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Abstract
A Distribated Debugger Based on Deterministic Replay

Joanna Sienkiewicz

The growing popuiarity of distributed computing creates a demand for tools to sup-
port development of distributed software. A debugger is a basic software development
tool nezded by all programmers. Development of a distributed program requires a
“good” debugging tool since distributed programs are more difficult to develop and
debug than sequential programs. The difficulty in writing distributed software sys-
tems results from non-determinism inherent in program behaviour, lack of precise
global states, complex patterns of interaction, large state space, probe effect, and
communication limitations. Additional complexity arises due to race conditions and
violation of implicit synchronization requirements.

In this thesis we describe DDB (Distributed DeBugger) a debugger for distributed
and multithreaded programs running under Mach operating systems based on the well
known technique of instant replay. The DDB debugger addresses the issue of non-
determinism in distributed programs by dividing the debugging activities into two
phases - record and replay. In the record phase the distributed program is executed
with the debugging mechanism present which collects and stores all the needed infor-
mation for “replay”. This information is used in two ways. First, it is used Lo create a
high level view of the program execution in the form of time-process diagram, then, in
the replay phase, this information is used to ensure that the execution takes the same
path as the previous one. In the replay phase the programmer can obtain low level
details of program execution by using source code level debugging techniques offered
by the popular GDB debugger that is attached to each process of the distributed
program.

The present prototype implementation of DDB can be enhanced in the future with
tools providing functionalities like checkpoint and rollback, global breakpoint or var-

ious graphical interpretations of the execution, or sophisticated stepping semantics.
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Chapter 1
Introduction

Distributed computing has a potential to satisfy the growing demand for computa-
tional power. By dividing a computational task into several parts and executing each
part on a different computer simultaneously, the time needed to complete the overall
task can be significantly reduced. To take full advantage of the potential of a dis-
tributed system, good quality software is required. Debugging toocls are essential to
develop quality software. The techniques used in distributed debugging are in most
cases based on sequential debugging but there have been also new methodologies and
approaches proposed.

This thesis describes a distributed debugger that works under Mach operating
system, The Distributed deBugger (DDB) is a conceptual continuation of the previous

work done in the area of distributed debugging at the Computer Science Department

at Concordia University.

1.1 Distributed Computing

A distributed program can be described as a set of sequential programs (processes)
executing simultaneously on different computers and “cooperating” with each other
to achieve the common computational goal. Distributed computation consists of
instructions local to each process as well as instructions involving communication
between processes.

Distributed programs are more difficult to develop, test, and debug than sequen-

tial programs. The most relevant problems that the progiammer must face wien



attempting to create distributed soltware programs are as follows:

e Non-determinism inherent in progra n behavior

Multiple threads of control

Lack of precise global states

Complex patterns of interactions

Large state space

¢ Communication limitations

Probe effect

Non-determinism

Unlike sequential programs, due to several random factors, concurrent execution can
take different paths ench time the program is executed. The interaction between the
processes taking part in the computation, and race conditions present in the system
cause this non-determinism. Non-determinism makes debugging difficult because the
programmer can never be sure that the bug occuring in one execution will ever re-
peat itself, giving another opportunity for its examination. This problem is specially

relevant for bugs that occur infrequently.

Multiple threads of control

The level of difficulty is greatly increased when there are more than one thread of
control participating in the computation. Multithreaded programs are more difficult
to understand and write. It is also more difficult to follow their execution path. The
interaction between threads operating on shared resources creates potential for new
types of errors that would be absent in sequential programs. These errors include

race conditions and synchronization problems.

Lack of precise global states
It is one of the fundamental problems of distributed debugging. ‘ilobal clock synchro-
nization is also a classical research problem in distributed systems, but obtaining the

accurately synchronized global clocks alone does not guarantee the accurate global

2



state of the system. Because of different communication delays, various speeds, and
and multiple machine states, collecting of the global information can proceed at differ-
ent rates. Also it is difficult to effect “control changes” on the different processors at
the same instant. For these reasons, only approximate global state can be obtained,

like one consisting of local states of all machines plus states of the communication

channels within certain time.

Complex patterns of interaction

Distributed programming introduces new types of bugs that have source in inter-
action among multiple asynchronous processes. The difficult errors in a concurrent
programs often result from improper synchronization among the processes or from
race conditions. The interaction between processes can be data dependent and order
(sequence of messages) dependent. Bugs of this type are often hard to reproduce,
becaure they depend not only on input data, but also on the relative timing of inter-

actions among processes.

Large state space

In most cases the data needed for analysis of execution of a concurrent program cre-
ates a large state space. It often includes the machine state on each processor and a
record of interactions among different processors, creating the problem of manipulat-

ing large quantities of state data information to be viewed while debugging.

Communication limitations
Unpredictable communication delays and limited communication bandwidth may
make some of the debugging techniques (central manipulation of information) im-

practical.

Probe effect
Probe effect is defined as the undesired side-effects that the debugging activity can

have on program behavior. This occurs when the debugging actions affect timing,
and therefore the ordering, of events. The probe effect can hide otherwise present
errors, or introduce new errors that do not occur when the program runs without a
debugger. This problem is related to non-determinism inherent in distributed pro-

grams. Elimination of the probe effect is not possible, but care should be taken to

3



make it as minimal as possible.

From the above discussion it is evident that concurrent programs require as good
or better debugging tools than scquential programs. The techniques developed for
sequential debugging are not adequate for the new requirements of the concurrent

program debugging, and new solutions must be introduced.

1.2 Distributed Debugging

Although distributed debugging is an young discipline, its development has been
quite dynamic due to the high demand for distributed debugging tools. Over the
years several different methodologies and approaches to distributed debugging have
been developed, often by extending the concepts from use sequential debugging to
distributed debugging.

The additional complexity of distributed programs have created a need for inethod-
ologies that would allow for simplifying the debugging process. There are three types

of such methodologies:
e Top-down debugging
e Bottom-up debugging

e Two-phase debugging

Top-down approach

Top-down debugging is often applied for fully developed systems where all processes
are already implemented. When faced with debugging of a large distributed program,
the programmer will first consider the behavior of a chosen cluster of processes and
iry to identify the erroneous modules. After the bad module is identified, the search

starts for the faulty processes, and so on until the bug is located.

Bottom-up approach
In the bottom-up debugging each process is first debugged in isolation. After the
correctness of single processes is ensured, the processes are systematically merged

and the emphasis is put on examining the interaction between the processes. This

4



procedure is repeated until all the clusters are formed and debugged. This method-
ology is very useful for a new systems being developed since it allows for step by step

development and testing of all components.

Two-phase debugging

Two-phase debugging divides the debugging activities into monitoring and debug-
ging. In the first phase the software continues to execute until an error is observed.
During the execution some information about the program behavior is collected and
stored. In the second phase the erroneous process is tested in the environment that
is identical to that in which the error originally occured. The contexts of the original
execution are reconstructed with use of data collected during the monitoring phase.
The process can be replayed many times until the error is found. This approach is
very good since it introduces probe effect only in the monitoring phase. The probe
cffect in the second phase is not relevant since the execution is controlled so it has to

follow the original path.

The methodologies described above are not independent of each other and one of-
ten appears as a part of another. For example, bottom-up debugging can be used
during the second phase of two-phase debugging.

In the attempt to make the distributed debugging more effective, new approaches
have been proposed. The following describes some of the more promising approaches

to distributed debugging that appeared in the technical literature.
e Database approach
e Behavioral approach

e Artificial-intelligence approach

Database approach

In the database approach the debugging process is viewed as performing queries on
a database containing program information (system specification,source code) and
execution information. The program information is loaded into the database when
the debugging starts. During the program execution the debugging information is
forwarded to the debugging system, which updates the database. The bug is found

5



by creating queries to the database. The answers to the queries are supposed to
provide clues to the bug. One of the advantages to this approach is the availability
of distributed database systems and the possibility of use of the database system'’s
query interface as the debugger’s user interface. Database systems also allow for rich

set of queries on the values and relationships among the data.

Behavioral approach

The behavioral approach views debugging as a process of performing comparisons of
the execution behavior to the expected behavior. The expected behavior is defined by
some formal specification. The debugger monitors the execution, extracts the actual
execution events and compares them to the expected behavior. The programmer is
notified if there is a discrepancy between the expected and the actual behavior. The
current research concentrates on the development of debugging tools that would help
the programmer in understanding the program behavior. This can be achieved by
creating different views of the execution and viewing the execution at different levels

of abstraction.

Artificial-intelligence approach

The artificial-intelligence approach uses techniques developed for Al to find errors
in distributed programs. One method is to use an expert system. The expertise of
an experienced programmer is captured in the knowledge base in the form of rules.
This knowledge would be available to all programmers when the expert system acts
as an intelligent assistant for reasoning and developing fault hypothesis. Although
the methodology is very promising there are no debuggers so far that use the Al

techniques directly to debug distributed programs.

1.3 History of distributed debugging research at

Concordia University

The distributed debugging research at Concordia University has been conducted for
several years through doctoral and masters projects. During these years, different
problems of distributed debugging have heen addressed and some prototype debugger

implementations have been attempted:



o Ph.D Thesis 1988: Krishnarao Venkatesh proposed a formalism for clas-
sifying different types of global states of a distributed system and developing

new message efficient algorithms for detecting consistent global states.

e Master Thesis 1988: Chris Passier provided experimental evaluations of
two rollback and recovery (R&R) algorithms. He had implemented a R&R

kernel which can serve as a basis for building the R&R algorithms.

e Master Thesis 1988: Ioakim Hamamtzogulu contributed to the imple-
mentation of the R&R kernel with Chris Passier. His work describes the prob-
lems related to distributed debugging and proposes solutions that are in the

framework of distributed computations based on partial ordering.

o Master Thesis 1989: Minh Dang Bao proposed a methodology and tools
for distributed debugging in a two stage process. The first stage is a top-down
debugging where a given synchronization specification is compared with the
actual synchronization behavior until the error is detected. The second stage
is a bottom-up debugging where examination of internal states is performed
to locate a bug. He also implemented a prototype debugger to exercise his

methodology.

The four master projects listed below have contributed to creation of CDB (Concordia
Distributed deBugger). The implementation of the CDB debugger, called xcdb runs
under the X-Window system and can be used for debugging of distributed programs
written for a network of SUN 3/50 running the Mach operating system. The debugger
provides two facilities : breakpoint detection and halting, and checkpoint creation and
rollback.

e Master Thesis 1993: Victor Krawczuk proposed and implemented a record
and replay module which addressed the problem of non-determinism in dis-

tributed programs. Only partial implementation was achieved.

o Master Thesis 1992: Honna Segel based her research in the area of moni-
toring. Developed a new logic for expressing safety properties using distributed
predicates. She also proposed algorithms for detecting the violation of these

safety properties.



e Master Thesis 1992: Christy Yep proposed and implemented module for
specification and detection of distributed breakpoints. He proposed a specifi-
cation language which enables the creation of hierarchical breakpoints ranging

from fine to coarse granularity.

e Master Thesis 1993: Alain Sarraf created a checkpoint and rollback mech-
anism. When an error is detected, the system will rollback the execution to a
state or a checkpoint that is considered error free. From this point, interactive

debugging can be used to locate the bug.

1.4 What is DDB

This thesis work contributes to the distributed debugging research at Concordia Uni-
versity by creating a new distributed debugger based on deterministic replay. Unlike
CBD this is a simple debugger without the rollback component.

The software requirements of this debugger have been extensively researched. The
research conducted took the form of a survey. By examination of the functional prop-
erties of concurrent debuggers that have been proposed, designed or implemented, we
have been able to develop a functional model of a debugger that can satisfy the very
basic needs of debugging. It is simple enough to make the complete prototype im-
plementation within the scope of a master’s thesis work. Its design, implementation
and testing took about a year.

DDB (Distributed deBugger) is a debugging tool for distributed and multithreaded
programs running under Mach operating system. The debugger is to assist the pro-
grammer in locating e:rors in concurrent programs by providing relevant, information
about execution of the program. DDB addresses the issue of non-determinism in-
herent in distributed systems by taking the two-phase debugging approach. The

activities in the two phases are as follows :

e Monitoring Phase: The distributed program is executed and the relevant
information for the execution control is collected in history files. The informa-
tion is extracted and stored in non-intrusive manner. The high level view of
the execution path in the form of time-process diagram assists programmer in

identifying erroneous execution, if any.



¢ Replay Phase: The program is re-executed in such a way that the faulty
execution path is repeated, so the bug can manifest itself. A source level de-
bugger, operating within a single machine (modified GDB) can be used to find

the precise location of the bug.

The DDB debugger combines sequential and concurrent debugging techniques by
providing the deterministic replay, giving a high level view of the program (presented
through time-process diagrams), and at the same time allowing for source level de-

hugging. The graphical user interface makes the debugger easy to use.

1.5 Thesis outline

The remaining part of this thesis describes different aspects related to the design and
implementation of the DDB debugger.

Chapter two presents a survey of distributed and parallel debuggers that were
designed and implemented during the last five years. The first part gives a classi-
fication of the debuggers according to the functionalities provided. This is followed
by detailed descriptions of sample debuggers presented in the literature belonging to
each group in the classification. The last part gives the functional properties of about
thirty debuggers in the form of tables.

The next chapter describes concepts related to deterministic replay in distributed
environments. The sources of non-determinism in distributed systems in general,
and in Mach operating system in particular are identified. Then the application
of deterministic replay to distributed debugging is examined; different debugging
techniques are evaluated according to their applicability in distributed environments,
and the possible improvemnents in them with introduction of the deterministic replay
facility are discussed. This is followed by the description of functional needs of a
“minimal” concurrent debugger. The last section presents several debuggers that
have been based on deterministic replay.

Chapter four describes the method used in DDB for capturing the non-deterministic
behavior of distributed programs. The presentation of the general approach to de-
veloping the debugger opens the chapter. This is followed by description of recorded
information in the record phase and the ways of enforcing required order of events in

replay phase.



Chapter five gives a detailed description of the design and implementation of the
DDB debugger. The programming environment of DDB is described, followed by
the description of the layered structure of the system. Next, comes the presentaion
of system architecture, and description of the system modules. The implementation
concepts are described at the end.

The following chapter presents a sample debugging session with DDB. The User
Interface is presented in detail by following cach step of the debugging session of a
program with injected bugs. This walk-through illustrates how software bugs can be
identified with the use of the DDB debugger. The appendix contains source code of
the distributed program used for this demonstration.

Chapter seven presents summary of the work described in the thesis.
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Chapter 2

Survey of Distributed and Parallel
Debuggers

This chapter presents a survey of parallel and distributed debuggers that were de-
scribed in literature in the recent years, from 1985 to 1994.

Th= first section gives a discussion of the needs of the concurrent programmers in
the arca of debugging tools, and the classes of available debuggers. The next three
sections describe respectively: integration of sequential and concurrent debugging
techniques, high-level event based debuggers, and extensions of traditional debug-
gers. In each case the overall characteristic of the group is followed by detailed
descriptions of some interesting debuggers belonging to the group. The next chapter
gives summary tables, containing concisely presented characteristics of about thirty
interesting concurrent debuggers.

The selection of the debuggers to be presented in this survey was influenced by
several factors. First of thern was the time of the publication - I was trying to collect
descriptions of debuggers that appeared in the literature in the last five years in
order to have good view of the recent research in this field. Another criterion was
the availability of the material, although I was able to collect most of the material
that seemed to be promising, some of the papers were not available. The criterion in
choosing between available descriptions from the last five years was the completeness
of the debugger and/or debugging facilities provided by the debugger.

From the above, it should be clear that this survey does not have the ambition to

be complete in the number of debuggers included nor the details of the description of
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the included debuggers. It is rather an attempt to identify some tendencies present
in the distributed debugging area.

For obvious reasons, 1 could not experiment with many of the debuggers described,
so the information included in this survey is mostly based on the publications that |
was able to obtain. Although I was always trying to clarify all doubtful points with
the authors of these debuggers, [ was often not able to contact them. It means that
data included in this survey is as accurate as my understanding of the descriptions of
the debuggers in the papers. So, if any inaccuracy is spotted by anyone, please, do
not hesitate to inform me.

I would also like to take this opportunity to express my deep gratitude for ev-
erybody who has helped me in searching for the literature, and kindly answered my

numerous questions.

2.1 Requirements of Concurrent Debugging

There is no doubt that every programmer will want to use a debugger at some point
during software development. The question is: what debugger will s/he need. In the
recent years there have been much discussion in the concurrent computing commu-
nity about the problem of defining the required capabilitics of the debugging tools.
The features of the “dream debugger” defined by Charlie McDowell [32] during the
Supercomputing Debugging Workshop 91 include the following:

e Fast conditional breakpoints and fast memory watch points.
® A memory map in a user friendly format.

e 2D and 3D plots of multidimensional data

e Dynamic display of data (i.e. continuously updated).

e A memory reference trace of shared variables.

e A trace of message passing activity.

e Multiprocess event detection.

e Source level debugging of optimized/parallelized code.
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e Algorithm level debugging (e.g. better abstraction to higher levels).
e Deterministic replay and reverse execution.

Other features not mentioned above are in the category required for software
systems in general, not only specific to concurrent debugging. These include, in the
first place, the intuitive and familiar user interface that would make the debugger
casy to use for the first casual user and give easy access to complex features [31]. A
good interface can significantly increase the usability of the debugger, when even very
sophisticated features hidden from the user behind unfriendly user interface will not
be very helpful. _

Another important requirement is the efficiency and speed of the debugger. Even
when the probe effect is ignored, a very slow debugger can discourage some users,
specially when long programs or large number processes are involved.

The speed and efficiency are related to another important issue - the scalab™ ity of
the debugging tools. Can the debugger eflectively be used with programs consisting of
hundreds of parallel processes ? In some cases the debugger design is geared towards
certain types of architectures and cannot be effectively used with others.

The above requirements for concurrent debuggers are answered by different de-
buggers in various degrees. Some of the debuggers are trying to accommodate all
possible needs of the user, others concentrate on solving few specific problems. There
are systems that have been built with one specific architecture in mind, and oth-
ers that place high among their goals portability to other platforms. This survey is
presenting different debuggers from the functional point of view. We will show what
services the debuggers provide and how they can be used inlocating bugs, rather than
considering different debuggers’ architectures or debugging methods used. According

to this criterion, the available debuggers have been divided into following categories :

e Integrated approach - the sequential and concurrent debugging techniques

are combined in one debugging tool.

e High-level event based approach - the debugger is trying to create abstract

models of program behavior.

¢ Extensions of sequential debuggers - a sequential debugger is attached to

each process of a concurrent program to provide source level debugging.
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The types of debuggers excluded from the survey are the ones based on static analysis

and the performance monitors.

2.2 Integration of Sequential and Concurrent De-
bugging Tools

The debuggers in this category are designed to accommodate most needs of concur-
rent debugging. They combine the top-down and bottom-up approaches, and address
the problem of non-determinisminherent in concurrent problems. This is achieved by
using the traditional debugging techniques and concurrent debugging specific tech-
niques combined in one tool.

The traditional techniques include cyclic debugging, when the erroneous program
is repeatedly executed and in each execution more information is gathered that leads
to discovery to the error (simple output statements can be sometimes added to the
program code to achieveit). Another technique is breakpoint insertion. When break-
points are added to the program at interesting points in the code and the execution
is suspended, the programmer is allowed to examine the system state. Stepping can
also be used to observe the program behavior in greater detail.

The technique more specific to concurrent debugging is top-down interactive de-
bugging, when the programmer considers different views of the program. Starting
with the high-level view of the program’s behavior, the programmer can refine that
viewpoint based on the information collected during successive replayed execntions,
until the desired level of detail is reached. This technique is specially useful for par-
allel programs, because they tend to produce large volumes of data that are difficult
to deal with when presented in an unstructured manner.

The applicability of the ahove techniques to concurrent debugging depends on
solving the problemn of non-determinism. This is achieved by providing the replay
facility, that makes repeated executions of the prograrn in deterministic manner pos-
sible. One of the commonly used techniques is the Instant. Replay, proposed by
Thomas J. LeBlanc and John M. Mellor-Crummey in [30], where the relative order
of accesses to shared data is recorded and used later to reproduce the same behavior.
Another method, used in IGOR [14], is based on supporting reversible execution of a

single process by periodically saving execution states using virtual memory support.
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The approach of combining the traditional and parallel debugging techniques is
promising because it allows for using methods that the programmers learned when
debugging sequential program, and in the same time address the problems resulting
from complexity of concurrent programs. Unfortunately there are not many debuggers
that take this approach, and often they have been proposed rather than implemented.
The remainder of this section presents three debuggers that represent the integrated

approach described above.

2.2.1 Debugger for Amoeba

This section will describe the debugger for Amoeba, the capability based distributed
operating system developed at the Centre for Mathematics and Computer Science
(CWI) and the Free University (VU) in Amsterdam. The programs in Amoeba are
collections of clusters, which communicate with their environment through messages.
A cluster is an address space with a collection of tasks. Tasks can communicate by
sending messages, through shared memory, semaphores or condition variables (only
tasks in the same cluster). Another way of communication is by use of signals. A
cluster receiving a signal from a task is interrupted and the signal is passed to the

exception handling process.

Functionality

The debugger for Amoeba is an event-based debugger. It sees the user program by
the stream of events the program generates. The events correspond to such program
activities as sending and receiving of messages, creating tasks, reaching a breakpoint,
or generating an exception. Each event is represented by a 4-tuple including event
type, identity of the task generating the event, the capability of the cluster containing
the task, and the arguments of the event. The use of filters and recognizers helps
with processing of the data associated with events. The filters are applied to reduce
the volume of data by eliminating the events that are of no interest to the user, so
only the relevant events are passed to the subsequent stages of the debugger. The
recognizers are used to search for specified sequences of events. Filters and recngnizers
use patterns (combinations of 4-tuples) to select events. A match between a pattern
and an event is found when each field in the event is matched by the corresponding

field in the pattern.
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The event based approach is augmented with use of other facilities, often found
in sequential debuggers. These include the ability to examine or alter the contents of
memory, obtain a stack trace of procedure calls, set breakpoints, and to refer to the
program on the source-level basis.

The debugger also provides execution replay facility based on the Instant Re-
play method. To recreate the progra n's execution, only the order of relevant events
occurring in each cluster is recorded, without the data associated with the events.
The recording of events is done locally to each cluster to capture the order of the
cluster internal events. The interaction with the external environment is done only
through messages, so the relevant events that need to be recorded and later controlled
concerning this interaction are the message events.

The recreating of the exact execution is made difficult by the existence of the
cluster signaling mechanism. Because the signals are asynchronous evens that can
occur at any time, they cannot be reproduced without extensive kernel support.

The checkpoints of all clusters are taken during the recorded execution. This
allows the user to roll the execution of the program back to any place, what might

be useful in case of long programs.

Evaluation

The above described debugger for Amoeba integrates source level debugging (access
to memory, breakpoints) with methods specific for distributed debuggers (execution
replay, checkpoints, creation of event-based view of the program execution). This rich
set of functional capabilities is presented to the user by a window-based user interface
that allows for examination and control of individual clusters and tasks, as well as
dealing with the target program as a whole.

The latest description of the debugger presents the prototype version, where many

problems, like handling of signals or timeouts, are still to be addressed.

2.2.2 Panorama

The Panorama debugger was developed at the University of California, San Diego.
The main goal of this software system is to provide an integrated debugging envi-
ronment for parallel programs, that could be easily ported to a variety of MIMD

message-passing multicomputer architectures and also extended to implement new
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debugging techniques. The debugger runs on top of existing multicomputer debug-
gers (like IPD or ndb) that are usually provided by the hardware vendors. Panorama
uses the data provided by the base debuggers to create various graphiczl views of the
debugged program. The user is also able to access the base debugger directly through

a textual window.

Program views in Panorama

The execution of the parallel program is presented by Panorama using different graph-
ical views derived from the information provided by the base debuggers. The views

can be chosen from the default set or created by the user. The following views are

provided by Panorama:
e message queues of each processor
e time line of events on the processors
e map of data

The above views can be modified by the programmer.

The new views are created with the use of Tcl(Tool Command Language) and
Tk. Tcl is a software library developed for customization of programming tools like
debuggers and editors. Tk is a package of X11 user interface objects that can be
controlled with the use of Tcl script. The programmer can create a new view of the
execution by writing Tcl/Tk script and placing its name in a file that contains names

of all active features.

Portability

One of the main design principles of the Panorama debugger is the ease of porting the
system to new parallel platforms. The use of the base debuggers for handling the low
level interactions with the program makes portability achievable. The information
about the commands used in each of the base debuggers is stored in the “platform
file ” that Panorama uses to translate the generic commands into the base debuggers
commands. This file is also used to interpret the responses from the debuggers. In
some cases there is no straightforward correspondence between the generic and the

debugger specific commands. To handle this problem, platform specific functions are
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called to perform the required action. These special functions are written as scripts
in Tcl and stored in a special script file.

This simple arrangement makes it possible to adapt the debugger to a new parallel
computer by writing the platform file and the script file, and placing them in the
Panorama directory. There is no need to 1ecompile the debugger since the information

from the files is read at run-time.

Status

The future enhancements to the Panorama debugger include creating new views to
augment the default set, exploring ways of integrating Panorama with other program-
ning tools, and improving communication with the base debuggers. At present, the
debugger has versions working with IPD, and ndb base debuggers. There are plans

of porting the debugger to M-5 and Intel Paragon.

Evaluation

The approach taken by Panorama is very appealing since it allows for integration of
many debugging tools as well as using the same set of tools on different platforms.
This eliminates the need to learn new techniques for each machine.

The possibility of extending the debugger is also very attractive, provided that it
would be not teoo difficult to write the code needed for definition of the new program

view. Some tools to assist the users in defining new views would be very appreciated.

2.2.3 PPUTT

The PPUTT toolkit was developed by the Parallel Program Understanding Tools and
Techniques group at the University of Rochester. It is intended to address the prob-
lems related to debugging and analysis of parallel programs running on large scale,
shared memory multiprocessors, such as the BBN Butterfly Parallel processor. The
toolkit contains an interactive debugger, a graphical execution browser, performance

analysis packages, and a programmable interface.
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Methodology

The methodology applied by the PPUTT debugger extends the techniques of the
sequential debugging and performance analysis to parallel programs analysis, to create
a toollkit, that addresses the problems of traditional debugging, as well as the issues
introduced by parallel program execution. Below we describe the mair: characteristics

of this methodology along with the tools that implement it:

1. Repeatable analysis gives possibility of re-executing the same program in
order to gain more information. This is achieved by dividing the program
analysis into two phases. In the first phase the debugger collects data from
the program exccution that is used in the off-line analysis of the program in
the second phase. The history of the execution is represented by the records
of each process accesses to shared objects augmented with time stamps. The
execution history browser, called Maviola gathers process-local histories and

combines them into a single, global execution history.

2. Top - down analysis allows for both, viewing the program as whole and
referring to single processes within the program or statements within the pro-
cess. The top level execution view is represented by directed acyclic graphs
(DAG) of process interactions. Nodes in the graph correspond to monitored
events that took place during execution. Events within the process are linked
by arcs denoting a temporal relation based on a local time scale. The interpro-
cess communication is represented by arcs between events belonging to different
processes. The graphs are created by Maviola based on the previously recorded

execution history.

3. Interactive and fine-grain analysis allows the user to shift the focus of in-
terest to display only the relevant information. The fine-grain analysis provides
access to very detailed information about the debugged program. The prograin
replay allows for examination of the execution at an arbitrary level of detail.
Breakpoints can be used to stop the execution during replay, so the programmer

can monitor processes, events or statements.

4. Extensibility of the set of the possible analysis allows for creating new,

application specific analysis when such need arises. The programmable tools
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included in the toolkit can be used to examine and manipulate the ‘execution
histories. For instance, the user can write Lisp code to traverse the exccu-
tion graph built by Maviola to gather detailed, application specific performance

statistics.

Evaluation

The integrated approach of this toolkit is very promising because it allows for address-
ing all problems related to debugging of a parallel program. The cyclic debugging
techniques can be applied since the executions are repeatable and all the necessary
information can be gathered during successive deterministic reexecutions. The high
level views of the debugged program can be effectively used to examine the patterns of
interprocess communications. The toolkit provides the user with all standard debug-
ging and performance analysis techniques and, in addition, by means of programmable

interface allows for extending the toolkit for application-specific analyses.

2.3 High-Level Event Based Debuggers

A large group of concurrent debuggers take the event based approach, which is appro-
priate since the complex behavior of parallel and distributed programs often requires
more structured approach than the source level debugging can offer. The event based
debuggers view program execution as a stream of events, and try to analyze the
behavior of the program based on the information conveyed by these events.

The definition of an event differs from one system to another. In many cases
the events represent interprocess communication operations. In shared memory sys-
tems the events will most probably represent accesses to shared variables, and in the
message passing systems the message send and receive operations. But, in addition
to the interprocess communication events, any relevant occurrence can be defined
as some systems allow the user to specify the events that are of interest. In EBBA
[1] the primitive events “represent the lowest observable level of system behavior or
characterize some particular aspect of a system'’s activity ”. Examples of these can
be process operations (creation, suspension, resume) or file operations (open, create).
The primitive events in EBBA form a basis for view points, which can be used to

create high level models of the system behavior.
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In addition to deciding on the type of events that are to be processed by the
debugging system, there also must be some notation for representing the events or
event patterns that the user is interested in. One of the languages created for this
purpose is the Event Description Language (EDL), that provides a method of defining
multiple levels of abstract events from primitive events generated by the program [2].

There are different methods of processing events that are identified during program
execution. Some of the systems display the information as it is acquired, and some
store it for future use. The Ariadne debugger, described below, represents a group
of post mortem debuggers that gather information in one run, and then use different
tools to process it. There are also different ways of using the gathered information
that include browsing with some tools, creating visual images of the execution based
on the generated events, and verifying assertions provided by the user.

The visualizing debuggers use different techniques to create good representation
of the debugged program. The graphical images are sometimes accompanied by au-
ral presentation. Some researchers suggest that pattern recognition using sound is
superior to visual techniques, because the human ear is capable of processing tremen-
dous amounts of data [17]. The important issues in creating useful visualization
include providing multiple views, hierarchical presentation, application-specific visu-
alization, and user-defined presentation [37]. The remainder of this section presents
two event-based debuggers that take different approaches to presenting the debug-
ging information to the programmer. The Ariadne debugger uses the information
gathered during program execution to verify models of program behavior created by
the programmer. The VISIT debugger provides multiple views of program execution,
allowing this way for identification of the errors in the program. It is difficult to say
which approach is better, maybe the two should be combined in one tool to give the

best effect.

2.3.1 Ariadne

Ariadne is a post mortem debugger for massively parallel, MIMD message passing
systems. The debugger takes the event-based behavioral abstraction approach; it

supports the user in investigating global interprocess communication patterns.
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Debugging method

The event based-behavioral abstraction allows the user to specify models of intended
behaviour that are automatically compared to the actual program behaviour. The
comparing of the models is performed on the traces produced by parallel programs.
The sequences of events within the traces are identified by process ids. Currently, the
debugger supports three types of primitive events: Reads, Writes, and Phase Markers.
The Reads and Writes events denote interprocess communication, the Phase Markers
denote the end of logical phases of computation. The traces are stored in erecution
history graph. The nodes in this graph represent events and the edges represent
communication events. The debugger allows the users to view the execution history
graph, but does not rely on visualization. It supports interactive, textual explorations
of the graph.

A very important aspect of this type of system is the language used to define
behavioral abstractions as patterns of events in logical time. The language used by

Ariadne is simple. It employs a three level description of communication patterns:

o Chains represent the local views of communication. They are described by
regular expressions. To obtain a match in an execution history graph, all events

in the chain must occur exactly in the order specified in the pattern.

e p-Chains represent the concurrent execution of a chain by a set of processes.
They are described by binding a chain to a process set. When a p-chain is
matched against the behaviour, a copy of its chain is matched on each element

of its process set.

e pt-Chains represent the logical, temporal composition of a set of p-chains. The
matching process has two steps: first events matching p-chins are located in the

graph and then the specified logical relations between those events are verified.

The simplicity of the language used to define the behavioral abstractions sometimes
prevents the user from describing the intended behaviour precisely. To compensate
for this inconvenience, the set of functions is provided that returns the characteristics

of the obtained match.
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Evaluation

The approach taken by Ariadne is very interesting because of the simplicity of the
modeling language. Complex languages used in other debuggers of this type require
very sophisticated matching algorithms on the debugger developers side, and consid-
erable learning effort on the users side.

The limitations of this debugger include coarse granularity of the possible models
description which results from the simplicity of the modeling language. The debugger
also lacks any graphical utilities. Graphics could be used in creating the behavioral

models as well as for illustration of the program behaviour.

2.3.2 Visit

VISIT is a parallel debugging environment developed at Siemens in Germany. It is
used to debug programs written in parallel extensions of common Lisp and C++.

The debugger takes a high level, event based approach to debugging.

Features

VISIT provides several different views of the debugged program. The views are based
on events generated by the debugged program. The events are at source language
level. They are grouped in classes (process, mailbox, critical section). In cases when
the predefined events do not provide sufficient information, the user can define the
events according to the actual debugging needs.

There are several visualizers available :

¢ Process tree visualization. The main visualization available in VISIT gives
the overall view of the parallel program. It represents the process tree in two
forms - the miniaturized overview of the entire tree, and an enlarged part of the
tree. Each process in the tree is represented by a node with the process name
and several icons denoting the process state. Clicking on an icon displays state
information or triggers certain action. There can be several windows open for

the same program, each displaying different part of the tree.

¢ Sequence chart visualization. This visualization provides a time line of each

process and its events displayed as icons.
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¢ Critical section and mailbox visualization. The view of the queue of

waiting messages and/or processes is provided with the complete access history.

e Processor load visualization. This visualization is used to tune the load

balancing algorithms.

The process tree visualizer also provides control over the executed program. For
example, each process in the program can be stopped by clicking at the state icon.
Then a new debugger window is open for the stopped process. The window can
be closed by clicking again at the state icon. Other debugging tools, like tracers or
steppers can be invoked in the some way.

The replay facility allows for recreating the behaviour of the program by the visu-
alizers as many times as required without execution of the program. The visualizers
use the trace information collected during the program run. This type of replay can be

used for granularity analysis and tuning, since the full program state is not available.

Evaluation

The approach taken by VISIT is very interesting, since it allows someone to see both
the global view of the parallel program and the individual process state. The view
of the entire parallel program is given by the visualizers, the state of the particular
process within the program can be examined with use of the debugging tools. The
replay facility, although limited to fine grain events, is a very valuable feature in a
concurrent debugger.

There are plans for porting the debugger to distributed systems.

2.4 Extensions of Traditional Debuggers

This section presents a category of debuggers that can be described as extensions of
traditional debuggers. Most commercially available concurrent debuggers belong to
that category. In the majority of cases, the debuggers are constructed by attaching
a sequential debugger, like gdb or dbx to each process of the parallel program.

The factor deciding about the usability of the debuggers of this type is the handling
on the problems specific to concurrent debugging. These problems include controlling

of output coming from multiple processes at the same time, dirccting the sequential
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debugging commands to the desired set of processes, or managing large volumes of
data present in many parallel programs.

Some problems remain unaddressed by this type of debugging tools. One of them
is the probe effect that can make the traditional debugging ineffective against time
dependent errors. Another important issue here is the low level that the debuggers
operate on. For large programs consisting of many concurrently executing processes,
it can be very difficult to understand what is happening at the interprocess level,
when the bebavior is presented at the instruction level.

The advantage of this class of debuggers is their simplicity and ease of use. The
programmers often know the commands of the popular sequential debuggers so there is
no need to learn new debugging commands when switching to a parallel environment.
Another big advantage is that these debuggers exist in full implementation and are
ready to be used as opposed to more sophisticated tools that have been proposed but
not or only partially implemented.

The debuggers described below present different approaches to handling the prob-
lems resulting from concurrency present in the debugged programs. Two of them
are commercial products, debuggers that are delivered to the user together with the
computer system, the third one is a university project. All of them have been fully

implemented and used by many programmers.

24.1 IPD

The IPD (Interactive Parallel Debugger] was developed by Intel corporation to pro-
vide debugging facilities for parallel programs running on iPSC parallel computers.

The debugger is capable of debugging applications written in C language and Fortran.

Techniques

The IPD debugger is based on the traditional debugging techniques but it also has
the necessary extensions for parallel debugging since the multiple processes present in
a parallel program as well as the message passing between them create problems that
cannot be solved by traditional methods. These extensions include handling of com-
munication between the debugger and multiple processes, dealing with large volumes
of debugging information, and providing access to the interprocess communication

data.
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One of these problems is the potential hitting of the breakpoint. by many processes
at the some time - if every process tried to print the breakpoint message on the
debugger screen, the user would not have chance to see what happened because the
screen would scroll too fast. The use of an asynchronous interface can solve the
problem of notification, so the user can only be given the event information when
requested. The form of this notification is also adapted to the new requirements.

Another problem is controlling the application I/0, so the programs input and
output do not interfere with the debugger I/0. The solution chosen by the designers
of the IPD is to take control over the arplication’s terminal 1/0, allowing terminal
output before every user prompt, and both input and output when the user brings
the requested process to the foreground.

Groups of processes in the parallel application can be addressed by listing or-
dered pairs (node list:pid.list) that specify the debugging context. The debugging
commands are applied only to processes included in the debugging context.

The problem of displaying voluminous information generated by some dcbugging
commands is solved through data reduction. The debugger scans data to be displayed
for each process in the debugging context to identify the groups of processes with the
same data. This way only unique sets of data have to be displayed.

The communication between the multiple processes in the iPSC application de-
pends on message passing. It is often important for the user debugging the program
to know the state of the message passing network. The IPD provides commands al-
lowing the user to display the contents of the system queues, and to get information
about the messages that have arrived on the node but have not yet been received and

receive requests that have been passed but have not been satisfied.

Future plans

Future plans for enhancing the debugger include optimization of the performance of
the message tracing and exception tracing, including support for system programmes,

and providing a graphical user interface.

Evaluation

The approach of extending the sequential techniques to parallel environment has the

advantage of eliminating the need to learn new tools by the users. However, it is
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evident that these techniques can hardly be sufficient in debugging of concurrent
programs. One major issue that is not addressed by IPD is the non-determinism
inherent in concurrent programs. The IPD is a live-detection debugger; the errors
present in one execution are not guaranteed to reappear in the next run, because the
execution can take different path.

Another problem is lack on any graphical representation of the program execution.
It can be very difficult for a programmer to interpret data coming from many processes
displayed in textual form. Some interpretation tools could be very helpful.

The IPD debugger provides very restricted services but it could be used as a base

debugger for more sophisticated debuggers like Panorama.

2.4.2 LPdbx

The LPdbx debugger was developed at Brown University. It provides debugging
capabilities for programs written in C language, running on loosely coupled parallel

processors like Armstrong, on which the debugger was implemented.

Features

The debugger offers most of the features present in the sequential debuggers plus
message tracing capabilities.

The LPdbx has graphical user interface based on X Window widgets. The de-
bugger window can display one process at a time, but the monitored process can be
changed at any time by clicking the mouse on one of the pushbuttons. The window
contains the source code of the selected process, the variables and structures, the
command buttons and the select buttons. When the debugger is in the trace mode,
the highlighted bar moves through the source code lines, just like in any sequential
debugger.

The LPdbx allows for accessing variables at any location within the distributed
program. It is also possible to examine the contents of a linkers list by tracing through
the chain. Structures of complex data types are presented in graphical form.

The debugger allows for setting breakpoints in the application before the start of

the execution as well as after the execution has started.
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Evaluation

The big advantage of the LPdbx debugger is its very carefully designed user interface.
It is very simple, and easy to understand and learn, what is not very common in
applications of this type.

The techniques used in debugging are also very easy to comprehend by users
familiar with sequential debuggers. The major problem with this debugger is lack
of any global view of the distributed progiam. Since the debugger window is only
capable of displaying the status of one process, the user is not able to observe the
progress of the computation as a whole.

The second problem is lack of any facility addressing the problem of non-determinism
in distributed programs. The execution of the debugged program cannot always be
repeated in the same way, this can create problems when the bugs are appearing only

in some executions.

2.4.3 UDB

UBD is a parallel debugger developed at Kendall Square Research, Waltham, Mas-
sachusetts. The debugger runs on the KSR1, which is a massively parallel supercom-
puter with shared memory. The debugger takes the bottom up approach to debugging,

extending the traditional debugging techniques and adding new features.

Debugging facilities

T!:e command set of UDB contains commands from the GDB debugger, the trace
and assertion commands found in dbx, and some new features designed specially for

parallel debugging. The new features include:

e full support for debugging Fortran programs
e command lists for signals
e arguments for user defined commands

new control commands “if” and “for”

¢ command and session recording
e command file debugging

28



¢ vi mode for line editing

The UDB debugger provides extensive windowing facility. There are several types of
windows. The source code window displays the source code of one selected thread or,
likein the case of the shared source window, the breakpoints and the program counters
for all the threads. The instruction windows can be created to display the disassem-
bled program instructions and the current program counter. The shared instruction
windows work the same as the shared source windows with minor limitations. There
is a separate window containing program I/0. The user can also create prompt win-
dows associated with different threads and create multiple command streams, each
identified by thread number.

There are two types of breakpoints in UDB. The regular breakpoint suspends the
entire program when a breakpoint in some thread is reached. The user can then switch
between the threads to examine their state or change the variables. The continue
command will resume all the cuspended threads. This arrangement ensures that the
program will execute normaily when it is restarted after the breakpoint. The other
type of breakpoint available in UDB is the synchronous breakpoint. When a thread
hits a synchronous breakpoint, it stops, but if other barrier threads are running,
the execution of the program continues. Only when all affected threads reach the

breakpoint, the task is suspended and the control is returned to the programmer.

Evaluation

The UDB debugger has a command set that is based on popular sequential debuggers
GDB and dbx. This fact will be considered as a big asset by everyone who is familiar
with sequential debugging and steps into the world of concurrent computing, because
the debugger will be easy to learn.

Another good point of this debugger is the windowing support that often makes
manipulation of multiple threads simpler.

The deficiencies of UDB are common to the debuggers extending traditional tech-
niques to parallel debugging: lack of some global view of the parallel program, and
the fact that the debugger does not address the problem of non-determinism inherent

in parallel computing.
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2.5 Comparison tables

The following four tables collect information about the surveyed parallel and dis-
tributed debuggers. In order to include as much inforination as possible, lie entries
in the tables are abbreviated to one or two words. The detai'ed explanation of the
notation precedes each table. The following entries are uzuform across all of the
tables:

e n/s - Information was not available

e any - Debugger does not require specific value

o dbf - Debugger for

2.5.1 General Information

This section presents general information about the debuggers. The data has been
presenied in two tables. The tables are different in type of information they provide

and the order of presentation. The tables are followed by analysis.

General Information Table - Part I

Table 1 presented in this section gives general chracteristics of the debugging systems.
The first column presents the reference numbers to the bibliography of sources of in-
formation for this survay that apperars at the end. The following columns give the
operating system the debugger runs under, the hardware and the languages it sup-
ports. The entries are ordered alphabetically, according to the name of the debugger.

The following notation is used in the table:
¢ Ref - Reference number
e Operating System the debugger runs under
o Hardware configuration the debugger works on

o Languages that the debugger supports

30



Debugger Ref Operaling System Hardware Languages
dbf Agora 15 Agora LAN n/s
dbf Amoeba 11 Amoeba n/s any
Ariadne 10 n/s MIMD message passing | any
bdb 53], [54] | CSOS Cray 3 C, Fortran
Bugnet 19 Unix Network(Workstations) | C
CDB 40 CHORUS 486DX PC any

| CXdb 46 ConvexOS Convex any
EBBA 1 n/s Network(Workstations) | any

|| HeNCE 3 Unix Network(Workstations) | Fortran, C
IDD 20 Unix Network (Sun) C, Modula, Ada
IGOR 14 DUNE Motorola 68000 C
Instant Replay | [30 Chrysalis BBN butterfly any
IPD 6] NX2 iPSC/2 Intel C, Fortran
Idb 7 UNICOS Cray fortran
LPdbx 45 Amstrong Amstrong C
MDB 12],[13] | Xylem Cedar C, Fortran
dbf ML 47 any any ML
MpD 38], [39] | Mach 8CE C
MULTVISON | {19 n/s n/s Multilisp
NodePrism 43 UNIX CM-5 n/s
Panorama 35], [34] | any MIMD message passing | any
Parasight 18 Unix Multimax C
ParaGraph 22 any any any
PPUTT 16 Chrysalis/Elmwood | BBN Butterfly Lynx
Recap 36 n/s n/s n/s
dbf RP3 27 Mach RP3 any
UDB 51 OSF KSR1 C, Fortran
VISIT 23], [25] | n/s EDS Lisp, C++
Voyeur 44 n/s n/s any

Table 1: General Information - Part I
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General Information Table - Part IT

Table 2 presents the second part of the general information about the concurrent
debuggers. The information in this table has been ordered differently than the in-
formation in the previous table. The first criterion for ordering is the completeness
of the included debuggers. Accordingly, the debuggers are divided into groups cor-
responding to production, prototype, partial, and proposed implementations. Inside
the groups defined by the completeness, the order follows the model of communication
used in the computer system that the debugger operates under. First the debuggers
for the message passing systems are listed, then the debuggers for the shared memory
systems, followed by hybrid communication systems, and the debuggers for which the
information about the communication scheme was not available. Inside these groups
the alphabetical order is followed.

The following notation was used to present information in this table:
e Status - completeness of debugger implementation

~ production - production version available
- prototype - not complete in house system
— partial - prototype missing major features

- proposed - no implementation exits
¢ Communications - model in the underlying architecture

—~ messages - message passing
— shmem - shared memory accessible by each processor
- hybrid - shared memory and message passing can be used

— rpc - remote procedure call

rndzv - Ada randezvous
¢ Global clock in the underlying architecture:

- assumed - debugger assumes existence of global clock

- self-timed - debugger provides its own clock
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Debugger Status Communications Global Clock
IPD production | messages assumed
LPdbx production | messages none
Paragraph production | messages self-timed
bdb production | shmem assumed
ldb production | shmem assumed
MDB production | shmem n/s
dbf RP3 production | shmem assumed
UDB production | shmem assumed
CXdb production | n/s assumed
dbf Amoeba prototype messages none
CDB prototype messages, shmem self-timed
hybrid
EBBA prototype messages n/s
HeNCE prototype messages self-timed
IGOR prototype messages self-timed
Panorama prototype messages none
dbf Agora prototype shmem self-timed
Instant Replay | prototype shmem none
MpD prototype shmem assumed
Parasight prototype shmem none
PPUTT prototype shmem self-timed
Voyeur prototype hybrid assumed
VISIT prototype n/s assumed
Ariadne patrial messages n/s
Bugnet partial messages, Ipc, rndzv | self-timed
IDD partial messages none
MULTVISION | pariial shmem n/s
Recap proposed hybrid none
dbf ML proposed n/s self-timed
NodePrism n/s messages n/s

Table 2: General Information - Part 1l
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Analysis

The fact that can be easily observed when looking at the first table is that while
some of the debuggers run only on specific architectures, and support only specific
programming languages, there are debuggers that are architecture independent, lan-
guage independent, or both. These systems, like debugger for ML, Panorama, or
ParaGraph, are likely to attract larger population of users due to their portability.

The debuggers in the second table are ordered according to the state of their
implementation. The first place take the debuggers that are complete and ready to
be used; their status is described as as “production”. Next we placed the debuggers
that exist in prototype implementation, where some features are missing. Finally, a
few interesting debuggers that have been partially implemented or only proposed are
also included. The completeness of the debugger is a very important characteristic
since it determines the usability of the system. A programiner faced with a problem
of locating some software bug will not be interested in sophisticated tools that exist
only on paper. A simplest, but working tool would be better. For this reason, we
have made the state of the implementation of the debugger one of the criteriums for
selecting the debuggers to be presented in this survey.

One case of a “production” debugger is one that is sold with computer systems,
like the UDB debugger, developed at Kendall Square Research to run on the KSRI
supercomputer. In such a case, the extent to which the debugger is being used
is determined by the popularity of the computer system it was developed for, as
well as, by the availability of other debugging tools. Another type of debuggers
that are placed in “production” category are the debuggers developed in academic
environments which have been fully implemented, tested, and used by members of
the home academic cominunity. Some of the systems, like LPdbx developed at Brown
University, have been also made available for distribution, so there is a chance that
they will be used outside their home community.

From the twenty nine debuggers included in this survey, only nine could be placed
in the “production” category. In this group three debuggers (IPD, LPdbx, Paragraph)
are supporting message passing systems, the remaining ones are supporting shared
memory architectures.

The debuggers classified to be in the “prototype” stage of implementation, are the

ones that do not yet have all the features included in the design, but are complete
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enough to be used and tested. The prototype debuggers are important because they
are often under continuous development, and give hope for more complete imple-
mentations in the future. The progress of the work being done on the debugger can
be best measured by the dates of the first and the subsequent publications, as well
as the coverage of the publications. One of such promising debuggers is Panorama,
described in the previous sections. Because there were three publications in the last
two years concerning this debugger one might assume that the work continues, and
that the fully implemented version is soon to come.

The majority of debuggers presented in this survey fall into the “prototype” cate-
gory when the stage of implementation work is considered. We were trying to include
debuggers that are still begin developed, but in some cases we abandoned this rule
and included debuggers that have been in the “prototype” stage for a long time, when
they presented an approach to concurrent debugging that should be (in our opinion)
promoted. Such is the case of the PPUTT toolkit which, although not recently heard
of, introduces approach of integration of debugging tools to tackle many debugging
problems.

The “partial” status of implementation means that only small part of the features
described in the design have been implemented. The “proposed” status determines
situations when the debuggers exist only in design papers. In both cases, the de-
buggers were inciuded in the survey to acknowledge their contribution to concurrent

debugging by introducing new, interesting approaches.

2.5.2 Functional Characteristics

This section presents information concerning the functional characteristics of the sur-
veyed debuggers. The first subsection contains all the data in tabular form. Then

the analysis of the data is presented.

Functional Characteristics Table

The debuggers in table 3 are ordered according to the type of execution replay facility
that they provide. At the top of the table are placed debuggers that provide com-
plete replay facility. These are followed by two debuggers that provide replay facility
resticted to communication events only. The debuggers without any replay capabili-

ties are placed at the bottom of the table. The debuggers belonging to these groups
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are ordered according to the type of breakpoint provided. First are placed debuggers
with global breakpoint, then the debuggers with local, single event, statement, and no
breakpoints follow. Inside these groups the entries are ordered alphabetically. Other
information provided by this table is the effect of the breakpoint on the program
execution, and the type of events recognized by the debugger.

The notation used in the table is as follows:
e Replay - replay facility provided by the debugger

— complete - entire program state is available
— commun - communication state can be deduced

— none - no replay facility available
e Types of Breakpoints supported by the debugger

— global - state breakpoint can be set

— local - state breakpoint can be set

— stmt - breakpoint can be set at a source code statement
— single - event occurrence breakpoints

— mult - events breakpoints on occurrence of combination of events
e Breakpoint Effect on the program

— program - the entire program is stopped
— process - one process is halted

— either - either one process or the entire program is halted
e Event Type - supported by the system

— 1ipc - explicit interprocess communication
— shmem - shared memory references

— stmt - each statement execution
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Debugger Replay Type of Breakpoints | Breakpoint Effect | Event Type
dbf Agora complete | local, single process shmem
dbf Amoeba complete | local, stmt, mult either ipc
CDB complete | local program none
Instant Replay | complete | local, stmt program shmem
Recap complete | local, stmt process ipc, shmom
RP3 complete | single program stmt
Bugnet complete | none none ipc
Panorama complete | none n/a none
ParaGraph complete | none n/a stmt
PPUTT complete | none n/a none
IGOR complete | n/s n/s none
dbf ML commun | stmt program none
VISIT commun | stmt program stmt
IDD none global, mult program ipc

bdb none local program none
CXdb none local program none
Idb none local program none
LPdbx none local process none
MDB none local n/s none
MpD none local n/s n/s
UDB none local program none
IPD none stmt process none
NodePrism none stmt program none
Parasight none stmt process stmt
Ariadne none none n/a shmem
EBBA none none n/a stmt
HeNCE none none n/a stmt
MULTVISION | none none n/a stmt
Voyeur none n/s n/s stmt

Table 3: Functional Characteristics
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Analysis

The ordering of this table according to the replay facility reflects our belief that exe-
cution replay is a crucial feature that every concurrent debugger should possess. The
replay facility allows for repeating the same execution many times, eliminating the
problem of non-determinism inherent in concurrent programs. This makes possible
use of other debugging techniques, like cyclic debugging, top-down analysis, break-
point insertion, or single stepping, which otherwise would not be very effective in
concurrent environments.

Nine of the debuggers presented in this table provide “complete” replay facility.
The “complete” replay means that in the replayed execution all the information about
the program state is available, as opposed to the “commun” (communication) replay,
provided by two of the included debuggers, where only the history of the communi-
cation events is available for examination. The second type of replay is provided by
the VISIT debugger, described in the previous sections, where the trace data about
the high level events is gathered during the program run, and stored for later. This
limited information is used for offline visualization of program execution. Although
not all the program state is available, this type of visualization can be useful for con-
structing a high level view of the execution, which can be used granularity analysis
and tuning.

The method used in providing the replay facility differs from one debugger to
another. One of the popular methods is the Instant Replay, which is also used in
the Panorama debugger. This method is based on saving the order of relevant events
in the program execution, without saving the data associated with the cvents. The
advantage of such approach is the low overhead introduced by the replay mechanism.
The disadvantage can be found in the fact that even in the case when the user wants
only to examine one of the processes, the entire program must be replayed. This
problem is solved by the type of replay facility provided by Bugnet, where the IPC
messages exchanged between processes are saved during the minitoring phase. In the
replay phase the send message operations are not executed, and the receive message
operations are replaced by reading the contents of the message from the log. In this
way, during replay the user can run one process or many, depending on his debugging
needs. The disadvantage of this method is the overhead in terms of time taken in

saving the messages, and space used for storing the data included in the messages.
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The discouraging observation that must be made when looking at this table, is
the fact that only eleven from the twenty nine presented debuggers provide replay
facility. The remaining eighteen debuggers ignore the problem of non-determinism.
Although it does not mean that they are not good at all, these debuggers are missing
a very relevant feature.

Another type of information presented in this table refers to breakpoint and their
effects on the program execution. The most common type of breakpoint is the one
denoted as “local”, which is based on the state of the execution of a single process.
Some of the debuggers provide only statement breakpoint, which allows only for
breakpoint specification based on the location in the code. The global breakpoint,
where the entire program state is considered for condition evaluation, is provided by
only one of the debuggers included in this table (IDD). The effect that the breakpoint
has on the program also varies from one debugger to another. The breakpoint can
stop one process or the entire program. In some cases the user is able to choose the
breakpoint effect according to his needs.

The last piece of information concerns types of events recognized by the debug-
gers. Some of the debuggers recognize interprocess communication events (marked
by “ipc”), or shared memory events (marked by “shmem”). There are also debug-
gers that allow the user to define the events according to his needs. In such cases,
execution of any statement can be defined as event. Many of the included debuggers
do not support event based views of the debugged programs. This is the case of the

debuggers that have been built by extending sequential debuggers.

2.5.3 User Interface

This section presents a compilation of information about features present in the user
interfaces of the surveyed debuggers. The first subsection contains data in tabular

form, the second subsection gives analysis of the data.

User Interface Table

The entries in table 4 are ordered according to the method they use to present the
debugging information to the user. At the top of the table are the debuggers that
provide multiple views of the executing program. Next are placed debuggers which

use time process diagrams to provide an abstract view of program execution. The

39



debuggers with time-proces diagrams are followed by a group of debuggers that use
windows to convey useful information but do not create graphical views. The last
group contains debuggers that do not use graphics and communicate with the user

in textual form only. Alphabetical order is followed inside these groups.
e Presentation - in what way is the information presented to the user

— mault views - of the execution are provided
— mult views + - the views can be extended by the user

— windows - multiple windows are used

tp - time process diagrams can be displayed
— command - information is displayed in textual form
e Examination & Modification - capabilities for program state modification
and examination
— global - global state can be examined
— ipc - communication state can be examined
— local - local states can be examined

— + - modification of state is possible

¢ Examination of Event History - How user examines a recorded event history

— browser - using an editor/browser

— language - using queries in the indicated language
— replay - only examination is to replay the history
— scroll tp - scrollable time-process diagrams

~ trace anim - animation of the execution from the trace log
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Debugger Presentation Ezamination & Ezramination of
Modification of State | Event History

HeNCE mult views global scroll tp

NodePrism mult views global, local+ n/a

Panorama mult views + global n/a

ParaGraph mult views + global replay

RP3 mult views global replay

VISIT mult views global, local+ n/a

Voyeur mult views + global browser

IDD tp local, ipc scroll tp

Instant Replay | tp local replay

MULTVISION | tp global trace anim

PPUTT tp global n/a

dbf Agora windows local replay

dbf Amoeba windows local+ replay

bdb windows global none

CXdb windows global n/a

LPdbx windows local n/a

1db windows, audio | local n/a

UDB windows local n/a

Ariadne command global query language

Bugnet command local, ipc replay

CDB command local n/a

EBBA command global n/a

IGOR command local+ n/a

IPD command n/s n/a

MDB command local n/a

dbf ML command local n/a

MpD command local n/a

Parasight command local+ none

Recap command local replay

Table 4: User Interface
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Analysis

The table presented in this section compiles the most prominent features of the user
interfaces provided by the surveyed debuggers. The first feature, the * presentation”,
shows what method is used in presenting the debugging information to the user.
The second feature describes how the user can examine and modify the state of the
debugged program. The last property of the user interfaces presented here is the
method used in examination of the event history.

The first seven debuggers presented in the table use multiple views to illustrate
the behavior of the debugged program. One of the popular views provided by most
of the debuggers is the time-line view, where events occuring on each processor are
displayed on one horizontal line. The displayed events are often related to interpro-
cess communication, but can also include other relevant occurrences. Another often
useful view, found in Panorama debugger, shows a global picture of message traffic
by displaying the number of messages that are waiting to be received on cach of the
processors. The process tree view, provided by VISIT, shows the tree of processes
spawned by a parallel program. The global view of the tree can be auginented with
more detailed views of some parts of the tree. Another view, very useful in perfor-
mance analysis, is the processor load balance view which shows the load on cach of
the processors participating in the execution. The views are often constructed in such
a way that they give access to low details about the displayed events. This is the
case of the time-line view in Panorama, where the user can click on any event with
the mouse, to see additional infermation about the event. The multiple views are
most advanced, and most desirable method of presentation, which allows for better
understanding of often very complex behaviour of concurrent, systems.

A factor that can make the multiple views even more appealing is the possibility
of extending the default set of views provided by the debuggers according to the
application needs. This feature, denoted by the plus sign, is provided by three of the
presented debuggers.

One of the presented debuggers, the ldb, uses auditory data analysis. The user
can listen to the audio representation of large volumes of data and try to identify
anomalies, that can be later examined with traditional methods.

The next group of debuggers in the table use the time process diagrams to provide

global view of program execution. This method can be considered to be a limited
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version of the multiple views method, with restriction to one view only.

The multiple windows are the next best thing, after use of graphics, in the user
interfaces for concurrent debnggers. Many of the presented debuggers use this tech-
nique. These debuggers often rely on the technique of displaying information about
each process participating in computation in a separate window. This can be useful,
but a very important issue here is the way the different windows are controlled. It
can be rather annoying when the user has to operate each window separately, so some
global coordination is desirable. Also, this method can hardly be considered scalable
when applied to a program consisting with hundreds of processes.

The largest group of debuggers fall into category denoted as “command”, to reflect
the fact that they provide command line interface only. They are simpler to build,
since implementation of a good graphical user interface can take considerable amount
of effort, but difficult to use what lowers their usability, and value as a software tool.

The feature placed in the middle colummn of the table shows how the urer can
examine and modify the program state. The debuggers with multiple views, and some
of the event based debuggers allow for examination of global states of the execution,
and sometimes for modification of local states. Others allow for access to local state
of the processes only.

The examination of event history applies only to debuggers which take the event
based approach to debugging. There are many methods used for this purpose. The
event histories can be examined by using browsers, scrollable time process diagrams,
trace animation, writing queries in some language, and replaying the recorded execu-

tion.
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2.6 Summary

The survey presented here was preceded by another survey of similar scope, published
in ACM Computing Surveys in 1989 by C.M. McDowell and D.P. Helmbold [33].
There are several differences between the two reports. The first difference is the time
period covered. While the previous survey included documents published up to 1989,
we have put the emphasis on publications that appeared in the last five years. In
some cases however we have abandoned this rule and included earlier work. The sets
of the debuggers covered in both surveys are therefore not completely disjoint, but
this report .ontains more recent research material. Another important difference is
the approach taken towards covered debuggers. The previous report takes a more
theoretical approach, by concentrating on methods used in concurrent debugging. In
this report our goal was to illustrate the functional aspects of the presented debuggers,
and show how the debugging methods used can be useful in locating software bugs.

In spite of the different approaches, the 1989 survey can be used as a reference to
assess the progress of the concurrent debugging research in the rec: at years.

The most visible change that can be observed in the debuggers recently developed
is the use of more advanced presentation techniques than these employed previously.
The use of multiple windows is almost a standard feature for today’s debuggers. Also,
the use of graphical representation of debugging data, interprocess communication or
processor load is far more common than it was before. Some of the debugging tools
presented here allow for viewing the program execution from different perspectives
by creating multiple views of the program execution. In some cases it is also possible
for the user to create views specific for the needs of the debugged application. There
are also attempts to use non-conventional presentation techniques, like sound, for
debugging purposes. Even in the cases when the information is displayed in textual
form and multiple windows are not used, the upgrading of the user interface is always
high on the list of future improvements. This is a big step forward, since a good
user interface allows for easier access to the debugger features, and can make the
debugging process less painful.

Another important issue in maximizing of usability of a debugger is the possibil-
ity of porting it to other systems. The benefits of using the same tool on different
machines include eliminating the learning time required when switching to different

architectures. The user will most likely choose a tool that s/he *nows, over other,
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even more “sophisticated”, but new. Some of the debuggers are difficult to port
hecause they depend heavily on hardware or software details of underlying systems.
Others cannot be ported because of the scalability problem - even if they perform
well on one system, their performance on other systems is not acceptable. For these
reasons, the appearance of debuggers developed with portability in mind, like the
Panorama debugger, is very promising. By using the layered structure for the de-
bugger architecture, the creators of the Panorama, have succeeded in developing a
debugging tool, that can be used on any computer, as long as the lowest layer (a base
debugger) can be provided. The base debuggers are in many cases provided by the
computer vendors, and although they have limited capabilities when used alone, they
can be very uscful by providing low level details to a debugger with more advanced
features.

Another promising fact is the appearance of debuggers that integrate debugging
techniques used in sequential debugging with techniques specific to concurrent debug-
ging. Examples of such debuggers, presented in this report are debugger for Amoeba,
Panorama debugger, and debugger presented by the PPUTT group from Rochester.
A debugger following this hilosophy will benefit from the fact that many users are
familiar with sequential debugging techniques and will feel comfortable seeing them
integrated into a concurrent debugger. The problems specific to concurrent debug-
ging are also addressed in these debuggers, so they can provide for all concurrent
debugging needs.

A less optimistic observation that results from this survey is that not too many of
the “sophisticated” debuggers are fully implemented. In many cases the debugging
tools have been proposed and some partial or prototype only implementation has
been achieved. This is often the case of the debuggers being developed in academic
institutions. The commercial developers, on the other hand, often provide fully func-
tional debuggers with the systems they deliver, but these debuggers are often very
limited and simple in the facilities they provide. In effect the users are left with good
debuggers existing mainly on the paper, and not too great debuggers being used in
the computer labs. This situation is a little ironic since one would think that since
concurrent programs are more difficult to write than sequential ones, the programmers

should be supplied with good debugging tools.
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Chapter 3
Deterministic replay

The non-determinism present in distributed systems makes debugging quite difficult.
One approach to deal with this issue has come to be known as “deterministic replay”.
The deterministic replay alone is not adequate to locate errors, and it has to be

integrated with other techniques of debugging.

3.1 Non-determinism in distributed systems

Non-determinism is an inherent property of distributed systems. Two consecutive
executions of the same distributed program can possibly have different outcomes,
even if the external input was the same in both executions.

The non-deterministic scenarios that will be presented in this section are based
on the Mach operating system. The programming model used in Mach is built on
the notions of task and thread. Task is a repository of resources. Thread is a light
weight process that executes program instructions. A distributed program can consist
of many tasks, working towards a common computational goal and communicating
through message passing or shared memory. A task can contain one or many threads.
Every thread belongs to a single task and may access all of that task’s resources. The
sources of non-deterministic program behavior in such a programming model can be

viewed at two levels:

¢ Interprocess communication level. The communication patterns can differ
from one execution to another. The order of arrival of messages at a port can

be different. In the case of non-reliable communication channels some messages
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can get lost in one execution but reach the destination in another execution,

which adds more complexity.

e Thread interaction level. In a multithreaded environment the additional
source of non-determinism is the interaction between threads sharing the same
resources, which include accessing the same memory locations or using the same
interprocess communication primitives. In the case when two threads access the
same program variable, the access patterns might vary from one execution to

another, creating different program behavior.

3.1.1 Mach Basic Objects

This section illustrates different sources of non-deterministic behavior of distributed
programs under Mach operating system, but before presenting the detailed list of
non-deterministic situations in Mach programs, we will introduce the basic objects of

the Mach operating system:

e Task : collection ol resources including virtual memory and communication

ports. Tasks are passive, they do not run on a processor.

e Thread: active execution environment. Each task may support one or many
threads; all threads ' ave equal access to task’s resources. Each thread has
private execution state that consists of set of registers, such as general purpose

registers, stack pointer, program counter, and a frame pointer.

e Port : communication channel - a logical queue of messages protected by the
kernel. Ports are location transparent, they can change owners. Access to ports

is granted according to access rights (receive, send, ownership).

e Message: typed collection of data used for communication between threads.
Messages may be of any size and may contain inline data, pointers to data, and

capabilities for ports.
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3.1.2 Message passing system calls

The message passing calls introduce many potential sources for non-repeatable pro-

gram behavior at both interprocess and thread interaction level. The possible non-

deterministic scenarios for each call are presented in table 5.

System call

Non-deterministic scenarios

msg_receive

If timeout is specified as a part of the receive operation, a failure can occur
when the message M does not arrive at port P before the time specified by
timeout argument elapses. Since the time of arrival of messages depends on the
sending task as well as on the network delays, this call might fail due to
timeout in one execution but succeed in another.

If more than one thread in a task is receiving messages from a port, then in
different executions the threads can receive the messages in different order. If
thread T1 receives message M1 from port P and thread T2 receives message M2
frorn the same port P in one execution then in another execution, due the
different scheduling of threads, thread T2 might receive message M1 and thread
T1 might receive message M2, creating different execution history.

If there are more than one task that have send rights to a specific port, then

in different executions the order of arrival of messages to a port can be
different. For example, if task K1 and task K2 both send messages to port P
which belongs to task K3, then the message M1 from K1 can be enqued at the
port P before the message M2 from K2 in one execution and after message M2
in another execution. Different order of M1 and M2 can affect execution of K3.

In case of transfer of the receive rights, some of the messages sent to a port can
be received by the old task in one execution and by the new task in another
execution. If receive rights of port P are moved from task K1 to task K2 before
task K3 sends message M then M will be received by K2. If the receive rights are
transfered after M is send, task K1 receives message M.

If there are no tasks with send rights to the port on which the receive
operation is attempted, then the message receive call will fail. The relative
timing of the receive call and the termination of sending tasks can cause
success of the receive call in one execution and failure in another execution.

msg._rpc

Non-deterministic scenarios are the same as for msg_send and msg_receive.

msg._send

If the timeout is specified, the message send operation can fail when the

destination port P is full, and the message M cannot be enqued within specified
amount of time. The state of port P might depend on the sequence of message receive
and message send calls in the program and can differ from one execution to another.

If the destination port specifies a name P which has been deallocated, the
message send call will fail. The timing of the send and deallocation calls can be
different in each execution causing the send to fail some time and suecced

some time.

Table 5: Message passing calls
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3.1.3 Network message server calls

This section describes non-deterministic scenarios for calls to the network message
server (netmsgserver). The netmsgserver is provided with Mach-based systems to
facilitate passing of send rights between Mach tasks {4]. A task wishing to pass
send rights registers an ASCII name and the port with the network message server
(netname_check.in). Another task may obtain the send right to that port by querying
the message server using the same ASCII name (netname_look_up). A port can be
removed from the message server by an authorized task(netname_check-out). All

non-deterministic scenarios for the netmsgserver calls arc presented in table 6.

System call Non-deterministic scenarios

netname_check_in If many tasks are trying to check name N with the name server a task
may succeed or fail depending on the order of their attempts

because the same name can be checked in with name server only once.
netname _check _out | 1f several threads in a task are trying to check out the same name N,
then only the first thread will be successful. All other threads will

fail because a name can be checked out from the name server only
once. The successful thread can be different in each execution.
netname look_up The success of the name look-up call depends on the relative order of
look-up check-in and check-ocut calls. The look-up for name N might
fail when it is executed before N was checked in with the name server
or after N was checked out. The scheduling of these operations might
be different in each execution, creating different execution histories.

Table 6: Netmessage server calls

3.1.4 Port related calls

Mach system calls presented in table 7 allow for performing different operations on
ports. Along with basic allocation and deallocation calls, there are calls that allow
to change default properties of ports like name (port_rename), transfer port rights
among different tasks (port_insert, port_eztract), or enquire about messages waiting
at the port (port_status). The port_names call returns information about all ports in
the task’s port space. It returns names of the ports and their types.

Ports, just like any other task’s resource, are shared between all threads supported
by the task. Interaction between threads, as well as communication with other tasks

in the program, make the port calls a potential cause of non-deterministic behavior.
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System call

Non-deterministic scenarios

port_allocate

This call might fail when the kernel runs out of memory allocated for ports.
The state of resources can differ from one execution to another so the
outcome of the call might be different each time the program is executed.

port._deallocate

This call might fail in a multithreaded environment when several threads are
trying to execute it on the same port. Only the thread that is scheduled first
to execute pori_deallocate will be success{ul, because a port can only be
deallocated once.

port rename

This call will fail when the new name already exists Race conditions can
arise in a multithreaded environment. I thread T1 allocates port under name
N before thread T2 executes a call to rename port P to name N, then thread
T2 will fail because duplicate names are not allowed.

port_names

This call returns data about the task’s port name space. This data can differ
from one execution to another since the state of the naine space depends on
all threads in the task. In a multithreaded environment, the timing between
execution of the port.names call and different port manipulation calls

can cause the port_names call to give different results cach time the

program is executed.

port _status

This call can return different values in each execution. Because of the
non-determinism present in message receive and send calls, the state of port P
can be differ from ore run to another depending on how many messages have
arrived at the port and how many have already been received.

port_extract
port_insert
port.rename
port set_backlog
port _set_backup
port _status
port_type

These calls will fail if they are executed by thread T1 before port P 1s
allocated. If the port allocation call is executed by thread T2, then the
relative order of execution of T1 and T2 can be different in each run.

These calls will succeed only when the task has reccive or ownership nghts to
port P at the time when thread T1 is executing any of these calls. If port
rights of P are to be transfered to other task by thread T2, then the success
or failure of these calls will depend on the scheduling of threads T1 and 'T'2.

These calls will fail in the case when they are executed after port P was
already deallocated. If port P is to be deallocated by thread T2, then in some
executions thread T1 will succeed in these calls, and in others it

will fail.

Table 7: Port calls
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3.1.5 Port set related calls

A port set is a named collection of ports and can hold zero or more receive rights,

allowing a thread to block waiting for a message sent to any of several ports. A port

can belong to at most one port set at any time.
A port set can be allocated by port.set_allocate call. Messages are received from

the port set with the msg_receive call, the reccive operation completes when a message

is available on any port within the named port set. Port set manipulation calls include

port_set_add, port_set_remove, port_set_status and port_set.deallocate. Table 8 lists all

port set related calls with the potential non-deterministic situations.

System call

Non-deterministic scenarios

port_set_add

If thread T1 executes a call to add port P to port set S1 and thread T2
executes a call to add P to set S2, then one of T1 and T2 will fail because
a port can belong to one port set at a time. Since the relative order of
execution of this call by T1 and T2 can be different in each run, one

time T1 might be successful in adding P to set S1, and another time T2
might succeed and add P to S2.

port_set_allocate

This call might fail when the kernel runs out of memory allocated for port
sets. The state of resources can differ from one execution to another so the
outcome of the call might be different each time the program is executed.

port_set_deallocate

This call might fail in a multithreaded environment when several threads
are trying to execute it on the same port set. Only the thread that executes
port_set_deallocate as the first will be successful, because a port set

can only be deallocated once.

port set_remove A port can be removed from a port set only once, so if threads T1 and T2
try to remove port P from port set S, then in one run T1 can succeed
and in another T2.

port_set_status This call can return different values in each execution. Because of the

non-determinism present in port_sei.add and pori_sel.remove calls,the state
of port set S can be differ from one run to another depending on how many
ports have been added to port S and how many have been removed.

This call will fail if it is executed by thread T1 before port set S is
allocated. If the port set allocation call is executed by thread T2, then the
relative order of execution of T1 and T2 can be different in each run.

This call will fail in the case when it is executed after port set S has been
deallocated. If port set S is to be deallocated by thread T1, then in some
runs thread T2 will succeed in execution of pori_set_status, and in others
others it will fail. The result will depend on the order of calls executed by
threads T1 and T2.

Table 8: Port set calls
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3.1.6 Task and thread related calls

System calls listed in table 9 allow for creation and ~ontrol of Mach tasks and threads.

Non-deterministic program behavior in execution of these calls might result from

shortage of resources or interaction among multiple threads.

System call

Non-deterministic scenarios

task_create
thread create

These calls might fail due to shortage of resources. The state of resources
can be different in each execution.

task_terminate
thread_terminate

If several threads are competing to execute one of these calls, only the
first one will be successful.

thread resume
thread.resume

These calls will fail in the case when the suspend count is already zero. If
these calls were preceded by one suspend call and threads T1 and 'T'2 were
competing to execute resume call, then only one of T1 and T2 would
succeed.

Table 9: Task and thread calls

3.1.7 C Threads calls

The C threads library provides programmers with an interface that allows for writing

multithreaded programs in C without using the thread primitives. The provided calls

facilitate creation and synchronization of multiple threads running within one task.

Many of these functions can behave differently in consecutive executions.

C Threads call

Non-deterministic scenarios

condition.signal

This call can wake up only one thread from the set of threads waiting for a
lock. For example, if threads T1 and T2 are waiting for the same lock L,
then when thread T3 signals that L is free T1 or T2 will be randomly
chosen by the kernel to receive the signal.

mutex_try lock

This call returns TRUE when the lock is available or FALSE when the lock
is held by some other thread. In multithreaded environment, the return
values from this call might vary from one execution to another. If threads
T1 and T2 compete for the same lock L and thread T1 issues mulez_try_lock
call, then in some executions the call can take place after T2 have released L
and return TRUE, and in other executions T2 can still hold L and the call

will fail. |

Table 10: C Threads function calls
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3.1.8 Virtual memory calis

Mach gives the programmer complete control of a program’s memory layout through

the virtual memory system calls. The virtual memory primitives can operate on the
calling task itself, another task on the same machine, or even on a program in a dif-

ferent machine. Mach system calls presented in this section allow for virtual memory

operations. Non-deterministic scenarios related to virtual memory calls might result

from shortage of resources, interaction among threads in the task, or interaction be-

tween tasks in the program. The listing in table 11 gives calls that must be monitored

in a multithreaded environment in order to produce a deterministic execution of a

program.

System call

Non-deterministic scenarios

vin_allocate

This call can fail when there is not enough memory space to satisfy the
request.In a multithreaded environment it can happen that other threads
have used all the available memory before the call was executed. The point
of failure can be different in each execution.

vm_deallocate

This call can succeed only once, so it would be non deterministic in a
multithreaded environment, when more than one thread would try to
execute 1.

vm dinherit
vin_protect

These calls might fail when multiple threads operate on the same memory
region and when the target memory region is deallocated by some other
thread before the protection change takes place.

vm_read

The data returned by this call can be different in successive executions when
several threads are accessing the same region of memory. For example, if
thread T1 reads certain memory region R and thread T2 writes R, then the
scheduling of threads T1 and T2 will decide on the data returned by the
read call.

vin_region

This call returns data about 2 memory region. In a multithreaded
environment the state memory can be different each time the call is
executed due to different thread scheduling patterns.

vm_write

This call can fail when the memory region is no longer available for writing.
For example if a thread in task K1 wants to write to memory of task K2,
then it might happen that K2 executes memory protection call or deallocates
the targeted memory region before K1 executes the write call. The timing
of the actions taken by tasks K1 and K2 can vary from one execution to
another.

Table 11: Virtual memory calls
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3.2 Deterministic replay approach for debugging

To make use of the techniques of sequential debugging in the distributed world, deter-
ministic replay is introduced. Many of the distributed debugging techniques can be
improved by adding the capability of deterministic replay of a distributed program.

In this context, we make the following observations:

o Multiple processes tend to generate a lot of output making observation for

debugging difficult, and creating possibility of missing some important results.

¢ The programming environments for parallel architectures and parallel programs
are not as mature as the environments for sequential machines, and often lack

tools for collecting and analyzing the output data.
o Reproducible behavior is essential for cyclic debugging.

In the following, we will examine the various techniques used in sequential debugging

in light of deterministic replay :

Cyclic debugging

Cyclic debugging i: one of the more popular debugging techniques used in debugging
sequential programs. This technique can be also used with distributed programs when
it is augmented with determini:tic replay mechanism. Successive trials of the cyclic
method can be used to provide successively more information about the part of the
program being debugged. One way to gather necessary information is to introduce
some snapshot takers at suitable points in a program. This is successfully practiced
with sequential programs, but can be used with distributed systems only when the de-
terminism of re-execution is guaranteed. Each output statement in parallel programs
can introduce delays and as a result change the relative timing of events occuring
within the program. The cyclic method of debugging can be very valuable in debug-

ging distributed programs, especially when other debugging tools are not available.

Breakpoint insertion
Breakpoint insertion is commonly used in sequential debugging. Breakpoints can
be added at interesting points in the code. When the execution is suspended at

the breakpoint, the programmer has a chance to examine the system state. This is
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straight forward for sequential systems since programs consist of a single process on
a single processor. The breakpoint semantics for concurrent systems are not obvious,
because breakpoint specification and detection must incorporate all processes in the
program. This new type of breakpoint become known as “global breakpoint”. Global
breakpoint is based on the state of the entire program and stops all processes taking
part in the computation. Local breakpoints, in contrast to the global breakpoints, are
defined in context of one process and stop only the process into which the breakpoint
has been inserted.

Both local and global breakpoints can benefit from availability of deterministic
replay. Because detection of a global breakpoint is non-trivial, it often requires ex-
ecution of many debugger instructions and introduces delays causing probe effect.
Ior local breakpoints, the breakpoint specification is easy, but whr n one process is
stopped at the breakpoint, all other processes that interact with the stopped process
are also affected. The sequence of events in the program execution can be changed by
the delays introduced when the process is suspended at the breakpoint. By eliminat-
ing the probe effect introduced by breakpoints, deterministic replay makes it possible
to cycle through breakpoints in many different processes during program replay, and

examine the system state each time.

Single-stepping

The single-step technique allows the programmer to follow the execution of the pro-
gram instruction by instruction. While stepping, it is very important to use the
deterministic replay technique for distributed programs since the delays introduced
by stepping will affect both the threads within the stepped process, and other pro-

cesses taking part in the computation.

Top-down debugging

Top-down debugging methodology can be effectively applied to debugging distributed
programs when combined with deterministic re-execution. Because the distributed
programs tend to be long and produce large volumes of data, it is often helpful to
be able to abstract details in order to understand the behavior of a program. This
approach allows the programmer to start with the high-level view of a program be-
havior. Then, in successive runs, this viewpoint can be refined based on the available

information to any level of detail desired. The capability of deterministic replay is
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desirable for top-down debugging since it eliminates possibility of the error being
present in one execution and absent in another, what is fairly common in distributed
programs. In such case the programmer could spend long time tracking an error that

is visible at one level of abstraction but could not be located at another level.

Event based debugging

The event based view of program execution is created by collecting information about
predefined events during execution of the program. The definition of an event can
vary from one system to another. The event information can be used in several ways:
browsing with some tools, replay based on recorded events, simulation of program ex-
ecution. The use of event log technique in conjunction with deterministic replay can
allow for repeatable executions of a subset of processes involved in the computation.
By using the event log, the execution of the processes uninteresting from the debug-
ging point of view can be simulated, using data extracted from the logs, allowing for

re-execution of the relevant subset of processes only.
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3.3 Functional requirements

Based on the information presented in the previous sections we define the functional
characteristics of a distributed debugger, 2nd the characteristics of a “minimal” dis-
tributed debugger. First we define the necessary conditions for debugging distributed

programs. Next we explain how these conditious can be satisfied by a distributed

debugger.

3.3.1 Conditions for distributed debugging

The following are the necessary conditions for successful and efficient distributed

debugging:
1. Non-deterministic behavior must be eliminated.
2. Tools must exist for extracting information about run time details.

The two conditions are complementary to each other. The elimination of non-
determinism alone will not help in debugging if no information about program ex-
ecution will be provided to the programmer. On the other hand, the techniques
that can provide the needed information cannot be used without the guarantee of
deterministic-execution because some of them, like cyclic debugging would not be

applicable, and others would not be very effective.

3.3.2 Functional requirements for a full scale debugger

The conditions described in the previous section can be best satisfied by means of
the two-phase debugging scheme. The non-deterministic behavior can be eliminated
by recording the neces.ary control information about the execution. Then different
debugging techniques can be applied on the controlled replay of the program. The
techniques for phase two can come from both the sequential and distributed world of
debugging. All functional requirements for a full scale distributed debugger can be

satisied by following facilities :

1. Deterministic replay is necessary to implement the two-phase debugging

methodology.
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Source code level information about each process in the computation is
needed to understand the fine details of program execution. Without this in-

formation the source of the error cannot be fully identified.

. Global breakpoints are required to halt the execution of the program in a

consistent state, to examine or modify its state, and to restart execution

. Checkpoint and rollback facility is needed for restarting the progran eaccu-

tion from any point in the program history. This is particularly important for

very long programs.

. Data and execution visualization tools are needed for interpretation of

large volumes of data and understanding behavior of large programs. Graphical

interpretation is often the best technique.

Graphical User Interface is necessary for providing the user with easy access
to the above facilities, what is very important when debugging of several tasks

at the same time is required.

3.3.3 Functional requirements for DDB

A full scale distributed debugger cannot be implemented in the scope of a Mas.er’s
thesis project. The team based approach which was successfully applied in the CDB
project would be a good sclution. The second best alternative 1s to design and
implement a smaller debugger that would provide basic set of facilities needed for
distributed debugging. The debugger in its present “minimal” form will be powerful
enough to be effectively used in debugging of distributed programs. The facilitics
that are absent in the present version of the debugger could be implemented in the
future.

The list of components needed for the “minimal” debugger is as follows :

e Deterministic replay engine

e History files interpreter

e Source level debugger

e Graphical user interface
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Deterministic replay engine

The deterministic replay will be present in both phases of the debugging process.
During the first phase, called the monitoring phase, the distributed program will be
executed and the information about program events will be collected and stored in
the history files. The data stored will define the order of non-deteriinistic events.
During the second phase, called the replay phase, the replay engine will use the in-
formation stored in the history files to control the execution of the program, so that

it can follow the path of the original execution.

History files interpreter

The information stored in the history files for the purpose of controlling the execution
can have alternative uses. It can be used to provide the user with high level view
of the program behavior. This type of information can help the user to identify the
faulty portion of the code, which can be further examined with other tools. The
interpretation can be conducted in two ways. One way is to provide textual inter-
pretation of the events and their outcome by interpreting information stored during
cecord phase. Another way is to draw time-process diagrams. Time process diagrams

can be very helpful in illustrating interaction between processes.

Source level debugger

A source level debugger can be used in the replay phase of debugging to provide all
facilities that are conventionally used in sequential debugging. When a local debugger
is attached to each process in a distributed program, the programmer has control over
each task. He can set breakpoints, step the programs instruction by instruction, ex-
amine the source files, query the memory contents, or view the stack frames. These all
would be possible because the execution is corntroiled so that the delays introduced by

breakpoints and stepping will not change the order »f events in the debugged program.

Graphical user interface

A graphical user interface is essential for any distributed debugger. It can make de-
bugging activity easier by providing good access to large volume of information. It
can also allow for handling output from multiple tasks and organizing communica-
tion with the base debugger. Graphics are also needed for displaying the time-process

diagrams.
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3.4 Other debuggers based on replay

The three debuggers presented in this section are based on the deterministic replay fa-
cility. Each of them represents a different approach to achieving deterministic replay.
Bugnet [49] reproduces the process communication environment of a distributed pro-
gram by saving all message events and periodically saving all variables in checkpoints.
During the replay the execution can be restated from checkpoints and the message
contents can be retrieved at appropriate ti:nes. The CDB debugger [40] saves all
messages coming from the external environment, but saves only control information
about messages within the debugged application. The Instant Replay [30] addressos
the problem of reproducing concurrent access to shared memory systems, but can be
extended to message-passing. Instead of recording values of variables, Instant Replay

only records the order in which processes acquire and release locks.

3.4.1 Bugnet

Bugnet is a distributed debugger developed at the State University of New York
at Stony Brook. It was designed to be used in debugging C programs distributed
within a network of Unix systems. This debugger is interesting because it combines
deterministic replay with checkpointing facility.

Bugnet monitors the execution of the program and gives the user all relevant infor-
mation about the program behavior. This information includes interprocess commu-
nication, input and output events, and execution traces of all component processes.
When an error is detected, Bugnet allows the programmer to roll the execution hack
and replay the events that caused the error. During the replay phase the user has a
choice of replaying one process or many. The IPC messages that would be sent by
the processes that are not being executed are provided by the debugger.

The capturing and time-stamping of all interprocess communications are the key
features of the Bugnet debugger. The contents of messages are needed so that all ex-
ternal influences on a local process my be simulated. The time-stamping is necessary
for operation of the debugger in the environment where no global clock is available.

Another important feature of the debugger is its ability to take periodic global
checkpoints. In order to replay events at the same time intervals as they originally

occurred, the Check-pointing algorithm periodically saves globally consistent states of
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the execution. The state of each application process is captured when the execution
globally halts after some period of time (15 to 30 seconds). The decision to halt is
made independently on each machine (to make it possible, the machines sometimes
need to re-synchronize their clocks). Because all processes stop together and each
process takes the same amount of time to save its state, the pauses are hidden from
the execution unless an application reads the real clock. The only problem in this
scheme are messages that are sent before all processes halt for checkpoint but arrive
during the pause time. These messages have to be saved and resent locally to arrive
at the correct time during the next run period.

The big advantage of the deterministic re-execution method in Bugnet is the
possibility of replaying only the processes that are of interest to the user, which
allows the programmer to focus on the process that contains the source of the error.
The checkpointing facility is also very useful in case of long programs. The user does
not need to replay the program from the beginning every time because the execution
can be restarted at any point prior to the occurrence of the bug.

The disadvantage of this method is the storage overhead due to saving of the

messages exchanged between processes.

3.4.2 CDB debugger

CDB is a debugger for distributed applications running on the top of the CHORUS
distributed operating system developed at the Chorus Systems, France. The debugger
operates on both shared memory and message passing systems. Besides the deter-
ministic replay facility the debugger provides many of the common features found
in traditional debuggers. The programmer can set breakpoints and query the state
of the process, or display backtrace of stack frames which informs the user about
function calls that have been executed before the program was stopped. It is also
possible to examine or modify address space of a process.

The execution replay facility is based on the notion of debug session. A debug
session can be record or replay. When an application executes in record session, its
log is recorded in a session log. In the replay session, the behavior of the application
is constrained to match the previously recorded session log.

There is one session log produced for each processor. The contents of the log can

be analyzed with use of specific tools provided for this purpose. The tools range from
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the simple ones, which produce an ASCII human readable listing of a log’s events, to
tools that use the logs to draw space-time diagrams showing the causal relationships
between events.

During the execution replay, the user can set breakpoints and query data. The
speed of the execution during replay can be also adjusted: it can be replayed at
normal speed, or context switch by context switch, or step by step. In step by step
mode, the user chooses one thread and makes it execute one machine instruction. In
the context switch by context switch mode, the user chooses one thread and makes
it run to the point where the thread is preempted.

The approach that the debugger takes to recording relevant information differs
according to the source of the information. For example, CDB takes the data driven
approach in the case of messages received from the environmert. The contents of
these messages are saved, so they can be recreated at any time. The control driven
approach is applied to the events internal to debugged program, in order to reduce
the amount of logged information.

The proposed future improvements to the CDB debugger include check-pointing
facility and implementation of source level debugging in the form of cooperation
between the CBD and GDB which would act as a local debugger. The interesting
point of the replay facility in the CDB is the two-fold approach to storing information.
It is efficient since not too mach data needs to be stored, but at the same time allows

for simulation of the external environment at replay time.

3.4.3 Instant Replay

The Instant Replay method was introduced by Thomas J. Leblanc and John M.
Mellor-Crummey in {30]. The mechanism of Instant Replay was demonstrated in a
debugger prototype implemented on the BBN Butterfly™ Parallel Processor. The
Butterfly Processor at the University of Rochester consists of 128 processing nodes
connected by a switching network. Each switch node in the switching network is a
4-input, 4-output crossbar switch with a bandwidth of 32 Mbits/s. The memory of
the system resides at individual nodes, but any processor can address any memory
through the switch. The remote memory refercnce takes five times as long as the
local memory reference. The operating system for the Butterfly is the Chrysalis.

The approach taken by the designers of the Instant Replay method treats all
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interactions between processes as operations on shared objects. Modifications to the
objects are represented by totally ordered sequences of versions, where each version
has a corresponding version number. This number is unique to each object. During
the monttoring phase of the debugging, the partial order of the access to each object is
recorded. This partial order is specified by a sequence of version numbers maintained
for each object. To record the partial order, the debugging system maintains the
current version of each shared object, and the number of readers of each version for
each object. Each process executing as a part of the parallel program records the
version number it accesses in the monitoring phase. In the replay phase this number
is retrieved and used to ensure that the process sees the same value and in the same
order it has seen in the original execution. The history information can be used as
many times as necessary to repeat the original execution.

Instant Replay presents a general solution to the problem of non-determinism in
concurrent debugging because it is applicable to both loosely coupled and tightly
coupled environments. This method can be applied to any concurrent system since
it does not depend on any particular form of interprocess communication, and it
does not require synchronized clocks or globally consistent logical time. One of the
important advantages of this method over other replay methods is the small overhead
that the debugging system introduces. The overhead is small because only the order
of relevant events is saved but not the data associated with thc events. The time
overhead is less than 1 percent, and the space overhead is also reasonable, making it
possible to record events of a large scale production system.

The disadvantages of this method include the fact that the replay must include
the whole cluster, not just the subset of processes. This can be rather impractical in
the case of large systems. Another disadvantage of this method surfaces when the
granularity of the communication is very small. In this case, it could become so that
the space used for recording the version numbers associated with shared objects is

larger than it would be if the contents of memory locations were recorded.
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3.4.4 Evaluation

All of these debuggers described above, provide very good support for achieving deter-
ministic re-execution of a concurrent program by using different mechanisms adjusted
to specific environments, and debugging requirements. However, as we said before,
deterministic replay alone is not useful in locating software errors. There must be
tools cooperating with deterministic replay to allow the programmer obtain informa-
tion about program behavior. All of the debuggers presented above are incomplete
in this respect.

The Bugnet debugger provides information about interprocess communication,
I/0 events, and execution traces of the processes but source level debugging is still to
be implemented by linking Bugnet with Unix dbz. There is no graphical representation
of program execution.

The same problem exists in the CDB debugger. Although it provides variety of
graphical and textual tools for analysis of the logs produced during debug sessions,
the source level debugging is planned to be provided in the future by cooperation of
the CDB and GDB.

The current implementation of the Instant Replay method consist only of the
mechanism needed for deterministic replay support. Other tools, including source
level single-process debuggers, tools to monitor execution with graphical displays,
and specialized compilers are still to be developed.

The DDB debugger presented in this Thesis aims at providing an efficient and
non-intrusive deterministic replay facility combined with a minirnal but sufficient set
of tools to support the debugging process. The debugging tools include source level
debugger, time-process diagram viewer, and textual interpreter for log files. The
program-view that the programmer obtains through the time-process diagrams and
textual interpreter of log files can be further refined by using the cyclic debugging
techniques practiced with the help of the source level debugger. The basic set of tools
available in DDB can be extended in future to create a full scale commercial quality

distributed debugger.
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Chapter 4

Capturing non-determinism of
Mach

In this chapter we describe the method that was used in development of the DDB de-
bugger for capturing the non-deterministic behavior of distributed programs running
under Mach operating system. The general approach to recording program execution
can be described as control driven because the information gathered during the ex-
ecution of the program relates to the order of events in the execution, not the data
corresponding to the events (data driven approach). The information gathered in the

record phase is used in the replay phase for achieving deterministic re-execution.

4.1 General approach to debugging

There are two distinct approaches to developing debugger applications described in
the literature, based on the way in which the debugger executes control over user

program. These are:

e Implementation Based Approach
With this approach, the implementation of the run-time system, the operating
system, and the compiler are modified to support debugging. The problem with
this approach is that debuggers of this type are difficult to port.

e Language Based Approach
This approach involves introducing modifications to the source code of the ap-

plication program.
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The approach taken in the development of the DDB debugger is a combination of
the two methods. The debugger uses a language based approach when it records
information about non-deterministic events in the monitoring phase and when it
controls the execution of the application program in the replay phase. The mach
system calls arc “wrapped” by special debugger library routines in the preprocessing
stage of the compilation. These library routines execute the intended call plus some
additional statements for either collecting information (in the monitoring phase) or
controlling execution (in the replay phase). The implementation based approach is
used for operation of the local debuggers. The GDB requires that the program is
compiled in such a way that a symbol table is produced which contains information

needed for the local debugger to operate.

4.2 Assumptions

The assumptions made about the programming environment are necessary for design-
ing an effective and efficient deterministic replay mechanism. The restrictions placed
on the user programs debugged with DDB are introduced for two reasons. First rea-
son is that the approach taken is sometimes insufficient to guarantee deterministic
execution, as in the case of port set described below. Second reason is that the project
would not be possible to complete within the Master Thesis work if the restrictions

have not been placed. The following conditions are assumned to be true:

e An equivalent virtual machine must be available.
To make deterministic replay possible, we make an assumption that the original
execution of the program and subsequent replays occur in equivalent virtual
machine environments. Two virtual machines A and B are said to be equivalent
with respect to program P if program P can exhibit the same behavior whether
executed on virtual machines A or B. This requirement is realistic only when
the program P does not depend on physical details of its virtual machine. For
example, if P’s execution depended on real-time clock it would be very difficult

to simulate the virtual machine during replay.

o The following is assumed to be true for user programs debugged with DDB:
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1. Migration of port rights is not allowed. We assume that port rights
are not transferred between tasks. The send rights to a port in user pro-
grams can be acquired only through the network message server. This
restriction will simplify the keeping track of messages send between the
tasks easier. Control of migrating ports is difficult and time consuming to

implement, but it can be achieved in the future versions of the debugger.

2. Port sets are not used. Mach allows for grouping ports into a port
set. The grouping allows the programmer to issue a single msg_receive
system call that will receive the first available message from any of the ports
that arc members of the port set. We have decided to exclude port sets
from the application programs because they introduce potential for non-
deterministic behavior that is impossible to control without modifications

to some of mach system calls.

3. Memory is not shared between tasks. The basic virtual memory
functionality permits full sharing of read /write memory between two tasks
only through inheritance. This results from the fact that the child of a
task can only be created on the same machine, so the problem of support-
ing shared memory between tasks separated by a network is eliminated.
Memory sharing between unrelated tasks can be achieved through use of
memory managers that execute outside of the kernel, in the user mode.
The decision to disallow memory sharing has been taken because control
over non-determinism that could result from memory sharing would be
difficult. Another reason is that the primary way of IPC communication
in our distributed environment (network of PC) is message passing, so the

restriction would affect very small percent of programs.

We believe that the restrictions placed on user programs will affect only a small part
of possible Mach programs. This is because limitations that are introduced do not
affect any critical aspect of program operation, so the programs can use the debugger
by temporarily excluding the parts of the program that violate the restrictions. Some

of these restrictions can be removed in the future versions of the debugger.

67



4.3 What information is recorded ?

Deterministic replay mechanism used in the DDB debugger is an adaptation of the
method used in Instant Replay. In the record phase of the DB, just like Instant
Replay, we collect control information about the execution. No data values associ-
ated with the user program are recorded. The debugger stores only access patterns to
shared variables within each task, and order of send and receive operations for each
IPC port. Although the general approach is the same, there are differences between
methods used by DDB and Instant Replay. Because of difference in the cuvironments
the two debuggers support, the sources of non-deterministic behavior are different,
and in effect, the events that need to be controlled are different. The implementa-
tion of the Instant Replay described in [30] deals with shared memory model where
non-determinism results from different access patterns to variables shared by multi-
ple processes. In the case of the DDB debugger there are two potential sources of
non-deterministic behavior. First, there is interaction ainong tasks in the program by
message passing which might take different paths each time. Second, there is interac-
tion among threads in each task that is also non-deterministic. For this reasone, it is
not sufficient to record only data concerning the interprocess communication, like it.
is done in the Instant Replay debugger. The interactions of threads inside ecach task
must also be recorded and controlled. The remaining part of this section presents
control information that is recorded in the history file of each task and explains why

this information is necessary.

4.3.1 Task identification

The basic requirement for successful re-execution of a distributed program is to iden-
tify the tasks taking part in the computation. The debugger does noi +»smire that the
task - host configuration be the same in re-executions of the same pro, - "t ks can
be executed on different hosts as long as the cquivalent virtual machine requirement,
is satisfied. The debugger also does not impose the “one task per machine” require-
ment, so there can be only one task executing on cach host or all tasks executing on
one host and the configuration can change from one re-execution to another.

To allow this flexibility, there must be a way of uniquely identifying each task

in the user program and matching the appropriate history files with the tasks in

68



the replay phase. Since there is no requirement that each task in the program has
a distinct name of the exccutable file, another way of task identification is needed.
'This is done by attaching an identifier to the command line arguments of each task in
both the record and replay phase. In the record phase the identifier is used in creation
of history files. In the replay phase the identifier is used to open the corresponding

history file for each task.
Task identification is also necessary for control over message IPC operations. This

identification is achieved with the help of the Central Name Server (CNS). Each task,
before starting execution of the user code, checks itself with CNS. In the record phase,
CNS assigns a number to each task that will be later attached to all messages sent
by this task. This number is stored in the task’s history file. In the replay phase the
number is simply retrieved from the history file. The user task is not aware of this

naming scheme since all the related operations are done transparently.

4.3.2 Information related to C Thread calls

The information related to C Thread calls is presented in table 12. The information
collected in the record phase must enable the debugger to eliminate the potential of
non-deterministic behavior resulting from existence of multiple threads within each
task in the replay phase. The following conditions must be satisfied for C Thread

calls in each re-execution of a distributed program:

e Threads are assigned the same virtual identification number each time
the program is executed. The virtual ID numbers are needed to uniquely
identify each thread in the execution. The virtual scheme of identification guar-
antees that the names assigned to threads will not change from one re-execution
to another. This is required since the name assigned to a thread by the kernel

at creation time might be different each time the program is executed.

e Mutex locks are assigned the same virtual identification numbers in
each execution. Since access to mutex locks is controlled by debugger in the
replay phase, the mutex locks must by uniquely identified by virtual id numbers

that will not change from one execution to another.

o Mutex locks are obtained by the threads in the same order in each

re-execution. The access to shared variables is assumed to be done through
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Cthread call

Data recorded

Explanation

mutezx_allocate

- mutex number

The ID number is nceded for future references.

mutex_ciear
mulex._free

- mutex number
- mutex version

The version number is needed to ensure that the
mutex is not cleared/freed too soon.

mutez_lock

- mutex number
mutex version

The version number is needed to ensure
the same order of obtaining the lock in next runs.

mutez try.lock

- mutex number
result of the call
version number

The result of the call must be the same in all
executions. In case of success the order of
access must be also maintained.

cthread._fork

- virtual thread ID

The thread ID is needed for thread identification.

Table 12: C Thread calls

the us~ of exclusion locks. By controlling the access to the mutex locks, the
debugger, in effect, controls access to shared variapies. The control is executed
by use of version numbers, which are associated with each mutez_lock operation.
The version numbers, along with mutex identification numbers are stored in the

the history file of each task.

Mutex variables are not deallocated before all operations (mutex_ock,
mutex.unlock) have taken place. Due to different paces of execution, the
thread that deallocates a mutex variable might reach the mutex deallocation
instruction before other threads execute all operations on this mutex which were
executed in the original execution. For this reason, a mutex version number is
stored for mutes_free, and mutez-clear calls, so the their execution in the replay

phase can ! 2 controlled.

4.3.3 Network message server calls

Table 13 provides information about data recorded for network message server related

calls. For the first two calls (netname_check.in, netname_check.out) we only need to

record the outcome of the call (success/failure). Both calls canonly be executed once

for the same port name, so the task successful in the original execution should also

succeed in all replayed executions. The third call (netname look.up) requires also the

information about the identity of the owner of the target port, as well as the virtual

ID number within the owners task space. This information is needed for control over

the order of messages that will be later send to the port that is being looked up.
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Netname call

Data recorded

Explanation

netname_check_in

- value returned by netmsgserver

In the replay phase the outcome
of this call must be the sz me.

nelname._check_out

- value returned by netmsgserver

In the replay phase the outcome
of this call must be the same.

netnamne_ look_up

- value returned by netmsgserver
- ID of the owner task
- virtual ID of looked up port

The same vale must be returred,
the se..ding task must know the
port owner ID and port virtual ID.

Table 13: Network message server calls

The information about, owner task ID and port ID recored for the netname_look_up

cannot be directly obtained from the network message server. To make the informa-

tion available, DDB must use a “shadow” server of the netmsgserver that would store

and distribute required information for task and port identification. This is achieved

with help of the CNS in the following way :

e Each task that checks in a port sends an additional message to the CINS. The
mmessage contains the ASCII name of the port to be checked in, the task’s ID,

and the port’s virtual ID within the owner task port space. The CINS receives

and stores the information for later use. Figure 1 illustrates communication

between the user task and CINS.

e Fach task that looks up a port, in addition tc making a call to the netmsgserver,
sends an RPC message to the CNS providing the ASCII name of the foreign

port to be looked uv. In the return message, the CNS sends the virtual ID of

the task to which the port belongs and the virtual ID of the port in the task’s

port space. The communication between the user task and CNS is illustrated

on figure 2.

The use of the Central Name Server for port identification is necessary only in the

record phase. During the replayed execution, this information is simply retrieved from

the history files where it has heen previously stored.
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User Task

netname_check_in

msg_send_to_CNS (port_name, virtual task_id,
{port_name, Ort_id)

virtual_port_id)

Network Central

Nanise Server

Message Server

Figure 1: Communication of user task with CNS during check in operation

User Task

(virtual_task_id,virtual_port id)

netname_look_up

RPC_to_CNS
{port_name, port_id}

(port_name)

Network Central

Name Server

Message Server

e

Figure 2: Communi-ation of user task with CNS during port look up operation
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4.3.4 Message and port related information

The message passing calls are responsible for the non-deterministic behavior that
results from the interprocess communication. The data recorded for message and
port related calls must be sufficient to ensure that in the replay phase the following

will be true:

e Ports within each task space will receive the same identification num-
ber each time the program is re-executed. This is necessary because the
port names returned by the kernel from the port_allocate system calls can vary
from one execution to another. The debugger requires that ports be identified
by some unique number, which can be guaranteed to be the same in each re-
execution. The virtual port names are introduced for this purpose. The virtual
port names are stored in the history files when the ports are created in the

record phase : nd retrieved whenever the program is re-executed.

e No port is deallocated before ail operations on this port (msg_receive,
port_status, etc.) that took place in the original execution are exe-
cuted. To make sure that a port will not be deallocated until all operations of
the original execution took place, the version number for each port is recorded

during the pori_deallocate call.

o Each message receive operation will return the same message in each
successive re-execution. Because of the non-determinism of the interprocess
communication calls, for each received message the sender’s identification num-
ber is stored in the record phase. This information, along with port version
number, is used in the replay phase to ensure that messages are received in the

correct order.

e The order of messages sent !, the task to a remote port will be
identical each time the prograu is re-executed. The version number of
the port that receives the message indicates how many messages have already
been sent from the sending task to this port. This information will help to

enforce the same order of msg_send operations in the replayed executions.

e The values returned by the kernel for cach listed system call are

always the same. Since the state of the port space is not graranteed to be
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System call

Data recorded

Explanation

receiving task 1D
virtual ID of receiving port
version of receiving port

msg_receive - value returned by kernel Receiving port must have virtual ID
- virtual ID of receiving port for reference in the replay phase. The
- version of receiving port version number is needed to ensure that
- virtual ID of the sender the same threads receive the same messages
in replay phase. The sender ID is used by
msg_server ensure proper order of messages
arriving at the port.
msg-send - value returned by the kernel | This information is needed to ensure that

messages to the same port are send in the
same order cach time the program is
executed.

port_allocate

value returned by the kernel
virtual ID of allocated port

The ID number is needed to ensure right
order of port creation in next executions.

port_deallocate

- value returned by the kernel
virtual ID of deallocated port
versioll number of the port

]

The version number of the deallocated
port is needed to ensure that this port
is not deallocated until all msg are received.

port_status
port_names

value returned by the kernel
all information returned

All original information must be saved to
be returned in the subsequent executions.

porl_rename

value returned by the kernel

The same value must be returned in all runs.

Table 14: Message related calls

the same each time the calls are executed, the debugger simply returns the

values stored in the record phase without executing the <alls.

The detailed list of the relevant message 1clated information is presented in table 14,
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4.4 How the recorded information is used ?

Previous section presented the program comtrol information recorded and stored in
this history files by the DDB debugger. In this section we show how this information
is used in achieving deterministic re-execution of distributed programs under Mach.

To ensure deterministic re-execution, there must exist, in the first place, a way
of identifying all relevant objects existing within each task. These are threads, ports
and mutex locks. ‘The unique identification is necessary so the reference to the same
entities can be made in each re-exccution. Although we present in detzil only the
method used for identification of threads, the naming of ports and mutex constructs

is done in a very similar way.

4.4.1 Naming Scheme for Threads

The only available thread identifier is the thread ID assigned to each thread by the
kernel at the creation time. This identification number changes from one execution
to another, so 1t cannot be used for naming threads in repeated executions. A virtual
identification number which would remain the same in each execution is needed.

The virtual naming scheme designed for this purpose can be described as follows:

e In each task space there exists a thread counter that is always equal to the

number of threads existing within the task.

o Fach newly created thread is assigned a virtual thread number equal to the

read counter.
o The thread counter is incremented after each thread creation operation.

o In the record phase the virtual ID of the created thread is recorded in the history

file of the creating thread.

o In the replay phase, when a new thread is created, the virtual thread from the
original execution is obtained from the history file. The data record created for
the new thread will contain (among other pieces of information) the virtual ID

of the thread and the thread ID returned by the kernel.



begin
if (debugging_phase == RECORD)

begin
mutex_lock(thread_lock)
p = new(thread_data)
p->kernel_id = thread_fork()
p->virtual_id = thread_counter
send_data_to_log(thread_counter)
INC(thread_counter)
add_p_to_thread_data_list(p,thread_head)
mutex_unlock(thread_lock)

end

else if (debugging_phase == REPLAY)
begin
mutex_lock(thread_lock)
thread_id = get_data_from_log()
p = new(thread_data)
p->kernel_id = thread_fork()
p->virtual_id = thread_id
add_p_to_thread_data_list(p,thread_head)
mutex_unlock(thread_lock)
end
end

Figure 3: Algorithm for creating threads

e Each time when the virtual identification of a thread is needed, the data record
is accessed based on the kernel assigned 1D (which can be obtained at any time

from the system) and the virtual 1D is retrieved.

The algorithm for thread creation is given in figure 3. The thread creation and
assignment of the virtual ID number are exccuted under exclusion locks to ensure
binding the correct thread counter value with the created thread. The algorithms for
creation of ports and mutex locks are very similar to the one presented in figure 3.
They follow the same principle when using different counters, mutex and condition

variables, and data structures.
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4.4.2 Mutual Exclusion Locks

One of the potential sources of non-determinism in execution of multithreaded pro-
grams running under Mach operating system lies in the access to variables shared by
threads within each task. Due to different paces of execution, the progress of each
thread can be different in subsequent runs and, in effect, the pattern of access to
shared objects can be different each time.,

The solution to the problem of non-determinism in Mach programs resulting from
access to shared data is presented below. We assume that the shared variables in
a multithreaded user program are always protected by the mutex constructs. The
use of mutual exclusion locks is necessary for correctness of the program since data
corruption can result from unsynchronized access to the shared data object. The
mutex locks provide the ability to serialize access to shared data.

The main issue here is to ensure that all operations on shared data take place in
the same order each time the prograin is executed. This can be achieved by using a

following scheme :

e Ilach mutex lock variable is assigned a unique virtual number that remains the

same across all re-executions of the program.
o Fach muiex lock is assigned a version counter.

® The version counter is incremented each time the mutex lock is obtained by a

thread in both, the record and replay phase.

e The virtual 1D and the version of the acquired lock will be recorded in the

thread’s history file during the record phase.

e In the replay phase, the thread will not attempt to acquire the lock until the
version number of the mutex variable will be equal to the version number re-
trieved from the history file. The conditional variable associated with each
mutex variable will be used to block the thread until the right time comes to

perform the mutez_lock operation.

The algorithm that is used to impl-ment the outlined above method is presented
in figure 1. In the record phase the record for the mutex is accessed, the lock ver-

sion number is retrieved and sent to the history file. Then the version number is
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incremented. All of these operations are enclosed within a mutex lock for protection
in case that more than one thread would attempt to access the same record. The
niutex variable is specific to each individual record so the granularity of locking is as
small as possible in this case. In the replay phase the the mutex version is retrieved
from the history file. In the case where the version received from the aistory file and
the current version recorded in the mutex data recored are not equal, the thread will
block waiting for this condition to become true. After the mutex is obtained, the
version lock is incremented and the condition broadcast call is issued for all threads

that might be waiting on the mutex condition.

begin
if (debugging_phase == RECORD)
begin
p = £ind_the_node(mutex_var)
mutex_lock(p->lock)
mutex_lock(mutex_var)
send_data_to_log(p->version_num)
INC(p->version_num)
mutex_unlock(p->lock)
end
else if (debugging_phase == REPLAY)
begin
p = find_the_node(mutex_var)
m_version = get_data_from.log()
mutex_lock(p->lock)
while (m_version != p->version_num)
condition(p->cond, p->lock)
INC(p~>version_num)
mutex_lock(mutex_var)
mutex_unlock(p->lock)
condition_broadcast(p->cond)
end
end

Figure 4: Mutex locking algorithm
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4.4.3 Port Allocation Call

Control over the order of the arrival of messages at each task’s port cannot be achieved
by the debugger library alone. There must be an external agent that reorders the
inessages sent to each port and resends them in the order of the original execution.
This is done by the Message Server (MS). In order for the MS to be able to intercept
messages sent to a user pori, the receive rights of the port must belong to the server.

The receive rights are exchanged in following way (see figure 6) :
1. Port P is allocated within the user task space.
2. The receive rights of port P are sent to Message Server via IPC message.
3. Port P* is allocated within MS task space.

4. The receive rights of port P* are sent in IPC message to user task.

o 1(P)
' __.» Message

receive_rights (P)

Server

receive_rights(P*) P’

Figure 5: Exchange of port receive rights during port.allocation call
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In effect, in the above operation the user task will receive messages on the port
P’ allocated by the Message Server. The Message Server will be able to intercept the
messages sent to the user port P. All of the above is done transparently, so the user

ta.k is not aware of the fact that it does no longer poscs the receive rights to port P,

4.4.4 Message Receive Calls

To preserve the order of the arrival of messages during replayed executions the virtual
ID of the sender and the version number of the recciving port are recorded in the
history file for each message_receive system call. In the replay phase, the information

is extracted and the message reccive operation executed as follows:

1. If the port version extracted from the history file is not equal to the current
version number for this port, it means that other threads are still to execute
message receive operation on this port. Block until the right time to perform

the receive operation comes.

2. Send a control message to the Mecsage Server asking for message from sender

indicated by data obtained from the history file to be received on port P.

3. Receive the next message available on the port P’.

receive_request(M1)

Message

M1

Figure 6: Message receive systemn call
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All of the above operations are executed transparently. The user task executes
message_receive call on port P, but the port is exchanged by the library routine that

was wrapped around the original message receive operation.

4.5 Evaluation of the method

The major concern in deterministic replay systems is the probe effect they introduce
in collecting of trace informa.ion. There is no way to avoid the probe effect entirely.
Any tool that needs to monitor execution of a program will affect this execution
in some way and alter it if the potential of non-deterministic behavior exists. The
question is then not how to eliminate the probe effect, but rather how to minimize it.

We believe that the mechanism developed for deterministic replay in DDB intro-
duces minimal probe eflert for the environment which the debugger supports. The
recording of version numbers for shared variables introduces much less probe effect
than recording the contents of the variables since the volume of the data to be stored
is smaller. The interprocess communication is handled in similar way to the access to
shared variables; the information that is recorded for each message is the identity of
the sender task and the version of the receiving port. Therefore, there is no overhead

from storing contents of messages.
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Chapter 5

Design of DDB

This chapter presents design of the distributed debugger named DDB based on deter-
ministic replay. The first section presents the srogramining environment by describing
the Mach operating system, the C-Threads package, the local debugger (GDB), and
the Mach Interface Generator (MIG). This is followed by a description of the archi-
tectural design and modules of the DDDB debugger. The implementation notes close

the chapter.

5.1 Programming environment

The distributed environment described in this thesis consists of a set of four Intel
i486 hosts connected into a local area network by the Ethernet and vunning Mach.
The user program can execute on any number of available hosts. There can be one
or more tasks running on the same computer. The only restriction on the network is
that all hosts on which the computation is executed must belong to the same network
partition. This is necessary because the message server provided by Mach operating
system (netmsgserver) does not operate over network bridges, so message passing
between two tasks executing in different network partitions would not be possible.
The distributed nature of the debugger is illustrated in figure 7. It contains a
centralized part and several distributed parts. The prograrmnmer controls DDB from
the hest running user interface of the debugger and this foruis the central part. The
remaining parts of the debugger execute on different hosts along with the user tasks

and communicate between the user task and the user interface part.
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User Task User Task User Task

DDB DDB DDB

DDB

User Interface

Figure 7: Distributed debugging model
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5.1.1 Mach Operating system

The Mach operating system, developed at Carnegie Mellon University (CMU), incor-
porates many innovations from the operating system rescarch area. The key goal of
Mach is to be a distributed system capable of functioning on heterogeneous hardware.

The riain design principles of Mach can be described as follows [12]:

~ . . . . .
» Gupport for diverse architectures, multiprocessors and uniprocessors, with mes-

sage passing or shared memory communications.

e Ability to function with different inter-computer network speeds (wide arca

networks, local area networks, multiprocessors).

e Simplified kernel structure, with small number of abstractions which are general

enough to be used as a ba:e in the development of other operat:.:g systems.
e Distributed operation and network transpareicy.

o Heterogeneous system support that will make Mach available and interoperable

among computer systems from multiple vendors.

A very important facto: which added to the success of Mach is its compatibility
with the Unix operating system. Programs written for 4.3B3SD can run on Mach with
no changes, although they co not take advantage of the features unique to Mach.

The small Mach kernel, called microkernel, has been used as a base for developing
emulations of other popular operating systems. The high level view of Mach archi-
tecture is presented on figuie 8. The microkernel contains only basic functionalities
like task and thread cperations, IPC (Inter Process Communication) virtual memory
primitives, and scheduling. The top layer of the figure shows other operating systeins

that run on the Mach microkernel. These systemns operate in user mode.

5.1.2 C Threads Package

C Threads is a C language interface library provided by Mach designers to facilitate
creating multithreaded applications. This interface allows the programmer to cizate
and use multiple threads without need to handle low level details. Use of C Threads
library also enhances portability of the multithreaded program. When the basic kernel

threads primitives are used, the programmer ras to handle the machine dependent
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details like machine state of the thread depicted by its registers. The C Threads
library provides machine independent function calls, so any multithreaded application
can be easily ported to different hardware platforms. Another benefit of using this

library package is the availability of the synchronization primitives for controlling

access to shared data by multiple threads.

The C Threads library has been extensively used during implementation of the
DDB debugger since all servers of the debugger are multi-threaded. We also make
the assumption that the user programs handle thread related operations through
the C Thread package. This assumption is particularly important in the case of

synchronization variabies, since DDB monitors the access to shared data through

Figure 8: Mach structure

access to the C Threads by synchronization primitives.
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5.1.3 Local debugger

The idea of introducing a local debugger into the structure of a distributed debugger

has been demonstrated in the past in the design and implementation of the CDB de-
bugger [52] [28]. The local debugger used in CDB as well as in DDB is an extension
of the GDB debugger from Free Software Foundation.

GDB debugger
The original GDB debugger has been designed to debug single threaded applications

running under Unix operating system. It provides good set of facilities for conven-

tional debugging:

Breakpoints. They can be used to make the program stop whenever a cer-
tain point in the program is reached. Breakpoints can be set at a line number,
offset from the current line number, function name, or address in the program.
Conditional breakpoints take effect when the expression in the condition state-
ment evaluates to true. For each breakpoint, there can be different conditions
specified in order to control the behaviour of the breakpoints. For example, a

breakpoint can be disabled after it stops the program.

Watchpoints. This facility can be used to stop the program execution when-
ever the value of an expression specified changes, without having to predict the

particular place where this may happen.

Stepping. It allows for executing just one “step” of the program, where “step”
can be defined as one procedure, a few lines of source code, one line of source

code, or one machine instruction.

Stack Examination. Stack examination facility provides information on the
stack frames. This information includes address of the frame, addresses of the
called and the caller frames, arguments of the frame, and values of the local

variables.

Source File Examination. Parts of the program source code can be displayed
by the debugger. Also there are commands to map source lines to program

addresses and to display a range of addresses as machine instructions.

86



e Data Examination. Examination of data involves displaying values of pro-
gram variables, displaying data in memory at a specified address, evaluating
“debugging expressions”. Values once displayed are saved in the GDB value

history so that they can be referred to in other expressions.

e Symbol Table Examination. Commands which belong to this group allow
the programmer to inquire about the symbols (names of variables, functions

aitd types) defined in the program.

o Altering Execution. The execution of the program can be altered by chang-
ing the values of variables, memory location, or instruction pointer when the

execution stops on a breakpoint.

Modified GDB

The single threaded version of the Unix GDB debugger has been modified by Caswell
and Black [8] to support multiple threads of Mach. The resulting enhanced GHB
debugger (version 3.4) allows user to select any thread and analyse its execution
during a debugging session. The designers have adopted the concept of the current
thread to handle the selection of threads to be examined. Any thread can be selected
as the current ihread and the selection can be modified during execution. All the
GDB commands that are used for examination and modification of a Unix process
can be applied to the current thread. Some modifications to these commands include
change of the single step command to step only the current thread while preventing
all the other application threads from running.

This modified version of GDB was adapted for the special needs of distributed
debugging by C. Yep. [52]. The interface of the debugger was changed so that it uses
IPC messages for communication instead of standard input and standard output. The
advantage of this adaptation is that the debugger can now receive comtnands from a
process executing on a remote host.

Although both CDB and DDB debuggers use this modified GDB debugger, the role
that the local debugger plays is different in each case. In the CDB the local debuggers
were used to control the execution of the user program and support the development of
facilities such as distributed breakpoints, checkpoint and rollback, and vector clocks.
The local debunggers are used in DDB to provide source level debugging for cach task

participating in the computation during the replay phase of debugging. The GDB
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is available for the programmer to extract any information about the task that s/he
needs to understand the behaviour of the program. The place of the local debuggers
in the DDB structure is illustrated in figure 9. There is one local debugger attached
to cach task in the distributed program. The programmer communicates with the

local debuggers through graphical user interface at the central debugging site.

1
| GDB for task 2
| GDB fortask3 |
|| Srrrrrrmr—

Figure 9: Local debuggers in the structure of DDB
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5.1.4 Mach Interface Generator

MIG (Mach Interface Generator) is a facility which provides code for communication
between programs that follow the client/server programming paradigm. In Mach,
servers and clients execute as separate tasks and communicate by sending Mach inter-
process communication (IPC) messages. Because the IPC interface is rather complex,
the MIG facility was designed to make programming easicr. MIG automatically
generates procedures in C which pack and send, or receive and unpack the 1PC
messages used for interprocess communication based on the specification file provided
by the programmer.

The MIG program has been used in the implementation of the debugger to pro-
vide interfaces for communication between different debugger servers (history server,
message server) and the user task. The DDB programming project has benefited from
the use of MIG in several ways. First, time nceded to write the IPC code has been
decreased. Second, there was no need for debugging, since the generated code was
error free. Third, the modifications to the interfaces have been easy to make, since it
involved only introducing changes to the MIG specification file and recompiling the

code.

5.2 System Architecture

This section presents the system architecture of the DDB debugger. The brief descrip-
tion of the architectural design is followed by presentation of the layered structure of

the system. All of the modules of DDB are described in detail in section 5.3.

5.2.1 Architectural Design

The complete architectural design of the DDB debugger is depicted on figure 10.
Almost all of the modules of the debugger operate as separate multi-threaded tasks
and communicate with each other via IPC messages. The exception is the DDB

Library which is compiled with user task code.

e User Interface - provides the user with easy access to all services offered by
the debugger. It displays the time process diagrams and textual interpretation

of contents of history files.
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User Interface

Host A

CNS

DDB Library
Jser Task

Figure 10: DDB system architecture
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e GDB - the Modified GDB debugger is used for source level debugging during

the replay phase. GDB is not invoked in the record phase.

e DDB Library - provides control over execution of Mach system calls and

communicates with other parts of the debugger.

e HS - History Server maintains the control information related to execution of
the user task. It stores the data received in record phase. In the replay phase it

provides the data when it is requested.

e MS - Message Server is invoked only in replay phase. It intercepts messages sent

to the user task ports and resends them in the order of the original execution.

e CNS - Central Name Server distributes identification numbers to the tasks
participating in the computation in the record phase, and starts the server

processes (HS, MS) for each user task.

The distributed architecture of the debugger follows the structure of the user pro-
gram. Except for the User Interface and the Central Name Server, all the debugger
modules are invoked for each user task in the application program. The History
Server, Message Server, and GDB are always invoked on the same host as the user
task to make communication as efficient as possible. In ther case where there is more
then one task executing on a host, the debugger servers will be duplicated, since
each server can provide services to only one task. There is no commnunication among

servers belonging to different tasks nor among different servers of the same tasks.

5.2.2 Layered Structure

The layered system structure is shown in figure 11. A horizontal line separates a
client from a server, the dotted areas indicate that there is no connection hetween
subsystems.

The bottom layer is provided by the Mach kernel, on top of which there are the
debugger servers reside which give services required by the User Interface and the
DDB Library. The debugger library uses CNS, MS, and HS to monitor and cont-»l
the application program. The User Interface is based on the popular X Window
system and uses services provided by the modified GDB, and the DDB Library to

access debugger facilities.
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User Interface

DDB Library

X Window GDB CNS MS HS

Mach

Figure 11: Layered structure

5.3 Modules of DDB

This section describes modules of the DDB debugger. According to the distributed
model of computation, all modules discussed below operate as independent tasks and

communicate with each other by exchanging Mach messages.

5.3.1 Central Name Server

Since the modules of the DDB debugger are distributed and can execute on different
hosts along with tasks of the application program, there must be an agent that coor-
dinates all entities of the debugger. This role is played by the Central Name Server
{CNS). The services of CNS are required in both Record and Replay phases:

e (NS assigns unique identification numbers (names) to all tasks participating
in the computation. The names are used in recreating the same interprocess
communication patterns in successive re-executions of the user program. For
example, the task identification number is attached to each message sent by the

task.

e Starting and terminating the debugger servers: At the beginning of the compu-

tation the initialization routine provided by the DDB Library sends a message

92



to CNS to inform it that the user task has been created. ln response to this
message., the CNS starts the servers that are required to support the determin-
istic replay (History Server, Message Server). At the end of the computation
each user task senc's a message via the library exit routine which requests that

CNS terminate the servers.

e CNS provides information about ports that are checked in and looked up with
the netmessage server. During netname look up and check in operations the
DDB Library delivers/requests information about IPC ports registered with the

network message server.

The design of CNS takes advantage of multi-threaded capabilities of Mach and uses
multiple threads to achieve short response time for client requests. There is no block-
ing required for any service, and the communication between the CNS and other
modules is infrequent so the overhead introduced by this central server is not sub-

stantial.

5.3.2 DDB Library

The DDB library consists of set of routines that are linked with the executable file
of each user task. The library routines are used for gathering execution time trace
information and controlling the application program. Functions performed by DDB

library are as follows:

e Initialization, which include sending server creation request to the Central Name
Server (SCR inessage) and setting the imtial values for the library data struc-
tures. These tasks are performed by function RR_INIT, which must be inserved

into user code before any executable statement.

e Sending the control information to be stored in the History Server in the record

phase. The information is sent after the execution of a Mach system call.

e Retrieving the control information from the History Server in the replay phase.

The control information is requested before the execution of a Mach system call.

e Sending control messages to the Message Server with requests for two different,

actions:
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— Port receive rights exchange (RRX message) request is sent after a port

allocation in the user task space.

— User message receive (UMR message) request is sent when a thread in the

user task is ready to receive an IPC message.

o Enforcing correct order of execution of mutez_lock calls and msg_receive calls
in the replay phase. The required order is indicated by data received from the

History Server.

¢ Sending server termination request (STR message) to the Central Name Server
at the end of the computation to inform the CNS that the servers belonging to

the task can be terminated.

The DDB Library routines that replace Mach system calls in the user code always
consist of two parts. One part is executed in the record phase and another in the replay

phase so that there is no need to create separate executable files for each phase.

5.3.3 Modified GDB

The GDB dcbugger and the services it can provide are described in section 5.1.3.
Within the DDB debugger the GDB plays the role of the local debugger. The local
debugger is used in replay phase of the debugging for extracting the source level
information, which can be used to refine the high level view of the execution provided

by the time-process diagrams.

5.3.4 History Server

History Server (HS) manages control information used by DDB in achieving deter-
ministic replay. There is one HS for each user task, the server is always started on the
same host as the user task to make the communication overhead as small as possible.

The operation of the server is different in two debugging phases:

e In the record phase, the history server receives messages send by the DDB
Library. The contents of the messages are stored in server data structures as
they are received. At the end of the computation the control information is

copied to persistent storage (text file).
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e At the beginning of the replay phase the contents of the file containing control
information are copied into memory of the History Server. When the control
information is available in memory, the server listens on the control ports waiting
for messages requesting the information. When the message arrives, the History

server retrieves the next control record and sends it in the return message.

The communication between the user task and the History Server is very frequent
since control information is transferred for most Mach system calls. Therefore, it is
important to minimize the delays. This is done by the multi-threaded design of the
server. For each thread created in the user task thereis a corresponding thread created
in the History Server that will respond to requests from the newly created thread.
In effect, the structure of the History Server task dynamically changes following the

changes in the structure of the user task.

5.3.5 Message Server

One of the basic conditions for ensuring deterministic re-execution is that each task
receives the IPC messages in an order identical to that of the original execution. The
deterministic replay system must contain an agent that makes it possible. In the
DDB debugger role of this agent is played by Message Server. The main function
of the Message Server is to control messages reccived by user task by intercepting
them and re-sending to the receiving port when the “right” time comes. As figure
12 illustrates, there is one copy of the Message Server for each user task, residing on
the same host. Each message sen!, by task T1 to task T2 is intercepted by Message
Server MS_2, and conversely, each message sent by task T2 to task T1 passes through
server MS_1.

The services of the Message Server are required only during the replay phase of
debugging. In the record phase, the order of the arrival of messages must only be
recorded and this is achieved by sending relevant information to the History Server.
The information record sent to the History Server for the receive operation (sce table
14) contains, among other data, the identification number of the sending task. Be-
cause Mach kernel does not provide any facility for identification of the sender of a
message, the debugger transparently adds the sender’s identification number to each

message. On the receiver’s side, the debugger extracts the sender information and
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forwards it to the History Server. This information is used in the replay phase to en-
sure that messages arrive to the receiving port in the original order. When a thread
is ready to exccute a message receive operation the debugger checks in the history
record for the sender’s ID and sends request to the Message Server (UMR message)

to forward the next message from this sender to the port.

Figure 12: User Task - Message Server configuration
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How the Message Server operates
The Message Server operates by responding to IPC messages. There are two types of

messages that can be received :

e Application Messages - these are the messages that are meant to reach the
user task that the Message Server is controlling. The sending user task “be-
lieves” that the message is sent directly to the destination task. After veceiving
such a message the server checks the sender’s identification and forwards the

message to a temporary port.

e Control Messages - these are the messages that are sent by the DDB Library

routines of the controlled task. There are two types of control messages :

— Receive Rights Exchange Request (RRX) - this is a RPC message
which is sent when a new port has been allocated by the user task. The
message contains receive rights of the newly created port. The MS allocates
a new port and sends the receive rights of the new port to user task.
The receive rights of the user task and server port are exchanged and

interception of user messages can proceed.

— User Message Request (UMR) - this message indicates that the user
task is ready to perform message_receive operation. The message contains
the port on which the receive operation is to take place and the identifica-
tion number of the sender. In response to this message, the MS forwards

the first message from the temporary port to the indicated port.

Multiple threads are used to miake operation of the Message Server as fast as
possible. There is one thread for each port allocated by the user task, and one thread

receiving requests for messages.

5.3.6 User 1nterface

The graphical user interface for DDB was developed with the widgets of the OSF /Motif
toolkit. The user interface provides easy access to all features of the debugger. The
main window of the interface is presented in figure 13. The menu bar visible at the

top of the window contains the following items :
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e Set Program - allows the user to interactively set the names of the tasks
participating in the computation and the names of the hosts that the tasks are

to be run on. This eliminates the need for configuration files.

¢ Run - allows the user to start the program in either record or replay phase. The
user starts each task of the program separately so that the appropriate order

and delays can be applied.

e View - provides high level view (time-process diagram or textual interpretation
of the history files) of the program execution based on the control information
gathered during record phase. The uscr can choose to view the time-process
diagram where each task is represented by events placed in the horizontal line
according to the elapsed time. Example can be seen on figure 14. The textual
description of system calls executed in the program can be accessed from the
“View IHistory Files” sub-menu. It gives more detailed information than the

time-process diagram.
e Quit - terminates the DDB debugger.
o Help - gives access to help facility.

The area below the menu bar is used to display output of the user tasks during the
record phase. In the replay phase it allows for communication with the base debugger
controlling each task. During program execution, each task has a dedicated scrollable
window. The windows are re-sizable to allow more space for tasks of interest.

The botton part of the window is used for displaying error messages. This layout

of the main window complies with the guidelines of the Motif Style Guide.
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Figure 13: Main window of the DDB
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Figure 14: Time-process diagram

The time-process diagram and the information in the text window are based on the
control information gathered in the record phase. The main purpose of this informa-
tion is to enable the debugger to produce repeatable executions of the program. The
secondary application of this data is in building the high level view of the program.
The algorithms that are used in creating the time-process diagrams and the textual
descriptions from the history files have been developed by Alexandre Oumanski. Alex
has developed both algorithms and wrote some test programs for the debugger during
his COMP 492 course during summer 1995.
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5.4 Implementation Notes

A prototype implementation of the design described in this chapter has been achieved.
The C Threads library was extensively used to handle multiple threads in the debugger
servers. The MIG (Mach Interface Generatcr) was used to implement procedures for
commurnication between DDB Library, History and Message Servers.

The User Interface for the DDB was partly implemented using UIM/X (User
Interface Manager for X). Since the UIM/X release for Mach operating system is
not available, the design of the User Interface was carried out on the Unix platform,
and the generated code was ported to Mach. The difficulty of this approach is that
UIM/X library could not be used and often Motif library functions had to be used to
replace calls to the UIM/X library.

One of the major difficulties in the implementation of the DDB was integration
of the GUI with the computational part of the debugger. The difficulty came from
the fact that Motif does not provide any standard way of communication between the
“interface process” and the “computa’ional process” when they execute on different
hosts. To overcome this problem, the standard Motif communication mechanisin
based on pipes was augmented with Mach message passing. The communication
between the UI and the remote processes was divided into two phases: the transfer of
information between remote hosts was via Mach messages, then when the information

was available on a local host, it was transferred via pipes.
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Chapter 6

Debugging with DDB

This chapter presents how the DDB debugger can be used. This is achieved by descrip-
tion of a sample debugging session. The description is augmented with illustrations

of different debugger windows.

6.1 How to prepare user program for debugging

There are several conditions that the user program must satisfy to make debugging

with the DDB debugger possible:

1. The rdb.h file must be included in each source file of the program. This file
contains C preprocessor directives for replacing the Mach system calls with

DDB Library calls.

2. Each Mach message structure must contain DEBUG.MSG field. The debugger
will use this field to transparently add the task ID to each outgoing user message.
On the receiver’s side, this ID will be stored in the history files (in record phase)

or used to control order of arrival of messages (in replay phase).

3. Theline RR_INIT(argv, argc) must be inserted before any other executable state-
ment in the code. This function calls the initialization routines that set all the

debugger variables and connect to the Central Name Server.

4. The user program must be compiled with the -g flag to let the compiler know
that the symbol table is to be created. This is only needed if the GDB debugger

is to be used in replay phase.
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3. The object files of the program must be linked with the DDB Library contained
in librr.a. This library contains all routines replacing Mach system calls 'n user

code.

6.2 Steps in debugging

This section gives step by step walk through a debugging session. The user program
selected for this demonstration is quite simple. It follows the client-server model with
two clients (clientl, client2) and server (server). Each client sends three messages to
the server. The messages of client2 have larger size than messages of clientl. The
server creates one thread to receive a client message and service the request. The

source code for this program can be found in appendix A.

6.2.1 How to set up the program

To set up the program, select Set Program/Set New Program option from the
menu bar. A window appears where the program specifications can be entered. Figure
15 shows the window with the complete list of tasks in the program and hosts on which
the tasks are to be executed. In our case the program will be executed on two hosts:
europa and carme.

The program name appears at the top of the window. This name is required
for identification of all history files and debugger servers belonging to one program
execution. If two instances of the debugger were to be executed at the same time, the
program name would allow for identification of the DDB servers belonging to each
program. The program name is also used when the program is to be replayed. If there
were several executions of somne set of tesks recorded, the program name could be used
to identify the appropriate history files. This is important when the user wants to run
the program several times in the record phase, then examine the information about
the executions with the View tools, and select one of the recorded exccutions to be
replayed.

The program set up can be confirmed by clicking the mouse pointer on the Con-
firm button. The Delete button can be used to delete an entry from the list of tasks
in case of an error. The Cancel button can be used to close the set up window and

abandon the setup operation.
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Figure 15: Set Program window

6.2.2 Start the program

To start execution of the user program we have to select the Run/Record option
from the menu bar. The window depicted on figure 16 will appear on the screen.

The program is started incrementally by initiating execution of each task belonging
to the program.This can be done by selecting a task from the list and clicking the
mouse on the Run button. The task will disappear from the list. There will be a
scrollable window created in the main window of the debugger for the newly started
task. The output from this task will appear in the scrollable window 17.

After the execution of all tasks is initiated the list of tasks becomes empty and
the window disappears.

In case of a mistake in the program setup, the Cancel button can be used at any

time to abandon the operation and close the window.
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6.2.3 Observe the output

During execution of the program, the output of each task will appear in a task-
dedicated scrolled window. The windows are re-sizable to allow for increasing the
size of the most interesting window. The output from program first can be seen on
figure 17. The output indicates that the execution was successful, and that each of
the clients has sent three messages to the server task. Each of the threads of the server

task has successfully received one message from a client.

Figure 17: Output from the first run of the program
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To verify the expected behaviour of our program we executed it again. We run the
program by choosing Run /Record, there is no need toset up the program this time
since the last program configuration is remembered by the debugger. The output
from each task can be seen on figure 18. This time it is not exactly what we have
expected to see. It appears that only task client2 managed to send messages to the
server. And only three threads of the server reported “successful message receive”.
What happened this time ? (There is a bug).

Figure 18: Output from the second run of the program
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6.2.4 View time-process diagram

Since a picture is worth a thousand words we will now take a look at the time process
diagram of the second execution. This can be done by selecting View/ View Graph

from the menubar. A window appears on the screen showing the time process diagram

of the current execution as shown in figure 19,

Figure 19: View

The time-process diagram appearing in the View window confirms our suspicions
about a bug. Only threeof the threads have received messages. For others the receive
operation was unsuccessful. Also the clientl task has terminated execution before it
could send any messages to the server task. The only recorded systern call for this

task (not shown on the picture) is the netname_look_up operation.
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6.2.5 Look at the history files

The time-process diagram does not show the details of system calls to preserve the
clarity of the presentation. These details can be obtained by selecting View /History
Files from the menu bar. A window that appears on the screen (figure 20) contains
two push buttons: Load and Close. The history files can be brought to the window
by clicking the mouse on the Load button.

Figure 20: History files

After examination of the history file information we learn that the msg_receive op-
erations of the server threads have failed with the RCV.TOO_LARGE return value. The
clientl netname_look_up operation have failed with return code NETNAME_HOST NOT_FOUND.
So we know what happened, now we need to understand why this has happened and

how to fix the bug. This can be looked at in replay phase of debugging.
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6.2.6 Play it again ...

To replay the program we have to select Run /Replay option from the menu bar
and start all tasks one by one as we have done in record phase. For each task in the
computation there is a scrollable window created on the main pane of the debugger
window. Each window displays GDB prompt. To start execution of a task, the GDB

command run has to be entered.

Figure 21: Replayed execution

There are several things that can be done now. We can, for example, insert
a breakpoint in the clientl task right before the netname_look.up call. When the
execution stops at this point we can advance the execution statement by statement
(step) to discover that after unsuccessful netname-look_up call the ezit call takes place

and the task does not have a chance to send any messages to the server.
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We could also examine the source code of the server task to discover that there
are two types of threads: the threads 0-2 expecting small messages from clientl , and
the threads 3-5 expecting larger messages from client2. All threads receive messages

on the same port.

‘What went wrong 7

Based on this information, the details from the time-process diagram, and the infor-
mation from the history files, we can now identify the source of the problem, and
explain why the first execution has been successful and the second has failed.

In the first execution the small messages from clientl arrived before the large
messages from client2. Since the threads 0-2 were created first they got to exccute
the msg_receive operation first and successfully received the three small messages from
clientl. The next three messages from client2 were received by threads 3-5.

In the second execution task clientl was delayed. The task client2 was the first to
send messages to the server port. Now threads 0-2 all fail in the msg.receive opera-
tion. Threads 3-5 receive the three messages and the server task terminates execution.
When the clientl gets to call the netname_look-up, the server has already terminated
and this is why the NETNAME_HOST_.NOT_FOUND value is returned by the netms-

gserver.

How to fix this bug ?

There can be several ways of eliminating this non-deterministic behaviour. One is to
introduce two ports in the server task space instead of one. Then the small messages
could arrive at one port and be received by threads 0-2, and the large messages would
arrive at the second port and be received by threads 3-5. This way the server would

not terminate before the messages from one of the clients are received.
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Chapter 7

Summary

This chapter summarises the work presented in this thesis. The summary includes
description of the main contributions of this thesis work, examination of the possible
benefits of this work for other designers of concurrent debugging tools, and possible

future extensions to the DDB debugger.

7.1 Contributions of the thesis

The main contribution of this thesis is the design and development of the DDB
debugger. We have also made a survey of 29 distributed and parallel debuggers, and

classified the sources for non-deterministic behaviour in Mach programs.

7.1.1 DDB - simple but usable debugger

In this thesis we presented DDB, a distributed debugger based on deterministic replay.
The main virtues of the DDB debugger are its completeness, usability, and simplicity.

The DDB is self-contained since it provides all necessary means for distributed
debugging under Mach. The set of features provided by the debugger addresses the
major issues of concurrent debugging by eliminating the non-deterministic behaviour
in the replay phase of debugging and providing tools for examination of program
execution and interactive debugging. The deterministic replay facility addresses the
problem of non-determinism inherent in distributed programs. The time-process di-

agrams, and history files provide a global view of program execution, which can be
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helpful in understanding the interaction among multiple tasks. The source level de-
bugging provided by GDB can be used to further investigate the program behaviour
in repeated deterministic re-executions until the error is located.

The DDB debugger provides a graphical user interface that is very simple, but at
the same time gives easy access to all the debugger fe1tures. The programmer is not
required to create configuration files since the program specification can be entered
through the user interface. The time-process diagram and the history files information
can be easily accessed from the main window of the debugger. The output from cach
task of the program is displayed in a separate scrollable window. The source level
debugger accepts commands through the graphical uses interface. Each task has a
dedicated window for interaction with the GDB where the programmer can enter
GDB commands. The “minimal” approach used in the design of the DDB, unlike
the previous project CDB, allowed for creation of a debugger that could be designed
and implemented as a master’s thesis. The DDB debugger does not provide any
sophisticated features, like checkpoint and rollback, or global_breakpoints. However,
even in the present form, it can be successfully used for debugging of many distributed
programs, and the basic set of {eatures provided by DDB creates a good base for future
developments. By extending the set of available features, the DDB can be developed
into a full scale distributed debugger.

DDB has been designed with reusability in mind. During the development of the
debugger we have aimed at reusing the distributed debugging research work carried
in the past in the Computer Science Department at Concordia University. The reuse
has been at conceptual as well as practical level. The example of practical henefit
for the DDB is the use of the GDB source level debugger modified for the needs of
distributed debugging during the CDB project.

The Mach operating system presents several challenges to software developers by
introducing multi-threaded environment, which along with its many benefits brings
the potential for errors resulting from interaction among multiple threads. An im-
portant contribution of the DDB is that it addresses the issue of debugging of multi-
threaded applications, central to Mach software development. By capturing the non-
deterministic behaviour at the thread level, DDB is able to repeat the patterns of

interactions between multiple threads in a task.
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7.1.2 Survey of concurrent debuggers

Another contribution of this thesis work is the survey of distributed and parallel
debuggers presented in chapter 2. The survey is based on extensive research of the
concurrent debugging field. The debuggers presented in the survey have been, in
majority, developed during the last five years. The debuggers are evaluated according
to their usability in concurrent debugging by placing the emphasis on the functional
aspects of the debugging rather than on the methodological issues.

The informaticn gathered by the survey is presented by descriptions of sample
debuggers representing each of the identified groups of debuggers, and by presentation
of functional characteristic of a larger population of debuggers (29) in tabular form.
The conclusion of the survey identifies the main directions in the development of

concurrent debugging tools during the recent years.

7.1.3 Classification of non-determinism in Mach programs

The design of the deterministic replay engine for the DDB has been based on ex-
amination of the potential sources of non-deterministic behaviour in Mach programs.
The analysis considers two levels of communication within the distributed and multi-
threaded program as sources of non-deterministic behaviour: the interprocess commu-
nication level, and the thread interaction level within each task. The various points
for non-determinism in Mach computational model were classified and explained with
different scenarios in chapter 3. Based on this analysis we have created a mechanism
for capturing the non-deterministic behaviour in multithreaded Mach programs. This

mechanism is described in chapter 4.

7.2 Benefits to designers of debuggers

The results of the research conducted during this thesis project can be useful in the

development of other distributed debugging tools in several ways:

Direct reuse of implemented modules

The direct reuse could have the current DDB implementation as a base for develop-
ment of other debugging tools for Mach operating system. This type of reuse would
benefit most of debugging systems since the deterministic replay facility provided by

114



DDB is the necessary component for all distributed debugging systems.

Reuse of architectural design

The architecture of the DDB is composed of entities which can be used to implement
any other debugging systems. The architecture of the DDB can be viewed as a frame-
work giving good base for any debugging tool. From all of the debugger modules only
the DDB library has to be modified since it is based on Mach system calls. The
History Server is easily reusable since it simply receives, stores and retrieves informa-
tion without regard to the content of the information. In the same way, the Message

Server and the Name Server could be reused in a message passing environment.

Trade-offs in debugger design

A designer faced with the task of developing a distributed debugger mnust make a
choice concerning the approach to selecting the set of features to be provided by the
dcbugger. In this respect, the approaches demonstrated by the CDB debugger and
the DDB debugger are on the two opposite ends of the scale.

The CDB dehugger aimed at providing full set of features for distributed debug-
ging, including distributed breakpoint, checkpoint and rollback. On the other hand,
the DDB takes “minimal” approach, and provides only essential features shifting more
responsibility for debugging to the user. We conclude that our approach has more

potential for success, since it allows for incremental growth.

7.3 Future work

DDB provides only minimal set of functionalities needed for distributed debugging.
This minimal set can be extended to create a full scale debugger for distributed and

multithreaded programs. The following extensions can be introduced:

Global Breakpoints

Global breakpoints, unlike local breakpoints, are defined in terms of events taking
place in all processes in a distributed program. Definition and detection mechanism
for global breakpoints has been introduced by Christy Yep in his master thesis work
for the CDB debugger [52]. This mechanism could be integrated with DDB after
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introducing support for multiple threads, which is not available in the present version

of the Breakpoint Module developed for CDB.

Checkpoint and Rollback

The checkpoint and rollback mechanism is very useful for long programs. During
program execution, the state of each process is periodically saved, creating differ-
ent checkpoints. When an error is detected, the program can be rolled back to a
checkpoint that is considered error free, and restarted, giving the programmer the
opportunity for further examination. The Checkpoint and Rollback Module devel-
oped by Alain Sarraf for the CDB debugger [41] could be integrated in the future

with the DD if modifications were made for support of multiple threads.

Visualisations of Program Execution

At present the only graphical interpretation of program execution provided by DDB
is in the form of time-process diagrams. Another possible views of program exe-
cution are visualisation of the access to shared variables, messages waiting on each
program port, or the computational load on each processor. These views can be dy-

namically built in the replay phase of debugging when the probe effect is not relevant.

Better integration of local debuggers with User Interface

The user of DDB interacts with the local debuggers by typing the debugger commands
in the appropriate text windows. This could be changed by providing a better inter-
face where the user could interact with the GDBs through graphical representation of
the program. For example, a time-process diagram would display the execution and
the user would specify local breakpoints by clicking the mouse at some point on the

line representing the process.

The basic set of tools provided by DDB can be extended to transform it into a
sophisticated debugging system, and reach the goals stated by the designers of the
CDB debugger.
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Appendix A

Distributed program example

AR L L e L e T T P e e )

* server.c - creates six threads to receive messages from clients.

LR L s L T e T P P e L LY
#include <stdio.h>
#include <cthreads.h>
#include <mach.h>
#include <servers/netname.h>
#include <mach/message.h>

#include <mach/port.h>
#include <rdb.h>

#define MAX_TH 3
#define MAX_STRING 100

port_name_t receiver_port;

struct user_msg_small{ /% structure for small messages */
msg_header_t hdr;
DEBUG_MSG
msg_type_t type;
char string[MAX_STRING]; } ;

struct user_msg_big { /* structure for large messages */
msg_header_t hdr;
DEBUG_MSG
nsg.type_t type;
char string[MAX_STRING*2]; } ;
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int th_count = MAX_TH *2;

mutex_t out_lock; /*
mutex_t count_lock; /*
condition_t thh_cond; /*

void thread_small();
void thread_big();

/* number of threads */

lock for output */
lock for thread count */

condition for exiting threads */

main(arge, argv)

int argc;

char **argv;

{

int i;

cthread_t thread;
int data[MAX_TH*2];

RDB_INIT(argv, argc);
out_lock = mutex_alloc();
count_lock = mutex_alloc();

thh_cond = condition_alloc();

init();

/*

* Fork off all the child threads.

*/

for (i = 0; i < MAX_TH; i++) {

datali] = i;

thread = (cthread_t)cthread_fork(thread_small, &datal[i});
cthread_detach(thread);

for (i = 3; i < MAX_TH#*2; i++) {

datal[i] = i;

thread = (cthread_t)cthread_fork(thread_big, &datalil);
cthread_detach(thread);
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/*
* Wait for all child threads to finish.
*/
mutex_lock(count_lock) ;
while (th_count != 0)
condition_wait (thh_cond, count_lock);

mutex_unlock(count_lock);

/*

* Free up all the stuff we allocated.
*/

mutex_free(out_lock);
mutex_free(count_lock);
condition_free(thh_cond);
cthread_exit(0);

} /* of main */

/* - -
* Program initialization:
* - Allocate a port to receive message
* ~ Check in the allocated port
*
init()
{

kern_return_t ret;

netname_name_t name;

ret = port_allocate(task_self(), &receiver_port);

it (ret != KERN_SUCCESS) {
mach_error("in port allocate : ", ret);
exit(1);

}

strcpy(name, "tserver_port");

ret = netname_check_in(name_server_port, name,

task_self (), receiver_port);
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i? (ret '= NETNAME_SUCCESS) {
mach_erroxr("netname check in:", ret);

exit(1);}

} /#* end of init */

void thread_small(data_item)

int * data_item;

struct user_msg_small msg ;

meg_return_t ret;

int i;
/*

* Fill in the message header.
*/

msg.hdr.msg_size = sizeof(struct user_msg_small);

msg.hdr.msg_local_port = receiver_port;
ret = msg_receive(&msg.hdr. MSG_OPTION_NONE,O);

mutex_lock(out_lock);
printf ("\nTHREAD %d : %s\n", *data_item, msg.string);

printf ("THREAD %d : %s\n", *data_item, "Done and gone ..

mutex_unlock(out_lock);
mutex_lock(count_lock);
th_count--;
mutex_unlock(count_lock);
condition_signal(thh_cond);

cthread_exit(0);

} /* of thread_small #*/
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- - - e -

void thread_big(data_item)

int * data_item;

struct user_msg_big msg;

msg_return_t ret;

int i;

/%

# Fill in the message header.
*/

msg.hdr.msg_size = sizeof(struct user_msg_big);

msg.hdr.msg_local_port = receiver_port;
ret = msg_receive(&msg.hdr, MSG_OPTION_NONE,O);

mutex_lock(out_lock);
printf("\nTHREAD %d : %s\n", *data_item, msg.string);
printf("THREAD /d : %s\n", *data_item, "Done and gone .

mutex_unlock{out_lock);

mutex_lock(count_lock);
th_count--;
mutex_unlock(count_lock);
condition_signal(thh_cond);

cthread_exit(0);

} /* of thread_big */
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/‘l WA o o ook ok ok o ook it oo o o e e ok e ol o o e ok e ook ook ok ok ok sl ok e kol ko ok o ok ok skl ok ok o ok ok a3k ok

* clientl.c : sends a messages to the server, does not expect reply
Rk R koo ko ok Rk ok Rk ok Rk R ook Rk ok Rk koo ok ok kok ok ok /

#include <stdio.h>

#include <cthreads.h>
#include <mach.h>

#include <servers/netname.h>
#include <mach/message.h>
#include <mach/port.h>
#include <rdb.h>

#define MAX_STRING 100
port_name_t receiver_port;

struct user_msg{
msg_header_t hdr;
DEBUG_MSG
msg_type_t type;
char string[MAX_STRING]; } ;

/¥ mm e e e ———————— */

void main(argc, argv)
int argc;

char =*argv;

{
RDB_INIT(argv, argc);
init();
process();
exit(0);
}
/% =mmmmm i -

* Program initialization:

. - Look up the receiver port



kern_return_t ret;

netname_name_t name;

strcpy(name, "tserver_port");

ret = netname_look_up{name_server_port, "*",
name, &receiver_port);
it (ret != NETNAME_SUCCESS) {
mach_error("netname look up:", ret);
exit(1);
}
} /* end of init */

/¥ mmmmmemmm e send the messages ——--——~-—=~——---~--- */
process()
{
struct user_msg cmsg ;
msg.return_t Tet;
int i;
/*
* Fill in the message header.
*/

cmsg.hdr.msg_simple = TRUE;
cmsg.hdr.msg_size = sizeof(struct user_msg);
cmsg.hdr.msg_type = MSG_TYPE_NORMAL;
cmsg.hdr.msg_local_port = NULL;
cmsg.hdr.msg_remote_port = receiver_port;

cmsg.hdr.msg_id = 123;

/*
* Fill in the type structure for a string of characters.
*/
cmsg.type.msg_type_name = MSG_TYPE_CHAR;
cmsg.type.msg_type_size = sizeof(char) = 8;
cmsg.type.msg_type_number = MAX_STRING;
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cmsg.type.msg_type_inline = TRUE;

cmsg.type.msg_type_longform = FALSE;
cmsg.type.msg_type_deallocate = FALSE;

/*

* Fill in the data structure.
*/

for (1=0; i< 3 ; i++)

{

sprintf(cmsg.string, "Client one : message number %d", i+1);

/*
* Send the msg to the receiver.
*/
ret = mag_send(&cmsg.hdr, MSG_OPTION_NOKE,O);
printf("\nMessage to the server has been sent\n");
printf("Message: %s\n", cmsg.string);
}

} /* end of process */

124



R L T e LT T T T Y P T T

* client2.c : sends a messages to the server does not expect reply

R L T T T A T P L T S e T T P T TP Y YT 4

#include <stdio.h>

#include <cthreads.h>
#include <mach.h>

#include <servers/netname.h>
#include <mach/message.h>
#include <mach/port.h>
#include <rdb.h>

#define MAX_STRING 200
port_name_t receiver_port;
struct user_msg{

msg_header.t hdr;
DEBUG_MSG

msg_type_t type;
char string[MAX_STRING]; } ;

/¥ e e e e e e e m s/

void main(argc, argv)
int argc;

char #*argv;

{
RDB_INIT(argv, argc);
init();
process();
exit(0);
}
YT — - e mne

* Program initialization:

* - Look up the receiver port
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kern_return_t ret;

netname_name_t name;

strcpy(name, "tserver_port");

ret = netname_look_up(name_server_port, "x",
name, &receiver_port);
if (ret '= NETNAME_SUCCESS) {
mach_error("netname look up:", ret);
exit(1);
}
} /% end of init */

/* send the messages */
process()
{

struct user_msg cmsg ;

msg_return_t ret;

int i;

/*

* Fill in the message header.

*/

cmsg.hdr.msg_simple = TRUE;

cmsg.hdr .msg_size = sizeof(struct user_msg);
cmsg.hdr.msg_type = MSG_TYPE_NORMAL;
cmsg.hdr.msg_local_port = NULL;
cmsg.hdr.msg_remote_port = raceiver_port;

cmsg.hdr.msg._id = 123;

/*
* Fill in the type structure for a string of characters.
*/
cmsg.type.msg_type_name

MSG_TYPE_CHAR;
cmsg.type.msg_type_size = sizeof(char) * 8;
MAX_STRING;
cmsg.type.msg_cvype_inline = TRUE;

cmsg.type.msg_type_number
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cmsg.type.msg_type_longform = FALSE;
cmsg.type.msg_type_deallocate = FALSE;

/*
* Fill in the data structure,
*/
for (1=0 ; i <3 ; i++)
{
sprintf(cmsg.string, "Client two : message number %d", i+1);
/%
* Send the msg to the receiver.
*+/
ret = msg._send(&cmsg.hdr, MSG_OPTION_NONE,0);
printf ("\nMessage to the server has been sent\n");
printf("Message: %s\n", cmsg.string);
}

} /* end of process */
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