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In this thesis, the mapping of non*binary codes defined over
. * \. . .
GF(Z'T') into bimary codes islt‘udi‘ed and a binary coding scheme s

derived that can be used to provide additional error—pro'tection' from : f

»

-
g e i e ke

parity. The emphasis here is on high rate codes. -

A closed form decoding algorithm is given for the cases when

two or tﬁ.ree parity bytes are added to-every block of k information, ¢

-

bytes. An erasure is defined in the context of such systems. The ®

decoding algorithm makes use of the parity bit that is_present in every
% + -

received byte. ' \

Finally, the statistical performance- of the coding scheme is

symmetric channel model’s . ‘iﬁ)r the non-binary symmetric channel, the’
Hamming weight ‘distribution of the code is used fo compute the prob-
ability of various post decodjng events. The complete weight enumera-
tor of the dual code and MacWillijams théorem are utilized €or evdlu- ~

ating the performance on the binary symmetric channel.
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CHAPTER 1

T ntroduction

.

In this thésis, a coding scheme is presented for appHcaﬁon to.' .

even parity byte-oriented infor"mation systems (for example, data i}n ASC-
IT1 format, Telidon Broadcast System). In such systems, the information

' consists of k information bytes by, bj...-, b . where each b, consists

K g T R T

of eight bits of even parity (although a similar analysis can be per-

formed for odd parity). The constraints in encoding such information are-

'
L e iy g

"(1) The parity bit in each information byte cannot be altered, i.e., the
encoding must be systematic,
(2) The number of overall parity bits used must be a multiple of 8 and

(3) The rate of the code should be high.

DYPROSTREY

It should be embhasized that if the parity bits in the infor-

“mation bytes are allowed to be recomputed in a manner up to the system
desi.gner‘ then the coding problem reduces to the standard coding pfoblem %
and the designer can use any one of the available error correcting codes ' |
such as the BCH codes [ 1]. Since the parity bit is not to be changed, :
the overall performance of the coding scheme will dgpend on its use of

these added parity bits in the error control process. L

Readers npt familiar with the theory of error correcting codes
may find references [ 2], [3 ] and [ 4] useful. ,'.\ cc{mprehensj vf&cover—
~.age of algebraic coding theory and of the relative interfaces between
algebraic coding theory and surrounding areas is contained in reference

s

" [5]. -Also the theory of rings and finite fields is not discussed here

VI S T TR L R R A

and the reader is referred to [3] for it. ‘
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In this chapter, 1ifiedr block codes and other relevant topics:

are discussed‘tzrieﬁ} and the plan of the thesis is descrijbed. -

-

1.1 Linear Block Codes

4 N » \
Let g denote the number of distinct symbols used on the chan-
nel. A block code is a set of M sequences of channel symbols of length
n. These g-ary n-tuples aré called the code words of the code. The

number of code words is taken to be a power of g, i.e. M =qk.

The set of all n-tuples with entries chosen 'fr‘-om?:he field of
q elements is-.a vector 'space. A set of these" ve’ctor—s of ‘1ength n is k
called a Tlinear block code if and only if it is a subspace of the vector
space of n—tup:l‘es. If the dimensiéan of the subspace is k, then such a

code is called an (n,k) code".

The Hamming distance between two vectors i and ) is defined
to be' the number of positions in which the two vectors differ._ The
Hamming weight of a vector v, denoted by w(v), is defined to be the num-
ber of non-zero components of v. Thus Hamming distance between two

vectors V1 and v, is w(v] -v2.).

If q and c, are both code words of a°1inear block code, then
Cq - ¢, must also be a code word, since the set .of all code words is a
vector space. Therefore, the distance be‘tween any two code wc’)‘r“ds equals
the weight of some other code word and the minimum distance d for a

1inear code equals the minimum weight of its non-zero vectors.

1.2 Cyclic Codes

A subspace V of n-tuples is called a cyclic subspace or a

cyclic code if for each vector c= (cO,E:l,. -+» Ca_7) in V, the vector ;

R

™ " TN AN R
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¢ (cn_1, €y C]""’.Cn—Z) obtained by shifting the components of,c
cyclically one unit to the right is also in V. We will represent the

components of a code vector as coefficients of a polynomial as follows

cL= (C6’°1’---"Cn-1) - .

R

1.2,1)
- n=l ( '
c(X) = c0+c]X+ +cn-1x

2 " i 4

1.2.1 Generator Polynomial

Let g(X)=gb-+g1xi----+gr_]xr'1
nomial of minimum degree in the (n,k) cyclic code. It can be shown that
r=n-k and a polynomial c(X) of degree n-1 or less iS a code polynomial

if and only if c(X) is a multiple of g(X).

The' poJynomial g(X) 1s ealled the generator polynomial of the

cyclic code. Thus every tode polynomia] c(X} in an (n,k) tyclic code can

‘ . o .
be expressed as: “WM .
v . ¢ ‘

O S IR S 0.2.2)
‘ ' 0 M k-1 g .

d . ) M ' 8

jwheretm(x) is the polynomiai correquhding to the k inforgation dig?ts_'

(mo,m1,..., ka1)'

.

1.2.2 Minimum Pqlynomial

Let « be an arbitrarydlement of the Galois field GF(Zm). -

-

The monic]

polynomié] m(X) ef/smallest degree with binary ceefficients
\ )

such that m(a) =0, is call tﬁe\minimum polynomial of a. The minimum

t

r L]

polynomial of "o is irredyé'b]e.

Ly polynomiat is called monic if the coefficient of ‘the highest power
of X is 1. » ' ' -, ’

. R
.

P - tors o f N .

-+Xr be a nan-zero code .poly-

EL e
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1.2.3 BCH Codes -

Let o .be an element of GF(p™). For any spécified m, and dO’

the code generated by g(X) is a BCH code if and only if g(X) is the ‘paly-
: mo m0+1 m0+d0-2 as
nomial of lowest degree over GF(p) having a ~, « seees @

its roots. The length of the code is the least common multipie of the
orders of the roots. The minimum distance of the code is at least d0

and dO is called the designed distance [ 3]. The most fmportant BCH

codes are the binary codes obtained by-letting o be a primitive element
m . _ - - )
of GE(2") ptfd letting my =1 and d0 2t0+1. Tgi generator po]ynonng] of
0

‘ / .
the t, error correcting code has a,az,..., a as its roots and is - ~

0
given by P ‘ 4

3(X) = LOM(m, (X)s my(%),.... e () (1.2.3). -

However, every even power of o is a root of the same minimum

»

function as some’previous odd power of a. Thus the: generator polynomial o

of the code is

A

g(X) = LOM(m (X), my(X),..., Myt g O0) (1.2.4)
Y

As the degree of each minimum polynomial is m or ]e%s, the . degree of
g(X) is_at most mtO and the code has at most mto,parity checks. Hence

such a code has the following parameters.

Block length: “ono= 2™
¥ Number of parity check bits: n-k < mt, - {1.2.5)
Minimum distance: d 3.2t0+1'\ '

» %
This code is capab]e/of correcting any combination of tO or

4

. ’ sl
fewer errors in a block of n =2m-1‘bits. x

<
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* Thus the length of the coﬁe is the number pf non-zero elements in the

_ syitable dimension k cannot be found, it 1is natura]Jto look for linear

g s

. ‘ - 5 -
1.2.4 Reed-Solomon Codes [6] : ' .

PO

A Reed-Solomon code; is a BCH code of length n=g-1 over GF(q), o

whege d =pm and p is a prime number. Of course, q is never equal to 2.

v

ground field. ‘ o o -

The generator polynomial for such a code has a,az,..., a6-1 as
\

its roots for the minimum distance to\be §. Since the minimal polynomial
of a' is m(1)(X)= (X-—a‘), a RS code of length g-1 and designed distance

§ has generator polynomial

S . i

g(X) = (X-a)(X-a2)".. (x-a®7T). : (1.2.6)

As the degree of g(X) is é-1,the RS code generated by g(X). has

i:

the -following parameters ' . . %
, $
Block length: . N =g-1 symbols %

Number of parity symbols: n-k = §-1 (1.2.7) i

: " , e.

Minimum distance: d=28§" i

. Since d =n-k+1 for RS codes, these codes are called "maximum

distance separable". ‘ - ;

1.3 Shortened Cyclic Codes

“

‘In. system design, if a code of suitable b]ock\]ength n or

codes that, though actually not cyclic, share the mathematical strui}ure i
and ease of implementation of cyclic codes. A technique for shortening

a cyclic code is described: in the following. : -

Given an (n,k) linear code, it is always possible to form an
el .

(n-i,Kk-1) linear code by making the i leading information symbold
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¢

Jdentically 0 and omit them from all code vectors. TJhis corﬁesponds to

omitting the first .i rows and columns of the generator matrix or the
first i columns from the parity check matrix. The resulting code is

called a shortened code and in general, is not cyclic. Y

’

R { ’
A shortened code has at least the same error-correcting capa-
¢

bility as the code f}om which it is derived. .

i

1.4 P]ap 0f The Thesis

The thesis is divided into six chapters and a very brief

description of these chapters is as follows.

In chapter 2, the encoding>scheme is descriped for the byte
oriented information systems. The generator matrix is obtained in sys-
tematic form for the va]ueé of d equal to 3 and 4. The encoding pro-

cedure is analysed for system implementation.

’ * I
_In chapter 3, the decoding a1gor1thm is discussed. A simpli-

fied closed fgﬂm decoding algor1thm is g1ven by Séguin [7 ] for d equal

to 3. It has been further extended to the case of equal to 4. The

decoding algofithm makes use of the parity bit that is present in every.
i

information and parity bytes.

. In chapter 4, expressions are derived.for the statistical
performanceé of the coding scheme over the g-ary symmetric channel for d
equal to 3 and 4. These expressions are evaluated using the computer

for different values of channel symbol error rate. :

‘In chapter 5, the performance of the code is ané]ysed on a
binary symmetric channel model for d equa1‘to 3. The expressions, for

the probability of various post decoder events, are derived in terms of

<

e N
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the complete wejght enumerator of the dual code which is generated on .

the compufef. .

h '

s . Chapter 6 is the summary and conclusion. - )
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" CHAPTER 2 ' T y

A Coding Scheme for Byte-Oriénted Informatiqn Systems

A}

This chapter describes a coding scheme that can be used very

effect1ve1y to correct both random as we]] as burst errors. All the
bytes in a code word computed on the basisiof the information pytes, havé
even parity. The procedure for obtaining binary generator matrices in
systematic form is explained and a method Fo 1mp1emenf the encodfﬁg '

[

is discussed briefly. P

2.1 Mapping GF(2™) Codes into Binary Codes

We know that GF(pm) is a vector space of dimension m over.

GF(p). Therefore, any set of m linearly indzbendent elements can be

used as a basis for this vector space [1]. ?
]

‘ Let Eyseees By be a basis for GF(pm) over GF(p). Then if
is any element of GF(pm), bieGF(p), we map 8 into (b],bz,

3
1
bm). This mapping sends linear codes into linear codes (but cyclic )

codes may not map into cyc]iE codes).

Usually 1,a,..., um-] is chosen to be the basis with a7~being

represented as an m-tuple with only its (i+l)th or (m-i)th element as 1

and all other elements to be 0. With this basis, the e]ementslof GF(pm)
{,
can be represented as m-tuples of elements from GF(p). Hence an (n,k,d)

™
b =mk, d, >d) code over

apping.

RS code defined over GF(pm) becomes an (nb =mn,

GF(p). If P=2, we get binary codes- from this

Let ¢ =(c0,c],..., c _1) belong to an/ (n,k,d) RS code over

GF(2™). If each of c; is repjaced by a binar} m-tuple according to the
mabping given above and an

then the resu]ting.biniiy/code has the following parameters,

B A




{
H
£

Ve

N .
- P
f‘ o
. 3 . ;
[ ] = 9 - %\‘ﬁ
n, = (m+1)(2"-1) - —
kb = mk 4 . ' c(2.1.1) -
\ &« o . s
dy 2 22"-k) ¢
mfanyk=1,n-f2m12- - \
. ; - -

[ 4

2.2 Encoding Scheme

a

For the type of information systems being considered here, the

information is byte structured with edéh.byte having an overall parity |

. bit. Therefore, there are~]28 (=ZZ) different vaihes that any informa-

tion byte can take.

r

It can be readily observed that all the 8-tuple§ having even

number of ones form a vector space of dimension 7..1Aga§§ king 1,a,...,
u6 as the basis ‘and representing. them as, .

- 1= (1,0,0,0,0,0,0,1) )
= (1,0,0,0,0,0,1,0) .
: « = (1,0,0,0,0,1,0,0) ' ‘
o3 = (1,0,0,0,1,0,0,0) o | | | (2.2.1)
"ot = (1,0,0,1,0,0,0,0). \
e = (1,0,1,0,0,0,0,0)
28 = (1,1,0,0,0,0,0,0) ' .

s

- M q
it can be shown that all the eVen parity 8-tuples can be represented as

elements of GF(27)

Hence let us define a RS code over‘GF(27) for such an informa-

tion system. This code has the fo]!owiné parameters

P e




W:ow ———

o =10 - ,
n =127 ‘ _ *
v k=n-s+] | L (2.2.2)
. d=s ' .

Each’ symbo1 ¢; in a code word obtained.as a result of this

[
encoding 1s written as c =‘b0u0+b]a +oe +b6a6, bjeGF(Z) and the corre-

. .

J

sponding even parity 8-tuple is obtained by replacing «° by its 8-tuple ‘

répresentation defined by Equation (2.2.1). . . .'j

Thus we have been able to 1ntrodﬁce redundancy into eéch of the

“bytes that are transmitted: The parameters of the resulting binary code

are
nb = §-127 ‘ ,
kb = 7.k - ) (2:?:3) -
db > 2(128 -k).

The code length and its dimensions can be shortened and the

encodér can be put in the systematic form so as to.match with the,overall

" system requirements. A generator matrix can be obtained in the system-

“atic form for the above RS code [3] and it is of the form -

-

G =[P, I] ————

ES
~

where I is she kxk identity matrix and .P is kx (n-k) matrix. If m

" represents the information vector, then the encoded vector is of the fbrm

v

¢ = [wp, nl.

g The field GF(27) may be generated by the recursion
7 3

e o= 1 +a™,
where « is a primitive efement of GF(27). Using this recursion and the

basis defined by Equation (2:2.1), the complete table of GFQ27) is

- ) -
~
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generated and is given’ih appendix A.

. . T

The complete encoding procedure can be describééin the follow-
b ing ihfee'steps : - '

1. RepreSént~ea41L<if the even pafiﬁy informafion bytes as e]émeqts of
(GF(27). ' ‘ :

2. ‘Take k of these symbols and enggde it using the RS code de%ined over

GF(27) to get a code vector of length n.

3. Replace each one of the n symbols in the code word by its correspond-
'ﬁng 8-tuple-binary representation as explained above. Note that all thé

8-tuples have even parity.

A binary generator mgtrii of size kb xn, can be obtajned in
- systematic form/{gy the above described encoding procedure. This is

further illustrated for case of d equal to é and 4.

., Since in many system apptications, only codes of high rate can

be considered, the two cases of d equal to 3 and 4 are of greater prac-
“

tical interest and, therefore, we will analyse these in detail. '

N -
~

2.3 Coding for d Equal to 3 &P \ /

—s._ The génerator polynomial of a RS\Ebde defined over GF(27) and

L4

. having a minimum distance d =3, is

(X +a) (X +a°)

g(X)

X2 +a‘32X +a3. én

This polynomial generates a RS code of length 127. Let us
assume that the code is to be shortened to k equal to 25. We do this
in order to make the analysis more relevant for the signal formats

described in [7] for Canadian Telidon System. Hence the shortened RS

o

-

—— P Lot o o

[T VRSN S L SR
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, code has the following parameters

/ . .m=27. , ‘
" ' /_,\ . , .~ . 7 ‘ B
k = 25 o (2.3.1)
: | \4 d= 3 ’
The generator matrix G in systematic form for this code-is as
) ' A ' y
- follows. . . /
_\3\ L. ; i =
W G® 1 0 0 o .. 0o
c‘35 a'IOS 0 0
o‘108 0L96 0 0o
99 55
Q o >
SN a58§ alls
118 105
. V] o
v~ \ 0‘108 o‘97 .
" n foo 21
. Qa a Py
24 15 .
o ] CQa
‘18 13
Q a -
16 8
o a
o~ a]] (172 ’ -
G = a75 c‘1‘15
, ' 116 46 - - =
Q o
0‘49 cl99 p ,
102 54
a [+ ]
) . 57 74
o \ o ]
77 93
[s 3 o
u96 a62
) (;65 a29 ‘
32 58
o
61 107
a [+3
‘,mno 0‘48_ )
a51 a79 2 " 1 0
P . u82 cv.49 g 0 A 0 I_J
i
i - ) (2.3.2)
: ) \’l .
— — - . -/, PO "
s “ o

»
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After mabping the above code into the binary code according to

It

‘the epcoding procedure described in section (2.2), we get a binary code

having the following ﬁarameter§

tr

216
175 - . L 42.3.3)
6. - : - ' ‘//

>
L]

b2

In order for this mapping of the RS code into thé binary code
to be complete, we should obtain the correspondingugénerator matrix

[l

haying only binary elements. ' .

It can be shown that the multiplication between a; and a,,

f&},a2<EGF(pm) can be performed as a matrix mu1§ip1ication\of the form

/ L
_ . /- o
é]XB-QZV‘J

where

CY represents a, as m'-tuple of elements from aF(p), m' >m,
B ism'xm' matrix of elements from GF(p) determined-uniquely

from ey and . ¢

v

® a, represents the prbduct oqa, aS an m'-tuple of elements from

GF(p)\-D M 1

Example (2.3.1) )

In our.case
pp=2,m=7,m =28

and for the basis defined by Equation (2.2.1), the multiplication by

a=(1000001 O)EGF(27) can be performed by taking B as
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000,000 00
. 4 10 0) 0-1 0 0 1
1 1000000
1001 0000 .
1 0001000
< : | 10000 1,00
L L 1 000 0O0T1O0 ]
Generalizing the multiplication procédure, it can be shown that
5;’;?‘ thé binary matrix that corresponds to a multiplication by an element o' ,(
e .
i is given by i s
" - -W : ~ @ " -
Lo ~ |
Disg
by
3 7
4 b, , :
B = —1+4 . (2-3-5) .
bi+3 Yy Y
. “Bi4p N
' b. " : t
'S =i+] , " E
b' ~ ¥ . 1
A L oy
, where each df 91‘""’ 91‘+6 is a binary 8-tuple corresponding to cz],,...,
. s o ai+6 respectively and 0 is the all '0 8-tuple. ’
. Hence the binary -generator gatrix can be obtained by replq,cing,
~, each element of the generator matrix G given in Equation (2.3.2) by its

0

e

h

correspoﬁding 8 x8 binary matrix as described above.

"2.4 Coding for d Equal to 4

The generator po]ynbmia] ‘of the RS code for d equal to 4 is

-~ given by - r
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9(X) = (X+a)(X+a2)(X +ad)

oo _ y3, . 104
= o

x3 441082, 106

5

X X+a .

» This polynomial generates a RS code of length 127. As was
explained in section (2.3), let the code be shortened to k = 25. Hence
.

the 'shortened code has the following péﬁameters

n =28 i
k =25 7 2aa)
d=4 - ‘ '

The generator matrix G in systematic form for this code is .

as follows

o




S s e g

f

6 . 106
a a
110
[o a
46 32
a
122 82
[s 3 a
13 30
a a
62 81 .
[o 3 ¢ 3
43 21
a a
85 106
s a
2 - 27
a Q
120 15
e a .
112 76
[0 ] [s 3
43 "\ ‘113
[o a
22 197
[» 4 “ [s 3
1228 75
o 3 a
. 105 87
[s } a
112 32
a a
86 5
o a
<124 120
[» 3 a
11 105
[s 3 a
46 102
[o 3 o)
41 114
a a
118 16
a a
107 38
(o 3 a
78 75
a a "
78 .47
[o } a

- 16 -

104
40
116

-
g @ g o p a at
~N WO~

O N O

123
114
106
37

—]
(2]

116

O
O

106 °

[o]
o

118
105

w o
o O

112
101

~N N
N N

Q‘QQQQQQQQQQQQQQQQ

104

Q

pENSY

. -0

1 0

.
o—

(2.4.2)

After mapping the appve'codé into a binary code according to the encoding

- - following parameters

f‘ A

'nb=

; Ky =

§ ' d,. >
: d o b
b

4 \1

1 fhapme I AFIRIN s S Lt il b TR A 3 e

224

175"
> 8.

procedure described in section (2.2), we get a binary code haQing the,

v

-
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The binary generator matrix correéponding to the generator matrix given

above can be calculated according to the procedure described in section

-

(2.3). : - \

o

2.5 Encoding , :

v

There are two.methods for engoding linear cyé1ic codes -~ the

‘serial shift register method and the parallel matrix method.

Let m(X) be a message po]ynomih] with k symbdﬂg encoded into”
a code polynomial ¢(X) with n symbols. In-the serial shift register
method, encoding in systematic form is done by dividing Xn'km(x) by g(X)

" and appendinguthe remainder r{X) to X”'km(X).‘ Thus

~

c(X) = r(x) +X"¥n(x) = a(x) 9(x) \ (2.5.1)

where g(X) is the quotient. It indicateé that [r(X)i+Xn'km(X)] 1s é'

multiple of g(X), and,.therefore,‘is a code polynomial generated by g(X).

The code word generated is given by

(FgaPss s Py MoaMysesos M)

5
®

. parity check’ L
- < symbols | |* message symbols .
P . . y A
and the most significant symbol of the meS§a§é, Me-1 is sent first.
4

- Equation (2.5.1) can be imp]emenféd by a dividing circuit,

2
S

which is (n-k)-stage shift register with.fee@back connections actordind

to the generator polynomial. The feedback multipliers go,g],..:, In-k-1
. .
are coefficients of the generator. polynomial
L :

g(X) = (X—a)ﬁ(X-az)

PRSP I

o

+
i
i
K
1
'
t
i
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An encoding circuit with an (n-k)-stage shift register is

+ Shown jn\Figure (2.1). _In our case, each r; register stage is a 8-tuple

. shift regi ster. ‘f’he encoding is accomplished as follows. With gate-

o

.
turned on, k information symbols are shifted into the encoder and simul-

L ’

taneously sent into the comrhuni:catfon éhannq}. .Then the.gate is turned
off-and the contents of the shift register are shifted out to the chan-

nel.

Figure (2.2) shows the (n-k)-stage shift register encoding

¢ircuit for the minimum -distance d, of the encoding scheme-to be 3 and 4.

The parallel matrix method is more complex as compared to the

2 -
serial method and is not described here. A binary generator matrix can

be obtained for the coding scheme using the procedute given in section

(2.3} and then encoding can he performed using this method. The reader

Lag

, is referred to [8] where the parallel matrix method is usea to design

x
and construct a (75,50) forward error corrécting codec.

7
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CHAPTER 3

The Decoding Algors thm

. /
Fo;' the co;ling scheme described 1in chapter 2, all the bytes of
any given code vec;tor have even parity. To make use of this inherent
redundancy in the code vector bytes, the ‘decoder first verifies the’
parity in the received bytes Fgely seees "n-1’ If any of them dp not
check out then tﬁere is a detectable error (though the value of the error
is not known) in that position. Such a position is termed as an "era-
sure" . The advantage of this becomes readily apparent by noting that a
Ré code with minimum distance d can correct t errors and s erasures
provided

2t + 5 < d.

Hence the amount of redundancy required to correct an erasure

-is only half of that required to correct an error.

The Berlekamp-Massey decoding algorithm described in [5] can

be used to correct the simultaneous occurrenceof errors and erasures. :
The frequency domain decoding algorithm and the computational complexity
associated with them has been discussed in [7] and it s shown that it

is more promising to implement the transform technique for decoding era-

> s
sures and~er~rors of RS codes as compared to the time domain technique.

The transform computations are independent of code rate and, therefore,

the transform decoder is most efficient for low *te codes.

A

As the main emphasis in this thesis work is on high rate codes,
a-closed form decoding algom’thm‘ is described below for the minimum dis-
tance d of the code equal to 3 and 4. The decoding al gorithm for d .

equal to3 is given by Séguin [7 ] and here, it is extended to the case

LT L TR s " SR PRWRTS S

i
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of d equal to 4. This algorithm makes use of the parify bit present in

every received byte.

»

3.1 A Closed Form Decodi)Lq Algorithm for d Equal to 3

For the encoding scheme Liven in section (2.3), the minimum
distance of the °code is 3 and, therefore, it can correct t errors-and
s erasures if

2t + s <3 . : (3.1.1)

It is clear from Equation (3.1.1) that the received vector is
correctly decoded to the transmitted code word, iff
(a) s<2,t=0, i.e. a maximum of two erasures and no error takes place.

(b) t<1, s=0, i.e. a maximum of one error and no erasure takes place.

Thus , the following decoding procedure 1is viable for such an

. L
encoding scheme.

(i) Two Detectable Errors in the Received Bytes

Let the error polynomial be

\ e(X) =eXx' + erj . (3.1.2)
where ei,eje GF(27) and 1<i <j and let r(X) be the received polynomial,
i.e. |

r(X) =c(X) +e(X) : o (3.1.3)

where c(X) is the transmitted code vector. Then the two syndromes S]

¢

ang 52 are given by

5; = rla) = + el

1
[
=3
+
@

(3.1.4)
S

~~
i
D
2
+
[1°]
R

2=Y‘(a

N
N\

- >and the values of i and j are known from the parity bits associated

R T rp—
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with the bytes in positions i+1 and j+1. We then have

(e; e:) 3 25 = (Sy Sp) ‘ | (3.1.5)

23 21
1 i : (3.1.6)
A uJ a1 o
where A = aHZj +a21+j.
Multiplying both sides of Equation (3.1.5) by (3.1.6), we obtain
S]azj + Szuj
ey = ———t— (3.1.7)
S]a?i + Szai ) .
- ej B S . (3]8)

1Y

' . Hence the errors in positions i and j are. determined by

Equations (3.1.7) and (3.1.8) respectively.

(ii) A Single Detectable Error in the Received Bytes
' Suppose there is a detectable error in position i, then the
error polynomial is given by |
.i

e(X) = eX' - -

where eiEGF(27) and the syndromes S] and 52 are

S]v= r(a) -ai

= e"
_ (3.1.9)
32 = Y‘((lz) = e.iQZ.l
The value of i 1is known. Thus, -

S




R o i

~24 - . ' :

o -1 ' )
) e; = aq 51. . ‘ (3.1.10)
Also it can be observed. that
i ¥
LY : 52 = a S1. (3.1.11)
( . !
The Equation (3.1.10) can be used to calculate the value of the error at ‘ 3
position 1. #
.(i1i) A Single Byte in Error
If there is a sind]e byte in error, then the ef?gr polynomial °
is given by . .
- )
e(X) = eiX )
- 1 )
where eieGF(2'7) and i is not known. 3
The two syndromes'51 and S2 are calculated as
, : L
S-I = T'(a) = e_id.i . .
(3.1.12)
' 52 = Y‘(az) = eia21 - !
Solving Equation (3.1.12) for the value of e; and i, we get 3
' 2
‘ (3.1.13) T
i -1 ‘ 3
a 52 S-| . §
. -
~ i 1
A Took up table of (i,a') can be used to determine 1. %
Hence, the decoding algorithm for the .coding scheme presented i
in section (2.3) can be described as follaws "
14

Step I : Check the parity of each of the received bytes.
If they }ll'check, go to II

If exactly one does not check, go to III

L 4

&
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If exactly two do not check, go to IV
If more than two do not check, declare a decoding f.aﬂure.

Proceed to next frame. .

L 4
Step IT : Represent all the bytes as elements ‘of GF(27) and compute the

syndromes S1 = r{a) and Sz=r(a2).
If both /ar;a 0, assume r(X) is error free.
/,.jl/ﬁ’/b‘oth are nonzero, assume a single symbol in error and
. decode it using the procedure (iii) described above.

If exactly one is 0, declare a decéding failure. ‘Proceed to

next frame.

Step III: Compute the syndromes. Check for Equation (3.1.11). " If it is-
" satisfied, decode it using procedure (ii) given above.
If Equation (3.1.11) is not satisfied, declare a decoding

failure. Proceed to next frame.

Step IV : Assume exactly two symbols in error and correct them using

procedure (i) described above. Proceed to next frame.

\

.The above decoding algorithm ensures that a decoded code word
has bytes that have even parity only. The complete decoding algorithm

~

is given by the flowchart in Figure (3.1).

3.2° A (losed Form Decoding Algorithm for d Equal to 4 .

The encoding scheme and the generator matrix for d equal to

4 are given in section (3.4). It can correct t errors and s erasures

et g

2t +s <-4 . , €3.2.1)
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Thus a received vector is«co};recﬂ_y'decoded to the transmitted

" code word if one of the following combinations of errors and erasures
takes place

a) No.erasure, no error (2t +s=0)

b) One erasure, no error (2t +s=1)

(
(
(
- (
(
(

c) Two erasures, no error (2t+s=2) - "
d) Three erasures, no error (2t +s=3)

(e) One error, no erasure (2t +s=2) ' o ~
f) One error, one erasure (2t+s=3).

A simplified decoding procedure described below is viable for

such a coding scheme

(i) A Single Detectable Error in the Received éytes

Let there be a detectable error in position 1:, then the error

pofynomial is | . ‘

i-

e(X) = e;X
where eieGF(é7). The syndromes S1 and S‘é and S3 are /given by
’S.l = r(a) = e,ia1 ,
S, = r(a’) = e ol - (3.2.2)
i
53 = r‘(a3) =°e1‘a31

: o
"+ Since the value of i is known, solving Equation (3.2.2) for ey, we get

. = -i .
e; =a 51’., (3.2.3)

¢

Also we have to perform ‘a check that there is no error in the received

| bytes. This can be done by noting that

.
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Fxy

botem s et R o e e vt . . S TEWIE I ST

’ .
v < . 3
L] ¢ . i
! ' . .

S, = e8! =a7 S a = Sy (3.2.4)
and )
s, = e = a7t s o0 = sl | " (3.2.5)
. Combin1:ng Equations (3.2.4) and (3.2.5), we get .
5,5, = S5 - | (3.2.6)

Hence if there is only one detectable error, then

)

-1

ei = q S-I
p.l
~ and :
P ' : »
535'1 —'52 .

(ii) Two Detectable Erfops in the Received Bytes

-

Let there be détectable erfors in positions :i and j. The
procedure for finding the error values at these positions is given in.
section (3.1). Additionally, we have to check if there are any othgr

errors in the received bytes. It can be done by observing that

Sy = e.adl 4.3 ‘ (3.2.7)

Substituting for e; and ey from Equations (3.1.7) and (3.1.8) respec-
{

tively, we get -

53 = a(‘lTJ)S] + (a1+a‘])52

Thus if there are only two detectable errors, then !

a

S]az‘j + Sza‘j
A

' e1 '-
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S-qui + Sza..i
e. = . . ’
J 4 (3.2.8)
[ *Q T
where A =ai+2j +aj+21, ' /

and S, =a' s 4 (a'+ad)s

1 2

(ii11) Three Detectable Errors in the Received Bytes

¢

If there are detectable errors in positions i, j and R, then

the error polynomial is ' , s

”

W) = oyl j k .
e(X) eiX + er + eX —~

v
where ey ej, ek€GF(27) and 1<i<j<k.-.

El

The syndromes S], 32 and 53 calculated on the basis of the

received vector are

k

w
u

R i
e.a + e.,a *+
1 e_la eJa eka

52 = e.az.i + ejaz‘] + ekaZk ’ (3.2.9)

3
3i 3k

3 %a + eja3‘] + eka

w
1

Equation (3.2.9) can be rewritten in the matrix form as

Q
Q
[1°]

1]
w

; 2 ; (3.2.10)

or

Ae=3§.

The matrix A has an inverse which is given by

e T A s iy A g S SR

e R s

[ RPN

i
!
3
§
i
-3
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62j+3k+ 3jtzk  J+3k, 33+ - aj+2k+a2j+k
A'] - ]K c"21'+3k +a31’+2k 0‘1'-f-3k+0‘31'+k - OL1‘+2k+m21'+k
a21’+3j j_0‘31'+2‘j 0‘1'_+3j w31t O‘1'+2j AN
(3.2.11)
where )
A= Qi+J+k[021(aJ +Clk) + QZJ(QT +ak) + aZ‘k(u1 +(x‘])],
,\.% \-J”‘ ‘ (‘ 1 S
Multiply both sides of Equation (3.2.10) by A™', we get |
. ei =~S](a2j+3k+a3‘j+2k) + Sz(aj+3k+a3‘j+k) + 53(a‘}+2k+u2‘j+k)
' . A
e = 51(a21+3k4_a31+2k) . Sz(u1+3k*_a3i+k) . S3(a1+2k+a21+k)

S](a21+33 + G‘31'+2j)

MY

+ 52(u1+3j +0L31‘+j) + 5_3(a1+2j +a21+j)

Hence the erasure values are deter

m) One Error

- The procedure for findin
is given in se‘ction (3.1). Also,

error in ¢he received bytes. This

from which it follows that -

L2
3133 = 5;.

. O (3.2.12)

mined from the Equation (3,2.12).

g the error magnitude and its position

we have to check if there is only .one

=

can be done by observing that

e
»




T "’g""“‘“‘carf be calculated as in part (ii). ' -
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(v) One Detectable and One Undetectable Error in the Received Bytes

P
tectable error in position j. The error polynomial, tgperefore, is

, - Let ther"e be a detectable error in positigq i and an unde-

given by
1] . ‘.i j .
where ei,ej eGF(27) and i is known. - .

<

The syndromes 51 , 52 and 53_are then calculated as

i

S] = r{a) = esa’ + ejaj J
52 = r(uz) = eimz:j + e;].az‘] 4 . (3.2.04).
53 = r‘(a3) = ejcx:ii + eJla3‘] ) -

The value of j is calculated from the -above equation and is given by

ad = (55445, (5,405 (3.2.15)

* Once the location of error j is determined, :the magnitudes e and ej

Hence the decoding algorithm for, the coding scheme described
, : ,
in chapter 2 for minimum distance d equal to 4‘, can be stated as fol-

Tows . -

" Step I- _Check the parity of each of the received bytes .~
‘If al1‘parity bits check, go to II. .
If exactly one does not check, go to III.
If exactly two do not check, go to IV. - .

If exacﬂy three do not check, go to V.

¢
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If more than”three do not check, declare.a decoding fail-

, 3 ure. Proceed to next frame.

Step II Coﬁpute the synd;omes : . 4
3)’

¢ A

'S] = r(a), 52 = r(az) apd 53 zr (o

. ¢

. ' . ’ y
If all three of S], S2 and 53 are zero, declare r(X) as
error freé.

If all of Sy 52 and 53 are nonzero, assume a single error

‘and- decode it usiqg)the procedure (iv) given above. Also

check if 5351:=S§. If not, declare & decoding failure.

. If some of S{, S2 andS3 are zerov, declare a decoding fail- © o
. < 9 8 L i

ure. . r
) . ‘ ) ;

.Go to step VI. : ) <

ol \ ) / : . .
Step III Check if S3Si =S§. If yes, then go 4o III(a), else go_td
| I11(b). ‘ . ‘ &
. WIII(a), Assume a single detectable error and correct it using pro- e oL ! ’
K CS ; " cedure (i) given above. \ - ’ T

/ Go to step VI. : Lo : - :

“ITI(b) Assume that an undetectable and a detectable error have

occurred and decode it using procedure (v).

. « . Go to ste;—\h\ C (, ..

Step IV ‘Check if'S, =a‘i+‘j5-|i+(a1 +aj)32. ' o S

. . , If yes, then assume that exactly two. detectablie errors
have occurred and use procedure (1) to decode theim.
Go to step vi.

If not, declare a decpding failure.

i

v J .
Go to step VI. g ) .

o e e = . - . . . . e . o
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i -Step V Assume exactly thgee-bytes in error and correct them using

“procedure (iii) giver above.

4 Go to step VI.

Ste VI Qo to next frame.
Seep ™

a

Again, this degbding algorithm ensures that a decoded code

3 word has bytes that have even parity only. The complete decoding algo-
rithm is"given by the flowchart in Figure (3.2). o
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. ' CHAPTER 4

Performance Evaluation-]

. .

In the selection of error-control coding technique,’altérna-
tive coding schemes are compared on the basis of various probabilistic

measures of performance and system configuration.

One basis of comparison can be the probability of undetected
error Pud’ if the code is used for error detection only. The receijver
in such a system, makes no attempt to correct errors but just chegks if
the received vector is a code word or not. However, errors may occur in
a way that one transmitted code word is received as another code word

and the probability of such an event is called the probability of unde-

tectable error. This probability is calculated using the weight distri-~

\ bution of the code for the case of d equal to 3 and 4.

Another basis for comparison is the probability of correct:
decoding pCD’ a quantity that can be calculated when the decoding algo-
rithm is known and a memoryless channe];can be assumed.. Also, the
probability of’1ngorrectwdecodinng{€D, the probahility of decoding fail-
ure PF and theypost decoder symbol error rate PSE’ can be useful in the

evaluation of a codinhg scheme. Expressions for PICD’ PSE are avail-

" able in the literature for g-ary block codes with known weight distri-

butions. The reader is referred to [ 9], [10] and [11] for thesé gen-
eral expressions. Here,modified expressions are presented for the
coding scheme described in chapter 2 and ﬁhe decoding algorithm given
in chapter 3 for the case of d equal toig and 4. Plots of PCD’ PICD’
PF and PSE versus the input symbol error rate €, are given for the two -

cases.

A A =
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In the following performance analysis of the coding scheme, it

has been assumed that the all zero code word is transmitted. ‘However,

)
the same analysis holds for the transmission of an arbitrary code word

since éhe coding scheme being analysed is linear.

In this chapter, the performance of the coding séheme is ana-
lysed on a non-binary symmetrié memoryless channe1].h The performance of
the coding scheme for d equa]zto 3 is evaluated on a binary symmetric
channe]l in chapter 5 using the complete enumerator of the dual c&dé'and

MacWilliams theorem for complete weight enumerators.

4.1 Probabilistic Model of the Channel |
- ’ [

The randomness associated with the transmission process has to
be defined in order to be able to compute the ﬁrobabi]ity of the various
events of interest. For the code described in chapter 2, all the even
ﬁarity 8-tuples were represented as elements of GF(27). However, in’
éenera], the set of all possible binary 8-tuples forms a vector space of
dimension 8 and these 8-tuples can be used to fépresent elements of |
GF(28). Therefore, we will assume that any symbol that is transmitted
has probability (1 -€) of being received correctly and a probability of
€/(q' - 1) of being transformed into each of the (q' - 1) other syﬁbols,
where q'=28 =256. This is based on the assumption that a received sym-
bol can have either even or odd parity. Note that there are q'/2 =128

. elements of GF(28) that have odd number of ones in their binary 8-tuple

representatioh and if any one of these symbols is received, it is termed

as an erasure,

1 To be defined later
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We also assume that successive symbols incur errors indepen-
dently. Hence the probability that the received word differs from the
transmitted word in Q<3ct1y i positions is given by

("> (q'-l)" (q_;_e__r>1' (1_e)n—i . ('1) 61(1 _E)n—i

1

Note that if €=(g'-1)/q', each of the q' symbols from the
alphabet octurs a£ the receiver with equal 'probability. Thereforg,uwe
consider the case when €< (q'-1)/q'. One example of such a channel
model is g-ary FSK modu]a;ion*qn additive white gaussién noise. Hence
the probability.that an error p;ttern having exactly i nqn?zero symbols,

© will occur at the receiver is

~

P(i) = (q,e_])i(l-e)”'i ' k4.1-1)

4.2 On the Probability of Undetected Error (P )

An error pattern will be accepted as a code word and Tead to
an undetected error if and only %f it is the same as a non-zero code’

word [12].

Let A(h) denote the number of code words having exactly h non-

zero symbols. Then the probability of undetected error Pud is given by

n

Pud = hzl A(h) P(h) ;/ . v“) 44 (4.2.1)
where P(i) is defined by Equat%on (4.1.1).

The coding scheme‘described in chaéter 2 is essentially a RS '.
code defined over GF(27)‘and for such a code, the number of code words

having exactly h non-zero symboTs is.given by

PR SN
.
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- n h-d . h-1 "y
- A = () @-n g oen® (7)) e (4.2.2)
. ' h i=0 AN
) ‘5
\ ford <h <nandq = 27 = 128, ,
| o .Y
7 Thus for a given block length n and a minimum’distance d, the
- weight distribution A(h) can be calculatdd using Equation (4.2.2) and L ;
then Pud is computed using Equation (4.2.Y). ‘ L
- The above expressions have Been ejaluated for dimension of the
code k equal to 25 and minimum distance equal to 3 and 4. The weight }
' distribution of (27,25,3) and (28,25,4) RS codes is given in appendix B. 2
.Plots of Pud versus € are given in Figure 4.1 for the above codes . i
4.3 Post Decoder Error Distribution and Symbol Error Rate for (27,25,3) 4;
Code §
4.3.1 THe Probability of Correct Decoding, PCD : §
! It was shown in section (3.1) that this code decodes correctly é
the patterns that correspond to the following events E
1. No erasure, no error E
% i 2. One erasure, no error %
?_.K ' - 3. Two erasures, no error ) ) ¢

4. One error, no erasures.

The probability of each of these events is calculated as below ‘ %

Pevent 1° P(0)

Pevent 2 ~ (:) (q'/2) %&R) ‘ | ,
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n

Pevent 3 (2) (a'/2)% P(2) ~

- Pevent §“5V<<n) (q'/2-1) P(1) | - ?j

1
Hence thé probability of correct decoding P is
/N ‘ n 2 n. ‘ '
Pep = P(0)+ (]) (a'/2)P(1)+ (2) (q'72) P(2)+(-1) (q'72-1)P(1)

e N (4.3.1)
where n = 27, q' = 256. ' ’

4.3.2 The Probability of Incorrect Decoding, Prep ~

An incorrect decoding takes E}ace if the received word is

decoded to a cqpe word oEﬁer than the all 0 code word. It occurs if

' one of the four eventsfdescribed in (4.3.1) takes place with respect to

~a non-zero code word. Thus, if PICD(h) is the probability of incorrect

decoding to a code word of weight h, the probability of incorrett

’Secoding PICD is

t~13

" -

1o Prop(M) - O (3.2)

h=d

For a code word of weight h, the probability of var‘#&s events described
in (4.3.1) is given by

4 a

Pgvent 1 = P(h) .

Pavent 2 = (?) (q‘/2) P(h) + (n;h>'(q'/2) P(h+1)
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/
h s
N n-h, - :
Pevent 3~ (2) (a'72)%p(h) + ( ] ) (a'/2)% p(nv2)
h n-h ' |
N
. (1) ( ] ) (@'72)2 p(pe)
) h n-h N
P vent 4 ° (])(q'/z-z)P(h)A+(1)P(h-1)+( )@z np(n)
|
and R E \
* PLCD(h) ) A(h)(pevent 1*Pevent 2+'P¥vent 3'+Pevent‘4)

/

¢ . (4.3.3)
where A(h) denotes the numbér of code words having exactly h non-zero

symbols and is calculated using EQuation\(4.2.2). PICD(h) is calculated
for the values of h going from d to nlﬁnd these values are substitu-

ted in Equation (4.3.2) to calculate pICJ’

1
v
i

Also if PF‘is the probabil-

ity of decoding failure, then

9 ] .
Pep * Prep ¥ Pp =1 \\
A\ ’
and, therefore, \
' | )
Pe = 1-Pep=Prep \ (4.3.4)
¥

4.3.3 Post Decoding Symbol Error Rate, PSE

»
1
i

The post decoding symbol error rate\‘PSE is defined as the

\ \
expected number of errors in a code word following decoding. Hence

~

-
-

1 0 ' ‘
Peg = & hzd h Prep(h) . (4.3.5)

and can be calculated easily once Prcplh)s d h <n is known.
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4

© Plots of Py, Preps Pp and Pop veﬁ;us Enqre given if Figures™

i

(4.2), (4.3}, (4.4) and (4.5) respectively.

4.4 Post Decoder Error Distribution and Symbol- Error Rate for (28,25,4)
Code T

)

4.4.1 The brobability of Correct Decoding, P,

N This code can decode correctly if the received patterns carre-

spond to one of the following events

1. No ®rasure, no error

2. One erasure, no ‘error’ i i
'3, + Two erasures, no error i . C ‘

4. Three erasures, no error )
5. One error, no erasure - ’ N o
“6.- One error, one erasure. -

o The expression for the'%robability of evént§~(1), (2), (3)

. 4

and (5) is.given in section (4.3.1) and -

iy
>

Jn N
. N
. ) n‘ _ ' - '
 Pevent s 7 2( ) (@'72)@ 2= 1) P(2).
Hgnce
v = P00+ (a2 (M) (a2 e () '/z)ép(a,)
r v (e () (G
E ny o ' .
+v(‘]) (q'/2-1)P(1)+2 <2Yiq /2)(q'/2-1)P(2) (4.‘4..1)

where n = 28,'q' = 256.



. ',':ﬂ

R eme s capee e vt B TSARR T % BB L s kI oo s qrgs © <

h |
Pavent 57 2 () (0" 72)(@/2-2) () +2(

Al

- 45 -

" .4.4.2 The Probdbility of Incorrect Decoding

An incorrect decoding takes p1$ce if one of the 6 events given

in section (4.4.1) takes place with respect to a non-zero code word.

The events (1), (‘ 2}, (3) and (5) correspond to events (1), (2); (3) and
(4) of .sectioﬁ (4.3.1) respectively and the expressibns for the proba-

bility are given in section (4.3.2). For a ‘code word of weight h, the

'probabﬂity of events (4) and (6) is given by
;:; .

@
e,

"h) (0:/2)° B3y e

Pevent 4" <2) (q'/2)315(h) ¥ ( 3
O wreoen « (1) () e

Z) (q'/z‘);P (h-1)
| +2 (n;h)xq'}z)(q‘/z-np(h+z>+ (:) (";h) (q;/2-2)(q'/2)P(h+l)_

< '

A

!

) +(:‘)("]h) (a'/2)P(n)+ (:)(n]h) (a'/2)(a'/2-1)P(n#1)

*

}
and

N
Prgp{h) = Ah( Z Pevent i (4.4.2)

Hence PICﬁ can be calculated using ;Equation (4.3.2). Also Equations -

(4.3.4) and (4.3.5) can be used ‘to_\‘caku]ate PF and PSE respectively.

Plots of PCD’ 1c0° PF and‘PSE versus € are given in Figures £4.2),

(4.3), (4.8) and (4.5) respectively.
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4.5 Discussioﬁ of Results'

o

< . Asitis c]gar fromFigure (4.1), these codes can be used extremely

N

veffectively for epfor coﬁtro]. in systems, where the codes are emp]oygd

for the purpose of error detection only. For noisy channels (Ewlo_z),

the (27,25,3) code has PLd of the order of 10"8 while (28,25,4) code has

p [

of. the order of 10~ However, the receiver has to check for one

ud
more syndrome to be zero in latter code, which may not be a very high
price to pay for the lower value of Pud in many systems where high

\
reliability on the received information is required.

One interesting result obtained from the analysis performed in
this chapter is that the probability of incorrect decoding is much lower
as compared to the probabﬂity of decoding failure. Thus, most of the

time the decoder either decodes the received message block correctly or

-

it declares a decoding failure. It can particularly be helpful in §1tu7
ations where failure to decode can be tolerated~but the penalty that one
pays for decoding incor‘rectly' is high.

For € of the order of 1072, the post decoder symbol error

5

rate, PSE is of the order ofllo- for t%e (28,25,4) code while it is of

the order of ,10-4
, of the decoding algorithm jn case of (28,25:4) code leads to signi.ficant
reductior: in the po»st decoder symbol error rate. These values could be
quite acceptable for most digital cpommunication systems. If still lower

value of PSE is required, then a code .of higher redundancy may be
designed. But it must be pointed ob:ff}that thouéh the additional com-

.plexity in the encoder would be marginal, the decoding algorithm will no

longer be in closed form and a more general, Berlekamp-Massey algorithm

would be needed to perform the decoding.

s S

for the (27,25,3) code. Thus the additional complexity

\l‘
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’ CHAPTER 5

Performance Evaluation-I1

In chapter 4, the statistical performance of the ¢oding scheme

. i
was analysed on a g-ary symmetric memoryless channel. The RS code -4

[P ST

defined on GF(27) is mapped into a binary code as described in chapter/

2, and therefore, it is interesting to evaluate the performance of the
binary code obtained as a result of this mapping, on a binary channel.
Though most communication channels"are not accurately represented by "
the binary symmetric channel (BSC), shown in Figure (5.1), it has been '
studied extensively. For the binary symmetric channel, the probability / )
is Q that the same symbol will be received és transmitted. It is

assumed that Q>P and that each symbol is independent of all others.

The example m.c such a channel model-can be PSK, FSK and QPSKnmodulation

in additive white gaussian noise with hard decision decoding.

In this chapter, expressions for PCD’ pICD’ pSE are derived
for the coding scheme and the décoding algorithm described in earlier
cpapters. However, since the analysis is very complicated, it has been
carried out for d equal to 3 only. For the case of d equal to 4, only
the expression for PCD is presented and evaluated. It will be seen
shortly that the analysis of a code can be based on the structure of the
dual code. The dual of a linear code with generator matrix G is defined

as the linear code whose parity check matrix is the frar_lspose of G.

As ‘Was also stated earlier, we evaluate the performance on the ‘
assumption that the all zero code vector is transmitted. But since the
code is linear, the same analysis holds for the transmission of any

arbitrary code word.

’
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FIG.'5.1. THE BINARY éYMMETRIC CHANNEL ' N

Based on the assumption that the channel is a binary symmetric.

memoryless channel‘, the probability that an all zero 8-tuple is received '

as an 8-tuple having exactly i ones is PiQS'i. Thus the probability
that one 8-tuple gets converted to another 8-tupie when transmitted over
this channel is. PiQB'i , where i is the nu;nber of positions the two 8-
tuples differ. Hence the model of binary symmetric channel does not

extend to a g-ary symmetric channel model.

5.1 Definitions, Notations

Let GF(q) be a Galois field of q' elements, q=2m. GFn(q) is
the get of all possible row vecfors of length n, in which each coordi--
nate is an element of GF(q). Addition of two vectors is defined coordi-
néte by coordinate, under the rules prevailing in GF(q). GF'(q) is a

vector space of dimension n over GF(q). Choose a basis consisting of

ol

n vectors
e]= (o0 ...0)
¢ e2= (010 ...0)
e = (000

D)
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An element u of GFn(q) can be expressed uniquely as o .
n .
u= 3y u; e, , Uy € GF(q) ) ¢ (5.1.1)

).

We can write u—‘(u],uz,..., Un

The Hamming weight of u is defined as the number of non-zero

" coordinates in u.

5.1.1 Complete Weight Enumerator . ‘ \J" ?

1 ‘ .
Let the elements of GF(q) be denoted by wg =0,w] seees UGy in oo

some fixed order. Complete weight enumerator classifies code words ¢
in GF"(q) according to the number of times each field element w; appears

in ¢ [lj.

"

\— The composition of c = (CO’CT"'" C

n—l) denoted by comp(c)&is'

(50’51" ey S 1), where s, = si(c) is the numbér of components ¢ equal

q-
to w;. Thus ' .

q-1 T = ,

] s, =n. St |
.=0 1 ) ( E
let & be a 1inear code over GF(q) and let A(t) be the\number

of code words c €& with comp(c) =t= (to.... R tq_1). Then the complete -

weight enumerator of & is

, Lty t-1
“8(205.--9 Zq_])'= %A(t)zo e Zq_]
s s
0 q-1 .
= z z
cé& 0 q-1

where zo,z],... s 2.1 is a set of q commutating indeterminants and.the

q
indetermi nant z, corresponds to the element Wy«
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5.2 On ‘the Probability of Post Decoder Evénts for (216,175) Binary Code

L]

For the decoding algorithm described in chapter 3 the various

parameters of interest are

1. The probability of correct decoding, PCD i ’ : ;
- 2. ‘l"he probability of incorrect decoding, pICD
3. The probability of decoding failure, P

4. The output symbol error rate, PSE and

5. The output bit error rate, BER.

It was shown in chapter 2 that all the 8-tuples in the binary
code obtained as a.result of the mapping, are of even weight and a
received 8-tuple having odd weight is termed as ’an erasure. Let the 8-

tuples having odd numbers of 1's be represented by indeterminants

* *

* , -,
Z)s Zgaeees Zygg , [

-

It can be readily observed that on a BSC, the probability that

- the all 0 8gtuple will get converted to any one of these is given by

e '

3 B o ol o (s . g
Pe = 1 ( ) pr‘-] Qs-(zm)‘ (5.2.7)
i=0 23410 \ , ‘ 4

. Pbeing the cross over probability.

In the following ana]ys‘is, the patterns éorresponding to vari-

“ous events are derived and the probability of occurrence of each pattern
‘ L. 8-, . :
can 'be calculated by replacing each of the Z; by P 1Q ', where 2y is

the number of 1's in the binary 8-tuple representation of Z;. Also note

that q=128.

-

o . \ , 1
! . . 1
» ' t
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5.2.1 The Probability of Correct Decoding, PCD

The received vector is decoded <Y;or'r‘ectly if

(a) It is same as the all 0 code word.
¢

(b) It has only one non-zero symbol and the symbol has even weight (one

error

(c) It has only one non-zero symbol and that symbol has odd weight pne

erasure)
(d) It has two non-zero symbols and both have odd weight (two erasures).

Pattern corresponding to event (a) is given by zg. Similarly, patterns/

"corresponding to events (b), (¢) and (d) are given by
, )

s

#
n-1 '
2y +zy+ v zy50)zg 0
* , % *. y_N=1
n(z] Ty ke +Z128)ZO and
(" (z5+z0 + ;*)2 n-2 - .
(2) e I A P2 L

Hence, all the received patterns that are decoded correctly are

n n-1 * L LA S .
Zp#n(zy b 2197079 Hn(zy ¥ e t2ypg)2 +(2> (2% 1) 2

‘ . 9
where n is the block length of the code. (5.2.2)

§.2.2 The Probability of Incorrect Decoding, Py, -

An incorrect decoding takes place if the received vector leads

to one of the following events

. /
(a) It is same as a non-zero code word

(b) It differs from a non-zero code word in one position and the symbol

receijved in that position has even weight.

e LRI R NP - 5 PPN

wptd

)
H
i
{
i
H
i
i
1
H
1
i
1
3
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(c) It differs from a non-ziero code word in one position and the symbol
3

‘ -
received in that position has odd weight

(d) 1t differs from a non-zero code word in two positions and the sym-

bols received in these positions have odd weight.

Let a code word be represented as

S S s ;
., 01 7127
c= ZO Z] 2127 . . (5.2.3)
and let the patterns corresponding to the received vectors that will be {
R - 1Y .
decoded to this code word be represented by e. For each of the above }
given error events, the patterns are obtained as follows
\ Event](a). [t is same as the code word and, therefore, is given by
) i
S, S S L~
" _ .00 127 . ,
€% 29 1 " f27 %
‘ It is clear that all the 0 received word is decoded correctly and fience ;
all the patterns that lead to this error event are i
e J -z - : ((5.2.4) -
cEQ’
Event (b). A1l the patterns that differ from the code word in a posi-
tion that corresponds to 24 in a code word say, can be represented as 2
Sm=1 s,+] s ; :
0. 1 127 ’ s
VI 2127 j ,
soml 51 st N S127 |
R I R 7
FI
Y 4
Sa-1 s Sq4t]
‘32 0 1 127

0o A %27

! This event will also lead to an undetectable error, if this coding
scheme is used for the purpose of error detection only.

- (
o~
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4

P (Zytzg b tzyyldzy

and there are Sg of such patterns.

*

. Hence, it can be shown that all the patterns that differ from a codg

@

. word c in one place are

e = sglzyrzy v zy) ¢/

, - *sl(zo+zz+---+zn7)c/z3 4, . v
- ¥+ . ‘
tSygp(zg Hapt ot *2196) €/2y5y

127 .

. « . : | ® 120 S'i(zo+“.+z'i-]+z1.+]+.-'+z]2'7') (:/Z_i ;
oL s ‘ 1§7' -'( - ‘ : '157 ' C )
' = si(zntzy+orrtzo,0)¢/z. - ) s cC 5.2.5
‘ B ‘ i%0 1 0. 127 145 1 ,
o i ' Clearly ‘ .
< 127 S : -
§ ‘ S s; = N, L » . —
! i=0 ro - .
f % . A R ) [ . =- . K
{ and, therefore, Equation (5.2.5) can be written as :
i : :
-y . e
e = (z0+z1+...+z]27) 1_Z.Osic/z]:-nc. |
‘ - 'Since the received word that has only one non-zero symbol is decoded

correctly, all* the patterns that lead to this error event are

§ - | I« | " ;
| g = ZatZy v otz s.c/z.-nc’ -
. — ce& 0_.]. " ]27 X 1 1 o

1=0 . .

‘ 3 \ (5.2.6)

-n(zy +z,+ .42 )zn'] ) ’
1 2 127770

&

.
T NS —r———_—— ——————— ~ erliion.
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Event (c). The received vector can differ from a code word at any one
of the positions corresponding to 20;21""’ 2197 in the code word aqd
the symbol received at tﬁat posifion can be any one of zT,i;,..., 2?28'
A similar analysis can be' performed as above and it can be shown that
all such patterns that lead to this error event are

e= ] (tzytetzi) %7 516/ | ‘

* * * n-1 '
“n(zytzy t ot zypg)yy

Event (d).) For a code word represented by Equation (5.2.3), the pat-

-~

- terns that differ ,from the code word in two positions and have symbols §

of odd weight in those positions can be represented as

‘ 127 Sy S 5.-2 s.
* ok * 2 ) 0 7 i.0 . 0127
(Zyrzyneurzggg)” Lodsilsg-1) 70 7y e 2y 2127
1274126 s, s s.-1"  s.-1 s
T T PN I 1 O I IS RN RS T
+ tlzptzyt e bzgne)” ) 1.20 SiS%i%0 1 Y 23 2127
e
! 1; | -1
- 27 127 ~Sn S S.- 5.~ 5
T S 2 * "0 7% i J 127 .
. o =gty reetzgng)® Lo Lodsysizg gz ezt gyt
. j=0 i=0
o} . where s:==si -&(i-j),.6(x) being the delta function. .
§ ‘ From Equation (5.2.3), it can be seen that '
3 ) s, s s.-i 5.-1 ‘s, :
0,71 i J 127 .
‘ ZO Z_I ...z], ...Zj ...2127 C/(iji).
é Therefore, all the patterns that lead to this.error event are
i . ' 127 127
: e = (z?-ﬁz;-+..- +z’]"28)2 R | 55 s:c/(zjzi)

1-/ * % * 2 n-2
TM"JZ(H+22+“‘+HQQ zq -
.

, ' i
' ) A

e T T VS, N

"o

. Wy o Y
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Hence, all the received words that would lead to incorrect decoding can

be represented:by the sum of expressions (5.2.4), (5.2.6), (5.2.7) ang
(5.2.8).

5.2.3 The Probability of Decoding Faﬂure,«PF

H

This is an event when the decoder detects an_error but it is
beyond its correctingfcapability. The probability of correct decoding,

incorrect decoding and decoding failure are related as

P+ Prep * Pep = !

or

. Pe =1 - Pico = Pep ‘ (5.2.9)

-

. 5.2.4 Post Decoder Symbol Error Rate, Pe. ’ . .

. The number of non-zero symbols for a code word represented by

Equation (5.2.3) i§~$61‘+52'+--- +s]27). Also

Sp syt syt « ‘

or

+

$ 00 + §

51752 127 7" %

A

If e represents all the error patterns that are 1ncorrgct1y decoded to

a code word c, then the post decoder symbol error rate is given by.

.1 ‘ ... :
Psp =5 L (sy¥syt-or+sy)e

1. - 'y
=~ 7 (n-sg,)e
Neee 0
1 .
= J e-— ] spe
cEs n.eg 0
«
; i

[romp— “+ . .

Rckiip s LT
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There are four error events as described above, that lead to incorrect
d?coding and, therefore, would also contribute fo the symbol error rate.
Thus, the post decoder symbo{ error rate is thq\sum of the symbol error
rates due to each of the four error events. Lef these be’ represented
by PSE(a), PSE(b), PSE(C)’ PSE(d) respectively.
Event (a)

The pattern e for any code word ¢ 1is the same as the code

word itself. PSE(a) is, then, given by

)

Pgla) = [ c-1 [ spc | (5.2.10)-

Event (b)

The error patterns that lead to this event are given by

Equation (5.2.6) and it can be §hown that PSE(b) is
(b) 1 (( )1§7
Pec(b) = ZatZ b etz s.c/z.-nc
- UsE &gt tf0T A 1277 Ly 5177
' ‘ (5.2.11)
1 ‘ 127 .
- F‘;{(7_0-“7_1 ok 2y07) izo SoS; ¢/z; - n soc}]
; Event (c) -
. s 5
: The error patterns that lead to this event are given by
K Equation (5.2.7) and PSEJC) can be expressed as * ~
A .
(c) Z‘[(* 5 *)]§7 /
Peclc) = 2y tzF e+ 2 $.C/2.
SE P - VA e N
‘ (5.2.12)
. 127
1 *, _* *
[ "yttt zgy) 1.20 S5 ©/231

\

.
RS B T < e e e e v € e ——
s , :
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Event (d)
Again,’the error patterns that lead to this eventare given by

Equatioh (5.2.8) and PSE(d) can be written as

AR P P R -
Pseld) I Llzprzgtee-vzppg)” 10 L 38555 ¢/ (2524

CE& } j=0 i=
: (5.2.13)
. 127 127
k% 42 1 *
[ | - (z{*zy+ o +2]5) jZO iZO 7 505351 ¢/ (752)]

’

-~ -and finally . ) e

-

Pep =‘PSE(a)-+ RSE(b) + PSE(C) + PSE(d)

5.2.4 Post Decoder Bit Error Rate, BER

-

For every received vector decoded to a code word represented

by Equation (5.2.3), the number of bits in error is given by

Sy ¥ Splo ottt Syo98y07s

., where 25 is the number of 1's in the binary 8-tuple representation of

the element s -

fhus, if e represents all the patterns that are incorrectly

decoded to this code word, then BER is

. 1 ~
BER = 7— ] (52 +S,8,+ - +5,,.8,,5)e
8.n cEe 11 272 1277127

It is an extremely difficult task to eva1ua£e such an expression. How-

ever, a very close bound may be obtained as -
> | b

BER = PSE'
This bound is obtained by noting that the maximum value that any- 2,

. .
takes is 8.
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5.2.5 Note

The code to be analysed is a (27,25) RS code defined over
GF(27), where the binary 8-tuples forming a vector space of dimension 7
are used to represent elements of GF(27). There are no closed forjy
expressions for complete weight enumerator of such a code. Also, as
the total number of code words in this code is 4.789 x1052, it is 'not
possible to generate the complete weight enumerator of this code on the
computer and then evaluate the probability of all the error patterns

for each of the code words. .

It is further noted that if the probébi]ity of 0 symbol being
received as a non-zero symbol was the same for all the non-zero symbqlé,
then‘the Hamming Wéight enumerator of the code was sufficient for the
statistical performance analysis of Fhe éode.. The Hamming weight

enumerator of this code is given by the Equat%on (4.2.2).

Hence we have to 1odﬁa¥d¥ alternative ways of computing the
expressions derived here. One such method is to use MacWilliams
theorem for complete weight enumerator. The dual code of (27,25) code is
(27,2) code and has only 16384 code words. Therefore, it is possible

to generate the complete weight distribution of the.dual code on the

computer.

In the foliowing section, MacWilliams theorem for complete

weight enumeratorand the related theory is covered in brief.

-
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. ‘ .
5.3. MacWilliams Theorem for Complete Weight Enumerator

5.3.1 Characters of GF(q)

Any element. 8 of GF(q), q=2m can be written in the form

87 By e et By g

-

or equivalently as an m-tuple
B = (BysBys-vvs B 1)

where o is a primitive element of GF(q) and 0 <8, <1. Let £ be a

complex number e2m/2.

£22e2" 21, while ¥ #1 for O<e<2. It implies £=-1.

This is a primitive an root of unity, i.e.

[

Definition. For each g= (30,31,..., Bm-1) of GF(q), define Xg to be
the complex valued mapping defined'on GF(q) by
+.o..+8

m-1"m-1

for v=(vQ,‘..-, Vo) €6F(a). x

8 is called a character of (}F(q).

It can be easily shown that

(i) xs(v)'= x,(8) for all g,v€ GF(q)

(i1) %‘B(v;ﬁv') = XB(\:) . XB(\)‘) for all g,v,v' €GF(q)

Thus, Xg is a homomorphism from the additive group of GF(q) jnto the’
multiplicative group of complex numbers of magnitude 1.
(1"1'1') XB"‘B'(\)) = xs(v) . XB.(\)) for all g,e',v€ GF(q)

Thus the set of all g characters Xg form a group which is isomorphjc to

the additive group of GF(q).

s oo

P

e
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To state MacWilliams theorem [ 1], any one of the characters

Xg with g#0 is selected, say 8=1, i.e. the character X] defined by

v .
X](V) = E 0 fOY‘ v = ‘(\)0,--." \)m-l) (S GF(q)

5.3.2 MacWilliams Theorem for Complete Weight Enumerator [13]

1

If & is a linear (n,k) code over GF(q) with complete weight

enumérator w&, the complete weight enumerator of the dual code W , 1s

&
IR -
W&l(zo,,...,"zq_-l) = mw& (iz x-l(mowi)zi, z x-l (m UJ 21,...)
(5.3.1)
where |&l=qk, \
or alternatively . N
_ R L ) Q-1 ) )
W (ZO,. s Zq_1) = T&—li—w&i SZQ X1(w0w_i Zi,...,iz_o x](wrmi Zis-.. ‘
, : (5.3.2)
where [&|= n-k,
Let =
Yo = 3 xqlee)z,
0 j=g V01T
. " 15.3.3)
: 1
yq_] = 20 x](mq -lm )Z
and we can write Equation (5.3.2) as
] ] : |
W&(ZO,...,'Zq_]) - mw&l (yo,.--g yq._-l) n k (5-3-4)
. ‘ \ ‘ | M - -
In our case , L G . -

Darrdtis. it irs s P
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128,
2.

q
n-k

Hence, the weight enumerator of the original code is related to the

weight enumerator of the dual code as

1
Wol(Znseoes Zynq) = ———7-w (Yaseoes Yyoa)-

Thu cl is an arbitrary code word in the dual code with comp(c') =

(to,.;., t127) then the weight distribution of the original code is

[

;Y S0 ST St7 1 b & Yy
c€e?o A1 g7 T alYo vy (8:38)
' E
5.4 Further Analysis /
/ -

Though the complete weight enumerator of the dual code can be

generated on the computert/it is to be observed that it is not possible

to find the composition of each and every code word in the original code

——— by-using-Equation{5.3.5)-—Also_note that expressions derived for vari-

ous events in section (5.2).are in terms of the composition variables
593512+ S1p7° Hence, we should find expressions for these events
that are functions of the variables ZgaZyscees 2197 only and where the
composition variables Sp*S10r- 0 5127 which define the composition of
each of the code words, do not appear explicitly. {ﬁow, using Equation

(5.2.3), we can show that

_ 3C -
si¢/zy = 22
and — \ (5.4.1)
(z,2;) = _a%e_
s s c/(z,z, .
j i azjazi
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Using above equation,. Equations (5.2.6), (5.2.7), (5.2.8), (5.2.10),
(5.2.11), (5.2.12) and (5.2.13) can be rewritten as

z ( ) ]§7 aC
e = Zo+ - 42 —=— - hc
. kg lo 1277 L, Bz,
' (5.4.2)
n-1
= n(zg e 4295502,
I (2] Yog) 157 i<
e = Za F e+ 2 e A.a
AL 128’ L) 3z ‘
e (5.4.3)
* n~1
- (2] + e+ 2] 8)zg
. ' & 127 127 2 '
* * 2 3 C
e = (zy+ -+ +27,4) 2? . e
1 1287 .2, j=0 i=0 %397
‘ (5.4.4)
-n(n=1) (*_ . _* 2 n=2
5 (Zy+ 0 +2y58)" 2
Q . r~ 3
- 1 ac ‘
Pee(a) = ¥ c-- V z,2% (5.4.5)
. ' SE céa n .Eg Oaz0 . . .
5T )‘§7 3¢
Per(b) = Zat 42z ——'-nc
SE( cE&[ 0 1277 (L, Bz, .
(5.4.6)
N N T L 3 '8 ac ) -nzg 25)]
n L1%0 f127 (920 20 3z 44, 3?1‘) 0 3z,

127 127
1 (3¢ 3 3c
P.o(c) = (27 + +27,0) 3 y ec _ 1 vz, 2 (] 2&
SE 1 128 cE&[ js0 3%; N (az0 0 3z, (1.20 321))35 )
) 127 127 .2
2 3 c
Peeld) = 3(z *25,2)¢ 1 2c.
SE 1 1287 &g j=0 i=0 2%33%;
127 127 2 127
1 3 3 ¢ 3 3¢
- iz 2 z z +2==—( (5.4.8)
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A close examination of the above equations reveals that, we have to eval-

¢

uate expressions of the type Tm ¢

G1) 1%7 1%7 32c

ii —_—.
c€a j=0 i=0 °%j°%;

The corresponding expressions arelobféined in terms of the weight distri-

bution of the dual code By using Equation (5.3.5). This is dgne as fol-

lows.
127 P
(1) 1 1 2=
CEE& 1=szj N
AR
ce€a i=0 °%i i=0 %% ‘c€e

Using Equation (5.3.5), we get

127 127 ]‘ t

B
0 127
- 2 L X c = 2 —A—a-—— —— 2 y -o-y
420 %% (L) =L 527 ((og clgi¥o N2 ) .
127 t t
1 ) 0 127
= ——(y cee y ) .
26 e 120 323 0 127 ‘ -
127 127 .t t.-1 t Y
i TP PR AR L NS7S LA L
128° cleal 20 j=o0 I J. i
"Using Equation (5.3.3), we get v
Y . ( ) .o
= Yy lwsws ).
9z 1Y
ay: | .
Substituting —L from the above equation, we can write -

B e d s S
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]%7 —a_g— - ] 127 ]%7 t‘ yt\o... y\tj.j_-l ...yt 7 x\(w'w.)
c€e =0 %% 128% cleg! qs0 g0 I 70 I 7127 AT
127 t t.-1 t 127
21 ) ) 0 J 127
= — toyq oYY ey Xq (wsw,)
1282 cleg! 50 J 0 J 127. 429 MV ,
, (5.4.9)
From the theory of group ch\ar:acters [13]
127 : ) . ,
, Xqlw:w:) =128 if j = 0
jzg 13
= 0 otherwise
Using the above result, expression (5.4.9) can be reduced to
127
7oy 2 -7 sty (5.4.10)
cee =0 %% q28% et 00
t, t t
L_ .0 " 127
where c =Yg Y1 Y07
T
127 127 2
g LT e /
cER j=0 i=0 "°j"°i T "
) M 127 127 .2 8 - T -
27 127 azc . 3 azaaz ) c )
CE& j=0 i=0 azjazi j=0 i=0 °%j°%1 ce&
=127 127 32 ( 1~ yto...yt127)
350 i=0 %2397 128,2 clegt 0 - 127
SRR (R R CN
128% (el j=0 9% ' 420 3% 0 7127
/ , (5.4.11)
It was shown in part (i) that
127 t t to-1 t t -
3 0 127 _ 0 1....,127
Loz Vo g ) 218t ygT vty
and, therefore, Equation (5.4.11) gan be simplified to

It Sumliico i




Y - 70 - N /
127 t.-1 t t /
] P 0 1 127
— — (128 t, ¥ ¥yt Yog )
L ]282 cl; &l jzo aZj 0 0 ] ]27
Lot ot t
£ - 1)y.0 1 4127

= ] 18128t

1282 gl olto=1¥o" ¥y i vy

(5.4.12)
Since the dual of a maximum distance separable code is Blso a maximum
distance separable code, the dual code of (27,25) RS code which is (27,2)

code has the following Hamming weight distribution
1 code word has all n symbols as zeros (all 0 code word),

o~ "
3429 code words have only one 0 symbol, to =

12984 code words have no 0 symbols, £ty =0

Note that to is the number of zero symbols in code word of, the dual code
and, therefore, the term to(t0 -1} is non-zero only for the all zero

code word, i.e. for to =n. Consequently,

z 1%7 1%7 aZC n-2 : ( )
=n(n-1)y . ~(5.4.13

— —ces~j=0~i=0-azjaz1‘ T - -

* Equations (5.4.10) and (5.4.13) are used to substitute for/the

corresponding summation in the expressions for PICD and PSE' Finally,

all the patterns that correspond to each of the events of interest for

.

the (27,25) code are given as below
{

0 b - o2 27 s )226+ 27) (g )zzs
1722 127720 YAt 128’20

»
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S 1 * e 4" 1
(2) Piep 1282 12 1[128\t0 ct-26ci+128(z + -+ +2958) ty cl/yy]

creE &
27 25
* (2) (2 +-+2159)° vy - Pep
(3) Pe =1 - P - Prep
. L gy e (T 2
8) Po. =P +P. + 252 =2y - cen =2 Ty e
SE 1" et e bl 127 (1.;0 1.)
: a1t £ 127 t.
0 1 127. 1 * * i 1
-128.z,t t—tet—= ) et - (zy etz Y — ¢
00 vy Y127> ] ]28(1=o 1)
£ -1 t t
) * * 0 1 127 \ i
128.zo(z]+ +Z128) tO yO -+y1+ '+y127 )c /y0
: t -1t t
) KLk 2 o't L by
LT 12Blzy sk ayag)” to v, Tt +—3/]27)”}’0]

. * L 2 24 '
5= (24 +2750)" 25 ¥y 0

. These expressions are computed for different values of the -
v input bit error rate P. Plots of Pud’ PCD’ pICD’ Pf and PSE versus P

are given in Figures (5.2), (5.3), (5.4), (5.5) and (5.6) respectively.
”~

5.5 A Note on the Performaﬁce of (254,175) Binary Code

At this moment complete performance evaluation of (224,175)
binary code obtained from (28,25) RS code does not seem to be computa-

tionally feasible on a binary symmetric channel. However, the probabil-

ity of correct decoding PCD for this.code can be-calculated as follows.

This code can decode correctly all patterns of received vector

patterns given in section (5.2.1). It can also decode correctly tHbse

received vectors that

§ v e, ARSI T 4
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- have three non-zero symbols and all three symbols have odd weight
(three erasures)
- have two non-zero symbols with one 0# the two having odd weight and .

" the other one having even weight (one erasure, one error).

These vectors can be represented by the patterns

n , )
* . <% 3 _n-3 {
<3) (2% - +2759)" 2 ,

ok n(neb) (2 e Faigt )2
#on(n=t)(zy+ - z4)(2) % tz128)z0

Hence for (224,175) binary code,'a11 the received patterns that are ~
decoded correctly are . ) o T R
28 27 ; * * 27
$28(zy ¥ - er ¥ 29p7)2" #28(z + o e 215407 ,
28 R *] 2 2 28
. 26 AR 3 25
+(2>(21* *2158)" 2 +.<3>(21+ ]28)

, g M e a gt )28
+ 28.27 (z]+ +z]27)(z]+ +z]28)z0
-//’
A plot of PCD versus the input bit error rate P is given in
Figure (5.3) for this code. : , A

i . -

5.6 Discussion of Results ' SR

A

4 .

The binary code obtained as a result of mapping~(27,25) RS
code defined over”GF(ZZ))into a binary code, is a (216,175) code and has
a minimum distance db equal to 6. Therefore, it should correct all the
possible single and double errors-in a received word. This, indeed,.is
the case for the decodiné algorithm described in chapter 3. The code

can also decode correct]y certain patterns of errors 1n more than two

b1ts. Such a scheme can find a very wide app11cat1on in digital
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°communication system where the er;gfs occur randomly or cluster in
‘bursts. oy

Although the exact performance analysis of the (224,175)
binary code obtained as a result of mapping’(28,25’ RS COdecdefined ;s
GF(27), is not feasible, yet we are assured of a better performance as
compared to the (216,175) binary code since the (224,175) binary code '
has a minimum distance db of € and the decoding q1gor1thm described in
chapter 3 corre;;p ahy three or fewer bits in error as well as some

error pattérns f more than three bits.
. }V

'Both of the high rate codes analysed here compare well with
‘the codes described in [14] and chapters 2 and 3 of [7 ] for byte ori-
ented information systems. It must-be pointed that the.codes detailed
in [14] and [ 7 ] are strictly random error correcting while the codes
given here can correct both random as well as.bursts of error. However,
the laEter cﬁdes require one mote byte of redundancy’asfcompared to the .
former code. For'examplé,~the (216,175) code based.on the scheme given
Lin [ 7] can correct all single errors, double errors and any‘trigle*
error pattern occuring in three distinct information b&tes], wheré?§,

the (224,175) binary code described ih this thesis can decode correctly

all the possiblé error pattern§ of single, double and triple errors and

. certain restricted error patterns of more than three bits.

If further improvement in performance is required for a sy;tem,

* then a code of higher minim@.distance can be derived from the coding

scheme described in chapter 2. The formulation of the;code given in

“] It is 70 percent of all the possible triple errorypattérns. . .

- - : ‘,
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" redundancy and the“properties'( of the scheme are not known completely.
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o !

[ 7 needs to be explored further for “the case of more than -tv}o byfes of

Hence if a high rate coding scheme is required for a byte ori-

-anted informatjon system and the channel introduces only random errors

during. the transmission, then the scheme given im [ 7 ] may be desirable
for the purpose of error control but if the channel characteristics are
not determined completely or if it introduces both "‘random and burst

errors, the e coding scheme analysed in this thesis, may be preferred.




1o L

R
o
L]
—d
—

1072 : R T
INPUT BIT ERROR RATE

i

'FIG. 5.2 PROBABILITY OF UNDETECTED ERROR Vs. INPUT
; BIT ERROR RATE FOR (216,175) BINARY CODE

-+




e T

1.0
(224,175)
Code

3

. | 0.95 -

» Pep

' (216,175) Code

0.9

7
o

PROBABILITY OF CORRECT DECODING

.81 - t

-
=

10

0.8 + b gt bt -
-4 10-3

-2
INPUT BIT ERROR RATE

’ FIG. 5.3. PROBABILITY OF CORRECT DECODING Vs.
q )
o / INPUT BIT ERROR RATE FOR BINARY CODES,




- i o AT MR S e L

ot

a
10°¢
]0"3;.
. I
o 4+
()
o:—-.
‘!_'; 1
=
VAR = I -
S 10 4:'_
L !
a l-.‘
— 1
2 4
Ll
=" _‘L
(=4
[}
(&
=
S, 10—5.1
S 1 s
— 1
- 1
= L
<
=] T
= l
Q n
1076 ¢
t
%
10-7 + -‘2 +
¢ 10
. FIG:5.4.
)
o

j77-'

U

-3
<. 0

INPUT BIT ERROR RATE

PROBABILITY OF INCORRECT DECODING Vs. INPUT

BIT ERROR RATE FOR (216,175) BINARY (;ODE

. -{g@\’,w
i ',‘i’



v s o

10

PROBABILITY OF DECODING FAILURE, PF

10

N

-2 .L

—
(==
1
w

£

—
‘
o -
ek bt
AAE Jade o )

—
(=}
)
(32
"
~

]0.6 R e =

- . 102 .

103 1074
INPUT BIT ERROR RATE
FIG. 5.5. 'PROBABILITY OF DECODING FAILURE Vs. INPUT

BIT ERROR RATE FOR (216,175) BINARY CODE

a0 Q@

b

N




-9 - .
L
\
10-3 1
. b
1
/
107t
T
) (V8 ) L
D.m L
wd
5 107 :
a I B
o . |
(=4
oz 4
- 4« 5
-,
S
E - 1
o 1
& 1076 ¢ q
g i /
z / |
-
2
’ ]0-7 1 .
‘.\ \ »
.[“\
. -8 , . e + ‘
10° — T -+ ' _—
1072 1073 1074, _
INPUT BIT ERROR RATE
FIG. 5.6. POST DECODER SYMBOL ERROR RATE Vs. INPUT
. BIT ERROR RATE FOR (216,175) BINARY CODE
& | ~
L ) - o Yo




~_

\
i
MWM'MMWnN R o, A A U SV Ny e W ?‘Y

T A O e d

- 80 -

CHAPTER 6
Conclusions

The main objective of this thesis has been to design a coding

scheme for even parity byte information systems where the number of .

s .

,parity bits added to any block of information bytes are a multiple of 8
and the parity bit present in each of the information bytes is not
allowed to be altered. Although codes of any rate can betgbtained by ,‘
employing the coding scheme presented here, the emphasis has been on the

-

development and analysis of high rate codes.

In chapter 2, the mapping of codes defined over GF‘(ZPm)ﬂp}/a
binary codes has been studied and it is shown that the set of Z‘ﬁ possi-
ble even parity 8-tuples forms a vector space. of dimension 7. A RS code
defined over GF(27) was considered and' the procedure to get the genera-
tor matrix in fhe systé‘matic form for the binary codes obtained by map-
ping the RS codes was outlined. The parity bytes added to the informa-

tion bytes, are shown to have even pdrity. A shift register implementa-

tion for the coding scheme was i1llustrated.

Since the emphasis is on high rate codes, a decoding algorithm
was presented only for the cases when the RS code, used to derive the
binary code, ha& a minimum distance of 3 and 4. The decoding algorithm
makes use of the parity bit present in each of the received bytes. As
it is in ﬂosed form, the decoding can be implemented .by dig<tal hard-
ware that is capable of operating of very high speed of data trans-

mission.

A channel can be modelled as eijther a g-ary symmatric channel

(q#2) or as a binary symmetric channel, depending on the 9odu1ation

i ~
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El

scheme that is used to transmit the data. Both models were considered

for the statistical perfomance analysis of the binary codé. However,

it was observed that the analysis of the code on the binary symetric
channel is very complicated and, therefore, it was performed only for
the (216,175) binary code. The analysis of the (224,175) binary code

was restricted to the evaluation of the probability of correct decoding.

The coding scheme derived in this thesis has the potential of . \
combating random and burst errors that normally occur in {ﬁgital commu ~
nication systems. It is clear from the plots‘ or the pr'oﬂsabﬂity of

¥ various post decoder error events given in chapters\t;and! 5 that using

these codes can lead to significant improyement in the‘overall system - : '

LY

performance. . . ' L,
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. _ . APPENDIX A
Table of Elements of GF(ZlL

In this appendix, a table of 'i' with the binary 8-tuple
representation of a' for the basis chosen in Equation (2.2.1) is given,

where a 1is a primitive element of GF(2_7).‘ We have used the recursion

Z

3

a”=1+a”, .

0 10000001 40 01101100
1 100900010 41 11010001
2 10000100 42 00101011
3 10001000 43 019010110
4 1O0L 0000 44 10100101
S 10100000 ! 45 11008010
b .11000000 LI 0Q0111Q1
7 Q0021001 R 47 001110190
-~ 3 A0OLDO10 483 01110100
9 Q0120100 49 11100001
L0 Q1001000 50 01001011
11 10011001 51 10011111
12 re110010 - a2 101111190
13. 111001460 53 11111100
14 21000001 ] 01110001
15 10001011 AT 11101011
Lé LOGIQ 110 36 ¢1otitt e
17 10101 L0 a5 10110101
18 11011000 \ A 48 11101110
17 Q0111001 59 DL0O10101
0 QL1010 51 2100011
21 TLISE 1o al 11000110
22 L1011 o DOO00LG T
w83 L0101 111 63 2OAOLILD
ot P1OT1 118 5 DON10100
wly S0110101 45 GO 101060
M) QIO LO0 & O1LOTO0ND
N Liol L1 & P00
20 QG110 ol LLDT100T 0
o AT L0 &t QO LO1L L
30 TLADO 1L S L1 0
St GOO0001L] - h A1 Tt l
30 QOHDD 11D S0 TLLIIO

33 QOO T 100 R DLTL LT
— 39 QDAL OO0 . A TLELOO1 L
345 D01 1()00\)‘“’ T QL10ott Lt
3o D1100000 " 1101011
S7 1100L001 " c PO LY
38 DO0LLO1Y A HLOO11 LD

A QOLLd 110 A

1O o101
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82

[ B 4 v
83

84
B3

VR B6

87
ge
89
70
21
92
93
94
23
75
97
2?8
79
100
101
102
103

It can be observed that all the binary 8-tup

10101010
11010100
001Q0G01
01006010
190001101
10011010
10110100
11101000
01011001

510111011
11110110
01100101
11000011
00001111
00011110
00111100
01111000
11111001
01111011
it
01110111
11100111
01000111
10000111

f

weight and along with the all

space of diménsion 7.

3

d‘

™

-~ 8§ -

10901110
10011 LOO
10111000
11110000
01101001
11011011
00111111
QLT 110
11110101
01100011
11001111

00010111

00101110
01011100
10110001
11100010
01001101

10010011

10100110
11001100
00010001
001000190
01000100

les 1isted aboye have even

0 8~tuple, these 8-tuples form a. vector
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. APPENDI X B
R < .
Weight Distribution of (27,25) and (28,25) RS Codes

The number of code words having exactly h non’-zero,s_ymbo]s

for.a makximum distance separable code is ~g1"ven by Equation (4.2.2). If

_,‘A](h) and Az(h) represent the Hamming'weight distribution of (27,25,3)

and (28,25,4) RS codes defined over GF(27) respectively, then Equation

(4.2.2) @an be used to obtain the following table.

h - A, (h) CA(h)y o s
‘\j‘
0 1 1
- 1 ‘ 0 0
2 0 - 0 < &
3 37\475 0 . .
4 2.786 E8 2.600. E06
5 1.628 E1 1.548 E09
6 7.581 E13- 7.538 Ell
7 2.888 E16 3.001 E14
8 9.170 E18 1.003 E17
9 2.459 £21 2.831 EI9
10 5.620 E23 6.830 E22
AR 1.103 E26 1.419 £24 >
12 p; 1.868 E28 2.554 E26
13 2.737 E30 3.992 E28
14 3.476 E32 . 5.432 E30
15 3.826 E34 6.439 E32
16 3.645 E36 6.644 E34
e 17 2.995 E38 5.956 E36 -
v18 2.713 E40 © 4,622 E37
19 1.271 E42 3.090 E40
20 6.458 E43 1.766 E42
1 21 ©2.734 EAS 8.543 E43 !
I 22 9.469 E46 3.452 E45
/ 23 2.614 E48 1.144 E47
! 24 5.533 E49 3.026 E48
/ 25 8.433 E50 6.149, E49
26 8.238 E51 9.011 ES0
27 3.87)5 E52 8.477 E5)
28 - 3.845 E52 .
w ° ® 4
where a Eb means ax 1 Ob. ' s
27 ¥ 28 . T ¢ 5
Note that ] A.(h) = ] Az(ﬂ&)' = 128°° as the code is defined on GF(2")
- h=0 ' . .

and the numbe of information symbols in each code is 25.
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