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ABSTRACT

A KNO'WLEDGE-BASED APPROACH TO
RECOGNIZE UNCONSTRAINED HANDWRITTEN NUMERALS

Tuan Anh Mai

A method to recognize unconstrained handwritten numerals using knowledge
base was proposed. In the training stage, data on features observed in a training set
were stored in 2 knowledge bases of features and pattern classes. In the recognition
stage, an inference engine compared the features of an unknown sample with the
knowledge base of features and inferred the most probable hypothesis on the identity
of the sample. An alternative method used a structural classifier which matched the
results of feature extraction against the knowledge base of pattern classes.
Recognition decision in both methods was based on Bayes’ Rule.

The system was trained and tested on real-life handwritten ZIP codes obtained
from the U.S Postal Services, using a training set of 8500, and a test set of 8485
samples. It was also trained and tested with the same data used by the Concordia
OCR Project Team containing 4000 training and 2000 test samples. The inference
method achieved a recognition rate of 94.9%, with a reliability of 97.0%. Threshold
values could be applied to the structural method to give a continuous range of
recognition and reliability rates. With a very stringent threshold of confidence level,
a high reliability rate of up to 99.8% can be achieved. These results compare
favourably with recognition results reported by other researchers on totally
unconstrained handwritten numerals, and results obtained by other members of the
Concordia OCR Project Team.

The method aimed to minimize human subjectivity by not excluding any poor
quality samples found in the training set. It can be retrained with different training
sets of numerals and modify its knowledge base accordingly. It was also found that

incremental training on more samples would improve the recognition rate.
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INTRODUCTION

Optical Character Recognition (OCR) of handwritten characters is a very active
field in Pattern Recognition. There are always a large amount of handwritten data
that need to be processed in business and government organizations such as mail,
bank cheques, income tax returns..,which must be read and sometimes entered into
machine-readable format by human. An efficient, fast and economical OCR method
to recognize handwritten characters will eliminate most of the repetitive work by
human, increase the speed and cut down the cost of data handling.

In character recognition, human perception is capable of emphasizing an
important feature while disregarding others, creating a full mental and symbolic
image from an incomplete or poorly formed physical image of written characters.
Machines are not capable of doing so, and this is the reason why machine
recognition of handwritten characters is such a formidable task. The aim of pattern
recognition is to use the machine’s strength, its high computational speed to
compensate for its weakness in perception.

Extensive study has been made in the field of handwritten character recognition.
Although over a hundred methods on computer recognition of handwritten
characters have been proposed and presented in the literature, computer recognition
is not widely implemented in practice because the recognition rate on normal
unconstrained handwritings is still low, and the cost in equipment and the computing
power required are too high to be practical.

The problem of handwritten character recognition is a combination of theories

in pattern recognition on one side, and the pragmatism of using human perception



and human intelligence on the other side, to achieve a task which at first seems
simple, yet has not been solved successfully by researchers. This study attempts to
recognize totally unconstrained handwritten Zip code numbers using a knowledge-
based system.

This thesis is divided into the following chapters:

Chapter 1: Brief Survey on the State of the Art.

Chapter 2: Description of Approach used in this Work.

Chapter 3: Preprocessing.

Chapter 4: Features and Feature Extraction.

Chapter 5: Training and Recognition.

Analyses and discussions on experimental results are treated in Chapters 6-10:

Chapter 6: Experimental Results - Overview.

Chapter 7: Analyses of Recognition Errors.

Chapter 8: Dependence on the Size of Training set.

Chapter 9: Performance Curve and Fine Tuning.

Chapter 10: Additional Experiments on Data used by Concordia OCR Project

Team.
Chapter 11: Comparison with Other Studies.

Chapter 12: Conclusions.




1. BRIEF SURVEY ON THE STATE OF THE ART

1.1 PATTERN RECOGNITION METHODOLOGY

Pattern recognition is primarily concerned with the description and classification
of measurements taken from physical or mental processes ((MANT87]). 3 major
steps involved in pattern recognition are:

1/ Image processing, better known as preprocessing, consists of operations that
transform the original image to other images which are an improved version of the
input. Various techniques are used: edge smoothing, hole filling, normalization,
thinning (skeletonization), rotation (correcting slanted characters so that they
become vertical), centering (making the center of gravity of the character the center
of the frame). Most preprocessing techniques have to transform the image pixel by
pixel, and require considerable computing effort. In [GUDET76] rotation is found to

be most costly (relative cost = 7) while edge smoothing (cost = 3.7) and thinning

(cost = 3.7) are also heavy users of computing resource. The benefit of each
preprocessing technique is strongly dependent on the feature extraction method and
the recognition method that will be used.

2/ Image analysis (or pattern description), better known as feature extraction,
is the process of getting measurements from the image so that it is possible to
classify (recognize) the image. Feature extraction techniques fall into 2 types : global
analysis and structural analysis ([SUENS2]).

One type of global analysis methods considers the character matrix and
obtains different measurements such as: position and coordinates of points (mainly

used in template matching methods), density of points, distance of elements from a



reference point (moments), crossings of characters basing on different directions
(characteristic loci).

Another type of global analysis methods uses mathematical transformation
to convert the image matrix into some mathematical representation: Karhunen-
Loeve series, Fourier transform, Walsh transform, Harr power spectra, Hadamard
transform ([SUEN82]).

Structural analysis methods describe the image in terms of simpler
geometrical patterns such as: skeleton, contour, components of straight strokes and
curves, polygonal approximation, end points, fork points, loops, jumps, inflection
points, concavities and convexities ...

3/ Classification, or recognition is the step where a decision is made on the
identity of an unknown sample. There are 2 major categories of recognition methods:
statistical and syntactical.

There are many types of statistical methods. In the non-parametric methods,
the measurement taken from N features can be used to represent an N-dimensional
vector space called feature vector. Accepted pattern classes are defined as
hyperplanes in this vector space. For each unknown pattern, the distance of its
feature vector to each hyperplane is measured. The recognition result is the pattern
class having its hyperplane closest to the feature vector of the unknown pattern. The
parametric methods use Bayes’ Rule to make a recognition decision from the
likelihood ratio of parameters (features) and the probability of occurrences of the
pattern classes. Also belonging to the statistical family are clustering analysis
(agglomerative or divisive), and fuzzy set methods ((MANTS87]).

Syntactical methods analyze the features of a pattern as an input string and




parse it to decide which class it belongs to. This family of methods depends mostly
on the description of the pattern by its structure. So the term structural method
(introduced by Pavlidis) comes into use to describe the approach that decomposes
the pattern into structural primitives, and in many instances is analogous with
syntactical method.

Statistical and syntactical methods have different advantages and
disadvantages. It is only natural to expect that researchers would combine 2 methods
into a hybrid method ([BAIR86]). Depending on the quality of the characters, some
simple methods are adequate for well-formed characters, while more sophisticated
methods are required for characters of poorer quality, thus there is the multistage
approach ([LAMS86], [DHTW80], [KS88]). Or, more than one method can be applied
and a decision is made by selecting one candidate from the results given by all the
methods, this is called the majority voting approach ([HULLSS]).

Of particular interest is the neural network approach which was introduced
recently ([KC88],[PLHS88]). The image matrix is fed to the input nodes in the
neural net. There are the output nodes which give the result of recognition. Between
the input and output nodes are intermediary nodes, all the nodes are interconnected
to become a network. Each node generates an output depending on the input, while
cutput from cne node is the input to other nodes. The network is self-learning; in
the learning step, each node modifies the function that generates its output using
some reward or punishment factors so that the final classification output will be

correct.
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1.2 EVALUATION OF EXISTING METHODS

The methods and results reported in studies on optical character recognition are
bewildering. A summary of selected methods are given in Table 1.1. Although this
thesis concentrates only on the recognition of totally unconstrained numerals, some
methods which recognize carefully written characters, numerals and upper case
alphabets, and also Kanji characters are included, because there are similarities in
methodology for different types of characters.

Recognition rates as high as 99.9% have been reported. It can be noted that the
recognition rate is very much dependent on the quality of the characters as well as
the method used. The recognition rate of 99% reported by Badreldin and Shridhar
([SB86]) was obtained by 2 methods, one using Fourier descriptors and statistical
recognition, and the other using geometrical measurements and syntactical
recognition. The rate of 99.7% reported by Gudesen ((GUDE76]) was from a
method that uses normalization in preprocessing, Karhunen-Loeve expansion for
feature extraction, and statistical recognition (Bayes’ method). Yu Mong
((IMONGS82]) used geometrical primitives and syntactical recognition to obtain a
recognition rate of 98.6%.

Although more than one hundred methods have been proposed in the literature,
it is not possible to compare them and to decide which method would be the best
approach, for the following reasons:

1/ Quality of the characters: In most studies, some judgments were made by the
author(s) to exclude a number of poorly written characters from the data base.
These judgments are subjective because different authors will accept and reject

different samples. The quality and the authenticity of the data are different from one



study to another. For standardization and accurate evaluation of recognition
methods, a common data base should be established so that all researchers do not
have to compare oranges with apples. So far, this common data base does not exist.

2/ Size of the data base and the number of writers: the small size of the
character data base and the small number of writers do not guarantee that the
samples are representative of real-life situation. It can be expected that
unconstrained handwriting will create more pattern classes than careful writing, and
the number of classes increases with the number of writers and number of samples.

3/ Some methods are of theoretical interest, but in the foreseeable future, are
not cost-effective or reliable enough to be implemented in practice: either the
recognition rate is too low (neural network), or the computation cost is too high
(Fourier descriptors, relaxation matching, neural network).

In Table 1.1, it is observed that for all methods that have high recognition rates
(98-99%), their data bases either consist of characters written in a controlled manner
(such as following a set of given models) or they are small, or they are sizeable data
bases but involving only a small number of writers. One exception is the work by
Duerr et al [DHTW80], which is discussed in Chapter 11.

For data bases which are known to have totally unconstrained handwritten
characters collected from a large number of writers from the general public, the best

recognition rates reported are listed below:
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Table 1.2 : Summary of recognition results
of totally unconstrained characters

REF. RECOG. SUBST. REJECTION RELIABILITY SIZE OF DATA RESOLUT 10N
(¢3) ERROR ¢3) <X) TRAIN TEST OF DATA (DPI)

BEUN73 91.37 2.67 5.96 97.16 15,000 10,000 -

HULLSS 91.0 1.7 7.3 98.17 1.754 >8,000 €1) 300

Ks88 93.3 2.5 4.2 97.39 - 7,100 300

AHMEBG 89.55 3.45 7.0 96.29 5,000 3,450 166

LAMBS 93.15 2.25 4.6 97.64 5,000 2,000 166

LAMBS 96.00 3.15 0.85 96.82 5,000 2,000 166

MG88 81.0 2.0 17.0 97.59 1,500 ¢2) 1,000 3

This study 94 .47 2.49 3.04 97.44 8,500 8,485 166

Note: (1) WNot accurately specified
€(2) This training set, which was used together with the test set of 1000 samples

in this table is not the same as the training set in Table 1.1 which had
5000 samples

¢3) Good resolution: thinning required 5 passes

Further analyses and comparison of results are treated in Chapter 11.
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2. APPROACH USED IN THIS WORK

2.1 PROBLEMS RELATED TO UNCONSTRAINED HANDWRITTEN NUMERALS
In unconstrained handwriting, normally the writer does not take special care to
make sure that the characters are properly formed when writing, the writing medium
such as pen and paper have not been selected to give good written characters. As
illustrated with some samples taken from the training set, the following problems
may occur:
Incomplete stroke formation: the writer did not write the full stroke; or when
he(she) did, the scanning and preprocessing steps failed to record the full
stroke (see numerals 56, 3185 in Fig. 2.1).
The writer produced extra strokes in writing, he(she) might overwrite or
retrace to correct the character. The character might be written in a fancy
way with some ornamental strokes (numerals 523, 4179, 4444 in Fig. 2.1).
Careless writing: the writer did not write the character in a proper way
(numerals 3650, 7197 in Fig. 2.1).
Type of pen is also important. When writing small characters, a pen with a
thick tip will produce a poor image resolution. Also, if the ink of the pen does
not flow smoothly, white holes may be created inside the stroke (numerals
683, 3393, 6080 in Fig. 2.1).
The quality of writing paper: A coarse paper surface and thick pen stroke will
produce characters with uneven border and inside holes (numeral 683 in Fig.
2.1). The paper may have lines on them which produce background noise

(numerals 683, 1022 in Fig. 2.1).



Fig. 2.1 : Examples of problems found in
unconstrained handwriting

NUMERAL ND. 56 : 0
Incomplete stroke

_r
LETEE T
L X X4 -
- =
*
LR
X
*
¥
R 3
*n
*ww
*n
xn
*w
_ W
L]
LR
* *
b "
LA -
LR LE 2]
Ll o
L 2] . %
IR X RSN S
L E L FTT]

NUMERAL NO. 523 : 0
Extra stroke

L
* ™
LR
LR
L E 2
.
LR LA & B
[ % 'YII2 A R TTER R 2 ]
TIIEERTEL R | IR R B R J
(AR R B B4 LR 2
(35 8 4 [ 3]
* (3 1)
’ [ 3
- e
""" akd
EE LR 2
LR R L3I 222
LA A J AR E
LR B B LA R R 2]

[ E X2 E 2] (TR B X232
P TIIS I E RS LA A B 2
TR L S TR E R}

NUMERAL NO. 146 : O

Coarse paper or uneven ink flow

[ 2]
L E X R ]
EE R E X 3
L EE R
ke -
kW * ok
WMk Ak k

*hE wew ]

LR 2] - n
- x * ok
- '™
* n -
*x w
EEE P
. XY

LR 2 ]

LR 2 3
LE R »
e .
LR K 2 'Y 2}
& & LA &4

LA SRR R 2 XY
LI R R R E R ¥
LA R R &

NUMERAL NO. €83 : O
Coarse paper and thick pen

* x
LA XS]
® mkpwdx &
AR RT R ®
(B XSRS EEL LR SR J
HERAR TR SRS TR ® N
EA 2 RS R B R J LR R L B X

(A XX 2 2 2 2 kR mk k&

LA EE L L) PSR R RS
LA 2§ 33 sankEk *x
LS X X B J LA R 2R 2]

L XX 2] @ XK EEREE
LR 2] ke
(2 2 32222 0 & 22
(AR S 2R L 2
ke ke
LEE B 2 0 N

*k & *

*®
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NUMERAL NDO.1022 : O
Background noise

L E S 2 2 8% 3
LR AR EL RS X ]
L2 R R R R B3 L2 2
ok wok ok Wk %
[EEEE R R - %
LA R A2 3] - %
X2 3 L RN
LR X L 24
L & 23 W
LE R 2] LR ]
L2 S 2 3] LA
W wk -k
"k - LA 2
L 23 o "k
L 8 - LR 2]
LR R ] L33 % &
¥ = % LN
LA LR 8 *® swA®
L2 RS R 8 A 8 & B 82 2
(222 2 28 8 J
- *

NUMERAL NO.3185 : 2
Incomplete stroke

LA A B
‘REREEEE
L2 L2 2 ]
EE X ] * kK
¥ LR
- ok ok
L8 k¥
&k w * %
LE R & 3 xR
"% LA L]
LE B LR 24
* % *kk
L2 2
x %
*® ok
LR 2 J
(AR 2 2] k%
L X222 R 8 2 ¥R LA X3
L2 2 L ER 'R 2 LR 2]
- L2 AR 2 FE S 3]
LR 2 2 J
LR R
LR R
ook ok
¢k AEwaxsh®
L 2 XSS RS2SR
Rt RRME IR BT RD
ek
.k

14

NUMERAL NO.3178 : 2
Missing stroke or careless writing

(222 RS2 R & 2 3}
Mook e ol ok R ok ol ok ok ol age ok ol ke ol ok K e e ake ok  ak
AR MR ARRP AR KN R A RR R Rk ko
I E XTI IR RS RS R A2 S S )
AR AR AR AR R R Rk -k ko
FEEEEEI T XN LR
EwEE
«waw
swxwE
EE X 2 83
=k
LA 2 2
L2 2 22 J
(X2 23]
LE B2 2
LE X R R J
LR L
ExwEER
LR R 2R
LR 2 22
LA A R B
LR AR E
[T R E & K3
ok kWK
LE RS R
LR 2 2
LR AR ]

L R

NUMERAL NO.3383 : 2
Thick stroke, loss of detail

LA R R 2 1
ook sk o ok sk
Wk W W
L2 2 R 2 2 3
LR X R4
LR S 3
L3
LR XX}
EE R X I
LI R X TR L] ]
IS XS 2SR 21
(2R E A XS RS ]
L EE R L LR 2 R 80 2]
REE R G R R TN kN T ®
(A AR A2 EE X
LA 2R 2 2 %Y
-




ubid

NUMERAL NDO.3650 : 2
Careless writing

&*
L & 2 3
LT
L3 23
e
L33
L 22
hdd NUMERAL NO.4179 : 3
bl Extra stroke
L B B ]
LR
- "
i 2 4 L2 B3
-k L 2 2 8 8]
- semenn
L3 2] LA A (AR T
T I L] Rk
LE R E R 2] (2 R R R
EEEE 2R 2] * *% LT Y]
'S ERRETR B2 L2 2 X ]
'EEEE R ERZ R} LE R R B
L3 ¥ LA R X X1
L 3] LEE A E SRS Y B8 Y *
- x AL A R EEER SR SN IR Y 2
K K AWk k & W ko ok
awn T TL)
] LR ¥ 3 eXE®
%k kK ok L X R §
ISR ¥} XS £ 33
L)
T
NUMERAL NO.4444 : 3 seam
Fancy writing or change of mind when writing e
%k
(R E R ¥
b L ZTT e
MR MR kW Wk
AR RRRR R R R KR _::
PR 2 S22 SRR R BN B YT
oo AT EE
ki aen Y
[ 2 2 2 2 B J
LA 22 2 B ] e
YL .
—rnaw L 2 k]
o
YL
ST L] ‘:::.
kra ke * LE X E 2 ]
b s TTIT
o b e kb nEn
bt b S i T3] - T3 2IT
hdhh it I LTI
bbbl I
b LIETY T PTTs
'TL)
"k
“en
Ty
[ 3 2 3
[T
[ 2] **
ke bl
LT 2] ® %%
sekss ok ok

(S22 R E RS R R R B J
ST REAR TR R &
TRk R"
* &%

15




NUMERAL MNO.6080 : 6
Thick stroke, 1oss of detail

L2 ]
LA 2 2]
c“EEEN
L2 A 23 3
(AL R RS RS
LT R 22 ]
e
P LY
aRERN
kR
Thwksa
cwww
-
mw
W
LR X 33
LE R E R
LR & ]
LA E X8 3
E 2 E 22
L2 2 N
[ 2 % B 23 LA R 31
Sk EE R EEEE
SRkl ko k
R RIE TR
MRk Rk kR Wk ko
Wl kol kK
L2 2 E 2222 2 0 A2 A
(L E X R R X BB 2J
REEBABREE R &N
(2 EER SR EER]
(2R 2 RS2 AR RS
B ol ko kK kR
(A EREESER R S8R ¥ 1
FRENERABEER K&
-k ok
LR 2 2]

NUMERAL NO.7587 : 8
Correction or retracing stroke

L ]
o
-
- % -
* % L2 23

s Ewkdkwn
[ E R 222
LR B
LA J L2
X 2 LX T 1]
L2 B L X 2]
LA AL R R B
L2 2R 2
LER B 1
[ Z XX 2]
ek RUwEd
LR R 2] L2 2
[ R 2 2] PR
ok LR R J
wk kR *k
L 2 2] LR X
LE A J kK
L E 23
L] L2
sk& ®k N
e XX L]
TR SRR &R 2 J
Y2222 08 2
-

NUMERAL NO.7197 : 7
Improper formation of character

LA R 8
LR K 3 %3
LR B ]
L2 2 F 3
E AR X ]
LA & 21
LR A J
LA B
*hw ko
LR R 2]
LA LR ]
LA 2§
- hw
® w
LE 3]
LA K
LR
LA 22
ok kk
o
L3 B
kR
TRMEE TN
L2 B X &3
LE 2
LR 2 2
* k%
L L X
" w
*
LR
*kh
LR 2
*x
LR S ]
LE S 2
ok
(22 R R 2 XS R ]
kbW

16




In free writing with no constraints imposed, the number of pattern classes that
are created can increase dramatically. For example, the skeleton representation of

numeral 4 may have from 0 to 4 fork points:

{ L/ Z;_ /

0 fork point 1 fork point 2 fork points

£ £
/f f
f—orf f—/f-f—e
" ©
e
3 fork points 4 fork points

Fig. 2.2 : Different configurations of numeral 4
With extra fork points produced by noise and poorly formatted strokes, the
number of possibilities may increase even further. This variety of character forms
and shapes will confuse most structural methods. Hence a method must be very
sophisticated to be able to handle most cases.
Likewise, statistical methods and methods that use global analysis can also be
confused by the variation in the black pixel positions of the character image. Take

the non-parametric methods for example, the large number of patter.. classes will

17



create a large number of hyperplanes and increase the probability that many

hyperplanes have equal distances from the unknown vector.

unknown
vector

<——— hyperplanes

Fig. 2.3 : Confusion due to a large number of hyperplanes

2.2 GOALS OF THIS THESIS

2.2.1 The role of human intelligence in recognition

For accurate recognition, ideally all the character ’s features should be extracted
such that it is possible to reconstruct the original image from the features, or at least
an image close to the original one that can be recognized by human. In most pattern
recognition methods, only the features considered to give accurate and unambiguous
recognition within the specified context need to be extracted, it is not important that
the original image can be reconstructed from those features. By the specified context,
the method knows beforehand what type of characters it is dealing with, such as:
numerals only, upper case letters only, etc..

In a method that does not use human intelligence in recognition, the character
may be transformed into mathematical entities, or grammar tokens, these
representations can not be visually perceived by human. When the recognition rate
needs to be improved, it will be found that an elaboration or modification of the

method using mathematical representation or grammar tokens will not lead to

18



improvement, in fact, there may be no more direction to go from there. A method
using human intelligence to guide the feature extraction process allows the method
to be constantly refined by addition of more human knowledge; hence the
recognition rate can be improved to be near or surpass the human recognition rate,
2.2.2 Goals of this thesis
Unconstrained handwriting is a real-life situation. To recognize them the method
cannot consider only the ideal situations. All the elements of this method should aim
to exploit the real features from the real data. Hence, the goals of the thesis are:

1/ To have the algorithm behave like human: Human recognizes things by
storing the knowledge about features of known objects in memory, this is what
we call experience. This experience will be used to recognize unknown
objects. The computer would store knowledge about features from training
in its memory, and use this knowledge to recognize unknown characters.

2/ To be objective in approach: Once a researcher decides to disregard any
samples, some degree of subjectivity will be introduced into the method,
consequently the features selection will also be subjective. When features are
not subjective (i.e. dependent on the human expert and the training set, but
do not reflect the general features of all numerals), the method will perform
well with a training set, but when applied to a test set, the recognition rate
will deteriorate. To assure objectiveness, ihe training samples would be
selected randomly, no visual inspection would be made to reject any character
from the training set, no matter how distorted or how poorly it has been
written, The rejection would occur in the recognition process, where the

algorithm would compute that the features found on those poor samples are
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self-conflicting and do not result in an acceptable confidence level. The
method therefore would automatically handle non-representative samples
without human intervention.

3/ To be able to handle overlapping features: One of the major problems in
pattern recognition is overlapping features (for example 1 and 7, 7 and 4, 0
and 6, 4 and 9). The statistical recognition methods can have some clustering
method to produce a boundary between overlapping features. The syntactical
methods have to use a much more complicated grammar to handle it. In this
method, the decision would be made from consideration of all features,
represented by their actual occurrences in the training set. Since many
features would be invoived, the overlapping aspect would be handled
automatically and flexibly.

4/ To promote machine learning so that the machine can participate in
extracting and organizing the features without guidance from the human
expert. In this study, the primary features would be automatically generated
by the computer which would also organize secondary features and record
statistical data on the features.

5/ To reach an acceptable degree of accuracy.

6/ To have an acceptable efficiency: it would not incur too high a computational

cost.

2.3 DESCRIPTION OF THE METHOD
In most recognition methods, in the training stage, the samples are examined by

the human expert. From examinations and analyses, a number of features will be

20




selected, then methods to extract these features will be designed. The classifier will
have the knowledge given to it by the human expert, in the form of a decision tree,
a grammar, a number of templates or hyperplanes... In the recognition stage, the
computer compares the features of the unknown characters with the decision tree,
or the grammar, set of templates or hyperplanes.., and a decision on the assigned

class is given.

Training Stage

Training FEATURE CLASSIFIER | Classifier
> | PREPROCESSOR {——> DESIGN >
Samples ANALYSIS BY HUMAN Knowledge

v

Recognition Stage

Test FEATURE Assigned
> | PREPROCESSOR > CLASSIFIER >
Samples EXTRACTOR Class

v

Fig. 2.4 : The usual approach in recognition

In this method, building the classifier knowledge was a co-operative effort from
both the human expert and the computer. The human expert suggested the features
that the computer should look at, the computer inspected the training samples for
the features, organized the data on the frequency of occurrences of the features, and
used these data to recognize a sample. Examining the inference process that the
computer made and its recognition result, the human expert would add more
features in order to improve the recognition rate, he might also decide to take out

some previous features if those features did not contribute to a better recognition

21



rate. Therefore, the computer was not only a recognition tool, but also a useful

partner with the human expert in the design of the classifier.

2 recognition methods were used in this study:

1/ In the inference method, the knowledge base kept the frequency of

2/

occurrences of the 10 numerals that satisfied a rule (i.e. having a feature).
The list of 10 values of frequency of occurrences could be considered as a list
of hypotheses, each value represented a likelihood measurement of a numeral
being present in the training set. Recognition was an inference process using
set operations to find the set of known numerals in the knowledge base that
had all the features of the unknown numeral, and from this set of hypotheses,
a decision on the most probable assigned class was made using Bayes’ Rule.
Another knowledge base was used to contain entries about pattern classes,
from the most common to the most unusual. Each pattern class consisted of
samples that had the same combination of features. The knowledge base
could be ’purified’ by filtering out pattern classes which had a number of
occurrences lower than a threshold. By changing the threshold values,
different degrees of reliability could be achieved. Recognition was done by

a structural classifier using feature matching.

A block diagram of the overall process is given in Fig. 2.5.

22



Input
characters

v

PREPROCESSING

Smoothing

Thinning

Location of
special points

Skeleton
simplification

learn

Inference
Knowledge Feature < > Engine or
base recog. extraction Structural
> Classifier

v

Assigned class

Fig. 2.5 : Block diagram of the method
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3. PREPROCESSING

The data base was collected from dead letter envelopes by the U.S. Postal
Services at different locations in the United States. The samples were digitized at a
resolution of approximately 166 dots per inch, then binarized, enhanced and
segmented. The above preprocessing steps are described in detail in [SALSS].
Further preprocessing was done in this study.

Preprocessing helps to obtain simpler patterns that will yield more discriminative
features in the feature extraction process. Depending on the feature extraction and
the recognition method that are used, some preprocessing techniques are favored
over others. As this method is based on human perception which usually interprets
the character image as a combination of strokes, thinning was used in order to
obtain a stroke representation of a character. Before thinning, edge smoothing as
well as hole filling were applied to produce a better skeleton. The effect of
normalization (mainly size reduction) was also investigated.

The skeleton obtained from thinning consists of the following special points
connected together by stroke segments:

E : end point (tip of stroke)
F : fork point (a point having 3 strokes coming from it)

X : cross point (a crossing point of 2 strokes).




i | |

F X

End point Fork point Cross point

Fig. 3.1 : Special points in a skeleton

3.1 NOISE IN SKELETON

4 major types of noise on the produced skeletons are identified:

1/ A white noise on a black background will be amplified and extra fork points
are generated. In this report we call this type of noise F-type (Fig. 3.2a).

2/ Touching pixels from 2 strokes generate extra fork points. This type of noise
is also called F-type (Fig. 3.2b).

3/ A protrusion along the edge of stroke or a sharp turn in a stroke produces
a tail (1 fork + 1end point). This type of noise is called E-type (Fig. 3.2¢c).

4/ Aloop is thinned into a single stroke. This type of noise is called L-Type.

/[0
Y /0 I )
& ] !
0 )

6) (%) 8

(a) F-Type noise (b) F-Type noise (c) E-Type noise (d) L-Type noise

Fig. 3.2 : Undesirable noise on skeletons

25



The E-type noise caused by a sharp turn in a stroke helps to identify an
important feature. On the other hand, an E-type noise caused by extra stroke or in
a middle of a straight stroke only makes the skeleton more complicated. E-type
noise is comparatively easy to handle in the later stages.

The F-type noise is more difficult to handle, it produces recognition errors and
causes the recognition algorithm to be more complicated.

The L-Type noise is actually a loss of information from the original image. It will
produce more substitution errors.

The above types of noise can be reduced by 3 methods: size reduction, noise

removal from the original image, and edge smoothing.

3.2 SIZE REDUCTION

Size reduction can be considered as a 2-dimensional transformation that may
reduce the effect of irregularities on the edges of the strokes, making it easier to get
a simple pattern (Fig. 3.3). It can also remove some white noise in a black
background (Fig. 3.4).

Size reduction decreases the number of black pixels in the pattern, and can be
considered as a partial thinning operation that reduces the thickness of a character
in a uniform way. The thinning method of inspecting 3x3 window always follows an
order in scanning and removes pixels in the same order. It may erode the character
in one direction more than the other, not uniformly like size reduction.

An additional benefit of size reduction is that the smaller pattern will take less
CPU time in processing.

Size reduction will reduce the E-type noise on the skeleton. However, when the

26



Fig.3.3 : Size reduction helps to get a simple pattern

Full Size 51 x 51

% Wk LI X £ X
L2 A R X% 31 (2 RS2 LR
(A AR R T ESE NSRS R

LA E R R E 3 ) LA LR 2 ]

o e v e dke ko o LR 2

MR W E W R -
MmEkE wwww twnw
R L] LA RN EEE 2
Amun - LR E R}
xR =-w * ko
cwkw -« Ty
LT LE LR 2R
L2 R3] = kRE®

LR 2 L3 A2

LEZ 2 L2 2 1

L 2 2 LR 3 X ]

L2 5 3 ] L XY

LE R ¥ LEE X ]

X2 T [T E]

PR A 2] LR R X
LA X R 3 LA R E R ¥
LA 2R 2 LR R
=% &k LR R 2]
LE R 2 LE R 2§
okl LT T8

emEs  wExuw
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LA 2 ER 2 KR ¥ ]

-k koo
ww M ok

LE R R RS AR E]

X R Y 23
LEE S § 3

LS R R B 3 L & & 1
LA B2 2 F
kW [ X 3
[ E A2 B X X3
L EZ R B K w .
(22 R FR K X ¥
LR R R E " ew
I 2T EEEER N R R
el ok L B4
RAXT SN W ww
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Fig.3.4 :

Full size 32 x 32
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strokes are brought closer to one another by size reduction, they may become close
enough to introduce F-Type noise. Size reduction may also fill up a valid white area

inside the pattern, and change a loop into a single line, producing L-type noise (Fig.

3.5).

3.3 NOISE REMOVAL FROM ORIGINAL IMAGE

The image is scanned by a window of 3x3 pixels. The window has 9 pixels,
divided into majority pixels and minority pixels, the majority pixels being the ones
that have a larger count in the window than the minority pixels. If there is only 1
minority pixel and 8 majority pixels, the minority pixel is considered as noise and

changed to a majority pixel (Fig. 3.6). The operation is called noise removal.

* * *
* *x , %
% % %

Black noise White noise

Fig. 3.6 : Noise of 1 minority pixel in the window

3.4 EDGE SMOOTHING

If the noise removal operation is extended to those cases where there are 2, 3 or
4 minority pixels in a 3x3 window, in addition to some noise being removed, then the
irregularities at crossing points or bending points in the image tend to even out, so
that thinning will give a simpler pattern without extra fork points or tails (F-type and
E-Tyre noise). We call this operation edge smoothing. The undesirable effects of

edge smwoothing are:
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- when changing white pixels to black, it may overfill a small loop and change
the loop to a line and create an L-type noise,
- wher changing black pixels to white, it may create a discontinuity in a thin
stroke.
The advantages and disadvantages of size reduction and edge smoothing are very
similar. Edge smoothing is more flexible because the rules to switch a pixel from
white to black or vice versa can be varied to give different results. On the other

hand, edge smoothing requires more computing time.

3.5 EXPERIMENTS IN PREPROCESSING

Different degrees of size reduction and different criteria for noise removal and
edge smoothing were attempted to determine a set of conditions that produces a
simple skeleton retaining all the geometrical features of the original image. The
skeletons produced by different preprocessing parameters were inspected visually and
some measurement of the amount of noise (Error Count) in the skeletons was made.
It was found that some preprocessing methods intensify one kind of noise while
other methods intensify others. By inspecting the Error Counts (EC) in a wide
solution space, optimal areas which give the right combination of preprocessing
parameters can be found.

200 samples from the data base (20 for each numeral) were extracted and put
through the following steps:

1/ Different size reduction: no reduction, or reduced to smaller sizes.

2/ Noise removal.

3/ Different degrees of smoothing (including no smoothing).
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4/ Thinning using an algorithm by Shinghal and Naccache [NS84].

For the first set of experiments (Set 1), there was only noise removal, so that the
effect of size reduction could be seen more clearly. In the next 4 sets, the rules were
extended to produce edge smoothing.

From the results of the first set, 112 samples out of the 200 samples gave similar
skeleton results for full size as well as when they were reduced to 31x31, 26x26,
21x21 and 16x16. There were 88 samples that gave different skeletons for different
reduction sizes. These 88 samples were used in different trial runs using different
combinations of size reduction and edge smoothing.

After each run, the skeletons obtained from the samples were visually inspected,
and any features on the skeletons considered as noise were recorded.

The noise was classified as E-Type, F-type or L-Type as discussed in Section 3.1.
Since the effects of noise on the difficulty and accuracy of recognition were different,
each type of noise was given a different weight. The assignment of the weight factors
was intuitive and subjective, as follows:

- E-Type noise is easiest to handle, weight factor = 1.

- F-Type noise makes recognition much more difficult, weight factor = 2,

- L-Type noise can cause misrecognition, weight factor = 3.

The number of noise was multiplied by the weight factors and added together
to give a value representing the Error Count (EC) of the run.

The results of the runs on Set 1 (with noise removal, but no smoothing) is given

in Table 3.7.
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Table 3.7 : Results of Set 1 (200 samples)
(No smoothing applied)

Full Normalized size
Size

26x26  21x21 16x16

Total no. of noise/errors 21 18 19 24
L-type 0 1 5 11
F-type 17 16 14 13
E-type 4 1 0 0
Error Count 38 36 43 59

3.5.1 Description of different runs

Each set of experiments has a different way of smoothing the image. For
convenience, the number identifying the set of experiment and the smoothing
method used is the same (eg. Set 2A uses smoothing method 2A).

Each smoothing meihod inspected the pixels in a 3x3 scanning window, and used
different rules to switch color of the center minority pixel. We distinguish the
following criteria to decide on smoothing operation:

- Pixel count basis: smoothing is considered if the number of the minority pixels

in the scanning window is 1,2,3 or 4. In the case of 1, we have noise removal.

- Pixel connectivity: the majority pixels surrounding the minority pixel in the

center are inspected to see whether they are connected together or not.

x . % * Kk %
x | ok . . *
. * . . k%
(a) 4 minority pixels (b) 4 minority pixels
S majority pixels 5 majority pixels
are not connected are connected

Fig 3.8 : Connectivity condition
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- Symmetry of color: the smoothing rule is applied to both black and white
pixels, or just applied to one type of color only.

- Propagation of smoothing: with propagation, when a minority pixel is changed
to have the majority color, it is considered to have the new color in following
inspections, thus the change can be propagated. With no propagation, when
a pixel changes color, it is not considered as having the new color in next
inspections.

The sets of experiments were selected so that these factors, together with the size
of the image would be considered. The sets and the methods used are summarized
in Table 3.9. Summary of results are given in Table 3.10, graphs of Error Count for
different image sizes and different smoothing methods are plotted in Figures 3.11 to

3.14.

Table 3.9 : Summary of smoothing methods

Methods 2 20 28 2C 3 32 38 30 3k 3F 4 4A 4B 4D

Ho.of minority
pixels

2
3 X X X X X X X X X X
4

Propagation X X X X X x

Connectivity of X X x X X x X x X X X
majority pixels

Symmetry of X X X X X
smoothing

Minimum error count 18 14 19 17 17 22 21 11 1% 18 19 19 20 16

33



Table 3.10 : Summary of results

Notes : * denotes the minimum error count in the row

Size used in thinning

Experiment Set

Full

38
21
19+

34

31x31

25
21
22
25

24
2%
22
15
14>
21

21
25

26x26

36>

18*
14%
22

17«

17+
a2+
22
24
25

19*
19*
20*

21x21

43

35
34

Total

96
1M1
107
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Fig. 3.11 : Error count of Set 1
Noise removal only
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Fig. 3.12 : Error count of Set 2
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Fig. 3.13 : Error count of Set 3
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3.5.2 Result Analysis

The calculated *Error Count’ is subjective and not very accurate, because:

It is not certain whether the weight factors are correctly assigned.
Human errors and inconsistencies may occur when a skeleton is examined to
decide whether it contains errors or not. If there is an error, the severity of

the error cannot be decided quantitatively.

Bearing in mind this limitation, the following observations are only relatively

conclusive:

a/ Effects of image size: From Table 3.10, it is found that for a certain degree

of smoothing, there is an optimum size. For example:
+ With no smoothing (Set 1), the best size is about 26x26,
+ With more smoothing, the minimum error count is obtained using full size

(Set 3D, error count = 11).

b/ Effects of applying the same rule for both black and white pixels (symmetry

of smoothing): In Tables 3.9 and 3.10, comparing the error counts between
Sets 2 and 2C (error counts 18 and 17), Sets 3 and 3B (error counts 17 and
21), Sets 4 and 4B (error counts 19 and 20), where in the first set the rules
for black and white pixels are the same, and in the second set the rules for
2 types of pixels are different, we do not see any real advantage in applying
the same rule for both black and white pixels. At high degree of smoothing
and the 2 types of pixels are treated the same (Set 3F), the image is
smoother, but because of expansion of white areas, thin places in the image

become broken.

¢/ Effects of propagation on smoothing: Propagation increases the degree of
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smoothing. At a large image size, its effect is not very noticeable, but at a
smaller size, it may overfill enclosed areas and create more L-Type noise.

d/ Effects of connectivity restriction: At first, it was thought that by introducing

the connectivity requirement, smoothing would be more discriminatory. But
when removing the restriction, the smoothing still gave surprisingly good
skeletons at larger image sizes (set 3D which did not apply the connectivity
requirement had error count of 11, while set 3 using the same other
parameters, and applied the connectivity requirement, had an error count of
17). The connectivity requirement also adds extra computing cost to
smoothing.

3.5.3 The optimum solution

From the solution space obtained from different sets of experiments, there are
2 areas which give lower error count:

+ Smoothing method 2A with image size 26x26 (error count = 14),

+ Smoothing method 3D with original image size (error count = 11),

However the second solution is a better choice than the first because:

+ Variation in this area is not very sensitive, so there is less chance of error.

+ A bigger skeleton is more accurate and gives more room for further

processing.

To minimize the L-Type noise of the second solution, we used smoothing method
3D for image with size > 24. When filling white hole and the maximum size of
image was smaller than 24, method 2A was used (ie. if there are 2 white pixels in
the 3x3 window, one white in the center, the center white will be switched to black

with propagation).
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3.56.4 Conclusions on preprocessing steps before thinning

There are an essential number of features or special points that should be
present in the skeleton. Having more than the optimal number of features leads to
unwarranted complication in recognition, having less will increase misrecognition.

Smoothing the image by size reduction or by inspecting a window and changing
the color of a pixel will help to create a skeleton with the essential features and
minimum amount of noise.

Although the measurement of errors in all the experiments were not accurate,
the results strongly suggested that size reduction is not as good as edge smoothing,
Hence finally method 3D was selected as the preprocessing method before thinning
for samples with size > 24x24 and method 2A (where smoothing is more limited

than 3D) was selected for samples with a smaller size.

3.6 THINNING

The thinning algorithm used in this study was developed by Naccache and
Shinghal at Concordia University [NS84]. It is noticed that in some cases, this
method gave excessive erosion and the skeleton sometimes was not in the center of
the original strokes. However in general, satisfactory skeletons were obtained. Since
the main thrusts of this study are on feature extraction and recognition, no special
effort was made to find the best method that gives the highest speed or the most
representative skeletons.

After thinning, the skeletons were analyzed to locate the special points: end
points, fork points and cross points; these points served as reference points for all

subsequent processing: simplification of skeleton and feature extraction.
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3.7 SIMPLIFICATION OF SKELETON

It is possible to reduce the number of special points in the skeleton to achieve
a simpler representation and therefore reduce the number of pattern classes that the
recognition algorithm has to handle:

3.7.1 Joining 2 neighboring end points

If 2 end points are close to each other and there are no other special points in
the vicinity, they are joined together by an approximate straight line. This is
implemented by inspecting a window with horizontal and vertical distance of

(0.10 * the diagonal dimension of the image) from each end point.

\ 0.10 * diagonal

E. —

this second end point found
in the window will be joined with
' the first end point at the center

0.10 * diagonal

Fig. 3.15 : Window to join 2 end points

This process helps to join broken strokes in numerals 0,2,8.. (Fig. 3.16), but it has

undesirable effects when it joins the middle stroke of numeral 3 to the top or the

bottom stroke (Fig. 3.17).
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Fig. 3.16 : Joining simplifies skeletons of 0,2,8
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Fig. 3.17 : Undesirable effects when joining neighboring end points

The threshold (0.10 * diagonal) is the maximum that can be used without causing
the undesirable side effect on numeral 3 as explained above.

3.7.2 Removing short tails

A short tail in a skeleton consists of a fork point and an end point close to it. A
window with horizontal and vertical boundaries equal to (0.07 * the diagonal
dimension of the image) from each fork point is investigated. If there is a path
connecting the fork point to the end point within the window, the pixels along the
path are erased, the end point is removed and the fork point becomes a normal

point.
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Fig. 3.18 : Removal of a short tail
This operation also has some side effects and removes meaningful strokes, such

as the ones illustrated in Fig. 3.19,

removed e

e-l-f e

removed f
!
e

[¢]
[¢J

4) (7) 4

Fig. 3.19 : Side effects of tail removal

The ratio 0.07 of the diagonal has been selected to minimice this undesirable

effect.

3.7.3 Removing neighboring forks points

Neighboring fork points are usually caused by white holes in the image. In such
cases the skeleton can be simplified. For example, the following simplification can

be made:




becomes \ X /
RN
becomes
becones 1|='

(d) F-F becomes X

/1'5‘—1"‘\ AN

Fig. 3.20 : Simplification of fork points

These simplifications were not implemented in this study because of the following

reasons:

- the above types of configuration do not occur very frequently. When they do,
there is logic in the feature extraction process to handle the most frequent
ones,

- with other factors considered, (such as deciding the threshold below which 2
fork points are considered close to each other), it may turn out that some new
confusion will appear and the recognition accuracy may not improve,

- these errors may be specific to the smoothing and thinning method used in
this study and may become negligible if a better smoothing or a better

thinning method is used,
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- Pprogramming the method to detect the configuration and to perform the
simplifying operation is complicated. It involves tracing all possible paths from
each fork point inside a window having the considered fork point at the
center. The logic must deal with all possible combinations of special points
that may be present in the window (end points, fork points, cross points). The
costs in programming and in program execution are high while it is not sure

whether much benefit could be gained from this operation.

3.8 THE ROLE OF PREPROCESSING

In this study, more attention has been paid to the use of a knowledge base
constructed by the computer under the guidance of a human expert, and study was
not done extensively to improve preprocessing.

After the knowledge base has been fully developed, stable recognition results
were reached and the recognition errors were inspected in detail, it is felt that a
sophisticated preprocessing method is probably a very effective way to transform an
unconstrained and poorly written character into a properly formed character so that
finally a good skeleton can be obtained. In addition to using the knowledge base in
the classification stage, expert modules can aiso be attached to the preprocessor to
identify a familiar configuration and give appropriate thinning tailored to that
configuration.

A recent study by Brown et al [BFW88] has treated preprocessing extensively.
The authors introduced a number of new concepts and techniques to obtain good
skeletons that retain maximum features of the original patterns, such as:

- [Implementation of easy skeleton simplification like configuration (a) in
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TR TN,

Fig. 3.20.

Stroke concept and uniform erosion to avoid thinning a filled loop into a
straight stroke (the concept of *unthinnable region’).

Using expert modules to handle special configurations.

Selective removal of spurious tails: tails are considered for removal only when

they occur at some designated areas in the pattern image.
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4. FEATURES AND FEATURE EXTRACTION

41 FEATURE GENERATION BY COMPUTER

One of the desirable goals is to automate feature selection and extraction as
much as possible. The computer can make measurements on the pattern and store
the features as a character array, where each character represents a measurement
or the presence of a feature. In order to explore the effectiveness of features
generated by computers, some experiments were conducted using various types of
features which can be observed by the computer without human intervention.

4.1.1 Sequence of special points

The skeleton from a numeral was scanned from top to bottom, left to right, and
all the special points were recorded in a ’feature string’, for example, the feature

string of the following skeleton is 'EEFE’

/

This feature string has a close relation with the position of the special points and
the number of strokes in the numeral. Using this feature string, from a training set
of 8500 samples, the computer automatically generated a knowledge base of 87
features. This knowledge base was used to recognize 530 unknown samples. The

recognition results were:




Recognition 64.91%

Substitution 34.53%
Rejection 0.57%
Reliability 65.28%

This feature is very simple and need no human intelligence or knowledge, the
approach is the same as neural networks, yet it achieved the same recognition rate
as neural networks (33-78%) as reported in [PLHS88] with much less computing
Ccost.

4.1.2 Sequence representing character profile

Profiles are also very representative of a numeral. Profile features are not
affected by white noise inside a stroke, and extracting profile features needs less
computing time than thinning because the computer considers only the pixels at the
edges of the numeral in 1 pass, while thinning must go through all black pixels in
many passes.

To implement machine learning using profile features, a profile can be
represented by the sequence of its direction from top to bottom. For example,

consider the right profile of a 3:

BN =

If we represent the stroke to the right by an odd number, stroke to the left by
an even number, and each change in direction by an increment in the number, then

the right profile of 3 will be represented by *1234°.
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We can obtain the profile string for the left and right profiles, and also represent
the variation in width of the image in the same way (Fig. 4.1). The width is defined

as the horizontal distance between the leftmost and rightmost black pixels of the

character.
2 1 1
3 2 2
4 3 3
5 4 4
Left profile = 2345’ Width profile = *1234’
Right profile = '1234’ representing the variation

in width of numeral 8

Fig. 4.1 : Profile strings of numeral 8

In addition to the edge direction, the jump detected on the edge can be added

to the profile string. A jump is represented by a ’+’ if there is a sharp increase in
the distance from the numeral edge to the border of the rectangular frame enclosing
it. It will be represented by a -’ if there is a sharp decrease in the distance from
numeral edge to the frame border. The jump representations are superimposed to

the direction profile to give a composite profile, as shown:
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increase @ ——>
in dist. (+)

decrease in dist. (-)

Left profile
Right profile

,23,
’12’

with the jump superimposed:
Left profile = ’2+23’ (the + jump comes in the
middle of the direction represented by 2)
Right profile = ’12-2’ (the - jump comes in the middle of the
direction represented by 2)

Fig. 42 : Profile strings containing jump representation

The computer was used to extract the profile features and build the knowledge
base from a training set of 1000 samples. Then the knowledge base was used to
recognize the same set, the recognition rate achieved was 70.7%.

4.1.3 An alternative method using profile features

In the above methods using profile strings, the direction of the numeral edge was
used. But the string did not include the information of the relative lengths of each
edge segment, therefore different profiles could be represented by the same string.
As an illustration, the following 2 numerals have the same right profile string '1234’

(Fig. 4.3)
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W N -

(0) 3)
Fig. 43 : 2 different profiles represented by the same string *1234°

Also, the fluctuation in the profile direction would give a complicated profile

string without capturing the true profile feature (Fig. 4.4)

(1)
Fig. 4.4 : Fluctuation in profile direction that does not represent
the true profile feature
To overcome the above deficiencies, and also to make the feature extraction
faster, another scheme of profile representation was attempted, in which both the
profile and the position of the jumps were quantified with discrete measurements
over equal portions of the character’s length. The width of the characters and the

presence of holes inside the character were also measured. This was done as follows:
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The image is divided into 3 equal horizontal bands as shown:

¢y
2
3

For each band the following measurements are made:

Average distance of the left edge of the character from the left border (L).
Presence and direction of a jump in the left profile.

Average distance of the right edge of the character from the right border (R).
Presence and direction of a jump in the right profile.

Average width of character (W).

Presence and direction of a sharp change in the width on each row.
Average width of the white hole inside the character (H). The width of a hole
at a row is defined as the number of white pixels that are enclosed between
the leftmost black pixel and the rightmost black pixel of the image on that
TOW.

Presence and direction of a sharp change in the width of the hole.

The ratio of maximum width/length of the character over its entire length

(this feature is helpful in recognizing numeral 1).

The average distance is quantified into a number (0,1,2) using 2 thresholds. For

example, assume that the thresholds used are: T1 = 0.2 * the width of the image

and T2 = 0.4 * the width of the image. If average distance is less than T1, it is

represented by the digit 0, if it is less than T2 and greater than or equal to T}, it is
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represented by the digit 1, if it is greater than or equal to T2, then it is represented
by digit 2.

The presence of a sharp change (jump) is represented by a’+’ or a ’-’ depending
on the direction of the change. There is a ’jump threshold’ to decide whether a jump
is detected or not.

The ratio of maximum width/length is represented by a letter where:

Rounded Ratio = 0.1 Letter = A’

0.2 B’
. and so on.

With the above representations, a sample has 5 features which are represented
by 5 feature codes. Each code is a string of 6 characters, the first 3 represent the
distance measurements. In the last 3 positions, a presence of a '+’ or -’ represents
a jump in the corresponding band. An example of the 5 feature codes is given in

Fig. 4.5.
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Fig. 4.5 : Measurement and generation of feature codes by computer

By changing the thresholds, it is possible to obtain a different number of features

in the knowledge base.
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Variation of distance threshold

Since a measurement is assigned a number 0,1 or 2, we try to have the
assignments to be distributed equally into 0,1 and 2 while keeping the jump
threshold constant. When the assigned numbers are evenly distributed among the 3
ranges, there are more combinations of feature codes. It is hoped that by increasing
the number of feature codes (i.e. having more features), the number of pattern
classes also increases, and classification (recogmiion) will be more accurate. The
iterations using different threshold values are illustrated in Table 4.6. The number
of recognition errors on a training set of 1000 samples is also given for each

iteration. The maximum recognition rate was about 96.5%.

Table 4.6 : Iteration by changing distance tnreshold values

Sample size = 1000

Run Number of feature codes No. of Recog.
no. errors rate
Left Right Width Hole MU/L Ratio TOTAL

1 208 138 273 7 17 707 54 94.6
2 208 148 273 135 17 781 45 95.5
3 208 148 269 177 17 819 37 96.3
4 208 156 268 187 17 836 36 96.4
5 208 141 265 222 17 853 42 85.8
6 208 153 244 214 17 836 45 95.5
7 208 155 270 214 17 864 38 96.2
8 208 154 270 214 17 863 37 96.3
9 208 154 268 214 17 861 38 96.2
10 208 155 2N 214 17 865 35 96.5
1 208 155 267 214 17 861 40 96.0
12 208 155 266 214 17 860 36 96.4

The knowledge base from the set of thresholds in the last iteration (Run number
12) was used to recognize a test set of 1000 samples, the number of errors was 227,

recognition rate was 77.3%.
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The recognition rate on a larger training set (2000 samples) was nearly the same
as with a smaller set of 1000, being 94.6% (107 errors). However, the total number
of observed features increased from 860 to 1158 (35% increase).

Variation of the jump threshold

The threshold to recognize a jump should also affect the number of observed
features and the recognition rate. In the following experiments, the threshold of a
jump is = threshold ratio * the diagonal dimension of the image. Results on a

training set of 2000 samples are shown:

Table 4.7 : Variation in jump threshold

Threshold ratio No.of No. of Recog.
(based on feat.codes errors rate
diagonal dim.)

0.15 1167 10 94.6
0.20 1012 147 92.6
0.25 855 207 89.6
0.30 702 262 86.9
0.35 566 324 83.8

Investigation of recognition rate of a test set

By changing thresholds, it is possible to have more features and better
recognition rates with a training set. However, the real test of a recognition method
is its recognition rate on a set of unknown samples. Various runs were done using
different jump thresholds on a training set of 2000 samples and a test set of 2000

samples. The results are summarized in Table 4.8.
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Table 4.8 : Recognition rates using different jump thresholds

Run No. of ——— TRAINING - ~ TESTING
no. feature Subst. Reject TOTAL % Subst. Reject TOTAL %
codes error error
1 139 504 0 504 74.5 627 1 638 68.1
2 240 464 0 464 76.8 625 14 639 68.0
3 1167 107 0 107 94.6 233 134 467 76.6
4 1265 104 0 104 94.8 358 137 495 75.2
5 1217 110 0 110 94.5 338 137 475 76.2
() 1110 118 0 118 94.1% 344 127 .| 75.4
7 1172 97 0 97 95.1 324 140 464 76.8
8 999 148 0 148 92.6 340 116 456 77.2
9 859 201 0 201 89.9 395 92 487 75.6
10 1309 94 0 9% 95.3 331 159 490 75.5
1 1120 122 0 122 93.9 341 114 455 77.2
12 1017 149 0 149 92.5 370 116 486 75.7
13 1219 101 0 101 94.9 337 140 &77 76.1
14 909 175 0 175 91.2 388 92 480 76.0
15 * 711 168 0 168 91.6 335 13 498 75.1
16 * 740 164 0 164 91.8 386 148 534 73.3

Note: Runs 1-14 : 3 jump features on 3 equal horizontal portions.
* Runs 15-16 : 2 jump features on 2 equal horizontal portions.

The relationship between the number of features codes and the recognition rate

in training and testing is plotted in Fig. 4.9.
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Fig. 4.9 : Relationship between recognition rate and the number
of features codes

4.2 CONCLUSIONS FROM TEST RUNS USING COMPUTER GENERATED
FEATURES

4.2.1 Human intelligence is an important element in feature extraction

From all the runs, the maximum rate that could be achieved using
computer-generated features was about 75% for a test set, although it was possible
to get a recognition rate of 95% for a training set.

The results point to the fact that the features generated by computer are

dependent on the training samples and do not capture the truly discriminating
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features of the numerals. To have discriminating features, special relationships
between different measurements on the numeral must be identified. This task
requires human intelligence.

4.2.2 Requirements for a feature

Consistent and general: a feature should be applicable to all samples of the same
numeral. The difference in recognition rate of the training set and a test set is an
estimate of the generality of the features. Using general features, the recognition
rate for the test set should not be much different from that of the training set.

Informative (meaningful): a feature is easily perceived and understood by human.
Features obtained from mathematical transformation are often not meaningful in
human perception.

Discriminative: a feature should help to resolve the confusion between different
numerals.

Useful: given a possible set of hypotheses, the application of a new feature must
produce a new set of hypotheses which is smaller than the previous one and some
numerals within the set should become more dominant. The term hypothesis set of
a feature refers to a set of likelihood measurements for the 10 numerals having that

feature in the training set. Hypothesis set will be more fully discussed in Chapter S.

4,3 COMBINATION OF COMPUTER-GENERATED AND HUMAN-BASED
FEATURES

The method implemented in this thesis is a combination of computer generated
features and features derived from human perception. Both the original image and

the skeleton were used in feature extraction. The strategy of using both the skeleton
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and the original image is fairly new and was used in only a few recent works on
character recognition. In Kuan and Srihari’s work [KS88], the image was decomposed
to strokes using run length analysis techniques, and the contour profile information
was used as auxiliary features. In Mitchell and Gillies’s work [MG88], the skeletons
and ’flesh regions’ were used in feature extraction.

We distinguish 2 types of feature:

- The computer generated feature is the primary feature used for the coarse
classification of numerals, it is a feature code consisting of characters
representing the special points in the skeleton that are found in a scan from
top to bottom, left to right. For example the following numeral has the

feature "EEFE’:

Fig. 4.10 : Primary feature

- A secondary feature originates from human perception. It is called secondary
feature because it always goes together with one primary feature. For
example:

The primary feature is 'EEFE’ (feature 12). If there is a straight stroke on the

right hand side (as in Fig. 4.10), then the numeral has feature 104,

61




Each primary feature has many secondary features, but each secondary feature
has one and only one primary feature. Because secondary features are dependent on
primary features, the feature extraction process can consider first the primary feature
and then considers only the secondary features that are dependent on it. Features
are only extracted when needed.

A complete list of primary and secondary features is given in Appendix 1.

4.4 PURPOSE AND USE OF FEATURES

A feature has the purpose of increasing the likelihood of one candidate while
decreasing the likelihood of others. The features therefore have one or more of the
following effects:

- They produce some coarse discrimination by reducing a large hypothesis set
into a smaller set where the likelihoods of its members are more
discriminative than in the larger set.

- They produce fine discrimination to arrive at the final recognition by creating
either a hypothesis set with one or more dominant numerals, or a hypothesis
set that does not contain one or more numerals.

A feature may also have a side effect, i.e. it may decrease the likelihnod of a

candidate which is the true recognition candidate. For example, if we just look for
a profile of 3 on the right hand side, the following numeral may have a hypothesis

set where 3 is dominant, and may be classified by the computer as numeral 3.
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Fig. 4.11 : Side effect of features

However, before applying the rule that uses the profile of 3, if we specify a
precondition that the rule is applied only if the stroke on the right is not relatively
straight; then, the final hypothesis set will be more dominant in 7 and return 7 as the

result.
To reduce the side effects:
- the knowledge base must have considered a large number of rules, so that the
features are used in a balanced manner,
- a feature that has strong discriminative power but found to give a skewed
hypothesis set must be balanced with preconditions, or in some cases, must
be discarded.

Where preconditions exist, the features related to a precondition must be

examined in a sequential order.

4.5 GUIDELINES FOR THE EXTRACTION OF FEATURES

Writer dependency
The features as well as the noise in the handwritten characters are in some way

related to the writer’s habits. An analysis of these relationships is outside the scope
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of this thesis, however writer’s habits were considered when the features were
selected. For example:

- When reading or writing, the sequence is from top to bottom, left to right.
For left-handed people, the local sequence in forming a single character may
be from right to left, but the overall movement of characters is also from left
to right, and reading also follows the same sequence. Therefore, the special
points in the skeleton (end points, fork points, cross points) were scanned in

the order top to bottom, left to right:

instead of the sequence:

v v v
- People have different slants in writing, therefore, the left and right profiles
were considered, but not the top or bottom profile, because the top and
bottom profiles are affected by slants. For example the right profile was used

to recognize numerals 3,5,8:

€) ) ®)
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- Because of the effect of slants, intersection of a numeral is effective in the
horizontal direction, but not in the vertical direction. In the following
illustrations, the horizontal intersection will help to recognize numeral 8; on
the other hand, the vertical intersection for numeral 3 is meaningful, but not
effective, it may be effective only if the numeral is rotated to offset the slant,

as shown below:

2 -

v e—f
f
() :
C)) (3)
No. of intersections = 1 No. of intersections = 3

4.6 DESCRIPTIONS OF DIFFERENT TYPES OF SECONDARY FEATURES
The features used in the knowledge base can be grouped into different types:
4.6.1 A bend between 2 points (BE)
This feature is a curvature between 2 special points, for example a stroke of 2

or 6 before a fork point, or a stroke of 3 after a fork point.

e e
bend >
to left
f
f e
bend to right
P S——
e
(6) (3)
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4.6.2 Horizontal curve at top or bottom (CV)

Several numerals have curves connected to an end point at the top or bottom,
coming from the left or right direction. For example:

- Numeral 2 has a curve at top right and a curve at bottom left,

- Numeral 3 has a curve at top right and a curve at bottom right,

- Numeral 5 bas a curve at top left and a curve at bottom right,

- Numeral 6 has a curve at top left,

- Numeral 7 has a curve at top right,

- Numeral 9 has a curve at top left or top right.

99
e S

(9) curve at top left (9) curve at top right



4.6.3 Distance between 2 points (D1)
The distance between 2 special points is a general feature that was used
frequently, for example to identify broken strokes in & numeral which has 2 end

points near each other as shown below:

small distance

©)

4.6.4 Direction of a stroke from a special point (DR)
One application of this feature is to distinguish 2 numerals 3 and 5. From the

end point at the top, numeral 3 has a stroke heading right, while numeral 5 has a

ev /e
f

stroke heading left.

/
e
e—f
e e
(3) ()
stroke from first end point stroke from first end point
heads to right heads to left
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46.5 Inflection (IN)
An inflection is a change of direction in a stroke joining 2 special points from top

to bottom. This feature is present in numerals 2 and 5 as shown below:

e
< inflection >
e e

@) )

46.6 Jump at left or right profile (JP)
A jump is a discontinuity in the profile of a numeral. For example, a high jump

on the upper right hand side helps to distinguish numeralis 9 and 5.

9 < jump
e e ‘ ;
)

&)
4.6.7 Comparing lengths between 2 strokes (LE)

Example: the relative lengths of the strokes connecting the fork point to the 2

top end points help to distinguish between 3 and 5:
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e/
e e
3) , ©)
Fork point nearer to right Fork point nearer to left
end point end point

4.6.8 Location in numeral frame (LO)
The location of a special point with respect to the top, bottom, left, right borders
can help with recognition. For example:
- A fork point of numeral 2 is usually nearer to the bottom border,
- Numeral 1 has 2 end points on or near the top and bottom borders,
Numeral 4 may have the bottom tail removed by preprocessing. In such case,
the lowest point of the skeleton is far from the bottom border of the original

image.
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the lowest point of the
skeleton is far away from
the bottom border of the
original image

f
e’\,e

W

) M

4.6.9 Profile on the left or right (PR)

The profile features (described in Section 4.1.2) help to identify 3,5 (right
profile), 6 (left profile), 0,8 (left and right profiles) ...

4.6.10 Relative position between 2 points (RP)

Examples where the relative position of special points is used for recognition:

EEFE or EFEL : numeral 3 usually has a fork point on the right of all end

points.

70



f
e—f e’
e e
(3) 3

4.6.11 Straight stroke between 2 points (SS)
This feature was used to identify a numeral that has a straight segment in its

skeleton, for example numerals 1,4 or 7.

e e ¢
e
<— straight —>,
stroke <— straight
stroke
e
e [
e e
(1) (4) M

4.6.12 Width of numeral at different rows (WI)

For example, a large width at the top and a small width at the bottom help to

identify numeral 7:

7



e <—-—— large width

small width

4.6.13 Width of stroke (WS)

The width of a stroke is helpful to identify the presence of a loop which is filled
during writing or preprocessing, for example in numerals 6 or 8. In the following
illustration, the thick width at the bottom stroke distinguishes numeral 8 from

numeral 9.

e
o
o
®)

-
I
\\_-

.‘ f' ‘\
/,/ < thick width
| ) .
&/ 3
® 9

4.6.14 Symmetry (SY)
The symmetry feature helps to distinguish numeral 8 from 9, or numeral 8 from

6, as illustrated in the following example:
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longest distance
between 2 top strokes

(8) &)
symmetrical not symmetrical

A center point is identified at the top half of the numeral, it is the middle point
of the longest distance between the 2 strokes at the top half. An imaginary line
between this center point and the bottom end point is drawn. If the fork point is
close to this line, the numeral is considered to be symmetrical in shape.

4.1.15 Horizontal intersection at a row (X)

The number of intersection points between an imaginary horizontal line and a
numeral can help to distinguish one numeral from another. For example:

- Distinguishing 4 and 8 (baving primary feature EEFFEE)

[/ ()

-/ ()
e ee
(4) intersections = 3 (8) intersections = 1

- Distinguishing 2 and 8 (having primary feature FF)
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f
QY
!
small tail
removed

(2) intersections = 3 (8) intersections = 1

- Distinguish 2 and 4 (having primary feature EEFFEE)

e e
e
e—f f
\ FAY
f N
/ e
e/ N /
e
(2) intersections = 1 (4) intersections = 3

4.6.16 Combination of above features (CO)
This is a composite feature that combines more than one of the above listed

features.

4.7 PRECONDITIONS AND DEPENDENCY OF FEATURES
As an illustration, the feature string 'EE’ which occurs most frequently is

analyzed for dependency. The 63 secondary features dependent on the feature string
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'EE’ are grouped into different levels, all features in the same level can be
considered simultaneously, provided that all the features at the higher levels have
been considered. From the dependency relationship, we can see that with parallel
processing, feature extraction can be done in 6 steps, the maximum number of
parallel processes in a level is 17 for this example. With sequential processing, 64

steps are required to extract the features.
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Table 4.12 : Dependency of features

NOTE: Notation 184 (22,65,140) means that feature 184 is dependent on 3 features 22,65,140. This
notaticn is not used in level 2, but implicitly all features in level 2 are dependent on feature 4

in level 1.
tevelt |2 |3 ‘ 5 6
£ (4
€ 5
A 136 (5)
T 140¢5,13)
v 184 (22,65, 140)
2 357 (13,22,40,73,140)
3 391 (103,357
s 352 (5,38)
6
13 (&
26 (13)
48 (26)
257 (48,52)
@ (26)
171 6,26,40,49)
182 (6,26,40,49, 153, 140)
206 (31,73,182)
368 (182)
214 (6,26,31,40,49)
229 (21&)
30 (214)
265 (49,52,151)
286 (48,49)
321 (49,51)
31 (13,22)
350 ¢31,73)
384 (13,22,133)
385 (13,14,255)
131 (8)
151 (6,22,38,131,133,140)
2% C151)
160 (38,131)
183 (38,131
275 (22,65,140,183)
350 (5,38,131,173)
353 (131,133)
372 (352,359)
%
40 (14)
&3 (5,22,26,38,40,65,73)
84 (5,22,24,38,40,65,73)
411 (83,84,131,133)
103 (5,40)
253 (103)
287 (40)
37 c287)
351 (6,40)
2
409 ()
410 (22)
38
318 (38)
52
270 52)
'Y
e
76 (T
309 (13,74)
133
406 (133)
255
258
303
388
tont |1 |13 )92 114 13 8
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4.8 DIFFICULTIES IN FEATURE SELECTION

4.8.1 Feature selection is data-dependent and time-consuming

During training, features were added to the knowledge base using 3 criteria:

- The human expert judged that the rule for the feature is general and
applicable to the majority of cases.

- The feature had to produce an improved recognition rate as expected. If the
improvement was not as expected, for example when a feature was added with
the purpose of resolving confusion between numerals 2 and 3, but the
recognition results showed that the improvement actually occurred for some
other pair, for example numerals 4 and 9, then the improvement was just a
coincidence, and the effect of the added feature had to be examined carefuily.

- The added feature should not be in conflict with existing features, i.e. it
should not cause substitution errors that have been resolved by some previous
features. If such substitution errors were detected, the conflict had to be
resolved by modifying the new feature, or the old feature, or both. This was
the most time-consuming task in training, because the conflict might
propagate to more than 2 features. Therefore, adding a new feature always
involved a great deal of conflict resolution, especially when the knowledge
base already contained a large number of rules.

Addition of features was incremental and therefore this process is dependent on
the training data. There were many possibilities of selecting a new feature and
deciding which of the old features it was dependent on. It is not possible to prove
that the growth of the knowledge base during training is an optimum one and the

rules are inter-related in a systematic way.
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4.8.2 Fuzziness in establishing thresholds for a feature

One of the major problems in pattern recognition is establishing thresholds. This
problem appears in all stages of the recognition process. In preprocessing, we use
a threshold to erase or to keep a spurious tail, or to join or leave intact a break in
a stroke. In feature extraction, all features are based on threst. 5. Take for
example a broken numeral O such as the one shown in Section 4.6.3. If the threshold
for the distance between 2 end points is too low, some valid numerals 0 are rejected,
but if it is too high, some numerals 6 will be recognized as numeral 0. With
statistical analysis, a threshold can be established to minimize the number of errors,
but no matter how the threshold is selected, some substitution errors always occur.

Because of this dilemma, cven when the character is well-formed and free from

noise, there could still be a number of errors caused by having a fixed threshold.

To minimize the problem with threshold, this study used 2 approaches:

1/ For a feature, usually there were 2 rules with 2 thresholds, one to accept the
numeral to a pattern class, the other to reject the numeral from a pattern
class. For the example above, there were 2 rules:

- Rule 26 : true if (a) the distance between 2 end points is less than 0.3 *
the diagonal dimension of the image and (b) horizontal distance between
them is less than 0.3 * the width of the image and (c) vertical distance
between them is less than 0.3 * the height of the image. This rule was
used to recognize numeral 0.

- Rule 184: true if the distance between 2 end points is greater than 0.5 *
the diagonal dimension of the image. This rule was used to reject numeral

6 from being misrecognized as 0.
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2/

Since there were 2 rules, any sample which did not satisfy the 2 thresholds
would fall into a different pattern class and be recognized by other features.
A large number of features were used so that the results of feature matching
would interact with one another. Using the inference recognition method, the
result of this interaction of features would produce a hypothesis set containing
a number of hypotheses. If there is a dominant hypothesis which has a higher
confidence level than others, there is a good probability that the hypothesis
is correct. If there is no dominant hypothesis, the sample is rejected as being

unrecognizable (this will be discussed in detail in Section 5.4).
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5. TRAINING AND RECOGNITION

5.1 TRAINING
Each sample from the training set was examined for the primary feature and then
matched against all the secondary features that are dependent on the primary

feature. The results of training can be represented by a matrix as in Fig,. 5.1.

Fig. 5.1: Results of feature extraction

Feature 1 2 3 4 § 6 .. m
Sample

W
b
>
>

=
>
>
>

Notes

- The primary feature has an identification number which is smaller than all
its secondary features.

- The presence of a feature in a sample is represented by an x’ in the
corresponding row and column of the matrix.

This matrix of samples and features can be summarized in 2 ways and put into

a kuowledge base of pattern classes and a knowledge base of hypothesis sets.

5.2 KNOWLEDGE BASE OF PATTERN CLASSES
A pattern class is defined as a class of all the numerals which have exactly the
same set of features. The number of samples that belong to the same pattern class

is called the size of the pattern class. The rows in the above result matrix can be



grouped and represented as entries about pattern classes. Each entry for a pattern

class contains:

The pattern class identification number,

The feature vector, implemented as an array of characters. A feature is
represented by a column, this column is blank if the pattern class does not
have this feature, or contains a character ’X’ if it has the feature.

The label of the pattern class, which is the identity of the sample (0..9).
Because of the possible limitation of features, samples of different numerals
may produce the same feature vector. The use of the label will create
different entries of pattern classes for different numerals with the same
feature vector.

The size of this pattern class.

The above entries form the knowledge base of pattern classes.

5.3 KNOWLEDGE BASE OF HYPOTHESIS SETS

For a column representing a feature in the result matrix, we can count the

number of occurrences of the 10 numerals having that feature in the training set and

obtain a set of 10 values. As the basic assumption is that the training set closely

represents all the input samples, this set of values also represents the weight or the

probability of an unknown sample, having that feature, being one of the 10 numerals.

The set S(F) of the frequencies of occurrences of 10 numerals having the feature F

in the training set is called the hypothesis set.

S(F) = (ng of 0’s,n4 of I’s, ...ng of 9’s)

where ng .. ng are the frequencies of occurrences of the numerals 0..9 having feature
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F in the training set.
The above information forms a knowledge base of hypothesis sets. Each feature
(primary or secondary) has an entry in this knowledge base containing:
- Feature identification : the primary feature string and a number representing
the secondary feature,
- A short description of the secondary feature. In case of primary feature, the
description is an asterisk (*).
- The hypothesis set of the feature.
Examples of knowledge base entries are shown in Table 5.2.
The knowledge base of hypothesis sets can be derived from the knowledge base
of pattern classes but the inverse is not true. Both of them are created from the

result matrix obtained from training,

5.4 RECOGNITION BY INFERENCE

The knowledge base of hypothesis sets can be used by a inference engine to
deduce the identity of an unknown sample. The inputs to the inference engine are
the features of the unknown numeral. Its working variable is a hypothesis set, which
lists the probability measurements of different hypotheses. During the inference
process, each result of feature inspection is compared with the knowledge base, and
according to the result of the comparison, the hypothesis set is modified. When all
inputs have been considered, the analyzer examines the final hypothesis set and

assigns a class to the unknown numeral.
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Fig. 5.3 : Recognition using the inference engine

Knowledge base

Input °
I
Feature 1 = yes v
Feature 2 = no Final assigned
—_> INFERENCE e———— ANALYZER >
ENGINE hypot. set class
Feature n = ,,. °
|
v
Working

hypothesis set

All features used by the inference engine of this method are represented in the
following form: feature identification and a Boolean variable (Yes/No) signifying
whether the unknown numeral has the feature or not. With this simple form of
representation, the inference is flexible and can handle all types of features used in
syntactical recognition.

5.4.1 Inference operations

The inferencing process is a matching process: Given an unknown sample, find
from the knowledge base the entire set of numerals in the training set that have all
the features of this unknown sample.

When an unknown sample is found to have a primary feature F;, then it must
belong to set S(Fy). This set is a universal set for feature Fy because all samples in
the training set having feature string F would belong to this set.

The unknown sample is also checked against all the secondary features which

have F as the primary feature. For each secondary feature F, there are 2



possibilities, the sample has feature F,,, or it does not have it.

- If the unknown sample has feature Fj, then there is a hypothesis set S, =
S(F,,) of known numerals in the training set having the same features as this
unknown sample.

- If the unknown sample does not have feature F, the hypothesis set is the
complement of set S(F,,) with respect to the universal set S(Fp), hence the
hypothesis set will be S, = S(Fg) - S(F,).

By checking each feature, the sets Sy, Sy .. S, will be computed. The final
hypothesis set S; of all known numerals in the training set having all the features of
the unknown sample will be the intersection of the sets Sq..Sp,:

Si=SASiAS . N\Sq

The final hypothesis set is given to the Analyzer to decide on the classification
result. The final hypothesis set corresponds to all the features that have been
examined, in other words it corresponds to the feature vector.

The inferencing process is illustrated in Appendix 2. In this illustration the
processing is sequential. However an inference step can be done as soon as a result
is returned from one feature extraction step, hence the inferencing process can be
in a mixed sequential-parallel manner like feature extraction (as discussed in Section
4.7).

5.4.2 The Analyzer

The final hypothesis set S¢ of an unknown sample is of the form:

S¢ = (ngof 0’s, nq of 1's ..) (5.1)

Percentages p; (i=0..9) of all hypotheses are calculated, where:

p; = 100 * n; /(ng + ng +..+ ng) (5.2)
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The hypothesis having the highest percentage is called the dominant hypothesis
and is selected as the recognition result. If a sample has more than 1 hypothesis that
have the same highest percentage, it will be rejected. A sample is also rejected if the
final hypothesis set is a null set.

A minimum threshold of percentage value can be established to control the
reliability of recognition. A sample is rejected if the highest percentage is lower than
the threshold.

This method of decision is based on common sense reasoning. Of all the
numerals in the training set which have all the features of the unknown sample, we
would naturally feel that the one which occurs most frequently would be most likely
to be the right answer. It can be proved that this decision follows Bayes’ Rule:

Let - p(i) be the a-priori probability of class i,

- p(X|i) be the probability of observing a feature vector X in class i,
- p(i|x) be the probability that a sample having feature vector X belongs
to class i,

Then Bayes’ Rule states:

_ p(X|i) p@i)
p@[x) = (5.3)
pg(XIk) p(k)

Since the denominator is the same for all i’s, it can be omitted when different

values of p(i|x) are compared. Then:

p(i|x) = K p(X[i) p(i) (5.4)

where:
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1

K =
Y. p(X|k) p(k)
k=0.9

Let - N; = number of numerals i in training set

- Ny =Ny + ..+ Ng = 8500 = size of training set

n; = frequency of occurrences of numeral i in the final hypothesis set
S; (i.e. having feature X)

The prcbability of numeral i in the training set is:

pi) = Ny/N,

If we assume that the a-priori distribution of numeral in the test set is the same
as the training set, then the a-priori probability of numeral i in the test set is also:

p(i) = N/Ny

The probability of a feature vector X being observed in numeral i from the
training set is:

p(X|i) = ny/N; (5.5)

The probability that a sample having feature vector X being a numeral i, using
equation (5.4) is:

p(ix) = K (n/N)) (Ni/Np) = (K/Np n; (5.6)

Let K’ = K/N; = a constant, then:

p(ilx) = K' (5.7)

Hence if a-priori knowledge of probability of numeral i in the test set is assumed
to be the same as in the training set, then the probability that a sample in test set

with feature vector X being numeral i is proportional to n, the frequency of
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occurrence of numeral i with the same feature vector X found in the training set.
If the a-priori knowledge of probability of the 10 numeral classes in test set is not
known, p(i) is assumed to be the same for all numeral i’s, then;

p(i|x) = K (n/N)) * a constant = K" (n;/N;) (5.8)

5.5 STRUCTURAL CLASSIFICATION

5.5.1 Feature matching

In order to use the knowledge base of pattern classes for recognition, each
feature vector should correspond to one entry and one label. If there are more than
one entries, the situation can be handled in 2 ways:

- A new and well-chosen feature can be added, which produces 2 new different
feature vectors with unique labels from the previous feature vector. However, as
discussed in Section 4.8.1, adding new features becomes more and more difficult
when the number of features is already high. In the training stage, the addition of
features becomes ineffective when:

+ The added feature is trivial and only serves to distinguish 2 pattern classes
of poorly-written numerals which occur rarely and cannot be considered
representative.

+ The added feature is non-trivial, but there are not sufficient samples in the
training set which have that feature, therefore the rule based on that
feature is not effective and still produces a wrong hypothesis. One example
is given in Fig. 7.14.

- A most dominant label is selected, and all the others are discarded. If there

is no dominant label, all the entries having that feature vector are discarded. This
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is the same situation like when inference is used and the final hypothesis set contains
more than one hypothesis. In fact we can verify that the weight n; ot a hypothesis
in the hypothesis set and the size of the pattern class is the same quantity.
Therefore, the logic of the Analyzer (Section 5.4.2) can be used to select the most
dominant pattern class entry.

The knowledge base of pattern classes now contains entries which have only one
unique label for each feature vector. An unknown sample can be recognized by
comparing iis feature vector against this knowledge base. Because the label is
unique, there can be no more than one match. If there is a match, the label of the
matched entry is the recognition result. If there is no match, the sample is not
recognized.

5.5.2 Selecting a confidence level

Pattern classes have different sizes. The class that occurs more frequently will
have a higher confidence level. By applying different thresholds in pattern class size
and discarding classes having a size smaller than the threshold, the recognition rate
decreases but the substitution rate and reliability of recognition increase. Thus the
method can be tuned to achieve the desired reliability or desired recognition rate.

We should also consider the fact that each numeral has a different degree of
shape complexity. For example 0, 1 and 7 are fairly simple in shape, while 2, 4, 8
may have more complicated shapes. The number of pattern classes tends to increase
with the degree of complication in the shape of the numeral, and consequently, the
average size of a pattern class will decrease. Therefore it is not beneficial to apply
the same threshold of pattern class size for all numerals. One approximate value for

a threshold is:

89



Ts = Save* Fi

where: T :  Threshold value,

Save :©  Average size of a pattern class of the numeral in the training
set,
F, : A tuning factor varying from 0.0 to 2.0 or more.
It should be noted that a tuning factor of 0.0 means all generated pattern classes
from the training set which are correctly recognized will be used. With a tuning
factor of 1.0, if the distribution in size is normal, 50% of the samples are below the

average and the rejection rate will be about 50%.

5.6 COMPARISON BETWEEN INFERENCE METHOD AND STRUCTURAL
METHOD

The inference method and the structural method use the same features, they also
use Bayes’ Rule to select a recognition result. The difference is that the inference
engine uses the relative ratio between different p(i|x) values within a pattern class,
while the structural method uses the absolute values of p(i|x) which is the
probability of the pattern class in the total training set.

The inference method relies on relative ratios between hypotheses. It can make
an educated guess even when an unknown sample has a feature vector that does not
match any entry in the knowledge base of pattern classes. Therefore the maximum
possible recognition rate achieved by the inference method is always higher than the
structural method.

On the other hand, when a character is recognized by the structural method,

there must be a number of characters that have exactly the same set of features in
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the knowledge base, and this number must be higher than a certain threshold, hence
the structural method gives a higher reliability rate.

The 2 methods complement each other and together they cover the whole range
of recognition rate and reliability rate. Depending on the requirement of the user,
the system can be tuned to achieve the desired performance.

The inference method is the original method that was used at the beginning of
the research. The flexible and simple structure of its knowledge base facilitates
experimentation in feature selection and extraction. When a feature is modified or
added, its effect on recognition result can be seen directly in the program output (as
in Appendix 2), and the proper hierarchy of features, such as feature’s preconditions,
can be built in a heuristic manner. On the other hand, the effect of a modified
knowledge base of pattern classes on the recognition result can be seen globally only.

The structural method appears to be a strong candidate after enough
experimental results have been collected. It achieves nearly the same recognition
rate as the inference method but using less computing power because it does not
perform the set operations (see Table 6.8 for computing costs). Also, if a high degree
of reliability is desired, the number of required pattern classes in the knowledge base
is smaller (see Table 9.9, Section 9.3.1), the number of features to be extracted will
be smaller and less computing cost is needed for feature extraction. The pattern
classes can also be analyzed, grouped and organized into a decision tree, feature
matching can be changed from sequential search to binary search, resulting in further

decrease in the computing cost.
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6. EXPERIMENTAL RESULTS - OVERVIEW

The data used in this work are a set of handwritten ZIP codes collected by U.S
Postal Services from mail envelopes written by the general public. The number of
writers is unknown, but we can assume that from the size of the samples (16,985),
there would be approximately 3,397 writers, because each US postal code has 5
digits. The data were digitized, binarized and segmented before being processed by
this method.

Of the total 16,985 samples, 8500 were used in training, the remaining 8485 for
testing. The numerals are not evenly distributed, the frequencies of occurrence of
numerals are as shown:

Table 6.1: Distribution of numerals in the data base

NUMERAL FREQUENCY OF USED IN USED IN
OCCURRENCE TRAINING TESTING

0 2500 1250 1250

1 3594 1800 1794

2 1673 800 873

3 2174 1100 1074

4 1439 700 739

5 787 400 387

6 1241 600 641

7 1720 900 820

8 1161 600 561

9 696 350 346

Total 16985 8500 8485

Training was done alternatively with recognition using the inference method.
From recognition results, the errors were analyzed and features were modified,

added or deleted from the knowledge base. In the beginning, a training set of 2000



and a test set of 2000 samples were used. Features were added to the knowledge

base until the recognition rate on the training set could not be improved much
further. A larger training set of 8500 and test set of 8485 samples were used and the
knowledge base was refined with additional features until recognition rate of the
training set reached a stabilized level. A full discussion of how recognition results
change as the size of the training set and the test set increase can be found in
Chapter 8.

The features obtained from a training set of 8500 samples are:

Table 6.2 : Features from the training set

Primary 87
Secondary 330
TOTAL 407

The above 407 features divide the training set into 1195 pattern classes:

Table 6.3 : Breakdown of pattern classes

NO. OF NO. OF AVE. SIZE

CLASSES SAMPLES OF CLASS
Recognition 947 8210 8.67
Rejection 168 201 1.20
Substitution 80 89 1.1
TOTAL 1195 8500 7.11

The distribution of pattern classes having correct recognition is:
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Table 6.4 : Distribution of correctly recognized pattern classes

NUMERAL NO. OF NO. OF AVE. SIZE
CLASSES SAMPLES OF CLASS

0 81 1220 15.06

1 [4] 1781 23.75

2 140 765 5.46

3 163 1059 6.50

4 98 683 6.97

5 96 374 3.86

6 69 569 8.25

7 87 869 9.99

8 72 561 1.7

9 66 332 5.03
TOTAL 047 8210 8.67

4 percentage rates are used to measure the performance of a method:

- Recognition rate (or success rate) is the percentage correctly recognized in
all the input samples.

- Rejection rate is the percentage rejected as being not recognizable in all the
input samples.

- Substitution error rate {or misrecognition rate) is the percentage recognized
incorrectly in all the input samples.

- Reliability rate is the percentage that is correctly recognized in all the input
samples after excluding the rejected samples.

The recognition results are summarized in Table 6.5, the confusion matrix and

recognition results for each numeral are given in Tables 6.6 and 6.7.
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Table 6.5 : Summary of recognition results

Treining Testing
Set size 8500 8485
Recognition 96.59% 94.11%
Substitution 1.05% 2.53%
Rejection 2.36% 3.36%
Reljability 98.93% 97.10%

From this basis, different threshold parameters are used to get different

recognition, substitution and reliability rates. The results are discussed in Chapter 9.

COMPUTING COST
The computer used for this work is a CDC Cyber Model 170/83%, its processing
power is rated at 3 MIPS (million instructions per second). The computing costs for

different operations in preprocessing and recognition are given:

Table 6.8 : Computing costs

OPERATION Ave. CPU sec./sample
Smoothing 0.290
Thinning 0.248
Skeleton simplification 0.123
* TOTAL PREPROCESSING 0.661
Feature extraction 0.126
Inferencing 0.173
Analyzing 0.004
Structural classification 0.012

* TOTAL RECOGNITION
Inference method 0.303
Structural method 0.138
* GRAND TOTAL

Inference method 0.964
Structural method 0.799
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Table 6.6: Recognition results of the training set

Sample size = 8500

ot -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. RECOG. TOTAL

0 1 4 -] 19 11 1220 1250
1 1 2 5 1 8 1781 1800
2 1 4 2 1 1 1 25 10 765 800
3 1 1 2 3 1 4 29 12 1059 1100
4 1 2 1 13 4 683 700
5 1 28 1 n 400
6 3 4 3 1 20 1" 569 600
7 7 2 6 1 1 14 17 859 900
8 1 4 3 2 29 10 561 600
9 4 1 13 5 332 350

TOTAL 6 12 9 12 13 5 7 13 7 5 201 89 8210 8500

NUMERAL  TOTAL REJECT % suBsT. % RECOG. %  RELIABILITY
0 1250 19 1.52 11 o0.88 1220 97.60 99.11
1 1800 1 0.61 8 0.44 i781 98.94 99.55
2 800 25 3.12 10 1.25 765 95.62 98.7
3 1100 29 2.64 12 1.09 1059 96.27 98.88
4 700 13 1.86 4 0.57 683 97.57 99.42
5 400 28 7.00 1 0.2 7T 92.75 99.73
é 600 20 3.33 1 1.8 569 94.83 98.10
7 900 1% 1.56 17 1.89 869 96.56 98.08
8 600 29 4.83 10 1.67 561 93.50 98.25
9 350 13 3.n 5 1.43 332 94.86 98.52

TOTAL 8500 201 2.36 89 1.05 8210 96.59 98.93

NORMAL12ED X 3.02 1.13 95.85 98.83
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Table 6.7 : Recognition results of the test set

Sample size = 8485

our -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. RECOG. TOTAL
IN

0 4 5 1 5 1 N 39 27 1184 1250
1 1 1 ? Z 4 1 30 13 1751 1794
2 18 1 2 3 4 33 28 812 &§73
3 13 1 14 2 3 7 37 35 1002 1074
4 2 c 2 6 3 3 1 23 2 694 739
5 1 2 5 5 1 2 33 16 338 387
6 3 1 4 1 1 1 5 30 16 595 641
7 3 5 7 01 2 2 12 20 788 820
8 7 2 1 1 4 1 2 23 18 520 561
4 1 3 4 7 2 4 2 25 20 301 346

TOTAL 15 4 39 40 15 18 22 17 35 10 285 215 7985 8485

NUMERAL  TOTAL REJECT X sussT. X RECOG. %  RELIABILITY
0 1250 39 3.12 27 2.16 1184 94.72 97.77
1 1794 30 1.67 13 0.72 1751 97.60 99.26
2 873 33 3.78 28 3.2% 812 93.01 96.67
3 1074 37 3.45 35 3.2 1002 93.30 96.62
4 739 23 3N 2 2.98 694 93.91 96.93
5 387 33 8.53 16 4.13 338 87.34 95.48
6 641 30 4.68 16 2.50 595 92.82 97.38
7 820 12 1.46 20 2.44 788 96.10 97.52
8 561 23 4.10 8 3.21 520 92.69 96.65
9 346 S 7.23 20 5.78 301 86.99 93.77

TOTAL 8485 285 3.36 215 2.53 7985 94.11% 97.38

NORMALIZED X 4N 3.04 92.85 96.81
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ANALYSES OF EXPERIMENTAL RESULTS

The following 5 separate chapters analyze the experimental results in detail:

Chapter 7: Analysis of recognition errors.

Chapter 8: Dependence on the size of the training set.

Chapter 9: Performance curve and fine tuning.

Chapter 10: Additional experiments on data used by Concordia OCR project

team.

Chapter 11: Comparison with other studies.

The analyses and discussions in these chapters have the following purposes:

- To gain some understanding about the data and the characteristics of the
problems related to the recognition of totally unconstrained handwritten
characters,

- To evaluate the effectiveness of the knowledge-based approach and to add
fine-tuning to the method in order to improve the recognition performance,

- To estimate the limitation of this method and other methods in general, and
identify a realistic goal on the recognition of totally unconstrained handwritten

numerals.
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7. ANALYSES OF RECOGNITION ERRORS

Using the inference method, there were 1.05% substitution errors and 2.36%
rejects in the training set. Most poorly written samples (illustrated in Section 2.1)
were rejected because the hypothesis set for each sample did not have a dominant
hypothesis satisfying the threshold condition (see Section 5.4.2).

The major confusions observed in the training set and the test set were:

Table 7.1 : Major confusions

Notes: In this table, the expression 1-7:12 means that there are 12 misrecognition
between numerals 1 and 7, where numeral 1 is misrecognized as 7 or vice

versa.
Training Set Test set
1-7: 12 1-7: 5
3-7:10 3.7:13
0-8: 7 0-8 : 18*
0-6: 7 0-6: 8
2-3: 6 2-3: 31*
1-6: 6 16: 1
2-8: 5 2-8: 4
49: 5 49: 5§
3-5: 4 3-5:14*
4-6: 3 4-6 : 7
56: 1 56: 7
6-8: 0 6-8: 8*

Apart from the problems caused by unconstrained writing as discussed in Section
2.1, and preprocessing limitations (segmentation, binarization, thinning, hole filling,
smoothing, connection of broken strokes, tail removal) already discussed in

Chapter 3, the substitution errors in the training set were caused by:



- Poor handwriting that can confuse also human readers: confusion between 1

and 7 (Fig. 7.2), 0 and 8 (Fig. 7.3), 0 and 6 (Fig. 7.4), 9 and 4 (Fig. 7.5), 7 and
4 (Fig. 7.6).

- Limitation in the feature extraction:

+ the profile feature representation does not truly represent the profile:
numeral 7 has a right profile of numeral 3 (Fig. 7.7).

+ an artificially established threshold cannot make a clear distinction
between one numeral and another: 1 and 6 (Fig. 7.8), 6 and 4 (Fig. 7.9),
2 and 8 (Fig. 7.10).

+ The distinguishing features are too subtle to be detected by the cu..aputer:
2 and 3 (Fig. 7.11), 3 and § (Fig. 7.12).

+ Side effect of feature: one feature aims at recognizing one numeral, yet
it can cause a rejection of another numeral (Fig. 7.14).

Limitation of training samples: Insufficient representation of a numeral

pattern in the training set causes a valid feature to have a low weight in the

hypothesis set (Fig. 7.14).

- Segmentation error; 2 touching numerals given to the recognition stage as a

single character (Fig. 7.13).

It can be noted that the confusions found in the training set and the test set are
consistent, indicating an acceptable degree of accuracy in the method. There are a
few exceptions which are marked with an asterisk (0 and 8, 2 and 3, 3 and 5, 6 and
8) where the number of confusions in testing is much higher than training. These
exceptions may originate from the fact that there are not enough representative

samples in the training set to capture fully all the possible confusions between the
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Fig.7.2 : Confusion between 1 and 7
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Fig.7.% : Confusion between 8 and 4
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Fig.7.8 : 6 misrecognized as 1
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Fig.7.10 : 2 confused with 8
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Fig.7.12
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2 numerals. This explanation is in agreement with our observation on the limitation
of training samples noted above (Fig. 7.14).

An analysis of substitution error rates of the training set and the test set shows
that more errors occur in the test set for the following cases:

- numerals that have more complicated stroke structures than others (2,3,4),

- numerals that have less samples in the training set than others (5,9),

A comparison of substitution error rates in training and testing is shown in Table

71.15.

Table 7.15 : Comparison of substitution error rates

% Error Rate

Numeral Training Testing % Increase
0 0.88X% 2.16% 265%
1 0.44% 0.72% 164%
2 1.25% 3.21% 257%
3 1.09% 3.26% 299%
4 0.57% 2.98% 523%
5 0.25% 4.13% 1652%
6 1.83% 2.50% 137%
7 1.88% 2.446% 130%
8 1.67T% 3.21% 192%
9 1.43% 5.78% L04%

A substitution error rate in testing which is substantially higher than training
indicates that training for that numeral has not covered a good proportion of
possible shapes of the numeral. This suggests that inprovement can be made with
a larger training set which, because of its size, contains more features and is more
representative of the total population. In this study, we have imposed a constraint

that the training set should be at most approximately equal in size to the test set,
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in order to avoid the situation that the small size of the test set may cause a falsely
high recognition rate. This constraint is reasonable because in practice, the
recognition method should work on a very large volume of test data, many times
greater than the training set. Therefore, the largest size of the training set that was
used is 8500, being approximately 1/2 of the total number of samples.

Substitution error rates of different numerals at different reliability thresholds are
also given (Fig. 7.16). The tuning factors used in the graph are explained in Section
5.5.2. Although the substitution error rate decreases as higher tuning factor is used,
this is not realistic and beneficial, as discussed in Section 9.3.1.

Numeral 9 is the one that has the highest substitution error rate, and it also
happens to be the one that has the smallest number of representation in the data

base (see Table 6.1)
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8. DEPENDENCE ON THE SIZE OF
TRAINING SET

"A character recognition system can only be adequately judged when it has been
used in practice for millions of numerals® .. "It Is of utmost importance to know
exactly what test materlal was used” .. "We have found by personal experience how
easy it is to deceive oneself and others in this kind of experiments”.([BEUN73],
p.98).

The above excerpts from Beun’s study, a classic paper on character recognition
are important notes of caution to this study. One question which influences the
design methodology and the experimentation in the study is: "Is the data base
representative encugh so that the method developed using this data base will give
acceptable reliability and what kind of accuracy we can expect in practice”. This
question is partly answered by the recognition rates achieved with the test set.
Further confirmation can be obtained by starting training and testing with small
training and test sets, and gradually increasing the size of the training and test sets.
The vanation in iecognition rates should give an idea of the reliability of the
recognition results.

Another reason to find the dependence of the recognition results on the size of
the training set is to identify the factors that may help to improve the recognition

rate.




8.1 DEPENDENCE OF NUMBER OF FEATURES ON THE SIZE OF
TRAINING SET

When the knowledge base was built, each feature was added only when the
human expert judged that the additional feature added more discriminating power
to the knowledge bas.. It is natural to expect that as the training set increased in
size, more features must be added to maintain a high recognition rate, and when the
training set is small, there may be some features that are useful but not yet
encountered.

407 features were finally established with a training set of 8500 samples. Various
runs with different smaller sizes of training set were performed to see how many of
these features were present in smaller training sets. It is found that the curve with
the number of observed features plotted against the size of the training set increases
sharply at smaller sizes, but tiie rate of increase levels off at larger sizes (Table 8.1,

Fig. 8.2).

8.2 ANALYSES ON THE NUMBER Of PATTERN CLASSES

When grouping the data in the training set and the test set to pattern classes, it

is possible to achieve the following:

- To see the number of pattern classes in the data base and to have some ideas
on whether the obtained pattern classes cover the majority of all possible
common pattern classes.

- To estimate the proportion of samples belonging to common pattern classes

in this data base that may be encountered also in an unknown data base.
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Various runs with different sizes of training set and test set were performed, and

the following data were collected:
- Number of pattern classes present in the training set.
- Number of pattern classes present in the test set.
- Number of pattern classes present in both the training and the test sets
(common pattern classes), and the percentage of samples having common
pattern classes in the total data base.
The relationship between the number of pattern classes and the size of the
training set is tabulated in Table 8.1 and plotted in Fig. 8.3.

Analysis of the number of samples in common pattern classes and its percentage
in the total data base are presented in Table 8.4 and Fig. 8.5.

It is also noted that as the size of the training set increases, the average size of
a pattern class that is not a common class (for convenience, we call this uncommon
pattern class) is relatively constant at about 1.5 samples / pattern class, meaning that
the uncommon pattern class is more or less one of a kind. Meanwhile the average
size of a common pattern class increases as the size of training set increases,
indicating a consolidation of common pattern classes when a larger training set is
used. This relationship is tabulated in Table 8.6 and plotted in Fig. 8.7.

The different measurements plotted against the size of training set in Figs 8.3,
8.5, 8.7 also indicate a stabilization of recognition performance when a large size of

training set is used.
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Table 8.1 : Effect of the size of training set on

the number of observed features and the number of pattern classes.

Size of
training

set
(4}

265
530
848
1060
1697
2121
4242
8500

Notes:

- Column (2) = number of features of the total 407 that are found in the

No. of
observed
features

(2)

198
251
274
290
37
327
374
407

smaller training set.

- Column (3) = number of pattern classes found in the training set.
- Column (4) = number of pattern classes found in the test set.
- Column (5) = Column (3) + Column (4)

- Column (6) = number of pattern classes that appear in the training sct OR

the test set.

- Column (7) = number of pattern classes that appear both in the training set

No. of pattern classes

Train.

3

87
159
223
270
351
427
720

1195

AND the test set, (7) = (5) - (6).

114

Test.

(%)

95
152
221
258
358
448
£

1163

Total
5)

182
m
444
528
709
875
1441
2358

Combined Common

(6)

133
215
309

7

49

96
135
164
227
277
448
718




Fig. 8.2 : Effect of the size of training set on
the number of observed features
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Fig. 8.3 : Effect of the size of training set on
the number of pattern classes.
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Notes :

- Table 8.4 is related to table 8.1. Column (4) is column (7) in Table 8.1,
Column (5) is derived from column (6) - Column (7) of Table 8.1.

Table 84 : Statistics on pattern classes

Size of No. of patt.class.

Train. Test Total Common Uncommon
set set

N €2) 3) (4) (5)

265 265 530 49 84

530 530 1060 96 119

848 848 1696 135 174
1060 1040 2120 164 200
1697 1697 3394 227 255
2121 2121 4242 276 323
4242 4242 8484 448 645
8500 8485 16985 718 922

No. of samp. having %X in
comon pattern class. common
classes

Train. Test Total
(6) 7) (8) M

213 187 400 75.47
445 441 886 83.58
712 707 1419 a3.67
913 908 1821 85.90
1519 1503 3022 89.04
1932 1886 3818 90.00
3842 3851 7693 90.68
7818 7902 15720 92.55

- Column (9) = Percentage of samples in common pattern classes
= Column (8) * 100 % / Column (3)

Fig. 8.5 : Percentage of samples in common pattern classes
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Table 8.6 : Average size of a pattern class

Size of Common pattern classes Uncommon pattern classes
Train.set  Number Average size Number Average size
Q) (2) 3 €4) (5)
265 49 8.16 84 1.55
530 96 9.23 119 1.46
848 135 10.51 174 1.59
1060 164 11.10 200 1.49
1697 227 13.31 255 1.49
2121 276 13.83 323 1.31
4242 448 17.17 545 1.45
8500 718 21.89 922 1.37

Notes : Column (2) = Column (4) in Table 8.4
Column (3) = Column (8) in Table 8.4 / Column (4) in Table 8.4
Column (4) = Column (5) in Table 8.4
Column (5) = (3) - (8) then divided by (5) in Table 8.4

Fig. 8.7 : Average size of a common pattern class
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8.3 ANALYSES OF RECOGNITION RATES

The recognition rates are influenced by the quality and quantity of features, and
the number of generated pattern classes. Therefore the recognition rates should be

related to the size of the training set in a very similar way like the number of

features and the number of pattern classes.

From Table 8.8 and Fig. 8.9, it can be seen that as the size of the training set
increases, the recognition rates for the test set increases and tends to stabilize. The
difference between the recognition rate of the training set and the test set decreases.
There is also a correlation between the recognition rate of the test set and the

proportion of samples having common pattern classes in both the training set and

the test set (Fig. 8.10).

Table 8.8 : Effect of the size of training set on
the recognition rates

Size of No.
train. of
set feat.
1) (2)
265 198
530 251
848 274
1060 290
1697 37
2121 327
4242 37
8500 407
Notes:

Training Testing
Recog. Sub. Rej. Reli. Recog. Sub. Rej. Reli.
(3) %) 5 (6) (N (8) (%) €(10)
99.62 0.00 0.38 100.00 72.08 2.26 25.66 96.95
99.62 0.00 0.38 100.00 83.77 2.08 14.15 97.58
98.23 0.12 1.65 99.88 83.96 2.24 13.80 97.40
97.64 0.28 2.08 99.71 86.23 2.74 11.04 96.92
97.94 0.23 1.83 99.86 89.69 2.47 7.84 97.32
97.36 0.42 2.22 99.57 89.77 2.83 7.40 96.95
97.34 0.75 1.91 99.23 92.41 2.45 5.16 97.42
96.59 1.05 2.36 98.93 96.11  2.53 3.36 97.38

- Columns (3) and (7) : percentage of correct recognitions.
- Columns (4) and (8) : percentage of substitution errors.

- Columns (5) and (9) : percentage of rejection.
- Columns (6) and (10) : reliability, being the percentage of correct recognitions

over the number of samples that are not rejected.
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Fig. 8.9 : Effect of the size of training set on
the recognition rates
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Fig. 8.10 : Relationship between recognition rate
and percentage of samples belonging to common pattern classes

Recognition (%) % %
Common  Recognition
100
75.47 72.08
83.58 83.77
83.67 83.96
85.90 86.23
95 89.04 89.69
90.00 89.77
90.68 92.41
92.55 94.11
90
85
80
75
70

70 5 80 85 90 95 100
% of numerals having common pattern classes

8.4 CONCLUSIONS ON EFFECT OF TRAINING SET SIZE
From the above analyses, the size of the training set and the number of writers

are important in building a knowledge base that is representative and capable of
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giving a good recognition rate when applied to unknown samples. A larger training
set size will reveal a larger number of features and cover more of the pattern classes
that may exist and eventually yield a higher recognition rate.

Furthermore, in the inference method, even when no additional features are
added to the knowledge base, an increase in the size of a training set gives more
statistical accuracy to the knowledge base and improves the recognition rate. The
increase in recognition rate is mainly due to a decrease in rejection rate, but this
increase is obtained at the cost of having a lower reliability rate and higher
substitution error rate. This is confirmed in the following test:

A knowledge base of hypothesis sets was extracted from a training set of 8500,
using only 274 features (out of the total number of features of 407). It was used to
recognize a test set of 8485 samples. The same number of features were applied to
a training set of 848 and a test set of 848. The recognition rate of the test sets for
the first run using larger training set was better than for the second run using smaller
training set although the same number of features were used in both runs.

Table 8.11 : Larger training set gives better recognition rate
for inference method

Number of features used : 274 (out of 407)

Training and Test set Size Difference

848 8500
Recognition 83.96% 85.97% +2.01%
Substitution 2.24% 2.73% +0.49%
Rejection 13.80% 11.48% -2.32%
Reliability 97.40% 96.91% -0.49%

122



The structural method is entirely dependent on the established pattern classes
which depend on the number of features, which depends on the training set. When
the size of the training set is larger, it is more likely that the generated pattern
classes are better representatives. Hence we also expect the recognition rate to
improve when training is done with a larger set.

This behavior is also shown in the performance graphs shown in Figures 10.11

and 10.12 in Chapter 10.
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9. PERFORMANCE CURVE AND FINE TUNING

9.1 PERFORMANCE CURVE

4 percentage rates are used to measure the performance of a method: recognition
rate, rejection rate, substitution error rate and reliability rate (Chapter 6). Of the 4
measurements, knowing only 2 of them will enable us to derive the remaining 2.
Therefore the performance of a recognition method can be conveniently represented
as a curve in a 2-dimensional graph using 2 measurements, in this analysis they are
substitution error rate versus recognition rate. The inference method and the
structural method in this study cover a continuous range of recognition rates, their
representative results are plotted in Fig. 9.1. Performance curves of individual
numerals, which differ considerably from one to another, are also given in Fig. 9.2.

Explanations on how the data are obtained are presented in subsequent chapters.

9.2 FINE TUNING OF THE INFERENCE METHOD

9.2.1 Changing the parameters of the analyzer

By varying the threshold on the minimum percentage of the dominant hypothesis
in the final result set in the range of 0 to 100%, it is possible to get different

combinations of recognition rate and substitution error rate (Table 9.3).



Fig. 9.1 : Performance curve of the inference method
and the structural method
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Fig. 9.2 : Performance curves of different numerals
structural and inference method
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Table 9.3 : Variation in recognition rates
using inference method

Test set: 8485 samples

Threshold Rej. (%) Subst. (%) Recog. (%) Reliability.
percent %

1 168 1.98 261 3.08 8056 94.94 $6.86

11 168 1.98 261 3.08 8056 94.94 96.86
21 168 1.98 261 3.08 8056 94.94 96.86
3 169 1.99 260 3.06 8056 94.94 96.87
41 188 2.22 246 2.90 8051 94.89 97.04
51 254 2.99 228 2.69 8003 94.32 97.23
61 331 3.90 214 2.52 7940 93.58 97.38
4l 449 5.29 188 2.22 7848 92.49 97.66
81 650 7.66 163 1.92 7672 90.42 97.92
91 1050 12.37 134 1.58 7301  86.05 98.20
96 1547 18.23 124 1.46 6814 80.31 98.21
99 2454  28.92 118 1.39 5913  69.49 98.04
100 3624 42.7 116 1.37 4745 55.92 97.61%

The minimum substitution error rate that can be achieved with the inference
method is 1.37%. The maximum reliability rate that can be achieved is 98.21%,
which occurs when the threshold percentage is 96%. At a higher threshold of 100%,
although the substitution error rate drops slightly, the recognition rate drops even
further, and the maximum reliability rate goes down from 98.21% to 97.61%. The
data are plotted in Fig. 9.1.

8.2.2 Exclusion of bad samples from the training set

For recognition using inference method, it is expected that by including poor
samples in the knowledge base, it is possible to introduce information that is not
representative or even wrong into the knowledge base, but without experience of the
poorly written samples, the method will not have the knowledge to deal with them,

either to recognize them correctly or to reject them. To see the effect of excluding
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the poor or unusual samples on the knowledge base, in addition to Set 1 which
contains all 8500 samples, training was done on 2 other sets:
- Set 2: 8411 samples, all misrecognized samples were excluded.
- Set 3: 8210 samples, all misrecognized samples and rejected samples were
excluded.
The knowledge bases obtained from Set 2 and Set 3 were used in recognition of
the test set (8485 samples). The performance curves of 3 runs using the knowledge

from 3 sets are given in Figures 9.4 and 9.5.

Fig. 9.4 : Performance curves using different training sets

(Inference method)

Substitution (%)

x : Set 1 (8500)
- : Set 2 (8411)
+ : Set 3 (8210)
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2.0
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1.0
50 60 70 80 90 100
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Fig. 9.5 : Comparison of performance curves
at a more detailed scale
(Inference method)

substitution (X)

x : Set 1
- : Set 2
+: Set3

3.0

2.0

89 0 91 92 93 94 95
Recognition (%)

The graphs show that the knowledge base from Set 1 gives better results than Set
2 or Set 3 in most cases. We can see that when bad samples are excluded from the
training set, the inference method usually gives a poorer recognition rate. However,
in the range of recognition rate of 90-95%, the knowledge base using Set 2 actually

gives better recognition rate than Set 1.
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Table 9.6 : Set 2 gives better recognition rate at a special range

Training No. Training Testing
Set of

Feat. Recog. Sub. Rej. Reli. Recog. Sub. Rej. Reli.
(@] (2) (3) (L) (5) (6) (7 (8) (§°3) €10)

All samp. 407 96,59 1.05 2.36 98.93 94.11 2.53  3.36 97.38

Exc.subs 407 98.01 0.12 1.87 99.88  94.47 2.49  3.04 97.44
errors

Exc.subs 399 99.67 0.00 0.33 100.00 94.08 2.80 3.11 97.10
& rej.err.

Noies: Explanation of columns 2-10 is the same as Table 8.8.

It is also noted that when samples which were misrecognized by the computer
were excluded from the training set, the number of observed features decreased and
the number of pattern classes generated from the features also decreased
considerably. This implies that bad samples mostly belong to the uncommon pattern

classes which have a small frequency of occurrence (Table 8.6, Section 8.2).

Table 9.7 : Effect of excluding poor samples from training set
on the number of observed features and pattern classes

No. of No. of pattern classes

observed
Training set features Train. Test. Total Combined Common

%)) (2) (3 (4) (5) (6) (7
All samples 407 1195 1163 2358 1640 718
Exclude subs. 407 1024 1082 2106 1436 670
errors

Exclude subs. 399 751 934 1685 1118 567

& rej. errors

Notes: Explanation of columns 2-7 is the same as Table 8.1.
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9.2.3 Effect of a-priori knowledge about the distribution of samples

In equation 5.8, when the a-priori knowledge of distribution of the numerals is
not known, each value in a hypothesis set is adjusted by a factor of 1/N; where N;
is the frequency of occurrences of numeral i in the training set.

To exclude this a-priori knowledge, the knowledge base of hypothesis sets was
normalized, each occurrence of numeral i was multiplied by the factor of 2000/N;
such that the values in hypothesis sets represented occurrence measurements on a
training set of 20,000 samples with each numeral having 2000 samples. The
normalized knowledge base was then applied to the test set. The recognition rates
in comparison with the un-normalized knowledge base are given in Fig. 9.8. In a high
recognition range (90-95%), there was a sharp decrease in performance when a-

priori knowledge was not used.
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Fig. 9.8 : Effect of not using a-priori knowledge
of numeral distribution on recognition rate
(Inference method)
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9.3 FINE TUNING OF THE STRUCTURAL METHOD

9.3.1 Variation of the tuning factor

As explained in Section 5.6, we can select a threshold for the size of pattern class
using a tuning factor, varying from 0.0 up to 2.0. The threshold is equal to the
average size of a pattern class of a numeral, multiplied by the tuning factor.
Recognition rates using different tuning factors are given in Table 9.9 and plotted

in Fig. 9.1. The maximum recognition rate on a test set is 91.81% with reliability of

132



97.78%, the maximum reliability rate can be higher than 99.8% with a recognition
rate of less than 65%.

It is possible to increase the tuning factor and obtain a lower substitution error
rate. However at some limit, it is not beneficial to increase the tuning factor,
because:

- the increase in rejection rate is very high to gain a very slight improvement
in substitution rate,

- there are samples in the database which will be misrecognized, even by the
best human recognizer, for example the numeral 2 (N0.3178) shown in Fig. 2.1
would be recognized as 7 by any human or machine recognizer. This type of error

will remain even if the tuning factor were made very high.
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Table 9.9 : Recognition results of structural method

Tuning No.of pat. Recog.% Subst.X RejectX ReliabilityX
factor classes

0.0 947 91.81 2.09 6.10 97.78
0.1 881 91.09 2.03 6.88 97.82
0.2 606 87.94 1.48 10.57 98.34
0.3 497 86.00 1.23 12.78 98.59
0.4 390 83.25 0.95 15.79 98.87
0.5 348 81.57 0.85 17.58 98.97
0.6 287 79.58 0.71 19.72 99.12
0.7 265 78.24 0.54 21.2% 9.3
0.8 219 76.24 0.39 23.37 99.49
0.9 207 75.00 0.37 24.63 99.52
1.0 185 73.46 0.31 26.23 99.58
1.1 167 72.35 0.27 27.38 99.63
1.2 157 n.a 0.27 28.52 99.62
1.3 146 70.29 0.22 29.49 99.68
1.4 140 69.79 0.21 29.99 99.70
1.6 126 68.05 0.15 31.80 99.78
1.8 114 65.61 0.13 34.26 99.80
2.0 101 62.10 0.13 3r.m7 99.79
2.5 78 57.96 0.09 41.94 99.84
3.0 61 54.44 0.05 45.52 9.9
3.5 51 52.60 0.05 47.35 99.91
4.0 42 49.72 0.02 50.25 99.95
5.0 3 46.36 0.02 53.61 99.95
6.0 24 42.86 0.02 57.22 99.94

9.3.2 Exclusion of poor samples from the training set

By using a threshold on the size of the selected pattern class, the method
automatically excludes the poor samples from the training set. The recognition
results would be unchanged if poor samples are excluded.

9.3.3 Effect of a-priori knowledge about the distribution of numerals

With structural recognition, the knowledge base of pattern class can be
normalized by increasing the size of each pattern class with different multiplication

factors so that all numerals have the same frequency of occurrences. However, the
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effect of this normalization is hidden by a larger change that is caused by using the
tuning factor, which is established in a very intuitive fashion and is related to the
average size of the pattern class. Hence the effect of normalization can not be

isolated and was not considered.

9.4 POSSIBILITY OF IMPROVEMENT

To estimate the possibility of improvement on the method, all substitution errors
and rejection errors of the training set were examined. They were divided into 2
types: errors that a human recognizer can also make, and errors that a human
recognizer would not make. The division was of course subjective, but it would give

an insight to the limitation of the method.

Table 9.10 : Improvement on recognition by a human recognizer

Improvement on Improvement on Total
Numeral substitution errors rejection errors errors
Yes No Yes No
] 3 8 13 6 30
1 5 3 4 7 19
2 4 [ 20 5 35
3 6 6 22 7 (4]
4 2 2 12 1 17
5 0 1 18 10 29
[ 6 5 17 3 31
7 K4 10 10 4 k]|
8 ) 5 21 8 39
9 3 2 1" 2 18
Totat 41 48 148 53 290

The total number of errors that a human recognizer would also make is 101 (48

+ 53 ), the percentage is 1.19% (101 / 8500 = 0.0119). The 189 samples that the
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human recognizer can recognize are samples having noise such as extra and
redundant strokes, white hole inside the original image, touching strokes, filled loop
and broken strokes. For these samples, the human recognizer can perform intelligent
pre-processing to ignore noise, erase redundant strokes, or add missing strokes. He
can also concentrate on strong features, and ignore unimportant features to reach
a better decision than a computer algorithm,

Considering the fact that this human recognition test was done by the researcher,
who is very familiar with the data and has knowledge of the true identity of the
samples, the combined substitution and rejection error rate of about 1.2% is
probably biased and tends to be low. If the same experiment were done with an
average human recognizer who has no knowledge on the identity of each sample (i.e.
the label of each sample is not disclosed), the combined error rate of that human
recognizer may be considerably higher than 1.2%.

For comparison, a more objective experiment by Beun [Beun73] with 35 human
recognizers on the same kind of data base gave a substitution rate of 1.3% and
rejection rate of 0.7%, overall error rate was 2%.

If we want to improve the method to have recognition rate as good as a human
recognizer, there are 2 alternatives:

1/ If preprocessing is not improved, additional rules must be added so that the
method can recognize the above 189 samples which can be recognized by a
human recognizer. Because they are new pattern classes that have a very
small size (1.1 - 1.2 per class, as given in Table 6.3, Chapter 6), at least 160
new rules must be added to the knowledge base to generate the new pattern

classes. Those rules are not general, and there is no guarantee that they will

136



2/

be effective for an unknown data base. On the other hand, the work required
to add an additional 160 rules to a knowledge base that already contains 407
rules is extremely high. We have reached a stage of diminishing return.
Therefore, this alternative is not practical, and the building of the knowledge
base was stopped at this stage.

The other alternative is to have more intelligent image preprocessing to
reduce the number of pattern classes, reduce the number of rules and
increase the generality of rules in the knowledge base. This is a direction
worth pursuing, but much more study is required to investigate either new or

more sophisticated pre-processing techniques.
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10. ADDITIONAL EXPERIMENTS
ON DATA USED BY CONCORDIA OCR PROJECT TEAM

Further experiments were conducted on 6000 samples used by the Concordia
OCR Project Team. Those 6000 samples were extracted from the full database of
16,985 samples used in the main experiment work of this study, however the training
and test data from 6000 samples were not necessarily subsets of the training and test
data used in the main experiments.
The purpose of the additional experimental work was to compare the recognition
results of this method with other methods tested by the OCR Project Team, using
the same data. These data were also used in [LAM86] and [LS88].
The 6000 samples were divided into 3 sets: Training set A, Training set B and
Test set C, each set contained 2000 samples, 200 of each numeral.
The following runs were performed:
1/ Training on 2000 samples of Training set A.
2/ Testing on 2000 samples of Training set B, using knowledge obtained from
training with Set A in Run No. 1.

3/ Training on 4000 samples from Training sets A and B.

4/ Testing on 2000 samples of Test set C, using knowledge obtained from
training with Sets A and B.

5/ Testing on 2000 samples of Test set C, using knowledge obtained from

training with Set A only.

6/ Testing on 4000 samples of Training sets A and B, using knowledge obtained

from training of 8500 samples of the main experimental work.



7/ Testing on 2000 samples of Test set C, using knowledge obtained from

training of 8500 samples of the main experimental work.
| The confusion matrices for 7 experimental runs are given in Tables 10.1-10.7.

Recognition rates for test set C in Runs 4,5,7 using the structural method are
given in Tables 10.8-10.10.

The performance curves of Run 4, Run 5, Run 7 are plotted together with the
performance curve of the main run (test set 8485 samples, training set 8500 samples)
in Fig. 10.11.

The relationship between substitution error rate and the number of pattern

classes used in structural recognition is plotted in Fig. 10.12.

OBSERVATIONS OF ADDITIONAL EXPERIMENTAL WORK
- The recognition results obtained in the above runs are consistent with results
reported in the main experimental work. For example:

+ The relationship of recognition rates and the size of training set as plotted
in Fig. 89 is reproduced in Fig 10.13, the new points coming from additional runs
are consistent with the plotted curves.

+ The reliability rates are also above 97%, the substitution rates vary from
2.0 to 2.5, the recognition rates and reject rates are dependent on the size of the
training set, the larger the training set, the higher the recognition rate and the lower

the reject rate.
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+ The performance curves resemble the performance curves of the main

experiment. As the size of the training set increases, the curve shifts to the right i.e.
better performance (Fig. 10.11).

+ The graph of substitution error rate versus the number of accepted pattern
classes plotted in Fig. 10.12 also indicates that better recognition is achieved if
training is done with a larger training set.

- The data for runs 3 and 4 are identical to the data used in [LAM86] and
[LS88]. This method gave slightly less substitution errors but more rejects than those

reported in [LAMS6].

Table 10.14: Comparison of substitution errors
and rejects with [LAME6]

TRAINING (4000 samples) TESTING (2000 samples)

This [LAMES) This [LAMB6]

Study Crit.1 Crit.2 Study Crit.1 Crit.2
Sub. 3N 86 58 43 63 45
Rej. 9k 19 119 98 17 92

Notes: In [LAMS86], a set of 3 distance thresholds were used to decide the
recognition result as the nearest neighbor to the unknown sample. Criterion
2 defines a lower threshold and therefore is more stringent than Criterion 1.
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Table 16.1: Confusion matrix of Run 1
Training using Set A

ouT -> 0 1 2 3 4 5 (] 7 8 9 REJECT SUBST. SUCC. TOTAL

IN
0 1 3 2 4 194 200
1 200 200
2 1 1 1 198 200
3 2 198 200
4 1 4 1 195 200
5 3 197 200
6 7 193 200
7 4 196 200
8 1 3 1 196 200
9 4 5 4 19 200
TOTAL 2 [ 3 N 11 1958 2000
NUMERAL  TOTAL REJECT % SUBST. % SUCCESS X  RELIABILITY

0 200 2 1.00 4 2.00 194 97.00 97.98

1 200 0 0.00 0 0.00 200 100.00 100.00

2 200 1 0.50 1 0.50 198 99.00 99.50

3 200 2 1.00 0 0.00 198 99.00 100.00

4 200 4 2.00 1 0.50 195 97.50 99.49

5 200 3 1.5 0 0.00 197 98.50 100.00

6 200 7 3.50 0 0.00 193 96.50 100.00

7 200 4 2.00 0 0.00 196 98.00 100.00

8 200 3 1.50 1 0.50 196 98.00 99.49

9 200 5 2.50 4 2.00 191 95.50 97.95

TOTAL 2000 31 1.55 11 0.55 1958 97.90 99.44
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Table 10.2: Confusion matrix of Run 2
Testing Set B using training knowledge from Set A

ouT -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. SUCC. TOTAL

0 1 3 9 4 187 200
1 2 198 200
2 1 2 3 3 20 9 17 200
3 2 1 2 27 5 168 200
4 1 1 9 2 189 200
5 2 2 1 13 5 182 200
6 i 1 2 1 32 5 163 200
7 1 2 1 1 1 10 6 184 200
8 2 1 1 1 1 1 2 I4 9 184 200
9 6 1 1 13 8 179 200
TOTAL 3 1 4 7 10 5 6 5 9 3 142 53 1805 2000
NUMERAL  TOTAL REJECT X sussT. % SUCCESS % RELIABILITY

0 200 9 4.50 4 2.00 187 93.50 97.91

1 200 2 1.00 0 o0.00 198 99.00 100.00

2 200 20 10.00 9 4.5 171 85.50 95.00

3 200 27 13.50 5 2.50 168 84.00 97.11

4 200 9 4.50 2 1.00 189 94.50 98.95

5 200 13 6.50 5 2.50 182 91.00 97.33

6 200 32 16.00 5 2.50 163 81.50 97.02

7 200 10 5.00 6 3.00 184 92.00 96.84

8 200 7 3.50 9 4.50 184 92.00 95.34

9 200 13  6.50 8 4.00 179 89.50 95.72

TOTAL 2000 %2 7.10 53 2.65 1805 90.25 97.15
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Table 10.3: Confusion matrix of Run 3
Training using Sets A and B

our -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. SUCC. TOTAL

IN
0 1 4 2 4 7 389 400
1 1 2 1 397 400
2 1 1 12 2 386 400
3 2 1 2 387 400
4 1 7 1 392 400
5 2 7 2 I 400
6 2 10 2 388 400
7 3 10 3 387 400
8 1 1 1 17 3 380 400
9 8 14 8 378 400
TOTAL 2 3 1 4 2 5 3 94 31 3875 4000

NUMERAL  TOTAL REJECT % SUBST. % SUCCESS X RELIABILITY
0 400 4 1.00 7 1.7 389 97.25 98.23
1 400 2 0.50 1 0.25 397 99.25 99.75
2 400 12 3.00 2 0.5 386 96.50 99.48
3 400 11 2.75 2 0.50 387 96.75 99.49
4 400 7 1.5 1 0.2 392 98.00 99.75
5 400 7 .75 2 0.50 N 97.75 99.49
6 400 10 2.50 2 0.50 388 97.00 99.49
7 400 10 2.5 3 0.7 387 96.75 99.23
8 400 17 4.25 3 0.75 380 95.00 99.22
9 400 14 3.50 8 2.00 378 94.50 97.93

TOTAL 4000 9% 2.35 31 0.7 3875 96.87 99.21
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Table 10.4: Confusion matrix of Run 4
Testing Set C using knowledge from training sets A and B

ouT -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. SUCC. TOTAL

0 1 1 1 2 10 5 185 200
1 1 8 1 191 200
2 1 1 1 2 1 17 6 177 200
3 3 1 1 1 5 ] 189 200
4 1 1 1 1 13 4 183 200
5 2 1 12 3 185 200
6 1 1 1 1 9 4 187 200
7 2 2 1 5 5 190 200
8 2 1 1" 3 186 200
9 1 1 1 3 8 6 186 200
TOTAL 2 10 7 3 5 2 4 5 5 98 43 1859 2000
NUMERAL  TOTAL REJECT X% SUBST. X SUCCESS X RELIABILITY

0 200 10 5.00 5 2.50 185 92.50 97.37

1 200 8 4.00 1 0.50 191 95.50 99.48

2 200 17 8.50 6 3.00 177 88.50 96.72

3 200 5 2.50 6 3.00 189 94.50 96.92

4 200 13 6.50 4 2.00 183 91.50 97.86

5 200 12 6.00 3 1.50 185 92.50 98.40

6 200 9 4.50 4 2.00 187 93.50 97.91

7 200 5 2.5¢ 5 2.30 190 95.00 97.44

8 200 11 5.50 3 1.50 186 93.00 98.41

9 200 8 4.00 6 3.00 186 93.00 96.87

TOTAL 2000 98 4.90 43 2.15 1859 92.95 97.74
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Table 10.5: Confusion matrix of Run 5
Testing Set C using knowledge from training set A only

outr -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. SUCC. TOTAL

0 1 1 1 3 14 6 180 200
1 3 197 200
2 3 5 2 1 18 1" mn 200
3 2 1 1 1 18 5 177 200
4 1 4 17 5 178 200
5 2 1 15 3 182 200
6 1 1 1 15 3 182 200
7 2 1 1 11 4 185 200
8 1 1 9 2 189 200
9 1 1 1 1 12 4 184 200
TOTAL 1 6 8 2 4 6 ¢ 8 6 132 43 1825 2000
NUMERAL  TOTAL REJECT X suasT. X SUCCESS %  RELIABILITY

0 200 14 7.00 6 3.00 180 90.00 96.77

1 200 3 1.50 0 0.00 197 98.50 100.00

2 200 18 9.00 11 5.50 171 85.50 93.96

3 200 18 9.00 5 2.50 177 88.50 97.25

4 200 17 8.50 5 2.50 178 89.00 97.27

5 200 15 7.50 3 1.50 182 91.00 98.38

6 200 15 7.50 3 1.50 182 91.00 98.38

7 200 11 5.50 4 2.00 185 92.50 97.88

8 200 9 4.50 2 1.00 189 94.50 98.95

14 200 12 6.00 4 2.00 184 92.00 97.87

TOTAL 2000 132 6.60 43 2.15 1825 91.25 97.70
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Table 10.6: Confusion matrix of Run 6
Testing Sets A and B using training knowledge from main experiment

out -> 0 1 2 3 4 5 é 7 8 9 REJECT SUBST. SUCC. TOTAL

o 1 2 1 1 1 5 (] 189 200
1 1 1 1 198 200
2 1 1 1 1 7 4 189 200
3 2 1 1 1 3 5 192 200
4 4 2 2 1 1 7 10 183 200
5 4 1 1 9 6 185 200
6 2 1 1 7 4 189 200
7 3 2 1 2 ] 192 200
8 1 1 8 2 190 200
9 1 1 2 10 4 186 200
TOTAL 2 13 12 3 3 3 5 4 3 59 48 1893 2000
NUMERAL  TOTAL REJECT % suBsT. % SUCCESS X RELIABILITY

0 200 5 2.50 6 3.00 189 94.50 96.92

1 200 1 0.50 1 0.50 198 99.00 99.50

2 200 7 3.50 4 2.00 189 94.50 97.93

3 200 3 1.50 5 2.5 192 96.00 97.46

4 200 7 3.50 10 5.00 183 91.50 94.82

5 200 9 4.50 6 3.00 185 92.50 96.86

6 200 7 3.50 4 2.00 189 94.50 97.93

7 200 2 1.00 6 3.00 192 96.00 96.97

8 200 8 4.00 2 1.00 190 95.00 98.96

9 200 10 5.00 4 2.00 186 93.00 97.89

TOTAL 2000 59 2.95 48 2.40 1893 94.65 97.53
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Table 10.7: Confusion matrix of Run 7
Testing Set C using training knowledge from main experiment

T -> 0 1 2 3 4 5 6 7 8 9 REJECT SUBST. SUCC. TOTAL

0 1 1 4 7 6 387 400
1 1 1 1 398 400
2 5 1 1 1 12 8 380 400
3 1 2 11 3 386 400
4 1 2 4 3 393 400
5 2 2 23 4 373 400
6 1 1 2 2 8 6 386 400
7 1 1 4 2 2 6 10 384 400
8 2 2 1 1 10 6 384 400
9 1 3 9 2 20 15 365 400
TOTAL 4 2 ? 11 13 5 6 9 3 102 62 3836 4000
NUMERAL  TOTAL REJECT X SuBsST. % SUCCESS % RELIABILITY

0 400 7T 4 6 1.50 387 96.75 98.47

1 400 1 0.25 1 0.2 398 99.50 99.75

2 400 12 3.00 8 2.00 380 95.00 97.94

3 400 11 2.75 3 0.75 386 96.50 99.23

4 400 4 1.00 3 0.7 393 98.25 99.24

5 400 23 5.75 4 1.00 373 93.25 98.94

6 400 8 2.00 6 1.50 386 96.50 98.47

7 400 6 1.50 10 2.50 384 96.00 97.46

8 400 10 2.50 6 1.50 384 96.00 98.46

9 400 20 5.00 15 3.7 365 91.25 96.05

TOTAL 4000 102 2.55 62 1.55 3836 95.90 98.41
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Table 10.8 : Recognition results of structural method
Run 4: Testing Set C using knowledge from training sets A and B

TUNING NO.OF PAT. RECOG.% SUBST.X REJECTX RELIABILITYX
FACTOR CLASSES

0.0 529 91.00 1.90 7.10 97.95
0.1 508 90.40 1.85 7.75 97.99
0.2 405 87.55 1.45 11.00 98.37
0.3 343 85.75 1.15 13.10 98.68
0.4 276 82.35 0.85 16.80 98.98
0.5 227 80.00 0.80 19.20 99.01
0.6 205 78.30 0.75 20.95 99.05
0.7 183 76.25 0.70 23.05 99.09
0.8 151 71.55 0.60 27.85 99.17
0.9 145 70.85 0.50 2