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Abstract

A Formal Method for Partially Tolerating Incompleteness in

Specifications: A Proposal

Domitrios Kourkopoulos

Completeness is usually Jisted as a desirable attribute of specifications; incomplete-
ness, as i reason for the failure of software to satisfy its intended requirements. Un-
fortunately. these terms are rarely given anything but intuitive definitions. making
it unclear how to achieve the former or. alternatively. avoid the latter. This thesis
begims by examinimg various notions of (in)completeness in specifications. and intro-
duces o pragmatic definition of incompleteness: a classification based on its potential
soutces. From this, it observes that completeness. though needed to properly rea-
son abont, and capture the behaviour of, the system. is undesirable in some cases.
To reconcile these conflicting needs. this thesis proposes a novel formal method for
(partially ) tolerating incompleteness in specifications.

The method focuses on one of the classes. A connection is drawn between this
class and a group of related problems involved in reasoning about time and action
i artificial intelligence: the gualification. frame. and ramification problems. Both
cndeavors must contend with incomplete information. Stnee the techniques employed
to deal with these problems usually involve non-monotonic logics, a number of such
logics are considered. but most rejected. Shoham's logic of chronological ignorance.
however, shows promise.  lis shortcomings are addressed. and an extension of it
defined. This serves as the formal basis for the specification language KAT. which is
intended for real-time, concurtent systems. The thesis concludes with a description
of the langunage. a discussion of pragmatic issues. including how it permits fairly ecasy
modification of spedifications, and a specification of a telephone system demonstrating

1S use.
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Chapter 1

Introduction

If we find those who are engaged in metaphyvsical pursuits. unable to come to
an understanding as to the method which they ought to follow: if we find them.
after the most elaborate preparations. invariably brought to a stand before
the ~oal is 1eached. and compelled to retrace their steps and strike into fresh
paths. we miay then feel quite sure that they are far from having attained to
the cettamty of scientific progress and may rather be said to be merely groping,
about in the dark. In these circumstances we shall render an important service
to teason il we succeed in simply indicating the path along which it must
travel, in order to atrive at any result  even if it should be found necessary to
abandon many of those aims which. without reflection, have been proposed for
its attainment,

Immanuel Kant. The (ritique of Pure Reason,
in Preface to Second Edition, 1787, transl. J.M.D. Meiklejohn

Software developmient. though more mundane a pursnit than metaphysics. can

"

also be said to be “lar from having ¢ “.ined to the certainty of scientific progress.”
Whether it can ever experience a scientifie revolution in the Kuhnian [41] sense re-
mains uncertain, but itis clear from the haphazard and ad hoc nature of the attempts
to find suitable paradigms that it has vet to achieve such a status. Hoping for a strong
scientific foundation. however. may be a little unrealistic: most developers would
eladly acceept the systematic rigour of an engineering discipline. Unfortunately. only
the most optimistic ones would ciaim that that has already been achieved. Heeding
Kant’s advice then, we must continue to look for new paths, new perspectives. new

poals



1.1 Tar Pits and Silver Bullets

Frederick Brooks, drawing on his expetience of managing the development of O o)
in the early 1960°s. wiote one or the first eritical exanonations ot the (then Hedeline
field of software engineering. The Mythieal Man-Month (77 In this senmal test he
likened the development of latge system software 1o a gieat beast thiashime oot
pit. The "heast™ was uncontrollable, sts complenity simprisinely overwhelmine, and
unyvielding. Early software developers and project managers, who had hintle expenienc:
in managing such complexitv. and even fewer tools found themselves quite unpreparca
to handle it. Getting a hold on anyv particular component of the sofivare was not .
difficult problem. but pulling the whole out of the tar was nearhy mposaible Vs
result, products were dedivered late or not at all. cost many tunes more than aitiatly
estimated, and did not perform exactly as expected  Moreovers the developers and
managers found it disconeerting that the application ol common engieenme prinaple
ol manaectent techuiques proved to be inadequate tor these conceptual stractue
For example. they could no longer simply add more people to a late projeci to marease
prodaction Surmonnting all these difhcultios was often sucha fntile tash that Brooks
warned us to be prepared to throw awayv the fitst version  pethiaps then nome the
expertence gamned 1in making the first to build the second

Iwo decades Tater. Brooks [8] tells ns that not only has there bheen httle chanee
but that there is not even a “silver bullet™ insight o method  soltware tool de
velopment in techuology o management technique that wonld dramaticallv el an
improved productivity. Any gains. he claims, were made apainst the acondoutal difls
culties of software technology. those difficulties that are concomitant tothe production
of software. While high-level fanguages. object onented programmming CASE 1ol
and environments. artificial intelligence. expert systems. and powerbul worletanion
have ail contribnted to casing the tash of the developer. they have not apinheantl
addressed the essential diffienlties, those difhonlties that are iherent s the ot

of software:

complexity The complexitv of soivware i« probably greater than that of an othe

human constinct. One complicatiyg, factor gs that it incrcase nonhinearl, et



the size of the product. mainly because there does not exist a well-establiched

notion of repeatal.le or reusable components.

changeability Software is constantly subject to change. not simply because of en-
Fancements and other changes to requirements. but also because it is so casy

to change

invisibility Software does not have a physical nature: it is not visualizable. [t is an
abstract entity that does not yet have a universally accepted way of representing

it

conformity Software lacks a set of unifving principles. forcing the developer to con-

form to a variety of arbitrary principles. interfaces. and standards.

All is not entirely bleak. however, as Brooks does point to a number of promising
attacks o1 the essential difficulties. One of them is of particular interest. not becau:.e
ol the approach advocated. but because of the reason given for adopting it: it deals

with the problem of gathering and specifving the requirements of a software produet.

1.2 Requirements and Specifications

Before continuing further. some definitions and distinctions must be made. The term
product will sometimes he used to refer to the software entity being developed: it does
not have any conmercial connotations. At other times, when the context is clear. the
simple term system will be nsed. The generic designations client and developer will
usually be used to refer to the individual(s) who commission and develop the product.
respectively. This does not imply that they are separate groups. for the developer
may also be the client. nor that the client is the eventual user of the product. When
necessary. further distinetions. such as analyst. programmer. user. and so on. will he
made. The requirements of a product ~re the things that the client would like the
product to do. If they are compiled into a document. the requircments document. it is
asstmed that it is an informal one. written in a natural language. The specifications.

on the other hand. are the formal or semi-formal translations of the requirement-.



They are contammed in the specification document. or <imiply the apcedication when
it is clear. Formal means that it is written in o speaheation language that has a
firm mathematical basis.  Ideally. the language should have a well defined synta.
semantics and inference mechanism. A semi-fovmal language typreally relaxes the
definition of the latter two components. Finally, since the tashs of gathenng and
specifying requirements are often intertwined. the term spectfication phase, unless
otherwise noted. will refer to the phase of development in which hoth occn

Getting back to Brooks [8]. he identifies the specitication phase as the most critical

point in the development of software. He deseribes it as follows (pg 17).

The hardest single part of building a software svstenyis deciding, precisely
what to build. No other part of the conceptual work is as ditlicult as es
tablishing the detailed technical tequirements, incinding all vhe interfaces
to people. to machines. and to other software systems. No other pait ol
the work so cripples the resulting syvstem il done wrong. No other part s

more dificult to rectify later,

The claims are not extravagant: similar sentiments are echoed regnlaly in texts and
articles on software engineering. They are usually huttressed with the well known
fact that ertors committed during the specification phase are usually the last to he
discovered. and. consequently. the hardest and most costly to repair (see for example,
[6]. [11]. and [17]). In fact.in the traditional life-cyele or “waterfall™ model of software
development - in which development proceeds through a sequence of several phases

the cost rises exponentially through each phase. A specification error discovered
during the system testing phase may cost as much as 100 times more to correct than
it would during the specification phase. Therefore, one can safelyv add an additional

claim to ti above quote:

No other part affords the greatest potential for siguefreant cuprocement in

the tune. cost and quality of software.

Hence. software engineers and rescarchers should concentrate their efforts on the

aspect of software development. A greater effort must be made to nvestigate way s



of making this phase casier to realize and less error-prone. The types of etrors that
occur during this phase must be identified. and methods and tools for dispatching
them suggested. Sinee the errors eventually end up in the specification document. the
problem can alternatively be stated in the following manner: how can v.e eliminate,
o1 at least minimize. the errors that are made in writing a specification? Let us begin
by briefly looking at why the task is such a hard one.

The difficulties stem primarily from having to deal with a fuzzy domain. the re-
gquitements. In attempting to make some sense of them. to formalize them, the task
is not unlike the whole development process itself. only on a reduced scale. Indeed.
the specification and product (source code) attempt to express the same thing. but in
different fangnages. As such. it suffers. albeit not to the same degree, from the same
essential difficulties listed above. The biggest difference is a reduction in complexity.
since implementation details are abstiacted away. However. the conceptual complex-
ity of the product  often called the “what™ of the product—remains. It must not
be simplified hecause abstracting it away would abstract away the product’s essence.
The rest of the difficulties are largely unaffected. In particular, the changeability or
volatility of requirements remains a serious problem. Brooks (8] contends that the
task is so difficult that it is impossible to arrive at a complete and correct specifica-
tion of the requirements in the manner advocated by the life-cycle model of software
development e, done on paper and completed before going on to the rest of the
phases. His pessimism stems from the observation that clients are rarely capable of
providing a complete and consistent set of (unambiguous) requirements. Instead. he
sugpests that the requirements should be extracied and refined in an iterative fashion.
perhaps throughout the development of the product. This would make it easier for
the geveloper to handle any changes in the requirements. while giving the client the
opportunity to flesh them out. As a potential solution, he points to rapid prototyp-
img. a model of software development that employs just such an iterative approach.
Briefly, a prototype is a quickly produced mock-up of the intended product that the
client can try out. The client’s feedback is then used to repeatedly refine it. Given the
impaottance of the interactive aspect of this approach. it is especially useful for devel-

oping products that have a significant user interface. Conversely. embedded systems

~



with no user wnterface are probably not appropriate,

While the suggestion has merit. and early observational and expetimental dat.
appear to lend support. leading Boehm and Papaccio [6] to make a similar reconmern
dation. it should be noted that prototyping does not actually mahe the specitic ation
phase or document unnecessary. On the contrary, the prototype is often used simiply
as an analytical tool to discover all the requirements of the product; once that is
done, it is usually discarded, harking back to Brooks™ old throw-away rule. According,
to Connell and Shafer [12]. documents must still be produced. even when emploving,
an evolutionary prototyping approach, in which the prototvpe is not discarded T
instead iteratively transformed into the final product. An initial. and admittedly in
complete, specilication must be prodiiced hefore the initial prototype is made. Then.
with ecach suggested refinement to the prototype. the specilication must also be up
dated to reflect the changes. At the end of the process. one has not just the produet
but a final specification of it as well. Thus. for them. it is not really a mutually
exclusive choice between specifying or prototyping: rather. the two are considered
complementary. A similar argument can be made for other iterative approaches, snch

as incramental deeelopment  which incidentally is also recommended by 8] and (6]

1.2.1 Why Specify?

A formal specification method. however. is not a panacea. It will not, just by itwelf.
insure that no errors will be made. nor that the final product will be perfeet. After all.
the specification of incorrect requitements will result in a specification that is wrong
Determimng the requirements is clearly a necessaty tasw, but can the same be said
about producing a specification? Why not work from the requirements? Why mahe
the effort to formalize them? Or at most, why not adopt a prototyping approach hut
write only the initial specification?  Unfortunately, unless the projeet is small and
the developer has no intention of further enhancements, one cannot avoid wiiting o
specification.  And despite the slow acceptance of formal specification methods 1y
industry. the advantages of using them far ontweigh the disadvantages,

The main advantage is precision. A specification states i a clear and concise

manner what the product does. without the unnecessary implementation details than
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clutter the sonree code. Teis not just supposed to serve as the basis for building the
product, but as a communication tool as well. It is expected that different people
using the specification should arrive at the same interpretation. This is important
hecanse the people who write it are usually not the ones who design, code and test
the product. People come and go in organizations; the original development team
may no longer be atound when further enhancements to the product are requested.
Furthermore, given its formal nature, it should be possible theoretically to make the
transition to source code in a mechanical manner. thus eliminating the substantial
number of errors that are made in going from one phase to the next. Although still a
pipe dream, this is the underlyving notion of a variety of methods that fall under the
fabels of aulomatic programmeng, very-high level programming and transformational
teehniques (see [75) and [82] for examples of these).

Requirements, on the other hand. are ambiguous. Even ones that appear very
clear may have many interpretations. Gause and Weinberg demonstrate this quite
forcefully in [20] by showing how many interpretations can be derived from simple
English sentences. Basili and Perricone [5] demonstrate this by presenting empirical
data from a large development project that showed that the majority of errors (48%7)
were due to incorreet or misinterpreted specifications.  Equally significant is their
observation that more errors appeared in modules that were re-used than in new
ones.  The developers were hoping to save some time and work by re-using some
modules from a previous project, but their specifications were so poorly expressed
that the modules were used inappropriately. Therefore. a requirements document is
a poor communication tool and using it as the basis for development is. quite frankly.
reckless. Why would anyone spend a substantial amount of money on development
and then allow the use of something that adds considerable uncertainty to the project?

Another significant benefit of a specification is the role it plays in determining
whether or not the final product s the correct one. Delivering the correct product
is arguably the most important duty of the developer--correct in the sense that it
exhibits all the behaviours that the client had requested. By definition, therefore.
correctness s a relative term: correctness can only be established with respect to

some frame of reference. If that frame of reference is a specification, then correctness



can be firmly established; if it is a requirements document., there is po such certamty.

One commonly expressed disadvantage of formal methods is that they arve dith
cult to write because they involve complex mathematics. Most languages, however
involve either set theory or first-order logic. These can hardly be deemed comples
Besides, all computer science programs include a course that covers them. Another
disadvantage cited is that they may be incomprehensible to the clients. This is a
concern because the specification is. in some respects, considered a contract between
the client and developer. Here again. the notation can be explained to anyone with
at least high-school mathematics training. However, it would be helplul to inchide
natural language explanations with the formal section. Hall in [23] dispels these and
other myths concerning formal methods.

Therefore, regardless of the particular methodology used, the task of specilying,
the requirements should be considered just as necessary as the task of gathering,
them. The latter task involves. among others things, good interpersonal shills and
the ability to pick out ambiguities in the client’s statements. This thesis will not
cover it. except perhaps in an indirect fashion after all. the specification is based
or: the requirements. The reader is directed towards [20] which provides very pood

(practical) advice.

1.3 Errors in a Specification

The salient point made above is that given the potentially erippling effect of errons
in a specification, greater cffort must be made to eliminate or, at least, minimize
them. Now, in order to properly tackle this problem. one must first he awire of the
sources of error. Once these are known and classified, it might then hecome possible
to determine which ones can be eliminated. which ones can he minnnized. and which
ones are inevitable and unavoidable.

Knuth [38] provides an interesting classification of errors made durmg the develop
ment of TEX. Of the 15 classes listed. about 8 can probably he traced back to an enon
in the specification. Of these. 6 represent enhancements, cither 1o add more featuyes

or improve some aspect of its execution. such as eflicicney: the other two were dne



1o poor exception handling (1obustiiess) and nnexpected interactions between various
patts of the program  Some software engineers may object to the term “error™ being
applied to enhancements. but Knuth resists calling them simply “changes™ because
they were needed 1o correet deficient designs. The remaining 7 were due to the usual
errols one enconnters in programming, such as incorrect algorithms. typos, mental
errors. not referring to the specification. misusing the programming language. cte.
Focusing on the specification errors. unexpected interactions can be largely avoided
il a formal specification language is used. since the inference mechanism permits one
to discover most of the consequences of the specification: the rest. however. fall under
the general category of incompleteness. Ideally. the specification should have includec
them. but what this means is not exactly clear. Perhaps more interesting than the
classification is an ancedote he recounts on the history of TEX. He had given the first
specification I use this term because it is the word Knuth uses. but it is not clear
whether it was a formal one  to a couple of graduate students to implement over
the summer of 1977, When he returned in the fall. he found that only 15% of the
language had been implemented. Taking over the task himself. he soon realized what
a diflicult task he had set out for them. The document that he had initially thought
was complete, was not: he found many loose ends. requiring him to make major de-
cisions constantiy. As both the client and developer of the praduct. he was able to
recognize the document’s incompleteness during implementation. It convinced him
that the specifier of a new product should participate fully in its development. But is
this a realistic expectation? Incompleteness is often attributed as a source of errors
i a specification. so having some way of dealing with it should prove very useful. Is
there any way to determine when a specification is incomplete? What does it mean

for a specitication to be incomplete?

1.3.1 Incomplete Specifications

Throughout this introduction [ have used the term complete and its opposite. incom-
plete 1 relation to specifications. without having defined theni. This was deliberate:
I was merely following convention. It seems that in software engineering they are

often used in such a casnal manner. as if they have well understood and universalls
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accepted meanings.  Unfortunately. a quick perusal of the relevant htetature will
reveal that these terms are vague concepts which are tarely defined, toremg, us to
rely on our own intuitive interpretations. The dangers of this are obvious, especially
given the emotionally-charged nature of these terms. Who wonld possibly accept an
incomplete set of something. regardless of what it i<?7 The case is not different fon
specifications.  Thus, it is not surprising to find that completeness is treated as o
"motherhood™ issue in most software engineering texts: we are told that  aside from
being concise. unambiguous, correct, consistent, ¢fe a specification should he com

plete ([17] is one example). Since this is a desirable property, incompleteness is either
tacitly discouraged or accompanied by vague admonishments abont “not satisfyving,
customer needs.” A further complication of this inadequate treatment s that . when
completeness is defined in these texts. thete is no consensus on what it s, Diflerent
texts define it in different ways. For example.a complete specitication is often defined
by some as one that contains all the facts (abont the svstem): others define it as one
that has no “loose ends.” meaning that it also indicates all the facts that do not
apply:still others that all the functions and operations specified within it are so fully
defined that they return a value for any possible set of inputs. At the very least, the
variation in meanng results in a bit of miscommunication among, professionals in the
field: at worst. it becomes a case of something that has too many meanings encing up
having none. Furthermore. despite its supposed importance, few guidelines are given
in these texts on how to achieve it Thus, merely saving a specification is mcomplete
does not elicit any insight into the types of errors involved.

The question. therefore. still remains: what does 1t mean for a specification to he
(in)complete? Or. in more practical terms. what are the sources of incompletencss”
It seems to encompass a wide range of errors. ‘T he usnal assumption is that the foull
lies with the software developer who has forgotten to indhude some requirement in the
specification. or has only partially specified the functions and operations. However,
what il the user is not aware of all the requitements? And. what abont requirement
that change over time? It can be argued that these latter cases are not really the
responsibility of the software developer. After all. one canonly work with what one i

given. Although this is a compelling argument. it is a facile one. given that softwiare
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requiternents ustally do change over the lifetime of the product.  Should we not.
therefore. define a specification language/methodology. or construct a specification.
with that in mind”  Pethaps. it wonld be heneficial to consider the definition of
complele e this extended sense. as lnuth does with his classification of errors. ever
though 1t wonld mean complileness becomes a difficult property to achieve.

There are other coneerns, as well. Any useful formal language will have inherent
fimitations with regatds to decidability and completeness. A specification written
in such a language will naturally be affected by whatever limitations the langnage
possesses. This implies that we mav never be able to eliminate all sources of in-
completeness. Moreover, it has been suggested (c.g. [73]) that perhaps a certain
amount of incompleteness is desirable sinee it permits some flexibility in develop-
ing, the product  both for avoiding implementation bias and anticipating upcoming
changes. Consequently. the goal of completeness in specifications may not even be a
teasonable one. Thus. what is needed is not necessarily a method or tool that can
establish absolute completeness, but rather one tnat can tolerate a certain amount of

e ulllp]vl CHESS,

1.4 Problem Statement

The general or initial goal of this thesis is to examine the various notions of incom-
pleteness in specifications, to provide a useful and concrete definition of it. and then
to ptopose and define a method. preferably formal. for handling or tolerating it. For
now, “tolerating”™ means that the method allows us to reason about the system. even
when it s incompletely specified. Onee the meaning of (in)completeness has been
hved. however, both this definition and the goal will be refined accordingly. Since
spectications undergo constant modification. the method should also be capable of
readily aceepting change.

The only other requirement concerns the systemns to be specified. To make the
study as general as possible, at least initially. very few restrictions are placed on the
svastems. Howevero in general, the emphasis is on reactive systems: systems that

exhibit an on-going behaviour. often while interacting with their environments. In
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particular. the focus is on (embedded) ieal time svstems and conanrent sy stems
whose actions have durations (r.¢. not constrained b, atomicity).

Reactive systems pose special problems [60]. They cannot be deseribed simply in
terms of functional relationships. from initial to final states. Approaches that jus
describe the state-changing effects of actions or operations. such as VOM [35]. are
therefore inadequate because they cannot capture a notion of behavionr, And of those
that can. most rely on atomic actions  for example, the sitwation caleulus [51] i the
field of artificial intelligence. ('CS [31] and ¢S [33] m concurrency theory, or the
majority of temporal logics [60] used for specification. While atomicity sumphties the
problem of dealing with concurrency. it effectively reduces it to a non deterministic
sequential inferleaving of concurrent actions. On the other hand, if the specitication
formalist allowed for the expression of time intervals or actions with dutations. then a
very natural description of concurrency could be achieved becanse it wonld pernut the
specification of overlapping actions. Unfortunately, in such an approach there also
exists the potential for interference between conflicting actions  one action domp
one thing. while another does the exact opposite. Conenrtency. as we shall see.
complicates the deseription of systems. and restricts the range of formalisms we can

use,

1.4.1 Hinting at the Proposed Solution

This thesis proposes a formal method for (partiallyv) tolerating inconpleteness in
specifications. The “partially™ qualification means that only cettam (xpes of o
pleteness are tolerated. To my knowledge. both the specification language and 1he
approach taken to reach this solution are novel. The hasic tack taken is as follows
After examining the various notions of (injecompleteness in spedifications. |
troduce a pragmatic definition of incompleteness: it s a classification based on the
potential sources of incompleteness in specifications. FFrom this. [ select one class that
presents an interesting challenge: although it ica commmon somce of incomplet e
eliminating it is neither easy nor desirable. A conuection is then drawn betweon the
class and a group of related problems involved in reasoning about time aned ae tron i

artificial intelligenee (Al): the qualification. frame. and vamification problen Sinee
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the techmgnes in Al that deal with these problems usually involve non-monotonic log-
ics. the proposed solution. a fonnal specification language called NAT. is also based
on one Iuterestingly enough. these logies were initially introduced to model certain
aspects of common-sense reasoning: specifically. the ability to make decisions and

plans even when lacking relevant information.

1.5 The Rest of the Thesis

This thesis s directed towards the software engineer. Since it involves areas of study
that might not be familiar to some. an attempt has been made to make it as sell-
contained as possible. As such. there may be parts. such as the logical preliminaries
in Chapter 2. that might be very familiar to the reader. and hence may be omitted.
Furthermore. this thesis contains a proposal: it offers for the reader’s consideration a
new idea. How it will be received is as vet unknown, but enough information is given to
motivete and justify the various choices made along the way and to bolster the claims
ol the solution. The detailed deseription also gives the reader a better opportunity
to judge and perhaps eriticize the arguments made.  As well. given the tack taken
and the similarities between certain concepts in different fields. some repetition and
paraphrasing of ideas and arguments was required: in general. however. the views are
from slightly different perspectives. Finally. the thesis. almost by necessity. places a
strong emphasis on the semantics of the language. This is clearly a departure from
most specitication language definitions. which are often just user’s manuals. focusing
almost entirely on the syntax and examples of use. However, given the importance
ol being precise and unambiguous i a specification. this thesis should perhaps be

regarded as a model for such definitions.

I'he rest of the thesis is arranged as follows:

Since many of the ideas presented here depend on logic (of a non-standard nature).
the next chapter. Chapter 20 provides some logical preliminaries. It briefly covers
standard monotonic logies, including propositional. first-order predicate and modal.

It also sets the notation for the rest of the thesis.



Chapter 3 first Tooks at the task of specitication i more detail. Next. it fornally
examines the issue of (in)completeness from a number of perspectives, deanng, up
some of the ambiguities. [t then presents a classification of incompleteness based
on its potential sources. The general conclusion is that attaining completeness s
unreasonable. the best tack being to invent a method/language that tolerates a certain
amount of incompleteness. The focus of this method is one of the classes: pattial
specification.

Chapter 4. refeiring to the classification, proposes a general solntion. It notes
the connection between the chosen class and the problem of deading with incomplete
information in Al Since the solution will require a non-thonotonie formalisin, vations
uon-monotonic logies are examined. Most are found wanting i one way o1 another,
however. Shoham’s non-monotonic approach  scmantical non-monotonicdy  shows
the most promise.

Chapter 5 desceribes Shoham's ideas and logies.  In particular. the chapter he
gins with a description of semantical non-monotonicity and then describes the logics
of temporal knowledge (Th') and chronological ignorance (') It also defines the
noticn of causal theories. which will form the basis of specifications under the new
specification language. The chapter ends with a critique of the logics. pointing out
what must be changed to make them more appropriate for the tormal basis of the
language.

Chapter 6 has two parts. The first extends Shoham™s logic of Th 1o a fus
order. many-sorted case. AFOTh. Tt then redefines C'F with respeet to BFO TR, 1 he
second. presents the specification language itsell. KAT. The svutax and fornn of the
language is given. together with a new definition of cansal theories: called pcairal
theories. A number of pragmatic issues are also discussed indnding how at can be
used to build specifications. how it deals with their modifications and how it talerate
their incompleteness. Finally. the various features of the language are demonstiated
through the specification of the ubiquitons Plain Old ‘Telephone System (PO'TS

Chapter 7 concludes the thesis. briefly summarizing the key issues and saggesting

some further areas of study.



Chapter 2
Logic Background

Much of the discussion in later chapters presupposes some familiarity with standard
(monotonic) logics. including propositional. first-order predicate. and modal. Given
the widespread use of these logics in computer science. especially the first (wo. it is
probably safe to assume that the reader is already familiar with their fundamentals.
Nevertheless. it might be wise to briefly cover them. if only to establish a consistent
notation and introduce some relevant terms. For more detailed presentations on log-
ics. consult most texts on the subject- -see. for example. [79]. Although introductory
in nature. I recommend [17] and [61] because the logics are discussed in the context
of formal methods in artificial intelligence.

The next section informally introduces some key concepts. The finai two sections

briefly present the formai details of classical and modal logics. respectively.

2.1 Logics

Modern classical logies are formal languages. They were originally intended to for-
mally capture the mental activity involved in logical (deductive) reasoning. partic-
ularly as it applied to mathematics  see Barwise's introductory chapter in [79] for
some examples of this. Although the domains of interest in this thesis are quite dif-
ferent from mathematices, the reasons for using a logic are fundamentally the same:

(DY wath logie. one can very precisely express statements or assertions of the domains:
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and (2) one can determine the consequences of a set of statements Preasion g
key characteristic of logics: it distinguishes them from natural (and other informah
languages. Both the interpretation of the svmbels in the language and the detinition
of the inference rules are given with great precision This permits us to not onhy
formally derive proofs of statements within the language. but to also tigotousty prove
properties about the language itsell. Thus, one can determime for examples whethe
a logic is sound or complete.

There are a number of wayvs to define a logic, depending on what one wishes to
do with the language (61, 79]. For iustance, in order to determme the properties (o
meta-thcorems) of a language. it would be hest to use as small a set of Topical svmbols
and inference rules as possible. such as a Hidbert system. On the other handoab ihe
main concern is expressing facts and proving theorems within the language. then
a language with more “syntactic sugar”™ and inference tules should Leonsed s suddi as
Glentzen or tablcau systoms. Furthermore. even within a particular approach there ae
minor variations in the way the logic is presented  seel for example, the vanations
in the way first-order predicate calealus is defined in [17]. [61] and [79]. However,

regardless of the way a logic is defined. a proper definition has thiee components

syntax: With any langnage. one must he able to distinguish proper sentences tiom
improper ones. The syntactic rules provide just such a mechanisie Hhey
dicate which symbols can be used. and which sequences of svinbols are well
formed. By itsell. the syntactic component is not very interesting, but at play

a significant role in how the other components are defined and need

semantics: The semantic component is perhaps the most important part of a lopic
it zives meaning to the well-formed sentences in the Jangnage. "This voaccom
plished through a set of semantic rales which <ysternatically attach o meamne
to cach syntactic entity in the fanguage. For the sake of precision the mean
ing is usually given in tetms of a mathematical stracture. sometune catled an
intcrpretabion or a frame, Althongh it can take manv forme this stracture
often simply a collection of objeets, together with a set of pelation oy ove

them.
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Logics are concerned with the truth of statement<cand trath is related to the
seinantics. Two types of truths can be distineuished: a weak notion of truth.
where a statement is true in some particular interpretation: and a strong notion.
where it is trae in all possible interpretations. Logicians consider statements
of the latter type. called ralid ones more important than those of the forner
(vpe because they are universally applicable. In fact. the validety problem for a
logic. which is the task of determining whether or not an arbitrary statement

i~ a valid one. is one of the central issnes in ogic.

Once the semantices are well established and anderstood. one can virtually jgnore

them. relving solely on the syntax to wiite meaningful expressions.

inference system: Thic component is sometimes ignoted i specification langnages,
but if one is concerned about the consequences of what one has wiitten. then
an mference mechanism is a necessity, In general, an inference system s com-
posed of a set of inference 1ukcs and a set of axioms. The rules are “logical”
ones, i the sense that they are deived from basic human intuitions regarding
what constitutes a proper deduetive inference. For example.if given the pair of
statements, 1f phone 1s picked up, thea phone 1s off-hook and phone
1s picked up. it seems quite natural to deduce that phone 1s off-hook. One
constraint, however, is that the rules mudt preserve validity: any statement de-
1ived frome a set of valid statements must also be valid. Otherwise. the inferences
could not be trusted. This concern gives rise to another . a fundamental question
m the stady of logies: is it possible to define a suitable collection of axioms and

rules that can be used to generate all the valid statements of a logic?

It should be emphasized. however. that these rules are entirely formal in nature:
they relate svntactical entities to one another. not semantical ones. In order to
use them, one only has to match the forms or patterns of the statements. In the
example above, the rule. calied modus ponens. can be reduced to “fiom 1f p
then q and p. mfer q.” As long as two sentences matching the first two can be
found, the thitd can always be inforred, 1egardless of what p and q represent.

Chapter 1. however. shows that the range of human reasoning is much wider
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than this. and most cannot be captured by such simple syntactic rules Boas
also possible to fiud the consequences thiongh the semantios. but it s neh

easier through an inference mechanism.

Another war of looking at inferences is i the contest of proots  Anmteried
statement is a provable one. The sequence of statements and rules wsed to prove
a statement is considered its oroof. 1hus the inference svsteny is sometimes
called the proof theory of the logic.  Althougl it is not alwavs possible, the
inference system may be used to decide whether o1 not an arbitrary statement

follows from some et of statements,

Since the semantics are used to determine which statements are vahid. and the
inference system is used to derive valid statements: there s elearly a very important
connection hetween these components. ldeally, anvthing 1oat is provable within the
proof theory of a logic should be valid according toits semantics: and mversely.
any thing that is valid should be provable. The former property is called sounedness,
the latter complete ness. Any logic that permitted one to diaw conclusions that were
not valid would not be very dependables and consequently not useful. Henceo a logie
must be sound. But a logic does not necessatily have to he complete to he usetul

And now for ~ome formal details and definitions of logics The descriptions are

based on the treatmentsin [17. 610 79, 31

2.2 Classical Logics

2.2.1 Propositional Logic

Propositional logic (L) is concerned with fornmlating argminents imvolving propo
tions. Propositions are decdlarative sentences that can either he trae or false, suchia

phone 1s off-hook.

Syntax

I he alphabet of classical propositional ogic fin o Hilbert sostem styley consrate o

the following svmbols:



e & non cmpty. conntable set 2ol proposiion constants: p.g.r.. ..

o the logrcal councetives: — (anplication) and = (negation):
e « pait of punctuation marks (" and ).

The connectives and punctuation marks are called logeeal symbols; the proposition
constants are determined by the domain of interest or application and are considered

II()II-[()!/I('(I/ .\l/"lll()lh

Definition 1 The set of well-formed formulae (wfls). or simply formulac. over the

alphabet is the smallest set satisfving the following rules.
[. every proposition constant is a wff.
2. 00 ¢ and o are wffs. then so are (—o) and (o — ). <

The set of all possible formulae is called the language of PPL. and is denoted by Lp.
We say “if p. then g7 for (p — ¢). and “not p~ for (—p).

The syntax seems fairly limited. but it s sufficient to express any propositional
statement. ‘The logic. however. can be made easier to use by extending the syntax

with a few common connectives:
fer
o V (disjunction): (pVyq) quf (=p— q)

o A (conpuncltion): (pAgq) ot =(=pV q)

def

o = (rquivalined): (p=q) = ((p— g) N {q — p))

We say “por g for (pVg). "pand q 7 for {p A ¢). and “piff q” for (p = ¢). where

o] stands for “if and only 1.7 When it will not cause any confusion. the use of
the punctuation marks is relaxed. and the following precedence of operators will he

observed: 0 ALV — L and =,
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Semantics

The semanties for PL s very simple, stnce all that is requited s to assigne a tiath

value to all the propositions. Thus, only two objects are required.

Definition 2 An it rprctation for the propositional language £ is a function m
P— {t.f}.

Obviously. t and f represent the truth values true and false. respectively.
Neat. a meaning is attached to each sy ntactic entity in the language hased on the

interpretation.

Definition 3 l.et A € Lp,. and m be an wmterpretation for L. The value of A

under ne. expressed as V*(A). is defined as follows:

Lo N () = m(p). where p s any proposition constant

~

2.\ (=) = £V (4) = tand
CiF () = £

3N A = B)y= £ V() = tand VU(3) =T

t otherwise,

The meanings for the other connectives can likewise e defined

If V() = t. we say that A s ae aome that A s salisfrable and that s
a model of A. Furthermore. A is a valid formula. commonly called a tautology
\V™(A) =t for all interpretations m. "Lhe valedity proble m for propositional fogic i
decidable. This means that there exists an algorithi that can determine whether o

not an arbitrary propositional formula 15 valid.

Theories and Entailment

A collection of formulac from some language. often intended to describe sorne domarn
world or application. is « theory., Obvionsly. proposdiwonal theora s are collections of

propositional formulac ‘These formulac are sometimes called the aroms or promeses
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of the theory, Ancinterpretation e is a model of the theory T i all the premises of T
are tine in e T heoties may have none. one or many models.

A theory T cntaids a formula A, or. alternatively. a formula A is a semantical
conscquence of a theory 70 written T E AT A ls true in every model of T Clearly.
T is empty, resalting in B Al then A s a tautology. The symbol =, called the
entadwent velalion, relates a theory to a formula. It enjovs a number of properties.

but the most relevant to this thesis is monotonie y:

Definition 4 If 7" C 7", then {A T = A} O

Tk A) € {4

In other words, if any formmula A logically follows from a theoty T, then it still follows
from a theoty 77 which has been extended fiom T with the addition of new axioms.

New axioms cannot invialidate old consequences of a theory.

Inference System

An inference (or deduction or proof) system for propositional logic is composed of
three elements: the langnage Lpp. a set of logical axioms (tautologies) S, and a set
of mlerence rules o The rales map one or more formulae from the language into
another. The modus pone ns rule mentioned above. for example, maps A — B and A

into 3. 'T'his 1s usnally written as

13 is considered a conscquence of .4 — B and 3 by virtue of the application of the
modus ponens rule. A rule is sound or truth-prescrving iff the conclusion of the rule
is true in e whenever the hy potheses of the rule are true in m.

Let IS = (£, ... S R) be an inference svstem and 7' a theory over the language.
A proof ol a formula 4 from a theory T is a (finite) sequence of formulae A;, . ... A,
from L. such that 4, is A and ecach A,. | < 7 < n.is either a formula from
S U or a consequence of some preceding formulae in the sequence by virtue of the
application of a vule in R, We say A is provable from T in IS, written T 5 ..
I there exists such a proof. We also say that A is a syntactical consequence o a

theorem of Iin ISC U T is empty. then Fig s a theorem in the logic: in this case.

n)l
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a theorrm of propositional logic. The svinbol tois called the provabddy rdlation. and
like its semantic counterpart, the entathnent relation, it also enjovs the monotomaty

property:
Definition 5 1{ 7" C 1" then {A] I'F A} C {A] 17+ ). -

A theory T is said to be consistent T it is not possible for both I't A aed I'H oA
An inconsistent theory is quite pathological since it would permit the detvation of
every formula in the language.

If the axioms are tautologies and the inference rules are sound. then all the theo
remis of a logic are also tautologies. Such an inference system is called a sound one
A complete inference system is one with which it is possible to prove all tautologies,
There are a number of sound and complete inference systems for propositional logic.
In a Iilbert systemi, they have a single rule wmodus ponens. but the set of axioms
varies. The axioms are given as schemata that deseribe the form of the axioms, thus
referring to an infinite set of formulae with the same pattern. For example. one
common axiom is A — (B — A). where A and I3 can be any formulac in Ly

Propositional logic enjoys a number of important properties. It is sound, complete
and decidable. The latter one stems from the question of decedabdity. the syutactical
counterpart to the validity problem. and means that there exists an algotithim that can
determine for any A whether or not F.A: the former two indicate that the semantics

and inference system of propositional logic coincide guite micely:
1. Soundness: T EA then T = A

2. Completoness: f T = A then TF A,

2.2.2 First-Order Predicate Logic

Propositional logic is not very expressive. It lacks the vocabulary to enable us to male
statements about individuals. their properties and their relationships to each othier,
it lacks the vocabulary to permit us to make generalizations over sets of individn
als. For example. in order to say that all phones are off-hook 1n propositional

logic. we would have to wiite an awfully large nnuber of statements of the o
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phonel 15 off-hook. phone2 1s off-hook. and <o on. With first-order predicate
logic (FOL). the expression can be simplified to a single statement by making use
of i suitable predicate. in this case Phone_off-hook(x). whose truth-value is depen-
dent on how the variable x. representing phones. is instantiated. Iirst-order predicate
logic is sutliciently expressive for most applications. but. as we shall sec. the increased
expressiveness comes with a price.

Most of the delinitions and concepts introduced in the previous section apply here
as well, but the changes to the syntax and semanties are significant enough to require

defmition.

Syntax

The alphabet of first-order Togic consists of the following elements:
o ascl of Vool indieidual variables: .y, o .. -
e a pait of logical connectives: — and —:
o one quantificr: ¢ (uneee rsal quaniification):

e a non empty. countable set P of predicate symbhols. where cachh PP € P has a

fixed arity n:
e a conntable set Foof funetion symb 's. where each f € F has a fixed arity n:
e a pait of punctuation marks: (" and '),

The predicate and fundction svmbols are the non-logical «<ymbols of the language. The
arity associated with the predicates and functions represents the number of arguments
they accept. Unary predicates ate often used 1o lefine the properties of individuals:
those of higher arity, the relationships among them. An example of the former is
Phone.off-hook(x).and of the latter, Phones_connected(x,y). which might be used
to tefer to those pairs of phones which are connected to cach other. -arity predicates
ate simply proposition constants, (-arity functions are (individual) constants. There

are acouple of common variations to the alphabet: (1) the set of indivdual constants
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is distinguished (and not lumped under the function symibols), and (2) an equaliny
“=" symbol. which is a binary predicate, is included in the alphabet

The terms of the langnage are defined as follows:
o all individual variables and individual constants are tenms,

e if aj.....a.n = Loare terms, and f € F s an noary function ssmbol, then

flago.. o) is a term.

Definition 6 The set of well-formed formulae over the alphabet is the smallest et

satis{ying the following conditions.
1. all proposition constants are wifs.

2 Hap....a,.n 2 oare terms, and P e P s an noany predicate svimbol, then

Play.....a, b is a wil,

3. o and o are wils, and o 1s a variable, then so are (o). (o o) and (Va (o))

The set of all formulae is called the langnage of FOPL. and s denoted by Ly
We say, “for all x. A1~ true” for (Va(e4)). In the expression (Va(A)). the variable s
unweersally quantificd over A, and Ais in the scope of Vo All occurrences of i the
formula A are considered bound by Y. Any vatriable in A that is neither quantified
nor bound is considered fice (of V). A term that contains no hice viniables s catled
a ground one: a formula that contains no free variables is called a sentoner,

Aside from the other connectives of propositional logic (Vo7 o and )0 one more

symbol can be added to the alphabet:

e 3 (enstential quantdicr): (Ja(A)) ENOY (—(A)))

f

Note that the quantifiers ate duals. so that (Ya(A4y) LRI Y dAY)). We sav chon

sonte x. A is true” o1 (3e(A)).



To reduce the number of parentheses, the following convention will be observed.
'The quantifiers and their variables will be combined whenever possible. and the quan-
tification and scope will be separated by a *-" symbol. For example, instead of writing
(Var(Vyl 12{A)))) we wiite Vrydz - Al

Finally il the language includes the equality symbol. then a set of cquality arioms.

which define ity usual properties. are implicitly part of the set . axioms of the logic.

Semantics

The language of FFOPL has elements that refer to individuals and their relationships.

Therefore, a structure for the logic must be capable of representing such things.

Definition 7 An wnterpretation or frame for a fitst-order language L opy is a pair

M- (D o) where:
e /)i a non-empty set, called the domain or universc of M and

e 1 is a function that assigns to cach

L. noary predicate ssmbol P € P.an n-ary relation over D: and
2. noary function svmbol f € F.an n-ary function from D" into D. O

Sinee there are only two possible 0-ary relations. 0-ary predicate symbols (proposition
constants) are assigned one of two possible values, which echoes nicely the interpre-
tations of Lpy . Likewise. 0-ary function symbols (individual constants) are identified
with individuals from the domain D, since 0-ary functions have DY — D signatures,
Thus, me assigns to each proposition constant p an element from {t.f}. and to each
individual constant ¢ an element from D.

An assignment a in M s a function from the set of variables to the domain . In
other words, it assigns to cach variable & an individual e(r) € D. This is sometimes
called the meaning of w. The assignments are then used to give. via a valuation

Junetion \-¥ a value (or meaning) from the domain D for each term in the language.

Definition 8 Let .M be a first-order frame for £ opr. and VM be the valuation
function for the termsin the language under a frame M and an assignment «. The

valuc of a tetm oo Vo). is an element of 1) and is defined as follows:



L VM(r) = a(r). where & is any individual variable,

2. V*M(e) = m(e). where e is any individual constant:

3. VM(fla... .. a)) = m(HNV:May). . ... VM),

I8

Definition 9 A frame M and a variable assignmen! a salisfy a formula o, wiitten

M Eé[a]. under the following conditions:
1. M Epla]iflf m(p) = t. where pis a proposition constant.,
2. M EPor. .. a)a] ff (VM (ag). . N 0)) (D).
3. M E(o)a] il M Oa:
1. M (0 — v)[a] il cither M ola] or else M = o[al.

5. M = (Vae(o))]d] iff M E6[d’]. for all assignments o' that agree with a every

where. except possibly on .

The symbol = is called the satisfacteon relation; it relates a frame to a formmla Since
the symbol is overloaded. it will be distinguished from the entailment relation when
the context is not clear. The truth or falsity of M | Ala] depends only on the
assignments a{r) given to the free variables o in A Obviously, sinee seutences do not
have any free variables. their truth values are independent of .

A formula A is satisfiable iff M = Ale] for some frame M oand some assignent
a: otherwise. it is unsabisfiable. A s true tn a frame M (and M is a model ot )0l
M E Ala] for all assignments a. A is valed il it is true for every frame Mo A s al-o

valid if =A is unsatisfiable.

Inference System and Properties

A sound and complete inference system can be defined for FOPL The systenn e an
extension of that for PL: it requires a conuple of more axioms and one more inference

rule. the rul of gencralezation: AJ(Vr(A)).
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The only significant difference between FOPL and PPL.with regards to their prop-
crties is that FOPL s no longer decidable. There does not exist a mechanical pro
cedure that can determine whether or not an arbitrary first-order formula is valid.
not whether or not the formula is provable. In general. there does not exist an algo-
nthim that can determine whether or not an arbitrary formula is entailed from some
theory, 'Ihis negative result is the price paid for increased expressiveness. But it
is not completely hopeless. for the logic is actually sem-decidable: a proc-ture can
he defined that can determine that a formula A is valid, provided it is. but may not
terminate with a result if it s not. The entailment and provability relations. however,

ate monotonie,

2.3 Modal Logics

The classical logies above permit ns to express and reason about the facts that are
true e world, They do not distinguish between those facts that just happen to
he true and those that cannot be otherwise. The former are called continge nt or
possible truths, the latter. neeessary truths, This is a significant distinction because
imphicit inatas the notion of change. Some things are always true (or false): others.
however, change over time. or from world to world. Although it is possible to capture
this notion with dlassical logics. the resulting theory would be quite awkward to use,
For example if using FOPL. one would have to add worlds (or times) to the set of
mdividual constants. add an extra argument to cach predicate to refer to these worlds.
and establish a set of predicates to relate the worlds to each other. Modal logic was
developed to make this kind of 1easoning easier and more concise.

[he transition from a classical logic to a modal one is not very difficult. After all.
Pl and FOPL alieady refer (implicitly) to a single world. All that is needed is some
wav ol referring (implicithy ) to many worlds.

Only the propositional case is described below. The extension of FOPL to a modal

hitst order logic proceeds in a similar fashion.



2.3.1 Modal Propositional Logic
Syntax

The alphabet of modal propositional logic MPL is that of PL extended with a couple

of modal operators to identify the necessary and possible propositions.,
e a pair of unary modal operators: O (neeessity) and O (possibility).

Sometimes the modal operators are labeled as 17 and M, respectively

Definition 10 The set of wffs over the alphabet is the smallest set such that,
Looevery wffof Lpp, s a wff:
2. if ois a wff. then so are (O9). and (o).

The set of all possible formulae is the langnage of MPL and is labeled Ly We
traditionally say “box p” or “p is necessary™ for (Op), and “diamond p™ ot “p s
possible” for ($p). However. the modal operators can be given a variety ol intuitive
names depending on the application. For example,in a basie temporal logic, one say s
malways p* and “sometimes p.” respectively. Like the quantifiers of FOPLthe modal

operators are duals:
def
e (Op) = —~(O(—-p)): and
def
o (Op) = ~(B(=p)).

As for precedence in a formula. they bind as tightly as -

Semantics

The syntax does not make reference to the possible worlds over wlinch the fonmunlae
are expected to hold. That aspect is “hidden™ in the semautics Kriphe [10] proposed
a possiblc-worlds scmanties. now often called higphe sewanties, for modal logie- i
is based on the observation that necessary tiuths are tae inall possible worlds wihnle

contingent truths are true in only some of those possible worlds,



Definition V1 A Arogpke frame ov Krgphe antcrpretation for the language Lappy is &

triple A - (W I ). whete
o i a non empty set of worlds, sometimes called the universe:
o /7 1s binary relation over W called the accessibdity relation. and

o 1 is a function P+ W — {t.f}. where P is the set of proposition constants.

<5

v

The worlds can be a variety of abstract objects. such as time points. The relation
indicates how the watlds are connected to each other. A tuple (wy.wz) € R means
that w, is accessible ot reachable from wy.  All worlds that are accessible {from a
world 10 are considered its possible worlds. Since the truth value of a proposition is
dependent on what world it is in. the meaning function m requires the additional

world argument.

Definition 12 A frame .M and a world w € TV satisfy a formula o. written M. w =

¢ under the fo'towing conditions:

o Mow = p ifl m(pow) =t where pis any proposition constant;

te

Mow (o) il Mo (o)
3. Mow k(o = ) ifl eithet Mow o or else Mo =
LMow =(00) il Mou' E=o. forall ' € W osuch that (we.u’) € R:

S Mow (Vo) iff Moe' E=o. for some «’ € W osuch that (w.w’) € R. <

Observe that the truth of a formula O (and <) in some world is dependent on the
truth value of 4 in other worlds. This is how a formula makes (implicit) reference to
what holds in other worlds. Observe further that the interpretation of such formmnlac is
implicithyv affected by the nature of the accessibilits relation. A number of restrictions
can be imposed on the relation to enable us to match the mtuitive interpretation we

give to the worlds and modal operators. For example. if the universe is taken to he
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a lineat time line and the worlds time points along 1t related by the © precedence
relation. then the relation on the worlds is transitnve and antissnmetne Dillerent
combinations of these properties give tise to different modal systems The thiee most
common are: T (reflexive). ST (reflexive and transitive). and S5 pretlexne, transitine,
and symmetric). The modal systems associated with these accessibnhity relations we
labeled Sq. Sey. and Sgs. respectively. Associated with each is a set of avioms that
~apture their properties. For example. transitivity implies the axiom Ulp vty

The usual definitions regarding satisfaction. truth and validity apply hete as well
In particular, a formula A is true in a frame M (and Mo amodelot Vol AL o |
for all w & W A formula A is vahd it is ttue mall frames VL Sometunes the
fraine is identified with the accessibility relation. tor instance. a 1 frame s a tame
M whose accessibility relation is reflexive Similarlyv one cansav that o tormnla 1.
I'-calid if 1t s true for all ‘1T -frames.

A complete and sound inference system can be defined tor VP The set ol aviom
is dependent on the particnlar modal system emploved. The losic s monotome sonnd

complete. and decidable.

2.3.2 Applications

It has alieady been intimated that modal dogics are used e temporal veasommne
Clearly. modal logics are ideally sutted for this apphcation Iy fact there e
a wide variety of temporal logics. Part of the vanation anses fromn the clones ol
underlving (tempotal) structure: amone some of the possible chorce~tor the world
are time points or states: and for the accessibility relanion torally ordered thea
time) or partially ordered (branching nime)  Another somce of vanation v e the
choice of modal operators. with many logics crnploving more than the usial pan A
sood general account of temporal lovics e wiven by Reschier and Uvanhan o 66
When used for the specification ol software svstems the temporal dome formulae
are usually interpreted over ivet< of huear or branchimgr computation: or o ten,
bhehavionrs {sequences of actions o1 <tates) Pineli covers thie hield o 6 See ol
articles in N1

Modal logies have also heen nsed as lovies of bnowledge and b he Hereo th
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purpose 1s to reason abont knowledge  What is knowledge and how is it differemnt
from behiet? What does an agent know? Does 1t know what it knows? What are the
effects of transmitting that knowledge to other agents? Can they achieve common
knowledge” What knowledge is requited to perform an action”? T hese are just some
of the concerns regarding the nature of knowledge and the hehaviour of the agents
that act on it. The reason for choosing a modal logic for this task is a very familian
one. an agent is said to krow something if that something is true in all the world«
that it considers possible. There is some dispute over the exact nature of knowledge.
but a possible-worlds semantics. first proposed by Hintikka [32]. i~ able to capture
that variation again. by choosing the appropriate modal system. Ty pically, the Op
notation is replaced by a hp one. If one wishes to model the hehaviour of many
teasoning apents. then a knowledge operator K, 1s needed for each agent «. One can
then mahe statements about whether agent o knows what agent y knows (IN, K, ph.

and so on Some ovenviews and survess of these logics are given in {21 23] and [In].



Chapter 3

(In) Completeness in Specifications

In the introductory chapter some dissatistaction was expressed with the manner
which completeness, as it pertains to software specitications. has been conumondy ad
diessed. Certainly, the vagueness and misconceptions surronnding, the teru., alonw
with the casual manner with which it is wsed. have rendered the primary poal ol
this thesis  that of defining a method for tolerating incompleteness problematic at
best. Ttis not exactly clear what predisely is supposed to be tolerated. It is tiportant
therefore. to provide a nseful definition of incompleteness. one that readily aftords pos
sible solutions. One possible approach is to st identify and dassify the soutoes of
incompleteness. Hopefully. from this classification it might hecome possiblie to de
termine which sources can he readily eliminated. which ones can be niminnzed. and
which ones are inevitable and unavoidable, Then. a number of somrces from armony
those in the former two categoties, can be singled out and approptiate solitions pro
posed for dealing with them. This chapter is devoted to examining (injcompletene .
from a number of perspectives. and provides such a defimition.

The rest of the chapter is organized as follows. The next section lools at the
nature of specification building and the 1ole played by specifications i the software
engineering process. From the discussion aninformal definition of complete speaitica
tions i1 given. The second section examines the issue more nigoronsly. giving not et
formal definitions of completeness, bhut weakened notions of it as well Finally the

third section presents the dassification of incompleteness and categorizes the <onees
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as andicated above,

3.1 Building a Specification

The importance of the specification phase of the software development process can-
not be over-emphasized. Let us briefly examine the purpose of this phase and the
important roles that the specification plays.

There ate a number of ways to view the software development process. The overall
process begins with the conception of an application. taken from some application
domain, and terminates with a program. One useful and simple view of this process
sphits 1t into two sub-processes: The first sub-process deals with describing, the appli-
cation to be built. Traditionally. 1t has been the responsibility of the client to arrive
at an adequate deseription. usually in the form of a set of (informal) requirements.
What constitutes an adequate description. however. remains a fairly vague and de-
batable issue. For now, intuition suggests that it should at least be taken to mean
that the requitements must accurately capture all the behaviours (or properties) of
the application and that they be in a form that is suitable for communicating that
imformation in a clear and concise manner. In any case. once the requirements are
delivered. the second sub-process begins. that of constiucting the program or im-
pletnentation. At that pomnt. it becomes the developer’s duty to produce a correct
mnplementation of the requitements. meaning that the implementation exhibits all
the behaviows (or properties) that the client has requested for the product. We
sometimes say that such an implementation salisfies the client’s requirements. thus
identifving the primary relation in the software construction process. Note that the
delinition of correctness! does not restrict a correct implementation from exhibit-
mg, additional behaviours bevond those expressed in the requirements. consequently
there may be many implementations that can satisfy a particular set of requirements.
Leaving aside for a moment what is meant by “all the behaviours.™ this sub-process
may be regarded as a transformation between two very different objects: While the

YCorrectness, like completeness, is another emotionally-charged term  Furthernore, it too. i~
probably an unattamable property See [73] for a detailed discussion on the meanng of correctness




set of requirements is (usually J written in an informal (natural) Tangnage. the unple
mentation is written in a formal (programming) language. Additionally, while the
requirements only need to state what behaviours (or propetties) are expected ol the
product. the program must focus on how to produce that behaviour with the given
programming language. Thus. the program will contain considerable implementation
detail which. though necessary for its execution. obfuscates what is being descnbed
The difficulty of this process should be immediately apparent: how does one compane
these two objects? To wit. given that there is no way to formally compare these
two objects. how can we be sure that the transformation has heen a snccessful one,
that the implementation satisfies the requirements?  Furthermore, without such a
verificational guide. how can we effectively bring about this transformation?

There is a further complication. Consider again the satisfaction relation and the
view of the software development process described above., Clearly, the requitements
are of paramount importance in the process: everything hinges on them. 11 they
do not adequately describe the application. then the program will probably not sat
isfv. the client, even if it does satisfy the requitements. Unlortunately, the imitial
set of requirements provided by the client are rarely adequate. They often contan
errors. ambiguities, inconsistencies, or may even lack some requirements. Some ol
the inadequacies may stem from using an informal language: others, from the dient’s
unfamiliarity with some aspects of the application domain or the potential mntabihin
of the client’s requirements: stitl others. from the very nature of the tash of tiving 1o
describe an entity that cither exists in the dient’s mind o is taken from some com
plex real world domain. such as a telecommunications network  Assiming that an
adequate description of the application can be discovered, and using the expression
tntended requare ments torefer to it then obviously we would prefer to have the nople
mentation based on the intended requirements, not the initial ones. Thas to bridpe
the gap between the conception of an application and its implementation. not onlh
must there be a transition from an informal entity to a formal one, but the develope
with the help of the elient. must also uncover the intended requirements It shonld
be mentioned. however, that it way be very difficultoaf not impossible to define the

intended requitements for all buat the most trivial of apphoations. especialiv b they
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are writtenn an infonmnal language. I essence. the intended requitements represent
the ideal case.

Before suggesting a better approach and giving a definition of completeness. one
final point must be made: the transition from infor mal to formal cannot be a smooth.
gradual one. Indeed. cither something is formal o1 it is not. keeping in mind that all
semi formal structures. such as data-flow diagrams_ are strictly not formal. At some
point along the way, therefore. a formal entity will have to be introduced. Often. that
entity (the first formal entity in the process) is the final entity in the process. the
sowrce code itself. But that is too late in the process. too late to uncover the errors.
ambiguitios, and imadequacies in the requirements. True. the source code can be
excented, permitting the customer to direetly examine the product. but any mistahes
found in it will be very difficalt and costly to cortect. It would be far more efficacious
in the long tan if the first formal entity in the process appeared much earlier in
the process, specifically at the level of the intended requirements. 1f anything. it
would at least reduce or eliminate ambiguity in the process. But more importantls.
given the importance of attaining an adequate application description and the pivotal
tole that it plays in the software development process. a formal description (of the
requitenents) would solve some of the problems mentioned so far.  Let us now re-

examine these issues from aslightly different perspective.

3.1.1 Software Specification is Theory Formation

To stinmarize. we need a bridge between the application and the implementation that
cases the task of software development.in general. and the task of verifying program
satisfaction, in particular. 1t is stil} assumed that the client is responsible for at least
delivering to the developer some initial requirements. One possible solution is to build
a formal theory of the application. where a theory (as usual) is simply taken to be a
set ol formal expressions. Although not a perfect one. there is an analogy herve with
the paradigm of theory formation in the natural sciences [11. 73], Without delving
too deeply into the nature ol scientifie study and what constitutes a proper theory (¢f.
[11.61. 83]). theories in the seiences are succinet abstractions of observed phenomena.

The svimbols ina theory represent those factors or aspects of the real world that are
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Figure 3.1 Theories in the software development process

deemed relevant. The theories are then verified by testing the real world for all the
consequences deduced from them (after having suitably translated the formal sy mbols
contained in them into real world ores). For example. one consequence of Einstem's
theory of gravitation is that light m st be attracted by heavy bodies, such as stars
which was later shown to be the case. Il any consequence of the theory cannot be
verified in this fashion. then the theory is inadequate and must, henee, either be
refined or abandoned in favour of a new one.

Similarly, in software develepment. a theory should be an abstraction of the ap
plication. It should express in a concise and formal way what the set of (intended)
requircinents attempts to expresses informally. However, unlike a theory m the s
ences. this theory playvs a dual role: n addition to being a desceription of the applica
tion. it is also a prescription for the final product. In other words, it also determines
what the implementation will be like. The implementation, in this view, is considered
a model of the theory. not in the logical sense. but rather as a conerete realization
or instance of the theory. And although they are both formal theories (after alll the
implementation is also just a set of formal expressions). the theory is mich sinaller
than the implementation. since it lacks implementation-specific details. "Fhusit falls
somewhere in-between the application and the implementation, resulting agann in o
pair of relationships (the solid arcs in Figure 3.1) hinged at the theory: fisto the
theoty is created by abstracting from the application ( TabstrA); and then the
plementation is derived from the theory. via the usnal software constiuction proce:
such that it satisfies the theory (Isat T). Let us look at cach in more detail beginme
with the right-hand side of Figure 3.1.

Since the implementation and theory are formal i nature. their relationship can

in principle. be formally established (verified) Re visiting the satisfaction relation we

36



can say that an implementation satisfies a theory, Isat?'. if and only if T expresses all
the behaviour of 10 As i the sciences. we can make use of the notion of a consequence
set here. Specifically, we note that the set of heliaviours (or properties) expressed by
a set of formal expressions can be captured by its conscquence closure, which is the
set of expressions derived from the theory and closed under the inference rules of
the language. Therelore. though it 1night not be technically very easy to accomplish.
given the difliculties associated with comparing formal theories written in different
languages. it shonld be possible to determine whether or not IsatT by determining
whether or not the consequence closure of T is contained i that of I. Observe that
here. too, the consequence closure of I (and hence it's set of behaviours) can be a
proper superset of 7T

The other relationship. however. between application and theory. is much harder
to establish. This is the relationship that most resembles the real-world-to-theory one
i the seiences. As is the case with the real world. the application domains are usually
informal  or at least. the language and rules of these domains are still so inscrutable
to us that. for all intents and purposes. they can he constdered informal. There are
exceptions, however:if the application domain is very well known and largely formal.
then it might e possible to begin with a well-defined set of requirements. perhaps
even formal ones. Inany case. in the abstraction process the application domain
can be regarded as a collection of entities, together with relations and functions over
them. Furthermore. the client must decide what aspects (and consequently. what
tevel of detail) of the domamn to include in the description. For a telecommunications
networh, for example, one can concentrate on a high level view by looking at just the
services that are to be provided for its users, or one can focus on lower level details.
such as the switching networks, The question now is: how can we be sure that the
abstraction process has been successful?

We can attempt to apply the same technique on the left-hand side of Figure 3.1
(the dashed arc) as we did on the right. except that now the informal nature of
the application makes it very diflicult to deduce its consequences. The analyst must
rely on the client. or whoever conceived the application (or its initial requirements).

and on their grasp of the application domain.  Therefore. after having defined a
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theory based on the application (or imtial requitements). the analyst must intetact
extensively with the client in order to determine whether or not Asat I Naturally il
the result is negative. then the theory must be refined and the whole satisfaction test
repeated. Clearly, under such conditions  in which testing is very dependent on good
human communication - one can never really be certain that the theory is absolutely
correct. Instead. as in the sciences. if a point is reached where the testing no longer
reveals any more differences between the two. then the best that can be claimed is
that one has a “high confidence™ in the theory. The theory can then be considered o
suitable abstraction of the requirements. Since this is the hardest task in the software
development process. the greatest effort and time in the process should be spent here,
Once a good theory has been built. most of the ambiguities and inconsistendes in
the requirements will have probably been removed. consequently mahing the rest of
process easier to execute. Morcover. once we have confidence in both relationships
(TabstrA and IsatT’), we can say that the implementation is “equivalent™ to the
application -equivalent is given in quotes because in this case it is not a relationship
that can be properly defined. et alone formally established. In this way, the theony
"binds™ the requirements to the implementation [73]. 1t should be obvious hy now
that the theory is the specification. or perhaps forms the basis tor the specification,
and that theory formation should he the primary purpose of the specfication phase.
It should also be evident that if a good theory is discovered for an application. then
the specification represents an adequate description of the application,

Given somie of the above observations. we are now in a position to provide an
informal definition of a complete specification. To do so. we can mahe use of the
observation that a good specification should be equivalent to the client’s intended
requirements. Equivalence here does not necessatily mean that the specification s
simply a formal translation. expression by expression. of the intended requirenent
Indeed. they may have radically different forms: what is important is that they expres.

the same set of behaviours (or properties). Thus:

Definition 13 A specification is considered to be complete if and only if its conse
quence closure is equivalent to that of the set of the client’s mtended requirements

That is. the specification should contain the same behavioms (or properties) o the
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set of teqrements, no more, no less. &

In simple terms, this definition states that a specification is complete if 1t contains all
the requitements that the client wants for the application. Of course, generating the
consequence closure of the intended requirements and the notion of equivalence in the
definition are somewhat problematic. In practice. since people are not that systematic
in writing down everything they know about a subject and tend to leave gaps. it is
tahen for granted that completeness is achieved when all the straightforward inferences
tollow from the axioms written down as part of the theory. Ultimately, it seems that
this notion of completeness will remain weak. unless we eventually learn how to link.
in a systematic fashion. the real world entities modeled by the specification with

expressions in the consequence closure of the theory.

3.2 Some Formal Considerations

T'he problem of completeness has been well examined i the context of logics. For ex-
ample. it can be proven (¢f. [61.79]) whether or not a logic is decidable or complete.
Allthe logics described in Chapter 2 are complete. Higher order logics. however. such
as second-order predicate logie. are not complete. Furthermore. the notion of what
constitutes a complete axiom set is a familiar one to logicians. It is a set of indepen-
dent formulae (e, none derivable from the others) that is sufficient to generate. with
the inference rules of the language. all the valid formulae in the language--if | A
then = A These definitions. while useful to logicians. are not directly applicable to
specilications. Logictans are not particularly concerned with the non-logical symbols,
not with their specific interpretations. Rather. they abstract away from such details
(as in model theory). looking for general properties.

There are a number of ways to formally define the notion of completeness as it
pertains to specifications. One way is to look at just the specification or theory itself:
another is to define it with respect to other entities, such as implementations o
requirements, as in Definition 13 above. Both are examined below. Unless otherwise
noted, the discussion below refers to first-order predicate logic. but the notions may

he extended to other formal systems.
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3.2.1 Complete Theories

We need a definition that applies to arbitrary theories, heeping in mind that these
theories use only some of the svmbols in the language. In particular, the constant.
predicate and function svimbols vary from application to application. | 'he treatiment
below is based primarily on that in [73].

A complete theory is a set T of independent formulae that is powerful enough
to determine whether or not 7'+ A, for any formulae 4 in the language. Observe
that this definition is slightly different from the one above (for a complete axion
set). Essentially, we want the theory to leave nothing (about the application) unsand.,
identifying not just the positive facts, but the negative ones as well. Since it can Lo
used to generate, with the inference rules of the language. every true tormulac, the
theory T is sometimes called a complete ariomatization (of the application).

Recall that with a 10gic that is both complete and decidable, it s possible to
determine whether or not an arbitrary formula is deducible from a theors. In practice,
however. the formal systems used in specification are neither complete nor dedidable
(‘onsequently. there will be true formulae that are not deducible from T in other
words. non-deducible true formulae are indistinguishable from false ones From this
definition. therefore, two possible sources of incompleteness can be identified: (1)
the theory 7' may be too weak to determine whether o1 not an arbitrmy formula
follows from it- it lacks some information about the application or domain. and (2).
the language may have inherent limitations it is not even possible to develop a
complete theory.

In general, an incomplete theory can be extended by adding independent formulae
to it, reducing the incompleteness due to the first somee. It shonld he noted, however
that these extensions cannot go on indefinitely. A point will be reached where the only
independent formulae left are those that are contradic tions to the formulae alicads
in the theory (or. rather. in it© consequence closure). Adding these to the theory
makes it inconsistent. and although tlhis also makes it complete {since an mconsistent
theory will generate every possible formula in the langnuage). this sort of completenes
is useless.  Therefore. taking this into acconnt. a complete theory s also one to

which an independent formula conld not be added without rendering it inconsistent
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Alternatively, a consistent theory is complete if and only if every larger theory is
inconsistent.

Now. a specification of an application only uses symbols that relate to it. A spec-
ification of & phone system. for example. will have predicate symbols for the various
phone states (On hook(x). Ringing(x). Connected(x,y). elc.), but no symbols for
the orbital positions of the planets, nor any for the vital signs in a medical monitoring
system, nor, in general, any symbols from any other application or domain. Tech-
nically, therefore. any formulae that refer to the planetary system or a monitoring
system are independent of those for the phone system. and if they are not included in
the theory, then itis, by definition. incomplete. This is clearly not what we intended.
The definition does not take into account the heterogeneous nature of application
svinbols: and, unwittingly, the mismatch in symbols has introduced another source
of incompleteness. One way to avoid this difficulty is to only compare theories that
use the same set of symbols. This is done by type-categorizing the constants in the
fanguage. which. in turn. type-categorizes the variables. function and predicate syin-
bols. Lach formula can then be associated with the set of types that occur in it. and

a set of formulae by the union of their respective type sets.

Definition 14 Let 7" be a theory characterizea by types 7y..... 7. Then. I' is com-
plete if and only if it can determine whether or not T+ AL for any formulae A
in the language that is characterized by types 74... .. Tan. where {r4.....71} C

{7’] ..... Tu } Q

Ina similar fashion. a consistent theory T characterized by types 71,. .. .7, is complete
il and only if every larger theory characterized by the same types is inconsistent.

An interesting corollary to this definition is that when a fixed interpretation (a
model M) is piven to the theory (and the language contains the law of the excluded
muddile axiom. p V =p). then the truth value can be determined for any sentence in
the Tangnage. Under this condition. the above definitions imply that the theory (not

necessarily an axiomatization) is complete,



3.2.2 Complete Specifications With Respect to Implemen-

tations

There are a number of ways to formulate the definition of a complete specification
as it relates to its potential implementations. The one given below, taken from {11,
expresses the notion using just set theory and logic.

The formal language used for specification is sometimes called a formalov linguestie
system. Let @ denote a formal system. delined as a pair (£, C'n), where £ s the
language generated by some syntax syn(£). and ('n : P(L) — P(L) (where Pis the
powerset) is the consequence closure operatorfor the system. The consequence closure
operator is simply the set of inference rules for the langnage. For example, with 'l it
1s simply modus ponens: for FOPL, modus ponens and the rvule of generalization: oy
the algebraic specification system [22]. it might include rules of equational interence

and structural induction. The operator enjoys the following closure properties:
1. Ve C L0 C (n(x). (each theory is contained in its own dlosme):
22.YVr.yCL-w Cy— Cn(a)C Cn(y). (monotonicity),
3. Vo C L-Cn(x)= Cn(C'n(x)). (closure is maximal).

The consequence closure of a theory T'. Cn(T'). represents all the behaviours that
are obscrvable in the formal system. Note that changing the consequence closure
operator. while keeping the same language. results in different sets of observable
behaviours.

A specification S in formal system @ = (£, C'n)) is simply a set of formulae in the
language; hence. S C L. S is consistent il ('n(S) C L. This < finition is sufhicient
to assure consistency because an inconsistent theory would contain every possible
formula in its closure. A specification S’ in @' wnplomcnts a specilication S b

(written S 1impl S). where £ C L) iff
Cn(S) C Cn(S).

In other words. S" may be more detailed than S, pethaps contammmng implementation

details. but it must contain all the consequences (hehaviours) of S,

1WA
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A complcte speeification is one that fully determines all its implementations. That
is. the hehaviour of cach object in such a specification is so completely defined that
no implementation can be constructed in which the object has more or less behaviour

(as observed from the formial system of the specification). Formally.
Definition 15 A specification S is complete iff
VS8 imp S — ('n'(S') syn(S)) = Cn(S).
where (57 syn(5)) means 8 restricted to the syntax of . <

As expeeted, the consequence closure of any implementation (suitably translated into
the specification’s language) must be equivalent to that of the specification.

A variation of this definition is given by Wirges in [71]. in which the application
is viewed as an abstract machine (o1 black box)-—it is made up of a set of states,
a set of operations over those states. and a set of value functions (to describe the
states)  Briefly, a specification of an abstract machine is complete if and only if
every possible program (sequence of operations) is well-defined. where well-defined
means that a unique predicate transformer can be derived for the program from the
specification. Since it is not possible to enumerate. let alone specify. each possible
sequence of operations. Wiirges provides a set of rules for composing complex well-
defined programs from simpler ones. The details of the specification method are not
relevant. but essentially, to construct a specification. the analyst must first identify

these basie sequences and then define a predicate transformer for each.

3.2.3 Comparison of the Notions of Completeness in Spec-
ifications

The definitions given so far attest to the variation in the meaning of the word com-
pleteness as it applies to specifications. Bach of the three definitions (13, 14. and 15)
focuses on a ditferent intuitive notion regarding this concept.

Definitions 11 and 15, for example. are similar in that they capture. from different
perspectives, the notion that a complete specification should have no loose ends. that

there should be a value for everything. However. they do not adequately capture the
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important consideration that a specification is about something. .\ speatication i
not simply a collection of unrelated statemens: all the statements we bout a spe
cific application. Even if all the statements use symbols diawn from some hinite set
of types. there is no guarantee that they are deseribing the same particular system
Only Definition 13 relates completeness to the dlient’s set ob intended requirenents
Unfortunately. for reasons given in Section 3.1, it is also the hardest one to venify
Nevertheless. this view of completeness is a very common one. Detimition 15 also
captures the prescriptive nature of a specification. one that fully determines it m
plementations. Note as well that the pair of relative defimtions (13 and 15 appen
to anchor the specification between the set of intended requiremients on one side and
the set of potential implementations on the other. Hence from this union, one can
say that a complete specification must. for each behaviow stated in the requivements,
fully determine its potential implementations,

Any of the three is appropriate. depending on what one percenes as nnportant
for instance. someone with a strong logic background might preter Debimtion 1
However. it seems that the concept is best captured by all threeoand tor the purposes
on this thesis. all three will be regarded as part of the definition of a compiete spea
fication. This makes it a rather strong concept. but if the intenticn is to dentify ol
possible sources of incompleteness, regardless of their immediate usetulness, then o

is reasonable to base them on the strongest notion possible.

3.2.4 Weaker Notions of Completeness

(‘omplete specifications or axiomatizations are neatly impossible to achieve Al of
the definitions given above represent ideal situations. Unfortunatels and inevitably
the task of determining whether or not a theory s complete remains an undeadable
one: it is simply not possible to define an algorithmic procednre that conchisively
verifies this property  Acknowledging this problem Winges {717 offered the followimg

four suggestions as possible solutions:
I. abandon the notion of completeness in specifications.

2. weahen the notion in some way



3 weaken some other requitement. such as the form of the <entences permitted
in the specification. or 1estrict the set of admissible specifications. perhaps by

testricting the application domain:

1. establisha set of informal guidelines for showing completeness, such as identify -
ing whether there are enough statements of a particular type: these guidelines
may also prove nseful to the developer as an aid to constructing the specifica-

tion.

Although many developers end up (by defanlt) adopting the hist option. it is the least
appealing since without some clear notion of completeness. it hecomes very diffiendt to
determine how dlosely the specification deseribes the apphication. Of the rest. Wiiiges
cmploys the fonrth option. providing rules for simplifving the tash of establishing
completeness of predicate-transformer specifications. The technique. however. is an
inlormal one. requiring one to prove completeness via foree of (rigorous) argument.
CGuttag and Horning [22] used a combination of the second. third and fourth op-
tions in an attempt to define a weak notion of completeness for theit type algebras.
Specifically. the notion. called suflicient completencas, is a weak version of complete
aniomatization (of which Definition 11 1s an example). Briefls. an algebraic specifi-
cation is used to speaify abstract data tyvpes. It can be regarded as a many-sorted
fitst-order logic theory. complete with type. constant and function definitions. Each
function must have at least one argnment of the type being defined. the so-called type
of interest 'Ol Tts axiom set. however. can enly be composed of universally quan-
titied equational axioms. Additionallyv. the left hand side of cach axiom is restricted
to a single term with at most a single level of nesting of functions. Basically. these
conditions testrict the form (or “shape™) that the algebraic specifications may take:
thus. only a subset of possible specifications can even be considered. The set of fune-
tions can be divided into two types: those that return values of the TOI generate new
clements of TOIL so they are called gencrators: and. those that return other values
reveal the properties or behaviours of the TOILL so they are called bchaviowrs. Other
destgnations are possibles such as functions that modify the TOI1 (modific rs). but fo

the purposes of this discussion, these will suffice. An axiomatization of the 101 is
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considered suthcientls con plete i all the propetties of the TOD are detivable from
the axiom set I other words, for every possible set of arguments .ot cach behariou
function. a value can be found. Note the weakening i the defintion of sufficient
completeness: it does not require derivability of every possible formulae constructible
within the theory: 1ather. it requites derivability for just the behavionrs  Untortu
nately. even with the restrictions and weakening of the notion of completeness, it s
till an undecidable problem. As a solution. Guttag and Horning, had to establish
sufficrent. bt not necessary. set of conditions for achieving sufheient completeness
If the conditions are met. then the axiomatization is considered sufliciently complete,
otherwise. its completeness cannot really be ascertained. These conditions or mles
recommend. among other things. that the funictions be made total (lor example, by
introducing a distinguished crrorelement as o retum value for functions invoked with
clements not 1 their domains). and that for cach gencrator g and behiaviour b
the theors. an axiom of the form bg(e.y').2") = v must appear in the axion set,
where o isa TOL y" and 2" are tuples (possibly empty) of arguments, and v s avalnl
expressiol.

Turski and Maibaum [73] have also examined this issue. They believe that com
pleteness is not only unrealistic. but unnccessary as well, A specification. they wipgne,
should not define evervthing so completely: it should allow the developer sorne flexibil
ity during software construction and provide somne leeway for changes inrequinernent s
particularly if not all the requirements are known ahead of Gime. As a substitute they
introduce another concept called permyssivciicss, The word was partly chosen he
cause they felt that it is less emotionally-charged than completeness Tndeed, sayvine
that a specification 1s permissive does not elicit the same reaction that saying it -
incemplete would. even though they basically mean the same thing. 'To their aedi,
they chose a term that does not have an “either o™ connotation  as in. cdher some
thing is complete orit is not. Instead. permissiveness o which is not formally defined
in the test.is envisioned as tanging hetween sufhicient completencas on one side (ot
permissive and the tightest it iimposed by the inherent Tinitations of the laupnage
on the other (least permissivey Smce this thesisas patly concerned with the absolate

notions of completeness.the term permessiee will not be adopted here
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There s considerable mernit in Turski and Maibaum's perspective on the issue. A
certain amount of permissiveness may in fact make the developer’s job easier. but how
ich permissiveness? At what point does it begin to adversely affect the process? At
what point does it make it diflicult to adeguately verify or 1eason about the applica-
tion? Is sufficient completeness a reasonable lower limit? Is a fixed limit suitable for
all applications” How much permissiveness is tolerable for the specifications of critical
applications, where any deviant behaviour is potentially disastrous? These are very
important questions. Unfortunately, these issues are rarely addressed --not even In
Turski and Maibaum  except perhaps in a superficial manner. hence no satisfactory
answers ave available for them. 1t s also possible that the concern over a reasonable
limit is the wrong tack to take. Perhaps. it should be left fluid. with the main focus

being directed towards finding methods for tolerating some permissiveness.

3.3 Types of Incompleteness

While the definitions given so far establish the notion of completeness in specifications.
they are not direetly useful from a pragmatic point of view. They basically imply
that an ncomplete specification is one that is lacking some information. A far more
useful account 1s one that points out the ways in which a specification can be made
incomplete, the intention being to isolate the activities or motivations involved. Ouce
done. these sources of incompleteness might lead to appropriate solutions. Hence.
the following classification of incompleteness types is based on the potential sources
of incompleteness in a specification. Some of the types are based on direct violations
of the definitions given above: others. on interpretations of problems (sometimes
untelated to the issue of completeness in specifications or simply ignored by software

engineers) mentioned in different sources (texts and articles).

3.3.1 The Classification

Most software enginecering, texts point to two types of incompleteness (terms taken

from [17]):



> 1. External Incompleteness: The spedification does not adequately deseribe
the application. This arises when the specitier has neglected to speaity o de
sired property or behaviour. This is a pragmatic concern: some of the cheat's
intended requirements have not been included in the specification. The obyious
potential danger here, aside from not meeting the dient’s needs, is that if these
omissions are not caught carly in the process. they become difticult and costly

to correct.

> 2. Internal Incompleteness: This occurs whenever the document has unde
fined entities (terms, operations. functions, ¢f¢.) in the specification. A typical
example is defining the behaviour of an operation in terms of sub operations ot
functions whose behaviours have not been specified. Often, this type of imcom
pleteness can be discovered either by inspection or by mechanical means  fo

example. using svimbolic execution for algebraic specifications

Notes: These types of incompleteness can be largely attributed to negligenee or
incompetence on the part of the specifier. Thus, these sources ae rather pathological
and shonld be eliminated if at all possible. To do so. a greater emphasis inost be
placed on the specification phase: extensive culling and analysis of requircments must
be performed. together with the incorporation of hetter verification and velidation

procedures and tools.
Other potential sources -often ignored or not considered — are the following:

> 3. Weak Theory: Quite simply. the theory is lacking independent statements
about the application (positive or negative). rendering it too weak to determme
the theoremhood of arbitrary statements in the language. It can also be due
to a mismatch of symbols. although a strictly typed language should he able to

take care of this.

> 4. Permissive Specification: The specification (of some cotnponent) has heon
deliberately left underspecified. This may be cleared up later (see dlass 5)0 o

may he left that way. resulting in an implicit non deterministn s sormetime
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necessary to underspecify the deseription of actions in a conicurrent system (sce

Cracs )

Notes: These are general classes of incompleteness. They can probablv be lumped
in with some of the other classes. Manv of them. for example, result in weak theories.
However, since we are interested in specifie reasons or motivations, they deserve their

own classes.

> 5. Changing Requirements: Requirements are not static; they often change
throughout the lifetime of the software product. This could be the result. for
example,of the client realizing. after the initial requirements were defined. that
the soltware should now have more (less or different) capabilities. Or. the client
may wish to deliberately leave some aspect of the software open (not fixed)
pending more study. These changes could be requested not only during the

development of the product, but even after it has been delivered.

Note that these changes do not have to be monotonic in nature. In other
words. the addition of new requirements may make some previous ones no longer

acceptable or even possible.

> 6. Incomplete Domain Knowledge: Often. information about the applica-
tion domain or the application itself is found to be lacking. There are a number

ol possible reasons:

[. the client {or developer)is not very familiar with the domainor application.
The specification should be written by someone who has extensive expertise

in the domain.

2. many domains are too complex to be handled i toto. Thus. the theor
i~ built around one particular view of the domain. Different views of the
domain may produce different theories, but selecting the appropriate view
for a particular application is not a straightforward task. It is also possible

that more than one view may be required.
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3. there were elements of the domamn that were truly nuknown at the tune the
requirements or specification were made. Perhaps, new grecently disoon
ered) information has superseded the old. or 1t has provided new nsights
into the domain. This is sometimes the case. for example, with software

that depends on various scientific theories.

Notes: The above pair of sources of incompleteness are similar in (two tespedcts
One is that they have the potential of making a speahcation that was at one timne
considered “complete.” no longer that: the other. that they provide good arpnments
for demanding that specification languages permit casy modiliability ol specitications
It can also be argued. however, that they should not even be considered as sources,
since they are beyond the control or tesponsibility of the developer (or chent)

One can also consider software that is capable of overcoming the latter form of
specification incompleteness as robust. in the sense that it has the abihity to petlonm

.

satisfactorily under “abnormal™ conditions. For example, a robot that is designed to
work in a “blocks world.” vet has little difficulty mancuvering about in a completelhy
different environment. say a “real world.”™ is robust. Note that the tashs that canse
abnormality arise from the environment. which is nsually external to specihication,
were they to be specified. the abnormal situations would hecome part of specification.

reducing the incompleteness of the specification.

> 7. Inadequate Specification Language: In general a specilication Languave
is not capable of expressing all the properties or hehaviours of all svstene. The
language may simply be too weak. or it may not have the necessary constinet-
for specifying a particular feature of a particular system For example, i the
former case. a language such as propositional caleulus is imcapable of casily
handling situations involving a variety of individuals their properties and

terrelationships: in the latter case. a language such as VDM [T1.375 15 incapable

)
of explicitly specifying coneuriency. The langinage 15 also inadequate f 1t doe

not permit easy modifiability of the specifications.

> 8. Undecidability and Incompleteness in Language Anv w eful fonnal

langnage. one that is stiong enough to express what s desired will =afler o
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these two inherent hinitations. Although these have serious implications with

tegands to theory building. in practice their effects may not be very significant

[(rl].

Notes: ‘The above pair of incompleteness are related to the language that is chosen

to write the specilication. While we have some control over the former type. the latter

one indicates that we may be forced to aceept a certain amouant of incompleteness in

the specification.

> Y.

Partial Specification: ‘I his very common type arises when a particular

component of the system is not fully specified in the sense of Definition 15

it admits to more than one behavion., This class can best be explained by

breaking it down into thiee varicties. The terms are taken from the field of

artilicial intelligence: the reason for this will be made clear in the next chapter

(Sub section 1.1.2).

The qualifrcation proble e “This vefers to the situation where the pre-cou-
ditions for an action ot operation have only been partially specified. This
can atise either because some pre-conditions have not been considered
(perhaps. they may even be infinite). or the developer has neglected to
specify exception conditions. | he latter case is sometimes called a partral
Junction: if the pre-condition holds then the operation can be executed: if

not. then the result is undeeided.

Fhe frame problem: Actions have a limited effect: a small number of ob-
jects are alfected, the rest are not. The frame problem is the problem of
having to specify all the things that have remained unchanged by the exe-
cution of an action. Usually. this is done with a frame ariom, a statement
that indicates that a particular object has not been changed by the action.
Sincecin general. the number of objects unaffected by an action far exceeds
the ones that are, the specifier often does not bother to include the frame
axioms in a specification. relying instead on some implicit assumption that
any thing not mentioned has iemained unchanged  Unfortunately. formally

speahing. anvthing not stated explicitly cannot be relied upon.
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3. The ramification problem. This occurs when one neglects to specily the
changes (in state) that might occur to some objects as @ consequence of a
particular object being modified by an action. For example et the com
plex object be a folder that contains a number of fale sub objects I
this folder is destroved. then (intuitively) all of its files must also he de
stroved, but if this is not specified explicitiy, the status of the fi1le objects
becomes uncertain. Since the effects of an action are usualhy expressed i

a post-condition. this problem indicates an inadequate post condition.

Notes: At first glance it might appear that this source ol incompleteness can he
attributed to laziness or negligence on the part of the spectlier, and that it could he
eliminated by simply being careful. systematic and vigilant during the wiiting of the
specification: to wit, make sure all the pre-conditions have been inelnded; do not de
fine partial functions: include all frame axioms: insure that the post conditions include
all possible side-effects. In short, do not assume anything will hold implhiathy, state
everything explicitly. Some specification languages provide the means with which 1o

do some of this. For example. consider the following tiivial VDM speafication
Example 1 A 'Trivial Specification:

o State:: Oby: X: Int
Y: Int
Z: Int:

orl

ext wr o: Oby

pre X(o)>0

post  X(o) =1} (o) + Z(v)

The following program fragments implement this specification

o 1f (x >= 0) then x = y + z;

o 1f (x >= 0) then x = y + z; else print("error ...");



n1f (x >=0) thenx =y + z; y= z;

All of these fragments display the required behaviour. thus satisfying the specifi-
cation, but the incompleteness in the specification results in many different (but not
cquivalent) behaviours in the specification. It suffers from both a partially defined
pre-condition and the frame problem. The “corrected™ version given helow will select
only the first implementation above (since the errs clause here means that no state

change occurs whatsoever if the pre-condition fails):

o State: Oby: X Int
Y: Int
7 Int:

opP2

ext wr o: Ol

pre  N(o) >0

errs  BADCOND: A(o) <0

post XN(o) =Y (0)+Z(o)AY (o) =Y (o)A Z(o) = Z(0)

Alternativelv. the state could have been modified to make X of type Nat, thus
climinating the pre-condition altogether. This has the effect of turning a partial

function into a total one. O

The real problem. however. with these sources of incompleteness is a pragmatic
one. Quite simply. it would be a very tedious task to include all the necessary frame
axioms, qualifications and ramifications for each action, particularly if the specifica-
tion is large and complex. In fact, if an exhaustive attempt is made. the specification
will have far more of this "background™ material than of the “foreground™ type. thus
drowning out the relevant desceriptive information and making the document very diffi-
cult to read. Furthermore. they exacerbate the problem of changing the specification.
Changes to the foreground will often require significant changes to the background.
with the necessary changes usually propagating in an unpredictable manner. Add a

new state component. for example, and every action description is affected.

H3



Since these problems complicate the tash of speciication. one nnght be tempted
to ignore them. Oune might also be tempted to justify this by stating that hnnans
are quite capable of (instinctively) dealing with, say, the frame problem. Why spec
ify something that can easily be inferred by humans” The implementor will simply
understand that anvthing not mentioned explicitly has remained anchanged Unfon
tunately, this is not a dependable assumiption because different people will interpret
(underspecified) statements in different ways.  Anything left unsaid. therefore, be
comes a potential source for unwanted behaviour in the implementation. It might
then be argued, following the permissive argnment, that that is not such a bad thing,
that leaving the specification of an operation or action a little underdetermined is
beneficial. We may wish to be purposefully vague about the complete behaviour of
an action. especially if its exiet nature is not vet known in a sense, introducing an
implicit nondeterminism in the specification. This is the tack taken by Khosla and
Maibaum in [37], even though they recognize that their specification formalism sutfers
from the frame problein. They elaim that their approach is not affected by the prob
lem to the same extent as approaches like VDM because 1t does not employ an explicit
notion of state nor action descriptions that are explicit transformation of states. ‘T his
may indeed mitigate the effects of the frame problem. but it does not eliminateit In
any casc. it 1s no* 1wugh to say that the specitication is permissive and leave af that
since the traditional formal systems (such as those based on the logics in Chapter 2)
cannot handle permissiveness, formally manipulating and reasoning about sucli spe
ifications becomes quite difficult (unless one resorts to meta-theoretical constiucts)
The capabilities of these formalisms can only be exploited if cach behaviour is com
pletely and explicitly specified. This is a great coneern to anyone working with fornal
methods—see for example [35], in which Jones employs a logic of partial functions
[]. essentially a three-valued logic (true. false and “non value™ ). inan attempt to
deal with just the problem of partial functions in VM.

There are clements to this problem. however. that go even beyvond the pragmiatie
concerns. One is that it might be impossible to inelude all the backgromd information
because it might be infinite. A more serions concern. however, and one that affects

this thesis. involves the complications surrounding the specification of concurrem



svstems, T the VDM example above, adding the frame axionms to the post-condition
inplies not just that ¥ and Z are unchanged by the operation. but also that nothing
lse can change them during its execution. This operation and any other that affects
Y . for example. have been rendered automatically and unreasonably incompatible
In essence, it has forced an unwanted sequentialization of operations that might have
otherwise executed concurrently.  As a side note, the ext clause in VDM serves
as an implicit global frame axiom for everything not mentioned there. Obviously.
il we are inferested in just sequential svstems. this problem does not crop up; for
concurrent systems, however, we are left with a dilemma: frame axioms as stated
above are simply wrong. and vet they are needed to completely describe the action.
Unfortunatelyv. we cannot fix it by simply including a blanket statement of the form
“Everything not mentioned explicitly is unchanged by an action, except where noted
otherwise”™ to deal with the frame problem - or more generally, of the form “All the
relevant facts have been explicitly mentioned™ - because such statements cannot be
expressed within traditional logies. In fact. they involve notions that have proven to
be rather difticult to capture formally (see Chapter ).

In summary. on the one hand. we need evervthing explicitly and completely stated
in order to be able to properly reason about. and capture the behaviour of. the
systent. on the other. the task is a very difficult. if not undesirable. one (especially
for a concurrent system). One solution is to restrict the domain significantly. which
would perhaps keep the amount of information at manageable levels. Another is
to define o language. methodology or tool that could tolerate partial specification.
and thus not oblige the developer/specifier to deal with it. Such an approach would
allow the specifier to state only the relevant facts. thus implicitly assuming that the
deseription of the system is an incomplete one: and yet. 1t would still permit one
to reason about and effectively describe the system. It would. in essence. “fill-in™
any missing information whenever needed.  Of course. this cannot be achieved for
any type ol information {(where would it get #t7): rather. only for information that

exhibits predictable patterns.



3.3.2 Discussion

We are now in a position to further categorize the sources in the elassitication ae
cording to categories mentioned at the start of this chapter  That is, categorize them
into the following three categories: sources that can be eliminated, sources that can

be minimized. and sources that are inevitable and unavoidable.

I -sources to elimmate In this category are those types that are due to nephgence o
incompetence on the part of the developer (and. sometimes. the dient) Types
1. 2 and perhaps type 6.1 and T (assuming, that an appropriate language can

be found. otherwise 7 belongs in the nest category) can be lumped here,

II -sources to munimeze In this category are those types that are still too diflicnlt to he
handled by our present capabilities (and knowledge). Types 3040562, 6.3 and
9 should be included here. Of these sources, the ones due to incomplete domam
knowledge and changing requirements are the most dificult to address and
perhaps they really belong in the next category. After all. how can one know i
advance what one will need or know in the future (other than throngh some lorm
of prophesy)? At best. it may be possible, thiongh the appropriate selection of
specification language or techniques. to build into the specification the abiliny

to permit change casily. But how this may he aclneved s as vet problemati
IIT -unavoidable sources In this category. clearly. we find only type 8,

The first and third categories either have relatively casy solutions or none at all.
respectively. thus they will be ignored. Of the classes in the second category. thiee
general strains of incomplete information can be identified (making it an alterative

categorizauion):

A -genuwmnely ancomplete wnformation 'The missing information s enther toulv un
known or very difficult to ascertain, such as changing requitements or ancertain

(and perhaps infinite) pre-conditions:

B -dcliberately incomplete imformeation 'l he information has been deliberatedy left on

(permissiveness): and

o6



C unplicdly imcomplcde imformation It involves incomplete representation of (sup-
posedly ) complete mformation. such as the frame problem - at least. that is the

case for sequential systems with restricted (closed-world) domains.

AL of these general problems deserve attention. However. since the partial specifica-
tion class isolates specific forms. is fairly ubiquitous. overburdens the specifier. and
involves (to a certain extent) a couple of the above strains of incomplete information.
it has been chosen as the focal point for the proposed method. Besides. as Chapter 1
will shortly show, the qualification and frame problems. at least. exhibit patterns that
can he exploited.

Finally, it should be stated that the classification of sources of incompleteness
may itsell not be be complete (1), and that there is possibly some overlap of soutces.
Nevertheless, the elassification and the associated categorizations. though crude. have
proven to be quite useful. helping to identify a particular class of incompleteness to

pursue,



Chapter 4

Incomplete Information and

Non-Monotonicity

With the clarification of the notion of mcompleteness in speahications and the asso
ciated classification of potential sources of incompletencas presented i the previons
chapter. the goal of this thesis can now be refined and an appropiate solution pro
posed. Regarding the notion of incompleteness. a mnmber of sahent points were
made: (1) basically. an incomplete specification is lacking the information necessany
to achieve a complete axiomatization. a complete deseription of the apphication. or o
complete determination of the potential implementations: (2) it s nearly mnpossible
to arrive at a complete specification for non-trivial applications: and (3} o certan
amotnt of permissiveness (how much?) is desirable in some cases <ince completene,
may actually hinder the implementor’s task or mahe it difhoult to deal with canging
requirements. From the classification. one particular source ol incompleteness, partial
specification. was singled out as an imminently worthwhile target . not only becanoe 1t
presents an interesting challenge. but also becanse it addiesses i fundamental prob
lem: namely. how can we capture the notion that “all the relevant facts have heey
explicitly mentioned?” Indeed. any formalism capable of capturing this notion vould
probably be capable of tolerating a variety of incomplete information pethap even
that arising from changing requirements (1o gennely incomplete intormation) It

would also case the spectfier’s task since it wonld no longey be necessany 1o eophiatly
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mclude all the backeround” aaors Thus, the goal s now 1o define o speafication

la cenage/inethodology that

o tolerates partial specihcation (in particnlar, the quahfication and frame prob-

lemsg.
e crmits fanrly casy modification of the spedifications. and

e can be used to express 1eal-tune and/or concurrent systems (involving non-

atorne actions)

What <hiondd be the basis for this language? One possible tack is to look at how
simtlar problems e handled inother disciplines. A< it happens. incomplete infor-
mation s « concern in the held of artificial intelligence (AD). Spectfically. it appears
e the atea of commonsense reasoning. Simee many of the tashs that fall under that
atea often exhibit non-monotonic behaviowr, it is not <urprising that non-monotoni
approaches have usuatly beenadvocated as potential solutions. This chapter exam-
mes i osome detail this AT connection and the approaches imvolved. exploting their
capabilities and weahnesses,

Fhe rest of the chapter is ananged as follows: The next section describes the Al
tashs that deal with incomplete information. including how the frame. qualification
and ramification problems enter the picture. The second and final section reviews a
few common non-1monotonic approaches vod their weaknesses. including their difficul-
tres with the fanons Yale Shooting Problemn. Irom the known solutions to the latter,

it rdentifies a suitable non-monotonic formal basis for the specification language.

4.1 Commonsense Reasoning and Incomplete In-

formation

Nothing astonishes men so much as common-sense and plain deahing.
lKalph Waldo Emerson. Lssays. aii. Art.



Common ~ense 1~ not a simple thimg, Instead. 1t s an mmense soaety ol
hatd-carned practical wdcas  of multitudes of hie fearned tules and exceptions.
dispositions and tendencies, balances and chechs.

Mavin Minsky [55. pg. 22]

Common sense is dedidedly enigmatic  How can something that seems <o s
ple. so obvious. and so natural to humans  something evea childien can do he <o
incredibly difficult to capture, either formally or computationally? Such s the ditli
culty that neither goal is even temotely close to being achieved (except petliaps i the
realms of science fiction). In contrast, tashs which appear very dithanlt to most peo
pie. such as solving mathematical fornlas, playing chess against grand masters. o
those involving a deep expertise in a particular field (for examples medhcal dragnosis,
have been readily translated into programs. many by the nud 1960°s (550 58] T
dichotomy certainly appears perplexing. until one considers how much information
cach requires. Although the so called “expert™ tashs mmav often requite a considerable
amonnt ol esoteric information. their domains ate stncth cncnmsanbed o they
involve a lot of kniowledege about a narrow held. The facts in suchi dormains are na
allv well known and enmmerable. Common sense on the other hand. consists ol o
astonishing body of knowledge ina wide range of domains, rom the very peneral
such as quantity, space and time  to the very specialized, nncheol it intervelated i
comples wavs, This knowledee has vet to be compiled. in factoatas not even clew
what breadth and depth of knowledge is mvolved. Farthermore, tns commonsens
knowledge is combined * ith commonscuse 1easonmg. o powerlnl atrav ol tnethods o
making sensible. rational inferences from this knowledge, inchnding logreal dednetion
(what the logics in Chapter 2 capture). abduction Goferring o plausible explanation
for some situation). and indnction (infernme a plansible general tale to esplam the
occurrence of a number of particular mstances) 131 The reason that it appear o
deceptively simple is that people hegin to acqmie this aintncate mformation and 1ea
soning Capability at a verv voung age. so by the tirne they readh adolescence ot
of it i~ already ingrained. It is also possible that sorne of it e-pecially those aapea
that tequite sensory and motor shitls, s alreads “hard wired o the bhrams o prodne

ol cons of evalution.
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Since comnmon sense s 1egarded a fundamental component of intelligence, there
has been. almost from the inception of the field of Al attempts to somehow model
it. John McCarthy in 1939 was probably the first to propose this goal. but it was
not until Patrick Hayes™ exhortation in “T he Naive Physics Manifesto™ 1 19738 (later
revised in [29]) that a concerted effort was made in this regard. Hayes urged evervone
in the field to begin formalizing, preferably in a first-order logic or an extension of
one, the commonsense knowledge involved in a number of domains  his contribution.
for examplc. was on liguids [30]. Since then. however. there has probably been a
greader emphasis placed on the reasoning side of common sense. most notably on
non monotonic reasomng (see next Sub-section). Nevertheless. the flurry of activity
ovet fae past decade on formalizing both commonsense knowledge and reasoning
his pethiaps. more than anvthing else. convinced evervone in the field how daunting
an'' aml tions o task it really is. It is bevond the scope of this thesis to delve too
deeply 1mto the nature and nuance of huinan common sense, nor into the variety of
approaches that have heen advocated to model it A provocative. though informal.
ghinpse e natnie of conmon sense can be found in [35]. As for the approaches.
a good genc ol overview and survey is found in [13]. which uses many examples to
convey the notions: [76] contains a collec tion of articles covering just commonsense
honowledge, while [17] gives an extensive survey of the various formal treatments of
non monotonte reasoning. a haish entique of Haves™ position is given by McDermott
in (53] which iscin tarn. followed by numerous rebuttals from researchers in the field
[77]. see also (SOTC[ST] and proceedings of the AAAT and 1JCAT conferences.,

What does common sense have to do with the goal of this thesis?  Well, one
chatacteristic of human commonsense reasoning is its remarkable ability to deal with
imcomplete information. Indeed. people rarely find themselves having all the necessany
ot relevant information in eversday situations. and vet they rarvely have difficulty
teasotntng, under such conditions, To take a simple example. consider the physicadl
world it s so imimense. complex and varying that it is clearly not possible to keep
a complete representation of it in owr heads. Reahstically, we can only positively
claim to have knowledge of the things in this world that we can directly pereeive

with our senses  The computer in front of me on the desk. the books and papers
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sttiewn around e on the table and floor. the Alex Colville *Couple on Beadh™ prot
hanging on the wall to the left. and so on. are some of the things that Tan certam
about. that 1 know about. because I can see them. The existence of every thing else,
however. I must infer from. amongst other things, my (partial) knowledge of the world
around me and a basic understanding of the nature of phy sical objects, inchading, the
rules of “lawful change™ of such objects. One such usetul rule is the law ol inertia
(It is rather fortunate that it applies to our world, otherwise the world wonld be <o
chaotic that making inferences about it would be probably impossible) T am quite
certain. for example. that there is a glass of water on the counter in the Kitchen, even
though I left it there over an hour ago and can no longer see it from where Tam now
sitting. | have a high degree of confidence in this inferted “fact” hecanse of the law
of mertia. together with the fucts that 1left the glass (stationary) on a level suilace
and there is no one else around who could move it. Tam also cettain of the existence
of Concordia’s main downtown campus building hecause 1 have been thete many
times and it is even less likely to be moved than the glass. Still. nether aimterence
is gnaranteed to be correct. A mischievous friend might silently pilier my glase. an
earthquake might topple the building without mv knowing it. 'Thus, inferences based
on incomplete information are tentative, and consequenthy mav have to be retracted
on the basis of new evidence. This is where the non-monotonicity appears. revealing
a hey aspeet of commonsense reasoning: it proceeds through a string of plansihile
or rational assertions o1 inferences. but since “plausible” and *rational” do not wnply
certainty. this string can be undermined by new information In conttast . deductive
reasoning deals only with absolute certainties. It vields inlerences that are necessanly
true if the premiises are true: they cannot be assailed by new information

This ability is much more powerful. complex and subtle than s denonstiated
by this simple example. For example. we have the innate ability 1o appreciate the
difference between the persistence of the glass of-water on connter fact and that of
the existence of the building. Since glasses can casily he moved we donot expeat th
former fact to last very long., We have a Heel for approximately how long sometbang
should persist and how ieliablv we could depend on it onr reasonme Tha e

can qualily the uncertzinty o incompleteness There are many other <ubitleres o
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but most are not relevant to this thesis: the next pait of sub-sections disenss the ones
that are. In any case. what is iimvortant here is that incomplete information does< not
prevent people from makine, plans, predictions and decisions. or undertaking actions.
It docs not paralyze them. even in the event that these turn out to be incorrect.
mapproptiate or inapplicable in the light of new information: they simply adapt to
the (unexpected) changes in their information base. They are not bogged down by it
as is the proverbial robot confronted with a new environment.

Note, however. that while reasoning with incomplete information has its draw-
backs, it does not imiply that the it would be easier to reason with complete informa-
tion (assuming one were somechow able to acquite it). Experimental mobile robots. for
example, that depend on having a (suitably) complete internal representation of their
cnvironments spend most of their operating time sensing and building two or three
dimensional models of their worlds {10, 58], One of the most successful of these robots
was SRI's Shakey. Shakey's environment was specially engineered to assist its vision
and image processing capabilities. The rooms were clean. well defined (dark base-
boards were used to distinguish walls from floors). well lighted. and bare except for
latge, uniformly coloured blocks and wedges. Yet. even in this contrived environment.
Shakey did little more than lureh about slowly. taking an hour of computing timne (to
build a world model and decide on a plan of action based on it) before cach movement.
Morveover, all the processing and detailed information provided Shakev with only a
very limited ability to deal with unexpected events. Rodney Brooks [9. 10]. giving
other examples as welll is especially eritical of the reliance on a complete internal
world model, citing it as the maimn reason {or the poor performance of these machines.
Atter all. there are computational mits to take into account. But more importantly.
il we wish to build svstems that exhibit some “intelligence.” svstems that will react
quickly and effectively to external stimuli, systems that will be more than just toys
plaving in and reasoning about very restricted domains, then they will have to be
cquipped with the ability to handle incomplete information.

Let us now examine the fundamental nature of non-monotonic reasoning and how

non monotonidty creeps into reasoning about change and time.
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4.1.1 Non-Monotonic Reasoning

Consider the following example: Usually. Fred meets Enuma on Friday mornings o
10:00 to discuss the progress of his work. These are scheduled meetings and. hased
on past experience. Fred expects Emma will be in her office at the appointed time
However, there are potentially very many reasons why Emma would not be in het
office on Friday this week. from the mundane, such as coming down with the flu, to
the unlikely, such as a bomb destroying the building. to the incredible, such as being,
abducted by space aliens. And yet, despite all these possibilities, Fred still assumes
that Emma will be in her office at 10:00 this Friday. And Fred artives at this behef
without running through all these possibilities in his mind (most of which he has
no information about. anvway). e does not attempt (at least not consciously ) to

determine the truth-value of an expression like this:

If she does not have the flu. and if she is not away on a business trip. and
if the building has not been destroyed by a bomboand il oL then she s

in her office on Friday at 10:00.

In fact, if his decision (on whether or not to go to her office) depended on an evalnation
of this rule, then he would indeed be paralvzed since it is not computable; not simply
because he may not have enough information to evaluate some of the propositions,

“w

but also because the in the expression represents a potentiallv infinite hst ol
propositions. So. in assuming that Emma will be there, Fred is actuallv “jumiping, to
that conclusion™ on the basis of just a few *facts.” Most of the time this provisional
conclusion is the right one: but occasionallyv. it turns out be wiong.  "Hos 1 the
price that must be paid for the benefits of such a powerful inference mechaniin. o
example. let us now suppose that on his way to the meeting, Fred mns mto Fana’s
secretary who informs him that Emma wonld not be in that day bhecanse she has the
flu. The new information has invalidated Fred's onginal conclusion It has changed
his set of beliefs non-monotonwcally hecawse the new information is incompatible with
the conclusion. Formally. this type of human reasomng violates the monotoncity
principle. That is_ i 7 C 77 then it is not necessanily the case that { AT A

{Al T = A}, Altemnatively. il A k= B (A entails 13) then it s not the case that
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A b8 The AT commmmnity has dubbed this tvpe of reasoning non-monotonie
reasoneny or defeasible reasoning: specifically it is the diawing of conclusions which
mayv be invalidated by new information. Obviously. the monotonic logics described
in Chapter 2 are not capable of capturing an inference of this sort. Their inference
systems, centered around trusty modus ponens. restrict them to handling deductive
Teasoning,

While many aspeets of human conmmonsense 1easoning (perhaps most) are gnite
different from deduction, there is something about Fred's reasoning that has a quasi-
deduetive feel. "This has given the researchers in the field the hope that it might
be formalizable. Returning to the example. why did Fred reach the conclusion that
Finma would bean her office at the appointed time? He really only had knowledge
ol the fotfowing, facts: that (1) (because of their regular meetings) “Emma is usually
in her ofhice at 10:00 on Friday.™ and {2) *It is 10:00 on Friday.”™ At first glance it
tmay appeat teasonable that he arrived at conclusion (') “Emma is in her office”
using, an inference rule of the form: given (1) and (2). infer (C). Unfortunately. this
rule is insatlicients it docs not allow Fred the freedom to reject (C') when given new
information. Il the rule is accepted as a valid one. how will he reconcile () with
the news that <hie s at home with the flu? Actually. Fred's reasoning tacitly imvolves
an ignotance clause. To wit the reasoning proceeds as follows: given (1) and (2).
tn the abscnee of ceadenee to the contrary. infer (C). Thus, commonsense conclusions
are based on both the presence and the absence of information. This leads to the

followine delinition.
Definition 16 In general. a ron-monotonie rule has the following form:
Given AL and the absence of evidence B, infer (. <

A common variant of this rule makes no mention of 4 at all, stating that “given A. in
the absence of evidence to the contrary. infer .7 or “given AL if it is consistent (with
the theory ) to believe €' then assume €. These should not be mistaken as syntactic
ot inferential rules for some language: they are merely definitions. And despite thei
seemingly deductive feel they are nonetheless non-deductive rules. How to represent

these rales e a language and how to distinguish between known and assumed facts
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are two key issues that the language must address. A number of approaches have
been advanced in this regard. some of which are described below

There is one other element to Fred's reasoning that must be nghlighted  State
ment (1) uses the word “usually.” which imphies that this represents a ughly probable
case, a so-called default case. That is why Tred can usually count on it Obvionsh,
the higher the probability of its occurrence, the higher the conlidence one can have

in any conclusions derived from it.

4.1.2 Reasoning About Change

Reasoning about change is a fundamental concernin most (1eal world or AL domaims
It manifests itself in any discussion involving notions like thme. state, action. and
causation. By change we usually mean a change i state, or a change in the state ol
an entity. where a state is tahen to be a “snapshot™ in Gme of the world (o1 entity)
Instinctively, we associate change with the passage of time, with notions of past.
present. and future. with before and after  The light was ofl a short time apo. hut
now it is on. therefore there has been a change. In a static world in which nothing
changed. the concept of timeitself would be meaningless: without change. how would
we even measure time [68]7 We also associate change with action because actions are
usually the cause of change. The light was off. but [ fhpped the switch, and now at s
on. This.in turn. points to causation as another means through which chiange can he
described. Inany case, regardless of which approach we chioose to describe change, we
run into three classical problems: the qualdfication. frame and ramidfication problens
(time [13.68]. action [17. 21]. causation [70]). Hence the reason for the nomendlatnre
given to the types of partial specification in Sub section 3.3 1 Iuterestingly enough
the qualification and frame problems were tesponsible for stimulating much of the
early rescarch into non-monotonic inference [17).

What is the natuie of these problems? Where does the non monotonicity ente

the picture. Let us have another look at them from slightly dilferent perspectives

1. qualification problem: In oider to determine or predict the outcome o
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sueeess of an action. it is important to fir t determine whether all of its pre-
conditions have heen satisfied. Obviously. we can only have confidence in the
prediction if we are certain that all possible pre-conditions for the action have
been considered. However, as we have already seen. this is rarely achievable in
commonsense reasoning becanse the number of pre-conditions can be infinite.
Put sitmply. it is very difficult, in general, to specify all the pre-conditions for an
action. This problem clearly echoes the general one presented in the previous
section. That is. it can be expressed in terms of the following non-monotonic
rule: “given that the pre-conditions hold. and in the absence of evidence to
the contrary, assume that the action succeeds.” Another way of viewing the
qualification problem is as a trade-ofl between the accuracy of the prediction
verstis the efficieney of computing that prediction [21. 68, 701, Very often. most
ol the pre-conditions are either negligible because they are almost always true,
or not evaliable because of insufficient information. There may also be a large
class of conditions that are unknown. By ignoring these types of conditions it
becomes possible to arrive at a prediction quickly. In fact, even if we did have
enough information to evaluate all the possible pre-conditions. it would still be
too costly computationally to do su. For example. before using a car. we do
not mormally check the car battery (even though we could). or anyvthing else
under the hood. We assume it is working because batteries can last a faitly
long, time before failing. The drawback is. as expected. that our predictions will

occasionally turn out to be wrong,

frame problem: McCarthy and Haves [31] were the first to recognize this prob-
lemic which is the difficulty of specifying all those things that are not aflfected
(persist) when an action is perforined or time passes. If we knew all the actions
and objects in the domain. it would be possible to provide all the necessary
frame axionms (and consequently avoid resorting to a non-monotonic formal-
ism). In the simplest approach. this would require a separate axiom for almost
every combination of action and object. each basically stating that object o has
the same value after the execution of action « as it did before. There are several

problems with this approach: (1) since most actions affect only a small sot of
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objects, the number of frame axioms will be enotmous i there are nactions
and 11 objects. then there will be on the order of i framie avioms: (2) the
large number of frame axioms mahes the tash of determimimge which objects are
unaffected computationally costly, perhaps intractable [21]: (3) adding new ac

tions and objects requires significant changes to the theory: and (1) conanrent
actions cannot be specified (see Sub-section 330, Davis [13] gives a numbe
of alternative formulations. one of which permits concurrent actions, but while
they require fewer frame axioms, the axioms are mote complex, additional con
straining axioms are needed. and the prools harder. Perthaps, therefore, the
problem is best tackled from a non-monotonic perspectives “assume that all

things in a state persist. except for those which have been explicitly changed ™

Shoham [68] generalizes the frame problem by including an implicit notion ol
increasing uncertainty with time, The crtendcd predoction problem is the dith
culty of making predictions over an extended period of tine into the tutare, Tt
related to MeDermott’s notion of persestenee [52]. For example. usig the plass
of water example again. can we predict whether it will still he on the counter 10
seconds later? 10 hours later? how about 10 months later? Now. what abont
Concordia’s main downtown campus building? Cleatly, there is a qualitative
difference between these persistences. The length of time into the tuture i an
portant and it varies from fact to fact. In general. however. predictions over
a short period of time into the future are more reliable than those over lonee
ones. Thus. here too. thereis a trade-ofl between thereliability of the prediction
and its computational cost: an unreliable vet very efficient leng term predicthion
versus a costly long-term one made up of very many reliable short tenin ones
This view. however. is probably more appropriate to the prediction tash i Al
Finally. the reader is also directed to [7%] for some alternative Cand bioader)

views on the frame problem, from philosophical and cognitive perspective

. ramification problem- 'This is the problem of spedifving all the consequences,
of an action. The difficulty arises hecanse some consequences may iimply other:

which in turn imply others. and so on. I Tdiive iy car from poimt A to point



B. then not only am I and the car there. but so is the engine. the steering
wheel. the battery. efe. Again. it is unreasonable to explicitly mention all these
conscquences: many axioms would be required and it would be computationally
costlv to reason about them. There is a non-deductive element here as well.
but unhke the other two problems. expressing this notion in the form of a non-

monotonic rule is problematic.

Most formalizations of reasoning about change in Al have dealt primarily with the
gualification and frame problems (with the latter one getting the bulk of the at-
tention). ‘The ramification problem, on the other hand. has been largely ignored.
[21] being a notable exception. As an initial proposal. this thesis will follow suit.
concentrating only on the first two problems.

These three problems take part in a larger problen, the temporal projection prob-
lem (ef. [26]). which involves the following: given an initial description of the world.
a set of action deseriptions. and the occurrence of some events (action instances),
determine what facts will hold after the events have occurred. An interesting par-
allel can be drawn between this problem and specifications. The three components
can be viewed roughly as the boundary conditions (including invariants). operation
deseriptions, and behaviour of the system, respectively. The first two give a (static)
deseription of the system. while the Jast a prescription of the system’s dynamic be-
haviour. Most specification formalisms. such as VDM, typically allow one to specifv
only the former. Khosla and Maibaum [37]. however, argue persuasively that such
specifications are inadequate. The fallacious assumption in such languages is that sys-
tem behaviour can be inferred from static information that basically defines change
implicitly (through pre- and post-conditions in operation descriptions). Reasouing
about svstem behaviour is conscguently difficult and quite limited. Once suitably
recast, therefore, the temporal projection problem should serve as a useful focus for
the specification language in this thesis: any Al formalism that handles it properls

must be considered a candidate for the basis of the language.
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4.2 Non-Monotonic Approaches

With missing information. monotonic logics cannot be used to reason about the <yvs
tem; on the other hand. if all the missing information is added to the theory ol
the system (assuming that that is even possible), then the tash of 1easoning i ren
dered computationally costly or intractable. Monotonic logics ate therelore clearly
unsuitable to the task. This section briefly describes the three most common formal
non-monotonic approaches. The presentation is not a comprehensive one; rather, the
primary intention is to give a flavour of the types of solutions that have been pro
posed for one of the questions taised above: how to represent non-monotonic tales,
Each of the following approaches achieves this in a different way. Additionally, cach
subsection will highlight a different key aspect of non-monotonic reasoning, that s
relevant to this thesis: under default logic. the nature and difficulties surroundimg,
non-monotonic inference: under antoepistemic logic, its epistemic connections, and
under circumscription. the notion of minimal sets. There arve other approaches,
cluding some computational ones, but these thiee have garnered the most research
over the last decade and have spawned numerous variants. See [17] for more defailed

descriptions of these approaches and references to others,

4.2.1 Default Logic

Default logic. introduced by Reiter [65]. almost literally adopts the non monotone
rule. A defaudt theoryis a pair (WD), where Wois a set of (first ordery sentences
representing what is known to be true. and 1) is a set of default 1ules ol the form
a:f
s

where a, 4 and 4 are formulac i the language. This defanlt vutes or simply de faull
is informally interpreted as “if a is known and it is consistent to helieve 4 they
infer 4.7 In other words. if a (the provequesde) is taken to be tries and we have o
reason to doubt /4 (the justification}. then we can accept 5 (the the consequent) Fiee
variables in the formulae of the defanlts are considered to he nmvercally quantified

such defaults are called open defaults and mav be viewed as schemas There niay
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be more than one justification in a default. but frequently it is the same as the
consequent  a:3/30 with meaning “given a. without evidence to the contrary. infer
3.7 These defanlt rules, it must be stressed. are not pait of the object language:
tather. they are meta-theoretical constructs added to the language to achieve plausible
teasoning. As an illustration of a default theory, the Emma-IFred example above can

bhe wiitten as follows:

) = {friday at_10:00: Emma_1in_office / Emma_in_office}

" = ({friday.at.10:00}.

Non-ruonotonicity complicates the semantical and inferential components of a
logic  Reiter. in fact, did not provide a semantics for the logic (although one can
be given for certain classes of theories [15]): he did. however. give some general pro-
cedures for determining the inferences from a theory. Basically. the idea is to find all
those sentences that ate consistent with the theory. Such a set. called an extension
of the theory, would include inferences from both the nionotonic and non-monotonic
stdes of the ogie. Unfortunately. finding an extension is not a simple task because the
justifications in a theoryv's default 1ules can lead to circular reasoning: that is. given a
rule &, a1 3 / 4. whether one has reason to doubt /3 often depends on whether é itself
can be applied. Furthermore. it is possible that accepting one default renders others
inapplicable, consequently a theory may have more than one extension (or even none
at all). The eircularity suggests a fixed-point constiuction for the extensions: Let
[' = (W.D) be a default theory and let £ be a set of sentences in the language. (The
definition is restricted to closed theories (1.6, no free variables in the sentences and
defaults), but this distinction is not critical to this discussion.) In a simplified form.

then, Fas an eatension of theory T if

whete
1','() = H
o = CnFOu{=] (o 4/ 3)€ Doand
-3¢ 1)



Note the circularity in the definition: in particular, 7 ¢ F mthe defimton tor £,

This means that a defanlt inference can only be applicd it 4 cannot he mtened, ban
this means that £ has to already beknown Simply putcto tind an extension £ one b
to practically begin with a set £ use it to determine which detanlts are apphoable,
derive all possible inferences and then compare this set with F° | they are the
same. then £ is an extension  Obviously. this detinition does not lead to a satistvime
definition of inference. In addition to multiple (and nsually incomipatible) extensions
the most glaring disadvantage is that the task of deternmning whether or not an
arbitrary sentence follows from or is consistent with « theon is undeadable Rerte
suggests that default reasoning, is really one of selecting one of the extensions awind then
reasonng the usual way within it until new intormation invahlidates t Untortunately,
even this is problematic since there does not exist a procedure for peneratme the
extensions {or even determining their number) i the finst place  (Yhere ae other
formulations of default logic and its inferential component L as well as partial solition
to the problems raised here. see {150 17,051 We end this section with o panr ol

examples.

Example 2 Twedy Berd. 'The ty pical example used in the hterature nnolves Tweety
the bird. Most birds can ily. Can Tweety (v? Withont information to the contrany,

we infer that Tweety can flv:

D = {Bird(x) :Can_fly(x) / Canfly(x)}
W

{Bird(tweety)}.
This theory has a unique extension. which is the desived one.
E = (n({Bird(tweety).Can fly (tweety)})

H we find out. however. that Tweety s actually a penguan, then we et add 16 1
the sentences Penguin (tweety) and ¥x - Penguin(x) -» (Bard(x) / Can fly(xz,,

Now the new extension includes =Can_fly(tweety). as cxpocted

Example 3 Nwon Parador. T his exaniple demonstiates multiple exenion Qnal

ers tend to be pacifists. while republicans tend not to heo Non = bhotha cpialer and



a 1epubhcan

1 {Quaker(x).Pacaifist(x) / Pacafist(x).
Republican(x) . ~Pacifist(x) / —Pacifist(x)}

H {Quaker(nixon).Republican(nixon)}.

Withaont more mformation this defanlt theory has two possible extensions. both con-
taining the sentences Quaker (naxon) and Republican(nixon): one. however. also

mdcludes Pacifist(nixon) while the other =Pacafist (naixon). 0

4.2.2 Autocpistemic Logic

Unlike default lopic. antoepistemic logic, introduced by Moore {37, incorporates the
non monotonic tules within the language. [t s a modal non-monotonic logic whose
primary modahty represents the notion of belief. Specifically. it employs a modal
operator "L interpreted as it is believed” and its complement *M™ (= —L-0 as
asual) interpreted as it is consistent to belicve™ A typical (autoepistemic) non-

monotonic 1ule has the following form:
Vx - (Bird(x) A MCanfly(x)) — Can_fly(x).

with anterpretation =if x is a bird. and it is consistent to believe that x can fly
talternatively it is not beheved that x cannot 1y ), then x can f1s.” [n other words.
the only birds that cannot fly are the ones that are believed not to: every other hird.
however. can be mferved to fly - This then is the way that antoepistemic logic handles
the tule 2in the absence of evidence to the contrary, infer that a bird can flv.”

As the name would suggest. the logie is intended to model an agent reflecting
npon s own beliels. Moote contends that autoepistemic reasoning is quite different
from: defaudt reasonine - A an example. note the difference in the following reasonings

about l\\l‘(‘l‘\
default Simce most birds can v T prediet that Tweety can fhy

autoepistemic I Tweety conld not v T would know it. therefore, Faeety can fth



The former atenment ielies on a fact that has a high probabihty hence the condhisaon
i~ a fairly safe. thongh defeasible. one, the Tatter one. however, unplies that 1 have
complete knowledge (or believe T have complete hnowledge) of all the birds that cannot
fla. and since Tweety is not in that set, the conclusion is a logieally valid one The
miplicit assumption (justiliable or otherwise) of completeness of intormation withi
a particular set of beliefs (a contert) makes the conclusion not defeasible. The rale,
therefore. is merely an incomplete representation of supposediy complete information
Nevertheless, autoepistemic reasoning is non monotome hecanse it still deals with tne
absence of information. Once the rule is embedded ma diflerent contest (a difterent
agent’s or even the same agent’s at a different time). previous ilerences may no
longer be derivable,

However. the distinetion and many others for exanple [17] defines s vaneties of
non-monotonic reasoning s not significant hereg except pethiaps trom a plinosophical
p-int of view. Both logics draw conclisions trom hoth the presence and absence of
information.  And antoepistemic logic can handle the Tweety bivd problems windh
is largely considered to be a case of default reasoning  Shoham [68] poes o L
as to arguc that there is no distinction whatsoever. Instead, Shobian supgpeats a
more useful one: we should distinguish between the meanine of the sentences and
the extra-logical reason for adopting that meammng The meamng can usually be
viewed epistemically  for example, “most bivds v means i L do not krow that o
particular bird can fly. then Ishouldhmfer that it can ™ The reasons for adoptimy such
a meaning are computational efficiency and cconomy of memory s pace To wit s the
meaning snggests that only hirds that cannot v need to he snentioned esphiaithy the
rest can be inferred. Then. whenever one needs to check if o partionlar bind can fi
o1 not. one stmply chechs the List of exceptions.

One of the advantages of incorporatine the vales within the Linpuage 15 that the
can be given a formal cemantics. Moore looked onlv at the propo tional cae
like many logies dealing with knowledge and hehef quantifving imto the wcope of an
epistemic operaton is problematie (¢f. [567)  which aside froms the miodahtie: bt
usnal interpretation. The guestions whaet neamng should be given to ToGand Ny 1o

capture the above notions” From the disaission. we note that the mterpretation of 1 p



(and Mpy is dependent on the agent’s set of beliefs. On this basicsan aulocpiste e
iderpretation for the logic is a pait On. ) where s the interpretation function
asugnmg truth values to the propositions and S is the set of beliels. Given such an
interpretation. Lpis true if and only i p isin Soand Mp is true if and only if —p i~
not in S These definitions clearly capture the intaitive notions.

Like defanlt logic. autoepistemic logic involves some cireular reasoning. What an
agent can nfer depends on the set of beliefs. and the set of beliefs is determined by
what can be inferted. Thus, Moore also gives a fixed-point construction to d-fine the
extensions. called stable sols, of a theory, A belief set S is stable if and only if i

satisfies the following conditions,
[ TR N
2 il pe Sothen Lp e Soand
3 b pof Sothen —2Lpe S

Sucli a set represents the set of hehels of an wdeally rational agent. The fitst condition
states that the agent can handle otdinarny deductive reasoning: the other two indicate
that 11 s aware of what it helicvesand dishelieyves, Like default theories. autoepistemic
theoties may have ones many o1 even no stable sets.

For other formulations of autoepistemic logic. including a first-order case and

possible worlds semantics. and an examination of its properties. see [39. 47, 57).

4.2.3 Circumscription

Circumseription, introduced by McCerthy [19101s based on the notion that the only
objects that satisly a particular predicate are the ones that can be shown to do
so, ereny other objects therefore, can be inferred to not satisfy it This echoes,
i spint, tee ampheit assumption of completeness in autoepistemic logic resulting
from the behief that one knows all of the objects that have some property  Like
attoepistemice fogic s ciramsctiption incorporates the non-monotonic rules withim the
languaee 1 this case a classical (hist-order o1 second-orden) predicate logic: unlike

it howevers theinferences proceed in the usual syntactic fashion ot classical logic no



need to resort to a fined-point construction. Proma fuco this appears to bhe a majon
advantage.  Unfortunatels. as one might warily expedt with non monotonaty, it
comes with a price: first-order non-monotonic inference in drcamscuption tednces to
second-orde r monotonic mference, and second order logic does not have a complete
deduction system. Nevertheless, it is certainly preferable to reason monotoncally
than thiough a fixed-point constiuction. Il an automatic higher-order theorem prover
wetre ever developed. it would make crcumsaription a very attractive formalisim o
commonsense reasoning (although the actual usefulness of such a prover s debatable
[53]).

Stnee MceCarthy s original formulation (called predicate circumscnption). there
have been about ten different versions of cireumseription. mcluding formula 504,
second-order [13]. and pointwise circumseription [15]. The following desciption
{based partly on that given in [17]) 15 a general oned the notions applicable to miost

Recall that the denotation’ of an n-ary predicate is the set of ntuples over the
uninerse of objects that satisfy it Circascubing o predicate poin a theory I has
the effect of minimizing its denotation such that it could not be made sinalley with
out contradicting 7. To represent non monotonic tules a special predicate Abo fon
abnormal. is emploved in the rule [H50] For example the statement =i the absence

of evidence to the contrary. assume that a bivd can fly™ can be expressed as
Vx-(Baird(x) A —Ab(x))} — Can_fly(x).

Literally. this mecans that if x isa bird and it is not an abnormal ones then it can fiy
Now. let T} be the theory contaimmg this tule and Bird(tweety). Since this theon
does not have any abnormal objects, the minimal possible denotation of Ab i clearly

the empty set. Thus. by dreumsernbing Ab in 70 we shonld denve
Y% —Ab(x).

meaning that there are no abnormal objects. From this and the theary o cany
to derive Can_fly(tweety). Note that. withont resorting to cnaumscriphion it

not possible to dednce this from the theory vsamg jnst the nsnal fiest order interens

VI his 1s some ties also called the enteaston bur 1o avord confusion ths termm will not be oo

T



mechamsm. Now. suppose that Clude 1< a non-flving bird. let theory T, bhe the

conpune tion of Ty and
Bird(clyde) A ~Can.fly(clyde) /A clyde # tweety.

Note that the inequality expressed in the last conjunct is requived in circmnscription
in order to differentiate the objects in the domain. clyde is clearly abnormal, conse-
quently he is the only member of the minimal possible denotation of Ab. From this
observation. we expedt that fiom the dreumseription of Ab in Ty we should be able

derive
Vx x / clyde -+ —Ab(x).
and then
Vx - (Bird(x) A x # clyde) — Can £1y(x).

How can this minimization be captured? How can such derivations be achieved
syitacccallv?  Most circumseription formalisis achieve it through a second-order
corcumseriplion aciom that is assumed to be implicitly included with the theory.
This axiom differs from formalisin to formalism. Perhaps the commonest version is
that of second-order circumseription [13]. It permits one to circumscribe predicates
while allowing others to vary. (MeCarthy s original formulation permitted only the
craumscription of predicates, and was conseqrently generally too weak to handle
the non monotonic rules.) Given a tuple of distinet predicate constants P.a tuple
of predicate constants @ disjoint with P, and a theory T(P.Q). the sccond-order
cocumserplo . of o T(P.QY with varable . written CIRC(T: i Q) is the

sentence

P A
VO [[1(B A AN @ (F) = PUFL = AT L) - &3]
11 1=

['he fitst conpunct is the theotv: the secoud is the dreumsceription axiom.  In the

antecedent ol the aviom. [ (@) guarantees that the denotations of F2 ave minmmized

-1
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with respect to 1. The axiom basically states that it &, is any predicate that satishes
T and is at least as stiong as P then £ s exactly as strong as @ for all ciicumsaribed
predicates. The effect is similar to that of autoepistemiuc logic ifa predicate p cannol
be shown to follow from theory T then from CIRC(. p) we should be able to denve
=p.

To illustrate. taking theory 77 above and circumscribing Ab while allowing Can tly

to vary. we get

CIRC(T:Ab:Canfly) = 1)
AVOW - [[Bird(tweety) A [Vx- (Bird(x) A ~®(x)) - W (x)]
AVx- ®(x) — Ab(x)]] — [Vx-Ab(x) -» d(x)]]

Neat. we have to mahe the appropriate substitntions for @ and U such that ol the
objects are normal (substitute @ with false) and all the fhiers are birds (substitute
Wowith Bird(x) ). Making these substitutions and simplifving gives us the expected
result, Vx - —=Ab(x). This. in tirn can be used to derive Can fly(tweety) Observe
that if another sentence were to be added to the theory, the aramsanption asiom
would change as well. New derivations from this changed axiom may invalidate old
ones -adding the above clyde senteace. for instance. would invahdate the AL (x)
one -hence the axiom is the souree of the non monotonicity

(ircumscription. as is partly evident in even thas trivial exampledis not casy to use
There are two problems: (1) although it is not the case hereo deadimg which predicare,
to ciccumseribe and which ones to vary is not alwavs dlear different chiorces will ve lt
in different circumscription axioms (and hence, different denvations), and () once
a circumscription axiomn has been defined. carrving ont the denvations through an
appropriate set of substitutions. 1s highly problematic Fven il a theorem prover were
available. it would only be of use with regards to the second probleny not the it
In essence, the formalisin requites a considerable amount of input from ae Howe haw
an idea of what conclusions we would like to see then it vneht bhe possable taoarme
at the appropriate choices 1o avord hoth problems But this can only he efleanels

accomphished for smalll familiar theoties: which oboonsby Tonsate weefulne



4.2.4 Objections to Non-Monotonic Formalisms

Many have 1emarked that non monotonic logics are not logies at all. Certainly. if
one defines a logic as o language based around deduction. then none of them are
fogics, Whether they are tlogies” or not. however, is a trifling matter. A much mose
miportant concern is whether they can be used to effectively deal with incomplete
mlormation. in general. and the qualification or frame problems. in particular. Of
conurse, this issue must also be addressed in the context of software specification.
Despite the differences e how they achieve non-monotonicity, the three logics
above, as well as any other formalism to date, suffer from the same problems. a
number of which have alicady been addiessed. McBDermott [53]. in assessing the
suitabihty of using deductive and near-deductive formalisms to model commonsense
teasoning, in Al sununed up the main problems of non-monotonic formalisms as
“You can’t fird ont™ and “You don t want to know.” The first one means that it
is usually very difhcult to determine, without considerable effort. the consequences
of a theory Quite simph. the logics in the general cases are hopelessly intractable.
With hived-point constructions. it is not possible to tell what 1s and is not infer-
able untit everything has beeninfenied. With circumseription. one has to practically
hnow the conclusions in advance (which cleatly defeats the whole purpose).  See
also [67). which shows that general citcumscription is inordinately uncomputable.
[he second problem means that the inferences are sometimes so weak that they
ate ol httle practical uses making the effort spent deriving them doubly wasteful.
This commonly manifests itself in multiple extensions.  Furtheimore. while some
of the extensions are reasonable, most are counter-intuitive and would piobably
be rejected by an ideall rational” agent. Default and autoepistemic logies obvi-
onsly suffer trom thiso vet so does circumscription. although in a different form.,
In cirammscnption. one can usually take the disjunction of all the possible deriva-
hons from conthating minimizations. For instance. minimizing the abnormalities
m the Nison theory (with rales Vx - (Quaker (x) A =Ab1(x)) -—» Pacifist(x) and
V'x (Republican(x) A —Ab2(x)} — —Pacifist (x)) would mahe it possible to derive
Pacifist(nixon)V-"Pacifist{nixon). which i~ true but hardly ihuminating. It has

heen suggested that fixed point derivations could be treated in a similar fashion by
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taking the intersection of all the extensions (ef. [1T]. Supposedive this imntersection
would represent the core set of beliefs, but since thereis no general effectinve proceduone
for generating the extensions. the suggestion is moot. at best. McDetmott’s canstie

critique of non-monotonic formalisms conchides (pe. 1371 with,

The original goal. of a simple. general extension of classical logie that

would grind out “obviously cortect”™ conclusions. has cluded us,

It should be mentioned. however, that MeDermott does not extend the cnticisim
to computational approaches of non-monotonicity stnce many  Msvstens alteady
incorporate some form of non-monotonicity. For exampleowith a database contanmime,
the current facts, one can practically ignore the frame problem  Alter cach action,
one metely updates the database with the effects of the action adding new tacts
and deleting others: the rest remain unchanged. hence thev “persist.” Tlos s just
one of those cases where it is easier to implement a notion than formally specify
it. In condemning the practice of using just logies (without programs) to model
commmon sense. the articls has added more fuel to the perpetual proceduralist vs,
logicist conflict in AL

While McDermott's ultimate assessment of the utithty of current non monotonie
formalisms is perhaps too pessimistic. the observations are faitly acute. Fven oy
of the respondents who challenged the eritique agreed that the problems et al
though they disputed theit severity [77]. McCarthy and Lilschity [770 pp. 196 1944
for example. blame the difficulties on the relative infancy (approximately o decade
old at the time) of the field of formalized non monotonic reasommng. ‘Fhey also poimnt
out that there are certain restiicted classes of some non-monotoniv langunaves that are
tractable. They do not mention any speaificallv. but some examples can be lound
[72]. where the complexity of three membership problems are exammed for 4 vanets
of default theory classes. 'lo give an example of how mnch these theories et b
restricted to make them tractable, here is one: the class of propositional default theo
ries made up of (7)) single-hteral clauses (where a literal 1s 4 propositional atong and
(D)) prevequisite-free default rules in which the consequence i adentical to the e

fication. But 15 such a serions loss in expres<ivity worth the gam s computalahbt,?

=)



Two points st bhe considered. One s that the dispute here is over the usefulness
ol non monotonsc formalisins in the context of Al: for a specification language. the
concerns are o it different. We are not interested in buitding a machine that can
1eason correctly and efheiently Crather. we want a language that is expressive enough
to allow ns to deseribe at least the systems we are interested in. The other is that
even first order predicate logie is intractable and logical deduction computationally
expensive, yet people have not been reluctant to use them (or languages based on
them) to specify and reason about a system. Worse, many specification languages
do not even have an established inference medhanism. So. although it would be nice
to he able to determine computationally the consequences of a theory, expressivity
s mote important. Still. non monotomcity complicates proofs sufficiently to warrant
restricting the class of admissible theories. Fortunately. we need just enough expres-
sive power to landle the qualification and frame problems (or the temporal projection
problen)

Another common 1esponse is that the problem is not with the languages them-
sefves, bhut tather with the way they are used. or with the user who has misunderstood
their capabilities, stiengths and weaknesses (e.g. [77. deKleer (pp. 171 175). Hayes
(pp. 179 185). Moowre (pp. 198 201) and Poole (pp. 205 206)]). This argument i~ a
vihd one. regardiess of whether the logic i« monotonic or not. No formalisni i~ (as
of yet) a panacea tor tepresenting ideas. One must be aware of what can and cannot
be expressed with the langnage: one must have a clear idea of the semantics: one
must apptreciate the Tmitations of the inference mechanism. Furthermore. using a
logic does not mean that one will antomatically avoid writing incorrect or suspect
statements  Thusif the derivations one gets from a theory are unexpected or appean
pecuhar. it could mean that either the language is at fault, the theory is incorreet.
ot one has nisconstrued the langnage’s notion of inference. With this in mind. what
then 1~ the natmie ol non-monotone inference in the logies above? Why do they
often tesult in multiple or weak extenstons”? The simple answer is that it is a natural
tesalt of teasoning with incomplete information. Diffecent extensions arise from the
different ways that the missing information could be filled i (as was shown above for

contheting non monotonic tules)  And at there s a ot of missing information. then



it is not that surptising that the theoties genetate fairhy weak extensions. b aypecting
more from them is unrealistic, Just because the togics are meant to capture a certam
aspect of commonsense reasoning does not mean that they are inbued with it A
interesting possibility arises. however, from the perspective of specification langnages
the multiple extensions can be viewed as representing the implict non determinany ol
underspecified (permissive) specifications. This potential conuection should perhaps
be further explored.

Unfortunately. there is a deeper concern here one that goes bevond this sunple
explanation. It was mentioned above that some of the extensions are counter imtuitive
and truly unwanted. Could this point to some inherent weahness or madequacy m

the languages themselves? The following famons probleniflustiates this concemn

4.2.5 The Yale Shooting Problem

In trying to test the usefulness of non-monotonic formalisms, Hanks and M Dermott
[26] conceived of a scenario that isolated one particular problem but was otherwise
simple enough to permit easy intuitive answers, ‘The scenarios which has sinee heen
dubbed the Yale Shooting Problem (YSP). s a particalar instance of the temporal
projection problem (see Sub-section L1.2) inwhicli just the frame problem s involved
Thus. the implications of this problem are especially relevant to this thesys

The problem is typically expressed in the setwation calealus (3] a language w
tended for the formalization of reasoning about action A variant of fust order pred
icate logic. it permits ns to specify what foels hold i particalar stualions (states)
and the changes in states cansed by crents 'The former is acheved thiongh o spe
cial predicate Holds (£f,s). where £is a fact and s o situation: the latters through o
special function result(e,s). which maps an event e and sitnation s anto another
situation. For example. Holds(guenloaded, result(load gun,s)) means that in
the situation after a load_gun cvent occurs m sitnation s. the gun s foaded  Not
that each state change is caused by a single action, hence the langnage foree o e
sequencing of (atomic) actions

To express the assertion that the oconnence of an event e m atinanion s ha no



cltect on fact £ 00 a sunple frame axiom ). one wiites
Holds(f,=s) » Holds(f,result(e,s)).

As has alicadv been explamed above, we would need many such axioms to deal
with the frame problem within a monotonic language (and situation calculus is no
exception). ‘Thus, we resort to a non-monotonic formalism. say. to circumscription

and abnormahty predicates:
Vf,e,s-Holds(f,s) A ~Ab(f,e,s) — Holds(f,result(e,s)).

where Ab(f,e,s) means that fact £ s abnormal with respect to event e in situation
s 'This ‘global” lrtame, ot more appropriately, persistenee axiom basically states that
if a fact is not abnormal with respect 1o the event (w.e. is not affected by the event).
then it must persist across the occurrences of that event (in all sitnations). With such
an approach, we ate only required to specify all the “abnormalities’ or exceptions to
this tule i other words. instead of specifyving all the things that are not changed In
an actiotr. we specify qust the things that are. Note the significant difference between
this view and the one implied by the simple frame axiom. This is exactly the ty pe of
approach that would be suitable for the specification langnage. but will it work?
The YSP involves the loading of a gun. followed by & short period of waiting before
the trigger is pulled, the problem is to determine what facts hold in the various situ-
ations and.in particular. whether or not the gun will make a loud noise?. Obviously.
the persistence of the loaded gun fact is cential to the problem. If it persists bevond
the waiting petiod. the gun will make a noise. thus shattering the quiet: ot herwise.

the quiet will be unaflected. The theory contains the following axioms:
| Holds(loaded,Sy) A Holds(quiet,S,)

2 Vs Holds(loaded,s) — Holds(noise,result(shoot,s))
AAb(quiet,shoot,s)

3 Vi,e,s -Holds(f,s) A -Ab(f,e,s) — Holds(f,result(e,s)).

SActually an [26] the problem also mvolved an mdividual Gmtially alne)  The problem was to
predict whether or not the individual would be killed by the shooting but this violent aspect 1

teally unmecessary

s



The problem has been simplified for this discussion by assunung that the gun s
already loaded in the initial situation (axiom 1), Shooting a loaded gin makes o
loud noise: furthermore. since shooting a loaded g atlects the guiet, 1t is cleahy
abnormal with respect to the latter (axiom 2). Now. consider the following sequence

of situations:

* Oy
¢ S; = result(wait,$Sy)
e S, = result(shoot,S,).

We know that loaded and quiet hold in Sy What lTacts hold in the othier sitiations”
To solve this problem. we circumseribe the theory over Ab winle atlowinp Holds to
vary. Since we have no reason to assume that the wait event has any effect on Toaded
and quiet. we assume ~Ab(loaded,wa1t,S,) and ~Ab(quiet,wait,S,) Friom these
and axiom 3. we infer Holds(loaded,S;) «nd Holds(quiet,S;) thus both facts
persist through the waiting peniod. Then, hon the former fact and aviom 20 we
infer Ab(quiet, shoot,S;). meaning that quiet will not persist to situation S, and
Holds(noise,S,). These ave the results that we were intintively expecting (they are
summarized in Table 4.1 interpretation A) Unfortunately. it s not the only possible
interpretation that will satisfy the theory. Nothing prevents ns from mitially assumime
Ab(loaded,wait,S,). It might not make sense to ns, but af we proceed hrom tin
assumption. we will not he able to derive Holds(loaded,S)) and consequently thee
will be no noise in S, (see interpretation Ban Table L1). Since hoth imterpretation:
involve a single abnormality (Ab(quiet,shoot,S;)in A and Ab(loaded,wait, o)
B). both are minimal and neither is preferable over the other. Therefore the e
that we can deduce is that Holds(noise,S,) ¥V Holds(quiet,S))

Why is the second interpretation nnacceptable”? Well we were hopimg to capture
the notion that all of the events that can affect a fact have been exphicitly specified
and that the fact should persist nntil it i< clipped by one of them “The theors doe
not state anywhete that a wait can aflect i loaded lact. therelores there should not

be any "mysterious” unioadings during o wait. ‘The quiet fact. on tue other hand
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s s [ s

' A | loaded | loaded | loaded
quiet quiet | noise

B| quiet | quiet | quiet
loaded

Table 11 Two interpretations of the Yale Shooting Problem

v hnown to he altected by i shoot event. and its elipping in the first interpretation
s entiely appropriate

What is the 1eason lor this unexpected extension? Haves [T7. pp 79 185]. for
mstance. blames th - aviomatization and not the logic. suggesting that one should add
"Ab(loaded,wait, s) to the theory. This will indeed work. but this is just a disguised
lame asiom we should not be requited to state the obvious. just the abnoimal.
Beside ot himees on the sequentiality of the situation calculus: in a formalisim capable
of expressine conameney. it would simply be false. While a wait cannot aflect a
loaded lact another actionocemting during the wait might do so. Other suggestions
ate addiessedand equally disimissed. m [20] and [77. McDermott (pp. 223-227)]. Is
the Llangnage itsell. then. at the root of the problem? Hanks and McDermott [26] show
that the problem s not pecaliar to circumseription. since it also happens with default
logic and McDermott s non-monotonic modal logic NML. Nor is the situation calculns
to blames since they got the same results with a simplified version of MceDermott's
temporal logie [32]0 It appeats. therefore. that this is an inherent weakness in the
three logics covered above, and perhaps of non-monotenic inference in general. This
iv a very pessimistic results which essentially disqualifies these logics as potential

candidates {for the formal basis of the speeification language

Solutions to the YSP

Nepative results canat times be as useful as positive ones. but the situation is not
entirely gloomy Since the discovery of the YSP. many solutions have Loeu proposed
tor 1t (g {30270 1E 15,59, 68]). Before commenting on these, however. one 1apor-
tant observation must be made about the two mterpretations above. Another way

to artnve at the secomd one is to begin at situation S, and reason backwards in time.



lo wit. we beain by first postulating Holds(quiet,S,, and then beunine out how
such a fact could have come about. This is sometimes called bachward projection
and. along with temporal (or forward) projection, s a necessany component of am
theory of explanation  the task of explainimg what went wirong when an unespected
outcome occurs (9], Thus. these logies are pethaps giving us more than we need
Observe further that the abnormality in the hrst one occnrs later than in the see

ond (Ab(quiet,shoot,S;) versus Ab(loaded,wait,S,). tespectivelvy  Lhis enves o
a clue on how to select an interpretation: not the enes that pust have o nnnnal
number of abnormalities. but tather those i which the abnormahitios ocom as late
as possible. Hanhks and McDermott [26] assert that this momimality o preterence
criterion. coined ehiranologieal neonmality by Shoham (681 the correct one for the
temporal projection problem. 'he thiee logics above conld not handle the YSP be
cause they are simply mncapable of representing this aatenon 1t shonld he noted
however. that chronological mininization is not the onhy cntenon o solution to the
temporal projection problen.

However. most of the solutions proposed tor the Y SP are mappropriate tor the paal
of this thesis. Some employ suitably enhanced or modified versions of cincmmsanp
tion. such as Lifschitz’s pointwise circumscription [15] (which alve ses chronalogical
minimization) or Baker's solution (3] but these suffer frome the same dithicultie- o
any other general circumseription loeic  In particnlar. one st alrcady how whon
derivations to espect from a theors before bemnp able 1o cany then out [25)
best. this permits us to verily owr original intuitions. but it provides us with no new
information. Others. such os Haugh's {277 and Lafschitz s [H] cansal nnntmization
approaches, are based on eatensions or variations of the sitnation calonbhns hee
solutions are quite dependent on this formalisne and wonld not waork with wav any
temporal representation formalisiun that pernmtted one to spealy concnrrent action
Besides. thev also use cncamscription to miniize the cance tha anhientine o
drawbacks as well. Still others. sueli as Morgenstern and Stein s [0 approach Lol
on motivated actions. are intended for lareer problems suchi ac explanation The
does not necessatily detract from it smee 1t at least appear to avoud the probloa of

the other approaches listed here, However wnce this thes propose o vather oreimne
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approach to the problem of dealing with incomplete specifications, it is probabhy pru
dent to proceed with an approach that just haidles the temporal projection problem
Shoham’s approach [68]. though it has been eriticized for ot (ef [3. 59]). does just
that. It is, perhaps. the most promising approach for a number of reasons (1) it han
dles a more general YSP that includes the qualification problem: (2) not only does 1
provide the means with which to establish the preference aiteria, it also provides an
algorithm to generate the facts true in all the preferred interpretations for a cettain
class of propositional theories; (3) it does not depend on a sequential temporal tep
resentation language: and (1) it accomplishes this thiough a very elegant formalisn
that is quite different from the ones encountered above, and 18 general cnough to have
a potentially wide applicability, '

Shoham’s approach achieves non-monotonicity through the semantics of the lan
guage. The general approach. called scmantical non-monotonicity ov model prefer-
ence. places a partial ordering relation. determined by some preference criitenia, on all
the interpretations that satisfv a theory, From this, one selects the most preferied
Obviously. different preference criteria will select different preferved models In fadr,
it is possible within this general framework to give preference eriteria that  aptune,
wholly or in part. the non-monotonicity of othet formalisms. For example, note how
in circumscription we prefer those models that are minimal with tespect to a (on
cumscribed) predicate’s denotation. The details of model preference and the logics
that Shoham has proposed for solving the tempotal projection problem are given

the following Chapter.
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Chapter 5
Semantical Non-Monotonicity

The previons chapter gave the motivation for using a non-monotonic formalism to
deal with the problem of partial specifications—hby showing the connection between
incomplete information and non-monotonic reasoning. and how these are involved
in the gualification. frame and ramification problems. It further gave motivation
for choostng Shoham’s non-monotonic approach to serve as the formal basis for the
specification langnage by examining a number of non-monotonic formalisim and ex-
plaining why the rest were inadequate or otherwise inappropriate given the goal of the
thests. The question now is. how can Shoham’s pioneering approach be transformed
or incorporated into an appropriate specification language? Before this question can
be answered, however, the fundamentals of semantical non-monotonicity and the de-
tails of Shoham’s logics must be given. There are two components to the approach:
the maodel preference criteria and ihe logic for representing temporal information.
The former has already been already established: chronological minimality. Shoham
actually uses a slight variation of this criterion. The latter. however, must match our
requirements for the specification language. which includes easy modifiability and
the ability to express both  on-atomic actions and time. Fortunately. time plays a
significant role in Shoham’s logics.

Therest of the chapter is arranged as follows: The next section presents the general
framework for achieving non-monotonicity through the semantics of a language. The

second extensively covers Shoham's notions and logics. The final section points out

'
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some of the shortcomings of the logics.

5.1 Semantical Non-Monotonicity

As the name implies. semantical non-monotonicity. or the preferential model approach
to non-monotonicity. is entirely model-theoretic. It mahkes no specific reference to the
object language involved. nor to its inferential mechanism. 1t is based on the followmy,
idea [68]. Recall that the meaning of a theory in classical or modal logic 15 the set
of interpretations that satisfv it, or its set of models. In monotonic logic, -1 entails
B (A E B)il B is true in all models of AL and sinee all models of A A€ are also
models of A. then AACT | B. The key here is that all the models are mvolved 1 we
restrict the set of models of & theory in any way. c.. prefor some subset of 1t then
it no longer hecomes possible to assure this monotonic property. To wit, I3 may he
true in all preferred models of AL but A A (" may no longer have the same preferied
models as A, so B cannot be entailed from AAC.

The technique is a very general one, permitting the definition of & variety ol non
monotonic logics. One can vary both the logic and the preference criteria. The only
requirement for the logic is that it should have the usual model theoretic denotational
semantics. For the purposes of the discussion. 1t will bhe assumed that the Togies
involved are either classical or modal 'ogics, propositional or first order. Ay well
the term “interpretation” will refer to cither classical interpretations or modal kiphe
frames. Let £ be alogic. T be a strict partial order ou the interpretations of £, and
let M M’ mean that the interpretation M’ is prcfireed over Mo A proforciee
logic L is one made up of a language £ and a preference relation (. Obviously. the

syntax of L¢ is the same as that of L. while the semantics are as follows:

Definition 17 An interpretation M preferentially salisfies a formula AL M| A,
if M = A and there is no other interpretation M/’ such that M © M and M'} A
As usual. if M - A we say that M is a preforred modol of A with respect to |

Shoham then goes on to define a variety of other notions. sueh as preferential valid
ity. but most of them are not relevant 1o this thesis, except perhaps the notion of

preferential entailment:
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Definition 18 A preforentially cntads 130 A = B.if for any M.l M ¢ A then
MK <

Let us look at an example that demonstiates how to define other non-monot onic
approaches using this fraimework: in this case. simple cirenmscription (taken from
[65]).

Example 4 Recall that circumseribing a predicate I’(wr) has the effect of minimizing
the instances of o whicl satisfy P, The following preference criterion captures this

notion., M (- M"if

1. M and M agiee on the interpretation of function svmbols and all predicate
! A !

svinbols other than P,
2 for all u il M = Ple) then also M = P(r). and
3. there exists a y such that M = P(y) but M P(y).

In other words. the two interpretations agree on everything except on the instances

that satislv 2. The rejected one, M. satisfies an additional instance. a

One can see, however, that it is possible to have more than one (different) preferred
interpretation, which was the case with the YSP. To select the vight one for the YSP.
we must choose the chronologically smaller one. In order to define this. we need a way
to express a notion like lafer, hence the predicates or propositions must be associated
with a temporal component. such as situations or time. To simplify the definition.

all the predicates take a single temporal argument.

Definition 19 Let S be a set of predicates (that we wish to minimize). M’ is

chronologreally smaller i S than M. M Cs ML if there exists a time g such that
Lo forall p e S and t <t if M Ep4) then also M Ep(t). and

2. there exists a p € Ssuch that M =p(ty) but M plty). &
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In other words, as we move forward in time. il we encounter a fact poat tune 4,
that holds in one interpretation but not in the other, then the latter interpretation
1s preferred. It is easy to see that if the set S contains the abnotmalities, these
will delayed as much as possible. The ouly hiteh is the need to define this et Tt
changes from application to application. and deciding what to put in it s not alwavs
clear. Given that this set greatly affects the selection of preferred models, remoy iy,
the uncertainty surrounding its definition would be very beneficial, Ty particulan, it i
were possible to automatically define this set. then pethaps it would lead to o met hod

of general applicability. Shoham proposes one wayv to achieve this,

5.2 Shoham’s Logics

In [68]. Shoham attempts to deal with the difliculties of reasoning about time and
change. in general, and with the qualification and extended prediction problens,
in particular. A preference logic. the logie of chronological tqnorance. is given as
a solution to hoth problems. although to solve the latter one. Shoham had o also
introduce the concept of potential hestoris. Recall, however, that the extended pre
diction problem (see Sub-section 4.1.2) is a broader notion than the frame problem,
and consequently its solution is more than we require. This inadequacy. as well as a
foew others. is addressed in more detail in the final section of this chiapter. Despite
these shortcomings, Shoham’s solution still forms an integral part of the specification
language. Therefore, the description given below is a fairly extensive one: however, ta
keep it a reasonable length. only the solution to the qualification problem is discussed
Shoham actually defines four logics: a pair of logics of time intervals (propositional
and first-order STL), a logic of temporal knowledge, and the logic of chronological
ignorance. The first pair are variants of McDermott’s temporal logic [32]0 the second
augments propositional STL with a modal knowledge operator; and. the thind i< a
non-monotonic version of the second. The reasons for employing a knowledge operato
arc twofold: (1) Shoham believes that theie is a strong epistemic connection 16 non
monotonic reasoning and causation (sce also [70]): and (2) it provides the means with

which to tackle the problem of deciding what propositions or predicates to mimmze
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Only the Jatter two logics will be covered below. as well as the notion of causal

thiories, o class of non-monotonic theories that has a couple of nice propetties.

5.2.1 The Logic of Temporal Knowledge

Inorder to reason about time and change, we need the means with which to represent
information of the form fact f holds at situation or time {. State- or change-base
approaches were rejected hecause they usually involve atomic actions and instanta-
neous effects. and prohibit the description of overlapping actions [71]. Instead. a
time-based formalism was chosen. one in which the (inexorable) passage of time is
the only Tundamental notion of change. Although the underlying temporal ontology
docs not Lave to be fixed. it is assumed to be discrete and linear. On top of this
structure, the logics allow the representation of intervals, with the intervals defined
by time points. All of the Jogics employ a special construct to associate a primitive
proposition with a pair of time points. TRUE(¢;.¢,. p). meaning that p is true over
the interval (4.1,). TRUE is neither a modality. nor a truth predicate: rather. it is a
rcifyeng contert [2). The implications of this reification will also be discussed in the
final section.

The logic of temporal knowledge (TH') is a propositional logic of knowledge of
temporal information. Like othet logics of knowledge (see. for example, [24. 23, 18]).
it is nsed to desceribe and reason about what is Anown about the world. In this case.

however, the things that are known have an explicit temporal aspect to them.

Syntax
Given
o [ asct of primitive propositions,
e 1;: aset of temporal variables,
e (it aset of temporal constants: theset {....~1.0.1.2....}. and

® ('l: ‘(L]('{.
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the set of well-formed formulas is defined by the following, formation rules
1ot upoug € U then uy = uy and uy < uy are wits:
2. il uyouy € Uy and p € P, then TRUE(ug. g, p) is a wil?
3. if @) and ¢, are wils, then so are ¢, A @y, =0y and Koy
4. if ¢isa wil and v € 1}, then v is Ve ¢.

Note that the notation used here is slightly different from that in [68]. lnstead of the
usual knowledge operator K. Shoham uses the modal operator 1. K¢ was chosen
to avoid any confusion with O@. which is often used in tempoal logic (specilication)
formalismns to mean “always ¢.”

The other common propositional operators (V, — . « and J) have their usnal
definitions. As for the dual to K. it is labeled L. where L = =K -, Fuithermore. the
following syntactical conventions will be observed: K(uwy. uppd will be preferied to
KTRUE(u;. ug. p): K(ty. uy. ~p) preferved to K=TRUE(n;. u,, p) and, K(u. p) prefened
to K(u. u.p).

The general intuitive meaning for expressions of the form TRUE(u,, u,, p) is that
p holds over the interval between uy and us. where it is assumed, withont loss of
generality, that u; < wy. Shoham. however, does not place any restrictions on the
rature of p. Whether pis, sav. a “property” or an “event™ type. depends on how the
ruth of the proposition over its interval is related to its truth over other infervals. A
proposition is considered a property type, for example, if whenever it holds over an

interval, it also holds over all its sub-intervals: that is. it exhibits homoge neity:
Veoy-uy <x <y <ug ATRUE(uy, uy.p) — TRUE(.r, g, p)

An event. however. is a proposition that does not hold over all its suby intervals. Many
more types can likewise be defined. Shoham argues that there are two advantages of
leaving the proposition categorization separate from the logic proper: (1) distindtions
do not have to be made when they are not needed: and (2)if needed, depending on
the application. then they can be tailored appropriatelv. often achieving distinction-

much finer than the typical event or property ones.
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An expression of the form K(uy. uy.p) can be read as =it is known that p holds
over the interval between uy and uy:™ similarly, Loy up. p) can be read as “it is not
known that p does not hold between ...." Alternatively, the latter can be considered
as stating that pis assumed 1o hold over the interval -—that is, p is usually expected
to hold and we do not have eeplicit evidence that it does not. As was shown with

autoepistemic logic. epistemic operators can be u [ to express non-monotonic rules:
vt - K(t,loaded) A L(t,—emptied) — K(t+1,loaded).

which reads “if we know that the (gun) was loaded at time t and we believe that
it was not emptied. then we know that it is still loaded at time t+1.” ience. it
is an implication from knowledge and ignorance of the past. to knowledge of the
future. echoing the general non-monotonic rule. How this rule is captured through
the semantics is desceribed below in Sub-section 5.2.2. Compare. as well, this frame

axiom to the ones in Sub-section 4.2.5.

Semantics

Modal logics are usually given a Kripke possible-worlds interpretation. and THA is no
exception. Moreover. like any other logic of knowledge. to say that a fact is known
means that the fact must be true in all the worlds that are considered accessible
from the local one. Two things must therefore be identified: a set of worlds and
an accessibility relation over the worlds. In TA. the universe is composed of a set
of infinite time lines, where each time line is considered a “world.” representing one
possible course or run of the universe. Furthermore. each world is given the same
“copy™ of time in other words. there is an identity of time across worlds. Time
is simply represented by the set of integers. A”. together with the ordering relation
<. The accessibility relation is determined by what we wish to express with the
knowledge operator. There are many possibilities [21, 25, 48], most reflecting agents
that have a limited ability to reason about what they know and do not know. TFor
TK. howes er. Shoham decided upon the S5 system over the worlds. meaning that the

relation is reflexive. transitive, and symmetric. The set of possible worlds. therefore.
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torm an equivalence class. in which all worlds are considered accessible from each
other. Thus. it is not necessary to make exphicit use of an accessibiliny relation.

Let M = (Him) be a Kriphe frame or interpretation. where Wois the set of all
possible worlds, and m is a meaning function, m : P —— 2V g Gasence, cach
proposition p € I is associated with a set of 3-tuples (e t14,), indicating all the
worlds and the intervals on those worlds, over which it holds. Since the only variables
are temporal ones. the variable assignment function is just « .V, ==+ A Finally, the
valvation function is defined as V2" 0 — A where if w ¢V, then VM) aqu).
and if v e Cy then VM) = w.

A Kripke interpretation M = (Hom) and a world w ¢ W satisfy a fomula o

under variable assignment a (wiitten Mo = fla]) under the following, conditiene,

o Mow by = wpa] il VM (u)) = VM ()

o Mow 'k uy < wpfa] it N (0uy) < VM(uy)

o Mow E [upwe]pla] iff e V)V (uy)) € M(p)

o M. wkE (¢ Aoy)a]iff Miw = old and M. k= ¢,la)

o M.w k= —dla] iff M.uw = dla]

o Mow = (Ve o)[a] iff Mo k= dld’] for all o that difler from a at most on e
o M.w k= Kola] iff M.w' = ofd] for all «’ € W

Note that the notation used here is different from that in [08]: instead. it follows the
format presented in Chapter 2.

A Kripke interpretation and world are a modelfor a formula ¢ (wiitten Mo | o)
if M. w | old] for some u. Also.a wil is satesfiable if it has a model.and valid 1f it iy
true for all models. Furthermore, all the usual S5 axioms and inference rules apph
As well. the fixed representation of time across worlds permits the inclusion of the
Barcan formula: KVv ¢ = Ve Ko. (See also [31]).

There is no proof theory for the language. as the consequences of a set of sentences

in the language will be cartied out entirely through the model theory
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5.2.2 Chronological Ignorance

The logic TR is monotonic; it is made non-monotonic by imposing a preference or-
dering on its models. The question that must now be answered is: What preference
criteria will allow us to deal with the temparal projection problem? As well. how
can we capture the notion that “all the relevant facts have already been mentioned
explicitly?” Chronological minimization has already been postulated as the appro-
priate candidate. However. there still remains the question of what facts should be
minimized. Referring to the loaded gun example again. in the logic of time intervals

(propositional STL). the rule about firing the gan has the following form:

Vt - TRUE(t,loaded) A TRUE(t,shoot)
A TRUE(t,-broken trigger) A TRUE(t,—vacuum) A ¢
— TRUE(t+1,noise).

where ¢ is a conjunction of more things that could prevent the gun from firing. In
order to predict that the gun will fire. we should therefore minimize all such facts,
Specitically. in Definition 19. we define the set S = {broken._trigger, vacuum,...}.
By going this route. however. we slipped into a circumscriptive mode of thinking,.
Deciding what to minimize is application dependent and requires having an idea
before-hand of the ty pes of predictions we would like to make. Besides. it appears
that the sort of things that are being minimized arc just those types that we wish to
avoid considering altegether: they are not the “relevant”ones.

To avoid application dependence. the minnnized set should be an easily distin-
guishable, general class of propositions. Unfortunately. it is not easy to identify such
a class in the (nou-modat) logies of time intervals. We cannot even minimize all the
propositions at once because of the law of the excluded middle—minimizing p would
henee have the effect of maximizing —p. Th. however. being a modal logic of knowl-
edge. is capable of distinguishing hetween propositions that are known (i.c. true in
all possible worlds) and those that just happen to be true. And known propositions
are not subject to the law of the excluded middle: for any formula ¢. it is not the

case that cither ¢ or = is known. It turns out that by minimizing knowledge (or
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alternatively. maximizing ignorance). we end up with o logic, the lfogic of chrono
logical ignotance (7). that has the necessary properties. Intuitively. the facts tha
we would like to retain are just those known facts  the “relevant™ ones  that are
explicitly mentioned in the theories. These facts, by definition, should appear in all
models. llence. all models that have more knowledge than this minimum indicate
that additional (unwanted) knowledge has somehow creeped into the theory. Such
models must be rejected.

To define chronological ignorance it will be necessary to identify the latest time

poinl of each sentence of a theory.

Definition 20 A basc formula is one that does not contain the maodal knowledpe
operator. The latest time pont (ltp) of a base formula is the (chionologically) latest

time point mentioned in it. It is determined by the following rules:
1. The lip of TRUE(#,.1,.p) is 5. ~stuning t; < /,.
2. The ltp of o) A o, is the latest between the ltp of ¢y o1 the lp of ¢,.
3. The ltp of =¢ is the ltp of ¢.

4. The ltp of Vv ¢ is the earliest among the ltp's of all the o that result by
substituting constant values for all occurrences of ¢ in g, If there is no such

point. then the ltp is —oc.

The last rule may seem counter-intuitive. However, keep in mind that the procedure
for uncovering the facts that hold over time starts at the carliest point and moves
forward in time. Thus. in a universally quantified formula, the catliest p of all
possible ¢’ entailed from it must be identified.

The logic of chronological ignorance, Th, . is a preference logic hased on the

logic Th with the following preference criterion placed on its models.

Definition 21 A Kripke model M is chronologically meore gnorant than anothier

model M (written M T, M) if there exists a time 1y, such that

1. for any base sentence ¢ whose lUp <t 10 M E Ko then also ML Keo. and

0




2. there exists some base sentence o whose lfp is 1y such that Al =Ko but W' |
KC’I //

Definition 22 A model A s said to be a chronologically marimally wgnorant (cin)
model of ¢, M e, ¢ if M = ¢ and there is no other M’ such that M’ = ¢ and
M, M. <

In other words. to determine which models are preferred. all the models are compared
by checking all their known propositions. The comparison begins with the earliest
known proposition and moves forward in time. If. at any point in time. some model
has a known proposition that the others do not. then it is considered “less ignor»nt™
and consequently rejected. This weeding out process continues until there are no
more known propositions left to be checked. At that point. the remaining ones are

cme ones,

5.2.3 Cezausal Theories

Unfortunately, as is the case with other non-monotonic logics. determining the con-
sequences of general (' theories is an intractable problem. Theories may have more
than one class of emi models. or even none. To circumvent this problem, the class
of theories must be restricted in some way. Ideally, we would like a theory to have
only one class of e models, all of which have exactly the same set of known base
sentences. Shoham in [68] identifies two such classes. and proves that they have this
property. The class of causal theories, defined below. is sufficient for the qualification
problem; the class of inertial theories (which will not be described here), for both the

qualification and extended prediction problems.

Definition 23 A causal theory W is a theory in €'/, in which all sentences have the

form
PAO - Ko
where
I. ¢ is an atomic base sentence TRUE({. ¢, p). where p can be positive or negative:
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2. ¢ 15 a conjunction of sentences Ko, whete o, iy a (positive of negatine) atom

base sentence with anc dtp of 1, such that 1, « 1:

3. @ is a conjunction of sentences Lo, where ¢, 1s a (positive or negative) atomi

base sentence with an ltp of 1, such that 1, < 1}:

4. Lither @ or © may be empty, I & s empty. the sentence is a boundary condition.

otherwise, the sentence is a causal rule.

5. There exists a time point {,. such that for all boundary conditions 9, + Ko,

-

in W, where the ltp of ¢, is 1, then 4y < 1

6. There do nat exist two sentences in W such that one contains Lty 1, p) on it
left hand side (Lh.s.) and the other includes Lty 4,0 =p) oncits Lhos o all p

ty. and t,:

-1

o, AQ - K. top) and @, A0, — K1 1, =p) ate two sentences i\,
then ¢, A©Q, A D, A O, s inconsistent

Boundary conditions ate simple enough. they are used to intioduce known facts
Causal rules, on the other hand, require some explanation. They can be considered

as representing causation [63. 70]. For example. in a statement (sy) such as
Ko ALo, — Koy

¢y is the cause, ¢y the enabler, and ¢ the effect. The cause is vesponsible for pro
ducing the effect. but it could not happen if the enabler tuined out to be false Lo
example. pulling the trigger of a loaded gun causes it to fire. but only iff the gon s
in proper working order. Since the enabler is usually assumed to hold, it s suflicient
to not know that it is false. The ~anse, on the other hand. must be known 1o have
occurred in order to prediet the effect. From this discassion. it shonld be dleay that o
causal rule cannot be evaluated by itself: it depends on the theory inowhich it is e
bedded. To illustrate this point. let Ty be a theory consisting of sy and the houndan
condition Ko, With this pait of statements. one can infer Koy Butoif we al-o add

K-¢; to T;. resulting in theory T, we can no longer infer Koo hence revealing the
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non monotonic nature of the logic as well. Moreover. the strict timng constramts
placed on causes and effects, insures that the former precede the latter.

‘The Gfth tule establishes a “starting point”™ from which to begin computing the
known facts. The sixth is needed because conditions Lo assign. by default. truth
values to the theory (Lo — o): consequently. if both ¢ and =¢ were thus assigned.
the theory would have multiple models. The seventh reflects the idea that consistent
causes shonld not produce inconsistent effects. This i< especially critical in concurrent
systems. sinec it prevents two different actions. while executing simultancously. fiom
producing conflicting results.

Shohar proves that if W is a causal theory. then it is consistent. has a cme model.
and that all enie models of the theory have exactly the same known facts, Fuither-
mote. an algorithm is given in [68] that computes all the known fact< in a cme model
of a theory. Since these results can only be achieved if the formulae in the theory are
sentences, universally guantified formulac or schemas must first be instantiated. The
algorithm basically starts at the carliest mentioned point in the theory and moves
forward in time. adding at time 7, all the new known facts in the theory: any bound-
ary condition with an ltp ol {,. and any consequent of a causal rule. whose consequent
has an ltp of 1. and whose K antecedents (with ltps of t < t,) are known while the
negation of all its L antecedents are not known.  This is repeated. simulation like.

until all the time points mentioned in the theory have been considered.

Example 5 The Yale Shooting Prodlem. (Revisited) The shooting scenatio may he

represented by the following causal theors (where point based facts are used):

I. K(1,loaded)

.

2. K(5,shoot)

3. Vt - K(t,loaded) A L(t,—shoot) A L(t,-emptied)
—  K(t+1,loaded)

1. Vt - K(t,loaded) A K(t,shoot)
A L(t,air) A L(t,-brokentrigger) A ¢ ..

—  K(t+1, noise)
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The first two axioms are boundary conditions indicating that 1t is known that
at time | the gun is loaded and at time 5 the trigger is pulled. The third axiom. a
causal 1ule. describes the persistence of the loaded-gun condition. The fourth, alse
a causal rule. captures the expected behaviouwr of shooting a loaded gun Apph
ing the preference critetion. it is casy to detive that all emimodels have exactly
the same known facts: TRUE(1,loaded). TRUE(2,loaded). .... TRUE(S,loaded).
TRUE(5,shoot). and TRUE(6,no1se). [

Finally. one svntactic variation of causal rules will prove useful for the specification
language. Causal theories are fairly modulai. meaning that one can add new rules to
a theory without having to modifv existing ones. This was partly demonstrated above
in the example involving theories Ty and ). They can be further modularized by
emploving the technique (see Sub-section 1.1.2) of specifving a behavionr by stating
its main rule together with a list of exeeptions to the rule. Under this techmique,

axiom 4 above would be written as follows:

la., K(t,loaded) A K(t,shoot) A L(t,normcond17)
— K (t+1,noise)

th. K(t,—air) — K(t,-normcond17)

le. K(t,brokentrigger) — K(t, -normcondi7)

Then. whenever a new exception is found. instead of moditying axiom 1 (by expanding
the @ ..o conjunct). a new exception axiom is added to the theory, Noteo however,
that the exception conditions refer to the same time point on hoth sides of the in
plication, hence they are violations of the canses-strictly-precede-effects constiain
This circular implication affects the task of computing the known facts, hut the set of
rule-exception axioms are equivalent to the original formulation. For computiational
purposes. however. the procedure should (at cach time point) postpone evaluating
the knowledge of abnormality conditions until the other t-sentences have heen de
termined. Theories that contain such statements. called normal. still have all the

properties of “pure” causal theories [65. 70].
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5.3 Shortcomings of Shoham’s Logics

‘There is much to recommend the logic of ehonological ignorance for the formal basis

of the specification language:
e it uses time and temporal intervals:

e it is non-monotonic, employs a chronological minimization criterion that does
not require un to decide what to minimize, and handles the qualification prob-

lem;

e a class of ('I'theories has been identified that possesses a number of promising
attributes: the theories consist of sentences that are suitable for a specification,

they are modifiable, and their consequences can be algorithmically determined.

Nevertheless. the logie falls short in other respects. Keep in mind that it was designed
to he used for temporal reasoning in AlL not for the specification of systems. its pri-
mary inadequacies are the following: it is a propositional logic. it employs reification.
it does not distinguish actions from other entities. and requires special constructs to

deal with the extended-prediction problem.

propositional Th and ('l though interesting. are propositional logics and thus not
powerful enough for most applications. Shoham in [68] does not give first-order
versions of these logics. although a first-order version of STL is provided. In
specifications, we will need the ability to talk about the properties and rela-
tionships of classes of objects and their members. Therefore, these must be
extended to first-order cases. One potential complication from moving to a

first-order case arises from quantifying into the scope of a modality | t8, 56].

reification 'lo reify something is to concretize it. Reified logics, such as Allen’s [1].
treat (propositional or first-order) formulae as terms inside special predicates
like Holds. This is highly problematic since it requires one to accord the formu-
lac ontological status in the semantics  in other words. they must be denoted

to objects[2. 13, 28], In Allen’s case. almost any expression that would normally
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be considered a first-order formula can appeat as a term. An expression like
Holds (1, ((o(r) A v(r)) — ()N, for example, imphes that o, o and
are no longer predicates. rather they are now functions that map objeets onto
“fact™ terms. Similarly. the logical connectives hecome functions, making Holds
a predicate that takes a time interval 1 and a “lact™ as arguments, To what
objects should we denote ¢ and A? And if they are just functions, shonld we
be able to nest them. as in ¢(¢(2))? I on(a,b) asserts that object a is on
object b, what does on(on(a,b),c) mean? The only advantage of reification
is the ability to quantify over these “predicate™ terms, cheaply attaining some
of the power of second-order logics. but this must be done with great care. ‘The
meaning of the terms and the notion of scope must be precisely defined. Allen,
in fact. does not even give a semantics to the language. Nor is it clear how this

should be accomplished.

Shoham. aware of these diffienlties. chose to restrict what can appeas inside
a TRUE construct. Tor the propositional case of STL. only a single propo

sitional constant is allowed; for the first-order version, only a single 1elation
(TRUE(t,,t,,R(x,x2, ...))). Moreover. nesting of TRUEs is forbidden. While
this solves the problem. allowing Shoham to provide a clear semantics for all the
logics. the restrictions have actually made the reification unnecessary [2, 1%].
Not only does reification. in this case. not present a clear advantage, it may per

haps hinder further extensions of the logies. Therefore, T (and concomitantly

C'T) must be unreified.

What form should the language take? Bacchus of al. [2] define a non reified.
standard two-sorted temporal logic BTH and show that it subsumes Sholam’™s
first-order STL. They objected to the non-standard syntax and semantics of
STL. and the resulting inapplicability of standard proof theory  which is not
a concern here. Their logic. however. is too general. permitting the predicates
and functions in the logic to take any number of temporal arguments. Henee, gt

cannot casily be reconciled into the definitions of C'Tand causal theories, Galton

YAllen’s notation 1s slightly different from this Instead of logicad symbols hike 7 Allen nses and
not, and so on.
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[18] proposes a very general method for unreifying logics. including complex ones
like Allen’s. The technique is based on the idea of distinguishing the types of
ohjects from their instances (tokens). While reifying types is problematic and
“philosophically dubious,” reifying tokens is ontologically sound since they are
individuals. The technique has merit, but it is perhaps more appropriate {ot
more heavily reified logics. Haugh [28] offers the method of temporal arguments
(MTA) as an alternative to reified logics. Like BTH, this approach attaches a
temporal component to each predicate, but unlike it, MTA uses a non-standard
semantics to highlight the temporal aspects of the logic. In some ways. therefore.
it is closest in spirit to STL. but from an unreified perspective. Nevertheless.
it is deficient in a significant way: no atemporal functions are permitted in the

predicates.

The most reasonable approach for the unreification, therefore, is a combination
of MTA and BTK. suitably adapted to match the requirements for C'I and causal

theories. of course.

actions Shoham, as explained above, chose to distinguish very few objects in TA.
Although this resulted in a logic that is both elegant and parsimonious, it is
neither conducive to. nor practical for. the task of specification. It was given
very little “svntactic sugar.”™ If Th (or (1) is used “as is" for specification.
virtually everything would have to be defined from scratch. even the most basic
concepts, including what constitutes an action. And this would have to be done
for ecach new document. Such documents would not only be difficult and tedious
to write, but difficult to read as well. We need to enhance the naturalness of

expression of the logic without loosing too much of its expressive power.

Actions must be distinguished. not just because this is one of the requirements
for the specification language, but also because of the significant role they play
in any theory of causation. Indeed. one of Galton’s criticisms of Shoham's ac-
count of causation is that it fails to make a distinction between actions and
fluents (value-bearing facts) [19]. Although Shoham disputes this need. most

formalisms that deal with change or causation rely on the intuition that all
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changes in the values of fluents are caused by actions (e.g. [1.11.52,59]). Even
Shoham concedes in [69] that actions are needed. if only to capture the notion
of agents influencing the course of history through the performance of actions.
Besides. lumping them together as Shoham does hides their fundamental ditfer

ences: actions are active elements. fluents passive: actions take a circumscribed
time. fluents persist indefinitely; actions are defined by the whole interval of

time over which they occur, fluents by any sub-interval as well.

One way to emphasize actions in a formalism is to make them into modalities

see dynamic logics, for example, or Khosla and Maibaum’s specification an
guage [37]. This is not recommended here because of potential conflicts with
the knowledge modality in Shoham’s logics. A more common methad for dis
tinguishing actions (or any other entity) in a logic is through sorting. That
is. by making it a sorf or type in a many-sorted version of the logic. Such a
logic sub-divides the universe of discourse into different kinds. and requires all
the elements in the language to be of a certain type. An example of one is
the situation calculus. Since one of the benefits of sorted logics is improved
naturalness of expression, they are often used for specification langnages (for
example. [22. 37]). The restricted domains and strict typing also make it casien

to check the specification for errors.

One final concern is how to distinguish bhetween the type of an action and an
instance of it. The latter entity will be called an evrent. Using events, rather
than actions, allows us to specify that events of the same type can ocenr con
currently, and provides the means for the counting of events of a particuli
type [28]. Galton [18] recommends adding event token arguments to the pred
icates. For example. instead of load gun(x). the action of loading gun x. use
load_gun(x,e), where e refers to a specific gun loading. An alternative is to
employ occurrence predicates that instantiate an aclion by associating it with
its time of occurrence, Occurs(t,load gun(x)). In order to avoid confusion
however. the entities in the predicates must be properly identified as actions.
hence this form is well-suited for a many-sorted logic. 'Thus. the latter approach

will be used in the specification language.
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the frame problem Sholiam provides a solution for the extended prediction prob-
lem. Recall that the problem involves not just the persistence of facts but an
upper bound on the expected time of persistence as well. To solve the problem.
Shoham had to resort to the concept of a potential history. defined by formulae

of the form:
v (t) v <ty AK(ty,v,p-i)).

This formula asserts that the potential history p-i should last from t; to t,.
providing it is not clipped at some point v. If it is clipped. then the potential
history would have manifested only part of its history. The potential history
can be viewed as the “mechanism” that causes or maintains the persistence of
a fact. To extract or project the fact from it, a formula of the following form

must be used:
(EV . ('t] <t S ty < V) A K(t;.V.p’l))) — K(tg,t3,p).

Basically, this means that the fact p can be inferred to hold over any sub-interval

of the manifested potential history p~i.

Causal theories are extended to incrtial theories by including sentences of these
forms. Shoham is able to show that inertial theories enjoy the same properties of
causal theories [68]. However, the solution is rather complex and cumbersome,
making it difficult to express simple persistences. which is all that we really
need. One must define and carefully instantiate not just facts. but potential
histories as well.

‘The best solution would be one that stayed within the context of causal theories.
Unfortunately, it is not easy to express a “global” frame axiom in TK. That
can only be accomplished in a circumscription logic by means of a second-order
formula. Thus. it will be necessary to employ a number of persistence axioms.

The details are covered in Chapter 6.

In addition to these points. there is the matter of what form the specifications will
take and what additional “syntactic sugar™ will be required. The pragmatics must

also be considered. These issues. among others, are answered in the next chapter.
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Chapter 6
The Specification Language KAT

The development of the ideas presented in the previous three chapters culininates
here in the definition of the specification language. A suitable formal basis for it
was selected. the Jogic C'I. but before it can be used as a specification language.
its shortcomings must be addressed. From the discussion in Section 5.3, Th must
first be transformed into a non-reified, many-sorted first-order logic (KFOTR ). The
transformation. however, must respect the semantics of first-order STL and T'h; oth
erwise. adapting the notions of chronological ignorance and causal theories to A°OTH
becomes problematic.

With the formal basis finally established. the remaining shorteomings and sundry
other pragmatic concerns must he tackled. These include, among other things. a
solution to the frame problem and a suitable form for the specifications, The result
is the WAT (knowledge of action and time) specificalion language. Specifications
written in this language form a subset class of causal theories, henee enjoyving then
nice properties.

This chapter covers both formalisms. AFOTHK in the fust section and KAT in
the second. Since many of the notions have already been covered in the previous
chapters and much of the formal machinery defined, especially Shohan’s logies. the
presenitation in some sections below is quite terse. The chapter ends with an extended

example, a plain old telephone system (POTS), demonstrating the nse of NAT.
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6.1 kFOTK: a Logic of Temporal Knowledge

In the spirit of Th, kIFOTK. a k-sorted first-order logic of temporal knowledge, dis-
cerns only one sort: time. The temporal connection is further highlighted by insisting
that all predicates take a couple of temporal arguments.

Before proceeding with the description of kFOTK, however, some aspects of first-
order STL must be presented. Recall that TR was based on propositional STL; like-
wise, kFOTH must capture the fundamental nature of first-order STL. The first-order
version of ST'L extends the propositional one with atemporal constants, variables and
functions, quantifiers over the atemporal variables, and relations. The main syntactic
difference is allowing relations within the TRUE constructs: if t; and t, are temporal

terms, ag,. . .,a,, atemporal ones, and R is an m-ary relation, then
TRUE(t|. tz,R(al NI a,n))

is an atomic formula. Everything inside the TRUE construct, as in Shoham’s other
logics. is evaluated over the pair of time points. With the propositional logics this
posed no difficulties since only propositional constants were permitted within them;
with first-order STL. however, one must take into account the atemporal functions
that appear in them as well. In an expression of the form TRUE(t,,t,,P(£f(x) YY)D
for example. the evaluation of £(x) is “lso dependent of the pair of points t, and t,.
Thus, although the time points do not appear as direct arguments to P and f. the
semantics must assure that they are indeed interpreted over the points.

We begin, as usual. with the syntax of kFOTA.

6.1.1 Syntax

Let k represent the number of distinct basic types or sorts, including time, and S =
{s1.820.. . sko108¢) be the set of sorts. where s, represents time. Sorts are used to
provide a classification for variables. which in turn provides a classification for the
predicate and function symbols.

The objects of the language are the following:



o 1%: a set of temporal variables. whose elements are of sort s, € § and are

denoted by #,,1,,....

o Vi k—1 sets of atemporal variables (which are disjoint from V; and cach other)

Elementsof V. 1 <1 <k -1, are of sort s, € § and are denoted by vy 04, ..

e P: a set of countable predicate symbols, where cach P € P has a fixed -
ity m 4+ 2 (m > 0) and is assigned a type (s;o8, 80000 800 ), such that

51,80 .-, 8im € 8. Since all predicates must have at least a pair of tempo-

(€

ral arguments. proposition constants are simply predicates of arity -

o Fi: a set of countable temporal function symbols, where cach [, € Fy has o
fixed arity m > 0. is assigned a type {s;,sf,... 87, such that s,s € S, and
returns values of type s;. These are typically the various arithmetic operators.

Temporal functions of single arity represent temporal constants.,

o F'y: a set of countable atemporal function symbols, where cach [, € Fy has a

fixed arity m > 0, is assigned a type (s,, 8y1.- oy 8on). such that s, 05,0 s

e

R

S, and returns values of type s,. Atemporal tunctions of single arity represent

atemporal constants.
The terms of the language are defined as follows:

e temporal terms: all membersof 1} and all temporal constants are temporal
terms; il f; € Fy is an m-ary function of type (s;osf ..o, 80 and o, ooo0, e
temporal terms corresponding to (temporal) sort s} € S. then fi(ay,...,a,,) s

also a temporal term.

e atemporal terms: all members of V, and all atemporal constants are aten
poral terms: if f. € Fy is an m-ary function of type (s, 8,0,... S, ). and
Qy, ..., 0, arc atemporal terms corresponding Lo sorts s, 8, .. 85, ¢ S, then

fuley....,ay) is also an atemporal term.

Definition 24 The set of well-formed fotmulae for kO THK is defined by the following

rules:
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¢ atomic formulae:

1. if ey and oy arve temporal terms. then ¢ = o3 and a; < ap are atomic

formulas.

2. if ¢, and t, are temporal terms, P € P is an m + 2-ary predicate, and

@1, ..., 00 are atemporal terms, then [{y, 8] P(ay.. .., an) is a wif.
¢ well formed formula:

I. an atomic formula a wil.
2. if ¢, and ¢, are wils, then so are ¢, — ¢,. —¢1, and Ko,.

3. il & is a variable of sort s, and o is a wif. then so is Vr:s é. &

T'he usual intuitive meanings apply here, as do the usual definitions for the other log-
ical connectives. A note about the somewhat unorthodox notation. [t;.#;]p(x): the
notation was selected to emphasize the point that every predicate must be associated
with a time interval, but it should be remembered that this is merely a syntactic
variation of p(f{,{,2). Furthermore, it must not he mistaken as a modality nor as
a reified construct; in particular, not TRUE({;.!y,p(x)). where p(x) is considered a
relation, not a predicate, in first-order STL. Finally. the following pair of syntac-
tic conventions will be observed: K[f).t2] +P(x) is preferred to K-[t. t) P(x). and
K{t]P(r) to K[t 1) P(x).

6.1.2 Semantics

As with the propositional case, the first-order case is given a Kripke possible-worlds
semantics. The worlds are once again the infinite time lines and the accessibility
relation is an equivalence relation between all time lines. making this an S5 modal
system. The additional types, however, complicate the situation.

An interpretation or frame is a tuple M = (Dy...., Dy_1. D, Wom), where the
D, (including D;,. the set of time points) are the subdomains of the interpretation. 11’
is the set of all possible worlds. and m is a meaning function. The subdomains are

non-emipty sets of values corresponding to the basic sorts {sy...., Sk-1. 5.}, and their
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union represents the domnain of the interpretation. The time domain 1), will again he

represented by A7 with >, The function m assigns

o to each pair (P 1), where £ is of type (s8¢ 81000y s ) m 2> 00 a relation
on A"x N\ x Dy x...xD,,:
e to cach temporal function symbol f, of type (sp,s) ... 87 m > 0. a function

from AT x A%, x A™into A and

e to cach triple (AL A, f.). where f, is of type (s, 500 .. s ) > 0, a fundtion

from Dy x Dyy .. x Dy, into D,

The last item shows that each function is associated with a pair of time points, even
though they do not directly take temporal arguments.

The variable assignment function @ now must handle not just the temporal vari-
ables, but the atemporal ones as well. Thus, if © € V, then o 2V — A and of
v€ Vi thena: V, — D, forall ..

Since any terms that appear in a predicate (aside from the temporal ones) are
dependent on the tine interval. the valuation of arbitrary atemporal terms must take
this into account. The valuation VM of an arbitrary term o of sort s is defined as

follows:

e temporal terms

-

. VM) =a(v), if vis a variable:

|3

. VM(e)=a(c). if cis a constant; and

o

VM flar . o)) = m( VM ag)e . VM)l [0 Fy.
e atemporal terms
1. VM1 45.0) = a(v). if v is a variable. for all {,,1, € V.

2. VM(ty.hy.e) = alc). if ¢ is a constant. for all {,.1, € N} and

3. \";w(ll,ig.f(n; ..... n)) = 7/:(/,.!2\/)(\/,’?4((»,) ..... V,’lw(n,,,)). if fo Fy.
for all t;.t, € A"

111




Definition 25 A Kripke frame M = {D,....,De_1, D W M) and a world w € WV
satisfy a formula ¢ under variable assigniment ¢ (wiitten M, w = ¢[a]) under the
following conditions. In the definition below, @y and a; represent arbitrary terms,
while ¢ and £y represent only temporal terms.

o M, w1, = Lla] iff VM(t,) = VM(¢,)

o M,wlkt; < hld iff VM(t,) < VM(ty)

o M. wl=[t), L]play, ... an)]a]ifl (VaM(f,).Vf"(fg),\/aM(al),. - Vfd(am))
€ m(p.w)

o M, (¢ = ¢2)[a] ill cither M. w l dy[a] or M, w0 | ¢afa]
o M. uwkE —dld]ill M,wlE old]
o M, w k= (VI ¢)a] Ml Mow | ¢]d'] for all ¢’ that differ from ¢ at most on ¢

e M,k (Vr:s¢)a] it M, w | é[e’] for all @’ that differ from « at most on 2.

where & is of sort &
o M.uw = Kold il Mou' = ¢ld] for all w' € W &

The usual definitions for model and satisfaction apply here as well. The S5 struc-
ture and the identity of the domains across the worlds (same in every world). makes
the Barcan formula valid for all domains: Vr:sK¢ = KVr:s¢. Thus, the prob-
fem of quantifying into the scope of a modality is not an issue here (see [56] for an

examination of the problem).

Comparison to First-Order STL

Although a direct comparison is not possible since kFOTH is a modal logic and STL is
not, an argument can be made that AFOTR is a modal extension of it. In this respect.
it matches the relationship between Th and propositional STL: hence. kFOTK may
he viewed as a first-order non-reified extension of TH. The relationships between the

various logics mentioned in this thesis may perhaps be a bit confusing. A graph of the
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Figure 6.1: Relationships Between Logics

taxonomy may help: see Figure 6.1, where solid lines represent diveet connedtions.
and dashed lines inferred onecs.

The syntactic transformation is relatively straightforward. Auy base (non maodal)
formulae in AFOTHK can be translated into a fist-order STL one for exanple,
from [t{,t,]JP(£(x),y) to TRUE(t,t,,P(£f(x),y)). Thesortai aspects can bhe han
dled through a rather cumbersome relativization: from Vx:s- [t,,t,JP(x) to Vx
TRUE(t,,t;,Sort s(x)) — TRUE(t,,t,,P(x)), where Sort_s(x) asserts that x is
of sort s. There are no other syntactic differences to consider (aside fron the modal
ities, of course).

The semantic transformation is also simple. Both semantics preserve the notion
that everything within a predicaie (in AFOTRK) or a TRUE construet (in S7'1.) are
interpreted with respect to a pair of time points. The difference hetween the two s
that in the latter case. neither the relations nor the atemporal functions that appear
in the constructs (directly) take temporal argumments, while in the formers only the
functions do not. The interpretations of the functions are therefore quite simila
Both have the basic form T x T » I — FN. where T represents the time domain, 1
the set of atemporal m-ary functions in the language. and F'N the set of functions from
D™ — D, where D is the domain of atemnporal objects. The domains i PO Th.
of course. are sorted. The case for the predicates vs. relations. however. is o bt

different. In first-order STL. the meaning function for mr ary relations s like the one
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for functions: 1" » T « It — D™, where R is the set of relations in the language.
The approach in kFOTK essentially bundles up all the time-relation instances and
constructs a single predicate with two extra time points: B — T x T x D™, Again.
since KFOTHK is a modal many-sorted logic. I is actually a predicate-world pair and
1) is many-sorted.

Thus, despite the syntactic and structural differences between the two. there i-
an underlying commonality of meaning between the two. This allows us to easily
apply the notions of chronological ignorance and causal theories to kFOTHR. We have.
therefore, maintained the useful aspects of Shoham’s logics. while cerrecting some of

their flaws and providing a suitable “wrmal base for the specification language KA 7.

6.1.3 Chronological Ignorance

The definition for chronological ignorance for AFOTH follows closely that for TA. The

only difference is in the definition for the ftp of a formula - compare with Definition 20:

Definition 26 A basc formula is one that does not contain the modal knowledge

operator. The latest time point (lip) of a base formula is determined as follows:
L. The dtp of [ty t2]p s L0 assuming ¢ < 1.
2. The ltp of ¢y A @, is the latest between the lip of oy or the ltp of o3.
3. The ltp of =o is the ltp of o.

4. The ltp of VI 0. where { s of sort s € S, is the carliest among the ltp's of all
the ¢ that result by substituting constant values for all occurrences of v in o.

It there is no such point. then the ltp1s —oc.
5. The ltp of Vs 0. where xis of sort s € S.is the ltp of o. D

Since the definition of chronological ignorance (Definition 21) depends entirely
on the knowledge operator, which is unchanged in &#OTh. the definition remains
unchanged for AFOThA. Thus. by applving the criterion of chronological ignorance to
kFFOTR, we get its non-monotonic version: KFOCL As with ('l we prefer models in

which one knows as little as possible for as long as possible.
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6.2 KAT: Knowledge of Action and Time

Three major issues remain to be resolved before a useful language o1 system specy
fication is obtained: (1) the entities of the language. (2) an adequate solution to the
frame problem. and (3) the form of the specifications. Furthermore. wherever possible
the language must be given enough “syntactic sugar™ to make it ecasier to read and

write the specifications

6.2.1 Language Issues
Basic Entities

In addition to time and action. what other entities should be allowed to populate the
language? One common entity used in the specification of system behaviour is the
agent. Indeed. most concurrency theories require a notion of an autonomouns agent
(a typical example is CCS [51]). Agents are active elements; they perform actions:
they afiect their environments and interact with each other. They can be used to
give a structure to the specification. Without them, the actions are unattached and,
hence. implicitly performed by the “svstem.” The result is a flat and unstrnetiured
description of the system. one that does not adequately model reality [37]. 'Thus, they
will be added to the set of sorts of KAT. Since these three entities are quite sufficient
for most needs. no others will be pre-defined. The user, however. is fiee to add more,
free to tailor the language for particular applications: after all. the language is many
sorted. One possible suggestion. taken from Allen's formalism {1]. is & process. an

entity that represents ongoing behaviour.

Definition 27 The syntactic entities of KAT are those of kFOTR augmented with

the following:

e k sorts: of which three are pre-defined: sy s,. and s,4. These thiee will some

times be labeled as time. act, and agt. resp - “ively:

o 1, and V: sets of variables corresponding to soits act and agt. respectivels,




o /<, and I'4: sets of m-ary atemporal functions that return values corresponding

to sorts act and agt. respectively: and

o 1 and x: a pair of constants of sort time. referring to the lowest and highest

time points, respectively, <

Predicates

NAT has only one pre-defined predicate. an occurrenee predicate that associates an

agent to an action:
Perf(A,a).

where Ais a term of sort agt and a of sort act. It asserts that agent A performs action
a. Others may be defined as needed. If we had chosen to allow agentless actions. for
example. then a simple Occurs(a) predicate would have sufficed.

An crent is an instantiation of an action. Note the distinctions in the following
terms and expressions: 1aft(tel) is a generic action referring to the act of lifting
the handset of any telephone: Perf(fred,lift(tell)) is a generic phone-lifting
activity performed by fred on telephone tell; and [5]Perf(fred, (tell)) is an
instantiation of that activity: the event of fred lifting phone tell at time 5. Unlike
property- or fact-type entities. events over an interval do not hold over any proper
sub-interval. This meshes with our intuition that an event has a start and a finish; in-
between those points. it is not an event, just an event-in-execution. The distinction
is a very important one. Without it. we would have an infinite number of events.
rendering such notions as event counting and event-ordering relations meaningless.
In AAT. therefore. we disallow an agent from performing the same event over any

sub-interval:

Vot,t,te,ty - (8 S, < t3 <ty
Aty #td Aty #t.; A [tl,t‘;]Perf(A,a))
~ [tg,t;;] ﬂPerf(A,a).

whete A4 and e are gronnd terms. In Shoham’s terminology [68], Perf would probably

be considered a gestalt proposition-type.
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The Frame Problem

It is not really possible to express within a first-ordet logic a statement of the form
“all facts persist unless explicitly clipped.” because it requires quantification over
predicates (facts). We are. thus. forced to resort to a set of statements of the form
“this fact persists unless explicitly clipped.”™ Such statements, labeled a persistene
rules, resembles frame axioms. but they are not: they are merely expressions of the

principle of inertia. Compare a frame axiom

K[t]0ff hook(telx) A K[t]Perf(u,dial(telx,tely))
—  K[t+1]0ff hook(telx),

which states that the act of dialing does not change the 0£f _hook state of the phone,

to a persistence rule

K[t]0ff hook(telx) A L{t]-Perf(u,hangup(telx))
—  K[t+1]0ff hook(telx).

which states that the unless we know the phone is hung up. its 0ff hook state persists.
We will clearly require many more frame axioms than persistence rales, Furthermaone,
as has already been explained in previous chapters. ttv are wholly inappropriate for
descriptions of concurrent systems. A phone can be hung up while a dialing action

happens. If we add the causal rule

K[t]0ff hook(telx) AK[tlPerf(u,hangup(telx))
-  K([t+1]-0ff _hook(telx),

to the theory containing the above frame axiom and boundary conditions

K[1]0ff hook(telx).
K[1]Perf(u, hangup(telx)), and
K[1]Perf(u,dial(telx.tely)).

we arrive at a contradiction: the telephone is both on and off hook.
Since we do not know how long a fact will persist. the most conservative assertion

we could make is the following: if it holds now. and we have no 1eason to helieve
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it has been clipped. then it should persist to the next time click. We cannot safely
predict that it will hold beyond that, or over an extended future interval. Hence.
with discrete and lincar time, if the antecedents of a persistence rule hold at time
{, the consequent should hold at time ¢ + 1. The actual temporal unit, however, is
irrelevant nanoseconds, seconds, minutes, whatever-—since with discrete time, the
values of things can only be measured at the time clicks: in-between the clicks, nothing
can be measured.

The other advantage to persistence rules is that they have the same form as
causal rules. Hence. we stay within causal theories and can employ the rule-and-
exceptions technique for specifving the persistences (compare with axioms 4a.b.c in

Sub-seetion 5.2.3):

K [t]0ff hook(telx) A L[t]Normpersi7 — K[t+1]0ff hook(telx)
K (t]Perf(u,hangup(telx)) — K[t]-Normpersi?

The persistence rule exception may alternatively be read as “the action is abnormal
with respect to that fact.” harking back to the abnormality vredicates of circumscrip-
tion. As with causal rule exceptions, the evaluation of these abnormality conditions
must be delayed - much as possible at any particular point in time. Intuitively. this
permits the actions to clip them at the right time.

The following example illustrates both the frame problem solution and how to

determine the known facts of a theory.

Example 6 A telephone is either on-hook or off-hook. When it is on-hook, then
lifting the handset makes it off-hook; contrariwise, hanging up the phone returns it

to the on-hook state. The following statements describe this scenario:

I K[tJOff hook(x) A K[t]Perf(u,hang up(x))
— K[t+1]-0ff hook(x)
2 K[t]-0ff hook(x) A K[t]Perf(u,lift(x))
— K[t+1]0ff hook(x)
3 K([tl0ff hook(x) AL[t]Normoff — K [t+1]0ff hook(x)
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[ ] t=0 ] t =1 | t =2 ]

A | =0ff hook(x) | —0ff _hook(x) | Perf (u,l1ft(x))
B -0ff _hook(x)
C -Norm.on
| [t=3&1=4] t=5 | t=6 1
A | 0ff hook(x) | Perf(u,hangup(x)) | ~0ff hook(x) |
B 0ff _hook(x)
C —-Norm_off

Table 6.1: Known facts in every emi model for phone example

3a K[t]Perf(u,hangup(x)) — K{[t]-Norm_off
4 K[t]-0ff hook(x) AL[t]Normon — K[t+1]-0ff hook(x)
4a K[t]Perf(u,lift(x)) — K[t]-Norm_on.

Axioms | and 2 are causal rules describing the hehaviour of the actions: axioms 3
and 3a are persistence rules for the ofl- and on-hook states: and axioms 4 and o are
exception conditions for their respective persistences. Now, let us add the following

boundary conditions to the theory:

5 KI[0]-0ff hook(x)
6 K{[2]Perf(u,lift(x))
7 KI[5]Perf(u,hangup(x)).

Before t = 0. the usual tautologies are known. At ¢ = 0. the only fact whose
knowledge is imposed upon us is [0] =0ff hook (x) frone axiom 5 (see Table 6.1)
Everything else is marked as unknown. We proceed to £ = 1. The only fact necees,
tated by the theory is the consequent of axiom 4: since [0] -0ff hook(x) is alicady a
known fact. we add knowledge of [1]1--0ff hook(x). Again, everything else at - |
is unknown. We now proceed to t = 2. 0ff hook(x) persists. as expected. hut we

now have a new fact imposed upon us from axiom 6. the performance of a Lift action.

This, in turn. triggers the abnormal condition [2]-Norm_on in axiom 4a. kverything

else at ¢ = 2 is marked as unknown. When we move to # = 3. the first pair of known

facts at time # = 2 (A and B in Table 6.1) canse [3]0£f hook(x) to he known (homn
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axiom 2). The —0ff hook(x) fact. however, does not persist hecause of the knowl-
edge of the abnormality at ¢ = 2. The rest of the facts listed in the table can likewise

be derived. 0

From this example. the persistence rules and their exceptions appear to correctly

capture our intuitions.

Syntactic Sugar

A well-defined language with a solid formal foundation lends precision to the state-
ments one writes, but that does not necessarily imply that writing and reading them
is clear-cut. If anyvthing. unless one is quite adept with logics, the strictness of the
language appears to hinder and obfuscate. rather than aid comprehension. This ap-
plies even for well-known standard logics like first-order predicate calculus, let alone
for a new and non-standard, perhaps counter-intuitive. one like AFOTH. This is one
aspect of formal methods that has led many to decry their use.

I'wo basic obstacles stand in the path towards the general utility of KAT. The
first is the language itself: like other logics, it has a rather limited syntax, requiring
one to string together many symbols. often in intricate patterns, to express simple
things. The second stems from the the novelty of the language: a frame of reference
for it does not exist. Therefore, misconceptions of its capabilities or proper use are
bound to occur. To mitigate the difliculties associated with first problem. NAT will
be given some syntactic sugar. This may indirec.ly provide some clues regarding the
second problem. but the latter is best characterized a pragmatic concern (see Sub-
section 6.2.4 below). For this proposal, only the following syntactic conventions are

suggested:

o Atomic formulae over the same interval may be combined. An expression of
the form [y, £:]Jo A K[t 5]y may be written as [11.12](¢ A Kv»). Care must be

taken to avoid nesting modal operators. since this is strictly forbidden.

o ("ausal rules that have the identical antecedents and whose consequents are over
the same interval may be combined. The pair of expressions. & — K{f,.t,]0

and & — K[t t,]i". may be written as & — K[{,.8:)(0 A ).
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¢ Since exception conditions have the same general format, they can be given
a special construct. There are two types, one each for causal and persistence

rules, respectively:

1. except(p.-cnorm) = K[¢]p — K[t}-cnorm. and
2. pexcept(p,-pnorm) = K|t]p — K|t]-pnorm,
where, p. cnorm and pnorm are predicates.

Other possibilities include special coustructs for persistence rules and causal rules.
Persistence rules may be served by persist(p, pnorm) = K[/]p ALpnorm — K[/ | 1}p.
General causal rules, however, require a complex structure, one that must highlight
its various components—pre-conditions, actions, enablers and consequents. While
such a construct, resembling perhaps a VDM operation description, would enhance
readability, its structure and complexity would detract from the overall axiomatic

framework.

6.2.2 P-Causal Theories

The theory in Example 6 is an example of KAT causal theories, herewith labeled
p-causal theorics to distinguish them from (1 causal theories and to emphasize their
persistence element. They consist of three basic statements: causal rules, persistence
rules, and exception conditions. Causal rules here have a slightly different definition
from those in causal theories. Since we wish to capture the active element in a canse
and-effect relationship, we will insist that cach causal rule has al least one (known)
action in its antecedent. Persistence rules, on the other hand. do not require an active
element; indeed, it is the lack of such an element that enables the persistence of o
fact. Clearly. these rules match rather nicely our intuitions regarding the nature of
causation and persistence. Both. however. would be considered just cansal rules in
CI causal theories, since Shoham’s logics do not distinguish proposition types.

The definition below formalizes many of the notions alieady discussed in the pre

vious sections.
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Definition 28 Let the term actiee predicale mean a predicate that takes action ar-
guments, and passive predecate one that does not. Then. let a represent an active
predicate, f a passive predicate, p a predicate of either type, and n a normal predi-
cate. Further, let ¢, ¢f, and ¢ represent atomic base sentence of the form [t3, t4]q.

where g is one of «, f, or p. respectively, and &3 < ty. All the formulac in the theory

are ground.

A p-cauvsal statement is a sentence having one of the following forms:

causal rule Ppre APact A Oupab, — K(t,.t2]p
normal form: D50 A b,ct AL{ti]ne — K. ta]p
persistence rule K] f A Openab = K[t+1]f
normal form: K[t f AL[t]n, — K[t +1]f
exception conditions except(p,. —n.) = K[t]p — K][{]-n.. and

pexcept(a. n,) = K{tja — K[t]-n,
where

I. in causal rules: @ppe is a conjunction of pre-conditions Ko/, where ¢! has an
ltp of ty such that {4 < {;: $aqq is 2 conjunction of active elements Koy, where
@! has an lip of t, such that t; < t; and Og,y, is a conjunction of enablers

Lo”, where ¢ has an lp of {4 such that ty < {;:

2. in persistence rules: (-)p('nal) is a conjunction of enablers L[t]-a,;

3. a boundary condition is a casual rule with empty ®@pre and @y
A p-causal theoryis a collection of p-causal statements, such that

I. There exists an initial time point ty. such that for all boundary conditions

O, - K[f..t,]p. to L L

2. There do not exist two sentences in W such that one contains Lty £,]p on its

I.h.s. and the other includes Lt t,]=p on its Lhus. (soundness conditions):
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3. 0T, — Kt tp]p and T, — K[#.1,]-p are two sentences in W, then YA Y,

is inconsistent.

A normal p-causal theoryis one composed of causal and persistence tules, all in notal

form, and exception conditions. It must satisfy the additional requirement that

e at any time ¢, knowledge of abnormalities is postponed until all other f-sentences

have been determined. S

P-causal theories enjoy the same properties as causal theories. Specifically Af W is a
p-causal theory, then it is consistent and has a unique class of ememodels. Faample 6,
which satisfies all of the requirements for a p-causal theory, clearly manifests these
properties. To see that all p-causal theories enjoy these properties, first note that all
the predicates are ground: this essentially reduces the theories to the propositional
case (compare with Definition 23).  All of the requirements mateh, except those
concerning the form of the sentences. However, causal and persistence rules in p
causal theories are just special cases of cansal rules in causal theoties.  As for the
sentences in a normal p-causal theories, the additional requirement assures that any
normal p-causal theory can be converted to an equivalent causal one (65, 70} That

is. a collection of rule-exception statements

o] /\L[fl.il]n — K[h*'l][}
Kt tolg — Kt t-n for 1 <o <m

can be replaced by the single causal rule

DA /\ Lt telg — K[, L]p

1=1
Hence, p-causal theories are a subset of causal ones. ‘This also means that it should
be possible to define an algorithm for determining all the known facts that hold
the class of emi models of a theory. Given that developing a proof theory for NAT i«
highly unlikely, which is the case with most non-monotonic formalisms, the bhenefits of
this are clear: it provides an alternative way for determining somne of the consequences

of a theory.
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Of course, when used in specifications, the majority of the statements will be
schemas or universally quantified formulae, not sentences—-and, strictly speaking.
they should therefore no longer be considered p-causal theories, but such a distinction
will not be made here. Nevertheless, the above results are useful. They suggest that
by giving various boundary conditions and instantiating the formulae appropriately.
it becomes possible to execute the specification. This aspect of the language will not
be fully explored in this thesis, but it would surely enhance the utility of the language

(sce Sub-section 6.2.4 below for more details).

6.2.3 KAT Specifications

What form should the specifications take? Basically. a NAT specification contains
some sorting information and a set of axioms. This suggests an algebraic-specification
style of presentation. or more closely, one similar to that used by Khosla and Maibaum

in [37). WAT specifications. therefore, have the following form:

Specification specification-name

Lenguage:
SORTS: sort-list
CONSTS: constant-name : sort
VARS: variablc-name : sort
PREDS: predicale-name : { sort-list )
ACTS: aclion-name : ( sort-list )
FUNCTS: function-name : (sort-list ) — sort




Arioms:

causal rules

causal rule exceptions

normal p-causal theory
persistence rules
persistence rule exceptions

End.

6.2.4 Pragmatic Issues

Acquiring a “feel” for NAT will doubtless take a significant amount of time and use.
Certainly. its epistemic modalities and non-monotonicity will confound the effort.
Nevertheless. from the discussion and examples above. KAT shows proniise as a
specification language. It scems to provide enough of the machinery required for
the specification of systems: with it, we can define the objeets that make up the
system, and express its behaviours. But how should it be used? How do we take
advantage of its many features? What is the proper way to apply the modalitics?
So far, most of the language’s features have been described from a technical, formal
perspective. It might even be argued that there has been. perhaps, an inordinate
emphasis placed on the semantics of the language. while the syntax and application
of the language have been practically neglected. In defense of the tack taken. given
that this is fairly new ground for a spectfication language. it is very important to
be very clear about what evervthing means. Besides. this approach to specification
language definition is a deliberate departure from the usnal one which focuses only
on the syntax, expecting the user to intuitively “understand™ the meanings of the
terms from the numerous examples given. Unfortunately, while formal definitions
make everything clear, they do not always convey the overall scop  and utility ol
the language. In this section. therelore. <ome practical and conceptual issues are
addressed, and the key features of the language. together with its capabilities and

known limitations, are compiled and re-examined from a pragmatic point of view,
. I



(In)Complete Specifications

Are KAT specifications complete or not? Clearly. since it is no longer necessary to
explicitly specify all the qualifications and frame axioms, the specifications cannot
be considered complete. However, the formalism (through its semantics) takes this
into account. It fills in the missing information; it “completes”™ the specification. The
question is, does it fill in enough information? Since NAT only deals with partial
specification and no other form of incompleteness, the answer is no. Does it therefore
partially complete the specification? This is still an open question. For one thing,
il only deals with two thirds of this class of incompleteness, since it does not tackle
the ramification problem; for another, one would still be required to provide enough
information to make it possible to fill in the rest. What is a sufficient amount of
information? C'an it be defined? And, can partial completeness. as it relates to KNAT

specifications. be formally defined and tested for? These are left for further study.

Linguistic Components

A proper specification language. one sufficient for the specification of a variety of sys-
tems, should be capable of expressing three types of information: static information.
action descriptions and dynamic behaviour. The first two constitute a description
of system behaviour, while the latter a prescription of it [37]. In most traditional
approaches, such as VDM, only the first two can be specified; others. including the
varions process algebras such as CC'S or CSP, only the third. KNAT, however, can

haundle all three.

static inforimation Static information represents the set of entities. properties. re-
lationships and invariants of the system. Obviously. these are specified in the
usual way via the first-order. many-sorted logic apparatus—everything in the
Language section of a WAT specification —together with the boundary condi-
tions. The rather strict form of the boundary conditions, however. limits the
types of invariants that can be expressed. P-causal theories require fixed inter-
vals and atomic formulae. but these rules may be relaxed a little. Specifically.

the symbols L and o¢ can be used to express universal invariants: [L.oc]p(r).
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A Dbottom symbol. L. is used instead of »ac, to avoid violating the requite
ment that there must exist a starting point (for computational puposes) g
thermore, by using some syntactic sugar. more complex statements can he
made: [L,oc]-(off hook(x) A ringing(x)). or even Inv(~(off hook(x)
A ringing(x)). However. quantifiers may not he used, and il executability s

required, a suitable way to instantiate such statements must first be dehined.,

act'on description Action descriptions are specilied through the cansal tules, e

noring for the moment the complications associated with the K and L modal
ities. NAT action descriptions resemble those of many other specilication o
malisms: to wit. they are given in terms of pre- and post-conditions Unlhike
most of them. however. KAT does not depend on a notion (explicit or otherwise)
of a before-state. an atomic action and an after-state. Pre conditions may hold
over any (past) times: actions may have durations: more than one action niay
be involved: and the post-conditions need not take effect immediately alter tae
execution of the action. Actions also require agents, ‘This allows us to distin
guish the actions taken by the user or environment from those of the system

or even distinguish the actions taken by the sub components of a svstem

Morcover, an action mav be deseribed by more than one causal tale. cach havine
a different set of pre-conditions and different effects. This allows ns 1o spean
just the minimum relevant pre-conditions (context) for a particalar effect of an
action. For example. lifting the handset of a telephone has two posaible (and
different) effects: answering a call o initiating a call. depending on whether o
not the phone is ringing. respectively. To deseribe this behaviour i VDM we
would either have to put both effects within a single 11ft action (operation)
description. or split them up into a pait of distindt actions. say 11ft 1nit call
and 11ft_answer call. Neither solntion is saticfactory: the former unnecessn
ily complicates the definition: the latter conceals the fact that they cssentialls

involve the same action.

There 1s vet another difference between cansal viles and ost traditione! ap

proaches of describing actions: it is in the natwie of thein pre condinion
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the traditional approaches. a pre-condition has a pair of meanings: it identi
fics the context within which the action may be petformed. and it implicitly
apptoves the exeention of an action (provided the pre-condition holds). By
lumiping them together, however. this important distinetion is fost [37]. The
pre-condition should only establish the context: the execution of the action
is strictly a system dynamics issue. Of course, if a language is not capable
of expressing dynamic behaviour. then it cannot make this distinciion: KAT,
however, can (see next item). Hence. pre-conditions only serve to establish the

context,

All these aspects allow lor a more realistic (and natural) modeling of action
hehaviom than is possible with traditional approaches. They also permit us
to model concurrent systems without having to 1esort to a non-deterministic
interleaving of atomic actions (as in CCS and CSP). Atomicity. however. pie-
vents interference between conflicting concurrent actions. In KAT theories, non-
interference is safeguarded by the third condition in the definition of p-causal

theories (Definition 23).

dynamic behaviour It is not possible with just static information and action de-

scriptions based on pre- and post-conditions to implicitly derive syvstem be-
haviour. Indeed. languages that only provide for the other two components
cannet be used to spedily reactive svstems, which exhibit on-going behavionr.
To describe system beliaviour. the language must provide a way to associate
actions to cach other. This could be accomplished in a number of ways. such
as by permitting the specification of sequences (o1 partial orders) of actions.
or by permitting actions to cause (or oblige) other actions to execute. Apart
from permitting multiple actions (in sequential and concurrent  onfigurations)
in the antecedent of a causal rule. A4 7T also allows actions in the consequent.
As an example of the latter. dialing a phone number obliges the telephone ex-
change to attempt to make a connection (within a reasonable amount of time):
K[t,,t:]Perf(u,dials(x,y)) — K{[t,+tmin,tJPerf(ex,connect(x,y)).

In addition to this, boundary conditions can be nsed to “force™ the execntion of
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actions at specitic times. Thus. to “trigger™ a causal rulec it is not enough {on
the context to hold. the action must also be compelled (in one way o1 another)
to execute. Finallv. with a suitable interpreter for the langunage (see below).,

there exists the possibility of simulating the behaviour of a theory.

There are other specification languages that also allow the specification of all thiee
tvpes of information. Khosla and Maibaum’s (K&M's) language [37]. for example, is
a many-sorted first-order logic with action modalities (for the action descriptions) and
obligation/permission modalities (for preseribing system behaviour), And in certain
ways. some of these languages are more expressive than NAT. Taking K& M-S langrage
as an example again, it is more expressive in three + speets: (1) it does not testrict
the form of the sentences: (2) behaviour-wise, it permits one to spealy a sequence of
obligated actions - one obligating another obligating vet another, and so onz and (3) it
distinguishes two types of causality through the obligation and permission modalities,

KNAT. however. has linguistic components that few or none of them have, Observe,
for instance. that action descriptions as stated above do not completely describe an
action: they do not indicate which things are not affected by it. Obviously, this is the
role that persistence rules and their exception conditions play in KAT speafications.
These. in turn, are part of a general mechanism for tolerating incomplete information
From a technical perspective. the main components of this mechanism are the epis
temic modalities and the chronological ignorance preference eriterions from a practical
perspective. however. it is the enabler in the rules. When nsed withim a cansal rule.
the enabler handles the qualification problem: when used within a persistence rufe.
it handles the frame problem: and. when used within notmal forms of hoth rule: and
combined with the exception conditions. it makes the modification of specifications
easier.

The way KAT (and the enabler in cansal rules) handles the qualification problens
analogous to that for ('l theories (see Sub-section 5.2.3). Farthermore, the setantic-
of kFOC! cover the situations where a pre-condition (o1 enabler) does not hold for
a causal rule: the rale is not triggered. and no effect produced I a different effec
is required. then one merely adds anothier causal rale for the action containng the

negation of that pre-condition. As for the frame problem. the wav it is handledn
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NAT has already been explained above in Sub-section 6.2.1. Thus. KAT satisfies one
of its primary requirements: tolerating incompleteness due to partial specification.

Its modifiability is discussed in the next sub-section.

Modifiability and Theory Construction

Constructing specifications (theory building. Section 3.1) is a long. arduous process.
Theories reguire constant modification, whether from the need to correct errors. to
add or change requirements, or to simply find a more appropriate formulation. As
explained in Sub-section 3.3.1. this constant flux is an unavoidable source of incom-
pleteness. Furthermore, the changes will often be non-monotonic in navure: each
change necessitating other changes in the theory. Therefore. all proposals for speci-
fication langnages or methods should take these aspects of the software specification
fask into serious consideration. In general. the languages should minimize as much
as possible the amount of revision required with each change to the theory.

To illustrate the basic approach. let us look at the qualification problem- -the
notions apply to the frame problem as well. Let us say we are trying to model a
patticulat action . We ponder carefully on its expected behaviour. When we feel
we know all of its pre-conditions, we confidently write down. in a monotonic logic in

which the predicates take temporal arguments. an axiom like
(DA Ao, () A = et +1).

where the ¢, are the pre-conditions. Unfortunately. we discover shortly thereafter that
some pre-conditions were missed. This makes the whole axiom obsolete and forces us
to modify it. Later still. a new feature is added to the system. but we realize that
it conflicts with some axioms already in the theory, including this one. Thus, more
changes are necessitated. ln a developing theory. such changes will be required again
and again. Fventuoally, a certain stability in the theory might be reached. but a theory.
it must be emphasized, can never be considered as fixed or correct or complete. It
will always be subject to change.

In a A1 specification. on the other hand. we do not just write down the pre-

conditions: we also must decide which ones are absolutely necessary for the action to
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execute and which ones either merely lend support or are assumed to hold (at least
for the time being). The former clearly become K-conditions, the latter L conditions.

So, our first axiom now has the following form:

K[t)oy A - AK[t]ox ANL[t}os 0 A< -« AL[t]on AK[II
— K[I + l]l,‘.

This axiom will also be subject to change initially, but usually the changes will be
in the form of more L-conditions. Once the K-conditions become relatively stable,
we may then collapse all the L ones into a single abnormality n. and add a set of

exception conditions for them:

® AK[{]\ AL[t]n — K[t + 1]
K[t)ér+1 — K[t]-n

K|t]¢,, — K][t}-n

where @ represents all the K pre-conditions. From then on. changes to the action
description or changes elsewhere that affect this rule will only require the addition
of more cxception conditions, the axioms themselves being left intact. Ol conrse, we
can always begin with the normal form of the description, even if we not vet awae
of any potential L-type conditions. This appioach anticipates change. and promotes
the idea of constructing the theory in stages. starting with a core o1 kernel of the
system and slowly adding features to it. Note, however, that this approach does not
guarantee that every change will be just a simple addition to the theory. Rather it
reduces the type of changes that necessitate modification of existing axioms.

A final note: Observe that any change to the original axioms in a theory of
a monotonic language represents a non-monotonic change; in KAT, however, the
non-monotonicity is “built-in,” hence such non-monotonic changes can he achieved

through simple monotonic modifications to the theory.

Executability

P-causal theories arc in a form that is suitable for execution, ‘The obvious benefits of

executability are that it allows the developer to compntationally test the specification
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for inconsistencies and to verify that it matches the client’s requirements. The key,
of conrse, is to properly instantiate the axioms. It is beyond the scope of this thesis
to explore the various ways of achieving this, but one suggestion is to instantiate
every relevant axiom at cach new time click that is reached in the simulation. For
example. for a persistence rule of the form K [+1P(x) AL[tIN — K[t+1]P(x), given
an initial time ! = 0 and current time click ¢ = 2, the following axiom instances must

be generated by the interpreter of the language:

K[olpr(a) AL[CIN — KI[1]P(a)
K[1]P(a) AL[1IN — K[2]P(a).
K[21P(a) A L[2IN — KI[3]P(a).

where ais a suitable instance of x. The interpreter should allow the user to instantiate
the variables and to impose boundary conditions either as initial conditions for the
execution or during the simulation, as it moves forward in time. An appropriately
modificd version of the algorithm given in [68. pp. 114-115] (for computing the em:
models of causal theories) can then he used to determine the new facts at each new
time point. For output, it should display the current em: facts, perhaps in a tabular
form such as that in Table 6.1.

Another potential element of the specification that might be automated is the
persistences. Note the form of the persistence rules and their exception conditions
in Example 6, and compare them with the rest of the theory. Firstly. a (normal)
persistence rule should be generated for each predicate of the theory (excluding the
Perf and normal ones): more precisely. for each predicate P,(T). where T represents

a list of arguments. a persistence rule of the form
K[} P(F) A L[N, — K[t + 1]P(T)

must be generated. Then, for each causal rule in the theory that affects the predicate.

& AK[tPerf(u.a(7)) — K[/ + 1]-P(T). an exception condition of the form
pexcept(Perf(u.a(7)).~N,)

must be generated.
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Objections to KAT

There are at least two objections to the NAT specification langnage. The first con

cerns the use of epistemic modalities. Galton [19], in particular, eriticizes their use
in causation and causal reasoning. After all, what do knowledge and beliel have to
do with causation? Surely, things cause other things whether o1 not we are aware
of them. Causality, therelore, is best viewed as an objective phenomenon, one in

dependent of what anyone believes. Furthermore, contrary to Shoham’s claims [70).
Galton argues that causal reasoning is not inherently non-monotonie; rather, non

monotonicity is an aspect of human reasoning in general. Although both argnments
are persuasive, they are primarily philoscphical concerns. The souree of the non

monotonicity. for instance. is less important than whether the semanties delivers it.
And there is nothing in the Kripke-style semantics of K'OTHK that forces us to give
the modalities strictly epistemic intuitive interpretations  Fssentially, the modalities
only serve to distinguish those facfs that we are absolutely certain about from those
that we are not. We then <iniply give the benefit of the doubt to the tatter facts and
assume they hold, unless we have explicit evidence to the contrary. Still, epistemic
modalities are unusual for a specification langnage. and some may find them diflicult
to master. One way to conceal them is to resort to syntactic structures that highlight
the various components of the causal and persistence rules without making explicit
use of the modalities.

The other objection concerns the use of time. Turski and Maibaum in (73] «lain
that the use of explicit time constraints indicates that a proper analysis of the system
was not carried out, and that the real or fundamental nature of its primitive clements
and their relations have not been discovered. The use of absolute time intervals, they
assert, results from a superficial observation of the phenomena in the system. o
example, instead of specifying that the minimum permissibleinterval between airplane
landings at airport X is, say. 210 scconds. the specifier should try to determine what
underlying factors are responsible for such a figure. They further claim that {or most
real-time applications. a more concise and general deseription conld be attained hy

studying the functional and relational dependencies hetween the events in the systen,
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rather than by jotting down temporal constraints— that is. by looking at it as an event-
dependent control system instead of a clock-based one. The ultimate drawback of
employing time, especially in a framework that encourages the specification of systems
via sets of rules and exceptions, is implementation bias. It is just too tempting to
convert such formulae directly into program statements, the end result perhaps being
a program with a complex and awkward control structure. While they are correct in
asserting that most uses of explicit time are unwarranted, there are situations where
i, 1s unavoidable. How, for instance, do we impose temporal performance constraints,
cither for timely responses or for safety reasons, without it? Say the client absolutely
requires a response in ¢ microseconds, how can it be specified without recourse to
explicit time? Unfortunately. it is not exactly clear how to reconcile these conflicting

requirements. It certainly merits further study.

6.2.5 Example: Plain Old Telephone System

The examples presented thus far have given but a hint of KAT s features and capa-
bilities. In this section, therefore, a more substantial example will be presented and
discussed, one that will better demonstrate these features. It is a AAT specification
of a plain old telephone system (POTS), a very basic telephone service. It was chosen

hecause

o it is universally familiar (at least from the user’s point of view). thus tue reader

should be able to readily judge how well the language captures its behaviour.
e it is a concurrent system involving different (interacting) agents,
e it includes timing constraints,

e it is a real-world application in which there has been a considerable amount of
research and development over the years, and it involves some of the largest

real-time control systems ever invented,

e it is an application that is constantly being modified and updated with new

features.
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e it is often used as an example to demonstrate specification languages (see for
example, [14. 1%, 36, 37, 42]).

The basic system consists of a set of telephones connected to a telephone exchange.
The exchange allows any pair of telephones to connect with each other  that is,
it permits the users of the telephones to communicate synchronously. The uset’s
basic actions include lifting and hanging up the handset, and dialing a number. The
exchange’s duty is to respond to the users’ requests (in a timely manner). It also
provides the user with a number of signals or messages to indicate the status of the
telephone. such as a dial tone, a busy tone, ringing its bell, ete.

To simplify the presentation, a point-based description is given and only the basic
behaviours involved in making a connection are considered. Let us begin with the
entities in the system (see Figure 6.2). Aside from the three basic sorts, the speci
fication also requires a tel (telephone) sort. Ouly one exchange is identified, so it
is made a constant. The other constants. the temporal ones. will be explained later
on. The declaration of variables is straightforward. but note that it is possible to
provide comments within a specification by enclosing them within the usual /* and
*/ brackets.

Aside from Perf, there are three types of predicates: (1) a set of properties or
states of a particular telephone- the telephone may he Hooked up or not, 0ff _hook
or not. it may receive a Dialtone to indicate that a call may be made, a Ringback if
the other telephone is ringing. a Busytone if it is not, or a Hangup_msg to admonish
the user that the telephone has been left off-hook too long withont it being used,
and it may be Ringing: (2) a set of relations of pairs of telephones  Callang(x,y)
indicates that telephone x is in the process of calling y, and Connected(x,y) 1o
indicate that the connection has been successful; and (3) a set of normal condition
predicates—their meanings will be apparent from the discussion below on the axioms
of the theory.

In this description. only three user actions are declared: 11ft represents the lift
ing of the handset. hang-up the replacing of the handset. and dials(x,y) the act of
dialing y's number from telephone x. To distinguish between the pair of telephones

involved. the one initiating the call will be labeled the calling telephone. the othe
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the callce telephone; the users will likewise be distinguished, caller and callee, respec-
tively. The exchange performs the following seven actions: connect (x,y) is the act of
attempting to connect telephone x to y, sgnl_timeout (x,t) is an internal trigger or
alarm that indicates that telephone x has exceeded a pre-set temporal limit t, and a
set of send actions to deliver tones and messages to particular telephones—snd dialtn
sends a dial tone, snd ringbk a ringback, snd_ringbl a ringing, snd _busytn a busy
tone, and snd_hangup a hang-up message.

Figures 6.3 and 6.4 display the axioms of the POTS theory. We have already seen
Axioms 1, 2, 18, 18a, 19, and 19a in Example 6, modeling the behaviours associated
with going on- and off-hook. Axiom 0 is a boundary condition that fixes the initial
state of cach telephone: it is on-hook.

To make a call. a user begins by lifting the handset. Of course, the telephone must
be on-hook and not ringing; if it is ringing, the lift action would produce a different
effect (discussed below). The call initiation behaviour is captured by Axiom 3, which
states that under normal conditions (Normcallinit), the lifting act obliges the ex-
change to send a dial tone to the telephone (when combined with Axiom 13). One
possible abnormal situation is if the telephone is not yet hooked up to the network
(Axiom 3a); another, not shown. is if the telephone is broken. Under such situations,
the exchange would not receive the request to make the telephone ready for a call,
and henee no dial tone would be forthcoming. Two further points must be made. The
first concerns MAXRESP. This is the maximum prescribed time for the transmission of
a stimulus or response from the telephone to the exchange; the same amount of time
is postulated for the return trip. A more realistic description, however, might employ
a temporal function that returns for each exchange/telephone pair a maximum value,
perhaps even taking into account such factors as the distance between them. The
second point concerns atomic actions. While the 1ift action is effectively atomic,
the exchange's snd_dialtn onc is probably not. An alternative formulation might

include a function that returns the execution time for any action:
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FUNCTS: timeof: (act) -- time

3 let m = t+MAXRESP
in { K[t]-0ff hook(x) -
— Klm,m+time_of(snd_dialtn)]Perf(ex,snddialtn(x)) },

where the Let construction is just more syntactic sugar (borrowed from VDM). The
other actions performed by the exchange may be treated in a similar fashion.

Having received a dial tone. the user may then dial a number. Again, to simplify
the presentation, the dials action is assumed to be atomic  not really an wnrealistic
assumption, given that many telephones have redial and pre-set number buttons. T'he
dial action obliges the exchange to attempt a connection, provided of course that t he
situation is a normal one (Axiom 4). One possible abnormal situation arises when
the user fails to perform a dial action within the pre-determined MAXDIAL time (A«
iom 4a); when this occurs. a sgnl_timeout event is triggered, causing, the exchange
to terminate the telephone’s dial tone (Axiom 5a) and send it instead a hang up mes
sage (Axioms 5b and 17). These axioms demonstrate how to specily any additional
effects caused by abnormalities- -aside from the usual clipping of causal rules. An
other potential abnormal situation. also not shown in the theory, is dialing a bad or
non-existent telephone number. The exchange’s usual response in such a case is to
send the calling telephone a bad-number message. MAXTRANS in Axiom 5b represents
the maximum prescribed time to transmit (internal) signals between components o
the exchange. Undoubtedly, it is, like MAXRESP. an oversimplification.

When it receives the connection request, the exchauge cuts off the calling tele
phone’s dial tone (Axiom 6). In a moe realistic model, in which the dial action s
composed of a sequence of send-digit actions, the dial tone would bhe cut ofl afte
the first digit had been sent; and a connection would not be attempted until the Tast
digit had been received. In any case, there are two possible outcomes of a conner
tion attempt. The first involves an available callee telephone o it is on-hook and
not currently ringing. Under normal conditions. the connr ct (x,y) action establishes
that x is calling y, and causes the callee telephone to ring. while notifying the calling

telephone of this fact through the ringback tone (Axioms 7, 14 and 13). The caller
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may hang-np the telephone even before receiving any response from the exchange:
however, this results in an abnormal situation (Axiom 7a). The second outcome in-
volves a callee telephone already in use: the exchange notifies the caller by sending it
a busy tone (Axioms 8 and 16). The caller can kill the busy tone by hanging up the
telephone (Axiom 9). (Rather, the hang-up causes a signal to be sent to the exchange,
notifying it of said fact, but this additional complication was left out to simplify the
presentation.) Note that the hang-up also entails (through Axioms 1. 18 and 18a) a
cancellation of the 0ff hook state, which has persisted until now. Thus. it was not
necessary to explicitly include the —0£f _hook effect in the post-condition of Axiom 9
or add an additional rule to indicate that this is a side-effect of Axiom Ta. In a sense,
this can be viewed as a limited tolerance of the ramification problem, and can be
used to advantage in writing the specifications. The only persistence rules shown in
the theory are those for the on-hook. off-hook and dial tone (Axioms 20. 20a and
20b) telephione states: the rest can casily be generated by the method suggested in
Sub-section 6.2.4.

Once a call is in progress, the caller may hang-up before waiting for the connec-
tion to complete or if no-one answers the callee telephone (Axiom 10). . on the
other hand. someone lifts the handset of the callee telephone, then the connection
is established (Axiom 11). Finally. if the caller hangs-up. the connection is severed.
and the callee telephone is sent a dial tone (Axiom 12). The callee may also hang-up
in the middle of a connection, but since in some systems this only has the effect of
suspending, but not terminating. the connection, a separate rule for it was not given.

Let us end the example by exploring the effects of adding a new feature to the
basic POTS service. The feature is call-forwarding busv line (CFBL): if a telephone
has the CFBL feature enabled and receives a call when it is busy. then the call will
be forwarded to another telephone, one that the user has already defined. Obviously.
this new feature will conflict with Axiom 8 concerning the behaviour of reaching a
busy telephone. To incorporate this feature, the following elements and axioms must

be added to the theory:



PREDS: Cfbl_enbl: (tel):

Cf_tone: (tel):
Normcfbl: ():
ACTS: snd_cftn: (tel);
FUNCTS: forward: (tel) — tel:

8a except(Cfbl_enbl (y), Normbusy)
8b K [t](0ff hook(y) V Ringing(y)) A K[t]Cfbl enbl (y)
AK[t]Perf(ex,connect(x,y)) AL{tINormcfbl
— K [t+MAXTRANS] (Perf(ex, snd.cftn(x))
APerf (ex,connect (x,forwvard (y))))
8¢ K [tlPerf (ex,snd_cftn(x)) — K [t+MAXRESP]Cf tone(x).

No axioms in the original theory need to be modified. Axiom 8a clips Axiom K
Axioms 8b and 8¢ define the desired behaviour. In particular, if telephone y has CFBI,
enabled, then the exchange will attempt to comnect x to the telephone indicated by
the forward(y) function, while notifying the caller, via a Cf_tone, that the call is
being forwarded. QOne possible abnormal condition for Axiom 8h is a forwarded call
that results in a loop: the simplest is forward(y) =y, but since a forwarded call may
be forwarded again. the system must check for larger loops as well. Other features.

such as call-waiting. can similarly be added without modifying the original theory 0
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Specification
Languayc:
SORT S

CONSTS:

VARS:

PREDS:

ACTS:

P-0O Telephone Systcm

time. act. agt, tel:

ex: agt:

MAXRESP ,MAXTRANS ,MAXDIAL: time;

t: time;

u: agt; /* telephone users */

x,y: tel:

Perf:
Hooked _up:
0ff hook:
Dialtone:
Ringing:
Ringback:
Busytone:
Hangup msg:
Calling:
Connected:

Normcallinit:

Normdial:
Normcall:
Normresp:
Normbusy:
Norm_on:

Norm_off:

lift:
hang_up:
dials:
connect:

sgnl_timeout:

snd_dialtn:
snd_ringbk:
snd_ringbl:
snd_busytn:
snd_hangup:

t

): /* normal
). /* normal
); /* normal
): /* normal
NV
)
)

* normal

call initiation condition */
dialing condition */

calling condition #*/

phone answer condition */
busy phone condition */

Figure 6.2: POTS Specification: Language Declarations
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Azrioms:

0

1

2

da
da

K[L]-0ff hook{x)

K [t]0ff hook(x) A K[t]Perf (u,hang up(x))
— K[t+1]-0ff hook(x)

K [t]-0ff hook(x) A K[t]Perf(u,lift(x))
— K [t+1]0ff hook(x)

K{[t](~0ff _hook(x) A -Ringing(x)) A K[t]Perf(u,lift{(x))
AL[t]Normcallinit
— K [t+MAXRESP]Perf (ex,snd dialtn(x))
except(—~Hooked.up(x),-Normcallinit)

K[t]lDialtone(x) A K[t]Perf(u,dials(x,y))
AL[t]Normdial
— K [t+MAXRESP]Perf (ex,connect(x,y))
except(Perf (ex,sgnl _timeout(x,MAXDIAL)), -Normdial)
K [t]Perf{ex,sgnl_timeout (x,MAXDIAL))
— K [t+MAXRESP]-Dialtone(x)
K [t]Perf (ex,sgnl_timeout (x,MAXDIAL))
— K [t+MAXTRANS]Perf (ex,snd hangup(x))

K [t]Perf (ex,connect(x,y)) — K[t+MAXRESP] -Dialtone(x)
K {t](-0ff hook(y) A -Ringing(y)) A K[t]JPerf(ex,connect(x,y))
AL[t]Normcall
— I [t+MAXTRANS] (Calling(x,y)
APerf(ex,snd.ringbl(y)) A Perf(ex,snd ringbk(x)))
except(Perf (u,hang up(x)) ,~Normcall)

K [t](0ff _hook(y) V Ringing(y)) A K[t]Perf (ex,connect(x,y))
AL[t]Normbusy
— K [t+MAXTRANS]Perf (ex,snd busytn(x))
K [t]Busytone(x) A K[t]Perf(u,hang up(x))
— K [t+MAXRESP]-Busytone(x)

Figure 6.3: POTS Spedification: Axioms
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10 K([t](Calling(x,y) » Ringback(x)) A K[t]Perf(u,hang up(x))
— K [t+MAXRESP] (-Calling(x,y)
A -Ringing(y) A -Ringback(x))

11 K[t](Calling(x,y) ARinging(y)) A K[t]Perf (u,1ift(y))
AL[t]Normresp
— K [t+MAXRESP] (Connected(x,y)
A ~Calling(x,y) A ~Ringing(y)) A -Ringback(x))

12 KI[t](Connected(x,y) A K[t]Perf(u,hangup(x))
-~ K [t+MAXRESP] (-Connected(x,y) A Perf (ex,snd_dialtn(y)))

13 K([t]Perf(ex,snd.dialtn(x)) — K[t+MAXRESP]Di1altone(x)
11 K[t]Perf(ex,snd.ringbl(x)) — K[t+MAXRESP]Ringing(x)

15 K[t]Perf(ex,snd_ringbk(x)) — K[t+MAXRESP]Ringback(x)
16 K[tlPerf(ex,snd busytn(x)) —- K[t+MAXRESP]Busytone(x)
17 KI[t)Perf(ex,snd hangup(x)) — K[t+MAXRESP]Hangup msg(x)

prrsistenees
18 K[t]0ff hook(x) A L{t]Norm_off — K [t+1]0ff hook(x)
18a K[t]Perf(u,hang.up(x)) — K[t]-Norm off

19 K[t]-0ff hook(x) A L[t]Norm.on — K [t+1]-0ff _hook(x)
190 K[tlPerf(u,lift(x)) — K[t]-Norm_on.

20 K([t]Dialtone(x) A L{t]Normdial — K [t+1]Dialtone(x)
200 K[t]Perf (ex,connect(x,y)) — K[t]-Normdial.
20b K[t]Perf (ex,sgn.timeout(x,MAXDIAL)) — K[t]-Normdial.

End.

Figure 6.1: PO1S Specification: Axioms. continued



Chapter 7

Conclusions and Future

Considerations

The fringed curtains of thine eve advance
And say what thou seest vond.
-Shakespeare. The Tempest. Act 1. Scene 11
The main goal of this thesis has indeed been achieved: AT is a specification fan
guage that is capable of tolerating certain forms of incompleteness in specifications
The positive result. however. was actually an unexpected one, sinee initially it did
not seem possible to reconcile the counter-intuitive nature of non-monotonic logics
with the rigorous requitements of a useful formal specification Tanguage  Though not
perfect—does such a marvel even exist?  the method manifests some very nice prop
erties. Particularly promising is the possibility of applying its undetlying principles
to other object languages. This. the final. chapter of the thesis takes stock of whiat
has been accomplished. It briefly summarizes and evalnates the steps and key points
in the development of the ideas. compiles the features and weaknesses of the method,

and suggests areas of further study.

7.1 Summary of Thesis

Any serious rescarch effort rarely achieves its goals in a straightforward manner (of

[33]). Only in retrospect can an intuitively direct path be discerned: dunng the
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research, however. one flits from one promising avenue to another. often finding a
cil-de-sac at the other end. This thesis is no exception: the development of the ideas
are presented in a fairly sensible sequence, but many of them were explored in a
very different order. Nevertheless, the most direct. though illusory. path represents
perhaps the best way to explain the ideas.

‘The original goal was essentially arrive at a useful definition of incompleteness
in specification, and to propose a formal method for handling or tolerating it. The
method would be used to specify real-time concurrent systems.

'The research began with an examination of the notions. both formal and informal.
of inc mpleteness in specifications. Some weakened notions were also considered. The
obvious. though hardly illuminating. conclusions were that incomplete specifications
basically lack information and that complete specifications are virtually impossible. if
not inadvisable, to attain. The practical definition was in the form of a classification of
incompleteness based on the potential sources of incompleteness. It served its purpose
quite well allowing us to identify those sources that can be eliminated. those that can
be minimized, and those that are unavoidable. It also allowed us to select the class
of partial specifications, which consists of three distinct problems—the qualification.
frame and ramification problems-—as the focus of the method. Partial specification
was chosen for the [ollowing reasons: it is a fairly common source of incompleteness:
it presents a non-trivial challenge. particularly for the specification of concurrent
systems; and dealing with the qualification. frame and ramification problems poses
too great a burden on the specifier. Specifyving everything. as is required by traditional
specification languages, is neither a practical nor a correct approach for dealing with
this source of incompleteness. Instead. a method is needed that can tolerate it. To
properly deal with partial specification. the language would have to capture the notion
that “all the relevant facts have been explicitly mentioned.”

Such a notion also happens to appear in the field of common-sense reasoning in Al
Moreover, the qualification. frame and ramification problems also crop up in a related
ficld: in temporal reasoning and the temporal projection problem in Al What they all
have m common is the problem of having to deal with incomplete information. This

observation then led to the idea of applying the techniques used in Al which deal with
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incomplete information to the problem of partial specification. Three very common
non-monotonic logics were studied - default. autoepistemic and circumsceription  but
none were decmed suitable for the formal basis of the language. Their two main
drawbacks are difficulty in determining the consequences of a theory and weah o
multiple extensions. Furthermore, they are inherently incapable of handling the tem
poral projection problem. There exist, however. other non-monotonic formalisms that
can handle this problem. most of which employ a chronological minimality criterion
on the models of the theory.

This led to a search of the various methods capable of capturing this critetion,
and of these. Shoham's logic of chronological ignorance and the general approach
of semantical non-monotonicity were chosen. Their main advantages over the rest
include a general semantical framework. no dependency on a sequential (and atomic
action) representation language, and a simple and efficient means of computing the
consequences of a theory. Nevertheless, the logic has a number of shortcomings: it
was not designed as a specification language, it is propositional, employs 1eification,
does not deal with actions explicitly. nor handles the frame problem in a simple
manner. All of these problems were addressed by the specification langnage NAT

and its formal bases kIFOTHK and AFOC'].

7.2 Features of hAT

Despite its non-standard semantics and epistemic modalities, KAT is fairly intuitive
both for expressing system behaviour and to use, as the examples have evineed. Tts

key features are the following:

o It has a well-defined syntax and semantics. and a method for determining what

is semantically entailed by a theory:

syntax the syntax is that of KFOTK a first-order. many-sorted, non reified.
modal logic of temporal knowledge  whose sentences are restricted to those
prescribed by p-causal theories: 1t has three pre-defined sorts: time. action

and agent:
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semantics the semantics is that of FOCL a non-monotonic preference logic

of kIFOTK employing a chronological ignorance criterion; and

inference mechanism the inferences of a p-causal theory are derived by de-

termining the theory’s emi models.

Specifications in AAT are p-causal theories, which enjoy some nice properties:

they are consistent and each hes a unique class of preferred models.

Normal p-causal theories, which are made up of normal form causal and per-
sistence rules and their exceptions. are readily modifiable: most changes to the

theory will be merely additions. while the original theory is left intact.
Properly instantiated p-causal theories are potentially executable.

It permits the specification of three types of information for the system: static

imformation. action descriptions and dynamic behaviour.
It can handle the qualification and frame problems.

It can be used for the specification of reactive systems, including concurrent

systems. without having to resort to atomic actions.

questionable aspects include the following:

It is a non-standard formalism employing non-intuitive modalities, making it
perhaps difficult to learn and use; given industry’s reluctance to use even tra-

ditional formal methods. the chances of KAT being used are slim.

The nse of epistemic modalities in causal reasoning is perhaps philosophically

dubious.

The use of explicit time intervals, together with the general rule-and-exception
framework, may not capture the fundamental nature of the system; implemen-

tation bias may result from this.

[ts effective use in the specification of real-time and/or concurrent systems has

not really been established.
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Given that NAT, a non-monotonic specification languiage. is unigue, there do not exist
precedents with which to compare it. One that remotely applies is WATSON [36)
WATSON is an automatic programming system that uses a weak 2-tense temporal
logic for describing process behaviour and a closed-world assumption over a knowledge
base. A simple non-monotonicity arises from the latter, but its developers view this
as a nuisance, a by-product of the theorem prover’s reasoning mechanism. It is not
used. for example, to allow non-monotonic changes to the theory.  As was stated
in Sub-section 4.2.4. it is not difficult to attain non-monotonicity computationally.
of which WATSON is another example. KNAT, however, achieves non-monotonicity

through the language itself (the semantics), and uses it for different reasons.

7.3 TFuture Considerations

There are a number of possible avenues to pursuc. The first one deals with the
language itsell. How can it be made casier to use? A set of guidelines. for example,
on how tu use the modalities would be quite helpful.  How much information s
required to achieve partial completeness? Can such a notion even be defined? Cau
the ramification problem he addressed within the same framework? What other
forms of incompleteness can be addressed? Are there other causal theories with nice
properties? Can a more expressive language be defined? Is it possible to define at
least a rudimentary proof theory for the language? IFrom a more practical .ide. an
interpreter for the language is needed. In this regard. one may try to adapt Shonam’s
algorithm [68], or perhaps use a logic programming language [63]. A more interesting
option, however, would be a specification environment built around the language: in
addition to providing an interpreter and editor, it could have a consistency checker.

Another avenue is to apply the notion of semantical non-monotonicity to othe
object languages. Addressing one of the drawbacks above. perhaps the choice would
be for a logic that did not use time explicitly. Of course. this would require a different
preference criterion than chronological ignorance. This. in turn, suggests explonng
different criteria. What types are suitable for a spedification langnage? And. wonld

a specification formalism intended for reactive systems necessarily have a diffeyent
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criterion from one intended for simple data processing systems? Further speculation
might involve the types of languages that can be used. The approach, unfortunately.
tequires a model-based semantics. How much can this be relaxed? Can, for exam-
ple, process algebras be used? It does not seem likely, unless (say) CCS trees can
be viewed as maodels for a higher level specification language (¢f. [31]). Still another
possible option is to attempt to define a specification language based around sonie en-
tirely different non-monotonic formalism. Possible candidates include any formalism
capable of handling the temporal projection problem.

One final avenue concerns mapping the specifications in KAT to other languages:
specifically, to concurrency modeling ones. Given the formus of the sentences aliowed
in KA, and the way actions are defined in them. it seems that the best match would
he with a partial order formalism [62]. Both can describe partial orders of actions. but
not nondeterministic choice (except where it appears as a set of alternate behaviours).
One possible benefit of such a mapping (and the one to C'CS above) is that it might
allow us to preview the potential effects that changing requirements (as seen through
changes to NAT specifications) have on the implementations, descriptions written in
these (operational) concurrenc;: formalisms being considered lower level descriptions
of the system.

Breaking new ground invariably unearths a wealth of new research possibilities; in
such cases, one is usually prompted to declare (humbly) that further study is clearly

warranted. Make it so...

LIS
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