Nationa! | ibrary
of Canada

Acguisitions and

Bibhotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibhographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 WI1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproducticn in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

1+5

Canada

395, rue Wellington
Ottawa (Ontanc)

Yoo e Vet ey e

(e NG et e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme patrtielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A DESIGN TOOL FOR OBJECT-ORIENTED
DEVELOPMENT

HANWEL DING

A THESIS
IN
THE DEPARTMENT
OoF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For TtHr DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

NOVEMBER 1994
(© HaNwEl DING, 1994

National Libra
l*l of Clanada v

Bibliothéque nationale

du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services biblographiques
395 Wellington Street 335, rue Wellington
Ottawa, Ontano Ottawa (Ontano)
K1A ON4 KAA ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADATO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01363-4

Canadi

Your g Voire rolgiore

Our e Notrs rétérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DL
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Abstract

A Design Tool For Object-Oriented Development

Hanwei Ding

This thesis presents a supportive tool for object-oriented design and systemn evo-
lution. As the design is the most important and effort consuming phase in object-
oriented software development, our tool aims at providing automated support to
empower the designers as much as possible during the design process. This is done
by providing the designers with multiple views of the design. the facility to update
the design casily. the ability to check the completeness and consistency of the design,
and the ability to generate a printed report of the design. Maintenance is the most
costly phase in system evolution; our tool provides directly assistances to the main-
tainers during system evolution by supporting automation in capturing and altering

the design.

A carefully defined, consistently formatted user interface is developed with Mo-
tif as part of the tool, and as the medium for human interaction with the function
modules of the tool. We considered the interface part to be the most significant and
necessary part of the tool design, and emphasis is put on it to achieve the ease of use

of the tool.

Some directions of further work about the tool, which will brighten the future of

the tool, are also deseribed.

1

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Peter Grogono
for his enthusiastic support and consistent guidance. It is his valuable suggestions

and encouragement that made this work possible,

I would like to thank my husband Bogian Cheng for his encouragement. and moral

support.

Finally, I would like to dedicate this work to my parents who always stood behind

me with great patience and encouragement.

v

Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2

.

1.3

Why object-oriented design?
Why is a tool needed?

The structure of the thesis . . .

2 Principles of Objected Oriented Design

2.1

2.2

Object-Oriented Analysis and Design
2.1.1 General Concepts . e e
2.1.2 Overview of Object-Oriented Design Mcthods

Supporting Tools for Object-Oriented Design . . .

3 Tool Design

3.1

Objectives And Expectations

Design Format

Design Display Forms. . . .

3.3.1 Example: a Heating System . .

3.3.2 Textual Form . . .,

3.33 Tabular Form oL

vil

ix

N e e

-~ oo v Oorv Ot

19
19
21
23
24
29

3.3.4 Diagram Form.
3.4 Design of the Tool

3.4.1 Organization of the Tool .

3.4.2 User-interface

4 Tool Implementation
4.1 Abstract Syntax Tree .
4.2 Parser
4.2.1 Scanner
4.22 Parser
4.2.3 Constructing the AST

4.3 User Interface and Functional Modules

4.3.1 Major Windows

4.3.2 Miscellaneous Functions
5 A Walk-Through of The Design Tool
6 Conclusion
References
A Class Specifications of the Heating System

B Abstract Syntax Tree

vi

102

105

108

112

List of Tables

6

-1

Possible objects caught in heating system
Obtained objects of heating system . .

System-level table for the heating system .

System-level table for the heating system {continued)

System-level table for the heating system (continued)

Class-level table for the class View

Class-level table for the class Water . . .

Vil

26
34
35
36
37
37

List of Figures

Simulation of a domestic heating system
Architecture of the heating system

Timethread of the heating system . . .

MVC view of architecture of the heating system

Organization of the tool

Abstract Syntax Tree of the tool.

AST of a system, a class and amethod

C code of scanner for handling cornment
Grammar rule for system .

Operations of seltingSysName . . .
Structure of ToolMainWindow . .
ToolMain Window

Warning Dialog for exiting ToolMain Window . . .

Structure of HelpWindow
HelpWindow . .

Structure of Design Window

Design Window e e
Structure of Design Window—Fdit
Design Window—FEdit

Design Window— Edit with Open sclected in pulldown menu File . .

Structure of ViewWindow

vili

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

ViewWindow e e e e e e e e 66

Structure of ViewWindow—"Table 67
ViewWwmdow -Table 68
VicwWindow-- Table with Class selected in pulldown menu TableView 69
An informationdialog L o0 Lo oo 70
Structure of CheckWwdowo oL 74
CheckWindow e e e 75

The information dialog which is popped up when the checking succeeds 76
The output window which is popped up when the checking fails . .. 77
OutputWindow o o e 79

The information dialog which is popped up to indicate the generated file 80

Code for checking inherited classname 84
DesignWindow -Edit with Searchinvoked. 88
The system-level table of the Heating System 91
The system-level table of the Heating System (continued) 92
The class-level table for the class View 93
The class-level table for the class Water 000000 . 94

ix

Chapter 1

Introduction

1.1 Why object-oriented design?

One major trend in the history of software engincering is the shift in focus from
programming-in-the-small to programming-in-the-large. This trend changed the soft
ware engineer’s way of thinking and eventually led to a new paradigm: object-oriented
technology.

In the late 80's, almost every software developer experienced this “object-oriented”
storm which touched every ficld of software engineering. Object-oriented technology
provides a different approach to the software system. It relies on the three developing,
phases - analysis, design and implementation to carry out the major characteristics
of object-orientation: data abstraction, information hiding, dynamic binding and
inheritance.

Conventional functional approaches require the designer to first ask what the
system does: the functional aspects. This is probably adequate if the target system
solves a fixed problem once and for all. But changes happen over time, What the

system will do in its first release is probably going to be a little different from what it

was cxpected to do at requitement time, and very different from it will be expected
Lo do several years later.

However, the categories of objects on which the system acts will probably be quite
stable. A document processing system will always work on documents, chapters,
sec tions paragraphs, and so on. Thus it is wiser in the long term to rely on categories
of objects as a basis for decomposition than on functionality. The object-oriented
design technique is defined in such a way that the principle of modular decomposition
of the system is according to the classes of objects which the system manipulates[19].

Compared to the traditional functional design, object-oriented design aims for
more robust software that can be easily reused, modified, maintained and extended.
The greatest strength of this approach to development is that it offers a mechanism
that captures a model of the real world which leads to greatly improved understand-
ability and maintainability of systems.

But current approaches to object-orientation lack complete and standardized rep-
resentations, and lack a complexity management mechanism to permit viewing the
design at varying levels of details or from various perspectives. Some weaknesses of
current object-oriented analysis and design lie in: 1dentifying interfaces, application
and system classes; identifying and representing different kinds of relationships; main-
taining consistent and correct semantics for such relationships; representing dynamic
views, and maintaining consistent levels of abstraction{[20][1].

Although objeci-oriented design is criticized by different groups, no one has said
that object-oriented design should be abandoned. One way to make it do the job

better is to provide better techniques and better supporting tools.

1.2 Why is a tool needed?

When large systems are developed, all information should be recorded properly. A
good tool will help to automate a large amount of such work, and provides efficient
support to the life cycle of software development. Developing a large system is difficult
and expensive, and maintaining it is even more difficult. As the existing knowledge

changes over time, more detailed knowledge is required and more information will be

added or existing information will be removed during the evolution of change. Tools
empower the designer, frecing him or her to concentrate upon the truly creatively
aspects of the designing and maintaining.

The object-oriented prograinming revolution has spawned a whole new industry
devoted to object-oriented analysis and design tools and the corresponding method-
ologies they support. As in conventional structural design, there are different, tools to
support each phase of the software life cycle, i.e., analysis, design and implementa-
tion. But current tools are intolerant of changes[16]. When a client has used a system
and changed the requirements after certain time, the maintenance programiers will
respond to change the code to meet the new requirements. But in most cases, they
forget to update the design. After evolving like this for a long time, this system will
not be recognizable from the design, and the inconsistency between requirements,
design and implementation will make the system extremely difficult to change and
maintain.

To our knowledge, there are no convenient tools to help to capture the change
of design during system evolution. No facilities are provided for integrating design
changes with existing partial implementations. Since reuse is a fundamental aspects of
object-oriented technology, better tools are needed to support re-analysis, ve-design
and re-implementation. Particularly, a good tool which is convenient to use and
efficiently supportive for updating the design during system evolution is needed, and
this latter issue is made the focus of this thesis.

The design tool described in this thesis is a software system which provides fa
cilities for creating, examining, checking and modifying design. The tool provides
a user friendly interface. It allows the user to display the design in different forms,
as text or table. The user can sclect the level of detail to view the design when it
is displayed in tabular form. The tool also allows the user to check the consistency
and completeness of design, and it can generate high-quality printable output of the
design.

Such a design helps to fill the process information gap and re-orient existing design
to support software evolution more effectively. The designer and maintainer can

simply use it as required. It supports system collection and maintains and coordinates

-

design information.
It is clear that the designer’s work load will Le greatly reduced with the help of

such a tool during software cieation and maintenance.

1.3 The structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 introduces a survey of
background in object-oriented design. Various methods for object-oriented analysis
and design and some supporting tools are overviewed; Chapter 3 outlines the issues
that were considered during the design of the tool. The goal and objectives, design
format, representation forms of the design and design decisions made for the tool
are exploited and illustrated; Chapter 4 discusses the design and implementation of
the Design Tool. The central data structure, the abstract syntax tree, the parser
module and the user interface and major functional modules are presented. Chapter
5 describes a walk-through of the Design Tool with an example given in previous
chapter. Some windows with displayed tables of a design which are constructed by
the tool are described, and an example of a printable report of a design which is
generated by the tool is also given. Chapter 6 gives conclusion of the study and

suggests for further related works.

Chapter 2

Principles of Objected Oriented
Design

In this chapter, we review various methods that have been proposed for object oriented
analysis and design. These methods formed the basis for the approach to design which
underlies our design tool. Some of the tools that have been developed to support

object oriented program development are described in the second section.

2.1 Object-Oriented Analysis and Design

Although object oriented programming was introduced in the late sixties [21], the
first references to object oriented technology appeared in the ecarly eighties. In this
section, we introduce some of the terminology that has evolved around object oriented

technology, and we discuss some of the design methodologies that have been proposed.

2.1.1 General Concepts

Object-oriented technology, since it was proposed, has experienced more than a
decade’s practice, and has steadily gained ground in the world of software develop-

ment. Although the term object-oriented has become a buzzword that means different,

things to different people: it has been used synonymously with modularity, informa-
tion hiding, encapsulation and data abstraction, but it always refers to a system design
philosophy which is fundamentally different from the functional design.

System development is the process of producing descriptions of models. The de-
velopment of a large complex system involves steps of decomposition of the system
into desired model descriptions. The functional approach emphasizes the functional
aspect of the system, which concerns what the system does. Therefore the decom-
position of a system with a functional design is based on the model which forms the
functionality of the system. This top-down functional approach is good if the target
system solves a fixed problem once and for all. But such case does not happen regu-
larly, the functional properties of a system do change over time. In a long view, what
the system is to do in its first release is probably different from what it is expected
to do at the requirement time, and very different from what it is expected to do a
long time later. The casily changeable property of the functional aspect of a system
limits the maintainability of the system. However, the categories of objects on which
the system acts are quite stable. An operating system will always work on devices,
memorics, processing units, and so on. Therefore it is wiser in the long term to rely on
the categories of objects as the basis for system decomposition. The object-oriented
design technique is defined in such a way that the principle of modular decomposition
of the system is based on the classes of objects which the system manipulates. This
approach reveals what the system is, not what it does. The objects of a system, which
are the building blocks in the system development, are therefore made central issue
of the object-oriented design.

But what is an object? An object usually reflects the entity in the real world,
like a car, a tree, a computer, etc. “An object is an entity able to save a state
(information) and which offers a number of operations (behavior) to either examine or
affect this state” [15). In other words, an object encapsulates both functions and data
which are conceptually related to each other. Encapsulation therefore is considered as
one of the important characteristic of the object, while information hiding, introduced
by Parnas[22], is another characteristic that is considered as central to the nature of

the object.

Other concepts[25] of object-orientation are listed as follows:

Abstract data type — An abstraction that describes a set of objects in terms of

an encapsulated or hidden data structure and operations on that structure.

Class — An abstraction of a set of objects that specifies the common static and
behavioral characteristics of the objects, including the public and private nature

of the state and behavior.

Generic definition — The ability to parameterize a class, like the template coneept
in C++.

Inheritance — (a). Single: A relationship between classes whereby one class ac-
quires the structure of other classes in a strict hierarchy from a single pareat.
(b). Multiple: A relationship between classes whereby one class acquires the
structure of other classes in a lattice with multiple parents.

Instance — One object in the set of objects described by a class abstraction.

Instantiation — The creation of a new instance object of a class or a new specific

class from a generic class.

Message — A request for an object to carry out the sequence of action in one of

the operations of its class.

Method — An operation defined in a class abstraction that carries out. a sequence

of actions in the class.

Operation — A class-level abstraction describing a sequence of messages or actions

that access or change the state of an instance of the class.

Overloading — A simple form of polymorphism; the ability to attach more than
one meaning to the same name in the same scope as differentiated by type or

some other class characteristic.

Polymorphism The ability of an entity to refer at runtime to instances of various
class. Hence, the actual operation performed on receipt of a message depends

on the class of the instance.

Currently there are many methods proposed by different developers for object-
oriented development.. The following section gives an overview of some of the methods

that we have referred to as the state-of-the-art object-oriented technology.

2.1.2 Overview of Object-Oriented Design Methods

Booch’s design method[6][5] is built upon the object model. The concept of an object
is introduced that has state, behavior, and identity, and with two kinds of hierarchy
relationships: using and containing. A class is defined as a set of objects that share
common structure and a common behavior which has four kinds of hierarchy relation-
ships: inheritance, using, instantiation and metaclass. The key abstractions are the
classes and objects that form the vocabulary of the problem domain, and classification
is applied in the process of abstraction.

A set of notations are defined for the design which include four basic diagrams
(class, object, module, and process) and two supplementary diagrams (state transition

and timing). Each of these notations is defined as follows:

¢ A class diagram is used to show the existence of classes and their relationships
in the logical design of a system; a class diagram represents all or part of the

class structure of a system.

o An object diagram is used to show the existence of objects and their relationships
in the logical design of a system; an object diagram represents all or part of
the object structure of a system and primarily illustrates the semantics of key
mechanisms in the logical design. A single object diagram represents a snapshot

in time of an otherwise transitory event or configuration of objects.

o A module diagram is used to show the allocation of classes and objects to mod-
ules in the physical design of a system; a module diagram represents all or part

of the module architecture of a system.

8

o A process diagram is used to show the allocation of processes to processors in
the physical design of a system; a process diagram represents all or part of the

process architecture of a system.

* A stale transition diagram is used to show the state space of an instance of a
given class, the events that cause a transition from one state to another, and

the actions that result from a state change.

o A timing diagram is used to show the dynamic interactions among various ob-

jects in an object diagram.

In addition to the above diagrams, a textual representation notation is also defined.
This so-called template notation captures all the important aspects of a class which
is less readable but more detailed than the diagram. During the design process, the
diagrams and templates evolve as new design decisions are made and more detail is
established.

Unlike structured design, the process of the object-oriented design is neither top
down nor bottom-up; rather it can be best described as round-trip gestalt design,
which emphasizes the incremental and iterative developmeni of a system. A process

of the object-oriented design is described by Booch as follows:

o The first st. p in the process of the design involves the identification of the classes
and objects at a given level of abstractions and the invention of important

mechanisms.

¢ The second step involves the identification of the semantics of these classes
and objects; the important activity in this step is for the developer to act, as a

detached outsider, viewing each class from the perspective of its interface.

o The third step involves the identification of the relationships among these classes
and objects; in this step, the ways in which things interact within the system
are established, with regard to the static as well as the dynamic semantics of

the key abstractions and important mechanisms.

9

e The fourth step involves the implementation of these classes and objects; the
important activities in this step involve choosing a representation for each class
and object, and allocating classes and objects to modules, and programs to
processes; this step is not necessarily the last step, for its completion usually

requires that we repeat the entire process, but at a lower level of abstraction.

The method proposed by Wirfs-Brock et al.[27], has been given the name responsi-
bility-driven design. As usual, a set of basic concepts of the design are defined. In
additional to the concepts described previously, such as object, class, inheritance, and

polymorphism, the following concepts are defined:

Object accessing —- one object accesses another object by sending it a message,
which consists of the name of an operation and any required arguments. A
method is the step-by-step algorithm executed in response to the method re-

ceived, and whose formal specification is called signature.

Contract -- the ways in which a given client can interact with a given server, i.e.

the list of requests that a client can make of a server.

responsibility — responsibilities include two key items: the knowledge an object
maintains, and the actions an object can perform. They are all the services an

object provides for all the contracts it supports.

Collaborations -— collahorations represent requests from a client to a server in
fulfillment of a client responsibility. Therefore an object can fulfill a, particular

responsibility itself, or it may require the assistance of other objects.

Subsystems -— groups of classes, or groups of classes and other subsystems, that
collaborate among themselves to support a set of contracts. And a class is part

of a subsystem only if it exists solely to fulfill the goals of that subsystem.
Protocol — a set of signatures to which a class will respond.

The process of design involves six activates, which are described as follows:

10

¢ Finding classes by carefully and repeatedly examining the requirements speci-

fication, using abstract and modeling as the helping tools to find the candidate
classes, and identifying candidate superclasses by grouping classes that share

common attributes.

e Assigning responsibilitics by determining the responsibilities of the system as

a whole, and then assigning cach of these responsibilities to a specific class;

looking for relationships between classes to find additional responsibilitics.

e Identifying collaborations between classes by analyzing the interactions of cach

class and then examining the responsibilities for dependencics: if a class is re-
sponsible for a specific action, but does not possess all the knowledge needed to
accomplish that action, a collaboration is identified between the class and an-
other class(es) that possess the knowledge; identifying additional collaborations

by looking for the relationships between classes.

¢ Constructing Hierarchies examining the relationships between class and identi-

fying the contracts of the classes using the following guidelines:

> model the “kind-of” hierarchy.
> factor common responsibilities as high as possible.
> ensure that no abstract class inherits from concrete classes.

> eliminate classes that do not add functionality.

o Identifying subsystems by examining the responsibilities and collaborations of

the classes. Strongly interdependency between two classes is the major reason

to group the two classes into one subsystem.

o Creating protocols of a class by refining the responsibilities of the class and

providing the formal specification of the class interfaces.

The tools used in the design process are class and subsystem cards, hicrarchy graph,
Venn diagram, collaboration graph and walk-through. 'The result of the design process

is a design document which includes: a graph of the class hicrarchies, a graph of the

11

paths of collaboration for cach subsystem, a specification of each class, a specification
of cach subsystem and a specification of the contracts supported by each class and
subsystem.

The Object Modeling Technique (OMT) presented by Rumbaugh et al.[23] is a
method for collecting and representing information about requirement and design.
The OMT method introduces three kinds of models to describe the system. They are
object model, dynamic model and functional model. Each model is applicable during
all stages of the develepment and acquires implementation details as development
progresses. The three models and their representation notations are described as

follows:

Object model: the purposc of object modeling is to describe the objects in a
system. The object model describes the structure of the objects—their identity,
their relationships to other objects, their attributes, and the operations they
preserve. This model provides the essential framework into which the dynamic
and functional models can be placed, since the objects are the units into which

the world is divided, and the molecules of the whole system.

The object model is represented graphically with object diagrams containing
object associated with other classes. There are two types of object diagrams:
class diagrams and instance diagrams. A class diagram is a schema for describ-
ing object classes (a group of objects with similar properties (attributes) and
common behavior (operations)). The class name, its attributes and operations
arc displayed in the class diagram. Also clear emphasis is placed on the as-
socialions between objects. One-to-one and one-to-many relationships can be
represented in the diagram. An instance diagram describes how a particular set
of objects relate to each other. It is used mainly to show examples of a class

diagram to help to clarify the complexity of the class diagram.

Dynamic model: the changes over time to the objects and their relationships of a
system are represented by the dynamic model. The dynamic model of a system

describes the flow of control, the interactions, and the sequencing of operations

12

in the system of concurrently-active objects. The major dynamic modeling con-
cepts are events, which represent external stimuli, and states, which represent

values of the objects.

An event is a one-way transmission of information from one object to another,
and can be grouped into an event class and given a name to indicate the com-
mon structure and behavior. The time at which an event occurs is an implicit
attribute of all events. A state is an abstraction of the attribute values and
links of an object. Sets of values are grouped together into a state according to
the properties that affect the gross behavior of the object. The state diagram is
the graphical representation of finite state machines, and is a notation familiar

to most software developers.

Functional model: the functional model describes the aspects of a system con-
cerned with transformations of values—functions, mappings, constraints, and
functional dependencies. It captures what a system does, without regard for

how or when it is done.

The functional model is represented with data flow diagrams. The data flow
diagrams show the dependencies between values and the computation of out-
put values from input values and functions without regard for when or if the

functions are executed.

The output from analysis is a specification of three models that captures the three
aspects of the system: the objects and their relationships, the dynamic flow of con-
trol, and the functional transformation of data subject to constraints. The overall
architecture of the system is determined during the system design where the system
is organized into subsystem, concurrency is organized by grouping objects into con
current tasks, and overall decisions are made about interprocess communication, data
storage, and implementation of the dynamic model. The full definitions of the classes
and associations, as well as the interface and algorithms of the methods used to im-
plement the operations are determined in the object design phase. This phase adds
internal objects for implementation and optimizes data structures and algorithms.

Jacobson’s method[15] is given the name use case driven approach. The term

13

use case was introduced by Jacobson; it plays important role in the modeling of the
dynamic behavior of a system. Usually, the entire behavior of a system is described by
describing the behavior model by model in the system. Jacobson’s method describes
a system as a black box by describing a number of aspects of the system with each
of these aspects corresponding to a behaviorally related sequence called use cases.
The use case model consists of two items: the actor and the use case. The actors
model anything that needs information exchange with the system, thus define the
roles that, the users of the system can play. The actors are the major tool for finding
the use cases. A use case is a specific way of using the system by using some part of
the functionality. Each use case constitutes a complete course of events initiated by
an actor and it specifies the interaction that takes place between an actor and the
system. The use case model forms a thread running through all the phases of the
system development.

The system development involve two separate but interacting processes: system
analysis and system construction. The analysis process aims at defining and spec-
ifying the system to be built and no requirements from the actual implementation
environment are to be taken into account. The analysis process produces two models:
the requirement model which specifies all the functionality that the system should
be able to perform through the use cases in the use case model; and the analysis
model which forms the basis for the system’s structure and specifies all the logical
objects to be included in the system and how they are related and grouped. The
requirement model uses actors and use cases to describe in detail each and every way
of using the system, from a user’s perspective. The analysis model aims at forming a
logical and maintainable structure in the system. Three object types are used to con-
struct the analysis model: interface objects, entity objects and control objects. The
interface objects model all the functionality that concerns the system interfaces; the
entity objects model all functionality that handles the actual information kept in the
system for a long period of time and the control objects model such functionality that
is not naturally tied to any of other objects (often mainly behavior). These object
types are identified when the use cases are analyzed and broken down. Subsystems

which are formed by grouping the objects are used to structure the system in large

14

units.

The construction process consists of two phases: design and implementation.
The results of these two phases are two models called design model and implemen-
tation model respectively. Three steps are involved in the process of producing the
design model: initially, the actual implementation environment is identified, such as
how the processes should be handled, the constraints from the programming language,
etc. This step aims at drawing conclusion on how these circumstance should be han-
dled in the system; secondly, the conclusion drawn in the first step is incorporated
into the design to develop a first approach to a design model. 'I'he analysis model
is used as a base and is translated into design objects in the design model that fits
the current implementation environment; finally, the object interfaces are constructed
by describing how the objects interact in each specific use case. Therefore the de-
sign model is formalized to describe all stimuli sent between objects and to define
what each operation will do to each object. From the design model, every detailed
specification of all objects, including their operations and attributes are obtained.
The implementation activity then implements each specific object with the selected
programming language.

Champeaux and Lea et al.[11] state that “Object-oriented design is best charac-
terized as a transformational process”. The transformational process starts with a
declarative, non-computational specification, and then applies methods and strate
gies that result in an implementable software design. The process is divided into
three major phases: class design, system design and program design. The class de-
sign defines the representational and algorithmic properties of the classes obeying
the declarative constraints specified with the object-oriented analysis; the system de-
sign maps objects to processors, processes, storage, and communication channels; the
program design reconciles the functionality and resource mapping in order to meet
the the performance requirements when expressed using the target implementation
languages, tools, configurations, etc.

Buhr and Casselman[7] present a new design concept for systems with distributed
control, called causality flow, a new notation for this control, called timethreads,

and a design process based on the notation called “designing with timethreads”.

“Causality flow” means the chains of causes and effects rippling through a sys-
tem as a whole that triggered by the occurrence of stimuli from its environment.
“I'imethreads™ 1s a visual notation for describing causality-flow scenarios. This no-
tation provides high level abstraction which can be used as a reasoning tool to help
drive the requirements-to-preliminary-design process, not just as a means of record-
ing scenarios for a more-or-less completed design. For the purposes of “designing
with timethreads”, a notation role architecture is introduced to express the system
organization at a high level of abstraction. Timethreads and role architectures have
no huilt-in assumptions about software or other implementation techniques. In ad-
dition, Timethreads are self-similar at different levels of details, which means that
they use the same notation and may show similar patterns. The details at different
levels will be different, but there is nothing in the general “look” of timethreads at
different levels to identify the level. This feature enables the timethreads to span a
wide design range from requirements definition to detailed design.

Coleman ¢! al.[9] introduce a notation called Objectcharts for specifying object
classes. An objectchart diagram is an extended form of a Statechart. The Objectchart
transitions correspond to the state-changing methods that the class provides as well as
those that the class requires of other classes. Object attributes and observer methods
annotate the Objectchart states.

Haythorn{13] indicates that it “is probably a marketing mistake” that “discussions
of the benelits of object-oriented programming often emphasize reuse rather than
extensible, maintainable systems”. He argues that reuse applies to individual classes
and pays off several years down the road, while maintainability applies to the whole
system and pays off sooner. Since we are really concerned with building systems,
maintainability is a more important goal than reuse, and clear guidelines for system
design which focuses on the maintainability should be obtained.

Monarchi and Puhr[20] evaluate current research on object-oriented analysis and
design (OOAD). Various OOAD techniques (i.e. processes or methods) and repre-
sentations are compared, and some strong and weak areas in OOAD are identified.
They state that the strengths of current OOAD research lie in: identifying semantic

classes, attributes and behavior of a class: placing the methods to a class; identifying

16

and representing generalization and aggregation structures; and representing static
views of the system and classes (i.e. structures). Some weaknesses in current QOAD
research identified by [20] are: the way to identify interface, application and system
classes; the way to determine when an attribute, relationship or behavior should be
a class; where to place the classes; the way to identify and represent other kinds of
relationships than the inheritance and part-of; the way to maintain consistent and
correct semantics for relationships; the way to represent dynamic views (i.c. message
passing, control, etc.); the way to integrate static and dynamic models; and the way

to maintain consistent levels of abstraction/granularity.

2.2 Supporting Tools for Object-Oriented Design

A lot of effort has been put on the development of the supporting tools for object-
oriented development since the OO technology was proposed. Beck and Cunningham|4]
have introduced index cards which are used as a simple tool for teaching object-
oriented concepts to designers. This index card has been used by the responsibility-
driven designers to capture initial classes, responsibilities, and collaborations, as
well as recording inheritance relationships and commmon responsibilities defined by
superclasses[26]. Index cards are helpful because they are compact, easy to manip-
ulate, and easy to modify and discard with small amount of classes. They can be
easily arranged on a tabletop and a reasonable number of them can be viewed at
same time. However, with large, complex systemns, such tools for recording design
information will be clumsy and inefficient. Especially during the system evolution,
updating the design will become a heavy burden to the maintainers.

Some developers have suggested the idea of design record for reducing software
lifecycle costs[2]. A design record is a collection of information, often in an on-line
repository, to support software evolution, which also provides a view of information
(i.e., interactive screen of information) about the system orits evolution. By collecting
a great deal information about the software design, much information is available
and helpful to the software developers and maintainers. Capturing designs or design

decisions was one of the primary motivators for the design record sinee the design

17

decisions made throughout the life of a system are critical in defining the architecture
of the system, and they provides clues to the maintenance programmers of the “why”
of existing code. A design record helps to fill the process information gap and re-
orient existing information to support software evolution more effectively. It supports
system collects, maintains and coordinates design record information. However, the
major problems with such design record tool are that it is high-cost to keep documents
up to date as the system is maintained with on-line editing, and collecting massive
information does not equate to maintenance effectiveness. In order to efficiently
support the developing and maintaining process, the design record should meet the

following criteria:

e The maintenance process step supported by a design record should be a cost

driver for software maintenance.

e Design record information should be collectible as automatically as possible as
a part of an instrumented process. This reduces the burden on the maintainers

for making the design record a reality.

e Design record information should be updateable as automatically as possible.
This helps to ensure that the information can be kept current without burdening

the maintainers.

The above overview reveals for us that the many methods proposed by different
people of object-oriented analysis, design and supporting share various similarities.
These methods all involve building models based on the object, separate static fea-
tures from dynamic ones, and all provide diagrams as well as text to represent the
models. Meanwhile, these methods all assume a fairly “classsical” process in which
analysis and design precede implementation and maintenance. The reality is that
almost all successful software evolve overtime which indicates that the analysis and

design phases are always overlap. A good design method should reflect this overlap.

18

Chapter 3

Tool Design

In this chapter, we outline the issues that were considered during the design of the
tool. The first section describes the goal and the objectives of the Design Tool, and
the features of the target tool are listed. The second section presents the design
format that is the theoretical basis for the tool, specifying what kind of design the
tool will handle. The next section presents the search of suitable representation forms
which will be used for display of the design in the tool. And finally, details of design

decisions made for the tool are described.

3.1 Objectives And Expectations

As mentioned in Chapter 1, one typical situation in software design and maintenance
can be described as follow:

Before a system is shipped for first release, the requirements, design and the code
developed by analysts, designers, and implementors are made fully consistent with
each other. But some time later, when the client has used the system and modified
the requirements, the system maintainers have responded by changing the code to
meet the new requirements, while the design of the systein usually has not been
updated to meet the changes in requirements and implementation. When this gap is

increased beyond a certain extent, the system will become a complex entity which is

19

unmaintainable and unrecognizable.

One major reason for this scenario is that design is not kept “light-weight”: updat-
ing design during the system evolution is a heavy burden for designers and maintainers
and may also be: extremely costly. In order to keep consistency between requirements,
design and implementation, the design must be light-weight[12] — easy to capture
and easy to modify. If there is a computer-aided design tool that can be used by
designers and maintainers, the tool should contribute to the speed, flexibility and
case of the design process and software evolution. The primary goal of our design
tool is Lo provide a facility for designers to explore and modify their designs as easily
as possible and as quickly as possible.

Some design tools are used to record decisions made during the design process, as
well as other design information. In this way, the tool maintains a complete record

of the design. But these tools arc not effective on the following reasons:

o It depends largely on the developer’s sclf-discipline to capture design informa-
tion and keep it up to date. This is time consuming, costly, and therefore often

neglected.

* To keep the design up to date is expensive, because it it not sufficient merely to
add new information, it is also necessary to purge information that is no longer
relevant. There is a need for mechanisms to keep the design current at reason-

able cost, but on-line editing of the design does not satisfy this requirement.

A more advanced design tool is needed, which should provide facilities for creating,
examining, checking, and modifying designs very easily.

The objectives of our design tool are as follows. It should:

> Provide automatced assistance for object oriented program development, with par-

ticularly strong support for the design phase.

> Support evolutionary development. We consider a software product to be a con-
tinuously evolving entity; changes affect all phases of development. At all times,

the documentation of each phase should be consistent with the other phases.

20

> Help the designer to complete the design as quickly and easity as possible. The

tool can do this by providing a variety of related functions that automate the

tedious chores of design.

We conclude this section with a brief outline of the features that we believe a
design tool should provide. Each of these features is described in subsequent sections
of the thesis. The tool should:

¢ provide the facilities to read, write, and display designs;

¢ provide multiple views of a design and provide facilities to change the design

based on the view;

e provide the facility to check the consistency and completeness of the design

upon request;

o provide the facility to generate high-quality printable reports for design archiv-
ing;
e respond to queries about the design, especially “what if?” queries;

¢ provide traceability to both requirements and code.

¢ designs provided by the tool can be implemented in any target language. The
tool is biased, however, towards strongly-typed, cliz: based languages, such as
C++, Eiffel, and Dee. It would be straightforward to extend the tool to write

class skeletons in any of thesc languages, but the present version of the tool
does not do this.

3.2 Design Format

Rumbaugh suggests that a design should incorporate three distincet, models of the

target system|[23]:

2]

o The functional model describes the computations performed. A computation
may be carried out by a single object or by an ensemble of objects working in

harmony.

e The data or object model describes the way in which data is represented and
managed within the system. In an object-oriented system, each object encap-

sulates a component of the data; objects may be parts of other objects.

o The dynamic model describes the flow of control within an object and between

objects.

Our design notation does not explicitly differentiate between these models. It is
organized around the object model. A system is composed of objects, so our design is
essentially represented as a eollection of class interfaces. The functional model can be
extracted from the object model by examining descriptions of methods of the classes.

The dynamic model can not, in general, be extracted from object/class interfaces,
therefore it must be described separately. Although state-charts are popular for
dynamic modeling, other methods may be more suitable for object-oriented systems,
like time-threads and uses cases. Qur tool currently does not support the dynamic
modeling of a system, and this is made an issue for future consideration.

A design, then, is a collection of class descriptions. Classes may be independent,
but are usually components of subsystems, frameworks, and inheritance graphs.

(lasses can be described at different levels of detail. The minimal description of a
class could provide just its name. A full description includes the relation of the class
to other classes, the instance variables, and a description of each method of the class.
A method has a name and a signature, and may also have a specification and a list of
methods that it may invoke. Obviously, the amount of useful feedback that the tool
can provide to the designer should increase with the amount of information that the
designer provides. Nevertheless, the tool’s ability to process partial designs is crucial
{o its flexibility.

Our tool is based on a model of object-oriented computation, and assumes the

following properties of a design:

22

The design consists of a number of classes. Bach class provides a number of

methods, or services.

o There are currently two relations on classes: client/server (uses) and par-
ent/child (inherits). The model may later be extended to provide other relations

between classes.

e If class (" uses class S, the client, C, needs one or more of the services provided
by the server, S.

o There may be cycles in the uses relation: X may use Y and Y may use X.

o If class C' inherits from class P, the child, (7, provides all of the services of the
parent, P, and may provide additional services.

¢ There are no cycles in the inherits relation.

o A class can provide three kinds of service:

> a construcltor creates a new object of the class.

> an observer returns an attribute of the current object (for example, the

age of a person).

> a mutator changes the value of the current object (for example, changing

the balance of an account).

o If the services provided by a class include one or more mutators, the class and
its instances are called mutable. If no mutators are provided, the class and its

instances are called tmmutable.

3.3 Design Display Forms

The principal purpose of the tool is to display the design in ways that permits the
designer to explore and modify it as casily as possible. Consequently, the tool should

provide different kinds of display.

23

ROOM ROOM ROOM

(1 1 [)

ROOM

VALVE I
e

. RADIATOR ENNIRONMENT

.
.

"« THERMOSTAT

—34— FURNACE

WATER
\ J

Figure 1: Simulation of a domestic heating system

Before we move to different kinds of display form, we introduce an example that

we will use in the coming sections.

3.3.1 Example: a Heating System
Specification

The problem of the simulation of a simple central heating system can be described
as follow:

There are several rooms in the house. The central heating system consists of
a furnace which heats the water. The water runs through each room to pass the
heat. There are a valve, a radiator and a thermostat which work in each room. The
process can be described as. the furnace heats the water; the water heats radiators;
the radiator heats rooms; the valve is set to on/ofl to control the heat into the room;
the thermostat reflects the temperature in the room; and the rooms radiate heat into
the environment. There can be from 1 to 8 rooms.

The user controls only the external temperature. If the external temperature is
close to zero, the radiators go on and off and the temperatures oscillate. If it is very
cold outside, say —20 degrees, the furnace runs all the time and the rooms reach an

equilibrium temperature below their thermostat settings.

24

object attribate

room temperature, valve, radiator, thermostat, K(room,env.)

valve switch (on/off)

radiator temperature, K(radiator,room), K(water,radiator), switch(on/ofl)
thermostat | temperature-set, tolerance

furnace switch (on/off), K(furnace,water)

water temperature, pressurc

environment | temperature

Table 1: Possible objects caught in heating system

The result of the simulation can be viewed in three different ways: analog, bar-
chart, and analog graph.

Figure 1 is a diagram of a simulated domestic heating system.

Analysis

Using the method provided by [27], we first collect the objects of the system (since
it’s not a big system, no subsystem level decomposition is needed).

Possible objects may used in design of the system are:
room, valve, radiator, thermostat, furnace, water, environment.

Now we can list the attributes of each object obtained as shown in Table 1.

The K(room, env.) in Tablel indicates that the temperature of a room is affected
by the temperature of the environment, and this relationship can he represented by a
constant value K which is an attribute of the room. Therefore, during the computation
of a room, the effect of the environment to the room will be taken in consideration
through the value of this K(room, env.) attribute. Other Ks in the table have similar
meanings.

Since object valve only has attribute swilch (on/off), we may make it an at-
tribute of object room. Actually, radiator and thermostat can also be considered as
attributes of room but, since they will take more complicated responsibilities and
have additional attributes of their own, we leave them as independent objects. The

object environment is taken in consideration by the room through the constant value

25

object attribute

room temperature, valve, radiator, thermostat, K(room,env.)

radiator temperature, K(radiator,room), K(water,radiator), switch(on/off)
thermostat | temperature-set, tolerance

furnace switch (on/off), K(furnace,water)

water temperature, pressure

view rooin temperature, time period

Table 2: Obtained objects of heating system

K{room, env.) and therefore can be eliminated from the list of objects. Meanwhile,
the object view is added into the list which is responsible to display the result of the
stmulation.

Table 2 lists new objects and their attributes after we have made the above
changes.

The next step is to assign proper responsibilities to each object that we have
found. The Responsibilities of an object are all the services it provides for all the
contracts (requests made by a client to a server) it supports. They include two key
items: the knowledge an object maintains and the actions an object can perform.
Responsibilities are meant to convey a sense of the purpose of an object and the role
it will play in the system.

l'ollowings are the responsibilities that we have identified for each object

room
Read room temperature, take into consideration the effect of the environment,

send messages to radiator and thermostat for their control.

radiator
Acts as server of room. When the room temperature is above the setting tem-
perature, set radiator/valve off, or when the room temperature is lower than

certain value and while the switch is off, set it on.

thermostat

When temperature setting is within tolerance, set the valve on or off according

26

to the temperature-setting and current temperature.

furnace

When water temperature is over certain value, set the switch off, or when heat

1s needed, set it on.

water

Maintain the temperature and pressure of the water.

view
Display the result of the simulation in three different ways: analog, barchart,

and analog graph.

With the above analysis result at hand, we can start our object oriented design of

the heating system.

Design

The system architecture is described in Figure 2.

l M()DFJD
l]
IlOU§E (__ I}NYI!{()NMI’N'I J
[—?Rl@ (warm) HJ?.;MHJ

RADIATOR l &lll‘lR()M()STA'I)

Figure 2: Architecture of the heating system

But Figure 2 does not give enough information about the system. In particu-
lar, it does not provide the information about how the components of the system
communicate with each other, and what the control sequences in the process and

among objects look like. We use Buhr’s timethreads notation to add in this part.

27

l MODEL '

I I

ENVIRONMENT J
=T C IMENT

L]

(- ROOM

o
frommace]

THEROMOSTAT

RADIATOR l

Figure 3: Timethread of the heating system

As mentioned in Chapter 2, timethreads notation is a design approach which jointly
manipulates causaiity-flow scenarios and schematic components of organizations to
make design decisions[8][7]. A timethread of the heating system is given in Figure
3, which indicates that when the heating system starts, first the furnace is heated
and then the water; later, the radiator is heated through the water and change in the
thermostat is made accordingly; finally the room is heated, and some heat is lost in
the environment.

Iigure 2 shows the Model component of an Model-View-Control system; Figure 4
shows the entire system.

Finally, we conclude the design by giving a list of class specifications based on

[27]. These are given in Appendix A.

........................

[C comerat) F
V. (111}

[TURNACE J (WATER ROOM

| C e)
((J [w])~

.......................

Figure 4: MVC view of architecture of the heating system

28

3.3.2 Textual Form

Textual form is the basic form provided for any kind of document, since text can be
formal or informal, and can be handled by both human and computer. If we define
the syntax of a design document, then the document can be read easily by a parser
based on that syntax. For our design format, we define the syntax for the design
which will be handled by our design tool.

The syntactic conventions that we use for design documents are listed below.

¢ Use lower-case characters for keywords. The only allowed keywords are: sys-

tem, class, inherits, uses, var, method and end.

o A design may contain comments. Each comment begins with two dashes (“~-")
and continues to the end of the line containing the dashes. A group of lines

beginning with two dashes is considered to be a single comment.

o The description of a system begins with the keyword system, followed imme-

diately by the name of the system.

e A system has at least one class, and each class has a unique name inside the
scope of the system; the description of a class begins with the keyword class,

followed immediately by the name of the class.

e Inside a class, there is at most one inherits-list; the description of the inherits-
list begins with the keyword inherits, followed immediately by one or more
class names; if there is more than one class name in the list, class names are

separated by commas or spaces.

o Inside a class, there is at most one uses-list; the description of the uses-list begins
with the keyword uses, followed immediately by one or more class names; if
there is more than one class name in the list, class names are separated by

comma or space.

e Inside a class, there are zero or more var-lists; the description of each var-list.

begins with the keyword var, followed immediately by a name:lype pair; the

29

name indicates the variable name and type indicates a class name; name and

type are connected by a colon (“:7).

o A class may contain zero or more methods. Each method is introduced by the
keyword method and has a name that must be unique within the class. A
method also has an optional argurnent list and an optional return type. The
argument list is a list of name:type pairs enclosed in parentheses. The return

type follows the argument list and is separated from it by a comma.

Example: method gel (index: Int): String

o Inside a method, there are zero or more uses-lists; the description of each uses-
list begins with the keyword uses, followed immediately by a namec::type pair;
the name in the pair indicates the method(service) being used, and the type
is a class name in which the method(service) is provided; name and type are

connected by a double colon (“::7).

o lach class is ended with the keyword end and followed by the class na:ae.

e Comments are only allowed at certain places: after system name, after class

name, after variable name and after method name.

Now we can generate the source text for the heating system according to the

design in Section 3.3.1.

system HeatingSystem

-- an 00 design for a domestic heating system

class HeatSim
-~ ancestors Program StdErrors
inherits StdError~ Program

uses Bool Textin Buffer ViewDigital ViewBarChart Float Water

View Furnace Int ViewGraph Iterator Room List String

Keyboard Window

method entry

30

end HeatSim

class View

-- An instance of a View class can display changing values of
-- several floating-point variables. This class, View, is

-- abstract: it defines the minimal protocol for a class that
-- provides views. A view has several channels, each

-- corresponding to a particular variable. Channels are

-~ initialized and updated independently in any sequence. The
-- display is updated as a unit.

method init (channel:Int value:Float)

-- Initialize the given channel with the given value.

method set_val (channel:Int value:Float)

-- Update the given channel with the given value.

method set_title (channel:Int title:String)

-- Provide the given channel with the given title.

method calibrate (value:Float str_value:String)

-- A calibration point is used to label the axis of a graph or to
-- perform a similar service for another display mode. This

-- method uses the given value to position the calibration mark
-- and writes the string at that position.

method update

-- Update the display for all channels.

method message (txt:String)

-- Display a message other than channel data

method close

-- Null method to close display. Descendant classes which require
-- a closing action should redefine this method.

end View

class water

31

-- Simulates the water in a heating system. The only interesting
-- attribute of the water is its temperature.

var temp:Float

method make (water_temp:Float)

~-- Set the initial temperature of the water.

method change_temp (new_temp:Float)

-~ Set temperature of water tc given value.

end Water

Although text is casy for the computer to handle and process, text is not always
the ideal medium for presenting information to people. Readers must derive the
information they neced sentence by sentence, and deriving information from large
blocks of text is sometimes inefficient. There are ways of presenting text, however,
that allow pcople to extract the information they need very efficiently. To overcome
the shortcomings of plain text displays, our tool can also present information in the

form of tables.

3.3.3 Tabular Form

Tables are formal structures that can be processed easily and efficiently by computers.
Tables can also be viewed as a form of picture, and it is well-known that people assim-
ilate pictorial information very efficiently. A person can quickly obtain information
from a table by scanning its rows and columns. Tables therefore provide information
directly and in a straightforward manner. Besides, tables have several advantages

when they are used in a human-computer interface:

o tables are ecasy to create;

o large tables, like spreadsheets, are easy to navigate by simple scrolling opera-

tions;

¢ tables make efficient use of precious screen space; microscopic fonts are not

required; and

32

¢ small changes to the design tend to cause small changes to the tables.

Questions need to be answered before we start to build tables for the design.

> We know that the design is composed of classes of a system (the object-model),

but what should the table look like so it can make the information contained

by the design well organized and fully contained?

> One obvious way to display aspects of a large system in tabular form is to

provide multi-level tables. But what levels should be provided, and how should

the user select them?

> Finally, what are the attributes of cach table at different levels?

The following considerations about tables refer to the questions above.

1.

There are at least two kinds of tables. One is a system-level table which lists
all the classes in a system and their descriptions. So when we get the table,
we know what classes are in the system and what are they by one quick glance
at the table; another is a class-level table which lists information about all the
methods in the class, so we can get detailed information about any specific class

that we choose.

The attributes of a system-level table should contain at least class name, its
description, a list of inherit class names, and a list of the class names it uses.
‘Thus the classes of a system and their relationship with other classes are obvious

at a glance.

The attributes of a class-level table should at least consist of the method name,
its description, its return type, its argument-list and list. of the method::class

pairs which the method uses.

There should be a system name and its description in the system-level table, so

we know which system we are looking at.

There should be a class name and its description in the class-level table, so we

know which class we are looking at without making any confusion.

33

Class name

Inherits Class

Uses Class

Description

HeatSim StdErrors, Bool, Textin, The simulation of a central
Program Buffer, View- heating system.
Digital,
ViewBarChart,
Float, Water
View,Furnace,
Int,ViewGraph,
Iterator,Room,
List, String
Keyboard,
Window
View An instance of a View class
can display changing values
of several floating-point
variables. This class, View,
is abstract: it defines the
minimal protocol for a clas
that provides views. A view
has several channels, each
corresponding to a particular
variable. Channels are
initialized and updated
independently in any
sequence. The display is
updated as a unit.
ViewDigital View Implements a View by dis-
playing floating-point
variables as strings.
ViewBarChart | View Implements a View using
horizontal bar charts.
ViewGraph View Implement a view by displaying

variables on an X-Y graph.

34

Table 3: System-level table for the heating system

Class name

Inherits Class

Uses Class

Description

Furnace

Simulates the furnace in

a simple central heating
system. The furnace
provides heat to the water
water if any heat is needed.
If no heat is needed, the
water cools down.

Water

Simulates the water in a
heating system. The only
interesting attribute of

the water is its temperature.

Room

Heatable, Any

Simulates a room which obtains
heat from a radiator and loses
heat to the environtment. Room
inherits from Any in order that we
can declare an array of Rooms.

Radiator

Heatable

Simulates a radiator which
reccives heat from the water
supply and provides heat to

a room. The object simulated

is actually a rather complicated
radiator, complete with
thermostat and valve. You could
make the simulation more
realistic by splitting this calss
up into three components: a
thermostat which switches on or
off depending on the room
temperature; a valve which is
controlled by the thermostat; and
a radiator which is controlled by
the valve.

Table 4: System-level table for the heating system (continued)

Class name | Inherits Class | Uses Class | Description

Heatable An abstract class which captures
the basic property of a heatable
object. A hecatable object is
connected to a source, from
which it gains heat, and

a sink, to which it loses heat.
The object has a temperature
and coupling coeflicients to

its source and sink.

Table 5: System-level table for the heating system (continued)

According to the above considerations, we can build tables for the heating system

based on the design we developed in Section 3.3.1.

3.3.4 Diagram Form

Many of the popular design techniques are based on pictorial notations. Pictures are
useful because they efficiently communicate information about the overall structure
of a system. Pictures are an efficient form of information description, especially when
they are associated with a more formal representation in another medium. Diagrams
can be derived from text and are useful in providing quick confirmation that the
expected relationships are present. The essential characteristic of a diagram is that
it can be sketched quickly: this is why we use diagrams as aids to thinking and
designing.

But pictures also lose some of their effectiveness when they become constrained—
all structure charts tend to look the same-—or cluttered with a plethora of symbols.
Or when they are hard to draw. Diagrams are not an efficient way of cominunicating
with a computer. Although computers can generate a visual representation of data
that may help a person, they are not yet capable of extracting useful information from
a rough sketch. This ineffectiveness of diagrams is particularly limiting if diagrams

are the only, or even the dominant, way of representing designs.

36

MethodName

ReturnType

Parameter

Uses

Description

init

Int,Float

Initialize the given channel
with the given value

set_val

Int,Float

update the given channel
with the given value

set_title

Int,String

Provide the given channel
with the given value

calibrate

Float,
String

A calibrate point is
used to label the axis

of a graph or to perform
a similar service for
another display mode.
This method uses the
given value to position
the calibrate mark and
writes the string at the
position.

update

update the display for
all channels.

message

String

Display a message other
than channel data

close

Null method to close
display. Descendant
classes which require a
closing action should
redefine this method

Table 6: Class-level table for the class View

Method Name

ReturnType

Parameter

Uses

Description

make

Float

Set the initial temp-
erature of the water,

change_temp

Float

Set temperature of
water to given value.

Table 7: Class-level table for the class Waler

37

USER TN | uee
R — 4
L‘ user-interface]

~

Junctional modules
ot it porer (oatior) (stewer)
) o e [checker) [P""“e"]

K(a.,..m..,,,..m.,m])

Iigure 5: Organization of the tool

In our tool, the diagram form for display design is not provided in the first version,

s0 we do not discuss it further in this thesis.

3.4 Design of the Tool

The issues discussed in this section include the functional structure of the tool; the
most suitable data structure for the data repository (which turns out to be an abstract
syntax tree); techniques for constructing and processing the abstract syntax tree; and
the major services provided by the tool. In addition, we discuss the design of the user
interface, including window layouts. We conclude with a brief discussion of the choice
of implementation language and software libraries that we used to build the tool.
Due to the different aspects of the user-interface and its importance, user-interface

will be described in a separate section later.

3.4.1 CQOrganization of the Tool
Functionality and structure of the tool

As mentioned in Section 3.1, major functions of our tool are the ability to create,

examine, check and modify the design, and to produce high-quality printable reports

38

(_" kind of
SYSTEM 1
S T [T T e T e W
CIASS1 _CLASS2 _CLASSm
inherits: ceeose {nheritss..... {nherits:......
uses: wosaas uses: ..eeee USeS! ceeesn
var: var: vesens - 000888 ygr:
method: method: method:
G- |3 () (9
e/ | SRR

Figure 6: Abstract Syntax Tree of the tool

for the design. Based on this, we can divide the functionality of the tool into four
service modules: a text-editor for creating and modifying the design, a viewer for
examining and displaying the design, a checker for checking the consistency and com-
pleteness of the design, and a printer for producing high-quality out put of the design.
All these facilities are provided to users by a carcfully designed, user friendly inter-
face. The window-based interface is composed of different levels of windows which
are equipped with various, but consistently formatted, pull-down menus and push
buttons. All major functions can be activated by using the mouse only. However, all
the functional modules can not be active without the data which are represented as
the abstract syntax tree (AST). Every part of the tool has an intimate relationship
with the AST. Whenever the user wants to modify, view, check or print a design,
the tool needs to get data from the AST, then invokes the corresponding module for
the user. The generation of the AST is the responsibility of the parser, which takes
a file of source-text as input and constructs the AST. The parser is the first step in
activating any functions in the tool. It reads source text, scans it, checks the syntax,
and generates the AST.

Therefore the organization of the tool is composed of four parts: data structure,

parser, functional modules and user-interface. These are shown in Figure 5.

39

Data Structure

The abstract syntax tree is required to store all the information about a design. Since
a design is basically a list of class descriptions of a system, the AST should be able
to hold arbitrary number of classes, and in turn, hold arbitrary number of variables
and methods inside a class, as the design format specified in Section 3.2. Using a

pictorial description, AST will look something like in Figure 6.

Parser

The parsing component will have three parts: one for scanning the input file and
obtaining tokens for grammar checker, one for checking the syntax of input file and
report syntax error, and the third one which is responsible for grabbing the data
parsed and generating the AST. Once the syntax of the input file - source text —
is determined, the scanner and the parser will be determined accordingly. The data

grabber/clutter part will be fixed on the decision of AST.

Major functional modules

Text Editor
Text editor is the basic and conventional tool for creating and modifying text.
The tool will provide a fully functional editor which allows the user to open and
save files which contain design document, browse the design in text form, and
modify it with convenient edit tool, like search, cut, paste, copy, etc., which are

provided in the tool.

We assume that the design documents are files that with extension .d, so when-
cver the user wants to select a file for open or save, the tool will provide a file

list, and only those files with extension .d appear on the list for selection.

Viewer
The viewer is a module which provides a tabular display of the system’s design

on a window. The tabular form is discussed in Section 3.3.3. The module will

40

provide different tables on user’s request. The user can choose to view system-
level table by select a file which contains the design from a list of files provided.
After the file has been parsed by the parser, and the AST has been generated,
the module displays the system-level table like Table 3 in page 33, The user
is allowed to choose to view a class-level table when a system-level table has
been displayed - therefore, a system has been selected - otherwise, a warning
message will be issued. If the class rrame selected does not belong to the system,

a warning message will also be given.

The two kinds of tables will be displayed on the same window, therefore, only

one table can be viewed at a time.

A ScreenClear function will be included in this module.

Checker

The ability to check the consistency and completeness of a design is a significant

feature provided by our tool.

Consistency and Compleleness mean every class and method used in the design
is completely defined. Each class, whenever is inherited, is used, or is used as
type of a variable, as return type of a method should be defined in the scope of
the system, or in a standard library of the design whose source text is contained

in a file named the same as the file containing the design, but with extension
.1lib.

Our checker will allow the user to select a file from a file list provided, and to
invoke the checking by pressing a button. As in the case for Viewer, our parser
will first parse the file and generate the AST which will be used by the Checker
to perform checking. The check result will be given to the user which is either
the information about undefined class names and method names or a succeed

message.

For the convenience of the user, the consistency checker can be activated bhoth

as an independent action from a viewing window or from within the editor.

11

The printer is a module for generating output files of design in a form suitable
for printing. We have found that IATEX to be very suitable for this purpose: it
is straightforward to generate INTEX code, and the printed output is pleasing
to the eyes. Although the development of a design is best done interactively,

leisurely study of hard-copy often reveals area for improvement.

This module will allow the user to select a file from a file list provided by the
tool, and start the process by a simple mouse click on a button. After the
selected file has been parsed by our parser, and AST has been generated there
after, the module creates a new file if there is no such file (or rewrite if there
exists). The name of the new file is the same as the input file except that its
extension is . tex. The printer then writes to this file with KTEX form of the
design. When successfully finishing the generating of the output file, the module

will give a message to the user indicating the name of the generated file.

3.4.2 User-interface
Basic considerations

As mentioned in Section 3.1, the goal of our design tool is to provide a facility for
designer to explore and modify the design as easily as possible. There are two parts
that contribute to this goal: one is the functional modules as discussed before; the
other is user-interface. Without interface, user and functional modules which are
provided for achieving the goal arc on two sides of a river. A carefully defined, and
user friendly interface will sharply narrow the distance between what the user wants
and what he/she will get. That is why we consider the interface part to be the
significant and necessary part of our tool.

The most fundamental principle in user interface design is user compatibility,
1.e. to know well about the user(18]. The users of our tool are the designers and
maintainers of object-oriented software who have the knowledge about the design
and the ability to create and modify the design. Meanwhile, some principles|18]{24]

are selected as guidelines in our design of the interface. They are listed as follow:

42

. Lase of use: This characteristic makes the system acceptable and enjoyable to
the user. Therefore, in our system, each window, button, meau and dialog and
color or font used in the interface should be carefully organized so that the
maximuin of their potential self-explanation can be achieved, and the system is
made explicit in both what and how. Conveniently obtained on-line help should

be provided when it is necessary.

. Consistency: Consistency allows people to reason by analogy and predict how
to do things they have never done before, thus minimizing the need to consult
a manual. It improves both performance and user satisfaction, as it imparts a
sense of mastery to the user. We emphasize consistency within the system: the
labeling and graphic conventions should be kept consistent as well as format in
all displays; identical terminology should be used in prompts, menus and help

screens, and consistent commands should be employed throughout.

. Simplicity. One common mistake in interface design is to try to provide all the
functionality in a complex interface which results in overwhelming and confusing
details to the new user and tedious to navigate for the expert. One of our goals is
to provide a rich complex functionality through a simple interface. The interface
should not confuse the user by providing too much information on one scereen or
by presenting too many complicated functions in one step. This can be achieved

through layers of the interface.

. Duration: The system should tolerate common and unavoidable human errors.
The system should offer simple error handling as much as possible. If an error
is made, the system should detect the error and offer simple, comprehensible
mechanisms for handling the error. The system should let the user feel confident

that the system is robust enough to handle any kind of input, including errors.

. Familiarity: Based on the natural human tendency to learn and reason by anal-
ogy, familiarity can greatly facilitate the learning of a new interface. Therefore,
concepts, terminology and spatial arrangements that are famniliar to the user will

be used in the interface. Ambiguous words and description should be avoided

43

as rmuch as possible.

Features of window layouts

According to the guidelines given above, we design the window layouts in the tool to

contain the following features:

.

<t

ILach window only provides the necessary information for current/present ac-
tions, all other information which may be used later will be hidden from current
appearance of the window, therefore the chance to make the user confused is
largely eliminated. Advanced functions are presented to the user by multipie

levels of window.

All the windows are carefully organized to give a simple appearance to the user.
They are so straightforward that, with the exception of the MainWindow, no
help windows are needed, although there are spaces for placing the Help button
which may be needed when the system is extended in the future and more
functions are added. Users can get information about the functions and usages

of cach window from the appearance of the window itself.

All the windows are consistent in their button placements: the Quit button on
cach working window is always on the left corner of the button or menu fields;
the Help button on each window (if there exists) is always on the right corner of
the button or menu fields; and the functional buttons on each working window

are always on the middle of the button or menu fields.

All the Information Dialogs look the same: one message field and a button field;
the button field only contains one button for the user to confirm the message

and dismiss the dialog.

Whenever the user makes a mistake in input through either selection or typing,
the system will give a message dialog corresponding to that error. Additionally,
when the user want to exit the tool, a confirming message is provided. Protec-

tion is also made for the editor where designs are to be modified, and changes

44

should be saved before the updating information could be lost. Warning dialogs

are used to remind the user a specific situation.

Structure of Window Layouts

ToolMainWindow

Since there are four major functional modules in the tool, and the user should

be allowed to perform any of the four actions sequentially or in parallel, the tool
interface should provide a top level window which incorporates the above actions
and allow the users to select any one of them. This is the window we named
ToolMainWindow. Each action is represented in this window by a push button.
When the button is pressed, a corresponding new window is popped up for
further action. As for Design, a new window named Design Window is popped
up; for View, there is a ViewWindow; for Check there is CheckWindow; and
for Output, there is an Oulput Window. Besides, inside the ToolMainWindow, a
Help button is necessary and important which will pop up a HelpWindow and
give descriptive information about the tool and its use. Also a Quit button for

exiting the tool is provided.

HelpWindow
The HelpWindow should give the user all the information about the tool. The
information that the window gives are displayed text, and the user is allowed
to scroll the window when it is necessary. When the user finishes reading the
text, the window can be dismissed by clicking on a button. The window should

be retrieved by selecting the Help button in ToolMain Window again.

DesignWindow

The Design Windowis popped up to carry out the task of creating and modifying
design upon user’s request. There are two parts which form the layont of this
window. On the top part, there is a message wrapped in a frame which gives
description of this window, therefore the help message is provided directly; on
the bottom part is the action field which consists of several buttons: a Quit

button for exiting this window, a button named [dit for popping up a text

45

editor, etc. When new functions, such as a Query window for a new way of
creating and modifying the design, is to be added to the system, a new button
with a name, such as Query (or another proper name) can be added to this part

without difficulty.

ViewWindow

The ViewWindow is popped up to carry out the task of displaying the design
upon user's request. Like the Design Window, this window is composed of a
message field for the description of this window and an action field equipped
with several buttons. As usual, a Quit button is provided. Tabular display is
onc of the major feature of our tool. Accordingly, a button named Table is
presented for popping up a view-table window. When new functions of display
of design are to be added to the tool, such as graphic display, new buttons, such
as a Graph button, can be added to this field.

CheckWindow

The CheckWindowis popped up to carry out the task of checking the consistency

and completeness of the design upon user’s request. This window consists of
three parts: on the top is the message field like the DesignWindow or the
ViewWindow; in the middle there is a selection part which provides a file list
for selection by mouse or by typing; in this field, the current directory is the
default value, and switching to other directories is possible; on the bottom there
is an action field which is composed of several buttons, such as a Quit button,
a ChangeDir button, and a Check button for the check function on the system
selected by the user. If an illegal file name is typed for selection or other error
happens in the input file, a warning message is popped up to inform the user.
After the information dialog has been dismissed, the user can continue with a

new selection.

PrintWindow
The PrintWindow is popped up upon user’s request to carry out the task of
generating printable report of a design. Like the CheckWindow, it is composed

of three parts: on the top is the message field for description of this window;

46

in the middle is the selection field which allows user to choose a system for
printing by selecting a file from the file list provided or by typing in a file name
on a given place; on the bottom is the action field with several buttons, such as

a Quit button, a ChangeDir button and a Print button.

Implementation Language

We chose C as the implementation language and Motif as the toolkit for building
user-interface. Although C has some drawbacks, it is the obvious language to use for
software that will run under UNIX and will use X windows. There is a good debugging
tool (dbx) available, and the interfaces to Motif and X are specified as C prototypes.
It would have been possible to use another language, such as Pascal, but development
within a mixed language system would probably have presented many problems.
Motif is a toolkit developed by the Open Software Foundation. It provides a
set of guidelines that specifies how a user interface for graphical computers should
look and feel -— how an application appears on the screen (the look) and how the
user interacts with it (the feel)[14]. The Motif interface was intentionally modeled
after IBM’s Common User Access (CUA) specification, which defines the interface
for OS/2 and Microsoft Windows. Its GUI was implemented by OSF using X as the
window systern and the X-toolkit(Xt) Intrinsics as the platform for the Application
Programmer’s Interface. Consequently, Motif is both portable and robust. Xt pro-
vides an object-oriented framework for creating reusable, configurable user-interface
components called widgets. Motif provides widgets for such common user-interface
elements as labels, buttons menus, dialog boxes, scollbars, and text-entry or display
areas. We chose Motif because it is efficient, powerful, and popular, and becanse we

like the pleasing layouts it provides.

47

Chapter 4

Tool Implementation

In this chapter, we discuss the design and implementation of the Design Tool. The
tool is organized around a central data structure, the Abstract Syntax Tree or AST,
that we describe in the first section. The AST is created as a side-effect of scanning
and parsing the text of an object oriented design, as described in the second section.
In the final section, we describe the user interface of the Design Tool: its overall

structure, the windows and dialog boxes it uses, and the major functions used.

4.1 Abstract Syntax Tree

The Abstract Syntax Tree (AST) is the center part of our tool system. A proper
definition of AST is crucial to all of the other parts of the system. Based on the

design decision made in section 3.4.1, the AST can be built using C structures:

o A system is defined as a C structure which has several fields: a system name,

its description, and a list of class definitions which belong to the system.

o A class is defined as a C structure which contains several fields: a class name,
its description, the inherits class list, the uses class list, variable list, a list of

method definitions and a pointer to the next class definition.

48

o A method definition is a C structure which consists of the method name, its

description, its return type, a list of argument (name:type) pair, a list of uses

(method::class) pair and a pointer to the next method definition.

The definitions of a system, a class and a method are given in Figure 7.

typedef struct TMethod {

TLabel
TTOPair
TNTPairDict
TNTPairDict

label; /*
typeOrig; /=*
paralist; /
usesList; /

struct TMethod *next;

} TMethod;

typedef struct TClass {

TLabel

TInherits

TStringDict

TVar

TMethod

struct TClass
} TClass;

label; /*
inherits; /
usesList; /
varList; /
methodList; /
*next;

typedef struct TSystem {

TLabel
TClass

label; /*
classList; /=

struct TSystem *next;

} TSystem;

name and description */
type */

para:type pair */
method : :class pair */

name and description */
inherits class list */
uses class list */

var list */

method list */

name and description */
class list */

Figure 7: AST of a system, a class and a method

Appendix B gives the complete declaration of the AST with explanations.

PR

49

4.2 Parser

Our parser module is actually composed of three parts as mentioned in Section 3.4.1:
a scanner for scanning the input file and generating tokens; a parser which uses the
tokens to check the syntax of the input stream and report errors if there are any; and

constructors which work inside the parser to generate the AST.

4,2.1 Scanner

switch(c) {
case '-': /*----handle comment----%*/
if (follow(’-7)) { /* ‘==’ are found */
while (c != EOF) {

c = ngetc(); /* continue to get next char */
atp++ = C;
if (c == ’\n’) /* until end of a line */
break;
}
--tp = '\0’; / leave out the char ’'\n’ */

yylval.str = token;
return COMMENT;
}

Figure 8: C code of scanner for handling comment

Input streams in UNIX arc byte streams. Converting the byte stream into a token
stream is the task of a lexical analyzer, called a scanner. 'The scanner in our system
is hand-coded and written in C (lex.c). Its major part is a procedure call yylez with
int as its return type. The function of yylex is to examine the input stream and
group individual characters into several distinct tokens, and return them through an
external variable named yylval to pass the token value from the lexical analyzer to
the parser. The names “yylex” and “yylval” are chosen for compatibility with Yacc,
as described in the next section. We know from Section 3.3.2 that the keywords

defined for the source text of design are system, class, method, inherits, uses, var,

50

end. Besides, comments are defined as starting with double dashes and continuing
until the end of the line. Thercfore, yyler goes through cach character in the input
stream and compares cach string obtained to the predefined keyword and also makes
a copy of the word into yylval If a match in the comparison is found, a corresponding
keyword is returned, otherwise the string is returned as the semantic value of an

identifier. I'igure 8 gives the part of code for handling comments.

4.2.2 Parser

The function of the parser is to determine if a given source text is syntactically
correct and to perforin actions on correct text. The parser organizes the tokens it
reads according to the rules of a grammar. When the parser has a sequence of tokens
that corresponds to a rule, an associated action is executed. The actions can make
use of the values of tokens to generate output or pass the values to other routines in
the program.

Our parser is generated by YACC{17} — Yet Another Compiler-Compiler — which
is provided in UNIX. Yacc provides a general tool for imposing structure on the input,
to a computer program. The Yacc programmer prepares a specification of the input
process, which includes rules describing the input structure, code to be invoked when
these rules are recognized, and low-level routines to do the basic input. Yace then
gencrates a parser, which is a function named yyparse, and which calls the low-level
input routine (the yylexr) to pick up the basic items (the tokens) from the input
stream. The tokens are organized according to the input structure rules; when one
of these rules has been recognized, a corresponding action is invoked. Yace generates
its actions and output subroutines in C.

According to the syntax defined in Section 3.3.2, we prepared the specification of
the input text. The specification is in the form of grammar rules with a set of actions.
This is the file parse.y. The part of the rules for system written in Yacc is given in
Figure 9.

This rule indicates that a system comes in the form that starts with keyword

system, then a name for this system (the IDENTIFIER), then an optional comment,

system
SYSTEM IDENTIFIER {
settingSysName($2);
}

opt_comment {
addComm(aSYSTEM) ;
}

opt_class_list

Figure 9: Grammar rule for system

and finally a list of classes.

4.2.3 Constructing the AST

The actions we specified in parse.y are a list of C routines which we defined separately
in a file named dataGrab.c. When one of the grammar rules has been recognized by
the parser, a corresponding action is invoked immediately. As in Figure 9, when
in the source text something matches the rule SYSTEM IDENTIFIER, the action
seltingSysName ($2) is invoked which saves the value of $2 (the semantic value passed
by IDENTIFIER) to a proper C structure we defined for holding the system.

We declared several global variables in a file named tempData.h to hold the AST
of a system being parsed. These variables are generated through the C routines which
define the actions in the parser, and are used throughout the tool code. They will
be initialized (by calling initStruct) and regenerated whenever a new source text is
input for parsing. Actually, among these variables, only the TSystem typed variable
aSystem, which contains all the semantic values of the system being parsed, is used
after the parser phase. All other variables, like aClass, aMethod etc., are used only
during the parse phase to help to catch information for generating the AST of the
system.

Figure 10 gives the code of the operations settingSysname in the grammar rule of

Figure 9. In some cases, one system depends on another. For example, many systems

52

/* create the TSystem typed pointer "aSystem" */
/* and copy the given string to 1ts "name"filed */

K= m e e e e */
void

settingSysName(str)

TString str;

{

TSystem #*tmp, *sysptr;

tmp = (TSystem *)malloc(sizeof(TSystem));
initSystem(tmp);
tmp->label.name = (TString)strdup(str);
tmp->next = NULL;
/* always append the new created system to the tail */
/* of the system list */
sysptr = aSystem;
if (sysptr) { /* check to see 1f this 1s the first one */
while (sysptr->next) /* go to the tail */
sysptr = sysptr->next;
sysptr->next = tmp;
}
else {
aSystem = tmp;
}

Figure 10: Operations of setlingSysName

depend on a standard library. In these cases, the Design Tool parses the classes of the
system first, and then the library classes, storing the entire system in a single AS'I'.
The system and its library are then checked for consistency as if they were a single
unit. The newly created system of the library classes is always appended to the tail

of the existing aSystem to indicating the close relationship of the two systems.

4.3 User Interface and Functional Modules

In our tool, the user-interface is closely related to the functional modules. For ex-
ample, the Design Window-Edit is activated by calling the module of editor; the
ViewWindow-Table is activated through calling the module of viewer, and so on.
Therefore, we present the interface part and the functional module part together in
this section. We will go through the functionality of major working windows provided

by our tool, and describe the implementation issues in the following sequence:

1. The structure of the block widgets —- this gives the idea how we get the window
layout in Motif, therefore the corresponding code for building the window is

straightforward.

2. The appearance of the window —- this gives the actual layout of the window on

screen, and therefore describes the appearance of the tool.

3. Lrplanation of coding —- this will include descriptions of some important rou-
tines in implementation, such as window creations, local variables and major

computations, and so on.

Besides major working windows, a group of miscellaneous functions which play im-

portant roles in the functionality of the system will be described.

4.3.1 Major Windows
ToolMainWindow

The structure of widgets in the ToolMain Window is portrayed in Figure 11, and
Figure 12 gives the window layout.

This part also contains the main program of the system. It creates the toplevel
shell and builds a number of different widgets on the top of the shell. The window is
composed of two parts: on the top there is a message field, which is built with a label
widget, that gives a welcome message; on the bottom, there is an action field, which

consists of six buttons named Quit, Design, View, Check, Output and Hel»>. The

54

| toplevel shell |

[PanedWindow I
—| _ Buteon |

o e B [-

—— Button]

—- RowColumn T T B T
Mortsontay Frame Form

_ ™
e | o

Figure 11: Structure of ToolMain Window

Help button is made to be kept always on the right corner of the action field when
the window is resized. When any of the buttons is pressed, a corresponding function,
called the callback routine of this button, is invoked to carry out the action. The
callback routine for Quit is quitCb which is defined in the samne file scope; callback
routines for Design, View, Check and Output arc designCh, viewCb, checkCh and
outputCh which are defined in files designw.c, vieww.c, checkw.c and outputw.c
respectively; the callback routine for Help is helpCb which is defined in another file
named helpw.c.

The function of QuitCb is to create a warning dialog when the Quit button is
pressed. The warning dialog consists of two fields: a message ficld and an action field.
It differs from other information dialog in that it has two buttons, Yes and No, instead
of one. This warning dialog is created through calling convenient Motif function for
creating warning dialog with specified button labels and warning message. When
the user presses the Yes button, a further callback routine named ezit Tool which is
defined in the same file scope is invoked to destroy the toplevel shell and exit the tool;
if the user presses the No button, a corresponding callback routine named notlizit Tool
which is defined in the same file scope is invoked to remove the warning dialog from
the screen and leave all other windows unchanged. This warning dialog is defined as

a static widget, therefore once it is created, it will be used throughout the life time of

ot
ot

ToolMain

ey bid ol et vt e

P
tad

’ -
¢ J1TER gt T
st b

Figure 12: ToolMain Window

the system until the user exits the tool. It will be popped up on the screen whenever
the Quit button is pressed in the ToolMain Window, and will be removed from the

screen when the No button is pressed. The warning dialog is shown in Figure 13.

HelpWindow

The structure of widgets in Help Window is given in Figure 14, and Figure 15 shows
the layout of this window.

The shell of HelpWindow is created based on the parent of the Help button (by
Motif convention), and is defined as static. Based on the shell, all other widgets of
Help Window are defined. They are a Paned Window, two Forms, a. Label for display
the image i, a Tert widget for display help message, and two Push Buttons: one is Ok
for dismissing the window and one is a nonactive button named More. The image1 is
contained in file info.xbm, and is loaded into the system during the creation of the
Label. 'The help message is initially contained in a String array named help Teat, and
converted into a string array of type char [J, then loaded into the system during the
creation of the Text widget.

Like the warning dialog for exiting the tool, Help Window needs to be create only

36

i AT RTINS 1 TD I A AP Y
R
b

Figure 13: Warning Dialog [or exiting ToolMain Window

Shell
PanedWindow
Tabel
Form
Text

Button
Form

Button

Figure 14: Structure of H-lp Window

at the first time when the user presses the Help button in ToolMainWindow. Once it
has been created, it will be directly popped up on the screen when the user presses
the Help button. And it will be removed from the screen when the user presses the
Ok button through the callback routine of the Ok button which is the miscellancous

function named popdown Widget.

DesignWindow

The structure of widgets in Design Window is given in Figure 16, and Figure 17 shows

the layout of this window.

NI HelpWindow

>l

- -

eI WAr e v

Pra w CRARET ke Slae

il

Figure 15: Help Window

As every popped up window must have a shell, the shell of the Design Window
is created based on the parent ot the button Design of the ToolMain Window. This
Design Window consists of two parts: a message field for displaying the information
of the design window, and an action field which contains buttons. The message is
initially stored in a String array designdsg, and then loaded into the system during
the creation of a Label. Since using a Label widget to display message is simpler
and more direct than using a Tezt widget, a Label widget is used in this window
for message display. A Frame widget is used with the Tahel widget to get a better
appearance. There are four buttons in the action field, named Quit, Edit, Query
and Help. The Help button is not necessary for the current version, therefore is made
nonactive (say not sensitive in Motif) though it still appears in the window. It can be
made active when necessary. It is made to be kept always on the right corner of the
action field when the window is resized. Like Help Window, this window is declared as
static, therefore once it is created, the only action to invoke it is to pop up its shell.

When the Quit button is pressed, a miscellaneous function named popdown Widget

28

[enen]

[PanedWindow |

__i Frame 1[{ Label I
———{— Buttorn
button l
RowColumn RS

rizsont Tt 7o
o ental) ———1 Button I
L [huron |

Figure 16: Structure of Design Window

is called to remove the shell, so the Design Window will disappcar from the screen.
The callback routine for the button Edit is designkditCh defined in file dedit . c.
This function is responsible for creating the Design Window—Edit which provides the
place for user to create or modify the design. The callback routine for the button
Query is designQueryCb whose implementation is left to the future, and the button

is made inaccessible from the window at present time.

DesignWindow—Edit

Figure 18 gives the structure of the widgets in the editor, and its window layout is
shown in Figure 19.

The shell which is the base of all other widgets in the window is created as the child
of the parent of the push button Edit in the Design Window. The Design Window Fdit
is composed of five parts which can be viewed from both the structure of widgets and
the appearance of the window layout: on the top of the window there is a menu bar
with six pull down menus which are labeled Quit, File, Edit, Search, Option
and Help respectively. Each pull down menu has a list of one or more menus which
can be selected »nd invoked to perform a specific action; following the menu bar is the
place for input of scarching and replacing strings. This part is created on a horizontal

RowColumn with two pairs of Label and TeztField widgets. The Labels are used for

59

DesignWindow

I RN R T Y T

vk e g
Eibundens. .

Figure 17: Design Window

displaying the string “Search Pattern” and “Replace Pattern”. The TeztFields are
used by the user to input the patterns for searching and replacing; the next part in
the Design Window-Edit is one of the message fields which is built on a horizontal
RowColumn widget with a Label and TectFicld. This part is used for indicating the
file name of a design whose source text is currently being loaded into the editor for
editing; after that in Design Window-Edit is the working area of this window: the
editing field, which is built with a Scrolled Text widget. The size of the editing area is
fixed at the time when the window is popped up on the screen, while the window can
be resized and the user can scroll this editing area up and down and left and right with
the scrollbar provided; finally, on the bottom is another message field which displays
the information when one of the menu items in the pull down menus is invoked, such
as it gives the number of bytes read during a file opening, or it displays the number

of occurrences found when the user does a searching with a given pattern, etc.

Callback Routines

60

|_snen | {Putdoren 1
———‘l Pulidown Menﬁ

MainWind | P
" b —-| Pulldown Mang

Pulldown Men
Menubar .
Pulldown Menu T

T Label

gL I e
s =il e e T

- TextField]
Form e Labet |
RowColumn

Mrame __ @ortsontay

o TextMeld
———{ ScrolledText I -

TextFleld ‘]

Figure 18: Structure of Design Window - I7dil

Each pull down menus in the menu bar is associated with a callback rountine
which will be invoked when any of the menu items in the pull down menu is
selected. There is one menu Quit in the pull down menu Quit with callback
routine editQuitCb which is defined in the same file scope to pop down the shell
of Design Window- Edit. There are two menus in pull down menu File: Open
and Save; four menus in pull down menu Edit: Cut, Copy, Paste and Clear;
four menu in Search: Find Next, Show All, Replace Text and Clear; and
two menus in pull down menu Option: ScreenPrint and ConsistCheck. The
callback routines for the pulldown menus File, Edit, Search and Option are
the functions fileCbh, editCh, searchCh and editOptionCh which are defined in
the same file scope. The Help menu is placed always on the right corner of the
menu bar as the Quit is placed on the left corner of the menu bar. The callback
routine for Help is defined as edit{lelpCh and its implementation is left to future

work when it is necessary.

fileCb for pulldown menu File

The callback routine fileCb is invoked when any of the two menu items in pull-
down menu File is selected. The routine’s major function is to create a corre-

sponding file selection dialog for the menu item Open or Save. The file selection

61

fgnWinelow - £ dit

Figure 19: Design Window—FEdit

dialog is created by calling a convenient Motif function with some modifications
in file searching procedure and button labels. The new file searching procedure
is a miscellaneous function named mySearch Proc which searches the current di-
rectory for those files with extension .d or .1ib. Open is the new button label
for the default button Ok in the file selection dialog popped up when the user
selects Open menu. Accordingly, Save is the new label in the dialog for menu
Save. The label of original button Filter is changed to ChangDir for better

understanding. The button Cancel is left unchanged.

There are callback routines for each buttons in the file selection dialog. The
callback routine for Cancel is the function popdown Widget which is responsible
for making the dialog disappear from the screen when the button Cancel is
pressed. The callback routines for the button Open and Save in two dialogs are

the same function file_select_cb. The responsibilities of this routine include the

62

N De.siy/ﬂ'/indow -Fdit
! Py TR

Figure 20: Design Window—Edit with Open selected in pulldown menu File

operations of obtaining the file name from the selection field in the dialog, and
performing the action of file opening or file saving accordingly. If no file name is
provided in the selection field, or a given file can not be opened, a corresponding
message is displayed in the message field on the bottom of Design Window Idil.
When the operation of reading text from a file (for menu Open) to the editing
area, or writing the text in the Tezt widget (for Save) to a file is accomplished,
a message for indicating the number of bytes read or written and the full name
of the file is displayed in Design Window-FEdil. Meanwhile, when a file is loaded,
the file name appears on the message field up the editing area in Design Window

Edit. An example with the file select dialog popped up is show in Figure 20.

editCb for pulldown menu Edit

The callback routine editCh is invoked when any of the four menu items in

63

the pulldown menu Edit is selected. The procedure uses a variable event to
capture the user’s selection, which may be made either by clicking the mouse
or by pressing a key. The selection is highlighted in the text. If the user selects
the menu Cut, the procedure responses by cutting the selection from the text;
if menu item Copy is selected, the procedure copys the user’s selection into a
clipboard preserved by Motif; if menu item Paste is chosen, the procedure pastes
the content in the clipboard to the place where current cursor is. If no selection
is made by the user before one of these options is selected, a message which says
“There is no selection.” is displayed on the message field of Design Window-
Edit. 1f the user selects the menu item Clear, the procedure simply deletes the
content in the clipboard and removes the highlight made by the user during the

selection operation.

searchCb for pulldown menu Search

This routine is invoked when any of the four menu items in pulldown menu
Searchisselected. If the user selects the item Clear, the routine simply removes
all the highlights in the text. For the other three menu items, the routine first
checks if there is any text in the editing area. If there is none, a message which
says “No text to search” is displayed on the message field on the bottom of
DesignWindow-EFdit, and the the procedure returns. Otherwise, the routine
continues by checking if a search pattern is given in the window, if none, the
routine gives a message and returns. When both text and a search pattern
are available, and if the menu item Find Next is selected, the routine starts
scarching from current cursor position until a pattern is found in the text;
if no matching pattern is found, a new search from position 0 of the text is
invoked until a pattern is found in the text. Whenever the pattern is found or
not found in the text, a corresponding message is given on the bottom of the
DesignWindow-FEdit. 1f the menu item Show All or Replace Text is selected,
the procedure searches all the text, and highlights the found pattern(s) (for
Show All), or replaces the found pattern(s) (for Replace Text), then displays
a corresponding message for indicating the number of patterns found in the

window of Design Window-Edit.

r Shell I
|

LPanedWindow I

'—'—i Frame B } 1[i ;“:b;‘) I

o _____I‘ Button
RowColumn -))
ris .3 " Button
(horisontal) ———{ Button
_____{ Button

Figure 21: Structure of View Window

editOptionCh for pulldown menu Option

This routine is invoked when the user select the menu items in pulldown menu
Option. There are two menu items in this pulldown menu: ScreenPrant and
ConsistCheck, but only the latter one is implemented in the first version of
the tool. When ConsistCheck is selected by the user, editOptionCh responds
by first checking if a design source text has been currently loaded into the
editing area. If there is current design, it continues by calling a function named
checkFunc, which is defined in file checkw.c, and in the meantime passing the
file name to this function. The function checkFunc is responsible for doing the
zonsistency check of the design. If there is no file name available, a message

which says “Choose a file” is given in the Design Window I9dil.

ViewWindow

Figure 21 gives the structure of the widgets of the ViewWindow, and the window
layout is shown in Figure 22.

Like the DesignWindow, the shell of this window is created as the child of the
parent of the button View in ToolMain Window. There are two parts in the ViewWin-
dow: a message field for displaying information about this window which is built with

a Frame and a Label; and an action field equipped with several buttons. The buttons

- V/ew Wmdow

X*%ZXZH{H%
Fit 3‘%

: ‘ u‘f
X% . QUERY : boufto get other opti.on to vi
;‘4,72 “ will. be provided An" the future,
o x sy o ;1, o ,&u ikl LR SR
%2%%%%%747471%%74%%Z%%%%%%%%H%%227{2%%%%%%%%#}{2753%

s g

R

o
" i i ez g gl L
" o '-‘l\!

ul.lj.t l I‘ iy ﬂTable

4.;,.\“ [&F] +z SwE e

s Tt e T 0 W T R RO L ST

e Y

;.,) w A
W b da v w”"! ILH""'B ot

Figure 22: ViewWindow

in the window are Quit, Table, Graph, Query and Help. The callback routine of
Quit button is the common function popdown Widget which is responsible for remov-
ing the shell of this window, thus making the window disappear from the screen. The
callback routine for button Table is the function viewTableCh which is defined in file
vtable.c and is to be described in the next subsection. As in all other windows, the
Help button is kept always on the right corner of the action field, and Quit button is
kept on the left corner. The implementation of the callback routines for Graph and
Query are left to future work, and the buttons are made inaccessible from the window
for the current version. The button Help is also made inaccessible because no help is

needed and therefore is not provided for current version.

ViewWindow—Table

The structure of the widgets in this window is given in Figure 23, and Figure 24

shows the layout of the window:.

Shell

—| Pulldown Meru}
MainWindow =
— ———-I Pulldown Mens}

—-| Pulldown Men'q
| Menubar
_ |Puudown Menu

[rvame | satmtnios || reimpuea |

TextField]

TextField I

TextField j

Figure 23: Structure of ViewWindow— Table

The shell of View Window-Table is created as a child of the parent of the button
Table in ViewWindow. The body of this ViewWindow- Table is composed of four
parts as shown in the layout of the window. Like the Design Window -Fdit, on the top
of the window, there is a menu bar which consists of four pulldown menus. From left
to right, these pulldown menus are Quit, TableView, Option and Help. Following
the convention of the window layout in the system, the Help is kept far away on the
right corner of the menu bar. Beneath the menu bar, there is a message field which
is built with two Text[ield widgets. This message ficld (we call it top message field
in order to distinguish it from another message field on the bottom of the window) is
used for displaying the information about a table, such as a system narne for a system-
level table, or a class name for a class-level table. The next part in the window is
the drawing area which is used for displaying tables. Finally, on the bottom of the
window is another message field for indicating the namne of the file which holds the
source text of the design whose table is currently being displayed (for systein-level
table), or the name of the system of whom the class-level table is currently being

displayed.

Callback routines

Each pulldown menu in the menu bar is associated with a callback routine

67

S\ ViewWindow lable

Figure 24: ViewWindow— Table

which will be invoked when any of the menu items in the pulldown menu is
selected. As in Design Window-FEdit, there is one menu items, Quit, in the
pulldown menu Quit whose callback routine is vtQuitCbh. This routine simply
pops down (removes and can be retrieved later) the shell of ViewWindow-Table
when Quit is selected. There are two menu items, System and Class, in the
pulldown menu TableView. The callback routine for this pulldown menu is the
function tableCh which is defined in the same file scope. There is one menu
item, ScreenClear, in the pulldown menu option whose callback routine is
tableOptionCb. The responsibility of ScreenClear is to clear the drawing area
and the message fields. Therefore the callback routine tableOptionCh simply sets
the text of all the Textlields to NULL, and calls the function clearDrawArea to

remove anything in the drawing area.

Callback tableCb for pulldown menu TableView

The routine tableCb is invoked when any of the two menu items, System and
Class, in the pulldown menu TableView is selected. If the user selects the item

System which means a system-level table of a design needs to be displayed for

68

N ViewWindow - lable

System Description ¢
an 00 design for & domestic heating system

Class Name Inherits Class i — :‘ scription
HeatSin StdErrors,Progran " ..« 4-|° §Progrea StdErrors

a of a View class can display changing value-

<Fal flosting-point variables, This class, Vie-

ik ract: it defines the minimsl protocol for 8
class that provides views, A view has several channel-
t, sach corresponding to a particular variable. Channe-

Is ore initialized and updated independently in any se-

LIRS e

b
i

Figure 25: ViewWindow—-Table with Class selected in pulldown menu TableView

the user, the procedure responses by popping up a file selection dialog for the
user from which a file that contains the source text of the design can be selected.
This dialog is created by calling a convenient Motif function with some changes
in the file searching procedure and button labels. As all other file selection
dialogs used in the tool, this dialog uses the function mySearchProc to search
for displaying only those files with extension .d or .1ib in the current working
directory. Besides, the label of the OK button is changed to View, and the Help
button is not necessary, therefore is made inaccessible. As usual, the label of
the button Filteris changed to ChangDir,and Cancel button is left unchanged.

The callback routine for Cancel is popdownWidgel, which is responsible for

69

AL IR B ALY b ik L A

A .
oo e

Figure 26: An information dialog

removing the dialog from the screen when Cancel is pressed. The callback
routine for the button View in the dialog is the function sysTableCb. As usual,

this file selection dialog is declared static.

If the user selects the menu item Classin the pulldlown menu TableView to view
a class-level table of a design, the routine tableCh first checks if there is a design
available, i.e. if there has been a file selected from the file selection dialog which
is popped up by choosing the menu item System. Before a class-level table
can be displayed, a design must have been loaded into the tool. A variable
“currentSys” is used to hold the abstract syntax tree of the design which is the
most recently loaded into the tool. The variable is initialized to NULL when
the system starts, and is checked before a class-level table is to be drawn. If
the value of “currentSys” is NULL, i.e. no design loaded into the tool, tableCh
is responsible for popping up an information dialog which informs the user to
select a design through the menu item Systenm, and then the routine tableCh
returns. The information dialog is created by calling a miscellaneous function
createlnfoDialog. Otherwise, if a design is available, tableCbh creates a selection
dialog in which a list of class names of the design is displayed. This selection
dialog is created by calling a convenient Motif function with some changes in
button labels: the label of button OK is changed to View; the Cancel button is
set on the left corner of the action field of the dialog; since further help text is

not necessary, the Help button is made inaccessible. The list of class names is

70

obtained from the AST of the design, and is loaded into the dialog before the
dialog is managed and popped up to the screen. The dialog is declared static,
therefore it needs to be created only once. But the list of class names of the
design must be prepared each time when the selection dialog is to be popped up
due to the difference of the classes in different designs. There are two buttons
accessible in this selection dialog: Cancel and View. The callback routine for
Cancel is popdownWidget which removes the dialog when Cancel is pressed.
The callback routine for View is the function clsTableCh. Besides the callback
clsTableCh for button View, another callback routine noMatchClassCh is also
provided for the button View. This noMalchClassCh is to be invoked when
the user presses the View button, but the selection made by the user does not
match any one in the list displayed in the dialog. The no match callback function
simply pops up an information dialog to inform the user that the selection is
improper. This information dialog is also created by calling creat IngoDialog
and setting a corresponding message in its message ficld before managing it and
popping it up. An example with the menu item Class heing selected is shown

in Figure 25. Figure 26 gives the layout of an information dialog.

Callback sysTableCb of View in the file sclection dialog

The callback routine sysTableCb is invoked when the user presses the View
button in the file selection dialog which is popped up by the selection of item
System in menu TableView. The responsibilities of sysTable Ch include:

e obtaining the file name fromn the selection field of the dialog;

e calling the parser to parse the file and generate the Abstract Syntax Tree

for the design;

e popping up an information dialog when the AST is not generated due to

some reason such as file can not be opencd or the parsing fails, or

e (when parsing succeeds) drawing the system-level table of the design as well

as displaying the messages on the message fields in VecwWindow Tuble.

The parsing is invoked by call'ng the function ast, and the generated Abstract

71

Syntax ‘Tree is held in a global variable aSystem in file tempData.h. As before,
the information dialog is created with ercate/nfoDialog. The drawing of the

table is accomplished by calling a function drawSystem Table.

In drawSystcm Table, some local variables are defined for represencing the posi-
tions of lines and text of a table, and a new C structure TMultiStris defined
for holding multiple lines of a string. There are two fields in this C structure: a
char array for holding a string and an ant for holding the length of the string.
Variables which are declared as arrays of such type are used frequently in build-
ing a table. Several library routine: in Xlib[3] are called to accomplish the task
of drawing, such as XDrawLine. XDrawRectangle and XDrawString. Since the
window 1s allowed to be resized, a pixel map is created to store a copy of the ta-
ble in the drawing area. When the window is resized or when the user scrolls the
window by the provided scrollbar, the drawSystem Tablr is responsible to handle
the expose event by redrawing the table. This is accomplished by adding to the
window an “expose(allback™, the function redraw. which copys the table from

the pixel map to the drawing area.

In a system-level table. the system name of a design is displayed in the top
message field of the window. If there is a description (comments) about the
system in the design. it is te be displayed on the top of the drawing area.
The length of one line for displaying the system description is prefixed by the
program as indicated by the variable scwd (the value of this variable represents
the number of pixels). The description is actually a group of characters including
double dashes (*--") and carriage returns (“\n"). Before this string is to be
displayed, all the double dashes and carriage returns are removed by calling a
miscellaneous function rmBnDash. The length of the new string is compared
with the value of scwd to sce if the string can be held completely in one line. In
our tenl one character takes about 6 pixels based on the font we chosen. If one
line is rot long enough to hold the string of system description, new lines are
added and carriage returns are inserted into the string accordingly, by calling
the function addRBetn, until the string of the system description is completely

drawn

-1
[

From Section 3.3.3, we know there are four columns in a system-level table.
From left to right, the columns are labeled Class Name, Inherits Class,
Uses Class and Description. The width of each column is prefixed in the
program, but leaving the height (number of lines) of a row adjustable for holding
different length of strings in a row. The strings for labeling cach column are
drawn in a line under the system description, and their positions are calculated
according to the width of each column. The content of the table is drawn from
row to row. and is done by first drawing a rectangle and then drawing a string
inside the rectangle. As mentioned before, the width of each column is prefixed,
while the number of lines in a row depends on the length of the strings which
are to be displayed in this row. The number of lines in a row is initialized to 1

before drawing. and the actual number of lines in a row is computed as follow:

e starting from the class name, the procedure compares the length of the
string (the class name) to the prefixed width of first column. If one line
is not long enough to hold the string, new lines are added and carriage
returns are inserted into the string accordingly until the string of the class
name can be held completely in first column. A variable enhi is used to

store the minimal number of lines in a row needed for the class name;

¢ similar calculations are made for “Inherits Class™. All the names of “in-
herits class™ are concatenated together into one string, and commas are
inserted between any two names. The length of this new string is com-
pared to the width of the second column. If one line is not long enough
to hold the string. new lines are added, and carriage returns are inserted
into the string accordingly. until the string can be held completely in the
second column. The variable used for holding the minimal number of lines

needed in a row is cthi;

¢ similar computations are made for “Uses Class” and “Deseription™ of the
class, and the number of lines needed to hold the strings are stored in

variables cuhii and edhi respectively:

o then the four integers are compared to find the biggest one among them

73

Shell

Label

PanedWindow

FileSelectionDialog

Figure 27: Structure of CheckWindow

which is to be the actual number of lines used in drawing this row.
Finally, four rectangles and four strings are drawn at their calculated positions.

Callback clsTableCh of View in the class selection dialog

The callback clsTableCh is invoked when the user presses the View button in
the selection dialog popped up by choosing the item Class in pulldown menu
TableView. This routine is responsible for filling the message fields of the
window and draw a class-level table on the drawing area by calling function
draw(lassTable. The name of the class whose class-level table is to be drawn is
displayed on the top message field, and the system name of a design to which

the class belongs is displayed in the message field on the bottom of the window.

The function drawClassTable is similar to the function drawSystem Table, except
that “here are five instead of four columns in the class-level table. These columns
arc labeled Method Name, Return Type, Parameter, Uses Methods and

Description (comments for the method).

CheckWindow

The structure of the widgets in the CheckWindow is given in Figure 27, and Figure
28 shows the layout of the window.
This window is popped up when the button Check is pressed in the ToolMain-

Window. TFrom the layout of the window (Figure 28), we can see the body of this

74

] CheckWindow

a7
o h

i Fre 71k,
B " et
AN 15»"#:;' ¥

W tr 2

- Y RN SR L A = T
,Bﬂmlm\gg i ‘»ﬁ;»f'_ﬂr L

b oty dhgnchlad, i

Figure 28: Check Window

window is composed of three parts: on the top there is a message part which is used
for displaying information about this window; in the middle there is a file selection
part where a list of files with extension .d and .1ib are displayed and a selection
field is provided under the file list; on the hottom there is an action part equipped
with four buttons. The message part is created with a Label widget, and the text
for display is loaded during the creation of the Label. The file selection part and the
action part are created together by calling a convenient Motif function for creating file
selection dialog. Function mySearchProc is used for file scarching, and some changes
in button labels are made. The label of the button OX is changed to Check, and
Cancel button is set to the left corner of the action part, and Help button is made
inaccessible since no further help text is needed for the current. version. As usual, the
callback for Cancel is popdownWidget. The callback for button Check is the funetion
doCheckCb.

The routine doCheckCb is responsible for obtaining the file name from the selection

75

Mw»‘nwnmmn: hdaditsdaabind Sloba LAl vmvwmhwn%d
s i

rlm wl ‘5 1

g

Y

1“ Lhipy plid i

s N b ey e PF I
o T
T

FRERE i i T AR F

S

l
s

i

Figure 29: The information dialog which is popped up when the checking succeeds

field in the CheckWindow, then passing the file name to a function named checkFunc.
‘The function checkFunc calls the function ast to parse the given file. If parsing fails, a
corresponding information dialog is popped up on the screen to inform the user, and
the checking process is terminated. If the parsing succeeds, checkFunc assumes there
is a standard library for the selected design. The AST for the library is generated
inside the function checkFune and the AST is stored together with the AST of the
design in the global variable aSystem. The design sclected by the user and the library
are checked together as one unit by calling the function doCheckStuff.

The function doCheckStuf) is a routine that prepares for the actual check by ini-
tializing the data structure for holding the undefined class and method names, calls
the function consistCheck to check the consistency and completeness of the selected
design, and finally gives the check result on a popup window. If the design passes
the consistency check, an information dialog is popped up to inform the user of the
success of the checking (an example of this is given in Figure 29). If the consis-
tency check of the selected design fails, doCheckStuff is responsible for outputting the
checking result in a popup window. The unsuccessful checking result is a list of class
names and method names which are not defined but are used in the design. The list
of class and method names is generated by the function consistCheck, and stored in
a global variable nonDefine which is defined in file nonDefineData.h. The popup
window is composed of three parts: a message part on the top of the window which

is built with a Label widget and is used for displaying the message of “Consistency

76

|‘] CheckW/mlow Conwslency Check Oulpul §'1)

Figure 30: The output window which is popped up when the checking fails

Check Qutput”; a Text in the middle of the window which is used to display the list
of undefined names; and on the bottom, there is an action part with a button 0K in
it. The callback routine for OK is the function popdownWidgel which is responsible
for removing the result window from the screen. The function consistCheck is defined
in file consistCheck.c.

Inside the file consistCheck.c, a function inilNonDefine is also defined which
simply sets the variable nonDefinc to NULL. This function is always called before
checking to prepare the data structure for holding the new undefined names which
are to be generated during the coming checking.

As we have seen, the global variable aSystem defined in file tempData.h is used
to hold the AST of a design. The standard library of the design is stored in the place
pointed by the next field of the variable aSystem. The two systems (the design and the
library) are to be used together in consistency checking. The function consistCheck

checks the following parts of a class C' in the system of a design:

e each class that C' inherits must be defined in the design or in the library of the

design;

7

o each class used by C must be defined in the design or in the library;

e cach type used in the variable declarations of C' must be defined in the design

or in the library;

o the return type as well as each parameter type in a method protocol in the class

C must be defined in the design or in the library; and

o for each “method::name” pair inside a method of the class C, the “method”
must be defined in the class “name”, and obviously the class “name” must be

defined in the design or in the library.

The undefined class names and “method::name” pairs are stored in a global variable
nonDefine and duplicated names and pairs are eliminated from nonDefine. As an
example, the part of code for checking the inherited class name is given in Figure 33

al the end of this Chapter.

OutputWindow

The structure of the widgets in this window is the same as that of the Check Window,
and is shown in Figure 26, and Figure 31 shows the layout of the window.

This window is popped up when the button Output in the ToolMain Window
is selected by the user. The layout of this window is very similar to that of the
CheckWindow except that the message on the top of the window is different and
the label of the button OKN is Print instead of Check. The procedure of creating
Outout Window is exactly the same as that of creating CheckWindow. The callback
routine for the button Print is the function printCbh defined in file print.c.

The purpose of printCb is to generate for the user a file in WTEX form which is the
printable report of a design. The routine printCh gets the file name from the selection
field of Qutpat Window, then passes the file name to the function ast for parsing. If
the parsing fails, an information dialog is popped up to inform the user and printCh
returns. Otherwise, the output process moves on to get an output file name which
is the same as the name of the selected file containing source text of the design but

with extension .tex. The file name obtained is passed to the function therels, which

78

N OutputVindow
‘RN

aoood
e resesrate

rwwvgl%m&sl S AT 5
{

: ~=- TRCTRIDY U 1Ry F‘U!‘"
!I\Eﬁtw%ﬁﬁ N uv" ¢ ’1

ﬁnou Mu['*hrm Y ety |
aﬁw e J vkt

Figure 31: QutputWindow

looks for a file of the same name in the current working directory. If such a file exists,
it 1s deleted. In either case, the function ensures that an empty file with the given

name is available for writing. The following contents are written to the file:

e The function printCh first writes to the file a text which is the header of a INTJaX
file and contains the information of textwidth, textheight and topmargin, and

so on. The text is stored in a local variable lexl Begin.

o Then printCh writes to the file the name of the system of the design and the
description of the system, in IAT}|:X form.

o After that, it writes to the file in IATX form the information about each class

in the system of the design. The information written includes:

> the class name, its description;

> the list of names of inherited class;

79

i Mq'r!'wwm"iww' R NI T R
P oE ey veper n o

,45 e H

~T ha .,aenthtpd a]

TPy
,‘)h;‘hv

Pt
il

Figure 32: The information dialog which is popped up to indicate the generated file

> the list of class names used by the class;
> variables defined in the class, and
> the information about each metnod defined in the class, i.e. the method

protocol and its description.

o Finally, printCb writes to the file a text stored in a local variable textEnd which

is the end part of a INTj;X file containing “\ end{document}”.

After all the content has been written to the file, printCb closes the file and pops
up an information dialog to inform the user the generated file. One such example is

given in Figure 32.

4.3.2 Miscellaneous Functions

The functions described here are routines called miscellaneous functions which are
frequently used for the creations of different windows, and are grouped into a file
named miscelFunc.c.

popdownWidget

The most frequently used routine is the popdown Widget which simply calls XToolkit

library XtPopdown to pop down the given widget.

80

isGood

The purpose of the function isGood is to check if the given file has extension .d (files
containing the source texts of the designs) or .1ib (the file containing the source text
of the standard library). It obtains the extension of the given file (i.e. the string after
the first dot in the file name), and compares the string to d and 1ib. If a match is

found, an integer value 1 is returned to the calling routine, otherwise 0 is returned.

mySearchProc

The funtion mySearchProcis the new file scarching procedure used during the creation
of all the file selection dialegs in the tool. This function obtains the path of the current
working directory from the search_data (provided by Motif) of the file selection dialog,
reads all the files in the directory to a buffer, then calls the function isGood to select

only those files with extension .d or .1ib for display.

bigger

The function bigger compares two given integers and returns the bigger one to the

calling routine.

rmRnDash

The purpose of the this function is to remove the carriage returns (“\n”) and double
dashes (“-=") in the given string. It goes through each character in the given string,
and whenever a carriage return or a pair of double dashes is found, it simply removes

them.

addRetn

This routine is use! frequently in drawing tables of a design. The purpose of ad-
dRetn is to split the given string into multi-line strings according to some calculation,
then store the resulted strings in a variable multiStr which is an array of the type
TMultiStr. Meanwhile, the number of lines needed for holding this string in a row

is calculated accordingly and stored in a variable norow. The number of characters

81

that will fit on a line is obtained by dividing the length of the line by the width of
cach character. The length of the line, in pixels, is known, and the Design Tool uses a
font in which cach character is 6 pixels wide. The given string, which may be a long
string and has no carriage returns, is split into multiple lines and each split one-line
string and its length are stored in the variable multiStr. In case one word is split into
two lines, a dash (“-") is inserted at the end of the first part of the word. Finally,
the split string and the number of lines it takes are returned to the calling routine by

the variables multiStr and norow.

therels

The purpose of the function therels is to check if there is a file existing in the current
working directory which matches the given file name. The function obtains the path
of the current working directory by calling a UNIX system call[10] getwd, and reads
all the files in the directory to a buffer, then compares each file name with the given
string until a match is found (1 is returned) or the end of the file list is reached (0 is

returned).

createInfoDialog

Information dialogs are used very often in the tool which are popped up to inform the
user a specific status of a process, such as when a design has been checked successfully.
As mentioned in the previous subsection, all the information dialogs are created by
calling this ecreatelnfoDialog. This function calls the convenient Motif function to
create a information dialog as a child of the given widget. During the creation, the
(K button and Help button are not managed and therefore disappear from the action
ficld of the dialog. The label of the Cancel button is changed to OK and the callback
routine for this button is popdown Widget which is responsible for removing the dialog
from the screen when OK is pressed. Finally, the shell of the created dialog is passed

back to the calling routine.

writetofile

This function is used by printCh during the generation of the IWTI}X file for a design.

It simply call the C library fwrite to write a given string to a opened file.

checkspechar

This function is used frequently by printCh during the generation of the WX file
for a design. The purpose of this file is to preprocess all the special characters in the
given string. These characters, which need special handling in WX ave “", “%",
“g”, cgr, o, 43, 4o, 4o and “\ . Il any of the first seven characters is found,
a backslash is inserted before it. Otherwise, a special handling is needed, such as for
“\", a string “\backslash” is used to replace it, for “~”, a string “\"{ }” is used
instead, and for “~”, a string “\"{ }” is used for replacing. Finally, the new string is

returned to the calling routine.

isExist

The purpose of this function is to check if the given name already exists in the given
list. This function is used by consist Check to climinate the duplicated names found in
the variable nonDefine which is used to hold the undefined class and method names.
The “name” is a string, and the “list” is a pointer to the type TStringDict. If the

“name” is found in the “list”, | is returned, otherwise, 0 is returned.

83

/* check inherits class names */
inhs = currCls->inherits;
while (inhs) {
tmpSys = aSystem;
while (tmpSys) {
otherCls = tmpSys->classList;
name = (char #)strdup(inhs->name);
found = FALSE;
while (otherCls) {
if (strcmp(name, otherCls->label.name) == 0) {

found = TRUE;
break;
}
otherCls = otherCls->next;
}
if (found)
break;
tmpSys = tmpSys->next;

}
if ('found) { /* the name not defined */

if ('isExist(name, nonDefine)) {
tmp = (TStringDict *)malloc(sizeof (TStringDict));
tmp->name = (char *)strdup(name);
tmp->next = nonDefine;
nonDefine = tmp;

}
}
inhs = inhs->next;

}

Figure 33: Code for checking inherited class name

84

Chapter 5

A Walk-Through of The Design
Tool

In this chapter, we describe a walk-through of the Design Tool with the example which
we described in Section 3.3.1, the Heating System. Therefore the tables in the View
Window and the text in the Edit Window can be used to compare with the tables
and text which we developed in Section 3.3. Major functions of the tool are deseribed
with corresponding pictures of the tool we dumped from X window environment. An
example of a printable report which is generated by the Design Tool is also given at

the end of this chapter.

Common Features of Windows and Dialog Boxes

The following are features common to all the windows and dialog boxes except the

main window of the Design Tool (with the exception of the first one):

e Every window can be resized by placing the mouse pointer on the small square
which is on the right top of the window frame, pressing the left button of the
mouse, and dragging the mouse to the desired size then releasing the monse

button (The ToolMain Window can be resized in the same way).

The selection of an item in every selection dialog box (including file selection
dialog and general sclection dialog) can be made either by mouse or by keykoard
input. Mouse selection 1s done by placing the mouse pointer to the desired name
in the list provided by the dialog. clicking the left button of the mouse, and then
using the mouse to click on the action button, such as View or Open and so on,
to finish the action of selection. The keyboard input can be done by tyvping the
desired name on the selection field which is usually on the bottom part of the

dialog, then pressing the Return key to invoke the selection action.

The newly popped up window is always appears on the top of the sereen. When
a window is popped up on the screen, it always appears on the place where it
is removed (popped down) last time from the screen, except on the fiest time

that it is created, at what time it appears on the left up corner of the sereen.

There is at most one window of each type exists in the tool, and when the user
presses some button to invoke the popping up of the corresponding window, the
popped up window will appear on the top of the screen therefore it can be seen
as a whole by the user, no matter whether it has been created and hidden by
other windows, or it has been removed from the screen after it has been created,

or it has not been created.

ToolMainWindow

The tool is activated by typing the command oodtool inside the X window or the

Motif window environment, and the main window of the tool, the ToolMain Window

(Figure 12), is popped up on the top of the screen. The ToolMain Window is the only

place Lo get access to the help, in the Help Window which provides the on-line help

to the tool, and the working windows which provide the four major functions, i.e.

editing, viewing, checking and oulputting. 1. is also the only place to properly exit,

from the Design Tool. The HelpWindow, which is shown in Figure 15, is invoked by

pressing the Help button on the right corner of the action field of the main window.

It can be dismissed by selecting the OK button in the window, and can bhe retrieved

later by selecting the Help button in the ToolMain Window again. If we want to exit,

86

the tooi, the Quat button should be pressed, and when a warning dialog (Figure 13)
is popped up, the Yes button in the dialog should be selected. Once we select the
button Yes in the warning dialog, all the windows of the tool are deleted from the
sereen. Otherwise, if the button No is selected, only the warning dialog is removed

from the sereen, and everything else in the tool are left unchanged.

DesignWindow-Edit

Suppose we want to activate the editing function to view the source text of a design
or to modify a design, the button Design in the ToolMain Window should be selected
by a mouse clicking on the button. As the result, the DesignWindow (Figure 17) is
popped up on the top of the screen. We can quit the Design Window by selecting the
Quit button in the DesignWindow, and can retrieve it by selecting the Design button
again. The access to the Edit Window of the Design Tool can be achieved by selecting
the Edit button in the Design Window. The Edit Window, named Design Window-
it is popped up on the top of the screen with an empty editing area in the middle
of the window (Figure 19). Ixiting from this window can be done by sclecting the
Quit menu in the pull down menu Quit on the left corner of the menu bar. Suppose
we want to edit the source text of the design of the Heating System, we can do so by
selecting the Open menu in the second pull down menu File on the menu bar, and
when a file selection dialog is popped up on the screen, selecting the file demo.din the
file list (IMigure 20). As the result of such selection, the source text of the design of the
Heating System is loaded into the editing area of the window and ready for viewing
and editing. Meanwhile, the file name demo.d is displayed in the message field on the
top of the editing area. We can scroll the scrollbars up or down, and right or left to
view the different part of the text in the editing area, as well as resize the the whole
window to make the editing area larger or smaller. For editing, we can make some
selection of the text by mouse dragging, and the selected text is highlighted in the
editing arca. Then we can do Cut, Copy and Paste to the selected text by choosing
the corresponding menu in the pull down menu Edit of the menu bar. The Cut action
simply cuts the selected text, which is also highlighted, from the edting area. Copy

will copy the selected text into a clipboard which is preserved by the tool and used as

87

[g Desl jgnWindow - -Eclit

D s - 'A‘ :n—‘..n-.
sg-cuwrmmd gtd.-o.d 1 4 ﬁ'eg\,,L
e

A b A
. N VN By
md neatsxn '-‘ig’w'u-* i 9 "';.gq ix.
- Y + “y ¢ "
o olass can op ﬁ
ln[;:olnt varisbles, .This dlais, .(w.
protoeolrror A ass that pl:ogl

-\4] ml\u meri!‘dumoll
 —~ variable,”
~T sequence) The dl lw‘?l
{ sisthod - mc—’iebm:l‘fu; valug
1= Inigialize the m
nothod sst.val (dumalﬂ'nt
i == Update the glven channel
t.title (d\lmol'lnt

Figure 34: Design Window Fdit with Search invoked

88

a temporary buffer. The Paste action pastes the content in the clipboard to the place
where the current cursor is. The menu Clear of the pull down menu Edit deletes
the content. of the clipboard. This window also allows the user to do searching and
replacing on the text. Searching is done by input the search pattern on the left text
field directly beneath the menu bar. If we want to search for the string view in the
text, we can do so by typing the view in the searching place, and then selecting the
menu item Find Next in the pull down menu Search to search the string one by one
in the text, or selecting the Show A11 to get all the string views highlighted in the text
(an example of this is shown in Figure 34). The number of occurrences which match
the search pattern is displayed on the message ficld on the bottom of the window.
‘The Replacing can be done by first typing the scarching pattern, such as view, in
the left text field and replace pattern, such as View, in the right text field directly
beneath the menu bar, then selecting the menu item Replace ¢ Text. As the result,
all the string views will be replaced by the string Views. The highlights of text which
are made during the selection can be removed by selecting the menu itemn Clear in
the pull down menu Search. After some changes have been made to the source text
of the design, we can save the changes in the design by selecting the Save menu in
the pull down menu File, and after a file selection dialog is popped up on the screen,
selecting the right file name by mouse click or typing the desired file name through
the keyboard. Then the updated content in the editing area is saved to the file which
we chose. If some changes are made to the design, and the changes are not saved to
a file when we try to exit the Design Window-Edit, a warning dialog is popped up
on the screen to remind that the changes have not been saved, and could be lost if
we exit the window. Similar things happen when we make some modifications to the
design, then try to open a new file before the modifications we made are saved to
a file. Another function which does not belong to the scope of editing but presents
the convenience of checking to the designers is also provided in this window. This
is the function ConsistCheck in the pull down menu Option. Once we have loaded
a file into the editing area, or when we have finished the updating of the design in
the editing area, we can check the consistency of the design by selecting the menu

ConsistCheck. There is one thing needs to be mentioned here: when the source text

89

of a design has been changed in the editing area, only when we save the source text
of the design into the same file which previously contains the old source text of the
design, the consistency check will be done on the updated design, otherwise, the check
is done on the old one. Therefore, the Design Tool provides protection by checking
the editor to see if some modifications have been made, but have not been saved. If

this happens, the tool pops up a warning dialog to remind us about this situation.

ViewWindow-Table

If we want to view the tables of a design, we can do so by selecting the View button
in the ToolMainWindow, and when the VicwWindow (Figure 22) is popped up on
the screen, choosing the Table button. Then the view table window, VicwWindow

Table, is popped up on the screen with an empty and white drawing area in the middle
of the window (Figure 24). Since the default window size is too small to view any
particular tables, we can enlarge the window size by mouse to get a bigger drawing
area. Suppose we want to view the tables of the design of the Heating System, we
then need to do the selection by choosing the menu System in the pull down menn
TableView, and when a file sclection dialog is popped up on the screen, selecting
the file name demo.d from the file list. As the result, the system-level table of the
design of the Heating System is displayed in the drawing arca of the window, with
the system name of the design HeatingSystem displayed on the message field on the
top. and the file name demo.d displayed on the message field on the bottom of the
window. We can scroll the screllbars up or down, and right or left to view different
part of the table in the window. The complete system-level table of the Heating
System is given in Figure 35 and Figure 36. If we want Lo view a class-level table of
one of the classes in the design of the Heating System, we can do so by choosing the
menu Class in the pull down menu TableView. A selection dialog is then popped
up on the screen with a list of class names which belong to the design of the Heating
System (Figure 25). Suppose we want to view the table for the class Vicw, a selection
of the name View in the class list of the selection dialog should he made by mouse
or by keyoard input. The class-level table of the class Vicw is then displayed in the

drawing area of the window, with the class name View displayed on the message field

90

N| ViewWindow - - - 1abile

LA TR

an 00 design for 8 ddomestic heating system

Class Name Inherits Class

Uses Class

Description

| HeatS1m

St rors,Prooran

Bool . Text1n, Buffe ,ViewDig-
ftal.VievBarChart Float Wa-
ter.View,Furnace, Int, ViewG-
raph.iterator,Roon,List,St-

ring,Keyboard, N1ndow

ancestors Program StdErrors

An 1nstance of a View class can display changing value-
s of several floating-point variables, This class, Vie-
w, is sbstract: it defines the mininal protocol for a

class that provides views. A view has several channel-
s, each corresponding to & particular variable, Channe-
Is are inftializad and updated independently in any se-

quence, The display is updated as & wnit,

ViewDigital View Isplements 8 View by displaying floating-point varjsbl-

)

i es as strings.

! ViewBarChart View Implesents & View using horizontal bar charts,
&l

i VieuGr aph View Inplement a viev by displaying varisbles on an X-Y gra-
H ph.

:r Furnace Stmulates the funace in a sinple central heating sust-
l em, The furnace provides heat to the water if any heat
AT

l-,u-. hn-l w3 ‘et

;v-{!»(#vt,n ‘ NN ."01,'1" v

Figure 35: The system-level table of the Heating System

91

PR

de T . a e . TS R
L ATE : ohE ™ ‘ B i L R
ag3, St -E :
ﬁ&" ShRRN T
' i l
i Furnace Simulates the furnace in a sinple central heating syst- .

em, The furnace provides heat to the vater {f any heat ‘
|
1s needed, 1f no heat i needed, the water cools down X

Hater Simulates the water in a hesting systes, The only inte

resting attribute of the water js its tesperature,

Room Heatable, Ay Simulates a room which obtains heat from a radiator an-

d loses heat to the envirorment, Room tnherits from An-

Y 1n order that we can declare an array of Rooms,

r supply and provides heat to a room, The object simul-

ated i1s atually a rather complicated radistor, comple
te uith thermostat and valve, You coule mabe the simul-
atfon more realistic by splitting this class up intot

hree components: a thersostat which svitches on or of f

e —— = —————— A e~

depend! § on the room tenperature: a valve which |9 c-

ontrolled by the thermostat; and a rediator which {3 c-

+
| ! Radiator Heatable Simulates & radiator which receives hest from the wate
;
i
1
1
i
!
H
!

ontrolled by the valve,

Heatable An sbstract class which captures the basic property of N

a heatable object, A heatable object 1s connceted to

ch 1t loses heat, The vbject has a tesperature ard cou

pling coefficients to its source and sird,

|
i
i & source, from which 1t gains heat, anf a sirk, to whi
4
.
t
t
i
!

|
Figure 36: The system-level table of the Heating System (continued)
92

| ViewWindow - - - Table
g i 55T

o

Class Description ¢

fn Instance of & Viev class can display changing values of several floating-point variables, Thi-
s class, View, 13 abstract: it defines the minimal protocol for a ciass that provides views, A
view has several chamels, each co responding to a particular variable, Channels are initialized

and updated tndependently in any sequence, The display is updated as 2 unit,

Hethod Name Return Type Parameter Uses Method Description

init Int,Float Initialize the given channel with the given value,

set _val Int,Float Update the given chamnel with the given value.

set_title Int,String Provide the given channel with the given title,

calibrate Float,String A calibration point 1s used to labe! the axis of & gra-
ph or to perforn a similar service for another display
wode, This method uses the given value to position th-
e calthration nark and writes the string at that postit-

fon,

Update the display for all chamnels,

Display a message other than channel data

Null method to close display, Descendant classes which

require a closing action should redefine this method,

Figure 37: The class-level table for the class View

93

N ViewWindow---T a))lq

Class Description

Simulates the watar in & heating susten. The only rribute of the water s its teep-

erature,

Method Name Return Type Per ameter Description

nake Float Set the initial tempersture of the vater,

change_tenp Set temperature of water to given value,

Figure 38: The class-level table for the class Water

on the top of the drawing area and the system name of the design HealingSystem
displayed on the message field beneath the drawing arca. This is shown in Figure 37.
Another class-level table for the class Waler is also given in Figure 38, and these two
figures (37, 38) can be compared with Table 6 and 7 in Section 3.3.1. We can clear
the drawing area by selecting the menu ScreenClear in the pull down menu Option.
Exiting from this window can be done by selecting the menu Quit in the pull down

menu Quit.

CheckWindow

As mentioned before, we can do the consistency check of a design cither inside the
Destgn Window-Edit, or through the check window. The CheckWindow (Figure 28)
can be loaded by selecting the Check bution in the ToolMain Window. Suppose we
want to check the consistency of the design of the Heating System, we need to select,

the file which contains the source text of the design, i.c. select the file demo.d in the

file list. 'I'he check action is accomplished by mouse clicking on the button Check. On
the accomplishment of the checking, the CheckWindow is removed from the screen,
and the result of the check is given by either an information dialog for indicating the
success of the checking, or an output window (Figure 30) for listing the undefined
names of classes and methods in the design. For the Heating System, an information
dialog (Figure 29) is popped up on the screen. The files displayed in the file list are
based on the current working directory, and we can change to another directory by
cither typing the name of that directory on the selection field, or using mouse to click
on the directory. One thing needs to be mentioned here is that all the file selection
dialogs in the tool only display the files with extension .d or .1ib, therefore, in some
case, the file list part in the dialog may not contain any file names. The exiting of

the Check Window can be done by selecting the button Quit.

OutoutWindow

The printable report of a design can be generated by invoking the output function
of the tool. This is done by sclecting the Output button in the ToolMain Window.
Then the Qutput Window (Figure 31) is popped up on the screen. Suppose we want
to generate the printable report of the design of the Heating System, we begin by
selecting the file demo.d in the file list, then mouse clicking on the button Print. The
generated INTX file of the design is given the name demo.tex on the current working
directory. Part of this generated file is shown in the following, and the report of the
design, which is obtained by compiling the generated ITEX file and converting it to

the PostSeript form, is shown next.

% The first command specifies the style (article) and base font size (12pt).
\documentstyle[12pt]{article}

% Page size and margins: set for 8.5in x 1ilin paper with 1in margins.
\textwidth 6.5in

\textheight 9in

\topmargin -0.5in

\oddsidemargin 0in

\evensidemargin Oin
\parskip lex

\parindent Oem

% Insert any additional macros etc here.
% Then start the ’'document’.

\begin{document}

{\Large {\bf system }{\sl HeatingSystem}

{\leftskip 24pt \small

an 00 design for a domestic heating system\par}

\vskip 30pt plus 12pt minus 6pt
{\large {\bf class }{\sl HeatSaim}

{\leftskip 24pt \small \par}
{\leftskip 24pt \small

ancestors Program StdErrors\par}

\vskip 6pt plus 3pt minus 1pt
{\bf inherits}

{\sl StdErrors\/}

{\sl Program\/}

{\bf uses}

{\sl Bool\/}

{\sl Textin\/}

{\sl Buffer\/}

{\sl ViewDigital\/}
{\sl ViewBarChart\/}

96

{\sl Float\/}
{\sl Water\/}
{\sl View\/}
{\sl Furnace\/}
{\sl Int\/}

{\s1 ViewGraph\/}
{\sl Iterator\/}
{\s1 Room\/}
{\sl List\/}
{\sl String\/}
{\s1 Keyboard\/}
{\sl Window\/}

\vspace{6pt}
{\bf method }{\sl entry\/}\par
\vskip 6pt plus 3pt minus 1pt

\vskip 36pt plus 12pt minus 6pt
{\large {\bf class }{\sl View}

{\leftskip 24pt \small \par}

{\leftskip 24pt \small

An instance of a View class can display changing values of
several floating-point variables. This class, View, is abstract:
it defines the minimal protocol for a class that provides views.
A view has several channels, each corresponding to a particular
variable. Channels are initialized and updated independently in

any sequence. The display is updated as a unit. \par}

\vskip 6pt plus 3pt minus 1pt
\vspace{6pt}

97

{\bf method }{\sl an1t\/}({\sl channel\/}\,:\,{\sl Int\/}, {\sl
value\/}\,:\,{\sl Float\/})\, \par
{\leftskip 24pt \small

Initialize the given channel with the given value. \par}

\vskip 6pt plus 3pt minus 1pt

{\bf method }{\sl set_val\/}({\sl channell\/}\,:\,{\sl Int\/},
{\sl1 value\/}\,:\,{\sl Float\/})\, \par

{\leftskip 24pt \small

Update the given channel with the given value. \par}

\vskip 6pt plus 3pt minus 1pt

{\bf method }{\sl set_title\/}({\sl channel\/}\,:\,{\sl Int\/},
{\sl title\/}\,:\,{\sl String\/})\, \par

{\leftskip 24pt \small

Provide the given channel with the given title. \par}

\vskip 6pt plus 3pt minus 1pt

{\bf method }{\sl calibrate\/}({\sl value\/}\,:\,{\sl Float\/},
{\sl str_value\/}\,:\,{\sl String\/})\, \par

{\leftskip 24pt \small

A calibration point is used to label the axis of a graph or to
perform a similar service for another display mode. This method
uses the given value to position the calibration mark and writes

the string at that position. \par}

\vskip 6pt plus 3pt minus 1pt

{\bf method }{\sl update\/}\par
{\leftskip 24pt \small

Update the display for all channels. \par}
{\bf inherits}

98

{\sl View\/}

\vskip 6pt plus 3pt minus 1pt
{\bf method }{\sl message\/}({\sl txt\/}\,:\,{\sl String\/})\, \par
{\leftskip 24pt \small

Display a message other than channel data \par}

\vskip 6pt plus 3pt minus ipt

{\bf method }{\sl close\/}\par

{\leftskip 24pt \small

Null method to close display. Descendant classes which require a

closing action should redefine this method. \par}

\vskip 36pt plus 12pt minus 6pt
% Finally, end the file with:
\end{document}

The following are the actual printable report of the part of the design, the Heating

System, obtained by compiling the above IXT1X file.

system HeatingSystem

an Q0 design for a domestic heating system

class HeatSim

ancestors Program StdErrors

inherits StdErrors Programi
uses Bool Textin Buffer ViewDigital ViewBarChart Float Water
View Furnace Int ViewGraph Iterator Room List String Keyboard

Window

99

method entry

class View
An instance of a View class can display changing values of several floating-point
variables. This class, View, is abstract: it defines the minimal protocol for a class
that provides views. A view has several channels, each corresponding to a particular
variable. Channels are initialized and updated independently in any sequence. The

display is updated as a unit.

method init(channel: Int, value: Float)

Initialize the given channel with the given value.

method set_val(channel: Int, value: Float)

Update the given chanuel with the given value.

method set_title(channel: Int, title: String)

Provide the given channel with the given title.

method calibrate(valuc: Float, str_value: String)
A calibration point is used to label the axis of a graph or to perform a similar
service for another display mode. This method uses the given value to position the

calibration mark and writes the string at that position.

method update
Update the display for all channels.

inherits View

method message(txt: String)

Display a message other than channel data

100

method close
Null method to close display. Descendant classes which require a closing action

should redefine this method.

101

Chapter 6

Conclusion

In this thesis, we presented a supporting tool for object-oriented design and system
evolution. As design is the most important and cffort consuming phase in object-
oriented software developinent, our tool aims at providing automated support to
empower the designers as much as possible during the design process. Maintenance
is the most costly phase in system evolution, our tool provides direct assistances to
the maintainers during system evolution by supporting automation in capturing and
altering the design. Important features of the tool are editing, viewing, consistency
checking and the generating of printable report of the design.

The design and implementation of the tool were presented in the thesis. Design
format which forms the theoretical basis for the tool was discussed; design display
in textual and tabular forms were cxploited and illustrated with an example; the
abstract syntax tree(AST) which is the base of data in the tool were generated, and
a parser module for constructing the AST of a design were presented; functional
modules of editor, viewer, checker and printer were built based on the analysis of the
tool and theoretical results.

A carcfully defined, consistently formatted user iuterface was developed as part
of the tool, and as the media for human interaction with the function modules of the
tool. We considered the interface part to be the significant and necessary part, of the

tool design, and emphasis was put on it to achieve the case of the use of the tool.

102

As the first version of the design tool, limitation of the functionality of the tool is
unavoidable, and several directions for future work can be suggested to contribute to

the improvement of the tool. The following are some suggestions for future work:

» Some new functions can be added to the tool to enlarge the tool’s function-
ality. This may include the ability to provide graphical display (diagram) of
the system of a design and a class in the system; the ability to respond to the
user’s queries, entered by means of menu and simple dialog boxes, some typical
queries are: which classes use service C::S? Which services does class C use? If
I change C::S, what classes will be affected? etc.; the ability to provide a faster
and more convenient way than on-line editing to modify the design, and once a
change has been made to a design, the user would soon be informed in a proper

way.

¢ More advanced features can been added to the tool. For example, the tool could
suggest a sequence for implementing the design, and could propose test plans

for cach stage of the implementation.

¢ The future version of the tool can take into account the dynamic model of a
system as a part of the design of the system. This could be done by portraying
the dynamic behaviors and causality flows of the system through the notations

of use cases and timethreads.

e The tool could be added to with a system interface, therefore it could be in-
corporated with other automated tools, like a code generator, to form a unified

development and maintenance environment for object-oriented software.

o The tool could be extended with generators for various target languages. For
example, it could generate class specifications in C++ or Eiffel, leaving only

the bodies of the methods to be completed by the implementors.
¢ An experiment could be conducted to compare this tool with other tools.

Some people, including myself, like the implementation phase of software develop-

ment. Implementation is enjoyable because progress is visible during the process. Our

103

tool makes the design enjoyable by allowing the designer to see progress immediately

and to monitor it. In this way, the tool supports and encourage design evolution.

104

References

(1] Mehmet Aksit and Lodewijk Bergmans. Obstacles in object-oriented software
development. QOPSLA 92, pages 341-358, 1992.

[2] Robert S Arnold, Malcolm Slovin, and Norman Wilde. Do design records re-
ally benefit software maintenance? [EEE Conference on Software Maintcnance,
pages 234 243, 1993.

[3] Nabajvoti Barkakati. X Window System Programming. SAMS, 1991.

[4] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented
thinking. In OOPSLA 89 Proccedings, pages 1-6, 1989.

[5] Grady Booch. Object-oriented development. IEEE Trans. Software Engineering,
SE 12(2):211 221, February 1986.

[6] Grady Booch. Object Oricnted Design with Applications. Benjamin/Cummings,
1991.

[7] R. J. A. Buhr and R. S. Casselman. Designing with timethreads. SCE-93-
05, Department of System & Computer Engineering, Carleton Univ., Ottawa

Canada, 1993.

[8] Raymond J. A. Buhr and Ronald S. Casselman. Architectures with pictures.
In Proc. ACM Conf. on Object-Oricnted Programming Systems, Languages an,
pages 166 183, 1992,

105

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

Derek Coleman, Fiona Hayes, and Stephen Bear. Introducing objectcharts or how
to use statecharts in object-oriented design. IEEE Trans. Software Enginecring,

SE-18(1):9 18, January 1992.
David A. Curry. Using C on the UNLX system. O Reilly & Associates. Ine, 1989,

Dennis de Champeaux, Douglas Lea, and Penelope Faure. The process of object-
oriented design. In Proc. ACM Conf. on Object-Oriented Programming Systems,

Languages an, pages 45-62, 1992.

Peter Grogono. Designing for change. Departnent of Computer Science, Con-

cordia Universuty, Montreal, Canada, 1994.

Wayne Haythorn. What is object-oriented design? J. Objeet-Oriented Program-
ming, 7(1):67 -78, March-April 1991.

Dan Heller and Paula M. Ferguson. Molif Programming Manual. O'Reilly &

Associates. Inc, 1991,

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
)))

Object-Oriented Softwarc Engincering. Addison-Wesley, 1992,

Wilf Lal.onde, John Pugh, Paul White, and Jean-Pierre Corrivean. Towards uni-
fying analysis, design, and implementation in object-oriented environments. The
center for Object-Orienled Programming, School of Compuler Science, Carlclon

University, Ottawa, Canada, pages 563 569, 1993.
Tony Mason and Doug Brown. Ler & Yace. O'Reilly & Associates. Inc, 1990

Decborah J. Mayhew. Principles and Guidelines in Software User Interface De-
sign. Prentice Hall, 1992.

Bertrand Meyer. Reusability: The case for object-oriented design. TEIE Sofl-
ware, pages 50-64, 1987,

David E. Monarchi and Gretchen . Puhr. A research typology for object-oriented
analysis and design. Comm. ACM, 35(9):35 47, October 1992.

106

(21] K. Nygaard and O-J. Dahl. The development of the SIMULA language. In
R. Wexelblat, editor, History of Programming Languages, pages 439-493. Aca-

demic Press, 1981.

[22] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, December 1972.

[23] James Rumbaugh, Michacl Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[24] Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-
Compuler Interation. Addison-Wesley Publishing Company, 1987.

{25] Authony I. Wasserman, Peter A. Pircher, and Robert J. Muller. The object-
oriented structured design notation for software design representation. [EEFE
Computer, pages 50-63, March 1990.

[26] Rebecca Wirfs-Brock and Ralph E. Johnson. Surveying current research in object
oriented design. Comm. ACM, 33(9):104—124, September 1990.

[27] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, 1990.

107

Appendix A Class Specifications

of the Heating System

class HeatSim

superclass none

subclass none

description the main class used to invoke the simulation
contract 1. entry

description one method for starting main loop

class Furnace

superclass none

subclass none

description Simulates the furnace in a simple central heating system.
The furnace provides heat to the water if any heat is needed.
Simulates the furnace in a simple central heating system.

contract 1. make(furnace_power:Float sys_water:Water
max_water_temp:Float)

description Construct a furnace object, given the water it has to heat,
and the maximum temperature of the water.

contract 2. update(heat_needed:Bool env_temp:Float)

description Use the furnace to increase the water temperature if
heat is needed and the water is not above its maximum temp-
erature. The water loses a little heat to the environment.

108

class Room

superclass Heatable, Any

subclass none

description Simulates a room which obtains heat from a radiator and loses heat
to the environment. Room inherits from Any in order that we can
declare an array of Rooms.

contract 1. same(other:Room): Bool

description Return true if self and other refer to the same object.

contract 2. show : String

description Return a string representation of the receiver.

contract 3. change_temp(source_temp:Float sink_temp:Float)

description Change the temperature of the heatable object given the temperatures
of the associated source and sink. The new temperature will depend
on the relative temperatures of the object, the source, and the sink
as well as the thermal coupling coefficients between the objects.

contract 4. make (room_name:String room_temp:Float room_from_rad:Float
room_lo_env:Float rad_temp:Float rad_from_water:Float
rad_to_room:Float rad_setting:Float rad_tol:Float sys_water:Water)

description Constructing a room requires that several important parameters be set.
room_from_rad is the thermal coupling for heat flowing from the
radiator to the room. room_to_env, rad_from_water, and rad_to_room
have similar meanings. The rad_setting is the temperature at which the
radiator comes on, but the actual transitions are determined by
rad_setting +/- rad_tol.

contract 5. update (env_temp:Iloat)

description Update a room given the temperature of the environment.

contract 6. rad_on : Bool

description Return true if the radiator belonging to this room is on.

109

class View

superclass none

subclass ViewDigital, ViewBarChart, ViewGraph

description An instance of a View class can display changing
values of several floating-point variables. This class, View,
is abstract: it defines the minimal protocol for a class that
provides views. A view has several channels, each corresponding
to a particular variable. Channels are initialized and updated
independently in any sequence. The display is updated as a unit.

contract 1. init(channel:Int value:Float)

description Initialize the given channel with the given value.

contract 2. set_val(channel:Int value:Float)

description Update the given channel with the given value.

contract 3. set_title(channel:Int title:String)

description Provide the given channel with the given title.

contract 4. calibrate(value:Float str_value:String)

description A calibration point is used to label the axis of a graph
or to perform a similar service for another display mode. This method
uses the given value to position the calibration mark and writes the
string at that position.

contract 5. update

description Update the display for all channels.

contract 6. message(txt:String)

description Display a message other than channel data .

contract 7. close

description Null method to close display. Descendant classes which

require a closing action should redefine this method.

110

class Water

superclass none

subclass none

description Simulates the water in a heating system. The only interesting
attribule of the water is its temperature.

contract I. make (water_temp:Float)

description Set the initial temperature of the water.

contract 2. change_temp(new_temp:Float)

description Set temperature of water to given value.

111

Appendix B Abstract Syntax Tree

The AST is declared in C as a union of “struct” with ecach “struct” corresponding

to a non-terminal of the abstract syntax of the design input language.

#ifndef TOOLSTRUCT_H
#define TOOLSTRUCT_H

#include <stdlib.h>
#include <stdio.h>
#include <strings.h>
#define NIL NULL
t#define TRUE 1
#define FALSE 0
#tdefine NOFILENAME O
#define CANNOTOPEN 1
#define PARSEFAIL 2
#define PARSESUCCEED 3
typedef char* TString;

/* data structure used for holding multi-line string in display */
typedef struct TMultiStr {
char *str;
int len;

} TMultiStr;

112

typedef enum
{ aSYSTEM, aCLASS, aMETHOD, aVAR, aUSES, anINHERITS } TAttrType;

typedef struct TLabel {
TString name;
TString comment;
} TLabel;

typedef struct TStringDict {
TStraing name;
struct TStringDict *next;

} TStringDict;

typedef struct TNTPairDict {
TString name;
TStrang type;
struct TNTPairDict *next;

} TNTPairDict;

typedef struct TTOPair {
TString type;
TString origin; /* indicating where the type is declared */
} TTOPair;

typedef struct TVar {
TLabel label; /* var name and comment */
TTOPair typeOrig; /* only the ‘‘type’’ field is used */
struct TVar *next;
} TvVar;

typedef struct TMethod {

113

TLabel label; /* method name and comment */
TTOPair typeOrig; /* the return type */
TNTPairDict *paralist; /* para:type pair */
TNTPairDict *usesList; /* the ‘‘method::class’’ pair */
struct TMethod *next;

} TMethod;

struct TClass;

typedef struct TInherits {
TString name; /* only the ‘‘name’’ field is used */
struct TClass *inhNodePtr; /* pointing the class definition */

/* where the inherited class is defined */
struct TInherits *next;

} TInherits;

typedef struct TClass {

TLabel label; /* class name and comment */
TInherits *inherits; /* inherits class list */
TStringDict *useslList; /* uses class list */
TVar *varList; /* var list */
TMethod *methodList; /* method list */
struct TClass *next;

} TClass;

typedef struct TSystem {
TLabel label; /* name and description */
TClass *classList; /* class list */
struct TSystem *next;
} TSystem;

#tendif

114

