iii

ABSTRACT

~—

A Distributed Dafébase Management System
P .

for Homogeneous Multicomputer Architectures

[y

;o \ John Symeonidis N \
| : .

f H This thesié'presqbtsua modei of a database management

/ : .
! -. system suitable for disﬁribution over a multicomputer

y system. The model is designed for architéctu;es consisting

/ of a set of similar computers“which may be situated in one

/ locaéion or may be geographically dispersed. It is

.

} .

database architecture, covering rsoftware, specialized

héfdware, dedicated machinés, and distributed systems.

N

=t

presented in the context of a comprehensive review of*

by P b et W w
<

-

iv- i : : g

[

ACKNOWLEDGEMENTS /“ ! ‘ N w

. 5 . 1 s . e~
VA S . / ' '
I wish to express my sincere dgratitude to my thesls

advisor’ Dr.. Terrill Fancott,Q/for his expert guidance

throughout Ehe course of this research. He has always been -

. @ . ’
acce$sible for discussions, suggestions and “has played a ’ -

'

major\role in completing this thesis.
A0 “ \

D

-

I am indebted to my wife, Fotini and my daughter Adéela

for their love 'and' fupport during my ~1ong ‘sfudy 1~hours

a1,
.

s / throughout the course of this research.
. . - \ '

g am thankful to my job euperiors D. McDonough and. R.

J; McCreath for the financial support’ -and t?g\ various . v
Yconeeniencies they ‘have provided to me during" my gradua@e - ‘ o
. _ . , o
' * studies. o0 r N e 1

-

I dedicate this thesis 1n memory of my beloved father

3

AP b ay
h—:

Symeon Symeonidis. -

t t

.y

- wex

AR TIBIPNCI S

o ' - - i Ty

TABLE OF. CONTENTS

g

y ‘ . . Page

SIGNATURE PAGEQQ...DI.O....ll......‘.‘; " , ii

ABSTRACT..‘I.....-..'."......I.'.'I..I..l.l....ll.‘....liii‘

hY
ACKNOWLEDGEMENTs.l.'oco.ot.i.Q."...u.'.oc'uc...l..ocu.l--uiv

R Y
‘TABLE OF CoNTgNTS-.-.-...-.n.-...oto--o.cco.oa-..%:-.Iu.cv

LIST OF E;IGURES.IO-l.l..l.l.llll.C.l!ll..‘l)‘....l.l.lllllvill

0. INTRODUCTIONI.....00‘.l'll.l..'O..oo....l.....00!‘.0'.00001.v

]

PART . I ‘ _ 2

i. BACKG&OUND.........r.............L;.....:....:}..l..t..3
2. 'DATABASE CONCEPTS AND COMPONENTS...eeeeeeneencrcensenssd
3. BCCESS METHODS « eeuves’ssnnenennneannsnnsseenansmmnnnnsld

" 3.1 HASHING METHODS..' . evuuosoneoncnoeensennnenennssall

. 3.2 RECORD PROCESSING USING k-lASHING METHODS . c¢eeceesss.18
Py . B | e '
3.2.1 CHAINING WITH SEPARATE LISTS.cecececcsasesssslB

3. 2 2 CHAINING WITH COALESCING, LISTSeeevacesenasssld
3 2 3LINEAR PROBING.‘......‘..........'...Q.-...‘19
3.3 RECORD PROCESSING USING ‘TREE METHODS. e e sovncesaaas2l

3. 4 RECQRDQPROCESSING USING LINKED FILES:. euvacsceesass28

t

3 5 RECORD PROCESSING USING INVERTED FILES..ccessesae .30

r ! 4¢‘DATABASE MODELS.0.00.-9'0'..-.-OQQI...‘OIOUOOQ'OQOOQQ.'32

2
'y

4 1 HIERARCHICAL MODQL......'ocottooooolnlt'otl.poo.0‘32

’

" ‘4-2 NETWORK MODEL..--.0.0...'.g.'.l'lIll.l...l’nol.l.l.34
/

P
{ age

...;l............:....,{...44.37

3

4.3 RELATIONAL MODEL. ..

' PART IIL

I
¢ 5. DISTRIBUTED DATABA)SSESIQAQI..Q..O..‘.....\.‘COI.-.'."..'.40

6. BACK-ENB STORA"GE NIEWORKS-'I'ODOQOUIOOO.O.;tvtccoo-'...046

7 7. BACK-END PROCESSORS. s e eovsesnnvesoneenosssooasansenas5?
7.1 ASSOCIATIVE PROCESSORS - ASSOCIATIVE MEMORIES.....52
7.2 DATABASE MACHINES. ..eevisesiveenns ereeeeeenaases65
4 7.2.1 PHILOSOPHY OF DATABASE MACHINES......pecos..65
7.2.2 EXISTING DATABASE MACHINES.vesseenss s .66
. '7:2.3.1 RAP..;.?..;..;;,A................{....66

702'202 DIRECT. .‘..0....I...-.q.'“.t.....o.l...74
o c o T .
’ 7.2‘203'cAFS...‘.’.\..O.l’.l....‘....l.'ll..’...77

7. 2;42'4 DBC..:‘. .‘.‘..". - !\S..'. ® ® 5 &0 08 2 '.’..’. L] .79
= R
7;2. ZTS,CASSM. ; LN 1 .r'. " e @0 'K. [N] .A. *® o B o4 v e s I84

IS ' ‘ '\7.2.2.'6 A‘SSOCIATIVE DI“SKSI‘OII.I“IQIIOI.‘;CIICC.87/

7.3 PERFORMANCE ANALYSIS OF DATABASE MACHINES.....88

y

PART III \ e

v 7

[N B ~

[

8. pROPOSED MODEL.‘..‘Il....“.\'....I.....l.ll.l..ll.l...gs

N

{/t i ‘ 8 IMODEL ARCHITECTURE.000000...ool.o.....00..\.0000-0101

8.2'R-DDB‘MS COMMANDSOQDQ.l.....IOODODO.l..’.l..l.lloinlls-

8.3 PROCESS SYNCHRONIZATIONEQQQq.....o..c.‘.‘.....uu.-lzl.‘
' N 8.4 SYSTEM OPERATION.....o‘o-c--.o...-..---o.-..’-...--125

3 \ 9. CONCLUSIONSII‘I..I.'Ill....'...l......l..’,.""..'..144

t
D

P

10. APPENDICESQ......C.l‘i“.....l‘.........l........'l..ll46l

.
P

‘ . R . . /
] .
] .

11. .ANNOTATED BIBLIOGRA

PHY

a 4 ’

’

i ! ‘ & ’)

. ~ .
* N)
* N :
) L
) .
. a
n‘ ! {\
/ R ’
’ » Ty
P ~ . ' ’
) .o, ’
I {
0 I ’
. / ‘ v
- ' ’
¢
1 . B l C
-) ' *
'] ° o
N
)) . “
: . I
. . °
/ s
, 1
‘
. 1 '
| b
_ /
;
.
v
| .
N
L]
)
. ' '
. P
1 -
1 N
1 -‘
P L
4
E] ’ T
“w B 4
\ } ‘ .-

. /
/
J
S /
.
- / ! !
. '
,
\ N
o
- o ')
A R
, .
v . |
. ’ ‘ \
v N ' .
. A :
3 &) -
- - .
- ' ’
IS
& ‘ .
. .
.
'
—— ' - '
¢« b . 2 - >
\ .
o
. ! \
. “e
' v
EE 4 '
Y ' : ﬂ '
o
" '
& v '
o '
. ~
1 ‘ ‘
- ' ,
[¢) K |
. - 4
¥ ’ ’ ‘
.
. g
« N . ‘ “
. ot ‘) '
.
‘) o~

/ Page /07

.....IC...'...‘UOOIOQD"OODQO‘..100155 \

.
-
.
.
N
.
-
.
L
¢,
.
&
A
.
¢
\
4
!
-
'
.
.
o
[
.
!
-
N ~
"
’

=
>

NTEG I T R e g i s et W AT Y M T

R

y ! J /’ f\‘
\ ' °’ ’ , /7 o
' . cowiiid A
C .
¢ j* :’\;\: .
LIST OF FIGURES _ \
. o)
. . / i
Figure , _ o o 7 ' Page
4} ') ’
. \ . A o ¢ 3 ' ’
3.1 Folding method \\\\ o y14
’ . . .
3.2 Folding method =~ RN » 14
3.2.1.1 Chaining with separate listg ‘ < 20
3.2,2.1 Chaining with coalescing lists : 20
3.3.1 -Balanced tree . ‘ 23 3
3.3.2 Binary search tree ‘ ‘ 23 ¢
: . v
3.3.3 A Trie -, : 25 ;
3.3.4 B~ Tree L. 27 ’
3.4.1 Directory strudture for linked files 29
13.5.1 Inverted file structure . 31 |
4.1.1 Hierarchical structure = 33
4:2.1 Simple network ‘ : 35
4.2.2 Complex, nétwork . 3 ;
5.1 Paé%igioned Database ST ‘ 42
5.2 Replicate Database ' ' 44
. 6.1 A Back-end network . . : 47T .
C Cod :
2,1.1 Associative progessor architecture : 54
A b , : .
" 7.1.2 Associative search 56 >
3.&, . ! . "/.
"7.1.3 Fully parallel word ofganized gssociative - .
processor . ; . 58
_ 751.4 Fully parallel distributed logic associative ' .
- ' p
— processor . o (60
v . N o
7.1.,5.- Bit-serial assoclative memory L 61
; ‘ ° v R
« 77 N

“\

\.

(4]

™

Figure

’022.2 3.1 ¢

7.

7

I

“8.4.1(a)/'Bankinq system's-reletions

7.1.6 Word-serial associative processor

7.2.2.1.1 RAP 2 - relat1ona1 stoc1at1ve proﬁessor
.zhz 2. l 2 RAP 2 - logical data types 7
7.2.2.2.1 RECT system\architecture

\ -
system améhltecture
e \h,

2“2 4, l DBC system architecture

\
2 2 5.1 7CASSM systenm archqtecture

AN

e 1 3 Parameter table
/ 7. 3 1 Short query in backend machines%
\\7 3 2 Multi relatlon query in backend machines

\s

. 8. D1str1buted network N

1
8.2
v 8.1, l R-DDBMS system directories

,3.1.2lﬂ'Room' file '
'8.1.3 The 'RELATION' filé'

.8.1.4 The Program Run Table

8.1.5 System moduIes
8.3.1 Seryvice down time
"
8:4.1(p) Banking system’s relatioms
8.4.1(c) Banking system's relations
8.4.2 'ROOT.DBBANK' file
8.4.3 !hEL.Dasmﬁx;cpsTOMER' file

8.4.4 ‘'REL.DBBANK,ACCOUNTS' file

8.4.5 'REL.DBBANK.LOAN' file

8.4.6 'REL.DBBANK.[TRANSACTIONS' file

The R-DDBMS partitioged across the network N

-
7

PR

Page

.99

99

102
104
106

‘109

110
123
126
127
128
130
131
132
133
134

B e

L
)

i e o

: L B . -
x : . \Fygure \ " . — '
: } 8.4.7 'REL.DBBANK.INTEREST' file '
’{{‘ . o i . 8.4.Bl Pgbjection on customer fglatien
" 8.4.9 ’érojéction of the Join
; , R

N -
e % *
- BN ; — [}
.
N v
.
A P .
o/ :
v o
\ N
— " a
W v
N \
. »
3 []
I ‘ e >
N - «
.
o b
4 - . ’
« 9 .
{
, -
4
o \
¢
v
. R
i “
" .
V“J'JA ’
¢
f
N .
. s
v s
4 . ‘e
i
t B
¢ -
§ . ®
< ‘ e -
M " ‘e
1 M - ° .
; f ‘ ¢ '
« -~ I
g , .
\ —
.
1 A
. v [y
. . o
.
t
> <
3 . f
L4
.
' .
-
.
. o
« 4
- .
¢
vt - .

éage
135
140
141

O

£

2

.

_ 0. INTRODUCTION

)
a2

- T . ‘
The object of this thesis E;>to develop a model of a
— z

database suitable for distribution over a multicqmputer
system, which may be local -or- geograbhically distributed.

The model . presumes the existence of a multicomputer

» w » 3

interprocess communicatjons s{stem such as .the one proposed
by (Fancot8l), (Lenah80), which is. transparent ‘to. the
processes resident on the different computers. While this
éspect~of system architecture relieves tﬁe model af‘the need

/

for inter computer communication management, - the

. * 1
distribution of the database itself over a number of nodes

'becomes the fundamental design parameter. -This thesis

A"
addresses the problem on the level of sysStem 6rgénizaﬁion.'

[

Particular emphasis is made on the effecf;;Bhat distribution.

will have on the system design, file design and, functions of
- a '

the database command set. The problems of synchroniiation

and deadlock have been studied elsewere, and are rtot
addressed directly- in this work. Reference 1is made,

however, to contemporary .research resulfs which suggest

solutions to these problems.

»
~

The logical design is presentéd in the scoptexé, of an

’

extengsive review of ‘work reported‘)in rdatabase design,
’] : . 4

covering both single~ computer software as well as

-

specialized systems such as database compufers and back-end

networks. This sﬁrvey is reported in the first two parts of

- r
i, 1

‘e

this thesis. Part 1, including chapters 1 to 4, discusses
B & © : b S
aspects of conventional{database design, including access

'
.

methods and the different models of database architectures.

1] \ .

N
=~
’
=
-~
’ ’ PR)
ot S Bt b ed ane ©7

.-

e
While -some parts of this review, such as access methods, are

not ' used directly in the proposed model, their incluysion in

e ey - -

the reviéw provides .a background of’ the, software levels :

, which support level described by the model® str&ﬁture. Part , : ‘*;
”2 reviews the diffgrent methods’of distributing,thg tasks of |

. database management. This section’covers Eoth the logical
design and the principal implementationén. of database

. \ (¢
processors and networks, giving the technological context of.

e

- & : . :
the proposed model. Part 3 presents the logdcal design of a S)

distributed database system. P

.

The proposed model is designed for a sysﬁem of simiiar, ; ;
if ﬁot identical computers, rather than a set 6% specializéd !
processors. A;’ such, it is appropriate for a}chitecﬁures
represented by a set of computers running similar database

- tasks as part of a large, dfstributed system, or, in the l '

cake of a local system, an array of identical minicomputers,=

éégh .controlling part of the databasé. The cases of both

' . ‘ :
partitioned and replicated databases are considered in this %
\ N ' ‘ \ ' ~ " ' :a
design.\ , 3
| RS)

- . o ’ . %
7 | ' ' &

el

% N i - R,

TP o T N i

T havas

2y]

A

e

1. BACKGROUND‘
s -
b

The concept of genervalized database management systems was

’ N

first introduced in the early flftles, but the greater pért

of development has taken place 1n the past decadev
: N .

1

The database concept provides for a unique 'data storage

‘pool' where all information records are stored together, as

opposed to- conventional ' data processing, where programs
‘own' their data which are not available to other systenms.
The database concept is still young, and a varietyof

definitlons exlst to descr1be 1t. These non identical, but
)’) N

complementa:y Aeflnltions are as follows:

"A Database 1is defined as a collection of interrelated

data stored together with controlled redundancy to serve

one or more applications in an optimal fashion." {

Marti76) ™~

"A Database is’a collection of physical records that are

similarly defined and serve a single general ‘application-

- purpose.” (Ross78)

"A Database is a non ‘red?dﬁt collection of 'data

elements stored in logically related files.™ (Hpl000)
. // |
The common point of the above definitions is that a database
system contains one or 'more files whose records are

interrelated by/ relationships defined by the user. This

technique al ows the user to maintain his information wunder

“

S

/a

. . . -
. , . 4 - . . "
. ') A : . . '
- one software package with a number of consequent advaritages.

These include: ‘ o v

AN

) S . ‘ 2.
a. Independence of data between application ‘progrghs
Y and file storage‘(Ross78),(Kroen78j' ‘ '

b.\ Controlled data redundaﬂcy‘

" c. Standardization of data definition and documentation

d. Data security

. ' . \
Every, system has, however, its ;weak points, and the

. following disadvantages of database ' technology hqye‘ been

noted: 4

a/:;

b. The CPU may be monopolized, forcing the user to

a. More main memory is required

upgrade more powerful computer (kroen78) -

Mk Bk e X R 8 ins <

€. Backup and recovery are more elaborate

7 Tl b

d. Integration and hence centralization increases

vulnerability. A failure 1in one component of an

integrated system can stop‘ the entire system : 3

(Kroen78) 2 k
1 1 . . h
e. Multiuser systems are pfone to deadlocks S,

Evolution of database management Systems « o

0 L4
Since the early fifties, a number of database families have
been developed. The the most significant ones are the -

\) ' . * »

PO

‘ P
5 .
) g
.'follbwing:) ~ ’
1. Hanford/RPG B ‘%a'
2.' MITﬁE/ Auerbach | “‘ \)
3. . Postley/MARK IV 7
4. Bachman/IDS ’
5. FPFormatted file/GIS , ﬁi -
vy "

'6. CODASYL
7. 1IMS

8. ‘invetted file
\ ' '
, C/
Hanford/RPG family

The RPG system was developed at the Hanford ope?ations of
the atomic energy commission which was thén m#naged by' the
General Electric c;mpany.‘%The first report generator (MARK
I) was developed as a generalized sort routine for the .IBM
702, The package was upgraded with the development of a
report generato} with file maintendnce (MARK I11I). These

routines provided the basis for the development of 709

package (9PAC) for the IBM 709/90. The 9PAC is the ancestor .

of most commercial report generators. RPG was developed for

the IBM 1401 in 1961.

MITRE/Auerbach family

The US Air force sponsored DBMS development at the MITRE

corporation. The prototype was called Experimental

Transport’ Facility (ETF). It later became the Advanced Data

- C T
Management System (ADAM), and was implemented in an IBM 7030

[
» '
A /‘

—

Mo o =

PRS-

computer. ADAM.did not implement all the features of the

DBMS but its contributio? to the technology was .significant.

/ ’
1 ER
i “.\ ! '

Postley/MARK IV fam;&x - o

u
The ancestor of the MARK IV fam11y is the GIRLS (Generalized

" Information Retrieval ‘and Listing Systenm), developed for the

3

IBM 7090 by Postley. Since MARK IV was first released for

the IBM/360 in 1968, numerous subsequent teleasesi have -

.t

provided with more feetureé, some of which have been

implemented on the hardware levél.

Bachman/IDS. family

the Integrated Data Store (IDS) was develeped: by Bachman
and his ‘team' at the General Electric comeany in :1964. The
IDS system stems from the 9PAC package of the Hanford/RPG
family. The IDS included random ecceés storage technology
and high levelilanguages, thus providing a powerful network
model. SinceA 1964 the IDS system has been used with
different ﬁardware systems, pperatingl systems and host

languages.

Formatted file/GIS family

The rInfbrmation -Retrieval (IR)‘ experimental prototype

developed in 1958 for the IBM 704 appears to be the ancestor-

Y

of the family. The main spoﬁscrs for the development of
this family were the US Air Force and the Navy. The

Strategic Air Command (SAC) system was developed by the Air

’ *
a

oY

G,

.
i
1
1

~
d
.
:
.

Y : Force branch, while the Information Process$ing Syétem (IPS)

' was developed by the Navy branch. IPS contributed to

S, 'v . B

database technology through ' the implementatiéﬁ. of a,

multilevel hierarc%ical strucﬁured database on sequential T \\

media.

CODASYL 'fa:ﬁily A o
Based on the 1IDS ideas, the; CODASYL langquage “committee
étarted to ‘work on(a proposal for éxténdiné the COBOL to N
" handle databases. This group, originally called the 1list
processing task group, later became the Data Base Task Group
“(DBTG). In 1961 the DBTG' issued recommendations for the
syntax of a Data Description Language (DDL) in order to —
describe network structu;ed databases, and to define,:a Data
Manipulation Language (DML). User recommendations for
improving the package led to major.changes in 1971,: It was
deéided;to split the data descriptiqn in. two parts, a-scﬁéma
for defining the total database and a subschema for defining
each of the various views of the database for.differént's

i

programming languages and applications.

Bkt an e e o am st

. IMS family
; 'The IMS family is an outgrowth of the Apollo moon landing
program, It originates from two developments at NASA. One.

is the Generalized Update Access-Method (GUAM) and the other.

RPN L& T st STE b

At

is the implementation of two teleﬁrqcessing applications
. . EDICT (Engineering Document Information Collection“Task) and

LIMS (Logistics Inventory Management System). The software

Wm»w«w e e T AL B e arsmn i L I

e

S T

-

I3

-t

' package which supported

-hierarchical data model with interacE}ve processing.

¥ [. -8)
S 3 1) -
L4

\

Access Tgrminal System (RATS), was'deVelbped’by Rockwell

:

Internationai“.and IBM: for the IBM 7010

computér with 1301
disk storage. In 1966, - IBM, Caterpillar tractor
corporation, and Rockwell International agreed to jointly

develop a DBMS: the Information Management System (IMS) for

the IBM/360.

",

Inverted file /

LUCID, the ancestor of inverted files, was followed by the
Time—shareq Data Management Syétem (TDMS), developed by the
System

AdE?pced Research Project Agency (ARPA) of the
el

De opment corporation. The system was designed to operate
in a time-shafing environment on an IBM/360. It was . the
first DBMS to combine an inverted file implementation of the

| 4

-
N

the EDICT and .LIMS, the 'Remote

j
s

ikt

P T AIRI T M A Gy 4 T S T T

2. DATABASE CONCEPTS AND COMPONENTS

' Patabase technology has introduced a ,number of new terms

v
A

nto the vocabufhry of computer science.. Terminology

specific¢ to databases include well known concepts such as

data item (field) , data entry (record) and data set (file).
Concepts which are specific to databases include schema, and
subschema. The schema is a chart of the types of data used

%
(Marti76) - which specifies the names, attributes and

relations between the data entries. A subschema is a user

view of a subset of the schema. .

\ ' ‘ ’ f

\
Database, software can be seen as two major.software layers,

the Data Description Language (DDL), and the Data

Manipulatibn Language (DML). These two process the schema
\

as follows.\
\ ~
DDL: The data description language describes the structure

of the databaée application to the database software. The

term refers to\khe software which specifies the structure of

date items and pe relations that exists between them. DDL

itself can be \eubdivided inte two layers. One software

' layer describes the structure of data as far as its physical

layout is conceghed, and specifies the allocation of
resources, buffering, paging, addressinq and searching
techniques, dataset \size etc. This physical description

language is .also known as Device Media Control

©
v

Language (DMCL) \; in CODASYL\\ . and

Physical Data Base Description (PDBD) in IBM's DL/1

\

o, *
.. -
o
. ! \

A RSN S I nsmnresr o == = - TTATT TR A A 2 e

.

by

1o . .. | | . |]

(Marti7e). o) - B

A second software layer describes the 1o§ica1 records in

. e ' ;o
a manher independent of software and hardware.. This layer // §
corresponds’ -to the view of the schema which is;different ! i

from the physical organization of the data. In general -.the !

DDL can be seen as the data division in a COBOL program.

DML: The data manipulation language provides instructions’

P S

‘ . that the application program can give to the database
‘management system, and interpfets status messages reporting ’
- results of the request. .For this purpose the database

management system provides a9 set of macroinstructions or

- R A A p A 8 it P 2

callable subroutines for the fgpplication programmer.
Further details on the DDL and the DML are given.in Appendix -
1.

¥
!
,
;
1
f

” s et b
o

Wre i, 5 - e m e e

1}

o . i .

B
v
! ?.
<
i~ PO R

P,

3. ACCESS METHODS ‘ \

[1 . ‘ B R

X N
. T
B T T VL

Database records are stored in files along with information
on record and file relationships. Although the physical
organization of records appears to be simple (recorded in

chronélogical sequence), retrieving those records aécording

1

;b some search value (key) or relationship, is a complex

<

task.,

In general, 1lists are employed to keep track of a set of
relative records. 1In certain systems (Hp3000) the - records o

of tﬁe detail data sets are organized as a double linked’

1&st ééructure. The address of the head of the 'list is

]
T I A

located in the - master data set, which 1itsélf must be

accessed.

PRV S ORI

The complexity of a master data set is a function of the

'storage organization. Sequential searching- is generally

IS

avoided because of its low efficiency. The different

L
[

B aE

méthods of physical organization and search are discussed in
s .

A

the following:

3.1 Hashing methods

-

' . One of the methods used to locate a key in a table or file
ts called the “hashing .or scatter storage technique®

i (Knuthv.3) or "KAT- key to address transformatign” (Ghosh79)

B PR S
s :

where the location of the key is derived from its value

after an élgebkaic'or loéibal computation, and the computed

address 1is called hash or home address (Hill78). The keys .

. k1, k2 are said to be synonyms when h(kl)=h(k2) and their

e

. O e
T‘

o "12

[) o ¢ ' . .
Ed

occurrence 1is called a collision.-‘Depending on the‘f}ie

organization, the synonym,key’might'be.forced, to occupy a
locati?n other than the calculated one. When a key hashes
to a location which is occupied by another non synonym ke?,;
the second 6ne migﬁtdbe forced to mer to another location.
Such keys are referred to as "migrating secondaries"
(Hp3000). It is difficult to find a‘quétion that does not
give any synonyms, but i§ desirgb e t$ have as few Ssynonyms
as possible so that the houdekeeping routines will keep

their process time to minimum and avoid frequent table or

file reorganizations. " ' \\\‘

Hashing functions .

several types of hash functions are in use. The’principal

B . Dl

ones are the follawing:

DIVISION:
The division method is very/simple and uses the remainder

modulo (mod) operator. The function is defined as

it

h(Ky=KmodM. . The identifier K is'divided by a number M and

the remainder ~is used as the hash address of K. This

functiol generates addresses in the range 0 to (M-1) and the

<«

hash table is at 1least of size b=M (b= table size)

(Horro77). The cholce of M is very critical. If M is- an

‘even number, h(K) will be even when K is even and odd when K

is odd. If M is a power of the radix of the computer, the
gene{étgd address will depend on the least significant

digits of K. The situation will be worse if the idénpifiers

;

M

7]

/

.
FERETRRLEOE T B VR SRR AR st
P : .

' S X §

e

[

~

@

)

are stoted left justified zero filled. These difficulties

can be avoided by choosing M as a prime number, In "

pi‘actice, it has been observed that it id sufficient to

choose M such that it has no prime number divisors less than

20 (Horrol7).

MID-SQUARE -

The h(K) Iis ‘computed by squaring the ideﬁtifier and then
‘taking a certain number of biﬁs from the middle of the
square ,to obtain the. bucket address. ' The hmiddle bits
‘usua'lly depend upon all the characters in the idehti.fier,
and are. more likely to gqnerateadiffer‘entnhash addresses.

The identifier is assumed to fit into one computer word.

FOLDING ’

In this method t_he identifier K is ;‘>artitioned into séveral
parts, gll\but the last being of the same le\ngth. The parts
then'are added together to obtain the hash address. There
are two ways to perform this addition (Horro7-7{2
1. All but the last part are shifted so ébat the least
significant bit of. each part lines up with the
corresponding bit of the last part (Figure 3.1).
2, The identifier is~folded at the part boundaries and
qigit;s falling into the same position are added

together (Figure3.2). I

This method is implemented at the hardware level of some

-recent HONEYWELL large: scale computers.

MULTIPLICATIVE

o

- (SN
L A
e

s ’W@ﬁmm% LY

b
PRER

Y

R O

.
A

]
3
K
£

e 1 '-

*

LI

‘For' Pl= 123, P2= 203, P3= 241. P4=.112, PS= 28

;
K
¢ -
1 0
- y .
' 1

w’

Pl= 123

pe= 203

P3= 241

| | . P4= 112 h -

L | " ps= 2P ' .

h{K)= 699

\ R . e - M °

+ + + + +

o ” Figure 3?ﬂ Folding method.

P1= 123
pP2= 3p2
P3= 241
P4= 211
PS= 22

r——— ' . : s

e ..,

+ 4+ + + +

z
<
o
k3
)
£

h()= 897

]

Figure 3.2 Folding method

=

© 15 “‘ G

In this scheme the word size of the computer 1is used Cin-

3

calculations.)fn a‘computer withIWOrd size w, aif integer A
can be considered as a fraction A;;'if the radix point |is
assumed to be at the left of-the wofi; The method is to
cﬁoose an intgéer constant A relatively prime to W and to

have h(K)=[M((A/W*K)MOD 1)] (Rnuthv.3).

In this case we usually choose M to be a power of 2 on a -

binary number so that h(K) consists of the leading bits of
the 1least significant ‘half of the product A*K. This method
can be seen as generalizatibn’of the division method. sincg
it ié possible to take A to be approximétély W/M,
muléiplying by the‘reciprocal of a constant ié often faster
than dividing by that cén;tant. In this method, h(K) takes
values in the range 0 to W-1l, so it is not very good as a
hashing function, but it ”can be wuseful as a scrambling
function. A feature of the multiplicative method is that it
makes ' good wuse of nonréndomness. For names such as PABTl,

PART2, PART3, LINEA, LINEB this method will generate an

arithmetic progféssion - h(K), h(K+d),! h(K+2d)...[. of

distinct hash values, ‘thus reducing the - number of

collisions. The division method has the same property.
N .

DIVIDE BY POLYNOMIAL MODULO 2

In this. method the identifier is divided by a polynomial
modulo 2 instead of dividing by an integef'(Knuthv.3):’ Here
M is chosen to .be power of 2 M=2**m and an mth degree

b B
polynomial P(x)=x**m+p(m=1)*x**(m-1)+...p0, is used.

[L

’/N ' / " - , - ¢

: 16 ,
T ™~
l - 'V-

s

L3

An n-digit binary key can Qe expressed as a poiynomiel
K(x)=k (m-1)*x(m-1)+.,..+k1x+k0 and the remainder is computed
K(x)mod P(x)=h(m-1)*x(m—1)+....+hl*x+h0. if'é(x) is chosen
properly, the hash function h(K) can avo1d collision: between
nearly equal keys. For example, if m=12- n=%5 and
P(x)=x**l0+x**8+x**5+x**4+x**2+x+1 for keys Kl, iz different
only in fewer than 7 bit positions the h(Kly#h(K2). It
sheuld.be,noted that this algerlthm is mo{e<\§u1tab1e- in a

1 ‘ { £y
hardware or microprogrammed implementation th%n software. .
. ' I -
POLYNOMIAL TRANSFORMATION

Suppose a key K consists“of‘a string'of symboIs of length

ml and eaéh symbol is represented " by q bits, . The total"’

number of possible symbols is 2%**q. “1f we asspme g=8 (8-~bit

_character) then a key is a binary string of 'length ml*q.

The number of nonzero bits of the key'is called the weight

of the key. The number of positions in which ,two keys

[) ' : .
differ is called the Hamming distance between the two keys

(Ghosh77). 'Fop‘example:

Given the‘keys; ; :
kl=1110001101101111

. k2=1010010111110011

o~
i

.then klw=1l is the weight of k1 , %'

- k2w=10 is the weight of k2
And the HamﬁingSAistance is d(kl,k2)=7

3

‘Clusters in' the key space are defined as collections of keys

Lte &

Iy 2 ot S

gt

wer'r

PR

TS A B

-
A TN o aT

o e e e iyt -

17 .

such . that thé distance between any two number keys is less
. Q ’ ’ A
than d where d is called the diameter of the cluster. The

maximum distance- of d is §en6ted by D. To avoid overflows
in the file, no cluster should have a diameter greater than
D. In this method, the key is represented as a polynomial

“

whose coefficients are the symbols of the key:

< T :-1
-~ K(x)= 2di(x) where d1,d2,d3.....dn are the symbols of the

fry

key.

The divisor polynomial is calculated as follows:_.l .
g(x)=(x—a)(x—§)....(xﬁgs where "2 is a primitive elemént,
i.e.'a**(Zq-l)?l, a**i¥] for Ii<2**q-l D is the maximum

diameter of a cluster in a key space.

The remainder polynoﬁial is calculated . from the division of
" '

K(x) by G(x)- ,‘
‘ K () =P (x)*G (X) +R (x)

The coefficients of R(x) give the address of the key.
Example: ' - . | N
Consider a key with symbols from the fielq“ofv binary

‘”numbers, i.e. g=1, ml=5 where we want to break the key space

into clusters of diameter 2 .or less. Then D=3, .a=1 and
G(x);(x-—l)*(.x-l)=x**2fl. Suppose the key to transfer is
K=10111 then K(x)=x**4+0%*x+*3+x**2+]1, After ‘division the
remainder polynomiii R(x)=x+1, giving the address }ocation

h(K)=(011l) binary, or 3 decimal.

RADIX TRANSFORMATION
T

The 'storage mémory locations are addressed by a- number

! .- N

i
3

DU

- R

18 coL

'
v . i

which is binary or decimal i.e a radix of 2 or 10 (Ghosh77) .

t

Llet q be the radix of the address. The number of table

entries is m. The key is treated as a binary string which

in turn is divided into’substrings of 3 or 4 binary bits to

form digits. The digits obtained are treated as number with
radix p. This‘numﬁéri§s converted to a number with radix ¢
(radix of the address).
Eiamgle:) |

Assume the binary string is grouped‘ in 3-bit digits

| 1111001111111001==>" 1771771. Assume p=l6, q=10: then

171771hex is expressed in radix 9. 'As p#10 this number is
converted to a number with radix 10 K=l7177lh§Q = 1513329
decimal, If m310**4 then h(K)=Kmod m=(1513329)mod
10%*4=3329, giving the address 3329 dec. '

2

3.2 RECORD PROCESSING USING HASHING METHODS

It was observed that keys occasionally hash into the same

address. Some methods have been developped to overcome this .

difficulty. Normally, direct access storage .devices are
used to store the records in blocks. The name bucket is

used for such a block and the bucket size is the maximum

number of records that that can be contained in’'a bucket
(Hi1178). The bucket can be considered as being subdivided
into slots where each slot hods one data record. The load
factor of the file is defined as the_oratio of ‘the active
keys to the total slots available in all buckets.

3.2.1 Chaining with separate lists (Figqure 3.2.1.1.) '
N\

[PURSUY

© e e o v e

19

\ ~ | |
Collisions may be resolved by maintaining linked 1ist§ for
all synonyms Sf each possible hash code (Knuthv.3). In this
organizatidn the head of each list is contained in one slot
of the bucket.
This method is‘quite fast, but it has been observed that 1if
the .file is too lafge, many of th lists will be empty.
When records are small, however, the record storage can Dbe
overlaéped with the 1list heads, thus providing mo;e room

{Knuthv. 3). .
. " ' ’ ,) %
The expected number of identifier comparisons is:

C=l+a/2 (a=load factor)

© 3.2.2 Chaining with coalescing lists (Figure 3.2.2.1)

In this method a key is hashed to an address and is inserted
there if this address is empty, otherwise it is inserted in
the next empty location and is linked to the home éddress.
This method allows several lists to coalesce so that the’
records need not to be hovéd after tbey have beeh: inserted«
into the table (Knuthv.3). The expected .number of
identifier comparisons is:

C=1+l/8*a(e**2a-1-2a)+(1/4)a (a=loading factor)

3.2.3 Linear probing

This method does not use links. Instead, various entries
are inspected until either the key or an empty positbon |is
found. The concept is based on the computation of a. "probe
sequence® for each key to be followed. This Ageneral class

of methods is called open addressing (Knuthv.3) and the

R

j

Head of b ‘, B ! %

Synonym , g - | |
.. Key List (i‘ ‘ :

Y

.

-M2 | —M d—twe |

‘Figure 3.2 1.1 Chaining with o§par~ét. liste. (0

s

- key | - Linmk

o e B T A3 Bt T P S e s

Figure a.2.21 Chaining with ooulescing lists.

“
-~

oy b

us o

.the basis of 1large proportion of recent work in file .

Ly
3

21 . - ~

e o,

simplest open addressing scheme is called linear probing.

Linear probing uses the‘cyclic probe sequence h(k), h(k)-1, ' .
ess0, b-l, b=2, ... B(k)+1’(b=bﬁckét ;Eze). When an ;pen. ‘ i
position is encountered while searching for a key using the Coe
ébpropriate- probe sequence, i; is considered th;t the key | ‘ 4
does not exist in the 1list, since the same segquence of
probes is made evéry time the key is processed (H11178f.‘
The ekpected numbér oﬁ iQentifier comparisons is:
C=1/2+[1/(2-2a)]

3.3 RECORD PROCESSING USING !TREE METHODS -

2 M AL 3 . e Tl b

1

A tree is a special case of a directed graph. It is used as

organizétion and is therefore preséented in detail in the
o
followiqg, The basic structure of trees is summarized and }

different}types applicable to databases are preéented.

A directed graph is defined as a set of nodes
“3

o

N1,N2,N3,...NN and a 6 set of arcs called branches with a A

specified orientation connecting various pairs-of nodes. A
. -

sequence of branches such that the terminal node of each & ' ' ‘e

branch” coincides with the initial - node of the succeeding ‘ \

branch = is called a path. The number of branches in a path f

A path is -a

is called thevlenggh,or height of the tree}
cycle when‘ it is at least of length one and the terminal
node coincides with the initial node NIN2.....NN. A tree is
a directed graph that hgs no cycles and at most one branch

entering each node (Hill178). o . , \

PP

. . o ,

A root of a tree is the node whicb has no branches entering
' ‘ it'

A leaf or terminal node is a node which has ‘no branches

3

leaving it. The number of branches leaving a node is called

the degree or'Branching ratio of that node. ..

A balariced tree (Figure 3.3.1) is a tree where the

difference between the path lengths from the root to any two’
R & 2 .

leaves is at most one (Hil1178).

A binary search tree (Figure 3.3.2) is a directed graph with

the following properties (Hill78).

1. There is only one node called Root such that for any

node K there exists oné and only one path which begins

with the Root and ends with K

2. For eac; hode K, the number of links beginning with K is
either two or zeroﬂl 7

3. The se£ of 1links is partitioned in tw& seﬁs L and R.
Each link belonging to L is called a left link and each
belonging to R is.calleq a right link.

4. For each node K having two links thereﬁis gxactly one

left link beginning with K and’ exactly one beginhing

a with P,

There are two types of nodes in a binary search tree, An

internal node {s one with at least one link that 1{s not

null. A node with a left link and the right null is called
an external node. Insertion into a‘bipary sgarch tree is

~ made as tﬁe 'value of the first blank node is found while

x

e

PRI I & e 200 r g

RPN e ITonapv et W 3
- -

—

e wy

[N

-
A Am

Ry
9

R

PR

o

)

23

-

[Ea———

te s vy v

Y

e g

pra

24

\ .
traversing the tree 'along some path from " the root. While
traversing the tree, the branches on a patl; are takeﬁ left .]
if t.he'key is less than node value or right if the key is
greaﬁer, than the node’ value, ' A blank node is used to
indicate the end of a path. The search lengths of a binary s
tree are : - ,
1. Binary seqrch tree with only right or left ii~nks

(N+1) /2 -

2. Balanced binary tree. .

loght

" There are three ways to traverse a binary tree (Knuthv.3).

Preorder traversal: visit the root, traverse the left‘ I

subtree and then the. right subtree. 0

e

Inorder traversal: traverse the left subtree, visit- the root

and traverse the right subtreé. -

Postorder traversal: traverse the left subtree, traverse the

right subtree, and visit the root.

I3

o

Trie (Figure -3.3.3) | 4
- . T)

: o An. M—-ary tree whose nodes are M-place vectors with

components corresponding to digits or charact,ei*s is called a.

e g =

TRIE (Hill78).

o

A trie stores records in its leaves or external nodes. Any

. . . e
node on a given level h represents the set of all keys that
begin with a certain sequence 6’f h characters. The ‘node

indicates an .M-ar’y branch depending on the (h+l)st

character, -In- Figure 3.3.3, Node(l) is the root. If ‘the
B . C | - ‘ . ‘

1 /.‘{ h . 13

L et DN R AP i~

D I A T Oy St _

25

L

NODES = [A, BE, ABC, CAN 3

4*‘12"3“4\?87.8 s 18

)
A | : g
2 - ’3
3 | 4 1 P :
_ : \
5 asc| |
BE :

CAN

?:lguro 3. 3.é A Trie.

26

first character is 'B' then we are directed to rfbde 3. If
‘the second character is 'E' then we have the key 'BE’
'Addres_sinq a trie 1is analogous to the addressing of

'multiidime.nsional arrays. It resembles the transition table

- » ! ,."——
used in compiler construction.: L ¥

r

The organization called a B-tree (Figure 3.3.4) uses pages'

as nodes of a tree. .

let h>0 to be tﬁe height of a treé, and let K denote the

least numbers of records in any node of the tree.

A B-tree is defined as !a ‘tree having the following

propertiesA (Hill78).

1. The iength of any path from the root to the leaf is h.

2. 'Each nade except the root and the leaves has at least
K+l sons. The root is empty or it has at least two
sons.

3. Each node has at most 2K+l soné.

The nodes (pages) of a ﬁ-tree must be allowed to grow to the

maximum, after which it is necessary to divide pages in . ‘a

sway that the B-tree will continue to grow. B-trees allow

retrieval, insertion and deletion of records in a time

prop%ttional to K Log (N) where N is the number of records

and k is a device dependent paraméter. It is difficult to,

obtain average performance measures for B-trees (Hill78). A

variation of the B-tree is a tree where all data are stored

R

_in leaf nodes. Any B-tree in which thé non leaf nodes

contain only pointers and keys and the data are stored in
~

14

3

: S -
] ' - .
-
o
\ N .
! b
\) , | -
.
: ¢
E.J
[]
V4
o) ‘
\‘ , . .
. : P .
' .

. _ : / |
’ -
- . A) “
- ’ \
s i I \
*

L 2] |4 5] |7 g

) ? \
N

f
|
i
‘ | coee b
. 1
. i
\ i
| i
| : . N
.) | \
. , - | l[
5 N
* » . o u |
|
. . l
s .
\ B n
.

. ' , -
] . " T

_© nere s Tk ks rfiard " e - e éﬁ ¥ s e e

e e - -

28 J

N

‘ " . 4
: the lea}eés called B*-tree. -
. p "

3.4 RECORD PROCESSING USING LINKED FILES .

. (][l’

e
- s W

¢

A sét ,'oili related recordsu,arebstored in the DASD as linked
- lists. 1In this st¥ucture, pointers are used to 1link each
record w,itb the "next having the same relation (key). | S |
Pointers are disk addresses. " A directory (Figure '3.4.1)
contains 'e;ch a\;ailable kezwo'rd with its associated point‘er. : ’ |
This‘ pointer indicates the beginning of the list. In this’
P scheme, a particular search consists of.a directory search
‘to locate the kexgofd' and then a list search. The number 'of*
entries in the directory equals the numbé_r of keywords and ol
the length of the list is equal the number of records per .
keyword (Hj1178). : .
Every record corresponds to ~one node in the list. If a
record is characterized by several directory keywords then.
the record corrgéponds to a node that is the-intersection of
the 1i¥\corresponding to the several keywords. Directory

'sgarch ig done by linear probing.

—~
H

i iha . ke tmen e k= ot T

' EX i
X og Ju ‘ | '
'Diregﬁory

1K1 Z@2ﬂ—*4—@zz |K1 o4
k2 e@3t— ks |
K3 po4 | lkig.

[~ c — %
o 7 N o |
g3 | K2 '
—~ -
.
3

£ ‘ —— g4 . | K1 0oo
!
l . .E
L :
2 3
:’i
3 ‘J k‘;
T Q”P . 3 ~

. [N
~

Figufo 3.4.1 b:lrootor;y struoture for li.nkodlfilu'.m1117f8)_.

PP R T W PRI Ry SN S S

' 30
N / Y v

-

SO ‘ §i5 RECORD PROCESSING USING INVERTED FILES

4 -

Occasionally it is necessary to associate a key with one or
more. records or many keys with the same record (Figure L

t 3.5.1). ‘ -
This organization lends itself to a representation by a

v ‘ { ’ .
_ structure called an inverted file. 'The time required to

load an inverted file islcallgg,the load time. This process

involves inverting the file. For large files this operation

requires a large amount of computer time. ‘ !

When the inverted file already exists the load time is only -
. Fhe time required by the DASD to get ready for procéssing. '

Assume that the items are randomly distributed in the file J

to be inver£ed. The file is read sequentially}until EOF: is
wgyached.' ‘Assumed there are F records in the file J with
fieng&h n. Each READ of J produces one buffer bull of
1nformq;ion 'which is the size of one record. Define As to
be the\%access time of the DASD the total time spent

i - ,
[: accessing J is Aj=As*F. The load factor is a=m/b where

b .m=(n*F) /d N=n*F (Hi1178).

e,
s
-

Databases usgng {Averted files have simpler DDL design and
: ' ¢

changes in data structures are less elaborate. Onhthe other

REET ORI, PRI P

'~ hand, indices represent significant overhead especially were .

P
3
:

many flelds are iqvetted (Ross78).

J— b oA g emmers o

31

.~

[A S8 48

F S8 25 .oee....

J 48 .33 .. ein..

'@ Inverted liet structure ~

\ -
\ ye

25 F

|48 A 3| »‘

5S¢ A F

-~

\

\ b‘. Main file .

F igure 3. 5&\‘1: Irverted file structure.

-

LT
v " .
.
. , .
.
. . -
. b3 >

32

4. DATABASE MODELS

structures and relationships among the records. There are
three ptinéipd} models: ;he hierarchical, the network, and

the relational. The first two belong to the category of

physically 1linked DBMS (Ross78f, where related records are
linked togéther‘by 'paths’ (pointers). in 'contraét, the
félational ﬁode;- does not use 'paths' at all and relations
are evaluated at execution time.

A.l,ﬁierarchical model , ‘ }

The hierarchicallmodel uses files with a tree stfhcture
relationship between the records. ff is suitable for_some
apg}icationé, but many data structures ére not in tree‘ form
with the result that, 15 order to be implemented, they must
\Se converted if 'possible (Marti76). The hieragchical

structure . and . the possible schemas supported by the

hierarchical model are given in Figure 4.1.1

+

o AT Y

- The: different database lfamilies .have different data °

. -
ER

?
M

ad

[, .

e a——— T C A

33

-

. Fisuro 4., 1. 1 Hi-r-\ar-chicelv struct

i

e K bonid s = E o~

. ‘
Al
. o ter e QR 2ok AT

%

H

L ' 34
Sl

4.2 Network model

%This model is ﬁased on directed graph structures Qhefé the

LY

child in a relationship may have more than one parent. .

Because of this characteristic, this structure is not

hierarchical and cannot be ‘regarded as a tree. It is

referred to as a "network™ or "plex structure® (Marti76).

In some networks a situation called %’cycle o&cursl‘where a
node has aé child its parent. A ' special kind of cycle,
where ,the child is the same as parent,‘is:called‘lggg
(Marti76). The network structure is divided into two’ major
categories. v '

1. Simple network (plex structure) (gigure 4.2.1)

2, Compléx‘network (complex plex stru&ture) (Figure 4.2.2)

et

'

P

o

14

e s

t
.
f .
¢
'S
’
|4
s
?
\
.
R '
v
-
.
1
o
a
. “
. '
. .
7
-
f - N
'
-

PR

———— s Sy

v

36

e

TV T

4

‘network (Marﬁi?ﬁj.

°
<

plex

Figure 4.2.2 Com

A“‘

e i s At W

g

37

4.3 Relational model . i {ﬂx/

.t

The relational model differs in sé#é%gz/aspects from the

»

-~ hlerarchical and network models. First, the relational
N\ ‘ o
‘model is based on the theorylof relational mathematics.
~ |] o - 14

Seébnd,vit consists of a group of concepts |that. aré not
related to éﬁy'programming language in partfcular. Third,
this model tends to present the data as it exists, Fourth,
the relational model reduces data relationships to siﬁbler

com ents.

A relation is a. two dimensional table having the

following properties. ;f

l., Entries in the tabf; are single valued with no repeating
groups. ‘

2. Entries are column-homoéeneous: items of a column are of
the same kind (Marti76). X 7

3. BEach column is assigned a distinc; name and is referred
to as attribute)

4. DuplicAte rows are not allowed.

5. The order of the rows or the columns is not significant.

Each row of a relation is called a tuple. 1If a relation has

n columns, then each roﬁ ié referred to as an n-tuple and
the relation is said to bg of degree n. Each attribute has
a domain which is 'the set of‘values.that can appear in the
attribute. The d&ta?tmanipu%ation language is based on

reiqtionQI(a%gebra with opetatotg'such as prdjectiop, join,

"
b e ot Khtain e T ¥ i an

38 ./ n ' o

restriction, and set theoretic .,

e %
C s A .
The projection operator returns only the specified columns 3
\)
of a given relation and eliminates duplicates from the
Al

result (Champ76). . ’ ,]

The join operator takes two relations as arguments and forms .

a new relation by concafénéting a tuple from the first and a

tuple .from the second wherever a given condition holds !
between them (Champ76). . ‘ i

The restriction operator selects only those tuples of a

relation which satisfy a given cbndition(Champ?ﬁ).

The set theoretic operators are union, intersection, and ségux“\

difference (Champ76). ' \ ‘E*

N € S Wy Mt £l 4 rg

The implementation of a relational model at the iﬁitiai

- et
o

stage may contain repeating groups. The relation in this

case is said to be in the unormalized form, which

contradicts the first ptope§5§. In order to overcome this,
.the process of normalization is employed where all the
repeating groups are réﬁoved to form smaller relations. The

relation 1is now said to be in first normal form (Robin79). ‘ -

Second ang third normal forms are obtained by dividing the.
relation into successively smaller ones. Normalization is
' applied so that updating‘ﬁill not affect eiisting programs.
No?malized data structures havg important adv;ntages over

other data structures, especially'when they ‘are in third’

- ’

normal forml Some of these advantages are: (
1. Ease of use: simple representation of data (Marti76)

| l a

7

é

: t
RN N A N L 51 3 s KN AR 2 e s

- v "

e L T e e R U T

B ’ ' ‘ .' 39 ’

1

2. Flexibility: in aécessing the desired data (Marti7e6)

3. o .
‘5 3. Security: is more easibx implemented (Marti76)
" 4. Ease of implementation: the physical storage of a flat
; _\file'is less complex than the physical storage .of a
. hierarchical or network structure (Marti76). o .
5. Data manipulation language: can be based on the " .
o, relational algebra or relational calculus (Marti76). -
i
. :
‘ E
| ~) 1
: ;
, {
o ¢ £
o e 1 ' -
, . 9 "
i
i ‘ ; :
i .
&
. . > - v
0
~)
o K / : '

10

5. DISTRIBUTED DATABASES

—

A single systenm wiih database files in more than - dne

‘dinstinct location is referred to as a distributed database.

1.

5.

" The motivations for distributing a databasi/?&e as follows.

Cost reduction ' y

A. Data can be stored close to its‘location of origin
B. Less transmission og‘ data 1is required, reducing

telecommunication costs (Marti76).

» 4
.C. Economies can result from minimizing the usage of

large central computer facilities (Marti76).

Load consideratiohs

In sgti systems y%e traffic load is greater than the

capacisy of today's database software. .This load can be

handled by a number of separate sysfems with identipal'

data strqgtu:eé, which serve different areas exhanging

. update information when appropriate 1Mafti76).

LocaliEed,management

Some computer sites in a large corporation maintain

their own staff, and produce their own reports but

*consolidate some of‘thevitems ‘at the corporate -level

' (Marti76).

Small computer hardware .'- o

A

The rapid fall in cost of small computer hardware
(Marti?6) has made local storage on mini or

microcomputer systems an attractive option.

-~

Separate information sysiéms

0

o

S e ey IS i P T e 1

~7

-

+ ————— . -

a1
Opérating system and information system databases can be
separatéd. An application sgetem may be-linked to local
databases in different geographical locations (Marti76).
6. Availability

Local computef systems provide much more system

availability to the user than a centralized one. Power

or other types of failures in one- site do not affect the .

whole network.

7. Securitx

The database application can be protected against fire,

7

Babotage, earthquake, e.t.c. (Booth77).

8. Fast response to loc&l prgblems

9. Modular growth for new appicatiode’

DATABASE DISTRIBUTION

Distributed databases can be classified in the following

categories. .
1

The partitioned database (Booth??), or separate informetion

and operation databases (Marti76), refers to a database

-

which is decomposed into separate units that reside at more

than one 1location (Figure 5.1). Bach of these units is

N

called database partition and contains a segment of data

structured according to the.specifications of the overall

logical database. Partitioning a database may be necessary

in cases when qhe' database is very large and is adcesSq& :

[’ . .
© frequently. In such cases,sthe contention is‘great because

many .programs may need to access the database. Ona

-

§

ik Tt s Ba o A

-

3
;
1 L[]
"
*
1
:
:
.
f
s \
s -
R‘ ®

o

s a2

42

&

'

o

a

5
:
;

ot

%

}e

-

o

-

-

F ore 5.1 Partitioned Databaes

TN

P

g

T 4wy

o -

l.

processing configutation'm vy not therefore be adequate for

) L
the load. A second reason for partitioning a database is to

reduce the telecommunication cost. P®f each segment of the
database 1is physically close to its most frequent ﬁser§,
mosﬁ communications with it‘wiIl be local, and cosequently
low cost.

The replicated database (Booth77) or &plit file ' system

(Marti76) is the category, where duplicate databases exist in
different locations (Figure 5.2). The purpose of this

scheme is to move elements closer to the point of origin and

at the same time reduce the telecommunications cost. An

édditional advantage is that data replication decreases the
threat of loss o? damage. A replication of a databa;; can
serve as a baLkup‘copy. Updating the various copies of the
databases, however 1is more elaborate. One approach is to
uﬁdate'all copies simultaneously, but this implies a hea;y
overhead; It should be noted that réblicgtinh may exisé

within a partitioned database (Booth??).a/J

-~

DESIGN CONSIDERATIONS (Ramam?77)

"A distributed database is a iogical integration of several

A I3
@af%bases 1ding on different processing elements (PE's).
’ : *

The success of such an integration depends on the functional

-

PE's.‘Efn order to design a dis;rib:;ed database, some

factors must be taken.into~consideration.

~The size of the database residing on the PE's dependS’gn

0\ ! ° . ' .\Aq
"
, . >

relationships between various processesw residing (Oh/the‘

‘ e |

A .
: ~
~— .
’r’ <
z ~T T '5 ~ - N ~ . - U T
{»' . . \\ :]
’ - A
. . ’
. T
.
' .
) 44 '
° ©
— r : u
. .)) '
' pray e
-
! L}
’
! 4
' b
IS \ N .
\
hd ~
,
A T |
o N .
. "
- .)
.
- e
M a
q
| .
‘ 4
-
L}
’
.
.
-
.
- . R
~3

o

/f'Slmllarly o | ’ s;ytlv
Structured © ./ o

\ Databases . -~ o L

" . Y * ‘
A RN .
* ' -
. t e
.
- +
& N I R
o A3
* <
- - ! * N n \ ~
‘ 0
-
N ¥
‘ ..
‘ .\ / '
‘i? ‘a ’
«
.
o . o
[‘,:, ‘
kY
. . . ‘
¢ ~ g o te ' R .
' v
‘ : ' , r
. _ ‘ o
' ¢ . o
.
A LS . * “ v y .
~
A 14 "
) * - " / .
. | ‘
kY ' N --l
: . i \
Figure 5.2 Replicate I
1, - . t
N - ,
~ G« . .
L J ™ 4 . \
. *) . N
t ‘ a, .
g >
. ' ¢ X . ‘ 2
)
F-3
' ¢ . N .
. —_— = b)’
i) RPN

e

45 S i
t the application and access time requirements.

¢ . - '
“Access time may be wvery -Critical and may not allow

sufffcient time for transfer of files between
locations. Access time shoulé be 'considered' in
conjunction with available data paths (pointers),
the nature and size of ffles, and the cost
‘associaéed with replication agd storage.

ta
J

L-Aécess conflicts may occur when a database 1is shared

between many PE's. .

~File locatioﬁ and relocation will affect communidations

requirements and costs.

4 ’ ~o

-Integrity must be maintained on all copies of the
reﬁii\aﬁed database. :
;

~-Precedence relationships are important in producing correct

results,

S

-

-

-Recovery is more complex than in-a éhntraliéed database.’

N
-churity is reéuirea to .protect sensitive data files from
~ being destroyed due to malfunction in the system or

due to a malicious user. - - .

-Deadlock detection and prevention is very 1mportanf.
. ’ o

i \ ' ’ v ' ' -

-The boundaries of interrelated databases must be protected.

a4

46 ' , .

6. BACK~END STORAGE NETWORKS

"Béck-endzstorage networks are dedicated systems whose design

is optimized for high performance information storage and

-

retrieval. They‘are a relatively recgnt‘concept in database

technology, and owe their existence largely to the increased

pel

requirements of modern database éystems, together with the

falling cost of high performance computef hardware. The

term ‘back-end' is “derived. directly from the adjective

‘front-end' used for communications processors. Back-end

systems differ -from the front-end systems in both data
$!

- transfer, speed and functional emphasis (Thorn80) (Figure

6.1).

Front-eqd machines evolved froﬁ. hard-wired multiplexers
whfch connected remote terminals to host computér; by means
of telephone 1inest Thesé multiple#ers pfovided a priﬁitive
connection function, leaving most of the communications

processing - to the host " computer. Modern front-end

processors perform most of communications processing leaving

‘the host computer free to perform its other tasks. In

contrast, back-end systems perform functions associated with
file transfer and high speedqcommunications with the host
computer. The object?ve of a back-end network system is %o

provide high spegd,}access to peripheral subsystems. The

first back-end network design was started in 1964 at.

'Lawrence Livermore Labor;tory with. ‘the déyelopment of a

L

subnetwork for the biéh’perfoimanée local comphtet network

47

Ve
880 T Ae(]
- ebbuoag

pe-oys

LOOOQOOL&

&_WCOLYOUm

P@OI

St

8TDUTWUIS |

0000

. (.0@@000(.&

pUe_3u0u4

: HWOI

euoydete)

\

XLOBWQZL

e T DY)

COEEOU,

L ibet s gk e whaa A A

[RSP

[—————

o

48

called ‘'octopus'. The octopus network supports several

thousand users in an interactive computing environment and

utilizes four CDC 7600's, two CDC STAR's and a PDP11-20
operating as 'the back-end processor. Another back-end
ftofage network was built by NASA to support the skylab
project. Data Eransmit;ed from the orbiting laboratory were

received at a remote tracking site and then relayed to

mission control center. At Houston center, a UNIVAC 494

front-end . processor distributed the data to the five 'IBM
360/75 computers having a CDC CYBER 73 operating as the
back-end ‘processor {(Thorn80). Recent . technology
developments are expected to make Back-end gsystems more
attractive in the future. Large storage modules built from
disks, Subble memory or charge-coupled dévices are becoming
feasible as the costs per bit decréase. Database
processors, specialized hardware/séftwafe subsystems
optimized for Storage update and retrieval, are a logical
choice. Database processors 'solve several problems in

back-end storage systems, In conventional systems, large

portions of the filé are transferred to the requester for

searching, while in a database processor subsystem, data is-

1

accessed and searché&¥witﬁin the éubsysteﬁ,‘ avoiding wide .

bandwidth transfer (Champ80). One of the téchnologies used
in database processors is associative processing, where the
infsrmation is acéesseddby the value of the key instead of
the physical location. ' Early systems used conveﬁtibna%

minicomputers as front-ends to the main storage subsyé%em

JR

\ R : 49 ‘ /
\ L) '1’
)
| 4
anq interfaced host computers over a cdhventional
g .

Icom&ﬁnication network. BEarly architectures were designed as
back-end storage subsystems, and are considered as
iﬁkglligent-bontroller ”apbroaches.;n Some notable examples
are"CAFS (content addressable file systé;) baéeé on a
pipelined processor gbcessing conventional disks, and RAP,
an array of processing elements, each wor&ing on a \pdrtion
of the total database (Champ80j. The database processor
-

goeé beyond the intelligent controller approach by using- a

moving. head disk with a microprocessor associated with each

' head,-and featuring parallel data transfer from the disk.

Tecﬁﬁology development"in future\ years will have a
determining effect on - béck~end netw;rk "architecture.
Miéropr;cegsors will play a vital role in back-end networks
with applicatiofis _such as protocol handling, storage
management, disk gontrollers, etc. Storage technology 1is
proéress;nq- rapidly and new types of memories are gaining
importince infthe &gzkéi. Dynamic MOS storagé‘is generally
used in main étcraée due to low cost. With the introduction
of,Gébeit chip a 0. megaﬁyte meﬁoéy will be contained on a
board 15cm ¥ BBZm and the 256K-bit in tﬁ%}next few years
‘will reduce the size further. 1In direct aécess storage) the
’EZgnetic” disk femains the leastyexpensive device. Although
the'cost of direct access storage ls éeglining, the lowest
cost per stoted%byte.pertains qnl& to'the larq;st units. If

we consider a 'bgck-end network sfstem requiring 600.

meters)., -

50
megabytes of storage, and if theé storage is centralized an a
single unit, the cost per byte would be five millicents. If
the same data is distributed in 60 nodes of 10 megabytes
each, the cost per byte would be 40 millicents, of eight
times as much. Solid. 'state mass storago technologies suoh
as bubble memory and CCD's | have random access
charact?ristics, and bubbles are expected;to replace fixed
head disks in)future. Interconnecting the various modules

of a back-end storage network involves four technologies: "

direct wire, coaxial cable, twisted wire and fiber optics ‘W{

'

(Champ80) .

‘Direct wire, with transmission rates 10 to 100 megabit pef

second, can be used only for short distances (tens of

¢

Coaxial cable, with transmissidn rates up to megabits per

second, can be used for distances 1000 to 10000 meters.

Twisted pair, with transmission rate up to 160.000 bits per

second, is adequate for distances over 10,000 meters.

Fiber optics, with transmission rate up to 50 megabits per -

second, can be used for distances of several hundreds of
thousands of meters. Experiments show that one gig;bit per
second systems are possible. ° In addition ' to porformance»

advantages, fiber optics are immune to electromagnetic

"-.

1nterference. In the next few years,- continued progress is
likely to produce gigabyte disks, and microcomputers“yith

power of today's main frames. These developments,. coméined

with fiber optic communications, will completely change the

R 7o S

gt

’ -V
. e tinin s B \
}))
¢ -,
- - e R e .

2

design parameters for back-end networks,

resulting in new’
and diffe;&: architectural concepts.

, f
: R

4

52
&

7. BACK-END PROCESS®RS

K

Back-end processors are specialized computers éesigned'to
off load database tasks from the main computer system, The&
are. specially designed to pergérm database functions, and
thus have appropriate functions implemented in hardware.

. i
This raises both their speed and efficiency for database

tasks well above. that of conventional—Tomputers. Their '
architectures are described in the following:

7.1 Associative processors . 0 ' “

An associative processor can generally be described as a »
processor having the following two properties. |
l. Stored data items can be retrieved using their

contents or part of 1tuinstead of the}r addresses.

2. Data t;ansformation operations can be performed over
-, many sets of arguments witﬂjawsingle instruction.
These parallel processing characteristics enable associative
érocessors to process data at a faster rate . than
conventional sequential computers.. They are very efficient
at handling ‘informafion storage and retrieval, search

functions, arithmetic and logacal operations on large sets

of data, and control and executive functions in large-scale

JR——

‘computer systems. Because of their high implementation
écosts, aséociative processors are usually used in
conjunction with st;ndard seéueniial computer systems. It
is anticiéated that the rapid d;vplbpmenﬁ of large-scale

integrated circuits (LSI) and very large-scale 1n£egrated‘
R : '

R L 2 o

AP BN T TN s g s

———rn b

53

L

circuits (VLSI) will reduce their implementation cost, and

associative processors will be . used more extensively for
enhancing the perform‘an_ce of varioﬁs special purpose and
general purp«;se computer systems. The major differencé
between ‘an associative processor and a standard ’sequehtial
comp!ter is the presence\of the associative memory. (Figure
7.l.i1). Because of this difference, the other blocks are
different from those oqf the standaré sequential computer.
Associati've‘memoties, in order to retrieve stored data items
by their content, must be able to access the memory wordAs by

matching their content with a given search keyword. The

basic element of an associative memory is the bit-cell which

can be written, read, or compared to interrogating

information. A search keyword is compared to all the words

in the memory through the interrogating bit drives and the

compariéon logic circuitry. To be able to match multiple

search keywords, associative’ memories haveé methods of

ftagging all matched records. Matched words can then be

‘accessed with a single instruction. Associative memories

may perform either parallel by bit comparison (word-parallel

or word serial) or serial by bit comparison (bit-serial).

The, following comparisons can be carried out.

.o gy
s

equal not equal

9

less than greater than

not greater than not less than

[}

.mlaximum value minimum vaiue

between limits not between limits / -

54

‘8un3083 IHour Josesscoud sAjjlDjOCBeSY.

L

=

AJdowep UOTRONJSU]

g2 ®unBr 4

~

| weiysAg HOLﬁcou

\A.(—OE@Z

eob juequ]

niv

OAI3D TOOSSY

0/1

e i e

55
/
next higher - " next lower
The operation of an associative memory can be 111ustrat‘e'd by
the following example of a file search (Figure 7.1.2):The
indicator ’bit is used to indicate the results of the search.
When it 1s set to 1l a match is indicated while a 0 'signifies

a negative resulXt.

As mént oned earlier, Jassociative processbrs can perform
other complicated functions in addition to the.comparison
operation. This places them in the general categor)} of SIMD
(single instruction stream multiple data stream.) parallel

processors. A SIMD machine is a computer in which a ;singl’e

instruction instructs more than one processing element, -

which in turn can either execute or 1ignore the current

instruction as a function of its own status.

The architecture@ of associative processors -can be

classified into four categories according to the .comparison

v

process of their associative memory.

kS

Fully parallel (divided into two sub-categories).

A. Word organized where the comparison logic is associated

with each bit cell & wevery word and the 1logical .

decision 1is avajlable at the output of every "aotgd////

o
-

(PEPE). ‘ o

'B. Distributed—logic where the comparison logic |is

‘assgociated with each"f'h’aracter cell or with a group

of character cglls.

i

"‘ —t v

L . . : o T
‘V! i J{.I..J/‘I}l’n
“CLLABA) Yowoee anjIvOCRRY 2| L ¥
HOWVES HONV3S .
ONOD3S ASHId “JIONI ID18d 3318d
Yy314y H3L4Y “ILINI “INYRO ~ 1S00 TIVLI3N “43s30
T m é8 P29 8BL oLNVd
1 8e ges Gece J14vd
Iy i . T | ﬁ 11| se 89S 290 . aivd
* ! T T 281 66€ %121 4 viyvd
M 9 1 o 8y B12 eoE ¥ IAWA
o r . 1 LS Bac ase & JATVA
. : ‘ _
B ‘ _m.d i CTn Ts.....es_aa..f,..dn
e Sy - /
v . e 285 2 I o
8 po2] 2

R

e

ataahad

s e n—— S~

~

—F

R

3
i
ol

57 .

Bit-serjal., 1In this architecture only one bit column (also
called bit-slice) for all the words is gperated one af a
time. For this reason a bit-serial associative processor is

also called bit-serial word-parallel associative processor

(STARAN) .

-l
A}

Word-serial This architecture represents a hardware

implementation of a - simple program loop for search. The
only factor contribqtiﬁg to increased efficiency is a

reduction 1in instruction decoding time since only a single

t

instruction is required_to perform’'a search.

Block-oriented This architecture can be implemented by using

Jogic-per-track rotating mémory which is based on a head per

track disk unit with some logic associated with .each track.

¢

Fully parallel word organized associative processors

The major characteristic of a fully parallel word-organized

associative processor'éFiqure 7.1.5; is that the comparison
logic is as§oéiated with each bit-cell of every word of the

associative memory. . T§Qw - comparison is performed in

parallel-by-word and parallel-by-bit. In this architecture,

qrery crosquint represents a bit cell of the associative

memory. The operations in this associative processor are’

éimple and fast compared towothers. On the other hand the

2

hardware is complex bacause every bit has to contain 'the

comparison logic.
* n ! . .

Fully parallel distributed logic associative processors

-
o

°

(I il

’5_8

WORD-MATCH TAG

11 12..-&1!“!
T 'NETWORK 1

21 122...02n

WORD-MATCH TAG| = |
NETWORK 2]

i
e
. . |]

{ml | m2 fon WORD-MATCH TAG
S 7| NETWQRK m

.| BUTPUT CIRCUIT — ALU |
—
. ¢ ' - 11 .~ i ‘ , [\ ' | . ' 7\ -

e e o e
-

o ngu.-.7.1~ss VoD |

&

'F'ully perallol word . erganizod miattvo proé.mpo

n
. . v >
. \ . A AN
- . , . , AN
[} . * . . . *
. °
3 M * s A
. .‘o . . e
. !

S/

a

This type of .associative processor is°character-oriented:

its memory has its comparison logic associated with each

\

character . cell or group of character cells. The best known

associative processor of this type is the PEPE developed Dby
Bell “laboratories for the US Arﬁy Advange Ballistic ﬁi§sile
Defence Agency (Figure 7.1.4). |

In this type of architecture each character® cell has a
single state cell element which may be either in an active

state or quiescént state. Each character cell also has a

~number of cell symbo1l elements El,EZ,EB,... depending on the

size of the symbol alphabet. The state cell is a bistable
device such a flip-flop. Each charactér'cell stores one
character symbol and can communicate with its two neighbour

character cells and the control system . Under this scheme

- the distributed logic memory must have enough cell logic

circuitry so that it can produce a yes or gg,answef to a

© . a

simple question such as a symbol comparison. If we want to

receive all strings whﬁse name is AF, we have to ask each
_ : ‘ .
character cell whether its character symbol is A. In the

cagse' of a ' yes answer, the cell should have the necessary
logic circuitry to request the next cell to check if -its

character symbol is F. When the cells answer yes they

output their content.

Bit-serial associative processors

’

This'atchitecture eliminates the need for expensive.logic in
each memofy bit by using énly one bit column for a“"large

word ' being processed (Figure 7.1.5). In this memory

-

~

N o et

IERG, st itk R

1

60

LO.looo..x_

®AT3DjO0eeD Ouwoﬂ ﬁ.cj«z.acu_u —Ou?cﬂn_ xnnak

Q.hawt y-1°L ®0B53 "

nv

mmn_&ﬁ T0BRAS 1Ndin0

- NOILO3MIO

e

snd 1NdLNO

~sha ‘3Lvis

SNE ANdNIT

o - w x

NOL1Y9VJOid

. IVNSIS HILVH

IYNOIS. INd1N0

- 31907
NOS THVINOD

l

A

219071
NOSIHVJIHOD

" 11 1733 ¥313ViVHD

Y TTI0 ¥ILIVHVHD

R

e -2

WNOIS LNdNI

w >

0 0z - ® 0 4

b R

{ OUTPUT. CIRCUIT - AW

- - CIFPORR PN - v s e AT Ry Pame et PR TR

61

~
. ° -
~ v]
B ° N

BIT COLUMN SELECT LOGIC

CONTROL UNIT

INTERROGATING BIT DRIVES

' 11 12 i3 -oo_g/--o; lﬂ

j

i WORD LOGIC 1

23-....... zn

21 122

WORD LOGIC 2| 2
- |

| i
WORD LOGIC m

ml | m2 |

m3 sesennpse | MY

’) ¢
i

™~ ,] L F \

~

Figure 7..1,5 Bit-serial au‘cbidtiv.lupmoéy' (Y'alvtﬂv'/) -

-

62

organization only one bit columnris operated on at any‘given
time.’ Bit columns are selected by the bit column select
logic circuitry. The word logic associated with each word
line provides the apility to perform associative processing.
The word logic is 'dentical fof all words and consists of a
sense amplifier, storage flip flops, write Tamplifier,' and
control logic. The storage remembers the match state from
one bit to the next. The capability of the storage to act
as a shift register provides the communication link between
adjacent words, ' STARAN, deveioped by the Goodyear Aerospace
corporation, is a bit-serial associative processor installed
in a number of locations, including the Rome air development
center Defence Mapping agency, Ene US Army engineering
topographic laboratories, and tgg/QASA Johnson space center

in Houston. c) //,

/%

Word-serial aSSOCiative prodéssor (Figure 7.1l 6)
/

o

It was mentioned abové that the word serial associative
processor represents a hardware implementation of a simple

program loop t/;»search. The reduced instruction decoding

time due to tn%/;act that only one instruction is required-

A

for ' a se;%ch contributes to the efficiency of this
architectur%. An earlier proposal suggested the use of
circulatiné associative memories to allow many memory words
to time-share a single set of content addressing logic.

Another model was a word-serial assoclative processor based

on a word serial assocliative memory using N ultrasonic

e ae el a AFed et m A m— el =

O PP R SO VN
\

63

B \\\\\\\\\\H CLLOP)) ~oseecoud @Al3zpjOOEBeD [DjJee_pucy g ..n JA ltamn 4

W3 1SAS TTO¥LINDOD

¥3INNOD ¥31SI1934 av3y
: Tznz: :
| ss3y¥aay
5 Y¥3IIJIIdWY av3IY
UVANDD :
¥3ALSI9IY
ss3y0ay e I I |
” _TIYNIS
A3 HO¥V3s -
- UIIIITINY 3LINA
nv ‘
3 31507 TICHINGD 3ILINAIY
\M\l&l}\|\\! v D IR

————_ - o

64

digital delay lines where N is the number of bits of a word,

.
JUSERURRVRR TS L T s

operating at 100 MHZ with 10 usec delay time. Because of

the slow spéeé of word serial associative memories, only

experimental models have been developed.
%

Block-oriented associative processors

1] ' .
Block-oriented associative processors represent a design

compromise between the expensive bit serial and the low
speed word serial associative proces%ors. They ﬁtilize a
rotating maés Storage device such as a aisk to provide a
limited degree of gssociative capab%lities.“ The procegsing
logic is implemented on a per track basis: a head per track

disk memory has some logic associated with each head. The

-.concept of a fully parallel distributed logic asbociative_

processor, was implemented in the RAPID (Rotating
Assgsociative). Iﬁ this processor, the data transfer rates
between head per = track disks aQa the distributed logic
memory is high; The system is :h&tablo’for ggg}}cations

-requiring(iarge storage capacity. . T : ;

e e e——————— w8 T

65

- ’\\\
[
7.2 DATABASE MAFHINES

7.2.1 Philosoph& of database machines

A database maéhine consists of specialized hardware

supporting various database management functions, as found

in most software databases. The principal motivations for

the hardware impl%mentatﬁon of the functions are reliability\'

and performance, ! Large and complex software database

systems tend to be failure prone and practical‘vgrification
methods for software database systems are not yet available.

Methods for verifying hardware functionality, design, and
. \

performance are however available. Technolog&cai advances

have overcome some of the problems of logic complexity,
capacity requirements and space. By implementing the
database management functions in hardware, the basic

functions are more reliable, and software 1is less complex

and smaller in size.- Conventional computer systems are not

designed for datqbase applicationé,but rather to carry out
numericaI. computatf@qs. Database functions, on the other
hand, are concerned with storage and retrieval of data. A
conventional compd;er equipped with a.databasermanagement

software spends most of its time interpreting calls between

‘the software and the operating systems. Software database

X

management systems therefore often beceq@ bound with heavy

I/0 ‘traffié to or from secondary storage, with a resulting

degradation of response time. Specialized hardware to

perform database functions can thus improve performance by

b4

relieving the CPU, main memory, and channels ftom’ttjfﬁﬁaajy

3

© -~

\ .

N I

ENY

——— e by)

66

I/0 lsad. ‘ : ST T

Database machinés-° require large. on-line stora?eawith
fast access time. Aithﬁugh associative éemoriés meet this
requirement, their use |is }imiteé byltheir high cost and
limited capacity: Researchers have. therefore tended to

focus on stqqina devices such as disks, or to, use cellular

logic'design to provide content addressability. Moving head

- disks. speciélly configured for parallel readout of all the

tracks of the cylinder are used. Content addressability for
a cylinder can be achieved by use of appropriate logic for

all read heads. Several technologie; such as bubble memory,
22 .

charged coupled devices, 'and electron beam addressed

memories are becoming available,‘.promising lardger memory

cdpacities and faster access times.

-

7.2.2 EXI/STING DATABASE MACHINES ‘ -

¥

In this chapter a few of the existing database machines will

be presented
. R,
\

7.2.2.1 'RAP - The relational Associative Processor (Figure

7.2.2.1.1) is designed tb operate as peripheral or back-end

processor in order to provide fast résponse time. The basic
architecture of RAP consists of identical component;‘called
cells, a statistical arithmetic unit, and a central

cont;oller. -

Each cell 1s‘bomp6sed of a processor and block addressablé

memory. The processor is'spécially'ldqéigned for database

R

»

i e ek f

RS

T

67

;
. »
CONTROL & . PRIORITY
DATA
! . PROCESSOR |~
| *CELL 1 | MEMORY
CONTROLLER , — —
STATISTICAL
ARITHMETIC ‘
UNIT ; :
>l' PROCESSOR | !
- CELL 1.1 MEMO'QY

Figure 7.2.2. 1.1 (Schue79)

RAP.2~ Relati qnal - Amesoccigtive Proceesor

|

68

1 . o . 7
!

insertion, deletion, update, and retrieval functions. The

processor has been designed using large scale integration
(LSI) «circuit technology. Memory can be impiemented by a

rotating magnetic device such a disk or a drum, charge

" coupled devices (CCD), random access memory (RAM) or bubble

memory. The statistical arithmetic unit 1is part of the
controller.n It generates statistics (totals, averages) over
the combined contents of the cell memories; The controller
is designed to receive instructions in RAP machine format

from a general purpose front-end host computer, decode them,

broadcast control sequences to initiate cell execution, and

pass retrieved or inserted items between the front end and
RXP. Cells operate in parallel directly on data, ahd each

: instruction is executed within the cells. » Cell

inter-communication is provided for by priority polling.

Each cell contains several logic units which perform tasks
such as searchiné and comparing. The comparison units can
test the contents of one item in the database against

several search key items. The most impottant(feature of RAP

is its parallel processing‘tapabilgty which eliminates the’

need of inverted lists, B-trees or_ any other method for fast
retrieval (Schus79). Another advantage 1is the use of a
hardware mechanism to translate lmemory formats into user

defined database files aﬁd racords. This minimizes the need

, for specialized software. ‘The front-end computer supports

high level user functions, maintains communications via

1n€e;active terminals and translates various queries into

o AR v, SO

e A e e

[

T et N

69

\ «

RAP instructions which in turn invoke several cell microcode
instructions. - -~ /=

Relations can be represented by a table where the rows of

the table represent a set og‘ record occurrences (tuplesi
(Figure 7.2.2.1.2). Each relation and its occurrences are
augmented by several special one bit items Mi cailed
mark bits which can be set to 0 or 1 under user control or
by the intermédiate operations of other 1nstrué£ions
(Schus79). Theﬁe bits are used as a.work area to indicat;
Subsets of record occurrences so that the results of one
insﬁ;uctign can be used in shbsequent instructions. An
extra m‘fk'bit called the delete flag is used to iﬁdicate

deleted tuples to be ignored during instruction execution.

The records of a relation can expand over cell memories but. -

each .call is allowed to store records from one relatfon
only. A RAP device can therefore contain one large relation
over N cells or N relations, one for eacﬁ of N cells. A RAP
relation is not qui£e relational as .is defined by the
relational model of a database. It allows duplicate records
and their existence is not automatically detected.-

Instruction format (Schus79)

1

The general format of a RAP instruction is:

<label><op-code><mark option> .

[<object>:<qualification>] (<parameters>]

label: optional symbolic instruction address.

op-code specifies the data manipulation operation -e.g

-

AV

-

chicy

=2y

g e e o
N .
‘ .

-

70

R

w

(BL®Yog) BedA3 paop [pofbol g dvy 2°1 72 2L *nbrd -
; “ . R r, ,
{ O3¥I0NONN
S3TINIUUNII0
/ (37dNL> QNOJI3Y
66°6 |-ttt [AAAA | o xxxx | T fccclet | T |
. |
- !
GAYN |"°°°°""° | SWNVYN INVYN . . .
W3LI - WALI | W3LI | - 9W [-""|eW | TW | NOILVIISIINIAI
, , 3 LVWNOd
3NVN NOILV13Y ; ,
"ON T30 - 5

71

bl

“Seleét, Read-all, Save etc,

mark 6ption: has the following significance and formats

1. “Numm no marking is done.\ ,
2. . Mark (bit specification) sets to '1' the mark
5 bit specified in the bit specificatin of the

qualified tuples for exampig inmark (mlm2m3) .

3. Reset resets bits to 0. for‘ example
RESET (M1M2M3) . L .

Object: has the following significance and format.
l. Rn EDI,DZ,DB.. Ds) wheréoRn is a relation name
and D1,D2,Ds 1is° a 1list of data item names
agsoclated with relation Rn.

2. . Cell(i) where i is the address of the ith cell

" Qualification: has the following significance and format.

1. Null implies every tuple of the relation
qualifies. . | o

2. 0102030n 1s the conjunction of a simple |

' “condifiong.'

3. Ql02Q3...0n {is— the disjunckion of simple
‘conditions. Simple conditions may. have the
following %ormat.A) L

1. _<data item name><comparator><operand> where:

A. Comparatdr ESjii‘#, <;‘>, £y 20 ‘/,-.
B. -Operand is one of REG(i), <integer>, -
- & '<1iterai>' _ where REG(i) refers to the

~contents 'of the {i-th controller register.

2. MKED (Mi)- matk bit test Hi-l.

-

PSSR 1 -

.
TR O A Lk
. -
. f

g ~;$-<’\

< e

———n s ®

‘
\ . . L . ” . '
o X e W - e e C O heeenen [wnmoremed s .
. .
N .
" a
“ » v,
B g . .
.

.n ’J ’ .i ”" v \

3., UNMKED (Mi): mark bit test Mi=0

g ,If{, 'éELL(i): call’address is tested{’) \\ . A |
Parameters-dependﬁng on the instruction the parameter\ may - oo
have the following significance and formats. ; " ,
<register 1ist> <work area) <add,subtract, replace>, o ow} i
;- <cell 1ist>, <£ormat>.d' [?.v -
Cell structure (Schus79) L .
¥ Each cell consists og the elements desdribed below: - ‘ >
1. The cell interface: interfaces the cell to the control .
and data buses and has a 16- bit relation name registery - .~.

" at 1o an.

3.

' Thére are status states refleqting,the

“last pass in,delete flags,

:symbols.<,-,> of the’ comparison and a serialocomparator.‘”

results

of 3 o

. M1,M2;M3,... Etc. The most-
J .
significant bit of the status is always a' 'l' indicating

the presenge of a‘cell, . C .

‘The synchronizer provides all the timing signaﬁs to the

cell. It generates ‘the read phase and write phase

signals for’ the CCD memories. \The cell logic operates

O oo
L]

The query analyzer determines whether a tuple satisfies

the search qualification. It utilizes an 8-bit register .

r

.to store the item number to be tested, ‘a 32—bit shift

register for ‘an externally supplied constant, a 4- bit '

register indicating the selection of the unit, rand_ the

t

4. The i/o buffer provides temporary storage for retrieval ‘
. and insertion. It consists of, a 1KX16 RAM. T ’ }.
o By) o r . "
* S 1 ' 6 v !
l”a. ’ . S - » .
T '

Qi The arithmetic unit is independent ‘and can be removed if
N ‘ snot used. It is only required to perform arithmetic
‘instructions such as Add, Sub, etc.

6. The update control executes the mask _and reset

A " instructions, writes new data supplied by the 1I/0

buffer, and erases the track in order to create or

. - delete selected tuples. o o

. 7. The output multiplexer assures that only one call at a

. time is in the READ state. '

8. THE CCD memories provide the mass storage for a cell.

| The memory caoacityvis irmegabit per cell. .
A" commercially available RAP would have capacity limitation
due to the cost relative to the ‘total database ‘storage
requirements. A cost effective system would consist of the
following compodents. ¥ ‘
- a frontrend general purpdSe computer to inﬁerface witg

users "to provide the operating systems functions, and
o \\high level language capability.
| ~ one or more RAP processors to act as a file 'cache’,

- one‘or more conventional secondary memories.“

The database file can be partitioned EoriZontally by storinq . -

certain records on RAP and athers on disk, or vertically .

A
-

! storing clusters ff data items on one device or the'fother., o o
\ .RAP is classified as a SIJ% - single instizction multiple .
.data stream machine. If we consider a RAP processor with
| 100 ‘cells execoting a quety reqﬁiring only lQ cells, the ‘ ;)

other 90:cells will remain idle and therefore only the ldink

' - . .
- M : : . iﬂ--. s : :
i . 3% Wial) AR e LN v 24T YRR AT aa g
oS 0 NG . P FRTIETE
. o - s roLL .
A S BT R 3 WL .

gt A rh
~

7.2;2”2 RECT (Figu;e 7.2.2.2.49 is a multiproéessor
_ organizatiop for supporting relation databafse systems and

-
.

r

[PROREV R

- 4

4 e o Ty MCACAY e o vime mmAget s e

74

of its ‘potential 1§_used.

i
'

n’ be claésified as a MIMD —«multi:$k instruction multiple
data stream architecture. DIRECT is a virtual macoine and
therefore there is no 1limit to the relétion size. It is
implemented - using LSI-11/03 microprocessors using cch
memories which are search;d in an associative manner.

System architecture. DIRECT consists . of six main

components:

l. Host proqessor.: |
2. Back-end controller.
?ih Query processor. \ S
4. .CCD nfémory modules. °
5. Intexrconnection matrix.

6. Mass storage.

The Back-end controller is' a microprogrammable PDP il/ﬁq

responsible for communicating with the host processor and

e

controlling the query pfocesaors. when the back-end’

controllér recaives a query from the host, it determines the

riumber of quer¥,processors requiced to . execute this query.

P

(Dewit79.1). -

Query processor: Each. query processor is a PDP 11/03 with"

28k words of memory,, The function of each p{ocessor is to

exacute query p&ckets gssigned to them by the back*end ,

AN

controller.‘ Each processor associatively searcﬁhs a’ subset

e S 4 pam

o crrE - PR T, RO K s e e e
o
v

s BAS wday s a B i

*(1°BLATASD) ®=mice3iyoun wejede |53410

b

NS

75 -

XId1VH -

NOILJ3NNOO¥ILINI

N\,

e

" ju=3naow
AYOW3N
ala

{2=3ngon || 1-3NOoKR
ol ANOWINW 'AMOW3K
ine) as2

R

- 4-40SS320:d

\

Z2-DSS3II0Md
AY3NO

T-40SS3204d
AYIND,

"¥ol1s
SSVYH

—ayano {1 -

1°2°272°L *

Y3 TI0HLINGD

ON3-Mave

»‘ ..

J.Ww.u_ a

s

!

P e

{

i e P

— e

e e————— T = st oa - vk pn wm e At

76
of each relation referenced in the packét. When it finishes
one "page of a relation, it-makes a request to' the back~end
controller for the next page (Dewit79.1).

CCD memory modules. Each associative memory is divided into

fixed size pages of 16K nytesk CThe reasons choosing this

size are the following: a

1. Financial. —

7 ¢

- 2., ¢ 8ize. 1If size 15 large then relations may fit on just

one page. It also minimizes the amount of internal
i fragnéntation when a relation does not £ill all of the

pages it occupies. - 1

The interconnection’mabrix permits the following.

. 1. Query processors can rapidly switch between page frames

containing pages of the same or different relations.
2." Two or more query procéésors can simultaneously search
the same page of a relation.

3. All query prdcegsors can simultaneously , acces\\ a page

W
v

- frame.

DIRECT does not use mask bits to indicate the tuples

.satisfyinb the search criterion of a query. Rather, tuples

which satisfy the search criterion are written into a

‘temporary relation in a page frame of - the associative
‘memory:. Uéing mark bits may cause problems for DIRECT where

.two or more query processors executing different queries can

access ‘the same page of the same relation simultaneocusly.
J

As far as the performance is concerned DIRECT requires one

disk revolution to extract the tuples’ satisfying the search

- ' i

P

0 1 Nty S e P

s
e ————————— AN O T g, N e S mnr b o4

b

t

criterion unless the query pr6ce550r's buffer 'is full, in

. \ .
which case a second revglution is necessary (Dewit79.1).

N, ‘ T b
Instruction set: Each query processor has the following

instructions,

RESTRICT:SELECT tuples from a .relation ﬁbased on boolean
search condition.’

PROJECTFELIMINATE the\ specified columns of the relation.

JOIN:COMBINE two relations to form a third relation.’

UNION:FORM the union of two relations.

DIFFERENCE:CALCULATE the set difference of two union

compatible relatiens. : .

INTERSECTION: INTERSECT two union .compatible relations.

CROSS-PRODUCT:Form the ChOSS-PRODUCT of two relations.

_MODIFY:MODIFY all tuples of a. relation satisfying a

.

. specified boolean dénditﬁpn.

INSERT: INSERT a tuple into relation.

COMPRESS:COMPRESS a relation by removing tuples marked for

deletion.. N

- AGGREGATE OPERATORsiperfb:@ MAX,'ﬁIN,'COUNT;’qnd AVERKGE.

_a

r

7.2.2.3 CAFS (Figure 7.2.2.3.1). CAES (Content ‘addressable

file store) conglsts of specialized hardware inserted
between the diské and the host computer. _'The system |is

designed so that disk track .heads can be multiplexed to the

CAFS sistem.’ Data can be transferred +to . the host By.

bypass;ng the CAFS system. The qystenm operaﬁes,on twelve

different data ‘streams to,&llow, onl qﬁalified~ tuples to.

f. 7 e

X

S —_—
TR RIS Y
p——— v y~adoagiy

B T e

W

- -
N - o~ N
. o
e : o
0 .
v L4 L4 o
. "
* ko]
78 s
1 A °
| [
b N - «
+
H . ‘ a
- 4
N ‘ .
‘ . . o .
. , s , . 1
. . » \
-' \ 5\ R
. . 1
' Ay
.
: . . .
. . - | , 4 L 1 f
I
: i . . P
; , B .
L 1
i * 1
: DISK]
.
] CONTROLLING . -| CONTROLLER i
AR R *
! . B y A
4 R . R ————————— *
! D 1 . ¢ . ' .
' 1 ¢ T . D
1y , =] . N .
: ; N
‘ “ m—
§ , g . .A [N
e | . ¢ " ; - P!
P . , ————— N f
i w
. . a K3 2 4
. N A —————
Do ;) : . .
: A , .
N ¢ _— e e
o) - 4 .
' ! ! a3 "
. P ————————— .
. y)
v 1
N . R N
: ., : '
a : . R) o °
. . s .
\) .
" . * .
~ - " . » .
¥ . ' - ’ .
' +) " '
. . . i v . .)
s , o . . o R
: , i . . g ’ 4 .
: - Figure 7.2.2.3. 1 CAFS eystem architecture DeWitSD.
: . . . 4) ' '
J . o
t B . ') . M . .
.
v ' ‘ ! ' .
‘ N
» . , . '
. « ! [B
. C . .
L] 3
. i o " ”
,o B . . - 4 . f .
PR % P T ¢ or ' I I . .
0 . N . . ! 0 ¥ T ~
)) . . ‘ Lt . v - s » . -
‘ - N . v t ¢ . - ' ' P
To. . . ' f .
.] ;. ' - ’ v \ ‘ .
N . - . : . ., .
. B) ': L "’5'1:' '~‘ B vtéz .
-~ . ¥ \ - . ' ' Lo PO
. - . <, N R . © &
. - N A . - ., . o ' .
" . I v R . ,\‘ RN .

79

»

are passed to the host (Dewit80),

- 7.2.2.4 DBC (Figure 7.2.2.4,1)
; DBC (Data Base Computer) Qas developped by the -Ohio state
Uﬁivefsi;y. It c:nsist§ of several specialized processors
which perform the database management function., The DBC
uses moveable headggisks and provides content addressability
on a cylinder basis.,. The directory|is kept in a separate
memory for fast processing. DBL is a back-end machine -
capable of communicating \Qith ohe or more hésts and
.. Supporting hierarch cal,? ngtwork. and %élational mogeL% of
‘tdatabaée. It qonsisté of 7 components and two ioops of
processors and memories.

'The data loop (Hsiao79.2) qonsis¢s oF the. database command

i

processor (DBCCP), mass memory (Mﬂf, and security .filter
>
processor (SFP) , and is used for storing and accessing the
database and enforcing field level security.

The structure loop (Hslao79.2) .consists of the database

‘command - and cohtrol processor (DBCbP), ‘the keyword
transformation unit (Kxﬁ),.the‘structure memary (SM), the
structure memory information procfssor (SMIP) and the index
transformation unit (IXU). It is used for limiting the ma§

‘memqiy searéh~space; for qéterminlng the authorizeéd records

‘for aécess, and for clustering record recé;ved‘fdr insertion

W

d4S

1SOH WO¥E70L -

NXY

NS

Y v

T0YINQD —

NOTILVWNOANI

EF oy

81 T

M

into the database,)
: 4

The mass memo'rl (MM) (Hsiao079.2) consists of moving. head

disks modified to allow parallel track readout of an entire
cylinder at ‘each. revolution. This f:eatur_g allows rapid
access to large blocks‘)‘:f' d_a\ta.. The received ‘data cﬂan. be
content addressed simult%néously by the track information . 1.
processors (TIP's) during t\he rgadout revolution. ‘ As user
requests for data transfer ére seldom béyond one megabyte,
this feature appears to be adequate. The mass memory h . {
information processor (MMIP) processes the information :
..contained in. the entife"cylinder- in one disk® rervolution. ‘
Evefy track of the cylinder has its own unit called track
infermation prc;cessor (TIP) having some amount of buffer . : o
. space. If we conéfder a disk witlh 4QV tracks per cylinder,

then the MMIP will ‘contain 40 TIP's. The content

addressable capability is achieved by transforming a query

into a record havi'ng ;11'1 the search identifiers, and

comparing the track data dgainst it. The query record is

store® in sequential mem‘ory‘. Each track in)formatio‘n
progessor. (TIP) reads a record from .the’ track, and t;hé query
record from the sequentilal‘memory carries out a bit by bit
'compa?spn of the two records, Records satisfy,ir;g the
seétch identifiers are sent to the security ‘fi‘.l.ter processor

© .

(SFP) for security check on these records. This processor

in turn returns to the control processor (DBCCP) only :t,hbse

records allowed to be accessed by the inquiring p’sei‘. Input
Al .

requests are detected by the mass memory controller (mMcy,

\‘.

.
" TN TR T
O v o R e e

}
f
!
i
.o

e ey "%

82

which \directs the disk drive controller to bosition the
read/write heads to the apgropriate ucylinder. When the
cylinder |is aceesseé, the MMC sends the requests one at'a
time to the mass memory information processor (MMIP)., While

the track information processors (TIP's) are executing a

request, the MMC can request the drive controllers to

position the read/wr;te heads to another cyiinder. Read ing

and writing is done in one revolution. Deletions require

~.two revolutions and’ updates of records being increased in

size require more than two revolutions.

The structure memory (SM) (Hsiao79.2) is the reposiéory of
the directories of the files‘in the database. For every
keyword K designated ' for indexing there 1is an entry
consistiné of the%keyword itself and a list of index terms.
Index terms‘are,composed of a cylinder number and a securiry
atom. For each predicate, the SM determines‘all those
keywordé:which safisfy the predicate. For each 'satisfying

keyword, a -set' . of indices is retrieved. These indices in

‘turn are intersected for all predicates. ,Tpe result of the .

intergection 1is a list of 1index terms for a given query

conjunction. The list of index terﬁs ﬂis compared by the '
DBCCP ﬁo the user's access privilege. Finally, a list of

index terms with permitted access are forwarded to the mass:

>

memory (MM). In conventional databases, indices range from

1l to 10% of the size of the database: In DBC, . indices are’

‘required for the 'cylinder level - and are expected to
\

constitute about 1% of the database size. 'Another important

c o

-

Ry Y 0
B AT 2% e a4l TE

TN rAS T T e

T

~ o

o 2

———ta mpiis oot

aaaaaaa ks oy m——ty T B T

83

requirem.ent is that the SM should provide high search’

retrieval speed. A survey has indicajted that CCD's \with a
random block access time of 100ps will cost about 50
mcents/bit. Bubble memories with 1 ms access&\time cost
10-20 mcents/bit. Electron beam addressable memories (EBAM)
at a cost of\10—20 mcents/bit have been studied but their
reliability is uncertain‘. Designers of the DBC have decided
to empioy either bubble memoriyes) or CCD's for the structure
memory design. |

The keyword transformation unit- (KXU) '(Hsiao79.2) encodes

the keywords before they are sent to the structure memory.

Each dttribute in the database has a unique identifier.

N

Information about them is stored in a table called the

attribute information table. Each attribute contains
information such as minimum, max imum, and values (numeric,
floating point, aiphanmﬁeric, etc). . Depending on the

attributes, different hashing aigorithms are used. They

reside in . the hash algorithm library.

The structure memory informatioh proceséor (SMIP) performs

intersections on' the sets of index terms delivered by the

structure memory SM. For example, consider a query

conjunction q-PleP2@P3..‘. where each Pi 1is a predicate.

Starting with Pl, each index term satisfying the predicate

t

is séorea in the SMIP.. The process is repeated until Pn is
p’rocesseq,fan'd then the 1ist of index terms is forwarded to

the. datibase command and tontrol processor to be chec\ked

before being. transmitted to the mass memory MM.

PN v

3o e PN M AL G}

B it T

v,

-

91

- IN3ON3d30 3INIHIVH
‘3sYAvVLvO ONV A¥3nD
' 33S PPEB* - 982"

‘23S 891" - 908"
*93S POEB" -

I SR . (BBITA*D) e[qea wejempuny oL

3°1°3 ONIINI¥d ¥0d4 FWIL L1SOH - doH

3SYJ 1Sy0M - 3SYJ 1539 -

-~

N

7/ 3NIHIVA ON3-MJVE HLIM -
ALVIINANNGD OL 3WIL Nd3 LSOH . - .° WOJEH
- JWIl NdJ AY3IHY3AOQ LSOH . NdJACH
3WIL.0/1 OV3HY3AO 1SOH .., OIAGH

.« 3WIL-LSOH 3

~o3s 218" INIL NVIS 39Yd . : NVISD'
S31A8 9T © .~ - 39vd 033 40 3ZIS - 3ZIs3
5 R | . g% =8
. - PR . = ‘ . : © o m b
~ S)J078 81y “IA3/S430718 ILAG-21S 40 #. .: 7IAID
"¥16/33S 8808 ° > INIL QY3 T3 - - OvaWg
-Aas33s cio! * ISOH Ol 3ivd vivd: . 3ivdd
- 035 29Ed | 3WIL SS30JV I9VMIAV i IVAVE
S *33S £OT@* - 3WIL NDILVION XSIO . 1040
.+ s3lAg 2ls | '3ZIS %3078 32154
- o | . ASIO. -
’ - AMVA 'NOILJI¥IS3a -

YILINYYVS

A

P

J T

PR

' prdcess the query. Therefore QTIMEs.:089-267 seconds.

L ' . . . o ~
' : . .-
INGRES: the time required , to execute the query is defined
as follows: 1

“‘ f
QTIME=HOVIO+HOVCPP+HDPIO+HDPCPU
i ~ 4 . a}

oA

The worst case will be when the three pages reside on

separate cylinders, requiring one access per reference. The’

b_est case. will be when all three .references . reside .on the

‘ . \ame track.) There fore HDPI0=.0336 " for_ the best case and

b

080 for‘ the worst case. .The host data processing g¢pu time

is defined as HDPCPU .06 seconds. The total time requi zjéd_.

fks QTIME=,13-.34 seconds . b I '

Asé&_@tiveg disks and CAF$/ .)

QTIME=HOVIO+HOVCPU+B HCOM+DA VASN*DROT. - ‘

The system requires one disk adcess to position the

read/write heads at the apprppriate cylinder'.- Since data

resides on a single cylinder, and by assumption cell
processor:s' operate at the rotational speed of the storage’

',media, -1t will need one re:volution of the disk {n=1) to

&

Q ' »

The time required to execute the query 1§‘defined ag:
QTIME‘HOVIOH'!OFCPU-PBHCOM+DAVAC+N*DROT)

CASS)M will require the following number of .rotations t.o
execute the ql}ery | - : « | N

1l rotation to mark all tuples for the relation. :

l'rotation to find the pointer to the query qualifier (38)°

9

.

~

\

]

DIRECT

‘therefore QTIME=, 095-.272

- . . ‘
1 rotytion to-transfer all marked tuples satisfying

'day' attribute.

the

1 rotation to " transfer all marked tuples éatisfying the.

: - P
“hour' attribute .

r\Five rotationd are therefore required to evaluate the

and QTIME=.156-.334 seconds. o

'
Id
I

DBC :
The time required to execute the query is defined as
QTIME=HO.VIO+HOVC PU+HBCOM+DCYL+DAVAC+DROT.

In DBC, cylfnder indices reside in RAM memory,’

’

this analysis * is assumed to be DCYL=,006 seconds

P

L
.

The time required to execute the query is ﬁefined as

"QTIME=HOVIO+HOVC PU+HBCOM+DPIO+N * CSCAN '

" where CSCAN is the CCD page scan time. ;glo is one

" DPIO=(0- (DAVAC+274*DREAD))=(0-.249) seconds _

‘seek plus the transfer rate df all pages.’

R4

<

v

Nine data cells are required to store the .relation and

-

are only 8 cell processbrs available. Two to three

times are sufficient, giving

"QTIME=HOVIO+HOVBPU+HBCOM*(2*CSCAN-3*CSCAN)+HDPIO+HDPIN

'QTIHE*ﬁbVIO+BOVCPU+HBCOM+DPIO¥N*CSCAN.o

= 066-. 490 seconds.

«

RAPlThe time required to execute the query

query

thus

.requiring time to search and retrieve them. The time for

and

disk

there

scan
Y

is de?ingd as -

PR

N

st

" determined as follows: \.

R t

24 = ' .
The relation requires only Q data cells to be stored. CIf
the relation is already in the cache, then DPIO=0, otherwise

A % .
it ig theé same as DIRECT. The number n of cell scans is

od

1l scan to mark'qualifying tuples in 9 processor cells.

x

‘ N
1l scan to transmit marked tuples to the host.
THus: o . 2

QTIME=HOVIO+HOVCPU+HBCOM+DPIOQ+2*CSCAN=,066 - .493

V4

Conclusioris: Single relation gueries

_RAP and DIRECT have the slowest worst—case times because

they must serially search the entailre relation, while INGRES
. : L] .

maintains it as Q hashed relation (Figure 7.3.1).

y

)

d k) 7

At 1w .E.:‘v%?}i. T R i M el b T o D T WAL TRy
B - .
- . -
L] - -

dv¥ 133810 389 NSSVI §4Y2 ay SINONI .

: 88
) /v

L

\

TN K
B o

2

e

v
N
>

* [

-

\\
—
TR
BTG

X
b

-

-y
e,
e

95

INIL
L1SY0R

REBTTT
Y
X3
§
K

/

w L T o anii
X ’ , , - . - S 18138
- e X . . . - .
) - € . , *338
. . /fJ T iuane 1N0HS - -

© -~ SINIHOVA ONIXOVE NI JWIL SS3004d AYIND

N
l -~

~

9
\

’ N « .
~ . . ~ ‘
.

L e h s St bt s st

N7
V4

A .

. ‘4'

/

o

" Following the same steps and constructing the formulae

k4

96 : '

-

-

v x

appropriately, QTIME was calculatgd” for multli' relation

e

queries giving the following results: L '
: ~
‘/

INGRES QTIME = 29.74 - \37.55 sec.

ASSOCIATIVE DISKS QTIME .= 5.04 — 5.90 sec

- DBC QTIME = 5.04 - 0 sec ‘ - b

CASSM QTIME

15.50 - 15.83 sec. 0

DIRECT QTIME = 3.29 - 4.07 sec. ‘ -

.

14.48 - 14.81 sec. W7 ’

H

RAP . QTIME

' Conclusions: Multi relation queries

?NGRES. shows the worst time of all because it is:/a)soffiwar‘e.

» « ' ;
¢ ~package. CAFS and CASSM are‘relatively\slow bec)ause some of

t

~

"the logical operations such as the join, must be performed
at the host.” RAP's performance depends ‘on whether the

're{ation cép' be. ¢ ely stored in the CCD cells (f‘igure

l .
7.3.2). :

NUPE—"

A

B J T
H

*seu I oDW —ur.m.v_o.«um uy Aaeng Cvan.HQElw“u..nDZ N..m A GLDW«.&

dvd~ 133410 380 , KSSYI 54V) ay SIHINI
n X XX [y AN B AT
& ﬁ,y : L
. r\. . . ~ n
T , -
z,]
. . b
*338
SELLRADSSRELESPRLL) | |
SINIHIYW ONIMAVE NI IMIL SS3304d AYING
o . v
. - : .
TN » ' \.

- . -

3

" 98"

y P ': 8. PROPOSED MODEL -

i

/ .

~

¢

Distfibution of a database may be made iacc;rdiné to
function.. or according to data. The back-ehd networks and
‘qatabase‘ﬁrocessors discussed in the.préyious sections are -
representatives of‘ diséribution\ By . function, and are
particularly effecti&é fof lagge, cenééaiizeﬁ systems.
ﬁistribution bg' data implies that alf' the .esgential'
f;nctions of the database ére‘ pteseqF on each//pf the
computers of the system. ' The organization is apprdpriate to
geographically distribuied systems, and _;of iocal‘ systems

composed of ' arrays of ' identical coﬁputers. The gené?al

" problem of distribution by data should ‘ inplude‘ both .

.

'horizontally partitioned 'as. well ak replicated data sets.
. - 3 & .
These two cases cover the problem both of large 'databases
and high reliability systems, both of which are fqndamentay

motivations .for the implementation .of this type of.
distribut}on.' The model propoéed in this section presents a
structure and file organization for this Eype of system.

-

Assume the network of ddhputer§ [N=1,2,3,4] of Fighre

8.1 Assume a ”r$1ational DDBMS consisting of the following

" relations [R-DDBMS=A,B,C,D,E,F] . -,

Assume that relations E and F originate only at ngdeé 2, andy
3 respectively‘ while the others are gommén. The R-DDBMS

will bé distributed across the network by partitioning the

¥

common relations so that each nodé retains only those. tuples

3

.

a

LTI

‘ \10
\
~ oY %
3 4 .
e . :. ' ‘\\‘
Figure 8.1 Distributed network N
: stec
C_aTN
al.bl,eledl a2,b2, 62, d2.E
! 2
% N)
fa‘ . ‘ ’
. ~

| 3

a3,53, o3, F

Figure 8.2 The R=JOBMS partitioned co;m the network N,

4

" ks b, ob, dd

L)

.

that belong to it. All other relations that are unique to

’

any node‘“remain at the point of ‘origin (or where they are

most ﬁrequently"aécessed), and are not partitionpd (Figure

.8.2). The R-DDBMS is distributed over the 4:nodgs, and from:

the global point of view appears as:

_ . s \'
R-DDBMS = [A,B,C,D,E,F] where -
A =‘[a}a2a§;4] ” n | '
B = [blb2b3b4] v
C = [clc2c3cd] -
D = [d1d2d3d4]

o

One may observe that updating is relatively simple when no.

replic?tes exist. “The systeﬁ-backép of each node is simpler

"and communications traffic is at a minimum since ngﬁﬁiﬁf the

operations are performed localiy. Finally, should a node -

become inoperative, it will not affect the nétwork except

that its information will not be available to others.

4

DO I D P s Rk

. | : 101
~ v ‘ 2
8.1 MODEL ARCHITECTURE

oy

sy
In this architecture the .backup is the nmost importént '
opegationw.*The s;stem should be ab}e to achieve a baékup h , 8
- \\\$\§ynchronization so that 511 nodes operate under the same
generation number (#) of’ the R-DDBMS. For this reason the . -
processes should be able. to detect that the information

transferred between nodes is of™ the same generation #.

e 3

Locally, the generation ¢ 1is almost nsparent, and the

frequency of - backup is detefmined by the database

o s+ g e,

administrafor (DBA), The system allows three types of
relations: partitioned, unique, and replicates. : The type of
» the relation 1is determined by the DBA at the time of the

dpplication design. A relation is partitioned if is common

b e ——

to more than one node and each node represents é portion of .A f
it. An example of this organization is‘ a corporation's
inventory relation where each node represents a part of the
inventory local to the operations & its corresponding site.
Unfqu; relakions are those belonging to one only nodé,
Replicate re;ations are ones that are,cbmmon to all nodes,
and where exact copies'may reside in more than one node. 1In
each node the 1location of the approﬁriaté relation 1is
obtained by the use of the system dire;torieé. -
'The syspgm directories are the LOCAL RELATION DIRECTORY-

(LRD), the PARTITIONED RELATION DIRECTORY (PRD), and“ the -

REPLICATED RELATION DIRECTORY (RRD) (Figure 8.1.l1). The LRD

maintains the names of all local files (relations) relating

e e ey el AR T AL S

102
LRD"
RELATION NAME RELATION AODRESS |
{
PRD
| | LocaL . | .
'RELATION NAME | ADDRESS REMOTE * NODE ID
N \ \ o
NODE-1 NODE-n
' 'RRD *
LOCAL
ADDRESS , REMOTE NODE ID

RELATION NAME

L

NODE-1 NODE-n

-

A

F.igur.; 8. 1.1 R-DDBMS Sbyotqm Dir.ct?rigb.l '

B T T

103

1 ’ -

\

to this node. The PRD-maintains the names of partitioned

relations and where they reside. These reldtions may- be

. ‘ 4
partitioned among several nodes of the network or among all

of then. The RRD maintains the names of _replicated
relations and the assgciatg@ node~-id's. In.this case a
relation méy be repl%;ated among several nodes or amoné all

®

of them.‘ When a relation is needed, a relation fault occurs

and the,appfopriate directory |is dearched to 1locate the

Y

required. relation. When a relation resides in another node

a reques% is sent to that node and the process should fall

~~into a wait state- (with a possible timeout). Each node

):‘\

%
4

maintains a set of}éhese files that describe the * schema of

»

-R-DDBMS.

- the root file

- the relation file

- the index file

These are described in the following:

Root file: ; . B

The root file contains the information about relation names,

1

primary key names and passwords. It also contains
aéditLpnal information pertaining to the relation
partitioning. '

The Root file is illustrated by Figure 8.1.2.

File name : ROOT.<DBNAME).<NODE-ID>.

-

Levels indicate the password associated to -each level. °

Global security clearance is the password applied globally’

.

104

$$3. PASSWORD. INFC
LEVEL # PASSWORD

. /f~\

$$$. DISTRIBUTED. PASSWORD. INFO R
GLOBAL SECURITY CLEARANCE ~ LOCAL SECURITY CLEARANCE

H

(SO R ORI RN -
o b svarhe - ——

b

$33. RELATION. INFO B L
REH?TION NAME PRI”ARY KEY NAME PARTITIONED FLAG

17

Gz

S
S —— o Pt A s "l Al iy o o N
<
T

3. KEY. DESCRIPTION . =
KEY NAME SIZE. TYPE RELATION NAME PARTITIONED FLAG

. ‘ ' ‘

$$$3. EOD

Figure 8.1.2 ‘ROOT’ file .

et et e 4t it et . —

105

for distributed access.

Local security clearance 1is the password applied locally to
. . P

access local-relations only. L L

Relation name is the name of the relation that belongs to

’

this rdbms.

Relation primary key is the primary key.associated with this

relation. , : "

. Y o ¥,
Partitioned flag is a flag which indicates whether the
: -

. relation is partitioned among other nodes, is unique, or is

» replicated.
, /—\ j
Key name] :
Size indicates the number of bytes that the key occuﬁ{ss.
_—‘ .

It is applicable only to alphanumeric types. o

Type indicates whether ‘the item is Integer, ﬁeal, Alpha.

-

(I,R,A).

Relation name 1is . the relation name' to which this key

belongs.

-

Note: This design allows two or’more relations to have kéys

+
-
g

with the same key-name. s

Relation file:

the Relation ' file describes the individual relation in
:detail. Each column is d;scribed as to which'sécurity level
lis ailowed to read or write it, 1ts'size, tybey- naﬁe, and
/value." ‘ N

The Relationﬂfile is fllustrated by Figure 8.1,3. _ .

File name : REL.(DBNAME>.<REL-NAME>.

.
.
-

i
e
K
%

o
Shs \

e
e

il -
R
Rre

LT
RN

X

harias
[N

"

oy e e+ o e

106

e —— e - —— — —— 4 .

- $83, GENERAL. INFO
. DENAME

NEXT AVAIL. REC. REL. DEGREE BACKUP GENER. #

$33. COLUMN. INFO

SIZE TYPE R-LEVEL W-LEVEL COL. NAME CDL. SUB-NAME THAIN DISL:

$$3. TUPLES

DELETE LOCKED TO COL. VALUE FWRD BKWRD COL. VALUE FWRD BKWRD

2

\@86sas80800

-

A
\l

n\ro-"o-.n

L 1 3

sehoceass

Figure 8.1.3 The ‘RELATION’ file.

/

e e N A

107

Dbname is the éatabasé name,

Next rec. avail is the address of the next available record
3

~ in the relation.Rel.ﬁegree is the number of columns-in this

_relation.

Backup géner.i is the latest backup number.

Size is the size in bytes applicable only to-alphanumeric

items.

v -

Type indicates whether the item is iﬁteger,' real,
alphanumeric (I,R,A). . .

R-level indicates the security 1level that can read this

colunmn, ,
W-level indicates the security level that ‘can’ updaté ;hé'
column.

.Col.name is t?e.name of the column.

Col.sub-name is the column sub-name.

Chain indicates ' that chaining of similar tuples is desired
. . g

a

(for sg&gndary) keys.
- Co 9
Displ. is the position of ‘the column relative to -the ~

. begining of the tuple.

i

Delete is the delete flag which is set to indicate deletion
of the tuple. ‘ \ ° ' a

Locked to is the process id that has locked the tuple.

Z Col.value is theé actual value of a' particular column.

Fwrd is the pointer to the next tuple in chain if chaiping

was specified.

o

. Bkwrd 1is the - pointer to the. previous tuple in chainm if

chaining was specified.

. - s . ol — . ¥
NS . . oyl R e, - '
R A . .

108 O '

s

{

Note: pointers are present only 1if chaining option was

selected.

Index file: - . r

File name : INDEX.<DBNAME>.<REL-NAME>.<COL-NAME>.

The index file contains addresses of primary keys.

Program run table (PRT): (FIGURE 8.1.4)

The PRT table holds information about the user program and
the database relations. Each relation is fepresented by an
entr? in the PRT. When a "locate" command is issued (see
8.2), depending aon the search condition: thel‘coldmn pumber
and the address of the first \fecord that satisfies the
search value is entered| in relation's entry. ° Subsequent
"get" commands wiilluse the record address to retrieve all
the records satisfying the'search condition. The PRT can be
seen as the 1nﬁerface between the user program and the
database system. It rgflects all error codes occurring in
tpe database system duri;g the eiéqutfon of é\cohmand by
posting the error code to the status flags The B&T contains
the program-id and ﬁode-?d “so that in certain emergency
cases the PRT can be saveé.and the p?ocess resumes at later

N

‘time. a

System modules ' o

The organization of. the proposed system is ill%strated-by

Figﬁre 8.1.5, The system modules shown are resident on'e;ch

v~
‘‘‘‘‘

e e " G o T s

A\
I

¢ &
/ ‘o1qu] uny wodboud eyl ¥ °1 '8 O.LJ,m«...._
«) \ . W
.a.llll s o ow veog e eee e e s ee o w CE R R]
DS ,

.nlv- S e e e e L LI A B - e 00 ® am L 2 Y J - o o o o0

: -yoav # | -voov # . | snivis # o1 | . 3WVN
K K °° Qmou.mm NWNTI0D [0¥0J3¥ [NWNT03 13 - EhER JAON | NOIL1Vi3d

. ,,\\ -
- “h3Aan 3A3 -uNJ3s -4nJ3s a1 o1 SNLVIS
o m.:m_l. _u.<mm 1 T30 Y8019 mn._oz NVYY90¥d
J = =

v——— g

? . mm._”mmVOE wa3sis ¢°T°8 Sanbra .) . .
— . } - . \J\

. . i /
“ Q , ~) -

) T TINAOH
- ~ §S3DOV ; .
‘ . viva AHV YWIHOS | . . N 9

B A R
) _ c
. R m W ~ <
.

r

YOLVISNYYL

- X¥ENO
NOTTYoO anaow 21000W
, i NOTIVINY [<uw aNVAWOD —> mum.mwwaz.
{ N - .
- = : . WYHO0Hd =t TYNIWIIL
g N yasn ; uasn
*
. / .
i .8
* LOTIIq| 41 - r\ o
WALSXS
adn - .
aad ; . . - ~ ‘
TINAONW : h V/
) - NawnoD < >
‘ ¢ N - » qaznaninstd - L
N FAON . LOWIY WO¥d/ 0L = 0 : .
. .
T
g
® 2

. programs issue instructions explicity to the dJ&abase system

111

-
0 . [.
R

~ ” .

,ﬁpdes of the network. Intercommunication'with the nodes is

maintained by the distributed communication- module. Their

operation is described as'follbws: T

-

‘User program {up) i’fié program written in high level

language such as* Cpbol,i,Fostran, or Assembler.. User

’

!
(see 8.2 R-DDBMS commands).'gb

. 2 Ve
Query translator (QR) <4is the module for the non data

processing user where an English like command is translated

G 7 . N v . ’
in one or more database commands. This module alsoc may
' R
provide sqgi reporting capability so that simple reports ma§

be “obtained w{thout programming effort. ., .

User intérfacé\?odule (UIM)¢ is the ,interface between -the

>

- 'database aﬁd-the\gdtsidg‘wérld. At log in time, it verifies

passwords and passes the command to the command module.

-

When the information returns to the user, it notifies the

process, by updating its PRT table, that the request has
been completed and the tequested data have been stored in
the indicated place (work buffer or file).

Command module (CM) receives the command in explicit form

(see - R-DDBMS commands) and verifies its correctness by

accessing the schema, Once the request has been evaluated,

‘the CM may request the UIM ‘to provide some additional

information from program's PRT (program run table). When
the user command explicitly requests remote access, the CM

will issue:to DCM the reéuest for the node that is needed.

% : // :

'

¢

b s e 8 TP e

° 112

o

This is achieved by supplying the’nodejid in the'aﬁproprggte

2

. .
field of the R-DDBMS command. Finally when the node-id is .

>

blank, ' the CM will request the relation location module

(RLM) to take over. y

Relation location module (RLM) searches the local ieiation
; Y ’ -

direcigory LRD to locate the required relation or iAdex.:

When the search ends successfully, it passes control to ‘thg

data access module (DAM) to . finally access the data. When

the .search fails, thg hLM will search the éisttibuted system
',directories (PRD, RRD) to find the node Qhere the requested
relation or index is located. é:ving completed the search,
it will re;uest the dist;ibuted communications module (DCM)
to establish communication with the requested node and

reéuest transfer of the data. The RLM may also perform)a

search due to a distributed call through the DCM.

. 7/
Data access module (DAM) will read or write the data from

the, local database to the location indicated by the RLM and

report the success of the operation to the UIM. In the case
. ’

of a distribqted call, it reports back te the RLM which in
turn reports back to the DCM. One of its privileged

functions is to update the schema when necessary, but this

can only be done under a priviledéa password. J
;

This module cgn use any one of the access methods

describea' earlier in this study. The chaining feature of
the model imposes the use of double linked lists for all

related data entries. To locate ;he.head of a-list, the

~

~
: ‘ /
- . .
o e
‘.

<7

B 5
N e fa 1 4 Do s . AR R WA e K kot Sl

N

e

" -
“1

, | SR 5 K £ . .

e
-

' i ' ' S
following access methods can-be used: '

\ Hashing: Any hashing algorithm can\ubg used.” If 1it. is -

implemented at the hardwate'level, the multfplicative method - !
= l

may improve oberation Sy generatinguless‘s§;onyms and thus |

executing much faster,’ , ' AN

\ , A
;

Invérted‘file: As it was mentioned before inversion

Es

simplifies the DDL design but adds significant overhead in

processing the record.

Tree structuressr The addresses can be contained‘in the nodes

of the tree which is allowed to ‘expand. qéhfee structures ;

Fl

require less maintainance compared to the inverted files but?
. \

they may require more storage. ‘
g

The "implementation of access methods is)ﬁeyond the scope *

of this study and depends on the available software and

hardware. Implementation of a hashing algorithm in the " ‘ .“5

hardware, howéver, would provide faster access time and ..

would have ‘less.storage requirements. o

;Distffbuted command module (DCM) interfaces the node with ' oon

’ the network. It routes the R-DDBMS commands to the network //\\\ _

and to the RLM from the network. Incoming data from the -

network are stored in mass storage in the indicated élace
? - (work buffér or file) and the success of the.”operation is
repor}éd.to the UfM.‘ In response to a éistributéd call, the
DAM will create work areas ho&@}ng.thé data. When ‘the‘vRLM

.indicates the end of an operation the DCM will transfer

A

i s e o

L
.

R aacacd

114

e
9
1=

“

DCM is expdéZed' to
: recognize';hen it is called and respand to such a calls
, R .

those work areas into the network. The

A
i
’ . I3
i
5 A
- ‘ -
a
- - t
"
———— ‘
i N LY
o
.
-~
.
-
’
N
"’—. , - .
L3 -
\ ~
4" I ‘
.
s [Vv
* 4 .
: o .
i L
.
f f
‘ R y
A .
| .
-
v
4 T L
‘
N M °
- i A
. . Y N o
ey
v
o [
«
P ~
-
3
o 4
+ i
) 3
~ + - v
i<
.
r’
. » -
e
' ’
o
- .
.3 I‘
-
o '
. -
’
-
L3 ¥ '
Y
\ -
R /
N o
« R ,
Ll » .
13
Le
a - - -
. - - N
.
{ .
' » . -
+
t - » -~
’ - «
ta
*] . [
~ ¥
’ ¥ P ‘
N f
.
4
> - 4
s . . N .
“
~
e A

b whvd T e A TN M et mygrea g # pee e u

-

e ke

8.2 R-DDBMS COMMANDS

“ A, v

‘E

The R-DDBMS command set includes commands for{seatching,
g o A

retrieving and updating tuples or relations. The commands

can be issued by the application programs or directly by the

Query subsystem. The details of these commands are as

P

follows:’ ‘) h X

<ATTR.>:= Relation's attribute name.
<REL-OP>:= AND|OR|NOT|<|>| # |
<SEARCH COND,>:= <ATTR.>SREL-OP><ATTR.)| '

<SEARCH COND.)(REL-OP><SEARCH COND.>

LOCATE (NODE-ID), (REL-NAME) ((SEARCH CONDITION)) [, (LOCK)]

This 1is used prior to an addition or an update. The LOCATE
will find the tuple accordinglfo‘the search condition and
will return its address in the relation entry of tﬁe program
run table (PRT). When 'LOCK' is requested:’the tupie(s) is
locked to ‘this program. ' This option is uféd prior to an

update or delete and is described in detail in chapter 8.3.

‘ ' A .
‘GETF (NODE—ID),(REL—NAME),(WORKBUFFER)[,<ATTR.)]:

GETB' (NODE-ID), (REL-NAME) , (WORKBUFFER)[,<ATTR.>Is

The GET instruction will retrieve the tuple that . has been
. 4
located by the LOCATE instruction, and it will return intp

the 'workbuffer' the entire tuple or selected attributes.
If the chaining option is specified for the attribute, the

GETF will always access forward the next tuple in chain and

the GETB will always access the preceeding tdple in chain.

~

N

T Mol T e S,

L

IMAL . o o o

¢
2 Tar e i e

-

2 B S BT

S

i

9

116

GETR (NODE—ID),(REL;NAME),(FILENAME)

>

.The GETR transfers the entire relation 1into the file

designated by the 'filename'. '
i -4

.« All the GET commands copy the required data into a user

(- .
supplied ' space one tuple at a time. These commands should
be used in 1local access only to avolid excessive

telecommunications overhead.

SELECT (NODE-ID), (REL-NAME) (SEARCH COND.),

, (filename), [,<attr]’

AY

The SELECT copies the tuRles or selected attributes that .

satisfy the search congition and creates a new relation into

/{

the 'filename'. This command must be used instead of GET
! ' c

when a distributed call takes place. It will reduce the

telecommunications traffic. - >

©

PROJECT (NODE-ID), (REL-NAME) , (NEW-REL-NAME) [, <ATTR>]?

v

the PROJECT will select the indicated attributes of a

relation and produce a new relation.
Q

.JOIN (NODE-ID), (REL-NAME1l), (JOINING CONDITION), (REL-NAME2)
(NEW-REL) '

_ The joining condition is a boolean expression of comparisons

3

(=, #, <, >,l <=, >=) bhetween columns in REL-NAMEl and

REL-NAME2. The effect of this instruction is to create a

'

|

|3
Iy

° <
BN R e rrre PR

R 117

o N

. , ‘ | A,
new relation consist{;g' of tuples formed by concatenating

tuplés from REL-NAMEl with tuples from REL-NAME2 where the

°

~values in the tuples satisfy the joining condition.

UNION (NODB*ID),(REL-NAMEI)(ATTR‘PAIR—LIST);(REL-NAMEZ),

> .
(NEW-REL) | o

1

The ATTR-PAIR-LIST is a 1list of pairs consisting of an
attribute name from REL-NAMEl and an attribute name £from

! REL-NAME2,. The effect of this instructioﬁ is a creation ?f
a new relgtion NEW-REL consistihg of all the tuples of both
relations wiéh any duplicates removed and the attributes
ordered in a sequehce given in the ATTR-PAIR-LIST.

v

INTERSECT (NODE-ID), (REL-NAMEl), (ATTR-PAIR-LIST),
e

(REL-NAME2) , (NEW-REL)

!

The result of intersecting two rel&tions is a new relation ,
(NEW-REL) ' consisting’ of all those tuples appearing in both
relations and the attributes ordered in a seéuence given in
"the ATTR-PAIR-LIST. .
. ; — ‘ ‘
p ~ DIFFERENCE (NpDE-ID),(REL-N@M;{),(ATTR-PQ;R-L;ST)L o

Al

(REL-NAME2) , (NEW-REL) ‘ » LT

The result of differencing two relations is a new reia;ion

(NEW-REL) consisting of tuples that are in the <first

1

relation (REL-NA%;I) and not in the second relation

(REL-NAME2) and attributes ordered in sequence given in the

A}

ATTR-PAIR-LIST.

-

-

o
-

118

ADD (NODE—ID),(REL-NAME),(WORKBUFFER)

The ADD command adds the tuple contained in 'workbuffer'

into ythe relation indicated by the 'Rel-name’.

UPDATE ‘(NODE-ID) , (REL-NAME), (ATTR='VALUE') [, (ATTR="'VALUE') |

. This will update the attributes of the current tuple with

the assigned values. The update will not allow
modifications of key-attributes and will abort the command
if this 1is attempted. The ' update, at the end of the
operation will unlock the tuple that has been.locked by the

LOCATE command. -

In case of a replicate relation all the copies must be
')

updated wvirtually at the same ' time. The update

¢

synchronization is necessary to maintain the data integrfty.
In chapter 8.3 a few update synchronization methods are

presented.

DELETE (NODE-ID), (REL-NAME), (TUPLE\ALL)

$

This command will delete the‘tuple(s) located by the- LOCATE-

c?mmand. If the option TUPLE is used, on}y that particular
one is delgﬁed. If the option ALL is useé, all the tubles
in chain are déleteé. This command will set the delete flag
of the tuple rto®~ref1§ct the 1logical deletion. Deleted

tuples are skipped by the GET and SELECT commands.

’

e e e s L e gAY PR B tam N SRS Oac A o TG AR

119 |
Deletion is a type of update and therefore 1is of the,

same importance with regard to replicate relations.

.

COLINS (REL-NAME) (COL-NAME='NAME',COL-SUBNAME="'NAME'

[,SIZE=XX][,TYPE=X] [,CHAIN]) .

This" command iﬁserts one column to a relation. The size i%

optional beéause when TYPE=R (real number), the size {
|

always fixed. The CHAIN is used only if this will be use#
%

" as key item.

rejected and thus the request is aborted.

COLDEL (REL-NAME) , (COL-NAME)
. 3

This command deletes one column from a relation. In case

i

that the «column 1is used as key item the operation is.

s

COLUPD (REL-NAME),[(0LDNAME='NAME'),(NEWNAME='NAMB)]T

[(OLDSUBNAME='NAME ') , (NEWSUBNAME="NAME ') 17

AN
N

N

This command updates the literal information of a column.

l The commands COLINS, COLDEL, COLUPD, affect)directly the

ROOT file and the header information of the relation. These
\
commands operate only locally and must be used only when' no

other process uses the database resources. Each one
. N N

"genefates a schema update and requests to all nodes' of the

network,” and they are issued only by privileged users such

as the DBA. The COLINS especially causes the relation file

to .be reformatted in order to accommodate the.new column.

»

5
— R L TSP TR WG

. S .) 120

r t
! 4

The COLDEL on. the other ‘hand, will delete the entry from the
Column.info of the relation file for that column. In

génerai, all -the commands perform the housekeeping functions '

@

' such as maintaining record pointers where applicable.
~ 7 ‘ .

o

Wi
\ - v
1
p
s
. \
»
o e
el
v
s .
s .
. al ©
b
e
1
N
-
n
-
3
L
-
F
~
JE
N -
N - .
i
®
’,
et -
' o
< »
! s “
-
.7 o~
- N .
3
, N 1 "

“?

7

121 ‘ >

8.3 PROCESS SYNCHRONIZATION

The proposed model allows replicate relations ag‘well as
part;tioned relations. A partition of a relation resides in
the site where it belongs and is accgssed the most.
Replicaté relations reside in more than one site of the
network and at any given time tﬁey should be identical’ ’The
‘model allows locking to be affected at the lowest 1level of
the structure, the TUPLE. Locking is used only in case of
updatiné'to ensure that only one process will wupdate the

tuple at any given time. Where locks are used there is a

‘$o§§ibility of deadlocks (deadly embrace) which . must be

detected and corrected. 'The 'system may maintain a state
graph (Menas79) consisting of all preséntly pending requests

in order to detect a cycle (deadlock) (Stone79). - Once the

deadlock has been detected, recovery procedures must be .

o~

initiated and(}esolve the situation. Another approach is to
gmpldy a centralized locking mechanism and every updéte
request will be forwarded to this node. The major

disadvantage is that all sites depend on one central node,

and should this node go down, the enéire_system would halt.

Partitioned relations, being unique to the site, do not
repreﬁent any problem)in proce;s synchronizat}on_sinée the
chance of a si}e updating a(remote partitioded relation is
minimal.- The great concern in updating replicate relations
is the update synchronization of the transactions so that

the database consistency is preserved- while excessive

\

oL T TEET RV FRRIRY STV

122

‘overhead.in propégating control information among the nodes
of the ”bDBMS is avoided. The ptoblém of DDBMS update
synchronizsfion has been studied by’ numerous authors.
(Alsbe76) 1; multi-copy resiliency techniques, proposes a
'primafy site' along with fbackup sites' to conﬁpol all the
update requests. Depending’on the number of servicé hosts

-and the average host down time/day, two tables arfe presented
for the 'Service down :}me' (figure 8.3.1). .

‘%hié approach appears to be'very good and very reliable fér
a simple daéabase. In more complex situations, ‘the’.method
cannot avoid the need for global database léckinq mechanism
(Rothn78). Another method, different from the preceeding,
tties to avoid global locking whenever possible. This
methodology has been \implemented in the SDp—l DBMS
“(;erns78). Each sike applies (phe updates and then sends
them g& the other nodes having the same copy of data. Thé
cons&sténcy of, database copies is achieved by the use of
'timestamps'. When a data item is modified, it 1is stamped
with the timestamp of the updating transaction. However'the
clqcks ‘atf different sites run at different times and
thbrefore must be synchronized. (Thoma78) introduced the
'majority concensus algorithm' where an update request is
either broadcast to all ﬁarticipating‘nodes, or propagated
as a daisy chain. Each node 'votes' to ;ccept or rejgct the
update rqufst.v If the majority of nodes accept thé
request, then the databas; upéate will 'be applied. The

[

' system uses a timesta#b~ so that ‘no two update requests

P ooy
-~ TR T Y

R aanm) SURE

© Owl

P S

OF SERVICE HOSTS

123

SERVICE DOWN TIME

-

| od : o E
QOOIOME®ON

.AJ";

o

3.8 HRS/DAY -

28 MIN/DAY

3 MIN/DAY

19 SEC/DAY
2 SEC/DAY
6 SEC/MONTH
7 . -SEC/YEAR

-1 MIN/CENTURY
6

SEC/CENTURY

| 'HOST DOWN TIME 2 HRS/DAY °

'# OF SERVICE. HOSTS

PR

SERVICE DOWN TIME

— ,
VOONOOUNS-EWLWN

!

2
7
24

1
23
1
S
2l
1

HRS/DAY

MIN/DAY,

SEC/DAY

- SEC/DAY

SEC/YEAR

SEC/YEAR
SEC/CENTURY

. SEC/THOUSAND YEARS

SEC/THOUSAND ' YEARS

]

HOST DOWN TIME 1 HRS{UAY

r~

" Figure 8.3.1 Service down time (Alabe78).

-

- e c—— ~

e e e w

[

o P . . . N -

- 124
. , N

should have the same timestamp, and successively -‘generated

o

timestamp shouid ‘increase. - This method reduces

communications volumes but ' it introduces’ 1eng£hy

communi’cation delays (Rothn78).

The proposed model may adopt any of the above mentioned
algorithms, However the algorithm proposed by {Menas79)

appears to be the best candidate for this model.

Implementation of such algoritﬁm_in INGRES (Stone79) proved

to be sSuccessful. The algorithﬁ may maintain state graphs

at both the local level and the global 1lgvel to detect

deadlocks. . Special procedures must be provided to resolve

the deadiocks when they 6ccur.\

~
-
- .
.
' t
'
M o []
.; @

»
£ -
¢ . o -
B S ¥ I3
4 . i
2 .

% e) .
- s . .) N
5 To9
. \ 0 .
‘} o . .
i - 4 -
. - - R .
1. . A ’ ¥
! . '
‘ N L
. . L 5" M *
" . N +
\ . by
- . - , ~ .
N R
. N
. M
. 5 . E
. 0t ¢ . , N)
- ® \ f .
. 3 : N
. 2 . -
°
. . . .
e ‘ ' v b J . &
' ‘, ”.. x . !
. 1 ‘
. v . T .
. ! . . . ' o ‘
v N B o .
.) . v . . , -
D ' . \ v
~n . Lot . ‘.
. . ! 1 ¢ .-

e st 2

.
<
125 -
-
‘ / . K .
. . .
¢
i . N ’
. v
N
. v

8.4 SYSTEM OPERATION

" As mentioned eaflier(the proposed model supports
ipafﬁitioned' as well replicate relations. A banking system
mayvbe one of the applications requiring . the features’ of
this model. Transactions generated against the account
relation'originate at each node and they are wnique to that
node. The interest rates} %n contrast, are common to a}l

¢ nodes and therefore may be replicated. Using sample data .

the relations of the Figure 8,4.1 may be required.

?

.4 ! When the R-DDBMS has processed the information, the
o . ﬁglés pertaining to this applicdtion will be created. Using
PILE-TYPE, DBNAME .REL~NAME ,KEY-NAME to name the files, these

H

5

: . . :

£ . would be: ‘ : ' '
{ ’

§ o - ROOT.DBBANK : | - ‘ | - :

. | - REL.DBBANK.CUSTOMER '
- REL.DBBANK.ACCOUNTS
- REL.DBBANK.LOAN

3

- REL.DBBANK.TRANSACTIONS 2 ‘ : D

- E - REL.DBBANK.INTEREST-TYPE&%

- INDEX.DBBANK.LOAN.CUSTOMER-NUMBER |

- INDEx.DBaANK.Logﬁ.qu&~auounw o

- INDEX.DBBANK.TRANS:E?IONS%ACCOUNT-NUMBER
- INDEX.DBBANK.ACCOU

S .ACCOUNT-NUMBER
- INDEX.DBBANK.ACCOUNTS.ACC~-TYPE

. - INDEX.DBBANK.CUSTOMER.CUSTOMER-NUMBER - -

126

N

by
3
e

R

NOILV3y mmz%hmnu

-

00 "004S - T wHD " ODV—€

o,

NOILY13Y SINNOJJIY .

S000-1
00 0000t AYS 0SI-¥ ¥000-1
. LS "0O0E MHI ooz-1 €000-1
i 00 "000S AYS . 0O0l-1 2000-1
00 "000T " AVS 001-1 1000-1

R € > . NIENNN HIEWNN

-~ 3INVIVE IdAL-33Y Y¥3INOLSNI LINNOJJY

S — I Z. - mﬂ%mwnw
i) ’ ! , : ¢) “
‘SUCFID[ed @ ,mej8le m.r.wv«:_um nmv 1°v°8 OLD.mm 4, 3 .
cecee VIMINOW AZS d N oo2-1
e - TIV3MINOKH HLIWS C°f 00—t P
14 X * . Ve
“04NI - .. 3WYN ¥IENIN
UmHI. 'SSANAAY ¥3IW0LISNT MINCLISNT -

IO s e E e

-

127

esuocigplea e, wejele Bupjung (P °y 8 o=nbBry

NOILV134 SNOILJVSNViL

o

INNOJJY

NVOT “3VA 0ovt® 00 °000S 001-1

NYOT dYd SLET 00 "00DS o12-1

| NYOT JWOH cZ21° 0O °00002 002-1
NYO1 3NWOH - GLET ® 00 00001 001—-1

SATNY . , i . - .
\ “03NI . 3LvH . INNOHY HIENNN
ISIN 1SINIINT NVOT] ¥IWOLSND

© ~NOILY34 NVO1 .

- 00°s2 0880ST ' (OM> AVNOHLIM too-t. “/
00°00T 0688021 <(OM> MYNOHLIA €00-1
0D °0SS' . 068801T (O 1IS0d3d ¥00~1
00°00S 0880T1 (dO> 1ISOd3Q 100~1

vV @ F . NOIlJovsNval HIENNN
INNOWY 3lva " 40 3dAL

.‘T’

128

O

Y. o

g\ i A

=
\

Qco«vuﬁon e Eovwo mcﬂxcom AOVﬁ .* -8 Onam«u S _—

\ » 3 .
, ’
OOET * - WL | .
N ootr - AYS . ST
G460 ° MHO . T
vy - IdAL R .
1S3NILINT LSTMIINI - a
NOILYT3Y4 LS3INIINI

1% & Q*Nw

* - INDEX.DBBANK.CUSTQOMER.MISC-INFO

rThe files prefixed with "INDEX" always contain the
address of ;the tuple that is the head of the list. The Root
and relation file structure is presénted - in the Figuges

8.4.2, 8.4.3, 8.4.4, 8.4.5, 8.4.6 and 8.4.7.

£

Considering the ©previously mentioned ”rélations,
tfansactions would generaté the following instruct%ons:
Assume‘that there 1is transaction to be added to the
£ransaction; relation. The user application program would
isbuevfirst a command to verify the account existence, and

then upon a positive reply would issue the addition request.

These commands would be:

LOCATE NODE-ID,ACCOUNTS (ACCOUNT='1-002"'

AND ACC-TYPE='SAV') -

This command wfil post the number 10 'in record addressp of
the\ PRT and set both the status and rel—staéus to reflect
tpe success of the operaéion. After the data are evaluated,
tﬁ; user progr;m would proceed with the addition request as

} 4
follows: *

ADD N\ODE-ID, TRANSACTI.ONS +WORK ~
This command will gda the tuple that is contained in the
buffer 'work' and then housekeeping routines will record the
pointers where applicabie. In a banking system a frequent
operation is to update the customer's account booklet.n It

is therefore egs;ntial_to bg able to retrieve ail non posted

transactions. Earlier in the R-DDBMS compandidescripticn it

N

O

[N

e e o s, e WP N Tt

g 130
\
’
3. PASSWORD. INFO-
LEVEL # PASSWORD
1 _TELLER.PASS
2 SUPERV. PASS) ’
15 DBA.PASS ¢

$$$. DISTRIBUTED. PASSWORD. INFO
GLOBAL SECURITY CLEARANCE

LOCAL SECURITY CLEARANCE

| GLOBAL,DBMS.PASSWORD |

1.0

-PAS

$$$. RELATION. INFO

RELATION NAME PRIMARY KEY NAME PARTITIONED FLAG

ACCOUNTS ACCOUNT YZS
CUSTOMER CUSTOMER YES
TRANSACTICNS b's A
INTEREST T™YPE NO
LOAN NUMBER YES
$$8, KEY. DESCRIPTION
KEY NAME SIZE TYPE RELATION NAME PARTITIONED FLAG
accoowr | 6 | -a‘ | accomers __¥Es '
CUSTOMER 6 A - CUSTOMER ! YES
ACC-TYPE 4 A ACCOUNTS YES
MISC 30 | A CUSTOMER YES
ACCOUXT [v A TRANSACTIONS YES
TYPE 3 A INTERESTS X0 .
 NUMBER' 6 A LOAN TES

i Pt
8 4.2 RUGT% ‘* file.

&

e e R R i

e I e T s AR

et b R Pl et

R N . RN

Y N IR TR

S

131

SSSGENERAL.INFU
DBNAME ' NEXT AVAIL. REC. REL. DEGREE BACKUP GENER. #

DEBANK

13

4§

1

$&$. COLUMN. INFO |
SIZE TYPE R-LEVEL W-LEVEL COL.NAME COL.SUB-NAME CHAIN DISL.

)

~ v, o~

g
f

-~ w1

»

%

=R B:q

6 A l° 3 1 CUSTOMER _ {NUMBER 0001
ap A 1 1 ICUSTOMER | NAME 0007
30 A 1 ‘1 JADDRESS 0037
30 A 2 2 sc INFO. 0067 ‘
888, TUPLES
DELETELGCKEDTUCOL.VALUEFYRDBKVRD’CDL..VMFVRUBKVRD(|
L ! 1-100 _b.3. siom
evaccesense MONTREAL —hnsmssm
P | 1-200 k., razx
coloecsase MONTREAL [proGRAMMER i
{ 4=1%0 |
e ..QOIQ m 12
| ’ =400 ALRCH
r............[....____mm _jreTaen 11
—— T . K
sssessunne W"A'; ,;
‘ :MEUD
. Figure 8.4.3 *REL, DBBANK. CUSTOMER’ file.

———a—

132° 1J

- L e e e o—— — ...4/ —
' 1/ | ¥
’ |
v/
. {
r N -

ool “S.GENERN..INFO
; DBNAME NEXT AVAIL. REC, REL DEEREE BACKUP GENER.#

2 || peBamx R LN T4 1
1 N . L Y
3 | $$8. COLUMN. INFO \ N
~ S1ZE TYPE R-LEVEL W-LEVEL COL. NAME COL. SLE-MME CHAIN UISL; N

s 1 a il 2 1 hecomwr [vozr N\ | Joom J
: sl ¢ A 1 2 CUSTOMER) NUMBER 2 I 0007 ’
[6 4 A 1 2 ACC-TYPE . a013 | ‘
g 7 . R 1 i ($) AN Qo7 * -
¥ * (N ,

8 | se8, TUPLES '
— DELETE LOCKED TO COL. VALUE FWRD -BKWRD COL. VALUE FWRD BKWRO

o || L . 1-0001 1-100 .
5 ! ' ssessanae SAY i 10 1000.00Q ' . \
‘ 10 |l L 1-0002 1-100 e
ssaessener ;-s_'Av.‘ E 9 5000.00
i A =0003 o4 1-200
pessssses 1 CHE i3 300,587 .
o 2 |l | 1-0004 . 1 4150
' bbbl N N\ 10 __20000.00
1 | L 1-0006 25400 {
e . CEE 13 534,55
14 || 1 j i
¢ - sessncsae
:
; sss8, EOD
i.‘ . «
T , N - .
: Figure B.4.4 ‘REL.DBBANK, ACCOUNTS® file.
E{; -

U .
Pl S

10

R

————— i

o m———

133

e ety s PSRRI

$$$, GENERAL. INFO
.DBNAME NEXT AVAIL. REC. REL. DEGREE BACKUP GENE?.#

S < &

DRDANK 13 \ 4 1
$$3. COLUMN, INFO
SIZE TYPE R-LEVEL W~LEVEL COL.NAME COL. SUB-NAME CHA;N DISL.
¢ a1 L |cusToiER | NOMBRER xzs {000l
S 1 1 lroaw | Amoowr ¥2s 10007
» R_| 1 1 |rvrerest | maTr .| o011
30 A 2 2 MISC mro, 0018
, 538. TUPLES
DB.ETELDCKEJTUC&.VALUEFVRDBKVRDCOL.VALUEFVRDBK'RD
L1 1-100 12 1000000
...‘....I; lu’s .
L 1 1-200 20000.00 -
sscncenss .B_‘)s
AL 1 1=210 000,00 |12
[X NEXENN ;1;715 - -
[i 1-100 ' i - %000, 00 1
-------- 1400 - —
—— inc. toan
. 2
L | . > e

$338. E0D -

Figure 8.4.5 Ra.snasmc LOAN’ file.’

- o s o~ | Sy ~——

- s ran . b

© an e o s -

S 0 o~

.10

u

134

ss8, GENERAL. INFO

DBNAME NEXT AVAIL. REC. REL. DEGREE BACKUP GENER. £

omBANK | 13 4 1
sss. COLUMN, INFO
/SIZE TYPE R-LEVEL .W-LEVEL COL. NAME COL. SUB~-NAME CHAIN DISL.
6 |a 1 1 ACCOUNT | NUMBER Yes 0001 |
2 1a 1 1 ITvPE or | TRANSACTION 0007
6 [*a 1 1 DATE 0009
R b 1l . |AMOUNT (%) 0015
v
$ss. TUPLES | 7 b
DELETE LOCKED TO COL. YALUE FWRD BKWRD COL. VALUE FWRO BKWRD
| = | 1-0001 12 P
sesacecee 110880 500.00
{ [1=0004 P
sseesecss 1Y N8R0 20 00
L | 1-0081 o
) .. 1200880 200,00
I B T .
. - *
L |

sss$. E00

* Figure 8.4.8 ‘REL. DBEANK. TRANSACTIONS’ file.

' 135 ,
) N 0
. -~ ‘«
%) s -“
1| $$8, GENERAL. INFO
OBNAME NEXT AVAIL. REC. REL.. DEGREE BACKUP GENER. #
2 || osmanx 10 ‘ 2 . 1
3 | &ss. COLUMN, INFO -
SIZE TYPE RLEVEL W-LEVEL COL. NAME COL. SUB-NAME CHAIN DISL.
. A \i 15 |mwremesr |TyrE 0001
5 R jlﬁ 15 INTEREST |RATE 0004
AN
- 6 | %88, TUPLES
DELETE LOCKED TO COL. VALUE FWRD BKWRD COL.VALUE FYRD BKWRD
R] SAV 1100
Q.;.......
sl | cHK 0978
Y | — T 300 T
w0 {L i
T
i
‘Figure 8.4.7 ‘RELDBBANK. INTEREST' file.

136

A

was .meptioned that the GET and SELECT commands will alwiys

~

skip"deleted tuples. This feature will allow retrieval of
f

transactions, updating the booklet and . subsequent deletion

of the transactions so that they will not be available for:

the next time. This operation will’ require the following

commands:

LOCATE NODE-ID,TRANSACTIONS (ACCOUNT='1-001")

éiﬂce the chaining feature is selected for the S\Egéount',
all transactions pertaining to this account will be in
double linked list, The LOCATE command will locate éhe head
of the list in the INDEX file and post the address" (9) in
the PRT table. In order to access all transactions the GETF
command should be used.

GETF NODE-ID,TRANSACTIONS,WORKBUFFER, (ACCOUNT)

This command should be repeated until no more transactions
are available and this condition would be posted to the PRT
table in the relation statué field. The last operation

would be to find again the head of the list and delete all

. the tuples. These commands would be: -

LOCATE NODE-Ib,TRANSACTIONS(ACCOUNT"I—OOl‘Y

DELETE NODE-ID,TRANSACTIONS,ALL

These transactions can be issued for local or distributed

‘relations. The presence of "the 'NODE-ID' keyword in all

M ! .
commands allows the user program to address any node of the

° network., A

-

e

o e e i

F N L T ——

i
ey o (

o e . e e > e R e T S

137
4

‘'The system files are wvariable récord_length so that /#

column insertion and deletion do not present any file "

structure problems. e system allows one primary key and
more than one secondari

H
key. Chaining option is not allowed
on the primary key and therefore certain tuples'can only . i P

'3
occur once in a-relation such as the account number of the

.) «
relation 'ACCOUNTS'.-
b

Another feature of the model indicated in figure 8.1.5 .

is the Query subsystem. This subsystem wduld consist of a - ,

hSBAber of programs to translate queries.into commands and-:
produce reports on request with a minimum progrémming

effort.

£

_Each of the previously issued instructions can éddress
either local or disiributed relations. Thé keyword NODE-ID ‘
determines whether the type §f -instruction is local of ’ P ‘ |
distributed. When the local node is addressed, the local

~ relation directory (LRD) is searched to locate the relation & y

¢

referenced in the instruction. If the relation 1is not

o

foﬁnd, the request 'is aborted. ™~In the case where the °
relation is found, the process is identical to a. single

computer system with a centralized database.

»* I

When a remote node is addressed, the roét file is first

N L

searched to determine whether the relation is partitioned“or

replicate, and then the partitioned relation directory (PRﬁ)

or the Eepllcate tel:}ion d{tectory (RRD) is searched. .At

o

——————. mar e

) - ke , o e . — 5 mir m w THGWE Eim 8 FATEE AT o S

138 S

+
4

this point the entLre? relation or selegted tuples may be
transferred to the node which originated 'the instruction.
This operation appears to be simple but implications may

\

result from the following:

a) If one or mgre tugleé are locked to a proﬁt?sr
transfer will be inhibited.
b

b) If the node is not’ availéble, transfer will be

inhibited,

In the first case, the delay will be minimal and the procesJ":B
, - » .

of > the requesting *hode may fall into a wait state with a

possible time out. In the second case the request ;Bould be

abandoned with a message to the prdcess,of the réquesting

node. Both cases however, are sources of a potential ‘\Jﬂ/

§

deadlock and should be treated carefully. .

The model provides the Select, Project, Join, ﬁnion,
Intersect and Difference instructions which may reduce the

telecommunications costs in a distributed process. In .the

il .

b;nking system exampie, a listing of all customer names and
their account numbers from accrpss the network may be
required by the bank héadquarteré. The customer relation
(Figure 8.4.1(a)) c¢ontains much more informatien than fs
required. In this case the réquesting process would igéhe‘

the following instruction to each node of the neiwork.

a
PROJECT (NODE-ID), (CUSTOMER) , (NEW-CUST),

: \
(CUSTOMER-NUMBER , CUSTOMER-NAME)
T W

A By ATV - B T T T STTUCY (8 % N A2 e

;
y

B e

[4

- w4

. ’ \
[} , 3

e : : : 139

This instruction’ wila Ereate the new relation NEW-CUST
consisging of two attributes, the customer number and the
customer name (Figure.8.4.8). The new relation is just an
ordinary "flat" file that may be processed ‘seguentially
siﬁce the tuple poinyers do not ekist any mote;
The relational ‘instructions can be combined so that a
’

more powerful instruction 1s created. Assume rbét the

bank's headquarters requires information for each customer

number and associated loan amount. In this system, the

required informatioan 1is contained in both 'the customer

relation and the loan relation. The operation to be

perfofmed 'in this case is first to join the two relations

and then to project the required'attributes. The requesting
érocessl would 1issue the foliowing instruction to each node

-

pf the network.

PROJECT (NODE-ID) (JOIN (NODE-ID),(LOAN),

(CUSTOMER-NUMBER = CUSTOMER-NUMBER),

(CUSTOMER) , (WORK-REL)) , (NEW~LOAN) ,

(CUSTOMER-NUMBER , LOAN-AMOUNT) ‘

o

which will require two processing steps to create the new

relation 'NEW—LOAN'.QFigure'8.4.9)

&

In the previous two examples, the intent was to create a

new relation consisting of the 1ﬁ£otmation‘ of 'all nodes.

3 éan be accomplished in two waysz‘First. by requogting

/

2

J

IS

.
i e i ————L AN AT

——e . M laasr

R)

s

I

A S
» -
-t - . ..:Ow».nvaL Jemoleno C.O
(=] - ”)
-
oo~ ®
AT d
HLIWS r°r
- . , , JWYN
e . MIANCLSND
T '

002-1
0or1-1

AIGHWNN
d43K01LSNI

'NOTLVI3Y Hm:uwamzy\

"N

4,
S,
. 4
< .
Y N '
.
A}
.
.
.
. a - N
. &
.
. e
L3 .uAs~
g
. LE
L] =
.
.
S
oo
o0
*
!
*
A4
)
.
A
)

ey =
v~

141

‘utop eys jo uorjzoefouy gy g OLJWuL
"[-d3LS 40 NOILVI3¥ 40 NIOf 3HL 40 NOILJ3rodd *2-dals \
(B0 "000S 012-1
' 00.°00002 0o2-L \

e 00 "000S% oot~7 - . ,

00 "0000T 0OI-T1 e

. : . o ,

. C(® 43EnnN -
INNOWY-NVOT . ¥3WOLSND . SR '
NVOT1-M3N g N L
S .mszb<4mm.z<o4_nz<,mmzohm:u 40 NIOf *T-d31S .
/OLNOWOL MOT8 °r OI2-1. NYD) ¥vd SZE1° 00°000S OI2-1 -
C IVIYLINOW A3¥d d°M 002-T NvOT1 3WOH S421° 00°00002 OO2-1 .
TIVIYLINCOW HLIWS °F 00T-T NVO1- "JVA QLT ” 00 “G00s ,.Ocﬂln :
IYININOW HLIWS C°T 00T-1 NVD1 3WOH SLET" 00 °0000T ooT-1 .
: INVN IGWON 0NI 31vd - INNOWY ¥3EWAN "
SS3N0AY - YIWOLSND Y3WOLSNI "JSIN - 1SIYIINI ~ - NVO1 ¥3IWNOLSND | -
. - 13U-HNOM | - ¢
- SR N

. ~ R N \ ° MA_
n i . < 4 - | .m_

. ey

e e o e v m o e e =

P

1y

¢ / . \

each node directly the returned informatlég-is appended to
the information previously recelved, second by broadcastinq
che request to all nodes. ‘ﬁThe, new relation, propagating
through them in a daisy=-chain fas@ioc, receives ééch node's
information appended to-.it. In a similar' way each
instruction can be ' isgsued to one or ﬁoke nodes.
Inst?uctionsrsuch as, éelect and Join [are very complex
operations, ‘and a single computer system or a centralized
datebase'system may monopolize the resources and thus reduce

the processing time significantly. ' In contrast, in a

distributed system such as the proposed model, each node |is

"autonomous operating in a portion of the overall information

and therefore the processing time will be much smaller since

nodes will process the request simultaneously.” The Select

4
and Join operators appear to have the most potential for

*

hardware impiementation since they require a large amount of

. cross checking between tuple and attributes of different

relations. . .
1

‘Recent developments in hardware technology show

particular promise for providing- direct support for ? the '

relational features. The very largg scale integration

" (VLSI) of logic on chips and the deyelcbpent of electronic

rotating store based on CCD and magnetic bubble téchnologf
may be used to implement sophisticated and specialized logic
on 1inexpensive chips. This suggests that logic that can be

easily replicated and distributed over data may be available

EN
- ‘ o=
5
bz FHEC RSN
PR E
P> L !:' =%,

———rtem moaian e

w— -4 e ame D m b e e e g e T iyt 87 ¢ e Haimns” oo oA i a3

143
R
in the near future. Functions such as seérching‘and sorting

on which ‘he operators SELECT and JOIN ‘are based can be

moved from PU to - storage, thereby reducing the data

é transfer costs \and decreasing processing time because of

_1néreased parallelism (Smith793.

The model provides "the 'CHAIN' obtion. wﬁiép is a
Qconvéntipnal fecord Tinking method. This’feature tends to .

- create a " heavy overhead, - and therefore- the model‘will'
operate at a Jlower speed. Téchnological ad;ances in

L associ;tive storage hardware would, however, dake an
associative memory a ptacticable'optioh,_replacing the chain
feature and making opéfation faster and more efficient.
Another alternative to the chain featurei could be the

implementation of . the systolic (VLSI) arrays (Kung79) that

would process the*é%elational database operations in a

N s

pipeline fashion, !

e~ S I -
L]

— o e

L "

“t mpam—\ . et S g Ayt ettt e ey o g e

144

[a)

/ ' 9. CONCLUSIQNS

The moéel presented here illustrates the organization of
a database suitable for distribution over a set of
non-specialized computers. .= Its application has beén
illustrated by the-example of a small subset of a banking
system.\ This exaﬁple is typical of the type of applications
which is appropriate to a distributgd database architecture.
In this ¢ case,"both fepIication and é;rtitiohing are
1mport;nt. Replication is required bécaus; reliability |is

of the upmost 1mpoftandé, with every transaction- ideally

reqﬁiring Backup the moment it is made. Partitioning -is .

desirable because the greater part of transactions are
?lways \local; w;tht only a small Qwopoftion of remote
transactions 'being reqﬁired. The organization presented
here provides the logical capability- of meeting these

-

performance goals.

~ : .
Apart/ from the pragmatic considerations illustrated by

the application, there is an economic advantage to this type .

4 : N .
of database. Microcomputers, while dropping rapidly in

cost, are increasing in power to the level of the mainframes

of the 1late sixties. One of the most promising possible

-architectures for power ful, low cost computers is an array"

of 1identical, mass produced picrpcomputers. " While the

broblem of Qoftware for sucq systems has yet to be solved,”

the model presented ﬁere affords an appropriﬁte software for

R .

.":

R

i

a e
.

e

v e u o TRt v e ¥ o

. usage, reducing communications cost. °. -) .

- . . Gl . - .
. kl . * 1 -
. ! ‘

L e eI S Ao et ey e -

St e g

145

database appliéations. . Given a system without
communications bottlenecké, the power of the database

A) . .)
computer could be proportional to the number of component’ ' .

computers.

*

The fundamental advantages of the architecture ofpthe

model aé: parallelism and distribution of data. Parallelism
is inherent in the architecture, since all nodes have the.
same software. All nodes may then process "a distributed
call ;imultaneousiy, giving faster execution in the case of

partitioned files. Distribution of data allows localization

o —
- N

of files physically ciose to their points of most fteqqent

v

While the ©problems of" de;dlocg | and . procaess
%synchronization have not been addressed speéifically.in this
work, the research results discussed in chapter 8 have Qeen"
demonéttated sufficient to cope with these problems. T@e

>

model can thefeforegbe considered as a practical séluqion

for distributed database archigectute. .

L]

o
¢
v
.
©w
.
.
°
' A]
-

S :
7 ."{
e R e L TP ORI o A F T e e it ("l
. -
. - !
’
* '
+ »
. 146
- °©
]
o
»
°
o L
'd 4 “
, .
] N N
<
.
" \
i
3
-
N

© 10, APPENDICES

v

L4
3

- Appenéix 1 DDL and DML examples -

: - Appendix 2 existing refational databases,
: ~.

o
ALY
1
.
/ i '
/
.
< »
o
.
.
4
. .
o .
1]
' 5,
N y)
. .
. .
. .
. . . 3
s
. .
.
.
I3
.

<
. '
v
oty v .
N \ .
syt
¢ = \\‘
\
. -

-

ey

- UV

I TETRAG WE S e

o e - - - [O

147,

APPENDIX 1
/
The DML is analogous to the procedure division in a COBOL
program.: T

The main functions of¢bo§h bDL and DML are the following:

DDL:

\

1. ﬁescribe name'andhtype of data item.
‘2. Describe name and compos?tion of-each data entry.

3. Indicate primary énd secondary keys.

4.. Represent record relationships.

5. Describe.schemas and subschemas.’

" 6. Specffy‘security restrictions.

DML: . . , - : T

— 1,
o ’} ° , .~ L% y\&
l. Describe techniques for retrieval, replacement,

=<

insertions, and deletiong of data entries.
2. Describe use of keys and data entry relati&nships.
3. Free the user from datdbase structure maintenance.

4. Be independent of programming languages.

4

The following example 1illustrates these coéﬁeéts.

)

Consider a system that maintains the information ‘oﬁu'éach

Master's thesis in Canada, with;;ccess to th@y information
through a number of different data.items.

bl

Assume that the information to be retained is as follows:

1. Master thesisutléiea,)

¢

148

2, Short abstract. : '
3. Classiffcatidn c.ode (Management ,Comp. Scienc"e tlztc)T
4., Topic code (operating' systems DBMS etc) .)
5. .University code. |

6. Co.mplet:ion date.

7. Author. ,

8.

Degree inFormation.

a

for this example the Hewlett Packard
system 1is wused,Fig

-IMAGE/1000 da tap\ba‘se
. N,
IMAGE code.

ure Al ;llustrgtes the schema . defined in

TN

\
\;\} '0

3 ~—=l7
= .

T
2=

=

o

pb

LR
R e

PGS

T W e e

vy -

. 149

.- FIGURE Al
<<***))
<< DY
<¢ THIS IS THE SCHEMA FOR THE DATABASE >
<< APPLICATION SYSTEM CALLED 'THSIS' >>

((***)>

$CONTROL LIST, ERRORS=0,R00T, SET,TABLE :
BEGIN DATA BASE THSIS: CR012: 00010

<< >
<< FOLLOWING, THE PASSWORDS FOR VARIOUS>>
<< ACCESS LEVELS ARE DEFINED >
<< >y (
LEVELS:
1 PASS1 << .CLERK- LOWER LEVEL>>
5 PASS2 << ASST. PROF, >
10 PASS3 << CHAIRMAN OF FACUL.>
12 .PASS4 << THE DEAN >»
15. PASS5 << THE RECTOR~HIGHEST)>>
<< . >>
<< >
<< FOLLOWING, THE DATA ITEMS ARE >
<<{ DESCRIBED IN DETAIL, SUCH AS >
<< ITEM, ATTR.SZ (RLVL,WLVL) >
<< »
<< WHERE : TITEM= ITEM NAME >
<< ATTR= I: INTEGER >
<< ‘ . R: REAL .
<< U : —-CHARACTER »
<< SZ = SIZE IN WORDS »
<< ~ RLVL= READ LEVEL »
<< WLVL= WRITE-LEVEL >>
<< . >
<< - . 5 ‘ >
ITEMS ,
TITLE U 60(1,12) <<0-CH.TITLE >>
. ABSTR U256(1,12) <<256—CH.ABSTR.>
CLASS U 8(1,12) <<CLASSIF.CODE >
TOPIC U 4(1,10) <LTHESIS TOPIC >
UNIV U 6(1,10) <<UNIVER. CODE >
DATE U 6(1,12) <<COPLET. DATE >»
AUTH U 30(1,12) <<AUTHOR'S NAME>>
DEGR U 60(10,15) <<DEGREE INFO. >
CLAS1 U 4(1,12) <<MASTER-CLASS >
TOPC1 U 4(1,10) <<MASTER-TOPIC >>
UNIV1 U 6{ 1,10) <<MASTER-UNIV. >>
- DATEl U 6(1,12) <<MASTER-DATE >
<< ~ 3
<. ' ' .

<<'ALL ITEMS OF THE DATABASE HAVE BEEN >>
<< DESCRIBED. FOLLOWING, THE ITEMS WILL>>
<< ALLOCATED TO THE APPROPRIATE DATA >

<< SETS. | >¥
<< DATA SETS ARE DIVIDED INTO MASTER >
<< AND DETAIL DATA SETS. . | 33

<< MASTER DATA SETS: HOLD .THE LOCATION 5>

ey Sy it 2 Frens § AW

b A Py et s v -

RPN S e

<<
<<
<<
<<
<<

B 4 <

<<
<<

"<

OF THE FIRST ENTRY OF A GROUP OF >
RELATED ' ENTRIES IN A DETAIL DATA SET>>

E.G CLASS='COMP'

DETAIL DATA SETS: HOLD JUST DATA >> .

>>
>>

ENTRIES AS ENTERED IN CHRONOLOGICAL >>

SEQUENCE.

SETS: -

NAME: CLMST,A,CRO12
ENTRY: CLAS1(1)

CAPACITY: 1000

NAME: TOMST,A,CR012

ENTRY: TOPCl

CAPACITY: 200
NAME: UVMST,A,CRO12

ENTRY: UNIV1

'CAPACITY: 200
NAME: DTMST,A,CRO12

"ENTRY: DATEl

CAPACITY: 1000
NAME: THINF,D,CRO12

ENTRY: TITLE,
ABSTR,

>>
>>
>>

<<CLASS MASTER >>
<CINDICATES 1 >>
<<RELATIONSHIP >>
<<WITH THE CLASS>,
<KITEM IN THE >>

<<DETAIL DATA >>

<<SET 'THINF' >>

<< >

<<TOPIC MASTER >>

<< ‘ >
<<CUNIVER.MASTER>>
<< >>

<<DATE MASTER >>

<< >>
<<DETAIL THESIS>>
<<INFO DATA SET>>

CLASS (CLMST) ,
TOPIC (TOMST).,
UNIV (UVMST),
DATE (DTMST), ’

AUTH,
DEGR,

CAPACITY: 1000

END.

\secutity levels. -Data sets have

Usirlinguiriasz ‘Database software sdmetimes prov1d¢~ a

2

9

" This schema is represented in the IMAGE DDﬁ languya

' their names, capacity and disk unit are concerned.

*

ge.

been defined -as far

all

the data items are defined along with their -attributes and

ISR P S

it SO 5

v g

e R s A = o

him to retrieve and/or, modify information stored in the

example of Figure Al a typical qhery is illustrated in the

B e ke e T P USSR S S)

N 151 -
software package that interfaces with the user and. enables

database application system with the minimum proqtémming
effort. These. packages are known as "Query" lanquages.
IMAGE/1000. supplies a such query language package called
QUBﬁY/lOOD allowing the user to
1. Retrieve data entries.)
2. Modify data entries and/or data items.
3. Delete data entries. | |
4, Produce re;oris.ﬂ
Queries usually use Englishlike commands so that the average

non computer science user can access the system. For the

following:
Assume that we want to retrieve all the entries related to

the TOPIC="DBMS". The folloﬁing command should be issued.

FIND TOPIC IS “DBMS"™ END: .

Query then will access the data set and will respond:

a

00005 ENTRIES QUALIFIED

This indicates that there are only 5 master thesis records

under the "DBMS" topic. ' - \]
P

For this example, the DML will have performed the following

tasks:

- At 'log on time check- the passwords ‘and perform
‘ .

housekeeping tasks \

< Search the database application system and locate ‘the

master entry havihg value "DBMS" ‘ o

P ik -

e e <o e 4 = W TR R TN

e er e i o o

oty

. . 3
A}

My Ta arresecn ey TR A S r wew —ervmamen s i v .

- . " 3 "Ir
N\, '
13 . =
i s 3 ' s
\

\152 |

- Get the address of the first detail, retrieVe all the
remaining (if any) and pass themtb Query:

Application programs can access the database applicatiod

system via callable subroutines. IMAGE/1000 allows

i
L]

languages such as FORTRAN and BASIC to access itij database
system, In this éase also the DML commands ar; fssued to
the prograﬁ funct;ons wﬁicﬁ resolve the necessafy references
and’ interface .with the calling program. Application
pPrograms do not normally access the datasets éirectly. Some

typical instructions are .

DBOPN -Database open

DBINT -Database initialize
\DBCLS -Clgse database .
DBINF -Database information
DBGET -Retrieve a data entry .
DBUPD -Update a data gntry

DQDEL -Delete a data entry

DBP -Add a data entry.

o . \

J

—— i aap Te -

B it Podulaed

R AR

3

153-

) ..Amb...nv._v seeDqD3IDP [DUO TR (B mtnﬁlﬁxw -2 .X«—ur..&(

~

"NV OLNOYOL IAILIV/ “1dNI

"AINN - 9461 dvd

£S WEI 3IAILIV/ "dNI OLEWBI SLBT LG
HvVIn °AINN “13VNI/ “9s3d : - G4BT IWVHINDS
HYLN. “AINN “1JYNI/ “9S30 —~ 'SLBT SV
VINNOAIIVD "AINN 3AILIV/ “1dWI 11d0d SL61 OIdNO/SIYONI
*ONI 3MYHSWAL 3AILIV/ “idHI ™. o1dod- S8t WNNOYH

*84N SIONITII "AINN 3AILIV/ “IdWI ‘01d0d SLBT muzmmu(m

"NY3J OLNON¥OL °“AINN, ° "LIVYNI/ "9s3d , 11ddd S4BT . V9

"NY3J OINOMOL “AINN) °1J¥YNI/ “1dWI OLE ‘09EWHI SLBT SMN0L/V13Z
"BWYD WEI 8 WSS LIW-’ 3AILIV/ " IdWI OLEWEI SLB} : SINg
IYLIHSOH 1S3H04 3JAILIV/ " IdWI 11ddd .61 SSIY

, £S WEI “L3VYNI/ "1dWI OLEWEBI ¥.Bt _ 13NDES
rs WEI "13YNI/ "953d - ELE3 O-VYNHWYS'
~ “1d30 33 LIKN °1JYNI/ '9530 . 2.8t SYWYQd
IS “8WY3 WEI 3AILIV/ “IdWI OLENWAI 2.8t HYX/NY
HJYY3S3Y. W3 3AILIV/ "IdWNI OLE ‘0SENAI 2S4BT (SIID SHOH
"M WEI 3AIL3Y/ "I1dWI OLE ‘OSEWEI 1461 (AL 1/S51
~ *Ld30 33. LIN 3AILIV/ "dWI OO0SH 1461 - SHOM
JVW 123rodd LIW “LIVNI/ —IidWI ~ . OO00SH 0486t _ RYOYH
 GHOLNIWIINT SNLV1S ANIHIVN . ¥V3IA N INVYN

s’

.w.x

O

K---»» ———

.
«
k2 v
e v ot TS NI Y

154

"(BLMT)) ®®eDqDIDP [PUOFZD [mcd&(«xm .nJvN.XAmbOmm<

" st LIVNI> 3AILJIVYNI 0 °“ASN NI ¥0 INIWDOT3AI0 YIONN ATINIRPND
"SI LVHL ‘3AILIY ¥3IHLI3 SY ONV “("9S30> U3AN9IS30 ATIND d0 CTIdHD -
O3IN3WIIINI SY ¥3IHLII O31VNJIS30 SI SNLYLS 3HL "W3LSAS V dO 1N3NCJNO3
Y ONIINIWITJWI H0d STIVSUADMd INISTUCIY O~YHHYS ‘ONY - “IVHINOS ‘SYWYQ

ONV 1IN3HdO3A3A H3ONN W3ALSAS 031iNgI¥isSIa Vv SI 1~-00S "SN0SS3I0Ud -

g3zIIVIZ3ds ¥04 SNIIS30 ¥V 360 ONY °S4Y3 “HO33 “S3YY “NSSYI “dvd
"03ININTTINI NII8 SYH WILSAS Y HIIHA NO tmhzmzou 3HL SI 3NIHJVHW 3HL

,z~mzouwH3 "AINN 3AILIY/ "9S30 11d0d B8LBT . J,Huwmnn.

: VOINO14 "AINA 3AILIV/ “IdHWI - .~ ast © WSSYJ

© "SSYW 39AIN¥EWVI V33 3AILIV/ "9S3d = Lii61 B 1-0as
"SYSNYM "AINN 3ALLIY/ “IdWI- YIVON3IINI LLBT . s880

— £S WEI 3AI13Y/ “IdWI OLEWEI LLBT ¥ NALSAS

. ,"AINN 31Y1S OIHD 3AILJV/°9530 — a8t . 280

d ONVIONT “10I 3AILIV/ "1dN - T aet - S4Yd
ONYION3 “A09SYT19 3AILJY/ "9S30 — 9.8l “HI3a

AN NMOLMMOA WEI 3AILIV/ “IdNT DZEWBI 9481 IdHVX3 A AM3NO

£S WEI -3ALLIV/ “IdNI DLEWEI - 9461 p m:o>mazmm

SYOLNINI TINI SNLyls INIHIVA ¥V3A : 3NVN

oy e Y

<
.
Caprwre

s g

Ry -

, .
oo rrn oot i e =

¢
f
.

Alsbe76

‘Baner78.1

L

“Baner78.2

Baner?79 ,'

Berns78 .

] ' L4

‘gociety May 1979 pp. . 42-4

_J 155 L '

~

11. ANNOTATED BIBLIOGRAPHY

g :
P.A. . Alsberg, G.G. Belford, J.D. Day, E.

Grapa 'Multl-éopy resiliency techniques"”

Tutorial: Distributed database management. .

A3

IEEE- Computer society.1978 pp 128-176.

M.M. Astrahan et al. "System R: a relational

L}

database management .sysiem" IEEE computer’

v
L]
.

J. Banerjee, D.K. Bsiao "A methodology for

suppotting’éxistfng CODASYL databases with new

database machines®™ ACM 1978 pp. 925-936. o

»

Je Banerjee, D.K. Hsiao, R.I. 'Baum "Concepts
and capabilities of ‘ai‘daéibase computer™ ACM
transactions on database: systems vol 3, No.4

December 1978 pp. , 347-384. .

Je Banerjee “"Performance analysis And . design

methodology for iné}omcnéiﬂg database systems on

new database . machines®” the Ohio lgtate

‘University. Ph. D 1979.

{ s -

. a i
~ P.Af _.Bernsten, J.B. ‘«»Rot:l-mics,g JR.N. Goodman,

G.G. Papadimitriou. "The concurrency ‘control

mechanism of SDD-1 A systen for di;gr@gyted'
" databases _(the fully reduntant ‘case)® IEEE

e

PP ——

- —aa . s s oY

156
‘ . ' h
transactions’ on software engineering vol SE-4

" No.3, May 1978 pp 113-126.

Baner80 J. Banerjee, D.K.. Hsiao, F.K. Ng “"Database
transformation, * Query translation and

performance analysis of a new database computer

S
AN

in supporting 7iararchica1 database management"”
R\\ IEEE transactions on software engiheerin&. Vol

~

§§>6,\No.; January 1980 -pp. 91-109.
-2

éetta79 P.B. .Berfa, E. Oliver "The role of associative
array processors in the database - machine

‘architecture® IEEE computer society March 1979

. PP. 53-61.
Booth77 . C.M. Booth "Distributed data bases”™ Infotech
report vol:2 1977 pp 25-33. f
Champ76 ' D.D. Champerlin "Reletional data-base

management syétems' ACM éomputing\sdrveys Vol.8

#1 March 1976 pp.. 43-66. .

o

Champ79.1 G.A. Champine "Current trends in database
sysicms' IEEE computer)soclety May 1979. pp.
: ' 27-41. - ’

a . - ~
»

"Champ79.2 'R.B. Chamberlain “The promise and problems of

relational . database’ design® computervorld

September 1979 pp. 17-21. {°

©

v it L g £ T T

Y

\\ v
‘

SO A D e sy e

A,

i

157

. .)
Champ80 .~ G.A. Champine. *Back-end technology t;engs‘

IEEE coﬁputer society.ngruary‘l980 pé.h 50-=58.

e

Chang80 S-K. Chang, W.H. Cheng "A methodology for

structured database decdmposition' -IEEE
14

transactions on software engineering vol SE-6

B S
.o
(S

R no.2 March 1980 pp. 205-218.

Chlam80 . I. Chlamtac, N.R. Frahta, P.C. Patton.
“ A 'éerformance is§ues’ in .Back:;;g storade '
N - networks" - IEEE computer societilfebruary 1980
pp. 18-31. b

e

o,

P
DeWit79.1 .D.J. De ~Witt "DIRECT- A multiprocessor

organization for éupporting relational database

fertn

management systems®" IEEE transactions: on r 4

computers vol . C-28, No-6,June 1979.. Pp.

[

. - x\;;

o ' DeWit79.2 D.J. De Witt "Query.execution in DIRECT" ACM

395-406.

j . 1979 pp 13-22,

- Dewit80 . P.B. Hawthorn,} D;J, DeWitt “"Performance
’ analysis of. alierpative database machine

drchitectures® computer science technical report

$383 March.1980.

8

I8

;Enq?e72 h.w. ‘) R) ' S Eqéles‘

Q'Tutorial.ig database orgaﬁfzdfiqns' Autonatlc‘,

ptogramming. Pergamon press 1972,

v L

IS N ' o B - ' .

N T s e sl

Ry - o ST PO B I A A b otorn + it

. © 158
% Fancot8l T. Fancott “Complementary Interface' Functions
;, for Communication Between Distributed

Processes", Proceedings, CIPS Conference 81,

Waterloo,IOntario, June 8-10., In press.

]

TN R e b, o

. Freem80 "H.A. Freeman. "Back-end stoarge networks" IEEE

computer soci;ty February 1980 pp. - 7-8.

Fry76 ‘J.P. Fry, E.H. Sibbley "Evolution of data-base -

} management systems” ACM computing surveys vol.8

Py

1 March 1976 pp. 7-42.

.

Gelen79 . E. Gelenbe, K. °~ Sevcik “Analysis of update‘

synchronization . for multiple copy data bDases"

IEEE transactions on computers . Vol C-28

i e A M A T indh

no.10. 1979 pp. 737-747.

o Ghosh77 S.P. Ghosh “Database organization for data

P Q

; . management®” IBM research laboratory. : Acadenic

’

i . press 1977,

L Haerd78 . T, Haerder “"Implementing a éeneralized access

)

path structure for a relational database system"

‘ACM transactions on 'datébaSp systems vol:3,

no:3, Septedber i97q Pp. 285-298.

Henve79 A.R. Henver, S.B. Yao "Query ptocéssing in

-

histributed database systems” IEEE transactions

Pal

- B Y . K
; : "« on software engineering vol SE~5 no.3 'May. 1979

C

e

. - ——

pr——

T 4 M At PR pmscisn s

.
B o

Hill78

Holla79
I '

Horro?7

|

¢

Hp1000

Hp3000

Hsiao76 .

, 159

pp. 177-187. - o \

E. Hill Jr. "A comparative study of vefx large

databases® Springer-Verlag 1979.

f : -
L.A. -Hollaar. "Text retrieval computers" IEEE

. computer society March'1979‘pp.40—50. -

/
4

Horrowitz and Sahni "Fundamendals of data

structures® computer sciencgmpreés inc. 1977.

"IMAGE/1000" Hewlett-Packard.

L

"IMAGE/3000" Hewlett-Packard.

R.I. Baum, D.K. Hsiao "Database computers- a

step towards data utilities” IEEE transactions

‘on computers vol C-25 no 12 December 1976. Pp.
- ,

“ﬁ;l&$’/izs4-1zs9.

hsiao79.1

°

.Hs1a0679.2

" Hgi1ao079.3

D.K. Hsiao. "Data base machines are coming"”

IEﬁE.combuter soclety March 1979 pp. 7-9. -

J. Banerjee, D.K. Hsiao, K. Kannan "DBC- A
database computer for very large databases™ IEEE

transactions on computers vol C-28. no.6 June

1979 pp.414-429,

D.K. ‘ Hsiao, D. Kerr, G.J. Nee "Database
access control in the presence of context

dependent protection requirements” IEEE

ot bt 4 W

X
1
o

160
- B) , %' 3 "

ey -
o
*

transactions on software engineering vol SE-5

no.4 July 1979 pp. 349-358.

Kerr79 D.S. Kerr "Data base 'machines with large

content addressable blocks and ' structural

Information processors" IEEE computer society

Y —

" March.1979 pp. 64-79.

Kim79 W. Kim "Reletional database systems"™ . ACM

coﬁputing surveys vol 11 no.3 September 1979 pp.
, : 185-211, 7

Rnuthv.3 D.E. Knuth “The art of computer 'prograﬁminq' : k

vol.3 'sorting and searching’. Addison-Wesley :

1973, , | ﬂ
Kréen78 ﬁ. Kroenke “Database- A ggofeésional's primer™
'SRA 1978,
Kungi9 ‘ H.T, Kung P.L. Lehman "Systolic (VLSI) arrq&s ’
.4 . for relational datébasé 6perations'

CARNEGIE-MELLON University October 1979, ¢

.

Lenah80 J.J. Lenahan, F.K. Fung "Performance of
cooperative loosely coupled microétocessér
,architectures in an interactive database task"
° /

!

IEEE transacéioﬁs on computers, vol C-29, . no.2

Febr . -180, : : -
° gary 1980 pp." 161 . ’ | —

\ .

Fevin?G K.D. Levin 'Organising distributed databases in

[

A TG

R

P g e <

Marti76

Menas79

Peebl78

Ramam77

Robin79

,’ﬁosen78~

1

“\

-

Rosgs78

————— sy st £+

- e m— e e o

o
4

161

computer networks” Whartdn_séhool of Finance and

Coﬁmerce.-Philadelphia— PHD 1974.

J. Martin "Principles of data-base management”

Prentice-hall 1976.

D.D. Menasce, R.R. Muntz "Locking and

deadlocking detection in distributed data bases"
IEEE trahsactions on software engineering . vol

SE-5 no.3 May 1979 pp. 195-202.

R. Peebles, E. Manning ‘System architecture
for distributed data management” IEEE computer

society January 1978 pé. 40-46.

_ Ramamoorthy Krishnarao "Distributed database

'8gsign: design considerations®™ Infotech report

vol:2 1977 pp 157-158.
S.L. Robinson "Relational databases: what,

when, where, why" computerworld September 1979

pPP. 13-16. ' \

D.J. Rosenkrantz, . R.E. Syerns, P.M. Lewis
"System level concurrency control for
distributed database systems" ACM transactions

on database systems vol.3, no.3 Séptembefl 1978

\
P

pp. 168-199, ' '~ . ‘ a

R.G. Ross *Databagse . systems Design,

gt

o — . —————— = o

Rothn78

[

Schla78

- Schusg79

Sible76

Smith79

Stone79

—ai e eimar v

T T R T B

162

implementation, and management"” amacom 1978.

L4

.. J.B. Rothnie, N. .Goodman "A survey of research

AN

and development in distributed database

management"® Tutorial: Distributed database

management IEEE computer society 1978. Pp
30-44. | |

G. Schlageter "Process synchronization in
database systems" ACM transactions on database

systems vol.3 no.3 September 1978 pp. 248-271.

S.A. Schuster, H.B. .Nguyen, E.A. Ozkarahan
K.C smith "RAP.2- An assoclative processor for
databases and applications" IEEE transactions on

computers vol C-28 no.6 June 1979 pp. 446-458.

E.H, Siblgy‘f *The development of database
technology” ACM computing surveys vol.8, no.l

»

March 1976 pp. 1-5.

D.C.P. Smith, J.M. Smith "Relational database

machines™ IEEE computer society March 1979 pp.
28-38, | : g

>

M. 'Stonebaker “Concurrency control and

.consistency of multiple copies of data in

distributed INGRES" 'I$EE transactions on
»

software engineering vol SE-25 no.4 July, 1979

pp.188-194; '

ey i At *

o AT

P o

Su79

"Taylo76

Thoma78

"Thorn80

L

Tsich76 .

‘Ullma80

Verho78

' Watso80

S.Y.W. Su 'Cell&lar-l&gic devices, concbpts’and

applications" IEEE computer society March 1979

. Pp- 11-25. {

R.W. Taylor, R.L. Frank "CODASYL database
management‘systeﬁf ACM computing surveys vol.8

no.l March 1976 pp. 67-103,

R.H. Thomas "A solution to concurrency control !

problenm for'mbltiple copy data bases" Tutorial:

. Distributed database management IEEE .computer

society 1978 pp 88-94.

J.E..-Thorntoﬁ.. 'Baék-end network approaches”

IEEE computer society February 1980 pp. 10-17.

D.C. Tsichritizis, F.H. Lochovsky
"Hlerarchical data-base . management™: ACM

computing surveys vol.8 no.l March 1976 pp.
104-123, |

J.D. Ullman “Principles of database systems"”
stanford University- Computer science press

1980,

J.M." Verhofstad ;Recovery techniques for

database systems" ACM coﬁputing surveys vol.l0

"no.2 June 1978 pp. 167-195. L e

R.W. Watson.. "Network architecture. . Design

