicing
requests and processing their results is the same as in Case A. No approximations
are involved and West'’s example is used as is.

Case D, Files and Readers: Example 2 from [Wes88], is an exact duplicate of
Case A, except that the processes start at tume intervals of 500 units.

Figure 5.1. generated from the results in Table 5.1, shows the TWT memory cost
results contrasted with West’s results for the four cases. Cases Al, B, C1, ar.d D1
refer to West's results, while A2, B2, C2, and D2 refer to TWT results. This labelling
policy will be used for all graphs and tables.

Memory Requirements

From Figure 5.1, which is a plot of Table 5.1, it is evident that TWT exaggerates
memory use. The four test cases show that TWT consistently over-estimates the
memory use by approximately 10-20%. Since TWT is a simulation where the desti-
nation of messages is determined randomly, it is quite possible that occasionally one
of the processors does not receive any messages for a long time. As a consequence,
this process will hold back the global virtual time (GVT). This inhibits the fossil

collection for recovering memory. Fossil collection, when inhibited, increases memory

78

3 Time Warp

TWT

g
™
<
=
Q
=
E =
= &
(N
s SRR

” : betrivive
| R S O IS SN RN S

////////////V/ ////////

FOSCSONERONNNNANS 775 N0y S s

L/,/////////////////

TR T
a/» WA

Sooa

e e

OSSR syt~

L]
| NS A

R

$5 et

Lazy Reevaluation

“m\?.(ey A Nyt z....v /«./

N

3 m”ﬂ.wm EHERRNS S A w::. ¥

ABJC

"A B C D
Time Warp and TimeWarpTest

S

SR 3 W = -
LR T FLIS T LY

CD

R sy

~

N
A

Lazy Cancellation
Synchronization

AOOOURNRANNGANNT S ,/////////
é:wz ity *

Sirand A

AB

T

ONUUNRANANOUNROUNNNNNNNANNY Vs v 5 SONWNS

* normalized to sequential results

rs>

rvrrin rorty
iy, N W T % R,

2/%/%/M m%/%/ﬁ

EIneT

mm//ﬂ/ﬂ/ﬂ/ﬂ/ﬂ/.././ﬂ/ﬂ/f/ﬂ///

A B CD

ABrC

o Ry B v B sy

Aggressive Cancellation

Figure 5.1: Memory Requirements :

N

e eT 3

Lazy Reevaluation

A B C
: Time Warp vs. TimeWarpTest
79

Synchronization

Aggressive Cancellation Lazy Cancellation
Figure 5.2: Speedup

Synchronization Speedup
Method Result

Al A2 Bl B2|Cl C2
Aggressive 398 350127 116|361 331
Lazy Cancellation | 7.82 6.45(1.33 121[6.76 6.17
Lazy Reevaluation | 790 6.511.82 1.51]6.91 6.30

Table 5.2: Speedup: Time Warp and TimeWarpTest Results

cost. This distortion is not apparent in cases B and C for two different reasons. In
Case B, with only 2 processes involved communicating to each other, neither could
fall behind. In Case C, no distortion occurs due to the fact that the processes in this

case are already conmmmicating randomly.

Speedup

The next performance measure to be studied is the speedup observed by TWT.
Table 5.2 holds the speedup information for cases B and C, used to gencrate Fig-
ure 5.2. Case D is not included as its results offer little contrast to those of Case A.
Figure 5.2 shiows that TWT 1s pessimistic compared to West's results. This pessimism
is again in the range of 5-20% of the actual speedup. Of interest, is that, Case A
shows a more marked difference in speednp. This can once again be explained by the
distortion caused by random munber generation mentioned earher. When a process
has no incoming messages to process, and its computations are linked to incoming
messages, if the process is forced to wait on the arrival of messages, computation time

is lost, with a consequent drop in speedup.

5.2 TimeWarpTest Inputs

In order to run a simulation, the user must not, only describe the behaviour of the
processors to be simulated, but also the environment in which the simulation is to

run.

80

3
3
o

R S SR T -

5.2.1 Global Inputs

Global inputs determine the environment in which the simulation is to be run. They

affect all processes in the simulation. The three most important global inputs follow.
1. type of synchronization to be used
2. number of processors in the simulation
3. maximum length of simulation (GVT)

TWT allows a user to run simulations interactively, changing the environment be-
tween simulations. Therefore, a user can run a simulation through all four types of
synchronization without having to re-enter all the relevant data. All input values can
be modified between simulation runs except the number of processes

The maximum length of a simulation gives the user control over how long the
simulation 1s to run. If the user wishes to see a snapshot of the simulation at a
particular time. The sinulation will stop at this GVT, regardless of if the simulation

has completed.

5.2.2 Process Inputs

Inputs for the individual processes’ behaviour are concerned with message traffic.
e frequency at wluch outgoing messages are sent
o destination process(es) for outgoing messages
o message type distribution

The frequency of outgoing messages controls the time interval in local virtual time
(LVT) between message generation. Destination processes indicate the processes
that will be receiving the messages and according to a given probability distribution.
The distributions available range from random, normal, poisson, to constant. TWT

distinguishes between two main message types:
o side-effect free

81

e rollback

If a message is not a late message, all Time Warp synchronizations receive it in the
same way, saving the current state, then processing the message, including it on
their incoming message queue. However, if a message 1s late or 1s an anti-message,
it is treated differently, depending on its type. If a side-effect free message arrives
late it is treated in the same way by all Time Warp synchronizations in TWT. It is
simply processed as if it was received on time with no rollback. If an anti-message
for a side-effect free message arrives, again, no rollback occurs. Input concerning the
percentage of states recovered is only required for Lazy Reevaluation.

Changes in the frequency of fossil collection affect the average amount of memory
space used. Fossil collection is the rec~very of memory space by relcasing incoming
messages, states and outgoing messages that are no longer needed in case of rollback.
A simulation camnot rollback past the local virtual time of the slowest process in
the simulation. Therefore, before fossil collection occurs it is necessary to determine
the local virtual time (LV'T) of the slowest process. Tlus lowest virtual time is called
global virtual time (GVT) because all processes have reached and passed this point in
simulation time. Each time fossil collection occurs, it is necessary to calculate GVT.
Thus, fossil collection releases memory, at the cost in time of calculating the global
virtual time. Some systems will benefit in memory saved by regular fossil collection
at small time intervals. However, others with large differences in LVT’s will gain
miniral memory benefits from fossil collection at small time intervals. For example,
a number of closely synclironized processes may have state queue lengths ranging
from three to five. After fossil collection, these same processes will have state queue
lengths of one to three. This is a drop in memory cost (assuming a corresponding
drop in the message queues) of 40%. In contrast, a number of largely unsynchronized
processes have state queue lengths of three to forty. After fossil collection, state queue
length drops to one to thirty-nine. (Note there is not a one to one correspondence).
Memory recovered amounts to less than 3%. Each time fossil collection occurs a time
cost is incurred. On the other hand, if the simulation is using almost all memory

available, then regular fossil colleetion becomes a necessity. Study of the optimal

S2

Percentage of Lazy Cancellation Speedup
(only) Local (% = actual /ideal speedup)
Rollbacks A AA | B BB
0 3.48 (34.8%) 3.60 (36.0%) | 1.15 (57.5%) 1.22 (61.0%)
20 3.99 (39.9%) 4.33 (43.3%) | 1.17 (58.5%) 1.27 (63.5%)
40 4.66 (46.6%) 4.76(4.76%) | 1.18 (59.0%) 1.35 (67.5%)
60 512 (51.2%) 5.60 (56.0%) | 1.18 (59.0%) 1.40 (70.0%)
80 5.87 (58.7%) 6.24 (62.4%) | 1.20 (60.0%) 1.47 (73.5%)
100 6.45 (64.5%) 6.77 (67.7%) | 1.21 (60.5%) 1.52 (76.0%)

Table 5.3: Dependency on Percentage of Local Rollbacks

points for fossil collection is an altogether different problem which is worth being
addressed i its own right.

5.2.3 TimeWarpTest Dependency on Input

TWT, as mentioned in Section 5.2.2, has three inputs related to message traffic in
the system to be simulated. In addition to specifying the traffic use between pro-
cesses, the user is required to indicate two additional pieces of information in the form
of percentages. First, the user must indicate what percentage of messages will cause
rollbacks; second, what percentage of messages will cause recomputation of states un-
processed due to a rollback. The unprocessing of states is explained in Section 3.3.3.
The following paragraphs indicate the importance of accuracy in these two sepa-
rate inputs, depending on the characteristics of the system. Note that Conservative
synchronization makes no distinction in message types, aud only Lazy Reevaluation

makes a distinction between messages causing recomputation.

Dependency on Rollbacks

The arrival of a late message causes one of three courses of action.

—

. no rollback

o

. local rollback only

(%]

. local and global rollback

83

Percentage Lazy Reevaluation
States Speedup
Recovered A¥ | B*
0 3.46 (34.6%) | 115 (57.5%)

20 3.73 (37.3%) | 1.22 (61.0%)
40 4.10 (41.0%) | 1.26 (63.0%)
60 4.98 (49.8%) | 1.36 (68.0%)
80 5.45 (54.5%) | 1.40 (70.0%)
100 6.48 (64.8%) | 1.48 (74.0%)

Table 5.4: Dependency on Percentage of States Recovered
*all late messages cause Global Rollback (Local:0%, Global:100%)

Which action is taken depends on the message type. Three different message types
are possible in TWT. All three message types are applicable for Lazy Cancellation
or Lazy Reevaluation simulation. The three message types are R’ for messages that
cause global as well as local rollbacks, 'L’ for messages that cause only local rollbacks,
and 'F’ for side-effect free messages, which cause no rollbacks. Global refers to all
rollbacks that cause relevant outgoing messages to be cancelled. Therefore, global
rollbacks do not necessarily cause all processes in the system to rollback, but rolls
back only those processes which are affected. If all messages cause global rollback,
then Lazy Cancellation will send as many anti-messages as Aggressive Cancellation.
However, if some messages cause just local rollback, Lazy Cancellation will send fewer
anti-messages, and benefit from fewer consequent rollbacks. Nonetheless, the benefits
of few global rollbacks depends on the simulation.

Two cases, A and B, are chosen. Case A corresponds to 10 processes, 8 Reader
and 2 Files. Case B is a ping-pong example of 2 identical processes. Computation
times are changed. Case AA is derived from Case A by doubling the computation
time. Case BB is dc..ved from B by increasing the computation time from 10 to 40.
This was done to study the impact of computation time. The parameter varied is
the composition of the Local vs. Global rollback induced by the straggler messages,
both summing up to one-hundred percent.

As seen from Table 5.3's last row, the doubling of computation time in Case A

34

&

o
ad

BB

el
*

v

—a B

1 ! v Y r

—L}

T
0,100

T
20,80

|
40,60

1
60,40

T
80,20

M |
100,0

Ve W

< % local, % global rollbacks caused by late messages >

Figure 5.3: Dependency on Percentage of Local Rollbacks

¢

o
[\
o-
[
(=]
=2
o
[o2]
(=]

Percentage of States Recovered

120

Figure 5.4: Dependency on Percentage of States Recovered

85

and the quadrupling of the computation time in Case B indeed shows improvement,
but not significant. The increase shows the behaviour of TWT as one would expect.
The significance or insignificance of the increase is due to the dynamics of the system.
The dynamics of the system is due to several factors. The number of processes, the
homogeneity or heterogeneity of processes, the types of messages, the percentage of
distribution of these messages, the type of synchronization method used, etc. The
dynamics of a system are hard to quantify.

The pair of Cases A and AA are much more dynamic than the pair of Cases B and
BB. The spread for A and AA is 3.2% (67.7% - 64.5%) whereas that for B and BB
is 16% (76.0% - 60.5%). What we have conducted is not an exhaustive test. It, the
sample, shows when the dynamics is more, the increase in computation time affects
the change in performance in a lesser or less consistent manner than otherwise. To
verify this conjecture an elaborate experitnental procedure can be carried out with
TWT.

In order to investigate how the percentage of states recovered affects the speedup,
the cases A and B are chosen for a specific operating point of 100% Global and 0%
Local Rollback. The result is shown in Table 5.4 and is also shown as a plot in
Figure 5.4. As one would expect, as the percentage of states recovered increases, the
speedup increases for both Case A and B. This again confirms the correct functioning
of TWT.

The percentage of state recovery plays a more important role in the Case of A
than in the Case of B. This is visible form the fact that A increases from 34.6% to
64.8% (30.2%), as opposed to B varying from 57.5% to 70.4% (12.9%). Time Warp
with Lazy Reevaluation provides state recovery. So when the dynamics of a system

is expected to be large, the above-mentioned method of synchronization should not
be ruled out quickly.

5.3 TimeWarpTest User profile

I'WT is designed for simplicity of use and convenience. TWT can be used interac-

tively by the user working at a terminal, or it can be run with file input and output.

86

However, there are many complexities behind this non-threatening exterior. Because
a user’s needs change at different points of implementing a simulation, two categories

of users are identified:
e general user
o Time Warp specialist

As this section will show, a user will move from general user to Time Warp specialist

with the use of TWT.

5.3.1 General User

The general user uses TWT to make a decision concerning the most suitable type
of synchronization for a distributed simulation. The user needs knowledge of the

following:
1. the system to be simulated
2. the message traffic profile of the system to be simulated
3. the distributed system architecture on which the distributed simulation will run

4. user priorities concerning the simulation performance: Is speedup more impor-

tant or limiting memory use more important?

Before a simulation can be run the user must describe the system to be simulated
to the TWT interface. The necessary inputs are described in depth in Section 5.2 enti-
tled TimeWarpTest Input. The general user simply needs a superficial description
of the architecture, i.e. the number of processes.

The message traffic profile of the system is the most important knowledge nec-
essary to any user of TWT. A general user must have the necessary statistics, or
approximations of them, to be able to faithfully describe the system to be simulated.

The general user, in order to benefit from TWT results fully, also needs informa-
tion concerning the architecture to be used by the distributed simulation. If memory

87

3
i
;
i

space is freely available, the general user will have more flexibility choosing a syn-
chronization method than if memory space is more limited. For example, if TWT
results indicate a trade-off is necessary between speedup and memory requirements,
this option will be eliminated if memory is at a premium. A basic knowledge of the
hardware environment on which the simulation will run is thus recommended.

The "priorities” of the simulation are also important. For example, if time is a
major concern, the general user will be more likely to accept extremely high memory

costs in exchange for a marginal increase in performance.

5.3.2 Time Warp Specialist

A Time Warp specialist is the general user who has decided to use a Time Warp
synchronization method, and is looking to optimize the Time Warp performance. A
Time Warp specialist will need all the knowledge required of the general user, as
well as one other area of expertise. This individual must understand the underlying
structure of the Time Warp Synchronization method, and its many modes. This
knowledge is necessary so the person can, with the extended output available from
TWT, better understand the dynaniics of the system under study and make informed
deaisions.

For example, a future programmer of a simulation to be distributed using Time
Warp synclironization, as a Time Warp specialist on TWT, can run some tests with
the message traffic expected in the system. On close examination of the output,
it may be discovered that a high number of messages to a particular process cause
rollback, and require reevaluation. If this process happens to be on the critical path of
the simulation, the programmer will be advised that extra effort to make messages not
alter the state in this particular process would be worthwhile. Careful consideration
may prove that such changes are impossible to make; however, if such changes are
feasible, significant improvement in the performance can be enjoyed. For example,
if statistics are being kept that cause state changes at every message receipt, this
otatistic collection can be moved away from this critical path process. Examples

of analysis of TWT output and decision making based on such output are given in

88

Section 5.4.1.

5.4 TimeWarpTest Outputs

TWT has outputs of particular interest to both for the general user and the Time
Warp specialist, respectively. Therefore outputs are divided into two categories: gen-
eral and extended.

The general user is simply interested in finding out if a particular simulation scft-
ware would benefit from distribution using the Time Warp Method of synchronization
and, if so, at what cost. This person is not interested in the number of messages or
anti-messages sent, nor the average number of states saved. For this individual, TWT

offers two pieces of information:
1. the maximum memory requirements per processor
2. the length of the simulation

The maximum memory requirements are generated based on the maximum lengths
of the three queues in which Time Warp processes hold all their information. The
incoming and outgoing message queue lengths are considered in terms of single units
of memory. However, the state queue, because a state takes up more memory space

1an a message, is weighted.

The Time Warp specialist, having already decided on Time Warp, must now

decide two things.
o which of the Time Warp optimizations would be advisable to use.
o can the distributed simulation be modified to optimize Time Warp performance.

In order to answer the second item, the Time Warp specialist has a greater interest
in Why?: why Lazy Cancellation shows so little improvement over Aggressive?; why
Lazy Reevaluation shows so much improvement over Lazy Cancellation? For the
Time Warp specialist the answers to these questions are in the ertended output of

IT'WT. The ertended output includes, among others, the following statistics:

&9

o number of anti-messages sent

¢ number of rollbacks

e computation time lost (per provess)

o total computation time lost

e computation time recovered

o message and state queue lengths (minimum, maximum, average)

o difference in local virtual time between fossil collections (minimum, maximum,

average)

The extended output includes the above statistics not only for the simulation as
a whole, but also, where applicable, for each processor.

Before deciding on a synchronization method for a DDES, a programmer can run
some tests on the application design using TWT. For example, if all Time Warp
implementations use a great deal of memory then Conservative synchronization may
be the optimal choice.

On the other hand, if sufficient memory is available, then a choice is necessary
between Time warp optimizations. If this is the case, the user must turn to the
extended output. The number of anti-messages, the number of rollbacks, the com-
putation time lost, as well as the computation time recovered can all be used as
guidelines. These results will guide the programmer in the design and implementa-
tion of a distributed simulation. For example, if the memory costs are comparable
between Lazy Cancellation and Lazy Reevaluation, but at the same time the speedup
from Lazy Reevaluation is less, the programmer will know that it is not worthwhile
spending time carefully structurin~ nessages to not alter the state of the receiving
process. The programmer will simply settle on Lazy Cancellation. In a different case,
the programmer may notice that memory costs are comparable between Lazy Cancel-
lation and Lazy Reevaluation, but the speedup from Lazy Reevaluation is noticeably

better. On looking at the number of states unprocessed, the amount of computation

90

time recovered, the programmer will sec that the speedup is due to large computa-
tion times being recovered. The progranuner will thus know that it is advisable to
keep as many messages as possible from altering the state cf the processes, to keep
the state changes ‘o a minimum. If this allows more states to be recovered it may
significantly increase the computation times recovered, and the user will be advised
to chocse Lazy Reevaluation.

When mapping a number of processes to a number of processors for distnibution,
it is advisable to minimize the number of messages that will cause glebal as opposed
to only local rollbacks. This may result in mapping two processes that interact highly
to one processor. However, when using TWT it might be noticed that the maximum
and average difference in Global Virtual Time (GVT) between processes is high. but
little speedup is occurring. Normally, with a high difference in GVT. tlus would
suggest that processes are able to move ahead at their own speeds without a great
deal of synclironization. They may occasionally interact, with resulting rollbacks. but
generally these rollbacks are recovered quickly with Lazy Reevaluation. If, however,
the simulation does not enjoy a high speedup, this would suggest that one process is
holding back the entire sinnilation. The user, with these results. will reconsider the
current mapping of processes to processors.

As shown by Lomow et. al. in [LCUWSS], and describec’ 'n Section 4.2.1, the care-
ful mapping of processes to processors can improve performance. TWT output allows
the user to possibly detect a poorly mapped simulation by indicating the nunber of
anti-messages. A high number of anti-messages might indicate high message traffic

between processes on erronecusly or inefficiently mapped to separate processors.

5.4.1 Examples

Based on the characteristics of the distributed sv and the user’s priorities, TWT
information can be used to guide design considerations, as well as help the user make
the most benefical trade offs between speedup performnance, memory requirements,
and even design and programming time.

In order to further illustrate how decisions can be made using the TWT output,

91

Case | Memory | Speedup | Anti- | Rollbacks | States | Computation
Require- Messages Recovered | Recovered
ments
*Cl low low - - - -
C2| low med - - - -
*A3| med low high high - -
A4| high high high low - -
*L5| med med low med - -
6] hgh ngh low low - -
*R7| high med high high low high
R§| med ligh lngh lugh high med

a number of example outputs are presented in this section. For a more methodical
exanunation of TWT results, and the consequent actions to be taken, the Table 5.5

has been created, with the following letters indicating the appropriate synchronization

Table 5.5: Generic Syndironization Results

method or optimization:

*C Conservative

*A Aggressive Cancellation

*L Lazy Cancellation

*R Lazy Reevaluation

Table 5 3 is a generic statement about different synchronization methods. The two
rows for each synchronization method in this table show typical variations possible
within that method. When the TWT user has an adequate knowledge about the

simulation problem at hand, quantitative estimates can be obtained for the relative

values shown in this table.

Table 5.6 shows the user decisions based on the information in Table 5.5. These

user deasions are made after considering both memory and communication con-

straints, as discussed in the next few paragraphs.

If Memory | If Conununication TWT User
“ Available is | Bandwidth is Options are Choices
low | not considered C1, C2 C2 (med speedup)
med high A3, L5, R8 R8
med low L5 L5
high high A4 16. (R8) A4.L6. RS
high low L6 L6

Table 5.6: Considering Memory and Communication Constraints

The Conservative scheme is the only method with low memory requirements, so
if memory is at a premium, the user is rather limited in available options. If the user
considers a medium speedup to be sufficient to offset the overhead of distnibution,
then the user with results corresponding to Case C2 may go ahead with a distribution
using Conservative synchronization. On the other hand, the same user with results
corresponding to Casc C1 might decide that distribution is not worth while. The
low and medium (med) are subjective estimates. The TWT user can run TWT
with appropriate inputs to get quantitative figures to help in the subjective decision
making.

If the user has sufficient but not large memory available, cases A3, L5, and & may
be of interest due to their medium memory requirements. However, Case A3 shows
a low speedup, with a high number of anti-messages and rollbacks. Tlus case occurs
when Aggressive Cancellation produces enough anti-messages and rollbacks to cancel
any benefits of lookahead computations. Lazy Cancellation or Lazy Reevaluation are
two options. Case L5 has a low number of anti-messages and fewer rollbacks, making
it a better choice than A3. In the case of RS, the high number of anti-messages and
rollbacks are somewhat offset by the high number of states recovered. If the user
has a limited communication bandwidth available, the user will choose L5 for its low
anti-message traffic.

In the case of a user with a great deal of memory available, the user could simply
concentrate on the speedup available. However, if message traffic is a concem, the

number of anti-messages sent might also be a consideration. For example, although

93

AN

User Judgement Based on TWT Results User Strategy
Lazy Cancellation | Lazy Reevaluation | User Speedup Requirements
Memory | Speedup [Memory | Speedup Medium | High
med med high ligh | choice of both Lazy
depends on | Reevaluation
Memory Avail.
med med lugh med Lazy consider
Cancellation | improving the
state recovery
rate

Table 5.7: Where to Consider State Recovery

cases A4 and L6 show ligh speedups (as well as R8 with just medium memory
requirements), the user might opt for Lazy Cancellation, which is Case L6. due to
the lower anti-iessage traffic.

Forward computations lost and recovered during rollback are also a concern in a
Lazy Recvaluation simulation. If a large percentage of states (and their computa-
tions) are recovered, but speedup enjoved over Lazy Cancellation is small, then Lazy
Reevaluation might not be considered worthwhile because of its memory demands.
If, on the other hand, Lazy Reevaluation’s memory demands are comparable to Lazy
Cancellation’s memory demands, but Lazy Reevaluation enjoys a better speedup.
Lazy Reevaluation would be the appropriate choice.

If Lazy Reevaluation is not recovering any forward computations. the user might
consider improving the state recovery rate. One way to do this is to verify if minimal
statistics collection is occurring at states. Since statistics collection may regularly
change the state of the process, newly generated states will rarely match unprocessed
states. The user has the option to investigate whether a modification to the statistics
collection process might improve the state recovery rate, resulting in a significant
speedup. Table 5.7 shows such an instance.

If memory is a concern, the user will want to minimize queue lengths seen in the
TWT output. Queue length may be kept minimal by an optimal frequency of fossil

collection. In order to check that fossil collection is occurring at an efficient rate, the

94

[Time Lapse __| Delay becween | User Stra‘egy
l Maximum | Minimum | Average | messages on Fosail
Value Value Value Collection
1000 0 105 9 time units | increase frequency
50 time units leave as 1s
Table 5.8: GVT Results
Elements | Maximum | Minimum | Average
Released | Value Value Value |
incoming messages 47 16 29 |
state 52 17 31 |
outgoing messages 59 19 39 |

Table 5.9: Fossil Collection Results Case 1

user must look at two items:
e global time lapse since the last time fossil collection occurred
o the number of elements released during fossil collection

All TWT output must be analyzed in the context of the input. Depending on the
nput, the same output might end in different decision choices. Table 5.8 presents

two different inputs. We will assume processes are generated at two different delays:
» 5 time units (Case 1)
e 50U time units (Case 2)

And average time lapse of 105 units between two successive fossil collections would
mean a processing of an average of 21 (105/5) messages in the first case and 2 (105/50)
messages 1n the second case. In order to decide on fossil ccllection, the Time Warp
specialist must look at the average number of messages and states released, the right-
most column in Table 5.9. These values should be closer to zero because a low value

would mean fewer states and messages were retained. If the user sees high values as

95

Elements | Maximum | Mimmum | Average
Released | Value Value Value
incoming messages | 10 1 4
state 8 0 2
outgoing messages 14 0 5

R

Table 5.10: Fossil Collection Results Case 2

Large User Strategy
Queues
all processes increase frequency of fossil collection
one process (or few) reconsider mapping

Table 5.11: Fossil Collection Frequency vs. Remapping

shown in Table 5.9, this would indicate that an increase in fossil collection frequency
would be worthwhile.

In the second case, with processes generating messages every 50 time unit:, on the
average, fossil collection occurs after each process has processed only two me sages.
Table 5.10 shows fossil collection results for Case 2. In this case, the frequen-y of
fossil collection is acceptable.

Generally, if the number of elements released is low to medium, mapping is good,
and the frequency of fossil collection might be decreased if memory is available and
speedup is a top priority. If the number of elements released is high for all processes,
fossil collection frequency should be increased. If only a few processes release a large
number of elements, and the difference between GV'T’s from one fossil collection to
another is small, remapping should be considered. The two decision choices are shown
in a table form in Table 5.11.

If the difference in LVT between processes is high, it may or may not be of concern.
It is a concern if it is always the same process which is speeding ahead or dragging
behind. If the process is speeding ahead it is making large memory demands; if it is
dragging behind, it is delaying the simulation. In such cases, remapping of processes

96

Case: 1] 23T 4]
No. gf Proc:|2] 41 8] 10
Process State Queue
| Number Average Length
1 71137221 11
2 §135(23] 10
3 12(19(12
4 151251 10
5 231 11
6 201 9
7 23| 14
8 24 13
9 146
10 152

Table 5.12: Simulation Processes’ Profiles

Process | Slow Fast
Queue | Process | Process
| incoming messages | 120 5
| state | 20 63
| outgoing messages 12 97

Table 5.13: Slow and Fast Process Profiles

is recommended. Sucli behaviour of individual processes can be spotted using TWT.

An unbalanced load will result in long queues. Output from processes of several
simulations is shown in Table 5.12. Case 1, of two processes is evenly balanced,
with no process making disproportionate memory .unands. In Case 2, process 2 has
a significantly higher queue length. In this case, remapping might be considered.
Case 3, with 8 processes, appears to have an evenly balanced load. Queue lengths
do not increase proportional to the number of processes in the simulation. This is
apparent in Case 4. Most processes in Case 4 have, on average, shorter queues than
Case 3. However, processes 9 and 10 are either falling behind or moving ahead of the

other processes.

97

Memory Requirements
Memory Lazy Cancellation Lazy Reevaluation
Units Num, of | Calculation | Total | Num. of | Calculation | Total
Per State | messages Units | messages Units
and states and states
5} 105 mess. | 105 + 14%5 | 175 | 95 wess. | 95+ 30%5 | 245
14 stts. 30 stts.
10 105 mess. | 105 + 14¥10 | 245 | 95 mess. | 95+ 30*10| 395
14 stts. 30 stts.

s

Table 5.14: Different Memory Requirements due to State Size

Whether a process 15 moving ahead in time faster or slower than other processes
can be determined by looking at the queue lengths of the processes separately (instead
of the average length of all queues). If the process has a large number of incoming
messages, without a corresponding number of states, the process is falling behind in
time. However, if a process has a high number of states (and possibly a high number
of outgoing messages), it is moving ahead. One slow and one fast processes’ profiles
are shown in Table 5.13.

Assuming memory requirements are the user’s main limitation. the number of
memory units needed to save a state might be the deciding factor in choosing a
syncluonization method. The following example considers the choice between Lazy
Cancellation and Lazy Reevaluation. In Table 5.14 calculations are shown for Lazy
Cancellation and Lazy Reevaluation memory requirements, using two different sizes

of states:
« 5 memory units per state
¢ 10 memory units per state

Using the results shown in Table 5.14, Table 5.15 is generated with the assumption
that Lazy Reevaluation is preferable to Lazy Cancellation if everything else is the
same. We assume that Lazy Reevaluation is preferable due to its speed advantage.

It is apparent from the table that with more stringent memory constraints, choice

is more limited. The user who has minimized the amount of memory necessary to save

98

4 .
Nummber Synchronization Choice
of Num. of Memory Units
Memory Units per State
Available 5 | 10
200 Lazy no
Cancellation option
(175 units) shown
300 Lazy Lazy
Reevaluation | Cancellation
(245 units) | (245 units)
400 Lazy Lazy
Reevaluation | Reevaluation
(245 units) | (395 units)

Table 5.15: Different Synchronization Choices due to Memory Available

a state has more options. For example, the user with states using 10 memory units
and a total limit of 300 memory units will be forced to settle on Lazy Cancellation.
The user with states using only 5 memory units with the same memory constraints
will be able to take advantage of Lazy Reevaluation’s greater speedup.

Having used West's results to verify that TWT behaves in a consistent manner
and that TWT’s results are dependable, the examples presented in Section 5.4.1 show

the usefulness of TWT in arriving at a synchronization choice.

99

Chapter 6

Design of TimeWarpTest

TimeWarpTest (TWT) is a software package that, taking the characteristics of a par-
ticular distributed discrete-event simulation (DDES) as its input, determines under
what synchronization method this simulation will best perform and at what cost.
TWT helps to identify if a DDES will benefit from a Time Warp synchronization.
Since Time Warp incurs an additional memory cost over a Conservative simulation
TWT estimates the memory requitements of such an implementation.

TWT does this by simulating a queuing model of the system to be designed,
with message traffic, and service times approximated by random number generators
according to pertinent system parameters.

TWT is written using SAMOC, a process-oriented discrete-event simulation pack-
age which includes random number generators, process scheduling, and report gen-

eration facilities.

6.1 TWT Basic Structures

The design of TWT consists of two basic entities, TWT processes, and the Commu-
nication Subsystem. Although there is an unlimited number of TWT processes, there

is only one Communication Subsystem.

6.1.1 Communication Subsystem

The Communication Subsystem is used by all TWT processes in the TWT system in

order to communicate with each other. The Communication Subsystem consists of a

queue for each TWT process in the system. When a message is sent by a process, its
destination field determines in which message queue it will be inserted. Figure 6.1
shows the Communication Subsystem of a TWT simulation with four TWT processes.
Process 0 has 3 messages waiting for it, process 1, one message, process 2, none, and
process 8 has four messages waiting for it.

All message queues are protected so no queues are corrupted by a simultaneous
access by more than one process. Messages can be removed from the Communication
Subsystem in two ways. First, if an anti-message meets 1t; matching message within
the Communication Subsystem, they are both removed from the system. Before an
anti-message is added onto the appropriate destination queue, the queue is searched
for the anti-message’s matching message. If the matching message 1s found, the mes-
sage is removed from the destination queue and both the message and anti-message
are deleted. If no matching message is found, the anti-message is simply added to
the appropriate destination queue, like any message.

The second way a message is removed from the Communication Subsystem is
when a process accepts it. When a process accepts a message, it copies the message
into its own memory space. The message is then deleted from the Communication
Subsystem destination queue. A process can only accept messages from its own queue
in the Communication Subsystem.

The Communication Subsystem performs one additional role, as explained below,
during Conservative simulations. This role 1s necessary because TWT' processes inr
mediately process a message once they have accepted it. If a TWT process is not
ready to process a message, it will not access the Communication Subsystem. During
a Conservative Simulation the following constraint must be respected: messages are
not to be processed until there is no risk of a message arriving with alower timestamip.

The Communication Subsystem guarantees that no imessages are released un-
less this constraint is satisfied. In order to do this, the Communication Subsystem
records the timestamp of any messages entering the Subsystem. By keeping track of
the timestamp of the latest message released by each process, the Communication

Subsystem knows the LVT of all processes in the system. The Comumunication Sub-

101

A T Y N o, (T ¥ I TR RO PTG R

P T

destinations

0
1
message
queues
2
3
S —
—_——
messages
Figure 6.1: Communication Subsystem
TWT process TWT process TWT process

‘ort

TWT process

.....

Communication

Subsystem

TWT process

port

Figure 6.2: TWT Processes connected tc Communication Subsystem

via Ports: TWT Processes’ view

102

system will not release a message to a destination process unless all processes’ LVI’s
are equal to or greater than the message’s timestamp. In certain simulations, this
is an overly conservative design, as it guarantees not only that all input links of a
particular process are of a certain LVT value, but that all links in the system are of
that value. The Communication Subsystem thus is able to prevent the early release,

and erroneous processing of messages during a Uonservative simulation.

6.1.2 TimeWarpTest Processes

All TWT processes perform two functions.
1. active role in the simulation
2. communicating threagh the Communication Subsystem

A TWT process’ active role in the simulation is defined by its type. Three types
of TWT processes exist:

a. TWT controller

b. Time Warp process

c. Global Virtual Time keeper

These three types of TWT processes are further described in Section 6.2.

6.1.3 Port

Regardless of its type, all TWT processes have a port. The port is a TWT process’
link to the Communication Subsystem. Currently TWT is designed to run on a single
Processor.

However, to facilitate future distribution, TWT has been designed so that all
necessary modifications are localized to a few specific areas in the code. One of these
areas is the port. Currently, all TWT processes share the same static port. A static
member in C++ refers to the fact that only one copy or object of that member exists
for all occurrences of the structure of which it is a member. [Str86):153 The TWT

processes are unavare of sharing the port, and their view of the system is that shown

103

3
a
¥
3
|
%
H
!
i

LIRSS Sl S e S

TWT process TWT process

TWT process

TWT process

TWT process

...........

TWT process

Communication
Subsystem

oooooooooooooo

1

Figure 6.3: TWT Processes connected to Communication Subsystem

via Static Port

104

in Figure 6.2. However, in actual fact, TWT has only one port which, being a static
entity, exists outside of all TWT processes, as shown in Figure 6.3.

Any messages to be sent are passed to the port, which relays the message to the
Communication Subsystem. The Communication Subsystem, in turn, is the port’s

only link to other processes.

6.1.4 TimeWarpTest Messages

TWT processes communicate with each other using messcges that are delivered via
the Communication Subsystem. Although TWT runs on a single machine, messages
are passed by copying, not by passing pointers. This is to facilitate future distribution
of the processes over several machines without shared memory space.

There are two categories of TWT messages: admninistrative messages and Time
Warp messages. Administrative messages control the simulation, Time Warp mes-
sages are events which advance the simulation.

The category of a message determines how it is treated by the TWT processes and
by the Communication Subsystem. All administrative messages have high priority,

and are processed before all Time Warp messages.

Administrative Messages

Administrative messages include the following;:

o GVT reyuest
o LVT request
e LVT response

¢ GVT response

The TWT Controller sends a G VT request to the GVT keeper at regular intervals.
In order to calculate anew GVT, the GVT keeper consults all Time Warp processes by
sending each Time Warp process an LVT request. When an LVT request is received

by a Time Warp process, it immediately determines the timestamp of the earliest

105

unacknowledged outgoing message. This value is compared with its current LV'T,
The smaller of the two values is returned to the GVT keeper in the form of an LVT
response. Once all Time Warp processes have responded, the GVT keeper determines
the response with the minimum value. This value becomes the new GVT. This
information is sent out to all Time Warp processes in the forma of a GV T respon sse.

Time Warp processes perform fossil collection upon receipt of the GVT response.

Time Warp Messages

Time Warp messages have to do with the simulation and are 2 simplified version
of the Time Warp messages described in Section 3.1 on Time Warp data structures.
Time Warp message are accepted from the Conmmmumnication Subsystem and processed
according to their timestamp.

When a message is processed, the Time Waup process saves the current state and
simply adds the incorning message to its Input Queue. A computation time specified
by user input is associated with each saved state. Should a rollback occur, this value
is consulted to determine the amount of computations lost. Time Warp messages,
unlike administrative messages are, always acknowledgrd. This is to ensure a more
accurate calculation of the GVT, and consequently, of memory use. as no message
can be discarded from the Qutput Quicue until its receipt is assured.

The timestamp of a message and the process’ LVT at the time of the message's
arrival determine if a message islate. The type of a message and the synchronization
method determine what to do upon receipt of a late message. It is the message’s
type that indicates whether a rollback will occur, the computations will be lost, or
whether the rollback will propagate to other processes. TWT has the following three

types of messages:

1. messages causing local rollback

2. messages causing global rollback (global rollback is actually a misnomer, as any
messa;re which causes rollback at more than one process in the system is said

to have caused a global rollback)

106

3. side-effect free message

Unlike TWT, in Time Warp, types of messages do not exist as all message are
treated the same. For example, in Aggressive Cancellation all message are treated in
the same way. If late, they all cause rollback. In Lazy Cancellation all late messages
cause local rollback. However, all late messages do not cause global rollback. It is only
as the simulation progresses that a message is found to cause a global rollback, when
certain outgoing message are not regenerated after rollback, and anti-messages are
sent. When anti-messages propagate throughout the system a global rollback occurs.
It is not the type of the message that determines rollback will occur, but the new
processing done due to receipt of the late message (influenced by the optimization in
effect), which determines that a rollback will become global. In order to mimuc Time
Warp, TWT distinguishes between the three message types.

In TWT if amessage causes alocal rollback only, no outgoing messages are marked
as anti-messages. If a message is to cause global rollback, then in TWT anti-messages
are marked, and sent, as defined by the Time Warp algorithm. Before any messages
are sent, the OQutput Queue is checked for " pending” anti-messages.

Lazy Reevaluation makes an additional distinction between message types: mes-
sages which either cause recomputation to be necessary or not. Messages may arrive
which result in a rollback, but have no effect on forward computations. In TWT
these messages incur the cost of processing only one message and the slight cost of a
state comnpare.

The Time Warp optimization, Lazy Rollback, recognizes side-effect free messages,
such as reads. Side-effect free message are messages which are recognized immediately
on their receipt by Time Warp as not causing changes in the state. A side-effect
free message causes no effect on forward computations. Therefore, the same states
and outgoing messages are regenerated, resulting in no anti-messages being sent.
They are given special treatment. The appropriate state is temporarily reinstated,
the message is processed, the current state is reinstated, and forward computations
continue. Side-effect free messages therefore do not. incur the full cost of rollback.

In TWT, if a message causes no rollback, or is side-effect free, the late message

107

is simply inserted at the appropriate place in the Input Queue of the process, and
forward computations continue uninterrupted. The time cost of a late side-effect free
message is thus limited.

As explained in Section 5.%.2, the user enters information concerning the frequency
at which a process generates output messages and the frequency of a particular type
of message. SAMOC provides a random number generator. Based on the user input,

the desired message traffic is generated.

6.2 Major Components of TWT
TWT is made up of four main components, as follows:
1. one TWT Controller
2. one Communication Subsystem
3. N Time Warp Processes (N > 0)
4. one Global Virtual Time Keeper (GV'T keeper)

Figure 6.4 shows a block diagram of TWT. Note that the TWT contrclleris alsoa

TWT process, with the requisite port connection to the Comununication Subsystem.

6.2.1 TimeWarpTest Controller

The TWT Controller, referred to as simply the Controller, creates, initializes and
controls all of the other components of the TWT simulation. As well as creating and
controlling the simulation, the Controller is also partially responsible for interface
with the user. It is through the controller that the user can control the set up, overall
statistics output, and termination of a simulation session.

Although the Controller creates and schedules the TWT processes, it does not
access the processes’ memory space, or internal structure. Communication occurs
through the Communication Subsystem. Once the simulation specifications have

been entered by the user, the Controller initializes the Communication Subsystem

108

!
TW'F Controller 7 GVT keeper Time Warp proéess 1

Time Warp process 4 | Q- » - Time Warp progess 2
"Communication
Subsystem
il B R >

\

<4 - =~ = gcheduling and initialization control
<4—¥ message communication

Figure 6.4: Overall View

109

by creating a queue for each TWT process in the Communication Subsystem. The
Controller is also responsible for activating the GVT keeper.

Scheduling Time Warp processes

The Controller has a queue of pointers to the Time Warp processes. It uses these
pointers to pass control when scheduling these processes. As TWT runs on a single
processor, but imitates a concurrent multi-processor system, it is necessary to sirmu-
late concurrent processing. This is done by assigning each Time Warp process a time
slice. Each Time Warp process is responsible for determiuing if it has used up its
time slice and returning control to the controller.

A time cost is assodiated with each activity in the TWT system. As a process
completes an activity, for example, the dcletion of several states from the state queue,
and the sending of anti-messages, the process’ LVT is incremented. When the time
slice is used up, the process becomes inactive, and another process is scheduled.

For the sake of explanation, assume a timeslice of 5, and a system of five processes.
As processes are scheduled chronologically, the possibility exists that a process at
LVT z may send a message to another process, for example process 2, and that
process, process 2, will process that message at time z+2, only to have to rollback
when a message from process 5 arrives with a timestamp of -1. This danger exists
because process 5 is only scheduled after processes 1 through 4 have been assigned
a time slice. For example, process ! sends a message with timestamp 3 to process £.
process 2 is then scheduled, accepting process I's mcssage. Only later is process
scheduled, generating a message with a timestzmp of 2, which will subsequently
cause a rollback at process 1 which would not occur in a distributed system. In order
to prevent such false rollbacks, timeslices are alternately assigned for sending and
receiving,

This alternating gives all processes the opportunity to send a message within a
timeslot before any incoming messages are processed. This design might have the
opposite effect of decreasing the number of late messages, as messages that might

otherwise have been processed immediately, causing other messages to be out of

110

Y

order, will remain in the Input Queue unprocessed until the otherwise late message
arrives as long as this latc message is sent within the same timeslot. To minimize
the danger of the ordering of all messages within a timeslot affecting performance,
the default value selected for the timeslice is 10 units. This value is generall, .auch
smaller than the average processing time. However, the user can reset the timeslice,

tailoring it to an individual simulation.

TimeWarpTest Termination

TWT terminates when all Time Warp processes stop processing. Time Warp pro-
cesses an stop processing for two reasons. First, if a maximum clock value is set,
when a Time Warp process reaches that value on its local virtual clock, it stops
p-ocessing. Second, when a Time Warp process has sent it’s quota of messages, it
becomes inactive unless it 1s still receiving messages. When the Controller detects
that no more processes are receiving or sending messages, TWT terminates. The

Controller then generates a report as described in Section 6.3.

6.2.2 Time Warp Processes

A basic data structure which appears repeatedly in TWT 1is the prionity queue. It
appears in the form of the input and output message queues. as well as the state
queue. Time Warp processes are abstracted to simply generating output messages at a
specified rate. Time Warp processes also accept incoming messages, saving states with
associated computation times. These computation times are generated as specified by
the input parameters by the user. Time Warp processes are responsible for calculating
their own LVT. This is done by determining the earliest unacknowledged message on
the output queue, as well as referencing the local virtual dock.

Fossil collection is the responsibility of each process. When a Time Warp Process
receives the G VT response, it immediately performs fossil collection. Fossil collection,
much like that described for Time Warp in Section 3.2.2, consists of discarding states
and messages with timestamps less than the GVT. Statistics are collected, as noted
in Section 6.3

111

Rollback occurs in TWT when a late message arrives. Depending on the type of
simulation being implemented and the message's type, different actions are taken, as
described in Section 6.1.4 entitled TimeWarpTest Messages.

6.2.3 Global Virtual Time Keeper

The Global Virtual Time Keeper (GVT keeper), given the LVT’s of all processes,
calculates the GVT. The GVT keeper is activated by the Controller, which sends
a GVT request at regular intervals. The frequency at which the GVT keeper is
activated determines how often fossil collection takes place. This is because, upon
receipt of an updated GVT, all processes perform their own fossil collection. When
the GVT keeper receives a GVT request, it sends a LVT request to all the Tuue
Warp processes. Upon receipt of a response from all the processes, the GVT keeper
calculates the GVT and sends the new GVT value to all the processes.

6.3 Report Generation

Data is collected concerning each of the main components of the TWT system.
SAMOC statistics collection and report generation facilities have been used. The
information collected varies according to the function of each component.

As the Communication Subsystem holds messages until they are requested by the
receiving process, the message queues in the Communication Subsystem are included
in the calculation of memory use for each corresponding process.

Time Warp Processes are responsible for collecting statistics on message traffc,
Input, State, and Output Queue length, as well as on rollback and fossil collection
activities. Frequency of late messages is also recorded.

Each time a message or state is added to the appropriate queue, statistics are
noted concerning the queue length. When fossil collection occurs, statistics are kept
concerning the number of saved messages and states released. Minimum, average,
and maximum values are collected.

When rollback occurs, the number of anti-messages marked and the number of

states unprocessed are noted. Since each state has it’s own computation time associ-

112

ated with it, statistics are also collected concerning the amount of computation time

lost and recovered during a rollback.

The GVT keeper keeps track of the change in GVT. A report is generated con-
cerning the minimum, average, and maximum change in the GVT. Information is
also kept concerning the range of LVT’s received at a particular time.

Figure 6.5 shows the points in TWT where statistics are collected. The small
darkened rectangular areas in Figure 6.5 indicate where statistics, such as Queue
Statistics, GVT Statistics, and Fossil Collection Statistics, are collected in
TWT. These small report bozes are expanded outside of the bounds of the TWT
structures, to show more in depth information concerning the statistics being kept.
Regardless of where the information is collected it all appears in the Report generated
at the end of a simulation. Section 5.4.1 entitled Examples shows sample output and
how these performance statistics can be used to make an informed synchronization

choice for a distributed discrete-event simulation.

6.4 TimeWarpTest Software

Software Tools:

o SAMOC: chosen for random number generators, report facilities, simulation

primitives.
¢ C++: chosen for object- oriented capabilities.

Software Specification Document:

Time Warp Test Project: Software Requirements Specification
Development Environment: SUN 3/50
Size: no. of lines: 13,300
Size: no. of bytes: 314,500

Person Hours (programming): 850-900

113

TWT Controller

GVT keeper

Queue Statistics .

#| GVT Statistics

GVT Statistics

Fossil Collection Statistics

Communication
Sulzsystem

difference in

.............

largest LVT and
 smallest LVT

Statistics

Queue Statistics

min, max, avg.
message queue
lengths

difference in
old GVT and
| new GVT

Time Warp proces

fossil collection:
min, max, avg. .
messages released,

| queue lengths

| number of
rollbacks

number of
messages

s;X i Message Statistics B
Message Statistics receive routine:
: " - i number of late
Fossil Collection Statistics 8 umber of anti-
i Rollback Statistics messages

send routine:
number of
(anti) messages

fossil collection:
min’ max’ avg.. o
states released,

computation

states deleted or time lost

unprocessed

 rollback recovery '_ rollback recovery:
number of f computation
states recovered W time recovered

Figure 6.5: Data Collection
114

Person Months (programming): 5 (excluding 1.5 months of design period which
included learning and testing of SAMOC facilities and capabilities)

Debugging:
All modriles tested during development period.

Input verification not extensive.
Testing: 60 simulation designs tested

Run Time: (highly dependant on simulation complexity)

1. typical run time: 3 to 4 minutes

2. maximum run time; 3 hours

115

Chapter 7

Conclusion

The Conservative method and Time Warp method are two categories of synchro-
nization methods used in Distributed Discrete-Event Simuvlation (DDES). Within
the Time Warp method there are four variations: Aggressive Cancellation, Lazy
Cancellation, Lazy Rollback, and Lazy Reevaluation. Choosing an appropnate syn-
chronization method for a DDES is not an easy problem for a user. In this thesis an
interactive software system called TWT is conceived that could be used in arriving
at a decision regarding the synchronization method. TWT is designed, implemented
in C++, and tested. Also, its use is demonstrated through a small set of examples.
In order to use TWT, the user must have some knowledge of the problem. By
studying the various DDES systems reported in the hiterature, we have arnived at the

following parameters as TWT input:
¢ number of processes
o message traffic profile

1. frequency of outgoing messages
2. distribution of message destination

3. distribution of message attributes:

— cause local or global or no rollback

— cause recomputation

It is a limitatiru of TWT that it assumes the knowledge of the above-mentioned
parameters. When there is no operational DDES, the estimates for these parameters
may be identified as a range of values, and the TWT user may vary the parameters
in this range.

If a DDES is available, then some of these parameters may be more closely esti-
mated or more closely measured. Such measured parameters can be used for tuning
an existing DDES, or kept as an accumulated knowledge for arriving at educated
guesses in the use of TWT.

TWT is an interactive software. Most TWT simulations had a run time of 3 to 4
minutes. When used for large data, as in West’s final case, the Game of Life, which
had prohibitive run times, TWT took as much as 3 hours. Tlus long a run tiune is not
acceptable for interactive use. On the contrary, simulation is most needed when the
problem is large in size. In order to profitably use TWT for such cases one should
consider the parallel or distributed implementation of TWT in future.

The TWT outputs are orgenized into two categories:

General Output

o memory demands of a DDES using a particular synchronization method

¢ ..z speedup of a DDES using a particular synchronization method

Extended Output

o number of states and messages saved
o number of messages, anti-messages, and rollbacks
e amount of computation time lost during rollback, and recovered

These outputs can be used in several ways. The examples presented in Chapter 5
show some of their uses, but they are not exhaustive. A user can find additional ways

to use TWT output, suitable to a particular problem to be solved.

Bibliography

[BCLU89] Baezner, Dirk, John Cleary, Greg Lomow, and Brian W. Unger. 1989.

[BJBESS)

[Ber86]

[BerJ85]

[Bil087]

[Bir79)]

" Algorithmic optimizations of simulations on time warp”, Proc. of the
1989 SCS Distributed Simulation Conference (Brian Unger and Richard
Fujimoto, Eds.), San Dicgo, California, vol. 21, no. 2, March 1989, pp.
73-78.

Beckman, Brian, David Jefferson, Steven Bellenot, et al. 1988. "Dis-
tributed Simulation and Time Warp: Part 1: Design of Colliding Pucks”,

Proc. of the 1988 Society for Computer Simulation Multiconference, San
Diego, California, vol. 19, no. 3, July 1988, pp. 56-60.

Berry, Orma. 1986. Performance Evaluation of the Time Warp Dis-
tributed Simulation Mechanism, Ph.D. Dissertation, University of South-
ern California, Los Angeles.

Berr, Orma and David Jefferson. 1985. ”Critical path analysis of dis-
tributed simulation”, Proc. of the 1985 SCS Distributed Simulation Con-
ference (Paul Reynolds, Ed.), San Diego, California, vol. 15, no. 2, Jan.
1985, pp. 57-60.

Biles, William E. and H. Tamer Ozmen. 1987. ”Optimization of Simu-
lation Responses in a Multicomputing Environment”, Proc. of the 1987
Winter Simulation Conference, pp. 402-408.

Birtwistle, G. M. 1979. Discrete Event Modelling on Simula, MacMillan
Press Ltd., London.

118

[Bry79]

[CelRSS|

[ChaB83]

[ChaM81]

[CHM?79)]

[Chis3]

[Com82]

[Com83]

[ComES84]

Bryant, Randal E. 1979. ”Simulation on a Distributed System”, IEEE
Publication, CH1445-6/79/000-544, pp. 544-552.

Cellier, Frangois E. and Magnus Rimvall. 1985. "Distributed Modelling
and data base management in simulation”, Proc. of the 1985 SCS Dis-
tributed Simulation Conference (Paul Reynolds, Ed.), vol. 15, no. 2, Jan.
1985, pp. 21-24.

Chandak, Avinash and Browne, J. C. 1983. ”Vectorization of Discrete
Event Simulation”, Proc. of the 1983 IEEE International Conference on
Parallel Processing, Aug. 1983, pp. 359-361.

Chandy, Ix. M. and J. Misra (1981). "Asynchronous Distributed Sim-
ulation via a Sequence of Parallel Computations,” Communications of
ACM, Apr. 1981, pp. 198-206.

Chandy, K. M., Victor Holmes and J. Misra. 1979. " Distributed Simula-
tion of Networks”, Computer Networks, 3, (2), Apr. 1979, pp. 105-113.

Chlamtac, Imrich. 1985. "EDDIE: an efficient design for a distributed
simulation engine”, Proc. of the 1985 SCS Distributed Simulation Con-
ference (Paul Reynolds, Ed.), vol. 15, no. 2, Jan. 1983, pp. 85-88.

Comfort, J. 1982. "Design of a Multi-Microprocessor Based Simulation
Computer - I", Proc. of the IEEE 15th Annual Stmulation Symposium
(Robert Massarotti, Ed.), pp. 45-53.

Comfort, J. 1983. ”Design of a Multi-Microprocessor Based Simmulation
Computer - II”, Proc. of the IEEE 16th Annual Simulation Conference
(Linda A. Holbrook, Ed.), pp. 197-209.

Comfort, J. et al. 1984. ”Design of a Multi-Microprocessor Based Simu-
lation Computer - III", Proc of the IEEE 17th Annual Simulation Con-
ference (Edward R. Comer, Ed.), pp. 227-241.

119

[ComM82] Comfort, John Craig, and Anita Miller. 1982. ” Considerations in the De-

[Con85a]

[Con85b]

[ConZ85]

[ETOS6]

[FWW84]

[Fuj87]

[FTGSS)

sign of a Multi-Microprocessor-Based Simulation Computer”, Modeling
and Simulation on Microcompuicrs (Lance A. Leventhal, Ed.), Publica-
tion of SCS, pp. 110-112.

Concepdion, A. 1985. " The Implementation of the Hierarchical Abstract
Simulator on the HEP Computer”, Proc. of the 1985 Winter Simulation
Conference, December 11-13, 1985, pp. 428-434.

Concepcion, A. 1985. "Mapping Distributed Simulators onto the Hier-
archical Multi-bus Multiprocessor Architecture”, Proc. of the 1985 SCS
Distributed Simulation Conference (Paul Reynolds, Ed.), San Diego, Cal-
ifornia, vol. 15, no. 2, Jan. 1985, pp. 8-13.

Concepcion, A. I. and Bemard P. Zeigler, (1985). ”Distributed Simu-
lation of Cellular Discrete Time Models,” Simulation in Research and
Development (A. Javor, Ed.), Elsevier Science Publishers, B.V. (North-
Holland).

Elsa. Maurice S., Tuncer I. Oren and Bernard Zeigler (Ed.). 1986. Mod-
elling and Simulation Methodology in the Artificial Intelligence Era. El-

sevier Science Publisher B. V. (North Holland).

Franklin, M. A., D. F. Wann and K. F. Wong, 1984. "Parallel Machines
and Algorithms for Discrete-Event Simulation”, Proc. of the 1984 Inter-
national Conference on Parallel Processing, Aug. 1984, pp. 449-458.

Fujimoto, Richard M. 1987. ”Performance measurements of distributed
simulation strategies”, Tech. Rep. No. UUCS-87-026, Department of
Computer Science, University of Utah, Dec. 1987.

Fujimoto, Richard M., Jya Jang Tsai and Ganesh Gopalokrishnan. 1988.
"The roll back chip: Hardware support for distributed simulation us-
ing Time Warp”, Proc. of the 1988 SCS Multiconference on Distributed

120

[Gafsg]

[GGZs6]

[GatM88]

[Gilss]

[Gor75]

[GroT86]

[HCS87]

[Jef85]

Simulation (Brian Unger and David Jefferson, Eds.), vol. 19, no. 3, July
1988, pp. 81-86.

Gafni, Anat. 1988. ”Rollback mechanisms for optimistic distributed sim-
ulation systems”, Proc. of the 1988 SCS Conference on Distributed Sim-
ulation (Brian Unger and David Jefferson, Eds.), vol. 19, no. 3, July
1988, pp. 61-67.

Garzia, Riczrdo F, Mario R. Garzia and Bernard P. Zeigler. 1986.
" Discrete-event simulation”, IEEE Spectrum, December 1986, pp. 32-36.

Gates, Barbara and Jed Marti. 1988. ” An empirical study of Time Warp
request mechanisms”, Proc. of the 1988 SCS Multiconference on Dis-
tributed simulation (Brian Unger and David Jefferson, Eds.), vol. 19, no.
3, July 1988, pp. 73-80.

Gilmer, Dr. John B., Jr. 1988. ”"An assessment of 'Time Warp’ paral-
lel discrete event simulation algorithm performance”, Proc. of the 1988
SCS Multiconference on Distributed simulation (Brian Unger and David
Jefferson. Eds.), vol. 19. no. 3. July 1988, pp. 45-49.

Gordon, Geoffrey. 1975. The Application of GPSS V to Discrete System

Simulation, Prentice-Hall, Inc., Englewood Clifts, New Jersey.

Groselj, Bojan and Carl Tropper. 1986. ”Pseudosimulation: An Algo-
rithm for Distributed Simulation with Limited Memory”, International
Journal of Parallel Programming, vol. 15, no. 5, Oct. 1986, pp. 413-456.

Hughes, Carloyn, Usha Chandra and Sallie V. Sheppard. 1987. "Two
Implementations of a Concurrent Simulation Environment”, Proc. of the
1987 Winter Simulation Conference, pp.618-623.

Jefferson, David R. 1985. "Virtual time”, ACM TOPLAS, 7 (3), pp.
404-425.

(efER7]

[JefESS)

[JefS85]

[Jon86]

[Kau87]

[LMP77]

[LVRSS]

[Liv85]

Jefferson, David R. et al. 1987 " Distributed Simulation and The Time-
warp Operating System”, Operating Systems Review, 2 (5), pp. 77-93.

Jefferson, David et al. 1985. " Implementation of time warp on the Caltech
hypercube”. Proc. of the 1985 SCS Distributed Simulation Conference
(Paul Reynolds, Ed.), San Diego, California, vol. 15, no. 2, Jan. 1985.
pp. 70-75.

Jefferson, David and Henry Sowizral. 1985. "Fast concurrent simulation
using the time warp mechanism”, Proc. of the 1985 SCS Distributed
Simulation Conference (Paul Reynolds, Ed.), San Diego, California, vol.
15, no. 2, Jan. 1985, pp. 63-69.

Jones, Doubles W. (Chair). 1986. "Implementations of Time (Panel)”.
Proc. of the 1986 Winter Simulation Conference (J. Wilson, J. Henriksen
and S. Roberts, Eds.), pp. 409-416.

Kaudel, F. J. 1987. "A literature survey on distributed discrete event
simulation”, Simuletter, Pub. of SIGSIM, ACM Press, vol. 18, no. 18,
June 1987. pp. 11-21.

Labetoulle, Jacques, Eric G. Manning and Richard W. Peebles. 1977. A
homogeneous computer network: Analysis and Simulation”, Computer
Networks, vol. 1, no. 4, May 1977, pp 225-240.

Li, H. F., K. Venkatesh and T. Radhakrishnan. 1988. "Time Advance-
ment in Distributed Event Simulation”, Journal of Parallel and Dis-

tributed Computing, vol. 9, 1990, pp. 15-25.

Livny, M. 1985. "A Study of Parallelism in Distributed Simula-
tion,” Proc. of the 1985 SCS Distributed Simulation Conference (Paul
Reynolds, Ed.), San Diego, California, vol. 15, no. 2, Jan. 1985, pp.
94-98.

[LCUWSS)]

[MWMB80a]

[MWMB80b)]

[MWMsS]

[Mars]

[Mek88]

[MucDg6]

[Mis86)

Lomow, Greg, John Cleary, Brian Unger and Darrin West 1988. " A per-
formance study of Time Warp”, Proc. of the 1988 SCS Multiconference
on Distributed Simulation (Brian Unger and David Jefferson, Eds.), vol.
19, no. 3, July 1988, pp. 50-55.

Madisetti, Vijay, Jean Walrand and David Messerschmitt. 1989. "Effi-
cient Distributed Simulation”, Annual Simulation Symposium, pp. 5-21.

Madisetti, Vijay, Jean Walrand and David Messerschmitt. 1989. "A
high performance methodology for distributed simulation: vectored
distributed simulation”, Modeling and Simulation on Microcomputers,
pp.23-28.

Madisetti, Vijay, Jean Walrand and David Messerschmitt. 1988. "WOLF"
A rollback algorithm for optimistic distributed simulation systems”,
Proc. of the 1988 Winter Simulation Conference (M. Abrams, P. Haigh
and J. Comfort, Eds.), pp. 296-305.

Marti, Jed. 1988. "RISE: The Rand Integrated Simulation Environ-
ment”, Proc. of the 1958 SCS Multiconference on Distributed Simulation
(Brian Unger and David Jefferson, Eds.), vol. 19, no. 3, July 1988, pp.
63-72.

Meketon, Marc S. 1988. "Optimizations in Simulation: A Survey of

Recent Results”, Proc. of the 1988 Winter Simulation Conference (M.
Abrams, P. Haigh and J. Comfort, Eds.), pp. 58-67.

Muchlhaeuser, M. and O. Drobnik. 1986. "Integrated Development and
Performance Evaluation of Network Applications Using Distributed Sim-
ulation”, Computer Networks and Simulation III (S. Schoemaker, Ed.),
Elsevier Science Publishers B.V. (North Holland).

Misra, Jayadev. 1986. " Distributed Discrete-Event Simulation”, Com-
puting Surveys, vol. 18, no. 1, March 1986, pp. 39-65.

123

[Nic87]

[NicR8S]

[PWM?79)]

[Pris6)

[ReeMs8]

[RMMS7]

[Rey88a]

[Rey88b]

[SAMSS)]

Nicol, David M. 1987. "Performance Issues for Distributed Battlefield
Simulations”, Winter Simulation Conference, pp. 624-628.

Nicol, David M. and Paul F. Reynolds, Jr. 1985. ” A statistical approach
to dynamic partitioning”, Proc. of the 1985 SCS Distributed Simulation
Conference, San Diego, California, vol. 15, no. 2, Jan. 1985, pp. 53-56.

Peacock, J. Kent, Wong. J. W. and Manning, Eric G. 1979. " Distributed
Sirmilation Using a Network of Processors”, Computer Networks, 3, (1),
Feb. 1979, pp.44-56.

Pritsker. A. Alan B. 1986. Introduction to Simulation and SLAM II. John
Wiley & Sons, New York.

Reed, Daniel A., and Allen D. Malony. 1988. "Parallel Discrete Event
Simulation: The Chandy Misra Approach”, Proc. of the 1988 SCS Mul-
ticonference on Distributed Simulation (Brian Unger and David Jefferson,
Eds.), San Diego, California, vol. 19, no. 3, July 1988, pp. 8-13.

Reed, Daniel A., Allen D. Malony, and B. D. McCredie. 1987. ”Parallel
Discrete Event Simmlation: A Shared Memory Approach”. ACM 5IG-
METRICS, May 1987, pp. 36-38.

Reynolds, Paul F., Jr. 1988. "Heterogeneous distributed simulation”,
Proc. of the 1988 Winter Simulation Conference (M. Abrams, P. Haigh
and J. Comfort, Eds.), pp. 206-209.

Reynolds, Paul F., Jr. 1988. " A spectrum of options for parallel simula-
tion”, Proc. of the 1988 Winter Simulation Conference (M. Abrams, P.
Haigh and J. Comfort, Eds.), pp. 325-332.

SAMOC. 1988. Reference Manual, vols. 1 and 2, Jade Simulations Inter-
national, Calgary, Alberta.

124

[Sch78]

[SCMs3]

[Str86]

[SwoF87]

[TanV85]

[Ung83]

[ULASS]

[Wes88)

Schneider, G. Michael. 1978. ” A modeling package for simulation of com-
puter networks”, Simulation, Simmlation Council, Inc. December 1978,
pp-181-192.

Sheppard, Sallie, Usha Chandrasekaran, and Karen Murray. 1985. " Dis-
tributed Simulation using Ada”, Proc. of the 1985 SCS Conference on
Distributed Simulation (Paul Reynolds, Ed.), San Diego, California, vol.
15, no. 2, Jan. 1985, pp. 27-31.

Stroustrup, B. 1986. The C++ Programming Language, Addison-Wesley,
Reading, Mass.

Swope, Steven M. and Richard M. Fujimoto. 1987. "Optimal Perfor-
mance of Distributed Simulation Programs”, Proc. of the 1987 Winter

Stmulation Conference pp. 612-617.

Tanenbaum, Andrew S. and Robert Van Renesse. 1985. ”Distributed
Operating Systems”, Computing Surveys, vol. 17, no. 4, Dec. 1985. pp.
419-470.

Unger, Brian W. 1988. " Distributed Simulation”, Proc. of the 1988 Win-
ter Simulation Conference (M. Abrawns, P. Haigh and J. Comfort, Eds.),
pp- 198-205.

Unger, Brian, Greg Lomow, and Keith Andrews. 1985. " A process ori-
ented distributed simulation package”, Proc. of the 1985 SCS Distributed
Simulation Conference (Paul Reynolds, Ed.), vol. 15, no. 2, Jan. 1985,
pp. 76-81.

West, Darrin. 1988. ”Optimising Time Warp: Lazy Rollback and Lazy
Reevaluation”, Master of Science thesis, Univ. of Calgary, Calgary, Al-
berta, Jan. 1988.

125

[Wya85]

(Zei8T]

Wyatt, Dana L. 1985. ” Simulation programming on a distributed system:
a preprocessor approach”, Proc. of the 1985 SCS Distributed Simulation
Conference (Paul Reynolds, Ed.), vol. 15, no. 2, Jan. 1985, pp. 32-36.

Zeigler, Bernard P. 1987. ” Hierarchical, modular discrete-event modelling
in an object- oriented environment” , Simulation, Simulation Council Inc.,
Nov. 1987, pp. 219-230.

126

