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e SHAPE DISCRIMINATION -
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An algorithm based on thg properties of the distribution
- .
function has been developed for signal detection and classific-
ation: 'Capa.bilityféjf this algorithm, known as the DF algorithm,
to detect very small differences in the shape of two signals
is shown. It ise illustrated that a pure, single peak signalJ
caane.distinguished from a similar looking impure, strongé};y
overlapped double peak signal in the presenge of measurement
noise. Also, the algorithm is applied in the measurément of
the distancé between two closely spaced point targets in a
radar syst%m. The DF algorithm hasAless normalized r.m.s.

error in measuring the normalized distance between two targets,

than the error obtained by t}‘\;e conventional t‘hreshold and

moment algorithms. The percentage improvement in the =~ =~ - ——

pérformance achieved by the DF algorithm over the other
algorithms is computed and is seen to be considerably higher
for all ranges of target distance and input signal-to-noise

L

ratio.
-

oy A stsemt o




[ - - - A)
- - i -
. 1
e T T—— . . _ ‘gr
. . ‘ -
.o ’ . .
. .
- 1] A N . ‘ )
.. . i L ,
* ' " » v
I \\ . . .
- . .
* -
.
' ©
< ‘ ' :
s R - .
’ = .
‘ /
— »
- . ! o .
. o
.
f ' .
» . . R
. . P - .
.
- . 3 N
¥ . . . .. . \ . N N
: ‘ o
. -
v ! !
' ' ’ a - .
. : ~ay o .
) ) : - -~ N » N
AN [ ,
b s
>
. s
- . . . ’
{
o . f H
. . L
: . . 4 - < »
’ ’ ‘ ’ ‘ @
¢ ‘.
\_/ v \ \ . .
=
- ! ™
- ! N
. - . 1
N 0 v N :
- e s ~
N , -
- ! +
. .

L . ' , To thememory of my father.
. , & . . .

. [} -
» 'Y N
5
. ' .
- ' .
S s .
: N b ", - '
. . . . .
' G - -
s
- ™ R -
A .
! N N . 14 Vo
[} -, a
- R , . 3
N v_— i L . 17
: ~ . . ,
.
. » i — I
) . & Q -
- - v -
X N
’ " - o
N . . R
. “ . e .
- -~ ‘ - - b
)
. \\
) ) ~w "
-~
N
9 “w , A - N . . . ,
s
L/ i - i
~ - ”~ ,
d oo i
. *y
N . . ' LA
- . - .
! . kY - R
. . . .
-’ ~ . . ) ]
. . , ¥ ¢
i N . , o~
. »4)’ . :
. . ‘
. A ! . *
' ' , - ¢ R .
' ~ et ;
r 3 .




,
' < - ii- 7
. ' ACKNOWLEDGEMENTS
'- ." . \' N . + ¢ ?
- The author wishes to express his gratitude to Professor
’ S.D". Morgera for suggesting the problem and for his guidance
N ’ and assistance during the entire preparation of this thesis., ,
© . . Thanks are also due to Madeleine Klein for typing
oo fhe ,thesis. -
This work was, supported by the National Science and

o ‘ Enginéering‘ Research Council qu Canada under Grant (040-187),

LS ' ) . ' Lo .

. Jawarded to 'Professor S.D. Morgera. ‘ L ‘
- ‘; . l .\

A ‘ o \ﬁ c_: .
- tv"/ ¥
. . “ . “ °
B 5 A .
. m‘(i - '
. i , "« C - N
E f} \ . &
i_\ - . ) o , ,.\‘
: | ,x o
s \ N / :
" 4
7

(3%




e g

/ E
- iii - .
TABLE OF CONIENTS
ABSTRACT - - —-- e SO S i
ACKNOWLEDGEMENTS = = = == = = m = == o o e e e e oo ii
LIST OF IMPORTANT ABBREVIATIONS AND SYMBOLS =========n=- v

CHAPTER 1: THB PROBLEM OF SIGNAL SHAPE DISCRIMINATION =-- 1. °

1.1 Introduction ==——=c————mmmm o e 1
1.2 Main Features of the DF Algorithm =—---~—--cc-oe—--- 4
1.3 Comparison with the Other Existing Methods =——==- 5
1.4 The Criterion for Choice of Method ===—-w~-re=——w-- 7
1.5 Possible Applications —---=—-c--——=--- ——ommm———-— 8

a

CHAPTER 2: PRESENTATION OF THE DISTRIBUTION FUNCTION

(DF) ALGORITHM == ==-m-——mrmm— e e m e — = ——==-=-- 10
2.1 Introdugtion ==—=—-==-=—=-- e c—————— 10
2,2 Construction of a "Mixed" Measurement Signal =---- 10
2.3 Construction of the Reference Signal ~—=—--==——==-- 12
2.4 Construction of Pure (Single Peak) Measurement
Signal =~—====~sccmm e m e e m e m e me 13
2.5 Adding Noise to the Measurement Signal —----=—--- 13
2.6 Applying the Method -—=---——w-rm—memm e e 14
2.6.1 Construction of the Function ¢ =—~=t-=-—w—e- 16
2.6.2 The Detection Criterion -———--=—=--==——-=- 17
2.7 simulation 6f Algorithm --=—----m——a- - --- 19
2.8 Some General Results —e-eeceererecmrc e e e 29
CHAPTER 3: AP?LYING THE DF ALGORITHM TO A MULTI-TARGET
RADAR PROBLEM ~====em-ecmmmnr e m ——em = ———————— 36
3.1 Introduction ———---em e cmem e ——m e - 36
3.2 Comstructing the Measurement Signal for the
Combined Two Point Target Response --=——---==—==- 36
3.3 Constructing the Reference Signal ---=~---==-—---.42
3.4 Applying the Algorithm =---—---- e E P 42
3.5 Performances 0f the DF Algorithm —=---——=we--- Zr-— 43
3.5.1 Scheme to Estimate Normalized RMS Error -- 43
3.5.2 Comparison of DF Algorithm Performance
- With Other Existing Algorithms ——----- —--- 48,
e
CHAPTER 4: CONCLUSIONS #---mmcmmmm e e e e e e e 55
.\\
o
{

T PRSI

PRI SUC T SRRSO PSP

R e O



Ao o,

LN

. Page
.o : ; N
*  APPENDIX l: DETERMINATION OF STANDARD DEVIATION OF
WHITE NOISE FOR A FIXED S/N RATIO =--=—c--n 60
, ,
APPENDIX 2: ESTIMATION OF THE PARAMETER B, —=—w--=m=--- 62
APPENDIX 3: DESIGN OF FIRST. ORDER, RECURSIVE, LOW PASS
DIGITAL FILTER =~=-=—- Rl ST E e PR .66
APPENDIX 4: LISTING OF THE COMPUTER PROGRAMS —====—--a- 70
REFERENCES =============m e e m e mem e o mem 78
- M .
~
¢ . \
\ ' < !
. .
\ )
: ¢ R
\\
' - (
L '
. | —
A . .
' b e
1 .
\ - »
~ ‘- . ,‘ ! .
* - 4 h
- b4
| )
. \ »

e




~ e

T

P

-1

p.d.f.

r.m.s.
RCS
Re ]

S/N

8148,
9,,0

1'72

-

™M

szrms

[>]
"~ 2Nrms

P S

-y -
o

LIST OF IMPORTANT ABBREVIAT'IONS AND SYMBOLS
&) :

Decibels

Normalized transfer function of ‘Analog filter

Impulse response of Analog filter
Ima;inary part of i
Inverse Laplace transform

~Probability. density function

Root mean square.

# Radar Cross section

Real part of

Signal.to noise o [
Samb’ling arigular frequency
Cut off frequency of digital filter
Z-transfor.m

Proport'ionality\ fa.lc.tolr

Mean values of Gaussian distribution
Standard deviation of Gauséian distribution
iedio frequency phase difference
NNormalized distance (delay)

Normalized r.m.s. error

Half pulse width

RMS value of 82 for pure measurement signél

RM5 value of ;32 for noisy measurement signal

e

- A.-w»%..,.w [P

e . AP A R

-

e e .
e TN




‘..']_ _

CHAPTER 1 :
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L4

THE PROBLEM OF SIGNAL SHAPE DISCRIMINATION

1.1  Introduction

The impetus for this work comes from the field of
chromatography [1], in which itfis n:acessary to, detect a very
‘émall_differehce between the shapes qf two signals. In the
field of chr‘omatography, if two substances to be examined are
different, one being a pure substance and the other a compound
substance, the c‘hromatograph or spectra re;;resenting them are
different and distinquishable from each other. But in certain
cases, the compound substance may be a mixture of a pu¥e
substance and a very small amount of anocther pur= substance.
Then the chromatographic peak of this compound may look quite
Tlsimilar to the peak corresponding to the pure substance. It
then becomes difficult to decide whether the given peak is a
simple {pure substance) or a composi'te peak (impure substance).
Such a signal classification problem has been solved in Chapter

2 using a technique called the Distribution Function (DF)

algorithm.

Two measurement signalé, one pure and the other composite
(combination of two pure signals) are preparéd. The presence
of measurement noise is assumed.. A reference gignal is also
prepéred in the form of a pure signal. Signals - are assumed
to be of Caussian shape. This_ assumption is suitable for many.

applications of interest. The disctribution function of each

e At Pl il S, 3 P02 N
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© measurement signal is calculated and” compared with that of the

reference signal. The invariance property of distribution

functions is used in defining the inwvariance in the shape of

~ the signals. A function, ¢, is obtained iA the form of a

-curvye, each time the above comparison is made. Then the method

of least squares is used to determine the degree of nonlinearity-
vh

of the ¢ curve. Finally this estimate of nonlinearity is used"
inl‘making the decision regarding the similarity of the shapes.
r’I’o our knowledge, _such an approach ‘has not previously been
applied to problems Sf signal classification in the engineer-
ing fie‘ld. . }

“Phe usefulness and the success of thé“DF algorithm
encouraged the study of & multi-target radar prbblem. We
apply this algorithm to measuré the distance in space between
two closely spaced point taréets. Twhe accurate measurement
of the distance between two closely spaced_ point targets in
the presénce' of noise has been a long standing problem for

radar rrfeasuring systems.

In.radar systems, .a pulse of known sha.pe and the ampli-
tude depending upon the radar cross section (RCS) of the \
target,. is received from each point target. As the two point
targets are spaced by a certain dis>tance, a phase
difference is produced between both the returned pulses. In
the receiver the‘se two pulses are added vectotially and a
combined two target response is produced. Here again the

o

.

- i
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i puls:es'are as:c,u.med ‘;:o be of Gau\ssian shape which, coysiéering -
the narrow beam antennas, 1is a most realistic 'assumption. .The
application -of the DF algorithm for measuring the distance
between two point targets is described in Chapter 3 of this
work. The rms value of the’ error made in the measurement of
the distance is calculated in order to judge the performance
.é)f the DF algorithm. Equal RCS of the targets is assumed in
this application.. The performance of the DF algorithm is 7

compared with other éxisting algorithms in terms of normalized

rins error made by each algorithm.

The idea behind this work and the applications as
described in Chapter 2 and 3, can be understood more clearly

and appreciated with the he.lp of Figure 1l.1.

1.2 Main Features of “the DF Algorithm

-~ )

The main feature of this algorithm is that it uses the

normalized integrals of the signals to be compared. In this
manner, it filters out the high frequency noise and thus
neglects the deformations of a measurement signal, r'elative to
other signal's, whose spectrum is very close to that of the
reﬁ(efence signal. H’é’nce, this algorithm may be applied, in
some cases, as an alternative to ‘Fourier trarisformation or

matched filtering.

Moreover this algorithm' does not require any modelling
of the measurement signals or of the system from which they’

come. Hence, two major sources of errors are avoided, which

, | .
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are usually encountgred,in the parameter fitting of the model
on th& basis of observatioqg. These two sources of error are:
(1) _ the problem of difference between the fitted model

and reality,

{

(11) the measurement noise which causes the error in i
¥

1

parameter estimation. - .

The ﬁirst‘source of error is absent from the DF algorithm,
as it does not require any model. The second type of error is

minimiZed,. because normalized integrals are employed.

~

¥
The other major feature of the DF algorithm is that, it .
is sensitive only to shape variations. In other words, it
is insensitive to many parameter variations which do not

change shape. 1In the case of visual similarity of two shapes,

these parameters are the ordinate scale, the zero point of X
the abscissa, and the abscissa scale. This implies that

expansion or centraction of the shape by changing the scale on

the X or Y axes, does not change‘thekshape of the signal.

This insensitivity to scale change on the abscissa permits ‘ )
athis algorithm to be used, whereas a deconvolution algorithm,
sensitive to the width of the apparatus functicn, would not

be applicable, due to the uncertainty of this width [2].

1.3 Comparison with the Other Existing Methods

o I

There are predominantly two types of existing methods :
-
to detect the difference b#tween two signal shapes. The first
. -
type af method works on the principle that the shapes are

\\
\ - I

i 4
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difggrent\if the difference between their models can be proved. -
To do thag,-both single peak and double peak models are prepared,
and then the one which seems more appropriate acco%ding to some
criterion, is selected. This method has an advantage over our
method as it can give estimates of the parameters which cause
deformation in the shape. TFor example, in the case of double
peaks, estimates of separation between the component peaks and
their area ratio can be obtained. But if the'shape difference

is very small, problems arise using this type of methéd. As

said earlier, the probiem of difference between the fitted

model and the reality can arise and detection results become

doubtful because of the uncertainty of parameter estimates.

The main reason for the uncertainty of parameter estimates can

o

oy

\fc

be explained by the fact that moment éstimates of order one
and two do not play any part in characterizing the shape.
While higher order moments are very sensitive to the shape
variation but their calculation is so sensitive to the noise,
that they are of doubtful use in detecting small differences

in the shapes.

Another type of method uses the notion of\Ehape and
calculates invariants. An invariant is a number which is
determined from a particula£ profile, and depends in reality
on the shapé of this profile. The above property is applied

in the "slope analysis methond"”, in which the ratios bzﬁween

the extreme values taken from the second derivative of the
AR

front and the back side of a peak are calculated (exponentially
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modified Gaussian [3]). Aanother example is that of the "method
of moments", which uses the relationship between the central

moments of order 2, 3 and 4 of a peak [4].

The fqllowigg criticism may be made regarding these
methods. First, they are very sensitive to noise. Second,
as invariants are calculated from-signal models, they may be
inadequ%te, due to model inaccuracy. Finally, ‘invariants do

not characterize the shape, while the DF algorithm uses an

invariance property which characterizes the shape.

1.4 The Criterion for Choice of Method

The criterion for choice of a suitable method must be
based on foliowing three factors:
»(i) The complexity of the method and the rescurces
available. The DF algorithm is quite complex in |
itself and reguires a computer system of ﬁSdest

-

resources to simulate the algorithm. The other
methods appear to be less complex. .
(ii) The degree of deformation (shape difference) between
the ,signals and whether parameters of deformation
are required. As the DF algorithm does not give
estimates for éarameters, it should not be used
in a case where these parameters are reguired to
be known. However, for detecting a very small

degree of deformation, the Df algorithm appears

to be the best choice. . P
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(iii) The signal-to-noise ratio of the measurement .signal.
As the DF algorithm uses normalizéd integrals to
filter out the noiée, it may work satisfactorily for
lower signal-to-noise ratios, compared to the other

methods.

As an addition to the above factors, the following state-

ment can be made: If we have to distinguish, in a nbisy
environment, a pure peék from aﬁother one, apparently unique,
but in reality contaminated by a secondary peak in a very small
proportion, the DF algorithm is the only one to establish the

distinction.

1.5 Possible Applications

There are a number of application areas which can take

. ¥
advantage of this algorithm, as mentioned below.

)

(i) This algorithm can be applied to the cése of: \

a) emission or absorption of specéra of electromagnétic
waves, a single peak representing a pure line,

b) Lorentzian profiles of light scattering in a
transparent environment, a single peak representing
one kind of scattering particles,

c) ghromatograpﬁic peaks,.a single peak representing

a pure substance.

The above mentioned applications, in general have been
dealt-with, using the DF algorithm in Chapter 2 of this work.

The results obtained by computer simulation are also presented.

y

f
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(ii)

/ (iii)

This algori£hm can also be applied to a pattern +
recognition problem, concerned with spatiai recégnition &
of similar 3-dimensional objects or multi~dimensional
regions in an image or in a scene.

To measure the distance between two closely spaced

point targets in a radar system. This speqific

application is implemented and des;({ged in Chapter 3. .

- -
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CHAPTER 2

v’l 1]

PRESENTATION OF THE DISTRIBUTION FUNCTION

- (DF) ALGORITHM

v

- . x

2.1 Introdliction

-

v

. : The DF‘algorithm assists us in making a distinction
e |
{ fJ . /)\ between two signals which look alike to the naked eye, i.e.,
wy “ those for which there is a very small difference in shape [4].
. Using thié'a}gorithd'we cén also decide whether the signal
which is meas&éed, the measurement signal, is a pure signal
(single peak)ﬂor a mixed signal. The latter composite signal
- sMay arise when more than one signal are overlapped to the

o extent that the resultant signal looks like a pure signal

having a single peak.

Let the functions describing the signals be real,
continuous, positive, and integrable from -= to +», These
properties allow us to compare two signals in the form of

functions which are proportional to their probability density

functions (p.d.£f.).

272 Construction of a "Mixed" Measurement Signal

Let the signals which satisfy the above required proper-
ties be assuﬁed to be of Gaussian shape. Assume two Gaussian
signals, vl(t) and v2(t) , are the component signala‘of a mixed
or composite signal vc(t) {2], shown in Figure 2.1 and expressed
as,

vc(t) = 0 vl(t) + (1l-a) Vz(t) (2.1)

R s

. s
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where o is the factor depending upon the ratio of peak
amplitudes of both signals, and is called the "proportionality
facdtor". For example, o = 0.5 implies that the amplitude of

both component signals are the same, or in other word$, their

e

distributidén has the same standard dewviation.

Here vl(t) and v2(t) can be represented by the functional

form of the Gaussian probability density function [5], as

- shown in Figure 2.2 and given by,

_(e-e)?
1 2012 .
Vl(t) = /2—%; e , . {2.2)
- (=8, ? |
1 2022 } § ,
v2(t) =v,/'2—,-r?5_2_ e . | ' (2.3)

where Si, gi are the mean value and standard deviation,

o

respectively, of vi(t) i=1,2.

The first non-central moment or mean, Y oe of the !

combined signal may be comouted as [5],

' = ) 6 — ) . \
e L8] ¢ (L-a)d, , (2.4)

|
I
e At bt ts .-,'.:ull bl g o 57 St 4 S

4
Hh
S
®
b
®
t
g
—
1]
)
i
o
<
0
ALEE fnde

— ¢ . (2.5)
My = 95 = ke AN

4
The standard deviation of the combined signal may be calculated: ;
as ' [

‘ . - ‘ 1/2
3= [u(si + mi) + (lju\(ag + mg)] (2.6)

DWER
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2.3 Construction of the Reference Signal .

" To implement the Distribution Function Algorithm, we
must construct a "Reference Signal” which is also real, s

continuous, positive, and integrable from -« to +«.- The

reference signal ig‘required because in thg method we heed to-
- ~.

compare the "distributi function" of the measurement signal

to that of the reference signal.

}

\ ¢
With the help of the parameters obtained in Section 2.2,i.e.,

Hoe and Oyt We will make a pure (single peak) reference signal/ .
which looks like the mixed signé% in shape and has the same
mean value as the combined gignal, but with a standafﬁ
deviation slightly differéﬁt than that of the combined signal.
A reference signal for certain parameter valuef of interest is

shown in Figure 2.3. We set the mean of the reference ‘signal

to be, -

Q
i
Q
I
p o2

3

\
where § is very small in comparison to Toe It myy be assigned

N

2 to 3 percent of the value of SR

o ’

Then the Reference Signal sr(t) can be represented

by ~(t-u )2 ;
| 1 207 . i
Sr(t) = Jang ¢ r { (2.7) ]
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2.4 Construction of a Pure (Single Peak) Measurement Signal
AN ' ' ’ _.

Now we will construct another measurement signal which is

pure, i.e. represents only one signal, but has the same mean
and variance as that of the combined signal. We set the“;yéh

of the pure measurement signal as

' u =1 '
. vp ve
and the standard deviation as va =00 So, this signal
can be represented in the following way, A
- 2
. -(t MVE)
e 1 . 20 2
v_(t) = pm—— e P (2.8)
P 1 VP r

]

and is shown in Figure'2.4.

2.5 Adding Noise to the Measurement Signals

Signals constructed in the above fashion are the idéal
measurement signals, i.e., without any Hoise. But in communi-
cation or pattern recognition systemsggfignals are contaminated
'becéuse of the presence of noise added to ;he'incominé signals.
So to construct the actual signals, we édd white noise with

mean zero and a standard deviation depending‘upon the signal-
to-noise ratio. A derivation for the compugation'of the standard

deviation of the noise as a function of desired signal-to-noise

(8/N) ratio is shown in Appendix 1.

Let o be the standard deviation of the white noise, fop

>

a particular S/N ratio. To construct the noise, we use a

Uniform Random Number Generator. These noise samples have

'

.
[ N S

N

e deme
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‘values lying between 0 and 1 and have distribution with a
mean value of 0.5 and standard deviation of v1/12. Then
uniform random noise samples with mean zero and a prescribed

standard deviation g_ can be represented as,
1

B

n(t) = (RANF (1) - 0.5) x V12 x 9, . (2.9)

where RANF (1) is the 'Computer Library Function', which

]

gives the uniformly distributed numbers between 0 .and 1. hjﬁ

. Adding these noise samples to our measurement signals,

we obtain the desired noisy signals:

i

Combined Noisy Signal: nv_(t) = v_(t) + n(ﬁ)
© < (2.10)
and pure Noisy Signal: nvp(t) = vp(t) + n(t)
Typical curves for thése signals are shown in Figures 2.5 and

2.6, respectively. . : .

2.6 Applying the Method

v

Now that we have constructed all the signals required,
we are ready to apply the Distribution Function method for
detection of the shape difference between two potentially

different signals. '

E

The first step is to compute the distribution function

of all the three signals previously constructed.

The Distribution Function of the reference signal is

R s L R 2 WO RN

given by,

e o L
St N
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|
£
%

X N
-~ I sr(t) dat

o 5. (x) = ‘ , : (2.11)

\ .
\ j'sr(t) dt

\

As a function, sr(t) is a positive p.d.f., (because of its

properties) , Sr(x) has the properties of a continuous and

increasing distribution function (df). Thus, the function
S%}&) also has an inverse fupnction, S;l(x).
e N

PRI
v(4' N

Similarly, the distribution functions of "the noisy

~

combined signal and the noisy pure signal can be represented,

respectively, as,

N

X .
-r n v_(tyr~dt )
v (x) = 12 il (2.12)
f n v _(t) dt )
- 00 s ~

and

“x
t) dt
f n vp( )

- ‘ ' (2.13)
f n v_(t) dt :
P

- 00

1}

Vp(x)

A

The definition of shape constancy of the signal sr(t)

depends upon the following property of Sr(x).
. ) ' [N
The function sr(x) is invariant for any transformation -

of Sr(t) of the type,

s+ v(0 =K s_[677(x)] = (6

. (x)] (2.14)




where K is a positive constant, o(-) is én increasin%
continuous function, and v(x) cap bé either vc(x) or vp(x)_-
The last factor in Equation (2.14) is the Jacobian of the
"transformation: It can be proved that the distribution funct-

ion Sr(X) and V(x) are equal at dbints x and y related by

it

Y $(x) or,

Viy) = v{¢(x)]

Sr(x)

The relation Setween Sr(x) and V(x) can be reyfitten from

o

RO | - /
v [Sr(x)] = ¢(x) . (2.15)

‘ 1
This is the invariance property of the distributien

b} ”

function and can be used to define the invariance in shape of

the above as,

the signals. t,,
-

2.6.1 Construction of the Function b

When compafing the distribution function of the reéerence
signal s:(t) to the didtribution function of tﬁe measurement
signal,' the compariscn leﬁds to a.point-by-point constrqcticn
of the function 4$(x) defined in the following manner ,

‘For a combined (measurement) signal,
b (x) = v_ TS (x0]
c c r

and for a pure (measurement) signal,)

- v ~1 ; - 4
tp(x) = Vp FEI(X)] . ,

St A g e .«-AA&M e Y ot i A s
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The ahove relationship is equivalent to,

vid(x)] = s_(x)
r

Computing the equation,

. o
where V(y) may be either Vc(y) or vo(y), allows the function

y = ¢(x) to be determined.

’

We use a constant increment on the ordinate for the
distribution function Sr(x) and V(y). Thus,. in reality two o

. A}
equations are solved,

S (x) = i/n ~ ‘
(2.16)
and ‘ viy) = i/n "
where n is the number of sample points of the ordinate, iis
an integer ranging from l.to n. Two typical curves for the
function ¢ (') are“shown in Figures 2.7 and 2.8. Figure 2.7 is
obtained by comparing the reference signal to the combined
measurement signal; whereas, Pigure 2,8 is obtained by
comparing the reference signal to tbe pure measurement signal,

.

for a fixed signal-to-hoise ratio.

£
2.6.2 The Detection Criterion

’

While constructing the function 9(x), we obtain the
kY
points Xy and Yo i=1,2,....,n,.0n the x and y axes

respectively. In our case of visual similarity between two
signals, the deviation of o&x) from linearity will be

measured. , !

]

v
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'We fit a curve t6 the above data for'¢jﬁ) by‘using the
method ofwleast ;quares (6] with the parabolic»régression

equation,
.. N

- =g+ +
Y Bo leq By X

2 -

where 32 is a measure, of deviation of the curve ¢(x) from

2 .
linearity, i.e. 52 = %—% , the curvature. As derived in
X . .
Appendix 2, 82 can be emsily calculated from the points
(xi, y;) 1= 1,2,..%.,n. '
We calculate B, separately, first comparing the -

reference signal to the pure measurement signal, and then

comparing the reference signal to the combined measurement

signal. o ?

‘With a number of pure measurement signals compared with
reference signals, we obtain different values of 82, e.g., 7
(Bzhf (@2)2,(82)3..... Let the maximum difference between two

extremeevaiues of 8, so obtained be,

> \ / Q\ *.

| - _ . ' .
| (B5) pax! ](Bz)minl = d_, if both 8, are of same sign.
or é )
I (¢ g ' .
'F52)m§x' + By L d,, if both B, are of opposjte
K t sign
' » s ’ \ " )
. Now, in actual application, we have, ‘
2 b= i ’ : : “
1 (23) neasurement | [(85) pini = 4 if both 8, are of \
. . same sign -
‘ A
’ v : = i ’
«(62)measurementx * 1(32)min' d, if both 8, are of '
' opposite sign.
. A

s w———

et o
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and if 4 > k do’ where k = 2 for example, then we can say:, the . -
measured signal is a comb@ned signal; otherwise, we say it is
a“pure (single peak) signal. Here k do is the threshold value
which depends on the desired probability of classification A
error and upon 'the signal-to-noise ratio existing on the |
*  signdl recordings to be compared. So in a specific case this ;

value can be fixed by the S/N ratio and the possible deformat-
L4

ion expected.

2.7 Simulation of Algorithm

‘ In this section the DF algorithm is computer simulated.

Data required to construct the reference and the measurement

signals are chosen to provide meaningful comparisons.

¢
Let, ' o

- the mean value of the component 1 of the combined

measurement signal, ¢y = 2.27;

v

- ‘'the mean value of the component 2 of the combined

measurement signal, 82 = i.82;

- the standard deviation of the reference signal,

g = 0.39; and
r

- the proportionality factor « = 0.5.

The following tables were made, running the computer

‘“ program each time to determine, the value of 82.

° . | ( | {

AN A e el i, At A% (T2 Lri g1 ey

[ N ‘
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Values of 82, obtained when the measurement

signal is pure (single peak).

.

Here we.see that d

ment signal is a combined signal.

i

Ui

.
N

iy

2do,wand we can decide that the measure-

Standard Measurement Measurement signal with
“deviation of signal with noise
measurement no noise -
signal S/N = 20dB S/N = 25d4B
-3 -3} -4
0.40 -.343 x 10 -.972 x 10 -.719 % 10
-3 -4 -2
0.41 -.395 x 10 -.474 x 10 -.483 x 10
0.42 -.359 x 102 ~.186 x 1072 ~.235 x 1072
Table 2.2: Values of 82, obtained when the measurement
signal is combined (composite peak).
Standard Measurement Measurement signal with
deviation of signal with noise
measurement no noise
signal S/N = 20dB S/N = 25dB
-1 -2 -2
0.40 -.1373 x 10 ~-.217 x 10 ~-.4515 x 10
0.41 -.1302 x 107%  |-.373 x 107% | -.6201 x 1072
0.42 -.1392 x 107% -.414 x 1074 -.7742 x 1072
Choosing the case only for signal-to-noise ratio equal to 25
dB, from Table 2.1, we have
d_ = .235 x 1072« .719°x 107% = .2278 x 1072
t
From table 2.2 we have,
-2 -4 ' -2
d = .4515 x 10 - .719 x 10 = ,4443 .x 10
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If the difference between Bl and 82 1s increased, we

can get equally good results at lower signal-to-noise ratios.

Figures 2.1 to 2.8 are plotted on the computer graphics

\
machine for a particulafr case from the above table. Figure %
2.1 represents the combined measurement signal. In Figure 2.2 !

the components of the combined measurement signal are.shown.
Figure 2.3 is obtained for tr}e pure refergnce signal. Figure
2.4 shows the pure measurement signal. Figures 2.5 and 2.6
are obtained on adding the measurement noise to the signals of
Figure 2.1 and 2.4 respectively. Lastly,‘ the functior; ¢ for’

the noisy combined signal and the noisy pure signal is shown

in Figures 2.7 and 2.8 respectively.

- |

2.8 SOME GENERAL RESULTS _ 1 3!
. Some general and inteérsting results of the algorithm :
in the form of cggtain curves have been obtained. Basically, J

- the variation of the value 8, for different values of the
ratios 62/81, and 02/01, is computed and plotted as shown in
the Figures 2.9 to 2.12, vwhere el and 82 are the mean values,
respectively, of component 1 and component 2 of a combined \
measurement signal and 94 and g, are the standard deviations
of the two components. Again, these component signals are
assumed to be of Gaussian shape. On the x-axis, we plot the ~ i
ratio 62/61,- and on the y-axis, the values of [32 are plotted. i

Each figqure showé five different curves for different values

.Of the ratio 02/01.
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While applying the DF algorithm, component 1 of the
combined signal is kept constant with the mean valﬁe'2.08 and
the standard deviation equal to 0.4. These values have been
selected arbitrarily. To obtain the different curves, the
mean value and the standard deviation of component 2 are
changed, and the value of 82 computed each time. Here
- component 1 is used as the reference signal. Two sets of the
results are prepared. One, considering the measurement signal
as a combined signal and the other, when the measurement
signal is a pure signal (with equivalent values of the mean
and the standard devlation). Figures 2.9 and 2.1l are
prepared for a measurement signal without any measurement .
noise. Figures 2.10 and 2.12 represent the case when the
measurement signal is noisy, the signal-to-noise ratio being
equal to 40 dB.

On observihg these curves, the fallowing conclusions
about the results can be made: -

(1) The values of '62‘ are significantly higher for the

4 combineg measurement signal than the values obtained
for the pure measurement signal.

(2) As the distance between the mean values of the two
components increases, the ,82[ vaiue also increases
while measuring the combined signal. But in the case
of the pure measurement sicnal, theoretically the }82}

value does not change as the mean value of the signal

v Changes. Actually in Figure 2.11, the curves should

”
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be horizontal straight '‘lines, but are difficult to
obtain, because of Ehg fineness of quantization along

~he Y-axis, R

. The value of-|82| increases, as the ratio 0,/0;

deviates from unity, indicating more deformation in

the shape of the meagurement signal.

~
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CHAPTER 3

APPLYING THE DF ALGORITHM TO A

MULTI-TARGET RADAR PROBLEM

3.1 1Introduction

In this chapter we apply‘the DF algorithm to measuring
the disFance between two closely spaced poiht targets in a
radar system. We calculate the root-mean-square (r.m.s.) error
in measurement of distance u3ing thii algorithm and compare it
to the conventional threshold and moment algorithms (7], which

are presently employed for this purpose.

In radar systems a pulse of known shape with a peak
amplitude depending upon the radar cross SECtion (RCS) of the
target is received from each point target., Because of the
distance between the two point targets, the pulse returned from
the second target is delayed in time and has a phase
difference with respect to the first returned pulse. 1In the
receiver these twoc returned pulses are added vectorially to
form a combined two taréet fesponse. As this response is a

complex function in nature, we will consider its absolute

value when applying the method.

3.2 Constructing the Measurement Signal for the Combined

. Two Point Target Response

We model each point target returned pulse as having a
Gaussian pulse shape. For convenience, the notation for a

few éarameters involved are changed from those used in Chapter

v

2. Let and 6, be the mean of the first and second pulses,

v

a
"1

S it s o
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respectively, and 95 be the rms value of the Gaussian pulse

shape. To normalize the pulse envelope from the point target,

n

the rms pulse width o5 is set eqﬁal to 1. "As shown in Figure

3.1 let t = 0 be the arbitrary defined mid-point. Then the
) . 8 0
normalized.distance (delay) is -given by 1 = lE_i.= Lazl. Thus
p p
we can define a normalized pulse spacing or pulse width equal

to 20p The return pulse from each target can be represented

as,’

—lter] 2 ,
\ l 20}_32
vt = 1/VZno ) e (3m1)a
and C ' .
~[t-712 .
. : 2092
V2_(t) = l//2nop e (3.2)

The complex signal of these two pulses, v(t) is of theé form,

vit) = a v (e ey (1w vy V2 Gy

Radio frequency (RF) phase difference between two

[}

where v
component pdlses, and

0 = Scattering strength. of target, depending upon the .

peak amplitudegyof the individual pulses, which again

depend upon the RCS of the targets.
For example, equal RCS of the point targets implies o equal to

1/2. Equation (3.3) can be rewritten as,

v(t) = a v, (t) [cos y/2 + 3 sin y/2]1+(l-a) v, (t)

2
[cos Y/2 .- j sin Y/2]

1

e &

e e e 4
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FIGURE 3.2: FIRST ORDER AUTUREGRESSIVE MODEL
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or,
v(t) = cos T lav (£) + (l-w) v,(£)]
+ j sin % [avl(t) - (i-a) vz(t)] (3.4)
or,
vi(t) = Re[v(t)] + 3 Im(v(t)]

The magnitude of v(t) is from (3.4),
2 2 1/2
vit) = {(Relv(t)])" + (Im[v(t)])"} (3.5)

Equation (3.5) describes the combined signal without any

noise added to it. To make it a noisy signal, we should

o

prepare two noise records na(t) and nI(t) uncorrelated to each
other. These noise samples are produced from random samples
with a Gaussian distribution with mean zero and standard devia- » {

tion fixed for a specified signal-to-noise ratio (Appendix 1).

To provide a realistic degree of correlation between noise

samples for each noise record, the samples may be passed through

a digital filter. As the noisy signal (signal + white noise) is
rassed through a filter'matcheé to the transmitted signal at
the radar station, the signal is passed as such, but the noise
is correlated after filtering.

" In our computer simulation of the method, we prepare the

5

white noise samples, introduce correlation between them, and‘add
them to the signal. The correlation between the noise samples

is dependent upon the cut-off frequency of a digital filter, or

in other words, the white noise is band limited, with the band

width determined by the cut-off frequency. Noise samples input
to the filter are white, in the sense that samples separated

.1in time by at least l/fS seconds, are statistically independ-

g




IMAGINARY AXIS

P Y e T S TR Y Ve e s ues

N

- 40 -

FIGURE 3.3: VECTOR

g ) .
7 rd .
vl(t) REAL AXIS

DLAGRAM FOR SIMULATION PROGRAM

.
- —— o

P VIS




- 41 -

ent, where fS is, the sampling rate. After passage through the
filter, the time between the-<statistically independent samples
is approximately n/wc seconds, where W, is the cutoff frequency
of the digital filter. Thus, the number of the output samples
which have a significant dégree of correlation is approximately
n.fs/wc.

A first order auto-regressive (AR) scheme is used to
introduce the correlation between the white noise samples.

The first order AR eguation 1is,

=B Y+ A (3.6)

Yn+l *n+l
which can be clearly understood by the Elock diagram of Fig. 3.2,
Here x represent white noise samples before filtering and Yn
are correlated noise samples after filtering. T is a sample
delay which is equal to l/fs,' The coefficient B is the multi-
plying factor which decides the extent of correlation between
the noise samples; whereas A, provides a scaling of the input.
These factors are the paramefers obtained from the transfer
function of the equivalent one-pole digital filter, as shown

in Appendix 3. These parameters vary as the cut-off frequency
of the digital filter is varied.

As shown in Figure 3.3, nR(t) and n_(t) are added to the

I

real and imaginary parts of v(t), respectively.

¢

The real part of the noisy measurement signdl, VN(t), is,

1

Re [VN(t)] Re. [v(t)] + nR(t) (3.7)

e
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and the imaginary part is,
Imlvg(£)] = Im[v(t)] + np(t) (3.8)
The magnitude of the noisy measur®ment signal is given by,

2,1/2

| ogl8) = CRelvg () 1%+ (v (6% (3.9)

The above expression provides us with the combined noisy

- measurement signal; noise being added for a certain S/N ratio.

3.3 Constructing the Reference Signal N

In this application, the first return pulse from the
single point target, is taken as a reference signal. The

reference signal is noise~free and given by,

- (t+"5_)_2
1 20p

(3.10)

3.4 Appﬂyipg]the Algorithm

Once measurement and reference signals are obtained,
the procedure for determining thé deviation 'of the function ¢
from linearity i.e., BZ, is the same as 1n Chapter 2, which
‘can be summarized in the following steps:

(1) Calculate the distribution function of the measurement
signal (both with and without noise), and of the
reference signal.

(ii) fConstruct the function ¢ the first time, comparing the
measurement signal (no noise) with the reference signal
and, the second time, comparing the noisy measurement

signal with the reference signal.

P N T

o e ek mvenes bt 1wl
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(iii) Calculate az(pure) and Bz(noisy) for the no-noise

[

measurement signal, and the noisy measurement signal,

respectively.

The absolute value of 82 is related to the distance o
between the two point targets. As this distance increases,
the absolute value of 82 increases, and vice-versa, with the-~
relationship between t (normalized distanceL\ggd—S)ﬁbeing

almost linear. In other words, the value of 52 is a measure of the

distance between the two targets. We will take benefit of
this® fact and determine the distance by calculating the value

W
of 52.

3.5 Performance of the DF Algorithm

% For judging the performance of the DF algorithm, we
calculate the normalized r.m.s. error in measuring the normal-
ized distance T between two point targets. To do this, we ‘
calculate éhe value of\ﬁz, 100 times for 100 different
statisticall& independent values of random phase difference
v, assumed to be uniformly distributed between =-nu to +7. While i
galculating different values'of 52 for different values of v, . oE
other parameters like S/N ratio, 71, and 4 are kept constant.

3.5.1 Scheme to Estimate Normalized RMS Error

B PV SRS

The r.m.s. value of 82 for the pure measurement signal,

52P is given by,

-

rms 1/2

2 , ?
3,P e = Z; 3,21 /100 (3.11)
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i

where‘sép. are the BZ values for the pure measur'ement signal.
N ' 1 . .

0 o ‘ similarly, the r.m.s. value of 8 for the noisy.measure-

% -
ment signal, BZN;ms’ is given by,

100 . /2 .
- - 2 N
BN = E 5 ,N,“/100 . (3.12)
i=1

o

. \ ) e . )
-To estimate the r.m.s. error in determination of the

o . normalized distance 1, two graphs ‘are prepared. One graph

between 82Nr and T and the other one between BZPr and T

ms

- as shown in Figures 3.4 and 3.5 are plotted. We call Figure

-

'3.5 the reference graph. We change the value of T in the

.

computer simulation and record the corresponding value of

Bzfms’ in order to prepare the above graphs. Now to determine

the r.m.s. error in measurement of a specific normalized
distance,” 7,, for a fixed signal-to-noise ratio, and scatte-
ring strength a,'we find out the corresponding\value of BZNrms
from Figure‘3.4. By marking this wvalue on the y axis o§ the
reference graph and obtaining the corresponding value on the
: © X-axis, we determine the estimated normalized distance, Tl*.
- a In the above proceduré, we are transferring the r.m.s.
vailue of ?aNrms from the Y axis to the X axis to determine
; . the r.m.s. value of 1t*., We justify our action by observing
. that the two curves have a similar shape and are almost linear.
Now the true error in disﬁ&nce measurement is equal to

3

rl* - Ty and the normalized r.m.s. error, € , 1is equal to true

USRI S

error/pulse width, where the pulse width is equal to 20 .

»

|
l
AL, |
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TABLE 3.1

L

CALCULATION OF NORMALIZED R.M.S. ERROR €

h

S/N ratio = 17dB,

W, = .ws/20,~‘ Equal RCS

by, T RS ATRY  ancn

ke e b mmm-—-—“"—

THT ST R T T

e iy

T 3. p 8N T* e = 15T
2" rms 2 rms Zcp
.9 0.0342448 0.0660866 1.3305 0.2152
.0 0.0403303 0.0695926 1.3672 0.1836
.1 0.0468383 0.0733949 1.3960 0.148
0.0542044 0.0782270 1.4440 0.122
1.3 0.0625275 0.0843516 1.50 - 0,10
1.4 0.0724289 0.0932483 1.57 0.085
1.5 0.0851121 0.1026498 - -
1.6 0.0971880 0.1122440 - -
TABLE 3.2
w, =w_ /20, . T =4/3, EQUAL RCS
- ot
/ 3N * ”
S/N ratio T T =T
- (dB) 2 rms € = 2"‘9
10 0.124432 | 1.755{ 0.2108
12 0.1161779! 1.713} 0.1898
14 "0.105534 | 1.6515 0.1590
16 "0.092976 | 1.575 0.1208
‘18 0.080248 | 1.462 0.0645 ¥
20 0.068880 | 1.359 0.0128 N

AT Poher | a8 S e e T
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Hence the normalized r.m.s. error is given by,

>

*
- 7T
E:T

= 20 .
P

~

(3.13)

Tables 3.1 and 3.2 show some actual values of parameters
“

obtained duriﬁg applying the algorithm and subsequently

calculating €.

3.5.2 Compafison of DF Algorithm Performance With Other

J 4

-
”
¥

Existing Algorithmsg

To compare the performance of the DF algorithm withlthe
performance of the threshold and moment algorithms, we prepare
two sets of curves showing normalized r.m.s. error against
normalized distance T and S/N ratio, while keeping other

parameters fixed:

)

distance curves for all the three algorithms. Four different

curves for the DF algorithm are shown for different cut off

frequencies, W of the di@ital filter, designed to correlate

the noise for the received signal. In these figures W is the

sampling angular frequency of the signal constructed.

Figure 3.6 shows the normalized r.m.s. error vs normalized

N

A e e e b =

i it e o

3 gt 2
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The signal-to-noise ratio is fixed to 17 dB and equal RCS

is assumed. Cut-off frequencies equal to ws/2’ w;/lo, ws/20
and ws/lOO are chosen for these curves. We observe that as
the cut-off frequency of the filter is reduced, the bandwidth
of the filter is reduced and the noise samples become more
and more correlated. Consequently, the r.m.s. nérmalized
error,€ is increased. Out of the four curves for the DF
algorithm, the one with W equal to wS/lOO’ represents the
maximum €, but still is well below the performance curves
corresponding to the moment and threshold algorithms [7].
Figure 3.7 shows the percentage improvement in fhe performance
of the DF algorithm over the threshold and moment algorithm?
for a cut-off fregquency equal to ws/20 and a signal-to-noise
ratio equal to 17 dB. It is observed from this figure,

that the DF algorithm shows excellent performance improvement
over the entire range of the normalized distance 1.

Figure 3.8 shows the variation of the normalized r.m.s.
error versus the signal-to-noise ratio, while the normalized
distance 1 is kept constant, and equal to 4/3. The radar
cross section for both point targets is again fixed to be
equal. Here only two curves for the DF algoritthcorrespond—
ing to cut-off frequencies of ws/20 and ws/lOO are obtained,
because these two are the cases, which produce maximum
correlated noise. Here again the DF algorithm gives less

normalized r.m.s. error € in comparison to other algorithms,

particularly for low and high S/N ratios. Figure 3.9 shows

»
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the percentage improvement of the DF algorithm over the

P R e e

threshold and moment algorithms, for W equal to ws/ZO' It
is noted that percentage improvement is smaller between S/N
ratios of 12 and 16 4B, but increases rapidly for 1lower and

higher values.
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CHAPTER 4

CONCLUSIONS

Two main objectives have been achieved in this work:

(1) To provide an algorithm for detection of small differences

in the shape of two signals, and
(2) To provide a new method for the measurement of the distance

between two closely spaced point targets in radar systens.

In Chapter 2, the DF algorithm to detect small differences

in the shape of two signals was described and illustrated.with
the help of several examples and figures. To implement the
algorithm, two measurement signals, one combined (composite
peak) and the other pure (single peak) were constructed. One
pure reference signal was also constructed. Random noise, tf’le
level of which depends upon the desired signal-to-noise ratio,
was added to the measurement signals. The distribution funct-
ion of the measurement signals were calculated and compared
with that of the reference signal, to obtain a function ¢.
The non-linearity of the function ¢ was estimated by applying
the method of least-squares. The wmagnitude of " this non-linear-
ity designated by the parameter 82, is proportiohal td the
difference in the shapés of the measurement signal and the
reference signal and proved to.be a basis for detection of
this difference. The algorithm was simulated on the computer
and results were shown. The difference between two measurement

sigr{als, one combined and the other pure (both having a similar

shape), was established for a S/N ratio of 25 dB., Some

e e
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general results in the form of curves were presented (Figure
2.9 to 2.12). These showed the variation of 82 for different
values of the ratios 92/6l and 02/01. The parameters el, o4

and 62, g . are the mean value and the standard deviation of

2
component 1 and component 2, respectively, of the combined
signal. The ratio 62/6l ranged from 0.8798 to 1.12 and the
ratio oz/gl from 0.825‘to 1.175. The values of these ratios
were deliberately fixed to be quite near to unity. The idea
behind this was to show that a distinction in the shapes can

be made even when there is a very small deformation in the

shape of the combined signal. On observing these curves it .

was found that for most of the range, the values of 182\
obtained in measuring the combined signal were significantly
higher than those cbtained for measuring the pure signal.
As the ratios 62/9l ané 02/6l deviated froT unitv, the
magnitude’of 82 also increased, indicating more deformation
in the shape of the combined signal. Also, we saw that in —
the case of the pure signal, a change of the ratio »32/8l
did not change the value of 82. Finally, it can be remarked
that if the deformation in the measurement signal was
increased, detection was possible for lower signal-to-noise
ratios.,

As described in Chapter 3, the DF algorithm was used

to provide a method for measuring the distance between two

Uy Y VUV

closely spaced point targets in radar systems. The incoming — -

signals from the Qoint targets were assumed to be of Gaussian

{
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shape. Equal radar cross section of both the targets were
assumed. The measurement noise was modelled as random noise
having a Gaussian distribution with mean zero and standard
deviation fixed according to a specified S/N ratio. The first
return pulse from a single point target was used as the
reference signal. The DF algorithm was applied and the value
of g, calculated. Thié value of B, was then used to estimate
the normalized distance T between the point targets.

To judge the performance of the DF algorithm, the
parameter 82 w?s computed each time for 100 different values
of the randomly received phase angle, y, uniformly distributed
between -T and +7. Then the r.m.s. valuesof B, was calculated.
A scheme to calculate the r.m.s. error made in the measurement
of distance, was presented. For a signal-to-noise ratio
equal to 17 dB and assuming eqgual RCS, the normalized r.m.s.
errors made by the DF algorithm, corresponding to different
normalized r.m.s. distance 1, were computed. These values
were compared with the normalized r.m.s. errors obtained for
the conventional threshold and moment algorithms. Four
different curves (Figure 3.6) for the DF algorithm were ‘
presentéd corresponding to different cut-off frequencies w_ |
of a digital filter used to introduce input noise correlation.
For wc'equal to ws/lOO' where W is the angular sampling
frequency, the noise samples were maximaily correlated; the

correlation coefficient B being equal to 0.93%91. As shown,

even for this case the normalized r.m.s. error made by the

A Ay APt i -

PR T L T SO,
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I«
DF algorithm was considerably lgss than that for the othér
algorithms. The percentage improvement in per formance of
the DF algorithm over the moment and threshold algorithms
was computed and plotted for different normalized distances,
for the cut off frequency of digital filter wo = ws/20. For
T équal to 0.9, the improvement over the threshold and the
moment algorithms was found to be 38% and 27%, respectively,
improving to 57% and 43% respectively, for 1 equal to 1.4
(Figure 3.7). To see the variation of the normalized-r.m.s.
error € for different S/N ratios, Tt was kept constant and
equal to 4/3. Again-egual RCS were assumed and the normalized
r.m.s. error made for the DF algorithm was computed and
compared with the other algorithms (Figures 3.8 and 3.9). As
observed from Figure 3.9, the percentage improvement in the
performance of the DF algorithm was lower for S/N ra£ios
between 12 dB and 16 dB, but increased steeply for higher and
lower v;lues of the S§/N ratio. For a S/N ratio of 20 dB, the
precentage improvement of the DF algorithm over the- threshold
and the moment aléorithm was seen to be 94% and 88%, respecti-
vely.' | hS

In conclusion, it can be said that +%e DF algori£hm

provides some useful and interesting results in the field of
signal detection and classification, and is able to reduce
the error in radar measurements. Still there may be other
applications as suggested in Chapter 1, where this algorithm

can be fruitfully employed. Future “work may be suggested in

/
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the form of hardwate implementation of the DF algorithm. An

independent hardware unit using & microprocessor may be ’ ' »
o8 .

[

designed, which can perform,.the basic and simple calculations

N )

required for this algorithm.
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APPENDIX 1

DETERMINATION OF STANDARD DEVIATION OF WHITE

NOISE FOR A FIXED S/N RATIO

As shown in the figure, we assume a combined signal

made of two Gaussian componerts, the normalized “distance
. A

between them being equal to T PULSE AMPLITUDE

oR,

l’*_’TO_)‘.(_ 1;0 +l

P

et Al = Amplitude of the first component,

A Amplitude of the second component,

2
"and,ar?

A

Standard deviation of any component.

The first companent is,

- -

IS

- o L oY
L vy (7 = Ajexp(+]¥/2)exp {(- 1oz (-t -1 )] } (Al-1)
The secoqd component ié,_ ,
v, (8) = Ajexp(-3exp - 737 [t (g s 112} (a1-2)
270 2 pi=Jz/exp. 4a o o “ -

where Yy = Radio frequency (RF) phase'petween individual
pulses uniformly distributed between -m to +7.

— ¥

The complex video gignal would be, %
% .

+

v(t) = vl(t) f Vz(t)

- 60 - . .

FIGURE Al.l: Comktined Signal (Adding Twé}Gaussiah Components)
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The received pulse is then given by (8],

22 1 2
|v(e)[® = A] exp { (- 57 [e-(t -1 )17
2 1 * 2

+ A5 exp { (- 577) [t=(t 41 )17}

-
. ‘ 1 2 2
+ 2AA, cosyexp { (= 572 [{t-t ) "+1 ;} (Al-3)

Let mJ Signal energy over time T.

m =
O u(}

where Wy is the ot$ non central moment of Iv(t)2

Hence, we obtain [9],

"mo = aryZn [A?+A
' 3

The E xpectad value of m (averaging over y), from (al-4) is,

_— N — 2 2 ' r
m, = E {mo} = a(Zn [Al + AZT (Al-5)

'

-

Let the standard deviation of the white ngise equal O,

then the average signal energy-to-noise power ratio (9] is,
A m ' .

dav = 5392-.in dB . . . (aAl-6)
n

Expressing (Al-6) 'in decibels we have,

’ m
: - . . O N -
dav, J.:n dB = 10 lOglo [_—-2’0112} (Al-7)

Solving (Al-7) for the standard deviation of the noise;

we obtain,

Q
I

m - - '

o

n J o Sav/10 , (Al-8)
2x10 ' . .

2 2 2 :
1HRSF2R A, exp(-ro/Za ) cosy ] (Al-4)

PRU F
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APPENDIX 2

- AN
+ ESTIMATION OF THE PARAMETER 832

We have the data points for ¢ (x),

I o {On the x-axis)

3

{xi} for i

1
fo
-
N
-
.

{yi} for i .., (On the y-axis)

it
=
-
N
-
.

)

We apply. the METHOD OF LEAST SQUARES to fit the curve

to above data, Using the parabolic eguation,

y=80+61><+62x2, o (A2-1)

we can estimate the coefficients Bo' Bl and 32. Here we are
interested in estimating, only 82.

and Bé in (A2-1) be

Let the estimated values of 80, Bi

~

B él’ and 82, and we will fit the parabola,

(o]

;=éo +élX+B‘2 x2 (A2-2)

to a set of paired data {(xi,yi) i=1,2,....,n}.

§

Let 1
. n .
~ N ~ 2 “
Q = :E: [Yi - (Bo + Sl x, + 52 Xi)] }(A2 3)
i=1 . '

Minimizing Q yields the following s&t of equations [6],‘\_'/,

n n ' n

A ~ ~ |‘ 2 )
E Y, = BO n + Bl X, % 32 Z Xy (h2-4)
i=1 : - i=1. i=1 .
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inl i=1 i=l i=l

To simplify the above expressions and further calculations, let
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i=1
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¥ = Ay .
i=1
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By substituting these in equations (A2-4), (AZ—S); and

(A2-6), we obtain,

. C1'=.Bo‘“ + BlAl + BZAZ . X (AZ—Q) N §
S A A /
c2 = BoAl + BlAz + 82A3 . (AL=-5)
Cy = BA, + BiAy + B,A, (A2-6{

From,equation (a2-4),

-~

n

Substituting EO in equation (A2-5),

B.A, - B.A . .
1 181 2R
n By + ByA, + Bohg

2 12 - Bl i - 82A A + nB n82A3' . (A2-7)

Substituting B in equation (A2-6),

- BjA, - B,A . .
1% 2
( n By + 8123 * By
or nC = C 2 l

~ 2 ~ ~ '
A2 - 82A2 + nBlA3‘+ n32A4 (A2:8?

From equatioﬁ (A2-7), , T

N ~ _ A 2 . 3
nC, = Cyay + 3 pB1Ry - nBoA; = By (nAy-A)) ' ?
A nc2 - CjA| + B,AJA, - mg,A . '
£ = e
1 A2 . .

Y




Substituting the

or

nc, = C

R ] e ——

A

value of Bl in equation (A2-8),

”~ 2 "
3 132 - BZAZ + nBzA4 + (nA3 - AlAZ)
4 -~
- ¥
nC2 ClAl + BzAlAz
X 2
nA2 - Al

- nByA,

3

A 9
2 T By

’ 2 C 2 -
nC3(n§2—Al) (nA,-Ay) (CyA + nf,A,)

+ (nA3—AlA2)(nC2 - ClAl + BzAlA2 - n82A3)

A~

- C,AJA, + B AiA

2 A 2
4 17172 2

2/\
- nBzA2 + n BZAZA

NN

nC1A2

-nB_ATA, + nzA C, - nA,C.A, + nB.A

2
2812y 3G 1123 Ay

273

[ 8]
|

2/\ ’2 -~
-n“8 A% A, - B,A

- nAA_C, + C.A

2
126 1™ A

NN

2
271

- _ 2
+nB A A A, = nC3(nA2—Al) : '

2717273

R ke XMEAMER 1w s e g E

w >

2 2
lAz—n.A

+ nAlA2C2]

: 3 2 2.2
{n A2A4—nA2-nA1§4+2nAlA2A3-n A3

\ ?

2
-Az)—nA3C2

C,+nA C.A '

* 2
[nC3(nA2-Al)-nC 3C, 1123

2

2
n[Cy(na,-A])+C) (A Ay

+ A1A2C2]

2 (A2-9)
n[A4(nA

2 3
2-Al)-nA3+2AlA2A3—A2]




N peake g Ex saowe3

[N

roaye el e v e et « ue e a ma e v emames G4 R SR TRRRITI SHERSES YWY TR kdtery ehe s mares e -

- 66 -

APPENDIX 3

1. DESIGN OF FIRST ORDER, RECURSIVE, LOWPASS DIGITAL

FILTER

To design a first ordér, recursive, lowpass digital |
filter, a Butterworth analog filter approximation is obtained
[10]. The complete design procedure is carried out in three

majbr steps. This approach is simpler and more direct than

the approach of Baum [7], as described in [11].

1,A. THE NCRMALIZED LOWPASS TRANSFER FUNCTION

The normalized transfer function is given by,

1

~HN(S) = hn ' (A3-1)
m (s-p.)
=1t
where n is the order of the filter and p; for i=1,2,....,n are

the left half s-plane zeros of the loss function L(-sz). .

e ¥

Since, 2n
L(-sz) = I (s-sk)
k=l / N
whe;e - ) .
ej(2k—l)7T/2n for even n
s ' ‘ (A3=~2)

x = ej(k-liﬁ/n for odd n

Substituting n = 1 in (A3-2) and trying to get left half s
plane zeros we proceed as follows:

For k.= 1,
' cos 0 + j sin 0

n
]

s. =1 ‘ L

N ’
U e ki Aot Y S A A s Ay bl ey ( N - - . . ‘ LR LAY X P ] EEE Y
[ v - L.
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This is positive, so, the zero is in the right half s-plane.

We reject it, and for k = 2,

S, = COS T + j sin 7

S

2 = -1 @

So the normalized transfer function is)

" |
H(s) = o7 (A3-3)

o8

1.B. THE UNNORMALIZED LOWPASS TRANSFER FUNCTION

The unnormalized low pass transfer function can easily
be obta;ﬁed by using the transformation,
§ = AS ’/
as s = jw, and s = jw
we have, .
/‘- -

W= AW

-—" _.For the normalized_ transfer'function we have, w = 1 rad/sec.

Let w be the desired cut-off frequéncy of the digital filter

and designate it by W, . _ .

Theh,
» = L
w
v c
Hence, the unnormalized transfer function is, o o
WO
AT S+1
I
s/wc+l
or, H (s) = (A3-4)

A 1) +wc
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1.C. THE RECURSIVE DIGITAL FILTER TRANSFER FUNCTION
, A recursive filter approximation can be obtained from

the preceding analog filter approximations using the Invariant

i

I

. |

Impulse response method.
The Impulse response of the analog filter is,

— _l =
hy(t) =1L {HA(s)}

where L-l{HA(E* is the Inverse lLaplacé& transform of

HA(E). From (A3-4), we obtain, !
W 1
-1 c
o = e ) o
A s+wc
-wct
or, hA(t) = w, e

Let T be the sampling period, and repilacing t by nT, we have,
& .
L —wch
hA(nT) =w_ e

Taking the Z-transform of h, (AT), We obtaim the tr. —

function of the digital filter ii_(z), i.e.,

e

D

o S

S

-wch . A
Hy(2) = Z{hA(nT)} = Z{wg e }.

T T e

o H (2) = —S——0n (A3-5).
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2. DETERMINATION OF THE MULTIPLYING FACTORS "A" AND "B"

.IN THE AUTOREGRESSION EQUATION ' .

A first order autoregression equation can be written as,

nel ° B Yn + A Xr1+l (A3-6) l
where X represents input samples and y, are the output

correlated samples. The coefficients A and B are the

multiplying factors.

. -
. B ¥
o

Here we formulate the expressions for A and B by
comparing the transfer function of the first order autoregress-

. ion model to the transfer function of the first order digital

filter. 7 o - . - B B
Taking the Z-transform of equation (a3-6) , we have

ZY(z) = BY(2) + Az x(z) i

Y(z) (z-B) = Az x(z)  -: »
(o} o
: ‘ _¥(z) _ Az
S — ——H{z) =Gy T T

P PSS

-~

Thus, the transfer function H(z) is equal to,

.

~
-

= RZ_ - ;

H(z) .= -5 (a3=7)

Comparing equation (A3-5) to (A3-7), we obtain,
€
A=W o i
c q
-w,T ‘ (A3-8) S
¥ and, B=e ‘ . ‘ ¥
& v C Ry
oS Rl i
' where W, is the cut-off frequency of the digital filter in ¢
] .

rad/sec. of

2

O e s
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S . APPENDIX 4
COMPUTER PROGRAM USED FOR CHAPTER 2

ORJUGRAM GARG (LNPUT, QUIPUT, TAPEL + TAPE2, TAPE3, TAPE4, TAPET,
+[APER)
REAL Vr«(L80J),S(1800),VDF(L800),SD#(1800),XA(1800),NQLS
REAL X(30),¥Y(39), AP(L800) +A(30) ,DF(1303) ,NJM,LOGA, LNA
REAL NOISEC,NV(IBOO) ,VNF (1800) ,V2F (1800) ,5NR,DEV(39)
REAL VP(ldOO),PHbPAR(ll) ‘
REAL PVN(lHOO),PVF(lSOO) /VV(1300,2),BEPAX(11,5)
DIMENSLON [MAu4(5151),IPIPLE(144),IC4AR(10) RANGE (4)
vara (¢ dAR(L)/H / RANGE/4%) .0/
[LLrLE(L)=
,9153.14159
SNR=40., ‘
32 503MAL=0.4 !
~ risral=2.03
. PRIND 100, METAL,SIGMAL .
100 7 FORMAT(54,"** REFERENCE STGNAL HAS MEAN=",F4.2," & SCANDARD
+ DIVIALLION=",F4,.2," **v //)
PRINT 101, fETAL,SIGMAL : ’
"10L FORMAT(///,54,"*%* COMPINENT L OF MIXED SCGNAL HAS MSAN=",
AF4.2," & SPANDARD DEVIATION=",F4.,2," **m)
DO 1 II=1,5
50G1MA2=.295+,035%[1
-PRINT 102,SIGMA2
102 FORMAC(//,5X," COMPOWENT #2 OF MIXID SIGNAL HAS S.D.=",F5.3
. J"," ki W //) )
PRINT 104 )
L04  FORMAT(1X,"* MEAN OF COMPONENT #2*",3X,"* MEAN OF PURE SIGNAL *
F",4X,"S.D.0F PURE%STIGNAL *",4X, "BELAO“,9( "BETAL",7X,"BELA2")
, )J2[[[lll ‘ - 0T — =
. P4E0A2=L. 73+ LL*0.05
30=0.0
o vR=J.0
vPP=0.0
W=1390
vidakl=0.0
JANA2=) .0

—_—

C k& CONSPRJICTIING 1'dE COMPINENTS OF [dE COMBINED MEASURSMENT SIGNAL*
. 2J 19 I[=1,N .
r=fLoNr (L) /420,
AN(L)="r
VV (L, L) =242 (- (L-T4ETAL) **2/(2*S[G MAl**Z))/(S)RP(Z *PL)*3TGMAL)
~ VV(L,2)=8X2 (= (D=Td2TA2) ¥*2/(2*3[GMA2%*2) ) /(ST (2. *9[)*)[ 53A2)
[E(VAAKL.LE.VV (L, 1)) vMALLl=vyV (T, 1)
(P (VAAL2,LI.VV (L,2)) VHMAX2=VV (L, 2)
19 e LN Js

T R P M g oo hasrine 34 s = oy = 3 e s Ry B a1 208 4
) .
N
..
!
H o~
R
,
—~
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/
kk CALCULATION JF PRO?ORTIJNAL[PY FACTOR (ALPHA) *»
VMAX=VMAX]1+VMAX?2
ALPIN=VIALL /VAAX

¥

FORMAT (2X,"VMAX1=",F8,4, 3%, "VMAX2=",F8.6, 34, "ALPHA=",F5.3)

AM=ALPAA* THETAL+ (1 -ALPdA) *dETA2
Ml=rdETALl-X1
M2=TedELA2-XM

VARZ=SALPUAX (STGHMAL**2+M1*%2 ) + (1 -ALPHA) * (SIGMA2**24+M24%2)

SIPD2=SR[ (VARZ)

VAAXP=0.0

DI 11 [=1,n

[=FLOAT (L) /120.
VE(L)=ALPEA*YY ([, 1)+ (1-ALPHA) *VV (L, 2)

V2 ([)=EBXP (- (P=XM) **2/(2*STD2**2)) /(SART(2.*P1) *STD2)

[F (VAANXP.LI.VP (L)) VMALP=VP (L)
VO=VD+VI (L)

SO=SD+VV ([ ,1)

VePR=ypP+Va (L)

VDE(L)=VO

3DF(L)=5D

VRE ([)=v2P

TONTIN SR

CALCJLATION OF 3TANDARD DIVIATION OF NOISE *%
PINERC=STI2*S L (PL) * (VAAXL ¥ ¥ 2 +VMAX2*%2)
POWBRP=5I02*S R P (P [) *vMaXD **2

T30UTES QAL (PIWERTSY (TR EXP(2TT302SISLRSNR/ L0 V)
SDNO=3 [ (PINERP/(2.%EX2 (2.302535L*35NR/10.)))
ViN=0,0

29=9.0

. >

COMSLRIZTING MIE NOLISY MEASUREAENT SIGNAL *%
02 15 - I[=L,N '

AA=RANE (L) o

NIL3EC={AA-0,5)*3AT(L2.) #*30NZ -
NIL3EP=(AA=Y . S)Y*SONT(L2.) *30NP

VI(L)=VI (L) +dd 0380 .

V2 ([)=vy2([)+idls8e

VN=VN V[ (L) . ’
VAE([)=vn
PH=PN VP ()
PVE(L)=2N
CIINDPLAIS

D0 20 [=1,H ' o -
W (0)=VNF (L) /VNF(N)

L
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45

52

46

51

57

52

17

19
30

.
O8]

L4

* *

L3
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S([)=SDF(L[)/SDF(N)
PVN ([)=PVF ([)/PVF (1800)
CONTINUE

COMPARING ['HE D,F. OF THE MEASUREMENT SIGNAL TO THE

SIGNAL **
DO 30 J=1,2
KK=1 -
XX=0.04

&~

LIE O (J.EQ.2) GV T 45

4

DO A5l  [=1,N
DE(I)=35(I)
AT({)=XA(L)
39 TO 45°

D0 62 [=1,N
DF(L)=PVN(I)
AT ([)=XA(L)
DO 40 K=1,35
DI 52 [=1,N
X1=£X-,009
X2=KX+.009

\

[F (DZ(L[).LE.X2.AND.DF([).GE.X1) 30

30 ro 52

JEVMIN=0.1

DO 55 [1l=1,3D
DEV(I1)=A8S(DF(I+L1~-L)-XK)

0J 57 [2=1,30 '
[F(DEV(L2).3r.D3VMIN) 3) TO 57
DSVMIN=DEV(L[2)

[3=[+[2~-1 -

CONTINUE . >
A{KK)=aT1(13)

[F (J.EQ.1) X (KL&)=A(KK)

[F (J.EQ.2) Y (KK)=A(KK)

30 ro L7

CONLINUSZ .

M=KK -1

[F (J.EQ.L) 30 1O 30
[F (J.£2.2) 3D 10 14
KK =KK +1 (
AX=XX+.035

CONPINUE

CONTINJE

ESPLMACING [P1E PARAMEDER 38TA2 *%
Al=).0 .

ﬁyrU.O
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3 B ¢ - =

; A3=0.0 L, o
i ' A4=0. CoL

y C1=0.0" ™ .

: . 22=0.0 .

“ : £3=0.0 , . )
° D0 70 I=l,4 o C . c
s Al=X (L) +Al ) -

‘ A2=K (L) **2+4A2 - 1 :
, A3=X([)**3+A3 - o !
A4=X (L) **1+74 e CoL f :
Cl=¢(L[)+Cl - _ : o
] C2=L (L) *Y (L) +C2 . o ;
< CT3=A(L)**2%¢{ ([)+C3 C >
! .79 LCONDINGE ¢ :
¥ NUM-M*(CB*(M*AZ Al**2)+Cl*(A1*A3 AZ**Z) M*A3*C2+A1*A2*C2)

FEEE

DEN=M* (AQX (MFA2-AL**2) =K AJHF*24+2, KAL¥A2*AI-A2**])
Bwr«z NJA/DEN ,

S "PAINT 105, PME0A2,X4,SID2, BEFA2 :
; ~ 105  FORMATL(3X,F4.2,23X,F4.2,23X, F4._,lJA E12. o,/) . :
: . BEPAL(CLL, [[)=8EPA2 % , .

PABTAR(LIL) =DHEPA2/TUETAL

[F ([L.EQ.1) PeRINTL (3,%) ruur«a([[[) .

(F (CL.EDQ.L) _PRIND (L,*) BEPMMX(ILL,1)

L& ([[.ED.2) PRINE (2,%) BEPAX(LIL,2)

(¢ (LI.27.3) PiINT (3,*) BETAX(LLL,3) :

[F (LL.82.4) PAINT (1,*%) BETAX(ILL(,4) . .

®
o
e "y

e g

e ([L.87. S)f”PR[NP {(7,%) BEPAX(ILL,S)
2 JonrIwNygg !
PRINT 12,V4AKL,V4AX2,ALPdA : .
1 CONTINUZ T
TALL UBPLE(rdérar, 38rax,11,11,5,1, [PLPLL,RAN B,ICHAR, 1, IMAS
+4, [2R) ' v
3 row o . ‘ o,
ASnND .
» / )
;" :
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.COMPUTER PROGRAM USED FOR CHAPTER 3J -

PROGRAM GARS (INPUL,QUIPUT, [APES, TAPES)
CREAL VI (1800),ST(1800), S (1390) ,VDF (1809, SDF (1800)

" REAL X(39),Y(30) AT (1800) ,A(30),DF(1800) ,NUM,VV (1800, 2)
REAL VIN(LBOO) ,NV(1800),DEV(40) ,VIF(L800)%NR (1800) ,XA(1809)
REAL T¥AG,IMAGN,V(1800),YR2(1800),YI2 (1800),NI(L800)

DOUSLE PRECISION DSEED],DSEED2
DSEED2=1233Y. DO
DSEED1=554798 . DO

PL=3.14159 '

SNR=20.

N=1800 o .
5IGMAP=1,0 : - -
PIEFA2=1.9" ' T : '
TAO2=THETA2/SIGMAP

TdErAl=-1,9

TAOL= PdEPAl/S[udAP o

ALPdA=0.5 .

VMAX=0.0 ‘

k% CONSITRUC: FdE EACH FARGIT RESPONSE SEPARATELY *+
DO 10 [=L,N ‘ ‘ oo
P=FLOAT(L-N/2) /220
XA(L)=T ~

# VYL 1)=exe (- (- P\Ol)**?/(7*7IJWNP**2))/(3QRP(2 *DT)*STGMAP) ™ .
VV (L, 2)=3X2 (= (T=FAV2) **2/(2*S [GMAP**2) ) /(SIRT (2. *PT) *STGMAP)

LF (VMAX, LI.VV (I, 1)) VAAK=VY ([, 1)
CONTINUE ‘

v (q.'"

-

*CALCULATING Cd& STANDARD DEVIATION OF ADDITIVE NHITE NOISE*
PONERS=SIGMAP*S JRL (P L) *2, *YMaxX**2
SDN=SQRT (PONERS/ (2.*SXP (2.3025351*SN/10.)))
©

BETAT=0.0 ~

e

J** CALCJLALION OJF BETA2 FOR 100 DIFEER3NP VALJES OF PdASE ANGLE *#

., DO 2 I0[=],100 ' i
3D0=0.0 - ]
VD=0.0
VIr=0,0
* 2dD= (RANF(1)=0.5) *p(
" rrsl./220. . ~ .o
WC=PL/([1*50) .
AA=NC ! ) ) - *
3=EXd (~AA/220. ) : ) 4
¥R2r=0.0 ~ '
YL2r=).0

(]
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YL23£0.0 - . ‘
€£1=0.0
12=0.0

k* CORRELATING PHE WHITE NJOISE ACCORDING I‘O THE CUTOFF

Lk

FREIQUINCY OF THe DIGITAL- FILTER **
DO 21 Kl=l,N
{RZ(K1)=AA*GGNQF(DSEEDI)+B*Yl
YI2(K1)=AA*33N)F (DSEED2) +8*¢2
Y1=YR2 (K1) .
€2=Y[2 (K1)

YR2D=¢R2M4(R2 (K1) . , .
YI20=£020+002 (K1)

CONTINJZ

YR24=¢R2D/N

YI24=¢ [ 27/n .
DO 22 &2=i,N .
YR25=yR25+ (Y R2(K2) - {a2M) *+2
Y(25=7 025+ (Y L2(K2)-YI2M) **2
CONPLNUE

SrOR=3JRI (YR25/N)
S0DL=507 (Y [ 25/N)

29 12 K1=1,N

NR(KL) = (YR2 (K1) -YR24) *SDN /STDR
NE(KL)=(Y(2(K1)-7L24) *3ON/SIDL
TONFINJE

ADDING 145 NOISE O 4EASURED TWO [ARGET RESPONSE *#

00 1l I=L,dN

P=FLOAT(L[=-N/2)/220.
REAL=CO3(PHD) * (ALRUARVY (L, 1)+ (L -ALPAA) *VV ([, 2))
(MAS=3 [N (PAD) * (ALPIA*VV (L,1)-'(L- ALP{\)*VJ([ 2))
VI(L 5&%?01&\L**2+Iﬂ%6**7).

REALN=REALFNR (L) ~ )

CAASE=[AAS#N L (L) T

VN () =5 230 (REALN** 24 [MAGN##2) o ,"
1]

RAPSRENTE SIGNAL ZTON3TRYC [ED- '\b 42 FIR/ST CARGHET REGPD'\l B *

SE(C)eVV(L, 1)
{ . .

VO=VIHV () .
3D=SDE3(L) S
VPL=V TR N (T)

VIF(L)=JD ~
300 (C)=5D . ‘ ‘ '
WIE(L)=VIL , ,

CONTINJE ¢ - L
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29 20 £=1,N

V([)=VOF ([)/VDF(N)-

NV(L)=VTEF{[)/VTF(N)

S (L)=SDF(IL)/SDF(N)

CONTINUE

COMPARING THE DISTRIBUTION FUNCTIONS **

D0 30 I=1,2 ,
1('(=1

XX=0),04

[F (J.EQ.2) GO IJY 45

2D 6l [={,N

DE(L)=5(T1)

AT(L)=XA(I)

JJ ro 4J

D) 62 [=1,N .
IF(L)=V (L) o
AU(L)=XA(T1) '

vJ 49 X=1,35

20 52 [=1,N

ALl=K£X-.01

XK2=XX+.01

[F (DF(L) . LE.X2.AND.DF(I) .GE.XL) 32 [O 51°
3 Y 52

DSVMIN=0 .1

DD\SS £1=1,490
QEV(IL)=A8S(DF([+[1-1)-XX)

3) 57 (2=1,40
[F(DSV;[Z).GT.DEV%IN) 33 0 57
DAVAMIN=08V([2) )
[3=[+[;—1 . _
CONTINUZ - . .
AKK)=AaT(13) _

(& (J1.EQ.1) X (KKX)=A(KK)
(F.(J.E2.2). .Y (KK)=A(KK)

S3) o177 . . o (

COWELINYS
v“‘—‘;(!("l.h . ,
(f (J.€2.1) 39,0 30
(& (J.EQ.2) 3012 14 .
K =KK+L L : .
AX=44+. 035 " '
CONPINUSG ’
SONDPINUS o ’ ; .

. v . - C X
ALl=0.0 “’ . . ' C? -
A2=).0 ‘ '

v
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99 70 [=1,M

Al=X ([)+A1

A2=K (L) **2+A2

A3=X (I)**3+A3

Ad=X ([)**4+A4

Cl=Y ([)+C1

C2=X (1L)*Y ([)+C2

C3=X([)**2*y([)+C3

CONTINUZ _ , o,
NUM=M*(C3*(M*AZ-Al**Z)+C1*(Al*A3—A2**2J~M*A3*C2+A
uaN=M*(A4*(M*A2-Al**2)—A*A3**2+2.*AL*AZ*A3-A2**3)
8ETA2=NUM/D2N

PL{=2 ,*2HD*130./P(

PRIWT 105 ,Pd,8ELA2

FORﬂAT(dx,FB.B,Gx,Ell.6,/)

BELAT=3ETAT+8ETA2%*)

NRILE (5, *)BElAR

CON [INUYS &

A00T MEAN 5JARE VALUZ OF BEDPA2 ** .
BETARMS=3 JRI(3ECAT/100.) ’

PRINT *,BEIARMS
srop \ _ , t
END T : .

1*A2%C2)
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