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Abstract

A Method for Segmentation of Touching Handwritten Numerals

Nicholas W. Strathy

A method of separating the leftmost numeral from a string of touching uncon-
strained handwritten arabic numerals is proposed. A binary image containing a string
of touching numerals is scanned to give contour chains. The chains are analysed and
subdivided into four kinds of regions: valleys, mountains, holes, and open regions.
Individual points of interest in the outer contour are then identified, e.g., points of
high curvature, and other points which have been shown to be significant for per-
forming perceptual grouping of objects in scenes. The separating path is assumed
to pass between some pair of these significant contour points (SCPs). To find that
pair, 9 features of the SCPs are measured and are used to sort the list of all possible
pairings of SCPs. As with other segmentation methods, the output of this system
is a short list of segmentation hypotheses sorted in order of confidence. Test results
show that the correct cut is sorted within the first 3 choices in 89.5% of samples, and
within the first 5 choices in 96.3% of samples. The total number of test images is 946
divided between 3 different sets. The system is trainable, something not seen in any
other digit separation system in the literature. Training was done on a completely

different set of 212 images.
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Chapter 1

Introduction

1.1 The challenge

This thesis proposes a method of performing one step in the machine recognition
of images such as those appearing in Fig. 1. The proposal is not to recognise the
individual digits—something most readers of this text will have little trouble doing
it is merely to separate the digils one from another; no, that is even going too far: in
fact, this thesis proposes a method of separating just the leftmost digit from a string
of connected handwritten digits. Well, actually, it does not even propose to do that
with much certainty! To come to the point, the best it has to offer is a handful of
attempts at separating the leftmost digit, sorted from highest confidence to lowest.
This, however, is one of the approaches to the recognition process that is currently
popular [13, 17, 25, 26], and not without some reason. In this strategy, segmentation
is seen as an integral part of recognition, i.e., if an input cannot, be recognised, then a
segmentation hypothesis is applied, followed by another recognition attempt, and so

on. In this manner, inputs such as those in Fig. 1 can conceivably be recognised by

Z RS | @

Figure 1: Touching digits.
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Figure 2: Other segmentation issues: (1) overlap, (2) breakage, (3) superimposition,
(4) noncontextual strokes, (5) noise.

successive separations of the leftmost digit. Actually, one could work from the right
hand side just as well, or even both sides, but this thesis is limited to showing the
viability of a method for the left hand side.

Of course, connected digits are only one aspect of the digit-segmentation challenge.

Iig. 2 gives examples of some of the other issues:

I. overlap: digits are not touching, but they overlap vertically, and may not be

lincarly separable;

[ O™

breakage: a single digit is broken into two or more pieces;

3. superimposition: a severe touching case where the digits are effectively super-

imposed on one another.

4. noncontextual strokes: interference from non-random markings that are not

part of the digits;

5. just plain noise.

The first issue does not pose a considerable problem, however, each of the others
presents a major challenge which could itself serve as the subject of a thesis or major
paper; therefore, these will not be explored here. Naturally, the majority of real
world inputs will be free of such segmentation problems, however, the proportion of
problematic cases is not insignificant: one study found that 13% of U.S. ZIP codes
contain touching digits [24]. So, not only is it simply interesting to devise computer

methods of solving the problem of touching digits, the phenomenon itself is one that
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e

Figure 3: The 5 is simply connected on its left and complexly connected on its right.

is met with not infrequently in the real world, at least in certain realms of document
processing such as mail sorting and cheque processing.

Within the class of touching digits we have some subclasses.  Although many
categories of touching configurations made themselves manifest over the course of
the research, it is beyond the scope of this thesis to perform an extensive analysis of
them. Such an analysis might lead to improvements in the method, however, that is a
subject for further study. The topic 1s only mentioned here to draw attention to two
of the most obvious types of connectivities between characters, namely, what is often
termed simply connected, meaning connected at one place, and complerly conneeled,
meaning connected at more than one place (see Fig. 3). In real world data, complex
connections are rare compared to simple ones, nevertheless, they form one of the

subclasses of connected digits to be handled.

1.2 Available methods

Other methods for separating touching digits have met with some success. A review
of several of the most promising of them [8, 14, 13, 24, 31] appears in a report by the
present author [33]. Another successful method has since appeared [17] which bears
some similarity to the present method. Results of that method are compared with
the present one in Chapter 9.

All of the above methods are structural in approach except that of Kimura ¢l al
[24] which is statistical. That method suffers from the restrictions that the cut it

makes is always linear, with some postprocessing to fix up some cases that are not
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lincarly separable; as well, it is only suitable for strings of 2 touching digits. All
of the structural approaches except that of Fujisawa et al [17] suffer from vagueness
in defining exactly where a path to cut two digits should enter and exit the digit
string, and no published method has been seen that demonstrates robust handling of
more than two connected digits ([31] includes some handling of 3 digits, but provides
extremely limited test results for connected digits).

In this author’s opinion, the method of Fujisawa ef al[17] is the most coherent and
exact seen to date, in that it analyses the upper and lower contours of the digit string
in an effort to precisely identify a small set of significant candidate pairs of points
between which to cut, something none of the other methods do. Its main drawbacks
are that it is dependent on measurements of stroke thickness, and it relies too heavily
on detection of certain configurations of strokes, a practice which is discouragingly
ill-fated in handwriting analysis.

The present method is also dependent on measurements of structural features, but
as the results show, the features selected appear to be more robust and/or meaningful
than those used by Fujisawa. The critical weakness in all other methods seen is that
they are all syntactic, i.e., there is no automatic learning capability. This is what
really distinguishes the present method from the others. It is capable of learning the

relative importance of each of the features it measures.

1.3 The proposal

As mentioned above, the present proposal is to provide a small nurnber of segmenta-
tion hypotheses—five to be exact—sorted so that if a correct solution has been found
it is likely to be closer to the front of the list than the back. The strategy of the
method may be described informally as follows.

We observe that at each junction point of 2 touching characters one or both of the
following is very likely to be true: (1) the junction point is at a discontinuity in the
curve of the outer contour of the character string; and/or (2) the junction point is
found in a vertical indentation of the outer contour. The latter observation was used

to give some promising results for digit separation by Cheriet et al [8]. Incidentally.
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observation 1 is in keeping with the laws of perceptual grouping of Gestalt psychology
which have also proven useful in methods to segment overlapping strokes [20, 22]. In
the present method both of these observations are used to locate likely points on
the outer contour where a separating path might enter and exit the character string.
Discontinuities in the outer contour are detected with a corner-finding algorithm,
and vertical indentations in the outer contour are found using a run length encoded
version of the image.

Once a set of likely entry/exit points on the outer contour, called significant
contour points (SCPs), has been found, a ranking based on features of the points is
performed in an effort to find the most likely pair between which the separating path
through the digit string should pass. A set of weights is trained in a separate offline
phase in order to give meaningful relative importances to the SCP features measured.
When the ranking is complete we have a list of cuts sorted in order of confidence.

The correct cutting path from an entry point in the outer contour to an exit. point
is very often a straight line, however, the path that separates a complexly connected
digit from a string may be far from linear. This latter problemn is not ignored here:
the solution provided needs further development, but it has good potential.

We now proceed to a detailed description of cach phase of the method.



Chapter 2

Preprocessing

2.1 Binarization

All images were first binarized by a simple thresholding operation. This is a very
unportant step, but little effort was spent to achieve optimal performance since any
images which could not be binarized satisfactorily by this method, and there were very
few, were excluded manually from further processing. This step was done once offline
in a completely different phase from the segmentation phase. All further preprocessing

takes place as the initial part of the segmentation process.

2.2 Smoothing

Next, a smoothing operation is done to regularize the edges in the image and to
remove small bits of noise. A white border one pixel thick is first added around the
existing border of the image and a 3 x 3 mask (see Fig. 4) is passed over the entire
image to smooth it. The mask begins in the lower right corner and processes each
row from right to left moving upwards row by row. The pixel in the centre of the
mask is the target. Pixels overlaid by squares marked ‘X’ are ignored. If the pixels
overlaid by the squares marked ‘=" all have the same value, i.e., all zero, or all one,
then the target pixel is forced to match them, otherwise it is not changed. This test

is done 4 times for each target pixel, once for each possible rotation of the mask. The



CHAPTER 2. PREPROCESSING

-1

\

Figure 4: 3 x 3 mask for smoothing.

result is that single-pixel indentations in all edges are filled and single-pixel bumps
are removed. Furthermore, the mask modifies the identical image that it scans, so
that in certain cases, for reasons the reader will no doubt see, lines that are one pixel
thick will be completely eroded (see Fig. 5). This is a small price to pay for a simple
and efficient smoothing operation; indeed. it is extremely rare that anything other

than noise is removed by this filter.

2.3 Size-doubling

After smoothing, the image is doubled in size if its height is lower then a certain
number of pixels (see Appendix A for threshold values). The size is inereased in order
to magnify small features for further processing. Doubling is chosen because it is very
cheap computationally, and a further smoothing operation can casily be incorporated.
Smoothing is done by turning pixels black in the corners of any staircase encountered.
Fig. 5 compares ordinary size-doubling with the present smooth-doubling method.

This concludes the preprocessing phase.
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Figure 5: (a) input image, (b) smoothed (c) doubled, (d) smoothly doubled.



Chapter 3

Contouring

3.1 Introduction

The contour finding method used in this work is designed to quickly trace contours
around regions of some given range of pixel intensities, i.c., the parameters of the
algorithm are a rectangular image consisting of square pixels, and a single range
of pixel values which are to be contoured. 1In the present application images are
binary and foreground pixel regions are contoured, so we will simplify our discourse
by referring only to foreground and background regions. Furthermore, foreground
regions will often be referred to as strokes. The resulting data structure consists of
a linked list of closed contours organized in such a way as to reflect the topological
relationships of the contours. Each contour consists of a linked list of nodes called a
chain, one node for each pixel in the contour. These chains follow outer contours in a
counterclockwise direction, while inner contours are followed in a clockwise direction.

We define an outer contour as a cycleof 8-connected! stroke pixels which if followed
in a contourclockwise direction always has a background pixel to the right of the
direction of travel, except in the case where an outer contour touches one of the
delimiting edges of the image. In this latter case, the region outside the image is

to the right of the direction of travel instead of a background pixel. Similarly, we

!'Two square pixels are said to be 8-connected if they touch either on an edge or at a corner,
thus, under this convention each pixel in an image, excepting pixels on the delimiting borders, has
8 neighbour pixels to which it is connected.
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define an inner contour as a cycle of 8-connected stroke pixels which if followed in
a clockwise direction always has a background pixel to the right of the direction of

travel.

3.2 Contour data structure

As mentioned above, the contours of an image are extracted and stored in such a way
as to reflect, their topological relationships. The relationships that are captured are
the order of occurrence of the leftmost pixel of the uppermost part of each contour
as the image is scanned row by row, and the nesting of contours within other con-
tours. Iig. 6 shows an example of this organization. The root contour is a dummy
inner contour which does not appear in the contour graph of the figure. Any outer
contours contained within an inner contour are linked horizontally to its right; any
inner contours contained within an outer contour are linked vertically beneath it.

In the present implementation the contour data structure is defined so that a given
node may be linked in both a horizontal and a vertical circular doubly linked list. If
it is linked in both directions then it serves as a dummy head node in one of those

directions, that direction depending on whether it is an inner or outer contour.

3.3 Chain data structure

The contour chain is a circular list of nodes, one node per pixel in the contour. It
begins at the leftmost pixel of the uppermost part of the contour, but since any
starting point in a cycle is arbitrary to some degree, and since some processing of
contour chains requires uniform treatment of arbitrary subsequences of nodes in the
chain, then the list structure is defined with no dummy head node. Many data relating
to a given pixel of a contour may be important and can be stored in the chain node
for that pixel. Two examples might be the coordinates of the pixel, and a measure of
the degree of curvature of the contour in a region centred at that pixel.

In the present work contour chains are doubly linked for ease of processing and

they contain numerous data items including the above examples. These data are
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Figure 6: Extraction and list organization of the inner and outer contours of an irnage.
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claborated on at the appropriate places in this discourse. For example, data items

pertaining to curvature are described in the chapter on corner detection (§ 4.2).

3.4 Contour extraction algorithm

There are two parts to the contour extraction process: the creation of the individual

contour chains, and the insertion of each chain into the type of list structure depicted

in Fig. 6. These two parts are done simultaneously, but we will deal with each

separately.

3.4.1 Chain extraction

The algorithm for extracting contour chains is intuitively simple to describe. To state

it informally, the image is scanned row by row from top to bottom, and from left to

right within a row in order to find runs of contiguous stroke pizels. The runs in the

current row are then matched up with 8-connected runs in the preceding row and

operations are performed on chains in order to accommodate the new data (see Fig.

7):

Local Maximum: when a run is encountered that is not 8-connected to a run
in the preceding row a new contour chain is begun with two dangling ends to

be completed during the remainder of the scan.

Continuation: when a run in the preceding row is 8-connected to a single
run in the current row the chain-ends from the preceding row are updated to

accommodate the new run in the current row.

Stroke Split: when two adjacent runs in the current row are 8-connected to a
single run in the preceding row a local split in a stroke has occurred and a new

contour chain is begun with two dangling ends.

Stroke Merge: when two adjacent runs in the preceding row are 8-connected
to a single run in the current row a local stroke merger has occurred and two

chain-ends are linked together.
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sample image

(c) stroke sphit a new chain 1s begun L e e e e
(d) stroke merge two cham ends are hoked

(e) continuation

{f) local mmmum

Figure 7: Steps in linkage of contour chains as an image is scanned. BFach square
represents one pixel, large arrows indicate the current scan row, small arrows indicate
forward chain linkage direction.
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e Local Minimum: when a run on the preceding row is not 8-connected to any
run in the current row the two dangling chain-ends in the preceding row are
linked together. This does not necessarily mean that the entire contour has

become a cycle: it only means that a local minimum has been encountered.

3.4.2 Run length data structure

Ilach row is scanned and the run locations are recorded in an array of run length
records. Each run has one dangling chain-end associated with its right hand side,
and another with its left hand side. Each chain fragment, in turn, has 2 ends, and
cach end corresponds to some run. So the pertinent items that are stored in the run

length record are:

e Pointers to the left and right chain-ends of a run are stored with each run
length record so that when the next row is scanned the dangling threads can

be updated.

e Pointers to the contour list nodes to which each of this run’s two chain-ends
belongs is stored (the chain-ends may belong to different contours or the same

contour).

e Pointers to the runs at the other end of each of the two chains associated with

the given run.

The meaning and purpose of the above should become clearer by reading on.

For the present algorithm it is only necessary to keep track of the runs in the
current row and the previous row, however, in the implementation, the run length
information for the whole image was stored in order to provide a richer information
base for later processing, in particular, for further analysis of contour chains (see

section 5.3).

3.4.3 Contour list creation

The first part of the contour extraction algorithm is the linking together of the chains

and has been presented in the preceding sections. The second is the creation of the
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contour list to organise the set of contour chains in the image. In fact, this part is
more complex in detail than the first part since it is done in parallel witii the creation
of the chains. ‘

As soon as a new chain fragment is begun it is inserted into an appropriate position
in the contour list. This may not be its final position since some chains may merge
with other chains later in the scan. As well as merging of chains we must also handle
splitting of strokes. When a stroke splits it produces multiple runs in subsequent rows
which are connected globally, i.e., pixels from two distinct runs in the same scan row
are linked in the same contour chain.

It is important in this algorithm to know which contour node corresponds to cach
dangling chain-end because when two chains merge we must determine whether or
not they belong to previously distinct contour list nodes; if yes, one of the nodes
must be deleted from the list. Therefore, as mentioned in a preceding section, we
have pointers in the run length data structure to the contour nodes to which the left
and right chain-ends belong, and one pointer each to the left and right run to which
each chain-end is connected. The net result of this information capture is that after
each row has been scanned and processed we have a record of which pairs of runs in
that row are connected to each other by a chain.

In Fig. 8 we see an example of an intermediate stage in a scan where the contour
list contains 9 chain fragments. Eventually, the list in this example will be reduced
to a single inner contour linked below an outer contour. Since it can never be the
case that two contour chains cross over each other? then, when scanning from left to
right, if the left intersection of a chain with the current row is encountered, we may
be sure that its right intersection will not be encountered before both the left and
right intersections of any intervening chains have been encountered.

Given such a first-in-last-out organization it is logical to make use of a stack to
determine the connectivity between runs within a row. Before proceeding to the al-

gorithm we first completely enumerate all possible configurations of runs and contour

2This may not be immediately obvious. When a stroke is one pixel thick we have the case where
more than one chain node is associated with the same pixel There is no question, however, of chains
crossing. Incidentally, we note that a maximum of four chain fragments can pass through a single
8-connected pixel.
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Figure 8: A doodle with of an outer contour and a single inner contour. At the
intermediate scan stage shown enlarged there are 9 contour chains active with chain-
ends indicated by arrows, and nesting shown in the graph.

fragments al any given point in the scan.

3.4.4 Configurations of runs and contour fragments

The following is a complete enumeration of the possible configurations of runs and
contour fragments at any given point in the scan. Each configuration may be visual-

ized with the help of Fig. 9.

1. If a run is not 8-connected to any run in the preceding row a new contour

fragment begins at that run.

2. If a run is 8-connected to one or more runs in the preceding row one of the
following is true about the lefthand side (LHS) of that run:

(a) The run is the rightmost of a pair of runs initiating a stroke split and a

newly-created contour fragment passes through its LHS.

(b) The LHS of the run is the RHS of an inner contour fragment.
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O N

4(a) 4(b) 5(a) 5(b)i.
5(b)ii.A 5(b)ii.B s(b)iii.

Figure 9: The possible configurations of runs and contour fragments at any given
point in the scan (see text).
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(c) The LHS of the run is the LHS of an outer contour fragment.

3. If a run is 8-connected to more than one run in the preceding row, i.e., a stroke
merge has just occurred, then one of the following is true about each of those
8-connected runs run, in the preceding row and its connected successor run, i

(except the last which has no successor):

(a) The RHS of run, is the LHS of an inner contour fragment, i.e., an inner

contour becomes closed.
(b) The RHS of run, is the RHS of an outer contour fragment and one of

i. The chain at the RHS of run,4, is a chain whose other end falls at the
LHS of run,,.

ii. The chain at the RHS of run,4 is a chain whose other end falls to the

right of run;4, and one of:

A. The chain at the LHS of run,4, is a chain whose other end falls

to the left of run,.

B. The chain at the LHS of runj4; is a chain whose other end falls

to the right of run,4,.

(c) The RHS of run, is the RHS of an outer contour fragment and the chain

at the RHS of run,4, is a chain whose other end falls to the left of run,.

4. If a run is 8-connected to one or more runs in the preceding row one of the
following is true about the RHS of that run:

(a) The RHS of the run is the RHS of an outer contour fragment.

(b) The RHS of the run is the LHS of an inner contour fragment.

5. If a run in the preceding row has no 8-connected run in the current row then

one of the following cases is true:

(a) The contour associated with the run becomes completely closed.



CHAPTER 3. CONTOURING 19

(b) The contour fragments associated with the run are linked, but the contour

of which they form a part remains open in one of three ways:

i. The chain at the LHS of the run is a chain whose other end falls to
the right of the run.

ii. The chain at the RHS of the run is a chain whose other end falls to

the left of the run in one of 2 ways:

A. The chain falls at the same run as the chain stemming from the

LHS of the run in question.
B. The chain falls to the left of the above run.

iii. The two chains associated with the run fall on either side of the run.

3.4.5 Determination of intra-row run connectivities

The idea here is to causc the lthread and rthread pointer fields of cach run length
record to point to the run length record, in the same row, at the other end of the
chains associated with the left and right end respectively of the run. In other words,
at any given time we would like to be able to draw the arrows of Fig. 8. As previously
mentioned, this information is needed if we are to decide which contour entry to dilete
from the contour list when two chains merge. No look-ahead is used in this method,
so when these thread pointers cannot be immediately determined in the left-to-right
processing of a row, the run length record in question is pushed onto the stack. The
stack is empty both at the beginning of processing for cach row and at the end of
processing for each row.

We now proceed to the handling of each of the cases in the preceding section. For
the following, 7 is the index to the current run being processed in the current row,

and j is the index to a run in the preceding row which is 8-connected to run,.

1. In this case no stack operations are necessary.

[thread; « rthread, «+ run,.

2(a). In this case no stack operations are necessary.

lthread, « run,-;. The RHS of run, is processed later,
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2(b). lthread, «— stacky,p;
rthreadyyck,,, — run,;

if lthreadyacr,,, 7 null then pop.

2(c). push run,;
Tth"'cadlthrtadj = run

lthread, — rthrecad, — null.

3(a). lthreadripread, — lthread, 1;

rthreadypread,,, +— rthread,.

3(b)i. 'P[ h'rcad“hread

L stacky.

3(b)ii.A. lthrca(l_,mkwp — stackyop-1;
rthreadsiack,,,., + stackp;
pop;

if lthreadsiack,,, 7 null then pop.

3(b)ii.B. This case is handled in the same way as case 3(b)i.

3(c). This case is handled in the same way as case 3(b)ii.A.

4(a). rthread, « stackiy;
lthreadyack,,, — Tun,;

pop.

4(b). lthreadihread, «— TUR;
rthread, « rthread,;

if stacky,, # Tun, then push run,.

5(a). In this case no stack operations are necessary.
rthreadihread, +— Tthread;

lthreadeihread, — lthread,.

5(b)i. This case is handled in the same way as case 5(a).

20
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5(b)ii.A. lthreadsiack,,, — rthreadsack,, +— stackyy:

pop.

5(b)ii.B. rthreadsqck,,, — rthread;;
lthread,ihread, — Stackiop;

pop twice.

5(b)iii. rthreadsack,,, — rthread,;

lthread,ihread, +— stackigp.

3.4.6 Closing comment

The configurations of runs and contour fragments proceed in an orderly fashion as
a row is scanned, e.g., we cannot encounter an inner contour before we have passed
its corresponding outer contour. The possible configurations have been cnumerated
(§ 3.4.4) roughly in the order in which they may be encountered for the intersections
of a given connected component with a row. The method of detecting which of
the enumerated cases applies in a given circumstance is too straightforward to he

elaborated on in this work.



Chapter 4

Corner Detection

4.1 Introduction

It is beyond the scope of this thesis to do an extensive analysis of contour corner
point, or dominant point detection methods. It appeared that it might be desirable
to detect corners as a step in segmentation, therefore, a corner detection method was
sought. The criteria used to select a method from the literature were: (1) in general,
it should give “good” results, (2) it should execute quickly, and (3) it should be easy
to implement. Unfortunately, while there are some comparative analyses of corner
detection methods in the literature [38, 27], it is difficult to judge between methods
since there are neither extensive standard data sets for testing, nor clearcut ways of
automatically measuring the correctness of a result. The algorithm selected is that
of Held 21, 3]. The method of Held was chosen because it performed well in tests
with another popular method, that of Teh and Chin [38], and it had some success in

achieving the following design goals:
e no need for any input parameters,
e good behaviour for widely differing shapes,
e rotation and scale invariance,

e speed.

(8]
[S%]
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\_ 6

Figure 10: The Freeman codes for 8 directions.

4.2 The algorithm

The algorithm consists of two phases. In the first phase, points of high curvature are
detected, however, the algorithm tends to find a cluster of points in the vicinity of a
corner instead of just one point, hence, the need for a second phase which thins these
clusters. The method of cluster-thinning proposed in [3] proved to be ineflective for
the present type of data, thus, as will be explained, a different strategy was devised,

Although the corner detection algorithm used is well documented elsewhere it is
perhaps appropriate to give some details here. It is one of a class of corner detection
methods which operate on chain coded contours. I'reeman code [16] is a popular
way of encoding the direction to the next 8-connected pixel from a given pixel in a
sequence. Fig. 10 shows the integer code value corresponding to cach direction. The
differential chain code value at a given pixel is computed by subtracting its chain-
code value from that of the next pixel giving an encoded measure of the successive
changes of direction, e.g., a difference of 1 indicates a 45-degree change of direction.
This information is, however, too localized to allow decisions to be made as to corner
points. These two code values as well as the N-code, to be described next, are stored
in the chain node for each pixel in a contour chain.

N-code, or Gallus-Neurath code 18] is one way of using differential code to locate

corners. It computes a weighted sum of differential chain codes in a sequence of pixels
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Figure 11: Examples of corner detection.

of length 2N — 1 centred at the i* pixel in the contour:
N-1
el = Neo+ 3 (N = k)(cmk + cis) (1)
k=1

where ¢, is the differential chain-code at the i** pixel. The above formula gives
higher weight to direction changes close to the point in question and lower weights to
direction changes farther away fromit. It can be used to find points of high curvature:
the higher the absolute N-code value, the sharper the corner. The question is, what
value should be chosen for N7 In Held’s method, global dominant points are located
by chcosing first a large value of N proportional to the length of the contour, then,
successively smaller values of NV are used to recursively find ever mcre localized points
of direction change in the regions between known dominant points.

As was mentioned above, the so-called triangulation method used by Held for
thinning clusters of dominant points proved to be ineffective for the present applica-
tion, so another method was devised. In this other method, a pass is made through
the contour, and corner points that are less than a small threshold distance, ., from
each other are grouped in the same cluster. Each cluster is then reduced to those

corners in the cluster for which the absolute N-code is greater than a threshold:
e = leie] = 2t (2)

The ideais to keep calculations simple and to minimize the number of tunable param-

eters. In fact, there are no floating point operations anywhere in the implementation,
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but the number of parameters listed in Appendix A for this algorithm is perhaps
greater than would be desired.

Inevitably, as with other thresholding methods, undesirable results can be pro-
duced: spurious corners may be detected, and actual corners may be overlooked;
however, as is explained in Chapter 6, the segmentation strategy is not critically de-
pendent on high accuracy from the corner detector. Fig. 11 shows some results of

the algorithm.



Chapter 5

Contour Regions

5.1 Introduction

Another step in the segmentation strategy is the analysis of the outer contour of the
digit string in order to locate vertical indentations from the top and bottom. The
result is that sequences of pixels of each contour in the image are subdivided into 4

region types (see Fig. 12):
1. open region,
2. mountain region,
3. valley region,
4. hole region.

Valleys and mountains are extremely useful for segmentation purposes, since the
digits are usually joined in these regions. The region types are derived from the work
of Cheriet et al [8], where certain regions of the background of the image were iso-
lated. In that method so-called ‘face-up valleys' and ‘face-down valleys® were located
by passing the image through a number of filters. The drawback with that method,
however, is that there are multiple passes through the image and the regions of back-

ground which are found are divorced from the stroke contours. The present method

26
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[
-1

Figure 12: Contour regions: (a) open regions, (b) mountain region, (¢) valley regions
(d) hole region.

is more efficient in that it performs basically the same function as the other in locat-
ing vertical indentations between foreground pixels in a connected component, but it
makes use of the contour chains and run-length information already extracted during
the contouring phase, thus avoiding multiple passes through the image. Furthermore,
it gives the contour boundaries where the background regions of the other method
and the stroke regions meet, thus, we have more pertinent information at a lesser

cost.

5.2 Algorithm for assigning region types

Given that nodes in an outer contour are 8-connected and linked in the connterelock-
wise direction, the basic algorithm used here to determine the region type of each

pixel is:

n; «— leftmost topmost node in chain;
while there are nodes without an
assigned region type do
if compass direction from n; to
next node € { W, SW, S, SE } then

if n, is the leftmost pixel in its

-



CHAPTER 5. CONTOUR REGIONS

run of stroke pixels and is connected
to some contour pixel n, on the same scan
line, but on another run to the left
of n; then

set the region type of each pixel

on the contour from n, to n, to

vallcy region;

1y «— next node after n,;
else

set the region type of n; to

open region;

ny +— next node;

end

else

if n, is the rightmost pixel in its
run and 1s connected to some
contour pixel n; on the same scan line,
but on another run to the right
of n, then
set the region type of each pixel
on the contour from n; to n; to
mountain region;
1y +— next node after ny;
else
set the region type of n; to
open region;
n, «— next node;

end

end

end.

28
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Figure 13: Run length encoded version of an image with h rows.

5.3 Run length image

When contours were extracted (see chapter 3) it was mentioned that we also cap-
tured a run length encoded version of the image. It is now appropriate to define the
organization of this data structure: an array with one element for cach row of the
input image is created. Each entry in this array is a record containing the number
of foreground runs in cach row, and a pointer to an array of runlength records (see
section 3.4.2), one record for each run (see Fig. 13).

Note that in the runlength data structure we have pointers to the contour to
which each corresponding chain belongs, and in each chain node we have the row and
the run number corresponding to that node. Thus, we have efficient cross linkage
between any chain node and the run length image, and wvice versa. This data enables

the speedy execution of the above algorithm.




Chapter 6

Significant Contour Points

6.1 Introduction

The identification of significant contour points (SCPs) on the outer contour of the
connected digit string is a key goal of the present segmentation strategy. The two
most significant points are those between which a cutting path passes that separates
the leftmost digit from the string (normally, there will be many pairs of points from
a neighbourhood satisfying that requirement). In this chapter we define the quali-
ties that render one point more significant than another, and the features that are

measured in order to rank the significance of points on the contour.

6.2 Types of SCPs

We recognise three types of SCPs:

—

. points found in the corner detection phase,

o

the maximum (minimum) of each mountain (valley) provided the condition

stated below is satisfied,

3. the exit points of the imaginary straight lines formed by, wherever possible,

extending the contour through the stroke at concave corners in mountains and

30
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@ SCP found by corner detection

O SCP added by contour extension

Figure 14: SCPs added by extending contours through a stroke.

valleys (see Fig. 14), provided the conditions stated below are satisfied. The
second reference point used to construct the line is found by backing up from

the corner point along the contour chain a threshold number of pixels .
Conditions:

1. when identifying SCPs of types 2 and 3, if a candidate point falls closer than a

small threshold distance from another SCP already identified it is not added.

2. If a contour extension passes through a hole region then the SCP candidate is

not added.

SCPs identified by extending the contour from a mountain (valley) corner are given
the region type valley (mountain), in order to enhance their subsequent, ranking over
that of corners in open regions. For the same reason, if a would-be candidate found
by extending a contour at corner a is disqualified due to condition 1, the existing SCP
b causing the rejection has its region type changed to mountain if the region of a is
valley, otherwise, the region of b is set to valley.

The goal, of course, is to identify the correct pair of SCPs for the cut, while
minimizing the number of candidates. Identification of the above types of SCPs,
together with the limiting conditions will usually find the correct pair, although,
there may be many spurious as well as reasonable candidates: however, in section 6.3

a method of ranking the significance of all of the candidates is described. In Fig. 15
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Figure 15: The correct SCP pair included due to addition of SCPs of type 2. In each
case the top image shows detected corners and the bottom shows all 3 types of SCPs.

are some examples which justify the inclusion of SCPs of type 2. Similarly Fig. 16
shows examples of type 3, while Fig. 17(a) gives examples where the correct SCP
pair is not found. In many such failures it is still possible to make a not unreasonable
cut using the available SCPs (see Fig. 17(b)).

6.3 Ranking pairs of SCPs

A set P containing the SCPs is created. The preceding steps should result in the
inclusion in P of at least one desirable pair of points between which to pass the
cutting path. To locate this pair we measure 9 features of each SCP pair. First, a set
(" is created containing all combinations of p; and p; where p;, p, € P such that each
of p, and p; is chosen from a different region type (mountain, valley, or open). Next,
each of the features is measured giving 9 credit values which are accumulated in an
overall score s, for each pair ¢, ¢, € C. The higher the score, the more likely it is
that this pair will give a good cut. Before each credit is added to the score, however,
it is multiplied by a weight described in the chapter on training (Chapter 8). Credits

arc assigned based on the following features:

1. a fixed number of credits for each mountain/valley pair;

2. a fixed number of credits for each SCP that was found by corner detection;
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\

Figure 16: The correct SCP pair included due to addition of SCPs of type 3. In cach
case the top image shows detected corners and the bottom shows all 3 types of SCPs.

L (b)

Figure 17: (a) failure to locate the correct SCP by identification of SCPs of all 3
types, (b) a feasible cut using the available SCPs.
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6.

)

).

credits for the nearness to cach other of the points in the pair;

. credits for the sharpness of the concavity at each of the SCPs;

credits for the nearness, where applicable, of an SCP’s valley (mountain) to the

top (bottom) of the image;

credits, where applicable, for the distance of an SCP from the bottom (top) of

its mountain (valley);

credits, where applicable, for the degree to which a valley corner is above a

mountain corner in the image;

credits for the degree to which stroke pixels outnumber background pixels in an

imaginary straight line drawn between the pair;

credits for the nearness of the pair to the left hand side of the image.

Credit values, including fixed ones, are normalized according to the height of

the bounding box of the given digit string. After the score for each pair has been

computed the pairs are sorted from highest score to lowest, thus, the more favourable

cuts should appear towards the front of the list. Notwithstanding a high ranking, if

a cut would produce a component too small to be considered a digit, it is disqualified

from the candidate list. Several thresholds are involved in this decision (see Appendix

A).



Chapter 7

Making the Cut

7.1 Introduction

Given two points on the outer contour of a connected digit string, how should we
guide a cutting path from the entry point to the exit point? This is no mean problem,

especially when separating digits that are connected in two or more places.

7.2 Cutting strategy

In most real world cases, digits, if they touch, do so in one place and are separable by
a simple straight line cut. The method used here, however, is moving towards heing
able to separate complexly connected digits where the cut is non-lincar. The strategy
is simply to attempt a straight line cut, and in regions where the straight line passes
through background pixels to follow the contour until the straight line passes back
into stroke pixels (see Fig. 18 for examples). The reason for following the contow
when the straight line passes through background regions is that we have the option
to cut or preserve stroke loops as will be shown shortly.

It may be interesting to mention a problem that arises with this approach due to
the limitations of 8-connectivity. It sometimes happens that a digitized straight line
will cross another such that they have no pixels in common as illustrated in Fig. 19,

In this example the line formed from white pixels has passed from one hole region into
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Figure 18: Examples of cutting paths between 2 points on the outer contour.

another one. Such problems are detected only when the cutting line finally strikes a
dark pixel. With the present method the straight line always finishes on a dark pixel
since we are cutting from one contour pixel to another. We can, therefore, detect
the problem by ensuring that the pixel we have struck belongs to the contour we are
expecting. When such problems are encountered in the present system, the cut is

abandoned as too complex, and another is attempted using different end points.

7.3 Splitting the stroke

Once the cutting path has been determined we must split the single connected stroke
component into two new components. The method used here is to trace the cutting
path and the outer contour of the digitstring onto a blank image, im.. Next, we
initialize another blank image, im; to contain the left component. We then follow
the lefthand region of the contour chain counterclockwise and copy the contents of
cach corresponding row from the original image, pixel by pixel, walking inwards until

another contour pixel is encountered in im,. The right hand component is extracted
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Figure 20: Handling of cuts that pass through holes.

in a similar fashion.

7.4 Preserving loops

When following the contour around holes we have the option to preserve or cut a
loop depending on which side of the hole we follow, however, in the present method
this feature was not exploited; instead, when passing through a hole we simply follow
the shortest path along the inner contour. it was beyond the scope of this thesis to
investigate other ways of deciding which path to take along an inner contour. Fig. 20

gives examples showing both desirable and undesirable results of the present method.
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Figure 21: Some results of the method used to determine the leftmost component.

7.5 Knowing right from the left

Another problem which was not investigated deeply here is that of deciding which
component of a split is the leftmost and which the rightmost. Given two points on the
contour, ¢ and b, the present method chooses the right most component by determining
whether the directed contour arc ab contains a node on the right boundary of the
bounding hox of the digit string. If yes, then this arc is assumed to trace the righthand
component, else the lefthand component.

Fig. 21 gives examples where this method does not give the desired result, i.e.,
having a pixel on the right border of the bounding box does not guarantee that
a component is the rightmost one. The reasons this strategy was used, however,
are that it is simple, and it is more reliable than taking the arc that touches the
left border of the bounding box as the leftmost component, because, in the general
case of separating the leftmost digit, the component remaining on the right extends
further to the right then the left component does. Nevertheless, this criterion is not
acceptable for use in a critical application due to the fact that in rare cases it can

result in reversal of the order of digits when separating them.



Chapter 8

Training the System

8.1 Introduction

A simple summation of the 9 credit values determined in section 6.3 is alone not
sufficient to perform a consistently good ranking of the SCP pairs, because determi-
nation of the relative importance of each feature measured is problematical. It was
therefore necessary to find some coefficient with which to multiply cach credit. value
before adding it to the final score for each SCP pair. This entailed the development
of a method to search for cocfficients, or weights, that would cause the best SCP pair
to be favoured.

It would be interesting to attempt to formulate this problem for a neural netwaork,
but since such a formulation was not readily apparent, that idea was not pursued.
For a given imag. there will be an unpredictable number of SCP pairs. Each SCP
pair has 9 feature measurements associated with it and the goal is to locale the most
likely pair by assigning it the highest score. Two other popular methods of performing
random searches are simulated annealing and genetic algorithms. The latter method

was selected due mainly to its computational simplicity.

39



JHAPTER 8. TRAINING THE SYSTEM 40

8.2 The genetic search

A genetic search was performed to locate an optimal combination of the 9 coefficients.
First, the credit values (feature measurements) were normalized according to the
height of the digit string, then the typical range of credit values was ascertained for
a set of digit strings, and modifications were made to parameters to ensure that the
bandwidth of these integer feature measurements was roughly in the range 0 to 400.
A bandwidih for the weights was then chosen as 0 to 511, or 9 bits. The idea was
to minimize the search space size while allowing sufficient bandwidth to enable the
weights to discriminate the relative importances of the features effectively.

Formulating the problem in terms of genetic algorithms, we have a population
composed of strings of length 81 bits, i.e., 9 weights, each 9 bits long concatenated
together; thus the size of the search space is 28, or 2.42 x 10%4.

Next we must have a function which evaluates the fitness of each string. We
developed software tools that enabled the entry of the correct SPC pair for a given
image using a mouse pointer. The coordinates of the two points were stored with
cach image in the training set for later processing. At training time the image and
coordinates were read, the list of SCP pairs was determined as per the methods
described in chapter 6, and the nearest pair to the entered coordinates was taken as
the correct one. Then the SCPs were sorted using each of the weight strings in the
genetic population, and the negated ordinal position of the correct pair in the sorted
list was accumulated over all the images for each weight combination. The result was
a score for each weight combination giving a measure of how close to the front of the
list it sorted the correct cut over all the images in the training set. The strings in the
population were then reproduced for the next generation with respect to this measure

of fitness.

8.3 Crossover operator

A simple genetic crossover operator takes two strings s; and s; and interchanges a

substring of random length ! beginning at random position p in s; with the substring
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of the same length and same position in s3. This method was tried and was found to
converge very slowly (many days), therefore, a different operator was hypothesized
and it gave much more rapid convergence (a couple of days). This operator is basically
identical to the first except that [ is constrained to be a multiple of 9, and p is
constrained to fall on a 9-bit boundary. With this operator, only whole 9-bit weights
are interchanged between strings so that in effect each string is really a string of 9

integer weights rather than a string of 81 bits.

8.4 Epidemics

Another method that was used to speed up a convergence was to reinitialize the
population, from time to time, with copies of the currently best performing string.
Thus, the search was constrained to the vicinity around the current best peak, and
could more rapidly improve on it. Also, the mutation operator was modified at
this stage of the search so that it could fine-tune the weights. The conventional
mutation operator chooses a random number greater than zero in some predefined
range and complements that number of bits at random in the population. The fine-
tuning mutation operator used here, instead of flipping the bits at random, chooses at
random a 9-bit weight in the population and increments it by some integer randomly
chosen from a small range centred at zero. In effect, as the convergence proceeds the

search become less random, more directed.



Chapter 9

Experimental Results

9.1 Introduction

The system was implemented in C code. Details of the implementation are not of
great interest here. The idea was simply to produce a system that would segment
touching digits. The overall goal is to develop a somewhat general purpose OCR
image processing system of which one component is a segmenter. Therefore, there is
much functionality included in the system that is not directly related to this thesis,
e.g., the input/output of images can be done using 8 different image file formats. The
result is that there are about 18,000 lines of new code.

Testing of the system was done on 3 different test sets after training had first been

performed using a separate training set.

9.2 Training

As described in chapter 8, the 9 feature values deterrained for each SCP pair are
cach multiplied by a weight to give each a relative importance before adding them
to the final score. These weights were determined in a separate training phase by
marking the correct SCP pair in each image of a training set, and then using a
genetic algorithm to search for an optimal combination of the 9 weights (see Chapter

S. Weight combinations were ranked by scoring each on how close to the froat of the

42
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list it sorted the correct SCP pair over the whole training sct.

The system was trained on 212 images of touching handwritten digit strings cx-
tracted from the bu0100 and bu0200 subdirectorics of the USPS Office of Advanced
Technology Database of Handwritten Cities, States, ZIP Codes, Digits, and Alpha-
betic Characters. Each image consists of from 2 to 5 touching digits extracted from
U.S. mail pieces. The genetic population contained 200 randomly chosen weight com-
binations for the initial phase of the search, and typically, it took about 20 minutes

to process a generation.

9.3 Testing

The system was tested on a total of 946 images of touching digits divided into three

sets:

1. CENPARMI test set: 295 samples of from 2 to 4 touching digits written by
12 authors scanned at 300 dots per inch (DPI).

to

Fujisawa test set: 460 samples of touching pairs of digits written by one
author scanned at about 200 DPI.

3. USPS test set: 191 samples of from 2 to 5 touching handwritten digits from
U.S. mail pieces scanned at 300 DPI. While this set is the most realistic of the
three it is also the smallest, but, that is almost all of the touching digit samples
designated for testing in the USPS data base mentioned in the preceding section.
Some dozen or so samples were not included in this test because they contained

broken digits, or severe noncontextual noise.

The first set was gathered here at Concordia University by Mohamed Cheriet and
others. Results for the second set have been published by Hiromichi Fujisawa ¢t al
[17] who kindly supplied CENPARMI with this data. The third set was extracted
from images of U.S. ZIP codes in the testing subdirectories of the above mentioned

USPS data base (Appendix B gives exact information).
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L [ 1 [2[3]47[5 [Fall
C [[559 783 [87.5[92.2[93.6 | 6.4
F_|[476 | 735 90.7 | 97.0 | 983 | 1.7
F., | 426 | 76.8 | 92.0 | 97.7] 99.1 | 0.9
U [[59.7 [81.2[89.5 | 93.2 | 9.8 | 4.2

Table 1: Percentage of sumples whose leftmost digit was successfully separated within
| attempt, 2 attempts, etc., up to 5 attempts. C = CENPARMI test set, F = Fujisawa
test set, Iy, = Fujisawa weighted, U = USPS test set.

The results are summarized in Table 1 in terms of how many attempts were needed
to correctly separate the leftmost digit, and the complete results for the USPS test
set are shown in Appendix B. Performance was judged by visually inspecting images
such as those in the appendix. An attempt was made to integrate a recogniser into
the system to automate the performance measurement, but it was postponed because
the available recognisers required modifications to handle the kinds of images output

by the scgmenter, and doing such modifications was outside the scope of this thesis.

9.4 Comparison with other methods

It was possible to compare the present method with two other published methods
since common data was obtained. The two methods are that of Cheriet et al (CHS)
[8], and that of Fujisawa et al (FNK) [17].

The CHS method was tested on 120 samples taken from the CENPARMI test set,
and yielded a successful separation in 80.8% of cases.

The success rate of ‘about 95%’ for the FNK method reported in the IEEE pa-
per was obtained after ‘re-calibration’ of the ‘raw’ results according to the frequency
counts appearing in Table 2. This data was provided in recent months by Mr. Fuji-

sawa through correspondence. As well, the ‘raw’ performance was reported as follows.

For the first sample sheet, we obtained 191 correct separations out of
230 touching pairs \83.0%). For the second, we obtained 187 correct

separations (81.3%).
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This gives an overall correct separation rate for all 460 samples of 82.3%. The
IEEE paper gives no upper limit on the number of cuts attempted, however, some
examples in the paper show 3 candidate cuts.

The row labelled F,, in Table 1 gives the re-calibrated, or weighted results deter-
mined according to the information in Table 2. The Fujisawa test set is composed
of 10 samples of each of 46 digit strings. A count of 289 real touching digit samples
was conducted by Fujisawa ef al to give some idea of the likelihood of encountering a

given pair.

9.5 Time & space

The SPARC station 10! CPU time to read cach image in the USPS test set and
produce internally (i.e., with no physical output) all of the 191 split images appearing
in Appendix B was clocked at 0.8 sec. This gives roughly a rate of 240 digit strings per
second.? As for space, the above processing was done in 2.0 megabytes of memory. A
comment is in order about this large value: 1.5 megabytes is dynamically allocated to
store information about the given input image, and the other 500 kbytes are for code.
A significant. portion of the code consists of functions which are loaded as part of a
module, but are not used in this particular application. There are doubtless many
avoidable inefficiencies in the space allocated for data, e.g., no attempt was made to
economize where possible by storing data at the sub-byte level. The primary goal in

this implementation was to produce a fast working system.

1GPARC station 10 is a registered trade mark of Sun Microsystems Ine
2The elapsed time is greater, of course, due to reading the 191 image files over a network, and
sharing of the CPU and memory with other processes. It was measured at 15 minutes.
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digit frequency || 1 | 2 | 3 | 4| 5 | digit frequency([ 1 | 2 | 3 | 4 |5
string | /289 string | /289

00 ) 10110101010 48 14 1{4]16([9]9
03 2 8 |1010[10} 10| 50 24 3 (8|9 (1010
04 1 2121619953 3 036|919
05 1 1011011010 10 | 54 30 315819 (10
07 3 1 129 [10]10/{ 55 4 1191101010
09 5 8 [ 1010|1010 || 56 25 3 (101010110
20 24 519 [10|10] 10| 57 24 2171910110
21 2 6 [10| 10|10 10 | 58 4 4 19 {10[1010
22 4 314819 110|359 6 218101010
23 6 516 101010 |61 1 9(91]10(1010
24 2 1 15168 8|64 2 112]151]91(10
25 8 3 ({10j10[10]10] 76 1 7189|1010
26 6 4 (101010 10| 78 1 10107101010
27 1 4 |66 |10]10]| 80 6 10 1010|1010
28 3 6 |9 11011010/ 82 2 101010 10|10
33 1 3(8(9191}9]83 2 1010 |10 | 10 |10
34 | 3 {4 (10[10]10¢{ 84 14 10110101010
40 10 216 [10[10] 10185 1 10{10]10 (10|10
42 1 I (189 |10]86 3 10 {10 {10 {10 |10
44 2 0| 4| 7|71 8|87 4 10 (1010 { 10 |10
45 14 3| 7110(10]10| 88 5 10 (1010 10|10
16 2 2 (519 (10]1089 4 101010 10 | 10
47 3 1 {48 ([10]101{93 2 10|10 }|10 | 10 |10

Table 2: The number of occurrences of each digit string in 289 samples and the
number of strings correctly separated after 1, 2, ..., 5 cut attempts on 10 samples of
cach string.



Chapter 10

Conclusion

10.1 Summary of contributions

A method for separating the leftmost digit from a string of connected handwritten
digits has been described and experimental results presented. So [far as is known,
this is the first trainable digit segmenter. The performance of the method has been
shown to be better than two other published methods. As well, an efficient analytical

method to extract contours has been presented.

10.2 Future research

10.2.1 Strengths & weaknesses of the method

This thesis has focussed on just one of the many component parts of a gencralised
digit segmentation system, which in turn would be one component part of a complete
recognition system. The magnitude of the analysis involved in construction of an
intelligent reliable document processing system for an application such as cheque
processing is somewhat daunting when one considers the amount of activity involved
in just the component studied here.

Some of the strengths of the method are:

1. As pointed out by Suen et alin [37], automatic learning capability has proven to

47
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be critically important as complexity builds. The automatic learning capability

of the present method is perhaps its strongest feature.

2. The features chosen are very robust, in particular, corner points, mountains,

and valleys are very good indicators for segmentation of connected numerals.

3. The number of tunable parameters (see Appendix A) has been kept relatively

small for a fairly complex system.

4. The features and methods used are of such a robust nature that many of the
same techniques can readily be applied to segmentation and recognition of cur-

sive script in general.

The principal weakness of the method is that during the extraction of SCPs it can
sometimes happen that no viable pair of SCPs in the outer contour is detected. If no
such pair is included in the set of candidates, it does not matter how well the set is
sorted, a correct cut will never be found. There are a number of cases where this can

happen, a few of which are listed below.

1. The most common one is that the corner detector can fail to find a corner it

should be able to detect.
2. Thresholds do not work in all situations.

3. The point of connection of two characters may be so situated that even if the

present feature detectors perform perfectly they will not detect it.

It is feasible to improve corner detection. It is not feasible to improve thresholds
other than by finding ways to eliminate the need for them: one cannot endlessly
tune them. The thresholds in this system are used mainly to limit the number of
SCPs detected. The scheme proposed below might allow the elimination of some
thresholds. As for the third item above, there is little that the present method can
offer. Fortunately, such cases are rare in real world data, at least in the test data
used here. One avenue left unexplored by the present method is the detection and

exploitation of features of inner contours. If this were done it could prove useful
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for handling an intractable outer contour. It will also be necessary to analyse inner

contours in order to do robust handling of complexly connected digits.

10.2.2 Schemes to improve performance

One avenue to explore is the effect of negative weight values on the performance. 1t
was assumed that all features measured were non-negative indicators for segmenta-
tion, but this assumption may be false.

The present version of the segmenter was trained on general, unclassified types of
touching digits. It is likely that performance can be improved by training a number
of copies of the present segmenter on selective kinds of touching data such as the
46 classes of touching characters shown in Table 2. This would result in a number
of digit splitters. Each splitter will be expert at handling its own class of touching
digits. When all segmenters are run in parallel it will then be highly likely that one or
more of them will give a correct split at its first or second attempt. If each segimenter
were integrated with its own dedicated recogniser then a correct cut could quickly be

recognised.
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Appendix A
Parameters

This appendix consists of a complete list of the tunable parameters used in the
method. The intention is to give an explicit idea of the number and nature of all

arbitrary constants affecting the performance.

[y ]
ot



APPENDIX A, PARAMETERS

| §

| PITASE

| DESCRIPTION

TVALUE

2.3

size doubling

imnages
below this height in
pixels are doubled

70

corner
detection

maximum number of
chain nodes between
corners in the same
cluster (1.)

corner
detection

corner cluster thin-
ning threshold (2¢,)

14

9

initial value of N

[nodes_in_chain [64]

by |

»

value of N for detec-
tion between known
leve: 0 corners

max([nodes_in.seg/4],3)

6

value of N for detec-
tion between known
corners at level > 0

max([nodes_in_seg/8],3)

~1

maximum level

(8]

min [N-code| for cor-
ner at level 0

max(N,2)

min |N-code| for cor-
ner at level > 0

| V(6 — level)/6]

10

6.2

identification

of SCPs

min  pixels  be-
tween existing SCP
and new candidate

10

11

6.2

number

of pixels from corner
peint to second refer-
en.-- point for SCPs
of type 3

6.3

ranking SCP

pairs

value of N used to
me; sure curvature at

an SCP

13

6.3

min abs. concavity
N-code value to per-
mit nonzero
credit for sharpness
of corner

56
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| | § [PHASE  [DESCRIPTION [ VALUL |
14 1 6.3 | ranking SCP | max ratio of pixels on cutting path to | 0.25
pairs pixels on outer contour of component
resulting from split
15 | 6.3 K max ratio of pixels on outer contour to | 0.25
pixels on cutting path of component re-
sulting from split (only for ‘long’ cuts
defined by next threshold)
16 | 6.3 ” min pixels in a ‘long’ cut 15
17 16.3 v min pixels in outer contour of compo- 100
nent resulting from a split
18 1 6.3 7 weight | 7
19 16.3 B weight 2 197
20 | 6.3 " weight 3 321
2116.3 7 weight 4 6
22 16.3 ” weight 5 2
23 16.3 7 weight 6 352
24 16.3 7 weight 7 12
25 |6.3 " weight 8 253
26 1 6.3 ” weight 9 12
27 | 8.2 | feature normalized range of feature values | (0, 400)
extraction (approx.)
28 | 8.2 7 range of weight values (0, 511)




Appendix B
Sample Results

This appendix contains the results for the USPS test set (see section 9.3). It is in-
cluded to give some idea of the degree of complexity of data to be encountered in a
real application, to show explicitly the performance of the system, and to give exam-
ples of the standards of judgment used to identify successful splits. Each touching
digit string was extracted from the image of a ZIP code using a semi-automatic pro-
cess. The names of the files in the test set are given below for reference. The first 6
characters of each name comprise the name of the original USPS file from which the
digit string was extracted, and the 2 remaining digits identify a connected component

within the original image.
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bb000801
bb003000

bb012101

bb026301

bd002001

bd046101

bd077201
bd077801

bd084101
bd088001

.tif
.tif
bb003001.
bb006201.
bb011101.
bb011102.

tif
tif
tif
tif

tif
bb014802.
bb01710%.
bb026300.
.tif
bb028700.
bb029500.
bc016700.
bd000103.
.tif
©d002002.
bd015100.
bd015203.
bd029503.
bd036400.
bd045200.
.tif
bd049402.
bd055800.
bd058300.
bd070002.
.tif
.tif
bd082700.
.tif
.tif

tif
tif
tif

tif
tif
tif
tif

tif
tif
tif
tif
tif
tif

tif
tif
tif
tif

tif

The files in

bd096901

bd117701

bd152601
bd15400¢

bd176601

bd223701

.tif
bd098100.
bd100902.
bd101202.
bd103102.
bd105603.
bd105604.
bd111100.
bd112300.
5d113900.
bd114600.

tif
tif
tif
tif
tif
tif
tif
tif
tif
tif

Ltif
bd130800.
bd130801 .
bd137903.
bd141000.
bd141002.
bd144303.
bd146902.

tif
tif
tif
taf
tif
tif
tif

.tif
.tif
bd166707 .
bd168000.
bd168002.
bd173600.
bd175501 .

tif
tif
tif
tif
tif

Ltuf
bd178900.
bd199100.
bd202902.

tif
tif
tif

.tif
bd227505.

tif

bd230800.
5d231300.
bd233403.
bd244400.
tif
bd249700.
bd256101.
bd256900.
.tif
bd258900.
tif

bd246801

bd258701

bd 258901

b1000402.
b1003402.
.tif
»1020200.

1013001

51028601

b1032603.
b1035900.
©1042002.
.tif
tif
b1056001 .
b1059100.
b1059102.
.tif

1046201
1054000

b1059502
bl1063702

b1064200.
bl065701.
b1076302.
b1078500.
b1084003.
b1085400.

the USPS test set

tif
tif
tif
tif

tif
tif

tif

tif
tif

tif
tif
tif
tif
tif

taf
tif
tif

tif
tif

tif
tif
tif
tif

b1085801
b1087401
51091601

bs0013014
bs003002

b8003102.

bs003900
bs004101
bs005501

bs008001

bs009601

bs011401

bs014801

bs015301
bs015503

bs016802.

tif
.tif
.tif
b1092307.
bs000500.
bs000900 .
.tif

tif
tif
tif

tif
tif
tif

.tif
.tif
bs005702.
bs005802.
bs006003.
bs007002.
bs007702.

tif
tif
tif
tif
tif

Ltif
bs008704 .
b8009202.
.tif
bs010102.
bs011003.
.tif
bs011803.
ba011902.
t 6012002,
b8013300.

tif
tif

tif
tif

taf
tif
tif
tif

Ltif
.tif

tif
tif

bs016500.
bs017701.
bs017702.

bs017703

bs020501
bs020601

bs0215601
bs021602

bs022302

bs023101

bs028700
bs028703

bs028705.
tif
bs030205.
bs032802.
.tif
bs035001.

bs029602

bs033805

tit
tif
tif

tif
bs017801.
bs017901 .
bs018300.
bs019701.
8020202,
b38020401.
b8020500.
tif
.tif
b8020603.
tif
tif
bs021802.
.tif
bs022602.
tif
b8024500.
bs026103.
bs027002.
bs027801.

tif
tif
tif
tif
tif
tif
tif

tit

tif

tif

tit
tif
tif
tif

.tif

tif
tif

tif
tif

tif

bs036300.

bs035301

bs038001

bs038601

bs039000.
bs039300.

bs039301

bs040100.

ba040901
ba0« 103

bs042602.
b8s042600.
bs043603.

b8s044902

bs045000.
bs046000 .

bs046704
bs0466801

b8047402.

bs048001

8048300

ba048401
bs048702
bs049006
bs049401
bs049503

tif

.tif
bs035600.
bs036400.
bs037802.

tif
tif
tif

.tif
bs038200.
bs038202.

tif

.tif
tif
tif
Ltif
tif
tif
tif
tif
tif
tif
tif
tifr
tif
tif
.tif
tif
Ltif
tif
.tif

tif
.tif
.tif
Ltif
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In each row of what follows, the input string appears at the left and is followed
by the 5 top-scoring attempts to separate the leftmost digit. A mark appears below

the first attempt which was judged to be successful (if any).
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