l *l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform s heavily dependent upon the
quality of the original thesis submilted for microtilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
it the university sent us an inferior photocopy.

Reproduction in fuli or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canadi

A MICROPROGRAMMED INTERPRETER
FOR CONCURRENT EUCLID

Kuarlall Lall

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the degree of Master of “omputer Science at
Concordia University
Montreal, Quebec, Canada

December 1988

(©) Fuarlall Lall 1988

e

National Library
of Canada

Canadian Theses Service

du Canada

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

Bibliothéque nationale

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque na-
tionale du Canada de reproduire, préter, dis-
tribuer ou vendre des copies de sa thése de
quelque maniére et sous quelque forme que ce
soit pour mettre des exemplaires de cette thése
a la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa these. Nila thése ni des extraits
substantiels de celle-ci ne doivent 8tre imprimés
ou autrement reproduits sans son autorisation.

ISBN 0-315-49095-0

Canadi

=

iii

ABSTRACT

A Microprogrammed Interpreter for
Concurrent Euclid

Kuarlall Lall

There are several methods of executing programs written in a
high level language (HLL). The most widely used is to
compile the programs into machine language. Another is to
translate the programs into some intermediate form and then
to execute that form interpretively. A third method is to

directly execute either the HLL or the intermediate form.

This study was aimed at investigating the feasibility of
directly executing the intermediate representation of the
sequential features of Concurrent Euclid (CE) on the SEL
32/75 computer. The CE intermediate code was translate& into
Ecode, and a microprogrammed interpreter for Ecode was
designed and implemented on the SEL, and benchmarked against
the compiler. For the CPU-bound prime number algorithm Sieve
of Eratosthenes, the interpreter was measured to be about
twice as slow as the compiler. Ecode was then modified, and
a new translator and interpreter designed and implemented.
The same benchmark then yielded comparable results for both
the interpreter and compiler. We project <that further
changes in Ecode design and hardware support would result in

substantial Ecode efficiency gains.

iv

ACKNOWLEDGEMENTS

I would 1like to express my sincerest thanks to to my thesis
supervisor Dr. J. W. Atwood, without whose constant
encouragement I probably would have given up on writing this
thesis a long time ago. He was always readily available for
consultation, and I appreciate the time and effort he put
into guiding me through the project and constructing and

correcting this thesis.

My thanks also go to Dr. H. Boom and Dr. T. Radhakrishnan
for permitting me to incorporate preliminary work on this
thesis into their Compiler Construction and Computer
Architecture course requirements respectively. I would also
like to thank M. Duarte and D. Hargreaves, who provided me
with invaluable assistance in implementing this project on
the SEL. I gratefully acknowledge the financial support of
an PFCAC operating grant which made it possible for me

complete this project.

I dedicate this thesis to my wife Shamwattee whose patience
and moral support helped me through all five years of it, and
to my two baby daughters Kristina and Carolyn who are too
young to understand why I had to limit our playing time

during the final stages of this thesis.

\'4

TABLE OF CONTENTS

SIGNATURE PAGE .+t evvscvconrencaonansas
ABSTRACT Ceireriaaes
ACKNOWLEDGEMENTS AP £
TABLE OF CONTENTSvvvcnvecosonnonneoe

e ® 00 000 000808 s V

LIST OF FIGURES .ccovtvecnsccanssne

® 0 F 0 8 O 8 0 L S B SISO G E T O e ix

LISTOF TABLES ® & 00 00 8 0 8 0 08 00 e st e s

® 0 & 0 802 00 000t 0 s x

CHAPTER 1: INTRODUCTION .:ceccevvccocscccnsosssnocsossssnns 1

l!O Introduction % O 5 S 0 &0 B O S P O PSS O 8L NSNS SN EEeN 1
1.1 Microprogrammed Interpreterscceeeeeeesaces 3
1.2 Microprogrammed Interpreter For Concurrent

EUCIid @ & 8 8 0 0 5.0 06 6 80 00 S 9SO Ee et

® ¢ 8 gt 0 s 8 e s 4

1.3 Organization Of This Thesiscevvevveencans 5

CHAPTER 2: MICROPROGRAMMING . .vcvovevvennconcnsososnasie 7
2.0 Introduction0.... seeencanes
2.1 Architectural Aspects Of Microprogramming 8

2.1.1 Control Store Organization 9

2.1.2 Microinstruction Formatcccc00000.. 10

2.1.3 Microinstruction Sequencingc000.. 11
2.2 Advantages Of Microprogramming Over Machine

LANQUAQE c.cecoeccerssasvsssssoosscsssssssssnessnse 14
2.3 Evolution Of Microprogrammingcceoeeeeeeees 14

2.4 Applications Of Microporogramming¢cccceevees 16

CHAPTER
3.0
3.1
3.2
3.3

CHAPTER
4.0
4.1

CHAPTER
5.0

vi

2.4.1 Operating Systems SUpport ..eceeeeesosess .

2.4.2 Fault Diagnosis and Special Purpose
SYStemS ...:ivcieivearsecerseann Ceesenannn

2.4.3 High Level Language Support e e eenne

Current Aspects Of Microprogrammingcceecs.

3: COMPILERS, INTERPRETERS AND CONCURRENT EUCLID
Compilers and Interpretersceeeeeeeesccens
Concurrent Euclid Ctedseecaannans Cetesenana
Concurrent Euclid Compilerccevvvvieennss

CE Intermediate Codecieeevecnnenas ceveesan

4: INTRODUCTION TO THE SEL .ccceeescconsessonanss
Introduction et eeieecaraeecatssas et
SEL MacroarchiteCturecsceeesniocessrsecosss
4.1.1 Registersiceeveecesssosesssronsons
4.1.2 Addressing ModeB8ccccvecestsnsccscn
Instruction REpoOrtoirececeeseeecessrsesannns
SEL Assembler Directives Cisssesaane .
SEL Microengineceeeseeesoccsssscnsasccosnss
Timing cecvveenetersosetoisrassssessssscccssscanns
SEL Data Structureso00.. ceetcctasconnnn

CPU Microwcrd ® 0 0 5 5 0 0 S 0 4 O 0 ¢ BSOS E B SIS

5: DESIGNOF ECODE-I 56006 6860000 Cs00 P PIELEIEEGECECES

IntrOduction ® 8 € 0 0 P 0 4 0 0 A0 B S ST A S AT S ES OSSN

16

17
18
19

22
22
25
26
28

32
32

' 33

33
33
35
35
37
38
39
42

45
45

vii

501 Instruction set 4 0 0 008 6 8 5 008 000 000 0

5.2 Optimizations Creeeseest et tereaoeane

5.3 Memory Referencingicceeeveees

5.4 Operand Specificationc0.

e h s e e s

LEE SR S DR T T T 2 I TN B I}

5.5 Design Considerations In Operand Specification

5.6 Sample Ecode-I Instructions

5.7 Comparison of Machine Language And Ecode-I

5.8 CE Intermediate Code And Ecode-=Iceveavsse

CHAPTER 6: DESIGN OF INTERPRETER I

6.0 INtrodUCtion ..vieeeseecessescscesonassceassonse
6.1 Parallel Executionc.ceceeevescsnsesnscsnones
6.2 Analysis And Benchmarkingcccceveen ceea e

CHAPTER 7: ECODE-II AND INTERPRETER IIc0vc0cvceoens

7.0 Instruction SOtvieceiincannn

7.1 Operand TYPE ..ccocovtecosasronns

0 0 00 08 0 8 8000 0 2o

7.2 Opcode Decodeicoceiinvncenconas Gt eniane
7.3 Operand Specificationvcvevivertiricecrnns
7.4 Sample Ecode-II instructionscvveevevnen
7.5 Design of Interpreter IIc.ccooveesocccscocncs
7.6 Parallel Executionicciitecennsens ceeenn

7.7 Benchmarkingc..c0ccvees veeee

CHAPTER 8: ANALYSIS, FUTURE STUDY AND CONCLUSIONS

8.0 Malysis ® 8 @ 0 0 0 8 5 0 9 ¢80 0 0 03 8 S 8 080D AT SO E SN o0

46
48
49
50
55
57
59
60

63
63
66
68

70
70
71
74
75
77
78
80
83

84
84

Future Study .

Conclusions

REFERENCES .¢ciieveeenn

e 0 ¢ & s sttt B s sy S S

APPENDIX I: CONCURRENT EUCLID

APPENDIX 1II: SEL COMPUTER SYSTEM
APPENDIX III ECODE~-I AND INTERPRETER I

APPENDIX 1IV: ECODE~-II AND INTERPRETER I

ix

LIST OF FIGURES

Five Basic Functional Units of a Digital Computing

SYSteM .ttt eerreessersteasstsacsssssossstssnsarasss 7
Memory Array Control Store Designeecee0e.. 10
Vertical and Horizontal Microinstructions 11
Serial-Parallel Microinstruction Fetch 13
The Phases of a Compiler and Interpreter 24
SEL 32/75 Microengineceeesreverosesescsas 37

Microinstruction Timingccvvievevereveceasses 39

SEL 32/75 Data StrucCtuUre ...c.ceeseeococssvesenses &0
DeSign of ECOde-I ® 5 9 8 9 0 8 0 600 2 0 G 0L O G S EEDLE L SESIEE TS 45
Operand Decode Algorithmcccc0veveeenees B3

Implementation Of Ecode-Iiicieeeieceascsses 64
Logical Structure of Interpreter Icceecevvee 65
Implementation Of Ecode-IIcieveveveccecssnss 19

Logical Structure of Interpreter II0.. 80

b 4

LIST OF TABLES

SEL F and C Addressing Bits0000eeieans .
SEL 32/75 Instructions by Category RN
Ecode-I Instructions by Categorycecevvueenns
Sample Ecode-I Instructionsccecoe0 viessens
Comparison of SEL Machine Language and Ecode-I ...
Ecode-II Instructions by Category eeeesen

Sample ECOde'-II Instructions 608 060 00008 0 5 00 e e

CHAPTER 1l: INTRODUCTION

1.0 Introduction

There are several methods of executing programs written in a
high level language. The most widely used is to compile the
programs into machine language. Another is to translate the
programs into some intermediate form and then to execute
that form interpretively. A third method is to directly
execute either the high 1level language or the intermediate

form [HASS76].

A compiler is a computer program which accepts as input a
program written a high level language (HLL) and produces as
its primary output machine language code that will instruct
some computer to produce results equivalent to those defined
by the original HLL. Although there are many differené'ways
to write one, all compilers perform two basic processes:
analysis of the HLL source text, and synthesis of machine

language instructions, or object text.

The use of intermediate languages as a convenient means of
developing portable HLLs is now fairly standard. With this
approach the compiler for language A compiles the source
code into intermediate language I, which is usually pseudo

machine language. For each machine that the language is to

2

be implemented on, there is either a program that converts I
into assembler language for that machine or, alternatively,
an interpreter may be written which executes the pseudo
machine codes directly. The interpreter is wusually
considerably less efficient than a compiler because it
carries the burden of intermediate code analysis in addition

to execution.

The justification for the intermediate code approach is that
portability of compilers is enhanced. The major sections of
the compiler can be written in a high level, portable
language to generate machine independent intermediate code,
in which the complex HLL constructs have been translated
into relatively simple and fewer intermediate code
constructs. Portability is then obtained by writing what is
a relatively small interpreter or compiler for the

intermediate language to machine language.

Portability would be improved if the intermediate language
could be executed directly as this would avoid either the
step of converting the intermediate language, or the reduced
performance resulting from interpreting it. With the
availability of writable control store as an option on most
minicomputers, there is merit in investigating the
feasibility of direct execution of intermediate languages on

a mini-computer. If feasible, then this represents an

3
efficient way to obtain language portability [COOP80].

1.1 Microprogrammed Interpreters

The use of microprogrammed interpreters to enhance high
level language execution speed has been around for a long
time. Papers describing the potential gains were quite
common during the early 1970’s [BROA75], and the Burroughs
B1700/1800 machines were designed to directly execute the
intermediate languages that were developed for different
HLL’s [COOP80]. To date, however, the author has been able
to locate only a few published articles describing actual
implementations of microprogrammed interpreters, and these

are summarized below.

Broca and Mervin found gains of 12-75% in their
implementation of a microcoded interpreter for Fortran
compared with the Fortran H and G compilers on an IBM 360
computer system [BROC73]. Cooper has implemented a
microprogrammed interpreter for subsets of the intermediate
code generated from BCPL and Pascal [COOP80). He did not
report extensive benchmarking results but found that Wirth’s
prime number program (JENS75] ran three times as fast as the

compiled version.

4
A microprogrammed interpreter for the intermediate language
of Modula was designed by Habib and Yang using bit-slice AMD
2900 architecture [HABIB1]. Schaeffer and Pratt
investigated the effect of microcoding selected parts of a
software interpreter for the intermediate language of UCSD
Pascal. They reported significant improvements though not as

high as they expected [SCHA83].

Gee et al have implemented a high performance Prolog engine
by directly executing its intermediate form as generated by
a Prolog compiler, on the VAX 8600. Their initial results
indicate that their system is the fastest implementation of
Prolog on a commercially available general purpose processor
[(GEE8B6]. Okuno et al implemented a microprogrammed version
of a Lisp interpreter on a TAO/ELIS system and their results
indicate that the speed of interpreted code of TAO is
comparable to that of compiled codes of commercial Lisp

machines [OKUN87].

1.2 Microprogrammed Interpreter For Concurrent Euclid

This thesis was aimed at investigating the feasibility of
directly executing the intermediate representation of the
sequential features of Concurrent Euclid (CE) on the SEL
32/75 computer. A CE compiler and source code for the VAX

11/780 and a user microprogrammable minicopmuter, the SEL

5
32/75, were available for this project. A SEL code
generator was written and the Euclid compiler ported to the
SEL. A translator was then designed and implemented to
convert the intermediate code generated by the compiler into
Ecode, a form more suitable for intexpretation on the SEL.
A nmicroprogrammed interpreter for Ecode was designed and
implemented on the SEL and benchmarked against the compiler.
For the CPU-bound algorithm Sieve of Eratosthenes, the
interpreter was measured to be about twice as slow as the
compiler. Ecode was then modified, and a new translator and
interpreter designed and implemented. The same benchmark

yielded comparable results for both the interpreter and

compiler.

1.3 Organization Of This Thesis

The remainder of this thesis describes this project.
Chapter two introduces microprogramming and its applications
while chapter three introduces compilers, interpreters,
Concurrent Euclid and its intermediate code which is
translated into Ecode for interpretation. Chapter four
gives an overview of the SEL computer, its architecture and
microengine. Chapter five describes the design of Ecode,
referred to as Ecode-I, and chapter six the implementation
of the original microprogrammed interpreter and its

benchmarking. Chapter seven describes the modified Eccde,

6

referred to as Ecode-II, and the microcoded interpreter
which yielded comparable results to the compiler. Chapter

eight identifies topics for future study and concludes the

project.

CHAPTER 2: MICROPROGRAMMING

2.0 Introduction

Digital computing systems have traditionally been described
as being composed of £five basic wunits: input, output,
memory, arithmetic and logic, and control as shown in figure

2.1 below [REIG72].

Input

Control
Unit r——+ ALU Memory

Output

Figure 2.1 Five Basic Functional Units of a Digital

Computing System (from RIEG72)

Machine instructions and data communication among the units
(as indicated by the solid 1lines in figure 2.1) are
generally well known and understood. The control signals

(as indicated by the dashed lines) are generally less well

8

known and understood except by the system designer. These
control signals generated in the control unit determine the

information flow and timing of the system [REIG72].

Microprogramming was first proposed by professor M. V.
Wilkes in 1951 as a systematic alternative to the rather ad-
hoc method of designing the control system of a digital
computer in use at that time [WILK69). His thesis was that
one can envision the control system of a computer as
effecting a number of register-to-register transfers of
information, some in sequence and some in parallel, in order
to carry out the execution of a single machine instruction.
The steps used to execute the instructions in a user machine
can be thought of as constituting a program, called a
microprogram [ROSI6S]. Besides being a more structured
approach to control system design, microprogramning
introduced a large degree of flexibility in the design,
implementation and maintenance of the instruction set of a

computer.

2.1 Architectural Aspects 0f Microprogramming

Juan Linares describes the hardware aspects of
microprogramming gquite nicely in his master'’s thesis
[LINE82] and the following sections on control storage

organization, microinstruction format and sequencing are

reproduced from his thesis.

The study of microprogramming hardware may be divided into
three main areas which are related, but complex enough to
deserve independent ‘consideration. These are: control

storage organization, microinstruction format and

microinstruction sequencing.

2.1.1 Control Storage Organization

Control storage refers to a store from which microprograms
are executed. This does not imply that control storage is
distinct from main memory, although that is often the case.
Most microprogrammed computers store microprograms in a
smaller but faster memory, but there are some exceptions
such as certain models of the IBM 360 series and the
Burroughs B1700 in which microprograms are executed from an

area of main memory [DASG79].

One of the major disadvantages of microprogramming compared
to hardwired control, is the time involved in fetching
microinstructions from control storage. This factor can be
made insignificant by appropriate implementations of control
storage and microinstruction execution; hence the

importance of control storage organization.

Control storage can be logically organized in several ways.

The simplest and most common structure is the ordinary

10
memory array with one microinstruction per word. A
variation of this form is to increase the size of the
microword in order to accommodate two microinstructions.
The advantage of this is that fewer memory references are
required since two microinstructions can be accessed
simultaneously. The memory array organization is
illustrated in figure 2.2. Other organizations include the

blocked, split structure and two level organization

[LINES2].
One Microinstruction Two Microinstructions
per Word per Word

Figure 2.2: Memory Array Control Store Organization

2.1.2 Microinstruction Format

A microinstruction is merely a string of bits whose meaning
is determined by the decoding hardware. Of primary interest
in the design of microinstructions is the number of
resources each microinstruction controls. In this respect

microinstructions are classified as vertical or horizontal

11
[RAUC80) although these designs refer to the extremes of a

broad spectrum.

Vertical microinstructions effect single operations such as
LOAD, STORE, and BRANCH; they often resemble machine
language instructions containing one or more operands.
Horizontal microinstructions, in contrast, control many
resources which may operate in parallel. A microinstruction
might control, for example, the simultaneous and independent
operation of the ALU, input and output to main memory,
conditional next address generation, etc. These
microinstructions have the potential advantage of efficient
hardware utilization, but the optimization process is a
difficult task. Figure 2.3 below illustrates vertical and

horizontal microinstructions.

Vertical Horizontal :
L ,] l | _ | 1 L |
single action multiple actions in parallel

Figure 2.3: Vertical and Horizontal Microinstructions

2.1.3 Microinstruction Sequencing

The microinstructions sequencing mechanism is a great source

of variability among microprogrammable machines, since they

all have different and often inconvenient addressing

12

mechanisms [PERS77]. Microinstructions are executed in a
general fetch-decode-execute sequence, but details of actual
implementation can vary greatly. Generally a microprogram
counter is used to indicate the address of the next
microinstruction, and a certain field may be set aside
within the microword to indicate a branch address. Unlike
machine language programming, the effects of the sequencing
scheme are not hidden from the microprogrammer and he must

cope with them.

In sequencing microinstructions there are two aspects to be
considered, one is the fetch-execute cycle of the
microinstructions themselves and the other is the sequencing

of microoperations within each microinstruction.

The first aspect is described by the serial-pargllel
characteristics of the sequencing scheme. In a serial
implementation, fetching the next microinstruction does not
begin until the execution of the current one terminates. 1In
a parallel implementation, the fetch of the next
microinstruction begins while the current one is being
executed. The advantage of the serial approach is
simplicity of realization, while the advantage of the
parallel approach is the corresponding saving of time.
Figure 2.4 illustrates the serial-parallel microinstruction

fetch.

13

instruction

i+2

i+1

i

serial execution time

instruction

i+2

i+l

i

parallel execution time

Figure 2.4: The Serial-Parallel Characteristics

The second aspect of sequencing is described by the number
of minor clock cycles used to execute a microinstruction.
In a monophase implementation there are no distinct control
cycles and the microinstruction is executed by a single
simultaneous issue of control signals. In a polyphase
implementation each major clock cycle comprises multiple
subcycles and the hardware generates control signals at each
subcycle. The advantage of monophase operation is the
simplicity of realization, whereas the advantage of
polyphase operation is that it allows better utilization of

the resources at the expense of more complicated hardware.

14

2.2 Advantages Of Microprogramming Over Machine Language

The main advantages of microprograms over machine language
programs are speed and accessability to the hardware data
structures of the computer. Microprograms generally execute
much faster than machine language progiams because of
several factors, namely:
. the ratio of control store speed over main memory
. the greater power of micro instructions over machine
language instructions. A machine language instruction
consist of more that one microinstruction.
ability of microinstructions to allow parallel
operations within the execution timing of a single
instruction.
direct interface of the microinstruction to the
hardware, thereby eliminating the need to do memory

fetches and decodes of all instructions.

These advantages of microprogramming have been utilized in a
number of applications, some of which are described in the

following sections.

2.3 Evolution of Microprogramming

Following Wilkes’s initial investigation microprogramming

received some attention during the 1950’s, but it was not

15
until the 1960’'s that microprogramming was to be used
significantly on a commercial scale. The main reason for
this was that until the 1960’'s the simplicity and
flexibility offered by microprogramming was more than offset
by the tremendous overhead of a memory access for each

microinstruction [RAUC80].

With the development of fast, inexpensive semiconductor
memories there emerged an interest in microprogramming as a
means of desiqgning a range of computers of differing power
but with compatible instruction sets. The best example of
this is the IBM 360 series in which all machines were at
least upward-compatible. In this series all but the largest
computer then announced, model 70, had microprogramming

based on ROM [STEV64].

This contributed to the development of hardware emulation as
an important research topic. Tucker defined an emulator as
a package that includes special hardware and a complementary
set of software routines [TUCK65]. Emulation therefore does
not imply the implementation of an entire instruction set of
a computer in a microprogram. A machine instruction may be
microprogrammed if its software implementation is too
difficult, too inefficient, or if it is used so often as to

be worth the effort of microprogrammming it.

16

The latest phase of of microprogramming is characterized by
the appearance of user microprogrammable machines which
provide tools to carry out research on the various aspects
of microprograming. Advances in integrated «circuits
technology have led to the appearance of powerful
microprocessors which have given great impulse to
microprogramming. With the development of user
microprogrammable machines, minicomputers and bit-sliced
microprocessors the application of microprogramming spread
to operating system support, fault diagnosis and special
purpose systems, and support for high level 1language

execution [RAUS80].

2.4 Applications of Microprogramming

As mentioned zbove, in addition to being an alternate way to
design the control system of a computer and machine
emulation, microprogramming can be used for operating
systems support, fault diagnosis and special purpose

systems, and to execute high level languages.

2.4.1 Operating systems support

Microprogramming can be used to assist the implementation of

operating systems in two basic ways. First, by direct

implementation of primitives in microcode and second,

17
microprograms can support primitives by implementing a
suitable virtual machine on which the primitives can be
executed. Primitives which are ideal candidates for
miprogrammed implementation include bit manipulation
operations, search routines, process synchronization,
interprocess communication and protection, and interrupt
handling. On the Burroughs B1700 computer a microprogrammed
kernel handles time critical operating systems functions
such as interrupt handling, scheduling, 1I/0 processing and

virtual memory management [WILK72].

2.4.2 Fault Diagnosis And Special-Purpose Systems

Microdiagnostics are microprograms that diagnose system
hardware to detect and¢ 1locate hardware faults. In many
computer systems, especially real time systems, it is
necessary to continue operation even in the presence of
hardware failures. Microdiagnostics can generally access
all CPU resources and locate hardware faults with a higher
resolution and much faster than other methods, and do not
require extensive use of main memory. Microprograms are
ideally suited for special purpose, CPU intensive
applications. These include signal processing, computer
graphics, numerical algorithm implementation, and
implementation of special systems for research and

development purposes.

18

2.4.3 High Level Language Execution

The principal ways of using microprogramming to support high
level language processing are: compile the high level
langnage directly into microcode, microprogram critical
seccions of the high level language program, and use
different target codes and microcoded interpreters for each

language.

The first approach will generally give the most efficient
implementation. In general this approach involves a much
more complex operating system and several problems that
occur at the machine code 1level show up again at the
microcode level [BROA75]. In spite of these complications
such languages and compilers have been designed and
implemented on minicomputers and microcomputers. Fagin et
al describe the compilation of Prolog directly into
microcode, resulting in the fastest functioning Prolog
system known to them [FAGI85). This approach continues to be
a main focus of microprogramming research in the academic

community [SHRIS81].

The second approach offers a way to improve the execution
speed of a given high level language program by analysis of
the program to determine the sections where most of the CPU

execution time is used, and microcoding of these parts of

19
the program. Time critical applications such as real time
processing and operating systems are good candidates for

this type of support.

The third approach generally involves translating the high
level language into an intermediate form and interpreting
this intermediate code with a microcoded interpreter. The
theory is that the greater speed of the microprogram will
offset the higher overheads associated with interpreters.
The advantage of this scheme is that it is not as
complicated as the first and it is more general that the
second. The microprogrammed interpreter for UCSD Pascal on

the PDP-11 is an example of this [SCHA83].
2.5 Current Aspects 0f Microprogramming

The current microprogramming interest in the academic
community can be grouped into three general categories,
namely, the automatic generatioi of correct, compact
microcode from a high 1level language for different target
machines, computer architecture design, and development of

microprogramming tools.

By far the greatest emphasis is on the first category, with
considerable material reported in the literature on projects

on high level microprogramming languages (HLMLS), microcode

20
compilers, microprogram generation systems for retargetable
implementations, hardware description languages (HDLs), and
microcode compaction and verification schemes [SIGM86],
(SIGM85]. The general objective is a microcode generation
system which accepts as input an HLML and an HDL for a given
machine, and outputs a correct and optimized microprogram

for that given target machine.

Microprogramming research in computer architecture design is
geared towards the development of processors for a variety
of general and special purpose applications. Control Data
Corporation is applying microprogramming technigues to the
development of a multiple instruction set architecture
processor using VLSI and CMOS technology [WILK84]. Patt et
al report working on microarchitectures for implementing
high performance computing engines [PATT85]. DuBose et al
describe the initial design of a microcoded RISC-type
machine, MIRIS, under development at George Mason
University. The basic difference between MIRIS and other
research prototype RISC machines is that the control of

MIRIS is microcoded while the others are hardwired [DuBO86].

The increased use of microprogramming in recent years has
created a need for sophisticated tools to support the
development of microprograms. The literature reports on the

development of interactive high level debuggers for

21
microprograms, and microprogram simulators for given
architectures. The latest development is the automatic tool
generation process which accepts as input a description of
the microarchitecture in an HDL and generates as output an
assembler, linkage editor and simulator tailored for that

architecture [TRAC85].

CHAPTER 3: COMPILERS, INTERPRETERS AND CONCURRENT EUCLID

3.0 Compilers And Interpreters

A compiler is a translator which converts an input "source"
language into an output "object" language which is
recognizable to a specific computer hardware configuration.
The translation typically occurs in three phases. The first
includes syntactic analysis of the source program to
guarantee its correctness and tabulation of all symbols; the
second consists of a semantic analysis which converts the
source statements into an intermediate text form. The third
phase, referred to as code generation, converts the
intermediate text into machine code for a particular

hardware system.

An interpreter differs from a compiler in that it does not
generate machine code but executes the intermediate text.
It is nusually considerably less efficient than a compiler
because it carries the burden of intermediate code analysis
in addition to execution. P. J. Brown [BROW81] explains
this difference quite nicely with the following analogy.
Assume you are an English speaker who does not understand
French very well, and you are given some instructions in
French to do a certain job. Assume further that you are a

bit stupid, like a computer, and do not remember anything

23

unless you write it down, and then later read back what you

have written.

The simplest way of executing the French instructions is to
take each one in sequence, figure out what it means, and
then obey the ingtructions. Thus, performing an instruction
consists of two stages: decoding and action. The
disadvantage of this is that if an instruction is repeated
several times you have to repeat the decoding of the French
instructions equally many times -- do not forget you are too
stupid to remember them automatically. This suggests an
alternative approach: first decode all the French
instructions into English and write them down; then follow

the English instructions.

The second approach is dinitially more time consuming,
because translating into proper written English is more of
an effort that figuring out the French instructions in your
head. However, it Dbecomes faster overall if the
instructions are to be repeated. An interpreter corresponds

to the first approach and a compiler to the second approach.

Because of the huge overheads of interpretation of a source
language almost all compilers and most interpreters

translate the source language into an intermediate form

24
which is easier to decode. This intermediate code could
take a variety of forms. At one extreme it could be machine
code, as would be for a compiler; at the other it could be
almost the same as the source language, as would be the case
for an (almost) pure interpreter. As the intermediate form
moves away from the source language towards machine language
the compiler gets steadily bigger but the users’ programs
run steadily faster. There is a spectrum of possiblilities
between these two extremes, and real production compilers
and interpreters lie all along the spectrum. Figure 3.1

below shows the steps taken by a compiler and interpreterx.

Syntax Analysis Syntax Analysis
I Semantic Analysis Semantic Analysis
Intermediate code lInt. Code
Code Generation Interpreter Executn

lAsaembly Language

Phases of An
l Assembly Interpreter

lgachine Language

Machine Execution

Phases of A Compiler

Figure 3.1: The Phases of a Compiler and Interpreter

25

3.1 Concurrent Euclid

Concurrent Euclid (CE) was designed to support
implementation of highly reliable, high performance software
such as compilers and operating systems. CE 1is based on
Pascal and borrows Pascal’s elegant data structures.
Various features of Pascal were "purified" to allow easier
verification; for example, in CE functions are prevented by
the compiler from having side effects. The major features

CE adds to Pascal are:

1. Separate compilation - procedures, functions and
modules can be separately compiled and later linked
together.

2. Modules - a module is the syntactic packing of.data
structures with the procedures and functions that
access the data.

3. Concurrency - Monitors and processes are supported.
There is a SIGNAL and WAIT statement. A BUSY
statement allows CE to be used as a simulation
language.

4. Control of Scope - names of variables, types, etc.,
are not automatically inherited by scope. Import and
export lists are used to control the scope of names.

5. Systems programming constructs - These include

26
variables at absolute addresses. Swuch variables can

be device registers in computers with memory mapped

I/O'

There are some Pascal features, such as enumerated types,
that CE does not support. CE does not allow procedures and
functions to be nested inside procedures and functions. More
details on CE are presented in Appendix I and a complete

description given in [HOLT83].

3.2 Concurrent Euclid Compiler

The CE compiler makes four passes over the source input and
its intermediate forms. The first three of these (the
parser, semantic analyzer and storage allocator) are machine
independent. The fourth, the code generator, is the only one
that has to be changed to port the compiler to another
machine. The intermediate code which will be transformed
and interpreted by the microprogrammed interpreter is the

output of the storage allocation pass.

A complete formal description of CE is given in [HOLT83].
Below is an example of a CE implementation of a stack. Two
operationg Push and Pop are defined on a data structure
called Table. Push adds an item to Table and Pop returns

the item most recently added to Table. The initially block

— o x T

27
sets the number of items in Table to zero at the start of
execution.
var stack:
module
exports (push, pop)
const depth := 1..10
var tops 0..depth
var table: array 1..depth of signedint
procedure push(i:signedint)=
imports (var top, var table)
begin
top 3= top + 1
table(top) := i
end push
procedure pop(var i:signedint) =
imports (var top, var table)
begin
i := table(top)
top := top - 1
end pop
initially
imports (var top)
begin
top := 0
end

end module

28

3.3 CE Intermediate Code

The intermediate form generated as output of the storage
allocator pass of the compiler is a string of tokens. The
intermediate representation of the procedure "push" is shown

below with comments.

Intermediate Representation Comment

aRoutineIndex 0

aldentText 4 push procedure push
aNewline 9

aBegin begin block
aNewline 10

aDataDescriptor 162 1 0 02 00 top

aAssign =
aDataDescriptor 162 1 0 02 00 top
aDataDescriptor 1 127 1 C1 01 1

aAdd +
aEndExpression

aNewLine 11

aDataDescriptor 162 1 3 020 02 table

aSubs start subscript
aDataDescriptor 162 1 0 02 00 top
aEndExpression

aEndSubs end subscript

YRR Tv k7 T v

29

aDataDescriptor 1 127 1 01 1 lower bound

aDataDescriptor 1 127 1 01 upper bound-1l

aDataDescriptor 1 127 1 01 size of item

o o o o
o w

aDataDescriptor 129 127 0 0 2 array attributes
aAssign =
aDataDescriptor 162 2 0 02 =-1-4 1I
aEndExpression

aNewLine 12

aEndBegin end begin block
aNewLine 13

An aNewline token refers to the source 1line number that
generated the code following it. The most complex structure
in the intermediate language is the specification of data
objects. A simple data object is represented by an
"aDataDescriptor" token which has five fields as shown

below:

Status Base Rep. Value Displ.

The status field is a bit encoded string indicating the
addressing and alignment of the operand. The base field
describes the location of the operand. The possibilities
are: on runtime stack, in global read/write storage area,
immediate operand in the descriptor itself, or in a

register. The representation and value fields determine the

30

sign and size of the operand, that is, unsigned byte, signed
long (or 4 bytes), array etc. The displacement field gives
the displacement of the operand from one of the bases
described in the base field. In the case of an immediate
operand this field contains the actual value of the operand.
The displacement and value fields are both 32 bits long and
are implemented a3 two 16 bit values. The other three

fields are 16 bits long.

As an example, consider the data descriptor for the variable
"top” in the preceding example of the CE module "stack".

The data descriptor is:

aDataDescriptor 162 1 0 02 00

The values and interpretations of the corresponding fields

are as follows:

Status = 162 ~ bit 1 is set - indicates indirect
addressing
bit 5 is set - indicates operand
has a lexic base
bit 7 is set - operand is
aligned on a two byte boundary
Base =1 - indicates operand is on run-time

stack

31

Representation = 0 - representation an value fields

Value =0 2 - indicate operand is signed 16
bit integer
Displacement = 0 0 - =2zero indicates that the operand

starts at the base address.

An array element requires at least six data descriptors for

its specification. These are:

. start location and size of array - 1 data descriptor

. subscript

at least 1 data descriptor

. lower bound

1 data descriptor

. upper bound-1l

1 data descriptor

. size of item

1 data descriptor
. attributes of item (eg. signed/unsigned) - 1 data

descriptor.

A more detailed description of this intermediate code is

given in Appendix I.

CHAPTER 4: INTRODUCTION TO THE SEL

4.0 Introduction

The SEL 32/75 is a high speed, general purpose, digital
computer system. It is designed for a variety of scientific,
data acquisition and real time applications. A basic system
includes a central processing unit, main memory subsystem,

and microprogrammed I/O controllers.

The CPU has a large instruction set that includes fixed and
floating point arithmetic instructions. A special lookahead
feature enables the CPU to overlap instruction execution
with memory accessing, thereby reducing program execution
time. The main memory of 16 megabytes can consist of up to
16 modules of 64K bytes each on each of up to 16 memory
busses. Memory can be shared by up to 20 CPU’s and their

associated I/0 processors [SEL1].

The SEL 32 series computers use a microprogrammed control
section (CROM) to decode and execute machine instructions.
The writable control store (WCS) option consists of one or
two 64 x 2K high speed random access memory boards which
provide a physical extension of the control store. This
feature allows the user to tailor the machine to accommodate

any special user needs.

33

4.1 SEL Macroarchitecture

4.1.1 Registers

The SEL 32/75 has eight general purpose registers (GPR’s)
for use by the assembly language programmer for arithmetic,
logical and shift operations. Three of the eight GPR’s, RO,
R1l, R2, can also be used for indexing operations. Register
RO can also be used as a link register, and R4 can be used

as a mask register.

4.1.2 Addressing modes

The general format of a memory reference instruction is

shown below,.

Opcode [SRC |RR [I|F Displacement cc
0 56 89 11 12 15 16 31
bits 0..5 - opcode
bits 6..8 - source register

bits 9..10 - index register

bit 11 -~ indirect addressing

bit 12 - F bit. memory addressing
Lits 16..31 - displacement or literal

bits 30..31 - C bits. byte/halfword/word/doubleword

addressing

34
Bits 9..31 have the same format in every memory reference
instruction, regardless of whether the effective address is
used for storage or retreival, as an indirect address, or to
alter program flow. The format of the F and C bits have
been selected so that any specified data type byte, 16 bit
halfword, 32 bit word, or 64 bit doubleword can be
conveniently referenced. The possible combinations of F

and C bits are as shown in table 4.1 below:

F bit (12) C bits (30,31) Data type
0 00 32 bit word
0 01 16 bit half word. bits 0..15
0 10 64 bit doubleword
0 11 16 bit half word.bits 16..31
1 00 byte 0. bits 0..7
1 01 byte 1. bits 8..15
1 10 byte 2. bits 16..23
1 11 byte 3. bits 24..31

Table 4.1: SEL F and C Bits Addressing

The following addressing modes are provided:

1, Direct addressing - the effective memory address is
taken directly from bits 13..31 of the memory
reference instruction.

2. Indexed addressing - bits 13..31 are used to produce
a memory address by adding it to the contents of the

register specified by bits 9..10. Only registers

W@!xm‘v‘ R

35
1,2 and 3 can be used as index registers.

3. Indirect addressing -~ the address of the operand is
contained in the memory word specified by adding the
contents of bits 13..31 to the contents of the
register specified in bits 9..10.

4. Immediate addressing - the operand is in bits 16..31
of the instruction.

5. Register addressing - the operand is in a register

specified by bits 6..8.

4.2 Instruction Repertoire

The functional classification and number of instructions for
the SEL 32/75 computer are shown in table 4.2. A complete

list of the SEL 32/75 instructions is given in [SEL1].

4.3 SEL Assembler Directives

The Ecode programs interpreted by the microprogrammed
interpreter are generated in SEL assembly language which are
translated by the SEL assembler into machine code. A
partial description of the SEL assembly language directives
used in Ecode generation is given below, and a complete list

in Appendix II.

36

Directive/ Instruction Comment
BOUND N forces the program counter to an N
byte boundary; for example N = ¢
indicates fullword boundary and N = 2
indicates halfword boundary.
GEN N/B define N bits of memory with value B;

for example GEN 8/1,8/2,8/3,8/4

generates the bit configuration: 0000

0001 0000 0010 0000 0011 0000 0100
LABEL EQU VALUE equals tag; equates LABEL with

VALUE
classification number
Fixed point arithmetic 30
floating point arithmetic 8
boolean 17
load/store 29
bit manipulation 8
zero operand 5
shift 13
interrupt 13
compare 11
branch 9
register transfer 13
input/output 10
control 16
hardware memory management 4
writable control store 3

total 189

Table 4.2: SEL 32/75 instructions by category.

37

4.4 SEL Microengine

The operation of the SEL 32 computer is controlled by the
central processing unit (CPU). 1In the CPU, the controlling
hardware which executes the firmware (microprogram) is
referred to as the microengine. Figqure 4.1 presents a block

diagram of the SEL microengine.

Test Logic Microprogram Counter
Extended Tests p= Sequence J Stack
Cntrl Logic
Z Tests —r-r
yp~=3 |CROM Addr.
MUX CROM
W Tests = 48x4K
CROM Addr f
S Tests Register Order De-
code Logic
Lq

Figure 4.1: Block Diagram of SEL Microengine

The microengine consists of the following hardware sections:

1. Control Store (CROM) - consists of several read only
memories used to store the microprograms.

2. Test Logic - the basic tests are the first part of

the microinstruction to be executed. All basic tests

must be completed before execution of the

38

microinstruction orders.
3. Microprogram counter -~ consists of several hardware
sections which are used to select from a number of

sources the next CROM address to be used by the

microprogram.
4. Order decode stack - the last part of the
microinstruction to be executed is the

microinstruction orders (or operations). Orders are
decoded and executed by this hardware.

5. J stack - a 4 x 13 bit register stack that acts as a
last in, first out microprogram address stack. This

can be used to implement microsubrcutine calls.

4.5 Timing

Instruction execution within the microengine generally
requires two cycles, the first being the CROM cycle and the
second is the CREG cycle. Each cycle 1is 150 nanoseconds
long thereby requiring a total of 300 nanoseconds to
complete an instruction. During the first 150 nanoseconds
the basic tests and sequencing are done; the second 150
nanoseconds execute all orders that the microinstruction
directs. Although each microinstruction requires 300
nanoseconds to execute fully, one microinstruction can be
completed every 150 nanoseconds by overlapping the CROM

cycle of the second instruction with the CREG cycle of the

39

first instruction as shown in figure 4.2,

i 150 ns 300 ns 450 ns 600 ns
Timing ¢ — ! & >

CROM #1 | CREG #1

CROM #2 CREG #2

CROM #3 | CREG #3

Figure 4.2: Microinstruction Timing

4.6 SEL Data Structure

The SEL data structure consists of 32 x 32 general file
registers, hardware registers, and two multiplexors
organized around an Arithmetic and Logic Unit and a 256 x 32
bit local store. The hardware registers are used for
SELBUS communications, temporary storage, and shifting.
Figure 4.3 shows a diagram of the SEL data structure.
Unlike the machine language programmer who has access to
only eight general purpose registers, the microprogrammer
can directly access the entire SEL data structure. The data

structure is presented in the following order:

1. Arithmetic and Logic unit - The ALU is a two-input

32-bit Arithmetic and Logical unit, utilizing four

40

g

ﬂ% i

== |
= |
— — k=
(== < e | _I|.|.||.
] lj s = n_._
=
o= L 1..m....._U
— n._l ! FIE |
= b =
[e=—— _mw g = m”
> J— | __.I.HH“
II—IWV n P.ﬂll— "|Nng rlll|!~
M.M an — o
4.3z

v §

41
lookahead carry generators for increased speed of
operation. The inputs to the ALU are selected by the
A-Mux and B-Mux. The output destination of the ALU
may or may not be specified. If not specified the
output of the ALU is used for testing purposes only.
The output of the ALU can be distributed to any of

the registers and WCS output data.

2. A-Multiplexor (AMUX) - selects input into ALU

3. B-Multiplexor (BMUX) -~ selects input into ALU

4. Literal Generator - generates an 8 bit
constant

5. General file registers (FILE) - 32 x 32 bit
general purpose registers organized in two banks
of 16 registers each.

6. Memory address register (MAR) - 24 bit register
used to address main memory

7. Program counter register (PC) - a 22 bit counter
used to address the next instruction to be
executed.

8. N-Counter register (NCTR) - 8 bit binary counter.
Can be incremented or decremented in the CREG
cycle or decremented in the CROM cycle

9. Shift register (S) - 32 bit register used for
shifting, either by nibble (4 bits) or by bits.

10. Temporary register (T) - 32 bit register used to

42

temporarily hold all data to be stored in the
general purpose registers.

11. pata input register (DI) - 32 bit register used
to receive operands from memory or data and
status from I/0 processors.

12. Instruction decode register (I0) - 32 bit
register containing the current instruction
being executed.

13. Instruction pipeline register (Il) - 32 bit
register used to receive macro instructions as
they return from memory. This register usually
contains the next instruction to be executed.

14. Local store (SCRATCH) -~ 256 x 32 bit RAM storage
for fast accass data storage.

15. Bit mask generator (BMG) - generates 32 bit masks

for bit manipulation instructions.

4.7 CPU Microword

The full CPU microword is 64 bits of which only 48 are
directly associated with CPU operations, the remaining 16
bits are used for the optional high speed floating point
unit. The microword is divided into 13 fields, each of which
define tests and operations to be executed in parallel.

These fields are described below.

9.

10.
11.
12.

43

. Primary test field (T-field)

Sequence field (S-field)

Control field (M-field)
A-Mux field (A-field)

B-Mux field (B-field)

ALU field (+ field)

Destination field (D-field)

File register field(R-field)

Y-Order field (Y-£field)
X-order field (X-field)
P-Order field (P-field)
C-Order field (C-£field)

specifies 16 Dbasic
tests which are decoded
during the CROM timing
cycle
specifies the address
sequencing

executed in CROM cycle
selects source of A
input to the ALU
selects source of B

input to the ALU

selects the ALU
function to be
performed

selects destination for
ALU output

selects one of 16
registers

the five order fields
X, ¥, P, C, and H
define specific
instructions to be
carried out on the

input/output

44

13.H-Order field (H-field) - of the ALU.

A complete description of the SEL writable control store can

be obtained from [SEL2].

CHAPTER 5: DESIGN OF ECODE-I

5.0 Introduction

An interpreter generally executes the intermediate code
directly instead of translating it into machine language as
is done in a compiler. To interpret Concurrent Euclid a
translator was written to convert the intermediate code
generated by the CE compiler into Ecode-I, a form more
suited for interpretation on the SEL. The design of Ecode-I
incorporated inputs from the CE intermediate code and the
SEL microarchitecture, as shown in figure 5.1 below. The

format of Ecode-X is described in the following sections.

CE Compiler

X
SEL Macroarch. CE Int. Code SEL Microengine
\ i —
Translator
Interpreter

Figure 5.1: Design of Ecode-I

46

5.1 Instruction Set

The functional classification and number of instructions in

Ecode~I is shown in table 5.1 below.

Instruction Category Number
Branch 9
Fixed Point Arithmetic 12
Logical 4
Set Manipulation 2
Shift 2
Short Arithmetic 120
Short Logical 60
Short Set Manipulation 30
Miscellaneous 14

Total 253

Table 5.1: Ecode-I Instructions by Category

Each instruction consists of an opcode followed by one ox

more operands. The opcode and the first operand occupy a
word of memory. Subsequent operands, if any, occupy
additional words. The opcodes indicate the number of

operands in the instruction, while the location of each
operand is determined at run-time by the interpreter. The
length of the instruction depends on the number of operands.
The destination operand is always specified after the source
operand as this allows fetching of the operands and
execution of the operation to be performed in parallel with

decoding of the destination address. For example, the

equation "A = B +

cn

47
is

translated into the Ecode-1I

ingtruction "Add3, Operand B, Operand C, Operand A". During

execution, operands

B and C are fetched and the addition

performed while the address

Sample instructions

are

of operand A is computed.

illustrated in table 5.2 and a

complete list is given in Appendix III.

Instruction

of Operands Comment

Branch Equal

Shift Left

Add2

Subtract3

Logical And3

Set Difference2

1

Branch to specified
address if the
previous comparison
was equal.

Shifts operand
left the number of
bits specified by
the second operand

Adds two operands
and stores the
result in the
second operand.

Subtracts one
operand from the
other and stores
the result in a
third operand.

Performs a logical AND
of two operands and
stores the result in a
third operand.

Performs a set
subtraction on the two
operands and stores the
result in the second
operand.

Table 5.2: Sample Ecode-I Instructions

48

5.2 Optimizations

The following optimizations were implemented in the

translator to improve the efficiency of Ecode-I:

0 generates "Zero A"

A + A generates "Shift Left Arithmetic A"

A / 2 generates "Shift Right Arithmetic A"

-A generates "Negate A"

-B generates "Minus Assign A B"

=)} o Lo w N [
T
"

B where both A and B are non-scalar, that is a
table or an array, generates "Non-Scalar
Assign A B " instead of a loop.

A + i where i 1is a 1literal integer between 0 and

~1
)
1]

15, generates "Short Add2i A"

The “Short" instruction was taken from N. Wirth’s
implementation of Lilith: A modula Machine [WIRT84], in
which literal values between 1 and 15 in were embedded in
the opcode itself, thereby shortening the instruction. For
example A = A + 2 generates "Short Add22 A" where the
value of the literal two is the four least significant bits
of the eight bit opcode. There are 220 "Short"
instructions in Ecode-I, used for arithmetic, logical and

set manipulation instructions.

49
5.3 Memory Referencing

The operand specification is complicated by the SEL
addressing and memory logic, and the SEL 32 bit word length.
The SEL supports 64 bit douvbleword, 32 bit word, 16 bit
halfword, and 8 bit byte addressing according to the F and C
bits (bits 30 and 31) in the address as shown in table 4.1

which is duplicated below:

F bit (12) C bits (30,31) Data type
0 00 32 bit word
0 01 16 bit half word. bits 0..15
0 10 64 bit doubleword
0 11 16 bit half word.bits 16..31
1 00 byte 0. bits 0..7
1 01 byte 1. bits 8..15
1 10 byte 2. bits 16..23
1 11 byte 3. bits 24..31

As indicated by the C bits above, the address of a 1§ bit
quantity is always one byte greater than the actual address.
The SEL memory reference logic recognizes this convention
and reads the appropriate halfword. The addresses generated
by the storage allocation pass of the CE compiler are
machine independent and do not compensate for this
addressing scheme. In Ecode-I generation, all known
halfword addresses are incremented by one byte, and the F
bit forced to a one or =zero depending on the size of the
operand. If the address is unknown at Ecode-I generation

time, then it will be generated at run time, in which case

50
the SEL memory reference logic automatically stores the

adjusted value.

Memory reads on the SEL do not sign extend 16 bit half words
or 8 bit byte operands, they are zero filled by the memory
reference logic. 1In CE there are no 64 bit operands, 32 bit
operands are always signed, 16 bit operands could be either
signed or unsigned and 8 bit operands are always unsigned.
The memory read returns 32 bit and 8 bit operands in the
correct format from memory, with the most significant bits
zero filled for 8 bit operands. The sign bit (bit 8) in
Ecode-I is wused to indicate whether 16 bit operands should

be sign extended or not.

5.3 Operand Specification

13e= Absclute address ==e 31

Opcode S{RR [I|F Nl Displacement ccC

0 789 11 12 16 31

Opcode ~ bits 0..7 1Indicate the instruction opcode

S - bit 8 Sign extension bit

0 = sign extension required

1 = no sign extension required
RR - bits Y9..10 Register number

00 - no register

01 - register 1

51
10 - register 2
11 - register 3
1 - bit 11 Indirect bit
0 = non-indirect memory operand
l = indirect memory operand or

operand not in memory

F - bit 12 F bit in SEL addressing
N - bit 16 Sign of register operands
Displacement - Bits 16..31 displacement in

address calculations or literal
values

Bits 13..31 - Absolute addressing

The location of an operand is determined at run-time as
follows: Bits 8 and 11 specify the location and sign of the

operand according to the following encoding:

bit 8 bit 11

0 0 Cperand is signed in memory and not

indirectly addressed

0 1 Operand is in memory and indirectly
addressed
1 0 Operand is unsigned and in memory and

not indirectly addressed
1 1 Operand is an address in a register

(signed or unsigned) or a literal

52

If the operand is in memory the address is obtained using
bits 9 and 10 and bits 12 through 31. Bits 9 and 10 specify
the base register and bits 13-31 specify a displacement to
be added to the base in computing the address. A base
register of zero indicates that bits 13-31 contain the
absolute address of the operand. Bit 12 is the F bit as in
the SEL machine instructions and is used to specify 32 bit

word, 16 bit halfword or 8 bit byte operands.

If the operand is not in memory, that is both bits 8 and 11
are set, and bit 9 is not set then the operand is an
address or a literal. If bit 10 is not set the operand is a
literal and its value is in bits 16-31 with bit 16 being the
sign bit. If bit 10 is set the operand is an address and is

computed as above.

If bit 9 is set, the operand is in a register specified by
bits 9 and 10 (register 2 or 3) and bit 16 indicates its
sign. By default, all addresses stored in memory begin on a
word boundary, and the F bit is therefore not necessary when
specifying indirectly addressed operands. Instead, for
indis ..ctly addressed operands the F bit is used to indicate
that sign extension is to be done according to the following
convention: 1 = s8ign extension required, O = no sign
extension required. The flowchart in figure 5.2 shows this

decoding algorithm.

yes

53

- next page

yes
Bit 11

Set/l///,

no

* !

‘Read
Operand

No Sign
Extension

Figure 5.2:

Read
Operand

No Sign
Extension

ino
Sign
Extension

Operand Decode Algorithm (Page 1 of 2)

54

from
previous page

Unsigned
Register

yes
Bit 11
Set ?
no yes
Bit 9 .
Set ?
Read
Operand
yes
Bit 10
Zero Set ?
Fill
- no Base reg
+ Displ.
yes
Literal
no Operand

Absolute
Address

Figure S5.2: Operand Decode Algorithm (Page 2 of 2)

Register
L

Signed

55

5.4 Design Considerations In Operand Specification

The format of Ecode-I was chosen to incorporate many of the

features of the SEL microarchitecture and machine language.

The following sections describe some of these features.

opcode - bits 0-7 -~ chosen for ease of decoding. The
instruction can be stored into the T register
and the T and S registers nibble shifted left
together with the S acting as the most
significant bits. The isolated opcode in the §
register can be used as a jump table index.

sign extension bit - bit 8 - Chosen by default

Register operand or base register - bits 9 and 10.

These bits are used to represent the index
register in the SEL machine language. The
microinstruction repertoire contains
instructions which reference these two bits as
register numbers. For example microinstruction
MARIX adds the value of the base register
indicated in bits 9 and 10 and the displacement
in bits 12-31 of the instruction register and
places the result in the memory address

register. R(x) is a microinstruction

56
referencing the contents of the register

indicated in bits 9 and 10.

Indirect bit - bit 11. This bit is used to indicate

that an operand is indirectly addressed in
memory, and is also used as the indirect bit in
the SEL machine language. Microinstruction
INDIR directly tests this bit when an address is
placed in the memory address register, which
facilitates easy checking to determine if a

second memory read is necessary.

F bit - bit 12. This bit indicates the sign of indirect

Bit 16

operands or the length (32, 16 or 8 bits) of

non-indirect operands in memory. This 1is the
addressing scheme is used in the SEL machine
language and it takes advantage of the SEL
memory reference logic which automatically reads
the operands according to the value of this bit.
Since this bit is not necessary when reading
indirect operands, its use as a sign bit does

not interfere with memory referencing.

Indicates the sign of register operands.
Register operands are indicated in bits 9 and 10

with the rest of the instruction unused. Bit 16

57
was chosen as the sign bit because it is easily

tested by microinstruction BMUX00.

Bits 16-31 - Used as a literal or displacement. This is

the same as in the SEL machine language. The
microinstructions ZE and SE 2zero fills or sign
extends this 16 bit field of the instruction to
be used in arithmetic operations or to be

stored.

Bits 12-31 - used as an absolute or relative address of

an operand. This is the same convention as in
the SEL machine language. The microinstruction
MARIX loads these bits directly into the memory

address register.

5.5 Sample Ecode-I Instructions

Below is

the Ecode-I instruction generated for the

instruction A = A + B, where B is a 16 bit signed integer on

the run time stack and A is a 32 bit signed value in memory

location at label U.

GEN

GEN

8/32,1/0,2/1,1/0,1/0,19/H(0) opcode,operand B
8/0,1/1,2/0,1/0,1/0,19/W(U) operand A

58

The representation of each field of this instruction is

described below:

GEN 8/32,
Opcode
Add2
(32)

GEN 8/0,
Unused

1/0, 2/1, i/0, 1/0, 19/H(0)
Sign bit Base Reg Indirect F bit Displ.
zero. R1 addr. zZero zero
Sign ext. off Oper. half
required 32/16 words
bits
1/1, 2/0, 1/0, 1/0, 19/wW(U)
Sign ext. No base Indirect Oper Displ.
not req. register addr. 32/16 word
off bits addr.
of U

The Ecode-I representation of the CE procedure "push" in the

module "stack"

described in chapter three, and derived from

its intermediate form also described in chapter three, is

given below.

The Ecode-I representation of the entire

module is given in Appendix III.

Ecode-I 1Instruction Comment
PUSH EQU $

GEN 8/25,1/1,2/0,1/1,1/0,19/1011 set line number
GEN 8/81,1/0,2/0,1/0,1/0,19/H(U) top = top + 1
GEN 8/26,24/0 inc. line num
GEN 8/32,1/0,2/0,1/0,1/0,19/H(U) store top on
GEN e‘0,1/1,2/1,1/0,1/0,19/W(0) run time stack
GEN 8/23,1/1,2/1,1/0,1/0,19/W(0) shift top of
GEN g8/0,1/1,2/0,1/1,1/0,19/1 stack left 1lbit
GEN 8/80,1/1,2/0,1/1,1/0,19/W(U)+4 set address to

59

GEN 8/0,1/1,2/1,1/0,1/0,19/W(0) table + top*2
GEN 8/32,1/0,2/1,1/0,1/0,19/W(-8) table(top)=I
GEN 8/0,1/1,2/1,1/1,1/0,19/W(0)

GEN 8/29,1/0,2/0,1/0,1/0,19/W(0) return

5.6 Comparison Of SEL Machine Language And Ecode-~1

Table 5.3 compares the features of the SEL machine language
with Ecode-I. The major difference between the SEL machine
language and Ecode-I is that the SEL opcode specifies the
location and size of both operands, whereas Ecode-I opcode

specifies neither.

Item SEL Ecode-I

Number of 189 253

instructions

Opcode information Opcodes specify Opcodes specify
operation, operation but
size, and location not size and
of operands. location of

operands.

Instruction format Opcode followed by Opcode followed
operands. One by operands.
operand is Dest . operand
generally in a specified last.
register. Operand locat-

ion unspecified

Number of operands Zero, one or two. 2Zero, one, two
per instruction or three.

Length of 1/2 - 1 word 1 - 3 words
instruction

60

Instruction decode
Opcode bits 0 - 5 bits 0 - 7
Source register bits 6 - 8 bits 9 - 10
Index register bits 9 - 10 bits 9 - 10
Dest. register bits 9 - 10 vits 9 -~ 10
Indirect bit bit 11 bit 11
F bit memory bit 12 bit 12
addressing
C bit memory bits 30 - 31 bits 30 - 31
addressing
Sign extension not required bit 8, or bit
bit 16

Table 5.3: Comparison of SEL Machine Language and
Ecode-I

5.7 CE Intermediate Code And Ecode-I

Ecode-I is derived from the CE intermediate code described
in chapter 3. Each operation token in the intermediate code
is mapped to an Ecode-I instruction. Additional Eceode-I
instructions may be generated to calculate operand address
based on the infermation in the datadescriptor tokens. For
example, the intermediate code of the CE state:.ent "I =
table(top) " in the procedure "push” includes
datadescriptors for table, I and subscript top. This
generates three Ecode-I instructions to calculate the
address of table(top) and one to perform the assignment.
The translation of the intermediate code of procedure "push"

to Ecode-~I is shown below.

.

61

Intermediate Representation

aRoutineIndex 0

aldentText 4 push

aNewline 9

aBegin

aNewline 10

aDataDescriptor 162 1 0 02
aAssign

aDataDescriptor 162 1 0 02
aDataDescriptor 1 127 1 01
aAdd

aEndExpression

aNewLine 11

aDataDescriptor 162 1 3 020
aSubs

aDataDescriptor 162 1 0 02

aEndExpression

aEndSubs

aDataDescriptor 1 127 1 01
aDataDescriptor 1 127 1 01
aDataDescriptor 1 127 1 01
aDataDescriptor 129 127 0 0 2

aAssign
aDataDescriptor 162 2 0 02

aEndExpression

Q O O o

-1

Ecode~I Instruction

. newline 9

Incr line num
Short add?l:

top

Incr line num

. Assign: top,

top of stack
Shift left:l,

top of stack

. Add2: table

address, top
of stack
Assign:
indirect oper
on top of

stack, I

aNewLine 12 9. Incr line num

aEndBegin

aNewlLine 13 10. incr line num

o

CHAPTER 6: DESIGN OF INTERPRETER I

6.0 Introduction

The intermediate code of the CE compiler is translated into
Ecode-1I for interpretation by the microprogrammed
interpreter. The microinterpreter consists of a machine
language main routine, a number of microcoded routines and
the machine language coded I/0 and predefined routines
package used by the CE compiler. The total size of the
interpreter is 1170 microwords of which 256 is a jump table.
The microprogram consists of a jump table, a main program
and five microsubroutines to fetch operands and addresses,

as shown in figure 6.1.

An Ecode-I program is a SEL machine language program with
the first instruction being a jump to the interpreter and
the rest of the program consisting of data statements
defining instructions to be interpreted. The machine
language main routine establishes the processing environment
and passes control to the microcoded interpreter in the
writable control store. Certain functions such as I/0
routines, multiply, divide and modulo instructions are
implemented in machine language, mainly because they are
complicated and require substantial microprogram memory to

be implemented in the control store. Control is passed from

64

the microcoded routines to the machine language routines,
and then back into the microprogram to continue
interpretation. The microprogram execution environment is
saved and restored each time the microprogram is exited or

re~entered. Figure 6.2 shows the 1logical structure of the

interpreter.

Jump Table
256 Words

<--+lSave Result

| !

Instr. 1 Instr. 2 e e s Instr. 253

| ! }

Operand fetch subroutines (called from Instr. i)

Fetch 1 Fetch 1 Fetch 1 Fetch 2 Fetch 2
operand operand + address op + addr] joperand +
its addr of 2'nd 1 address

Fiqure 6.1: Implementation of Interpreter I

65

Ecode-1I ‘--irginain Mach. lang.
J"’ Routine routines

Micfoprogrammed Interpreter
r--------------------------1
| |
] Fetch and |

Decode inst
I JL |
I |
Fetch oper.
i and address l
! |
i yes is no |
external ’
W | I
¥
f Save Execute |
Environment operation
l |,
i |
Save
| Result |
| i
L---------------------------_J

Figure 6.2: Logical Structure of Interpreter I

6.1 Parallel Execution

The memory cycle time on the SEL 32/75 is 900 nanoseconds
which provides for the execution of six microinstructions
during a memory fetch without any degradation of the
execution time of the microprogram. This execution overlap
is used extensively in the interpreter to maximize parallel
execution of memory reads and instruction execution, and is
illustrated in the following microprogram segment used in
the interpreter. The Memory Read D and I columns indicate
the elapsed time since the initiation of a data read and

instruction fetch respectively, in units of 150 nanoseconds.

Elapsed Memory

Time Read

Microinstructions D I comment
READ,CLRS; 1 1 0 initiate read D
NOD=@00800000&I0; 2 2 0 Test sign bit

IF INDIR *GOTO INDIR1,I1TOIO,NOD=S,SAVESIGN; is D indir

3 30
IF ALUZ *GOTO $+2,FETCHPC; 4 4 1 read next instr
MARIX=R(X)+I0,SDEST,*GOTO Cl; 5 5 2 address of A

Cl NOD=SIGN&IO; 6 6 3 test sign bit

67
R(OP2)=DI(SE),READ; 7 0 4 store D in reqg.
read next
operand
The interpreter was designed to maximize parallel execution
of operations within a single microinstruction and memory
reads. In general, fetching of the next instruction is
overlapped with decoding the address of the operands and
execution of the current operation. Where possible,
decoding of the next instruction is overlapped with fetching
the operands, executing the operation and storing the result
of the present instruction. The least overlap occurs with
a register operand as there is no memory data fetch to

overlap the instruction fetch and decode with.

As a measurement of the degree of instruction execution
overlap with memory reads, consider the actual microcode
executed for sample instructions "A =B + C" and "A = A.+ D"
where A, C, and D are in memory and B is a register. The
actual microcode sections of the interpreter executed are

shown in Appendix III, and the results duplicated below.

Expressions Mcode I P1l/Ll1
L1 Pl (overlap)

A =B+ 53 24 45%
-

A=A+D 39 21 54%

h— amETE——

68

where

A = 16 bit signed integer on run time stack
directly addressed

B = 16 bit signed integer in register three

C = 32 bit signed integer in global storage
indirectly addressed

D= 16 bit signed integer on run time stack
directly addressed

Ll= number of microinstructions executed

Pl= number of microinstructions executed in

parallel with a memory read.

These results show approximately a 50% overlap of
instruction execution with memory reads, and as expected,
the degree of parallel execution is less when an operand is

in a register.

6.2 Analysis And Benchmarking

The interpreter was benchmarked using the CPU bound prime
number algorithm Sieve Of Eratosthenes shown in Appendix I.

The results are summarized below.

relative relative
algorithm compiler time interpreter time

Sieve of
Eratosthenes 1 2.23

69

As shown the interpreter was unable to realize the expected
performance gains. An analysis of the design of Ecode-I and
the implementation of the interpreter suggested that the
primary reason for this result was a lack of parallelism in
instruction execution. It was observed that the least
overlap in execution occurs during the instruction decode
for instructions with a register destination operand, and
that most of the execution time was spent determining the
location of the operand. This is illustrated in Appendix
III where for the evaluation of the expression "A = B + C"
no overlap between memory read and instruction execution
occurs until the thirteenth microinstruction in a total of
fifty three instructions executed. Most of these thirteen
instructions were used to determine whether operand B is in
a register, in memory, an address, or in the instruction
itself. To improve the execution speed of the interpreter a
second interpreter was designed and implemented to reduce
the instruction decode and operand address calculation time.

This is described in the next chapter.

CHAPTER 7: ECODE-II AND INTERPRETER II

7.0 Instruction Set

The Ecode-I translator was modified to generate Ecode-1I,
designed to improve instruction decode and operand address
calculation efficiency. The functional classification and
number of instructions in the instruction set of Ecode-II is

shown in table 7.1 below.

Classification Number
Branch 5
Compare 15
Fixed Point Arithmetic 60
Logical 40
Set Manipulation 20
Short Fixed Point Arithmetic 60
Shift 2
Miscellaneous 14

Total 216

Table 7.1: Ecode-II Instructions by Category

Each instruction consists of an opcode followed by one or
more operands. The opcodes were chosen to indicate the
location of one or two operands depending on the number of
operands in the instruction. For example, the Ecode-II
instruction "Add2 MR" indicates an addition of two operands
where the destination operand is in memory and the source
operand is in a register. This is also the general format

of the SEL machine instructions where the opcode indicates

e

71
the size and location of the operands. Sample instructions

are illustrated in table 7.2 and a complete list is given in
Appendix IV.

Opcode # of Operands Comment

Branch not equal 1 Branch to specified
address if result of
previous compare is not
equal.

Shift Register 1 Shift register operand
right/left. The
direction of shift is
specified in the
instruction.

Add2 RM 2 Add a register to a

memory operand and store
the result in the memory
operand.

Subtract3 Al 3 Subtract an immediate
operand from an address
operand and store the
result in a third,
unspecified, operand.

Multiply2 2 Same as Ecode-I.
Set Difference2 MR

nN

Difference of two sets,
one in a register and the
other in memory; store
the result in the memory
operand.

NS WS A 4

———————

Table 7.2: Sample Ecode-11 Iastructions

7.1 Operand Type

Each operand could be ona aof tha fiva Aiffarant &Swmes Tianad

72
below:
. Register operand (R)
. Memory operand (M)
. Address (A)
Immediate operand (I)

. Short operand embedded in the opcode (S)

For three operand instructions the opcode specifies the
location of the two source operands, and the location of the
destination operand is determined at run time. As a result
of the opcode specifing the location of the operands, the
number of opcodes required to define the generic operations
of Ecode-I, such as "Add2", “Subtract3" etc. , increased
eight fold for two operand instructions and twelve fold for
three operand instructions. To illustrate this, the Ecode-
11 opcodes required to implement "Add2" and "Add3" opgodes

of Ecode-I ars given below.

Add2 RM Adu2 MM Add3 RM Add3 MM Add3 aM
Add2 RR Add2 MR Add3 RR Add3 MR Add3 AR
Add2 RI Add2 MI Add3 RI Add3 MI Add3 Al
Add2 RA Add2 MA Add3 RA Add3 MA Add3 AA
Eight ®code-1I opcodes Twelve Ecode-II opcodes required

required for Add2 opcode for Add3 opcode inh Ecode-I.

in Ecode-I.

73
For three operand instructions the operand sequence IM, IR,
I» and II do not require additional opcodes because the
order of the operands and the opcode could always be

modified to fit one of the twelve defined formats, as shown

below.

Subtract3 IM

translated to - Add3 MI1 (where Il = -I)
Subtract3 IR

translated to - Add3 RIl
Subtract3 II

done at compile time

Subtract3 IA translated to - Add3 AIl
In reflexive operations such as add, multiply, etc., the
order of the operands can be simply reversed, instead of

negating the immediate operand and changing the opcode.

The implementation of eight or twelve Ecode-II opcodes for
each Ecode-I opcode requires substantially more coﬁtrol
store than the corresponding single instruction in Ecode-I,
and as a result the instruction set of Ecode-II was reduced
to 216 instructions compared to 253 in Ecode-I. Since each
given instruction is repeated a number of times depending on
the location of the operands and the length of the opcode
remained at 8 bits the short operand format was implemented
only for the "Assign", "Add3", "Subtract3" and "Logical
AND3"* instructions, as these were assumed to be the most

frequently used. The following short Ecode-I instructions

74

were, therefore, not implemented in Ecode-II: short minus
assign, short add2, short subtract2, short multiply3, short
multiply2, short AND2, short OR3, short OR2, short set

difference3, and short set difference2.

7.2 Opcode Decode

To improve opcode decode efficiency an opcode lookahead
feature was added to the instruction, in which the opcode of
the next instruction was also specified in the destination
operard of the present two operand instruction, or in the
second source operand of three operand instructions. This
8-bit opcode occupies the previously unused opcode field in

the destination operand of the current instruction.

The lookahead feature makes it possible to overlap the
decoding of the next instruction opcode with the following:
fetching the next instruction, fetching the destination
operand of the current instruction, executing the current
operation and storing the results into the destination
operand. This large potential operlap of opcode decode with
the execution of the current instruction minimizes the
overhead to decode the opcode, especially in cases of
register destination operands where instruction decode was
costly. In the case of a branch instruction where the

branch is taken this saving is not realized as the

75
instruction decode must wait until the next instruction is
fetched; if the branch is not taken execution is unaffected.
The Ecode-~II instruction, shown below, for the expression "A

=B +C", where A, B and C are in memory, illustrates this

feature.

Ecode-1II Instruction Comment

GEN 8/100, Operand B Opcode 100, and Operand B
GEN 8/154, Operand C Opcode of next instr. and C
GEN 8/0, Operand A No Opcode and Operand A

GEN 8/154, Operand D Next Instruction

As shown above, the opcode of the next instruction is also
given in the previously unused opcode field of the second
operand, thereby facilitating its decode even before the
next instruction is fetched. The SEL assembly directives

generated for the operands A, B, C and D are not given.

7.3 Operand Specification

The operand specification is the same as in Ecode-I with the

following main changes:

. In memory destination operands the opcode of the next

sequential instruction is stored in bits 0..7 which

76
were previously unused. In register destination
operands the opcode of the next instruction is stored
in bits 24..31, which were previously unused. The
latter is easier to decode because no shifting is
involved and these bits can be directly loaded into

the jump register.

In three operand instructions the location of the
destination operand is determined by bit zero of the
word defining the operand as follows: if bit zero is
set, the operand is in memory and its address is
specified by the rest of the instruction, otherwise

it is in a regaister.

In instructions with both memory and register
operands the memory operand is generated first to
allow maximum overlap of operand fetch with the‘rest
of the instruction execution. This is done regardless

of which is the destination operand.

In the shift register instruction the sign bit
indicates left or right shift; the number of bits to
be shifted is indicated by bits 11 through 15; bits

24..31 indicates the opcode of the next instruction.

77

7.4 Sample Ecode-II Instructions

Below is the Ecode-II instruction generated for the sequence
"A = A+ B", where B is a 16 bit signed integer on the run-
time stack and A is a 32 bit signed value in the memory

location at label U.

GEN 8/60,1/0,2/1,1/0,1/0,19/H(0) opcode,operand B
GEN 8/44,1/1,2/0,1/0,1/0,19/W(U) next opcode,
operand A

This representation of each field is of this instruction is

described below:

GEN 8/60, 1/0, 2/1, 1/0, 1/0, 19/H(0)
Opcode Sign bit Base Regq 1Indirect F bit Displ.
Add2 MM zero. Rl addr. zero zero
(60) Sign ext. of £ Oper. half
required 32/16 words
bits
GEN 8/44, 1/1, 2/0, 1/0, 1/0, 19/W(U)
Next Sign bit No base Indirect F bit Displ.
opcocde set. Sign register addr. zero word
Assign MM ext. not off Oper. addr
(44) required 32/16 of U
bits

The Ecode-II representation of the procedure "push" in the
CE module "stack" described in chapter three, and derived
from its intermediate form which is also described in
chapter three, is given below. The complete represantation

is given in Appendix IV.

Ecode-II Instruction Comment

PUSH EQU $
GEN 8/32,1/1,2/0,1/1,1/0,19/1011 set line number
GEN 8/154,1/0,2/0,1/0,1/0,19/H(U) top = top + 1
GEN 8/33,1/0,2/0,1/0,1/0,19/1
GEN 8/33,1/1,2/0,1/1,1/0,19/44 incr line number
GEN 8/44,1/0,2/0,1/0,1/0,19/H(U) stor top on stak
GEN 8/31,1/1,2/1,1/0,1/0,19/W(0) shift top stack
GEN 8/31,1/1,2/1,1/0,1/0,19/W(0) 1left one bit
GEN 8/0,1/0,2/1,1/0,1/0,5/1,16/59
GEN 8/59,1/1,2/0,1/1,1/0,19/W(U)+4 set address to
GEN 8/44,1/1,2/1,1/0,1/0,19/W(0) table + top*2
GEN 8/44,1/0,2/1,1/0,1/0,19/W(-8) table(top)=I
GEN 8/36,1/1,2/1,1/1,1/0,19/W(0)
GEN 8/36,1/0,2/0,1/0,1/0,19/W(0) return

7.5 DESIGN OF INTERPRETER II

The logical gstructure of the interpreter, as shown in figure
7.1, has not changed much but its implementation is qiite
different. The interpreter consists of a main procedure
with twenty six subroutines and is illustrated in figure
7.2, Each subroutine fetches operands in a specific order,
for example, subroutine MR3 fetches two operands and one

address, with the first operand in memory, the second in a

79
register, and the third either in memory or in a register.
Unlike the previous interpreter there is no "pure" jump
table; each entry of the 3jump table now occupies two
microwords, instead of one, and initates operand address
calculation in addition to ca ling a routine to fetch the

operands and complete instruction processing.

] 1
Jump Table
432 Words

| ! i)

Instr. 1 Instr. 2 . e e Instr. 216

Operand fetch subroutines (called from Instr. i)

Fetch #1 Fetch #2 Fetch #25] |Fetch #26
operand operand . e e operand operand
sequence sequence sequence sequence

Figure 7.1: Implementation of Interpreter II

Also, unlike the previous interpreter in which results are
assigned to destination operands in one centralized section
of code, results are assigned to destination operands in the
code that processes each instruction. Given the design of

Ecode-II and the <changes in the implementation of

80

interpreter II, the size of the interpreter has increased to
1893 microwords from 1170 microwords. Input and output
operations, multiply, divide and modulo operati:-. are still
implemented in machine language and the same approach is

used as in the previous interpreter.

Eccde-I ‘ Main Mach lang
Routine routines
Microprogrammed Interpreter
r -) M W= S Gl EGE N PR N S T " OR W W am S % af A I I aE = q
I |
| Fetch and |
Decode inst
Fetch oper
] and address |
[I
| yes is no |
external
! W I
d 4
| Save Execute]
Environment operation.
i Save result |
[I
L W EE Wt EE B AN W AN S S A D WX A OF AN S S A NN NS WS S Y NE N8 SE aaes ‘

Figure 7.2: Logical Structure of Interpreter II

7.6 Parallel Execution

The design of Ecode-II facilitates parallel execution of

microinstructions with data and instruction fetches. As in

81

the case of Interpreter I, the opportunity exists to overlap

microinstruction execution with data and instruction reads.

The

following changes in Ecode and interpreter design

facilitate parallel instruction execution and improves

execution efficiency in Interpreter II.

Increasing the size of the jump table such that each
instruction entry has two microwords instead of one.
This permits address calculation and operand
assignment to be initiated in parallel with a branch
to the subroutine to execute the current or next
instruction. This is possible only because the
locations of the operands is specified in the opcode

of the instruction.

There are twenty six operand fetch routines in
interpreter II compared to five in Interpretér I.
Each routine is tailored to read operands in a
specific order and locations thereby enhancing its
efficiency. This, again, is possible only because
the locations of operands are specified in the opcode

of Ecode-II.

Assignment of results to destination operands occurs
"in line" with the code that performs the operations

on the operands, as opposed to a single common block

82

of code in interpreter I. This permits optimization
of parallel execution on a case by case basis as

opposed to a general optimization.

As a measurement of the degree of instruction execution
overlap with memory references, consider the actual code
| executed for sample instructicns "A = B + C" and "A = A + D"
where A, C and D are in memory and B is in a register, shown
in Appendix IV. The results are compared with those of the

previous interpreter and are duplicated below.

Expressions{Ecode-1I Pl/Ll Ecode-I1 P2/L2
L1 Pl (overlap)| L2 P2 (overiap)j L1l/L2

A=B+C 53 24 45% 24 21 87% 2.24
A=A+0D 39 21 54% 22 15 68% 1.77
where
A = 16 bit signed integer on run time stack

directly addressed

w
[}

16 bit signed integer in register three
C = 32 bit signed integer in global storage
indirectly addressed
D = 16 bit signed integer on run time stack
directly addressed
L1, L2 = number of microinstructions executed
Pl, P2 = number of microinstructlions executed

in parallel with a memory read.

83
As expected the degree of overlap of microcode execution
with instruction and data fetches is substantially greater
in Interpreter 1II, and the number of microinstructions
executed by the new interpreter is almost half that of the

previous interpreter.

7.7 Benchmarking

Benchmarking this interpreter with the same Sieve of

Eratosthenes algorithm yields the results summarized below.

relative time relative time relative time
algorithm compiler interpreter I interpreter 1II
Sieve of
Eratosthenes 1 2.23 1.12

These results are consistent with the observation above-that
the increase in speed is about twofold over interpreter I
and comparable to that of the compiled code, and its

significance and implications are described in the next

chapter.

84

CHAPTER 8: ANALYSIS, FUTURE STUDY AND CONCLUSION

8.0 Analysis

The execution speed of the compiled code was measured to be
faster than the interpretation of Ecode I and Ecode II.
Analysis of the design of Ecode-I in Chapter 6 showed that
its generic instruction set resulted in most of the
execution time being spent in locating the operands and
decoding the opcodes. Ecode II was then designed to more
closely match the design of the SEL machine instructions in
which the locations and sizes of the operands are specified
by the opcode. Design changes in Ecode II and
implementation improvements in Interpreter II resulted in a
two £fold increase in its execution speed over Ecode I.
Given that the SEL micro-architecture is highly tun.d to
execute instructions in the SEL machine language format,
Interpreter II is designed to take more advantage of SEL
hardware support than Interpreter I does, to decode and

execute the Ecode instructions.

The translation of the CE intermediate code to Ecode is
relatively simple, compared to its translation into SEL
machine language. Each Ecode instruction is the equivalent
of one or more SEL machine language instruction, and as such

it is not possible to generate Ecode in exactly the same

85
format as SEL machine language. Additionally, Ecode was
designed for a stack architecture and the SEL is a non-stack
machine, with 1little hardware support for stack management.
The Ecode stack was implemented and managed by Ecode
instructions. The resulting Ecode incompatibility with the
SEL machine instruction format and SEL architecture
increased the overhead of the Ecode programs, and reduced

the SEL hardware support to the nmicroprogrammed

interpreters.

8.1 Future Study

In addition to modifying Ecode design to make better use of
SEL hardware features, there are several other ways of

improving the efficiency of Ecode interpretation. These

include:

1. Modify the present interpreter design and
implementation to improve the overlap between memory
reads and microinstruction execution. As illustrated
by the examples in Appendix IV the degree of parallel
execution between microinstruction execution and
Jemory reads is at least 50% (87% and 68% in the
selected samples). The interpreter design could be

modified to bring this figure closer to 100%.

e T

86
Also the degree of overlap between instruction fetch
and data fetch could be increased thereby creating
the possibility for additional efficiency gains. 1In
general, both of these possibilities would yield
improvement in efficiency but would require an expert
in SEL microccoding. This approach does not reduce
the execution overhead; instead it addresses ways to

improve execution efficiency.

Change the design of Ecode to include more powerful
instructions which operate on groups of operands,
thereby reducing the length of the Ecode program and
therefore the number of instruction reads and
decodes. On the other hand, more complex
instructions are more difficult to decode. Since
memory reads are so time consuming the reduced number
of instructions may offset the increased instruction

processing. Some examples of these instructions are:

. Table B = 0 - Clearing the contents of an array
could be achieved more efficiently as a
tightly coded microcode loop as opposed to
an Ecode loop.

. Vector instructions such as ADD N, where N
indicates the number of operands to add.

For complicated expressions, these would

87

reduce the number of Ecode instructions

generated.
Allocation of resources available to the
microprogrammer directly in Ecode. In general the

microprogrammer has many more hardware resources
available than the machine language programmer. The
length of the Ecode programs, instruction length and
number of data reads from memory <could be
significantly reduced by allocation of some of these
resources. Some examples in the SEL architecture

are:

. There are 256 scratchpad 32 bit registers on the
SEL available to the microprogrammer and not
included in Ecode. These could be used to
partially implement the top of the run time
stack where most indirect references to memory
are made, and to store intermediate results.
Additionally the length of the Ecode
instructions would be reduced because addresses
of these locations are . bits long instead of 24

bits.

. There are 32 registers available to the

microprogrammer, while only 8 are available to

88
the machine language programmer. Registers
could be allocated to temporary variables, and
used as predefined masks, etc.
. The memory address register, shift register, and
program counter are all directly addressable to
the microprogrammer and could be used as

operands in Ecode.

Each of these modifications has potential to yield an
improvement in the execution efficiency of the interpreter,
however, the approach with the best promise for significant
improvements is the one allocating resources available to

the microprogrammer directly in Ecode.

An interesting extension of this project would be to
implement the concurrency features into Ecode and the

interpreter and to investigate its performance with the

compiled version.
8.2 Conclusions

This study has been able to demonstrate, in a limited way,
that a microcoded interpreter for Euclid will yield
comparable results to the compiled code, and given certain
changes in design and hardware support, has potential to

yield substantial improvements in execution efficiency. The

89
importance of designing intermediate codes to match the host
computer architecture and machine language design, in order
to maximize hardware support for intermediate code execution

has been established.

The project has also made it clear that the current emphasis
of developing microprograming tools and high level languages
for microprogramming, in the academic community, is an
appropriate one. The tools available on the SEL for
microprogramming development were a microprogram assembler
and a microprogram loader, both of which were extensively
used in the development of the interpreter. The lack of
more advanced tools, such as a simulator, made the job of
debugging the interpreter extremely difficult and time
consuming. The timing problems, expecially in gating data
and addresses onto busses and into registers, were very
difficult to trace, and undebugged microcode frequently
halted the computer at address locations unfamiliar to the
microprogrammer, at which the state of memory or registers
often had no meaning. Debugging also proved to be a tricky
and time consuming task as the computer had to be rebooted,
microprograms reloaded, and environment restored each time

the system "crashed".

With the increasing development and availability of high

level languages for microprogramming, the development of

90
microprogrammed interpreters should become increasingly
simplified. The interpreter designer should be able to
experiment with different intermediate codes and interpreter
designs much more easily, and a better understanding of
microprogrammable interpreters should lead to better designs

and more efficient implementations.

AGRAT76

BROA75

BROC73

BROWS1

coor8o0

DASG79

91
REFERENCES

Agrawala, A. K., Raucher, T. G. Foundations of
Microprogramming. Academic Press Incorporated 1976

QA76.6 A35.

Broadbent, J. K., "High Level Language Implementation
Through Microprogramming”. Microprogramming and
Systems Architecture, Infotech State of the Art
Report 23 1975.

Broca, F. R., Mervin, R. E., "Direct Microprogrammed
Execution of the Intermediate Text from a High Level
Language Compiler". Proceedings ACM Sigplan Sigmicro

Interface Meeting May 1973.

Brown, P. J., Writing Interactive Compilers and

Interpreters. John Wiley & Sons 1979. QA76.6 B773.

Cooper, R. E. M., * The Direct Execution of
Intermediate Languages on an Eclipse Computer".

SIGMICRO March 1980.

Dasgupta, S., "The Organization of Microprogram

Stores". Computing Surveys March 1979.

o

DuBO086

FAGIS8S

FLYNSO

GEES86

HOLT83

HABIS1

HASS76

92
DuBose, D. K., Fatakis, D. K., Tabak, D., "A
Microcoded RISC". Proceedings 19'th Annual

Microprogramming Workshop December 1986.

Fagin, B., Pratt, Y., Srini, V., Despain, A.,
"Compiling Prolog into Microcode: A Case Study Using
the NCR/32-000". Proceedings 18’th Annual

Microprograming Workshop December 1985.

Flynn, M. J., "Interpretation, Microprogramming, and
the Control of a Computer". Introduction to Computer

Architecture. SRA 1980, QA76.9.A73157.

Gee, J., Melvin, S. W., Patt, Y. N., "Implementation
of Prolog via VAX 8600 Microcode". Proceedings 19’th

Annual Microprogramming Workshop December 1986.

Holt, R., Concurrent Euclid, The UNIX System, and
TUNIS. Addison-Wesley 1983 QA76.73 C64H64

Habib, S., Yang, X., " The use of a Meta Assembler to
Design an Mcode Interpreter of AMD2500 Chips".
SIGMICRO December 1981.

Hassitt, A., Lyon, L. E., "An APL Emulator on

System/370". IBM Systems Journal Volume 15 Number 4

JENS75

LINES82

MICK?77

OKUN87

PATTS8S5

PERS77

RAUCS0

93
June 1976.

Jenson, K., Wirth, N., Pascal User Manual and Report.

Springler-Verlag 1975.

Linares, J. A Comprehensive Support System for
Microcode Generation. Master’s Thesis, Department of
Computer Science. Concordia University, Montreal,

Quebec Canada.

Mick, J. R., "Microprogramming for the Hardware

Engineer". SIGMICRO June 1977.

Okuno, H. G., Osato, N., Takeuchi, 1I., "Firmware

Approach to Fast Lisp Interpreter". SIGMICRO 1987.

Patt, Y. N., Melvin, S. W., Hwu, W., Shebanow M. C.,
"Critical Issues Regarding HPS, A High Performance

Microarchitecture". SIGMICRO December 1985.

Person, M., "Design of a Microprogram Generator for

the Varian Vv73". SIGMICRO December 1977.

Raucher, T. G., Adams, P. M., "Microprogramming: A
Tutorial and Survey of Recent Developments". IEEE

Transactions on Computers Volume C-29 Number 1 1980.

94

REIG72 Reigel, E. W., Faber, U., and Fisher, D., A., "The

ROSI69

SCHAS83

SEL1

SEL2

SHRIS81

Interpreter - A Microprogrammable Building Block
System". AFIPS Spring Joint Computer Conference

Proceedings 1972.

Rosin, R. F., "Contemporary Concepts of
Microprogramming and Emulation". Computing Surveys,

Volume 1, Number 4, December 1969.

Schaefer, M. T., Pratt, Y. N., "Improving the
Performance of UCSD Pascal via Microp:ugramming on
the PDP 11/60". Annual SIGMICRO Congress, 1983.

Reference Manual, SEL 32/75 Computer. Systems

Engineering Laboratories Incorporated August 1976.

Publication Number 301-320075-00.

SEL 32/75 Series Writable Control Storage Users
Manual. Systems Engineering Laboratories
Incorporated February 1979. Publication Number 301-
322344-000.

Shriver, B., Lewis, T., *Introduction". IEEE

Transactions on Computers July 1981.

95

SIGMB6 Proceedings 19'th Annual Microprogramming Workshop.

SIGM8S

STEV64

TRACBS

TUCK65

WILK69

WILK84

WILN72

Decembexr 1986.

Proceedings 18‘th Annual Microprogramming Workshop,

December 1985.

Stevens, W. Y., "The Structure of System 360 Part

II". Bell and Newell Computer Structures 1964.

Tracz, W. S., "Advances in Microcode Support
Software". Proceedings 18’'th Annual Microprogramming

Workshop December 1985.

Tucker, S. G., "Emulation of Large Systems" ACM

Communications Decembexr 1965.

Wilkes, M., v., “The Growth of Interesf in
Microprogramming: A Literature Survey". Computing

Surveys, September 1969.

Wilkes, J. L., "Architecture of a VLSI Multiple ISA
Emulator". SIGMICRO December 1984.

Wilner, W., "Design of the Burroughs B1700". Fall

Joint Computer Conference 1972.

WIRT84 Wirth, N.,
1984.

"Lilith:

96

A Modula Machine".

Byte, August

97
APPENDIX I: CONCURRENT EUCLID

The following sections were taken from [HOLT83], and provide
a brief description of some of the sequential features of
Concurrent Euclid. A complete description can be obtained

from [HOLTS83].

I.1 Basic Data Types

CE has the traditional basic data types of Pascal, except
float and enumerated types. There are several ranges of
integers to reflect hardware data types. These basic types

are:

Name vValues Allocation
ShortInt 0..255 byte
SignedInt -32768..32767 16-bit
UnsignedInt 0..65535 16-bit
LongInt signed integer 32-bit
Boolean false. .true byte

Char a character byte
AddressType integer address size

Pointer address address size

I.2 Structured Data Types

CE inherits the structured types of Pascal, namely arrays,
records and sets. The following are example declarations

using these types.

. Arrays - these are vectors of elements

var a: array l1l..10 of Signedint
var str: packed array l1l..5 of Char

var matrix: array 1..5 of array 1..5 of LonglInt

Variable a is an array of 10 Signed elements.
Variable str is a character string. Variable matrix

is the equivalerit of a two dimensional array.

. Records - these are equivalent to Pascal records.

var r:

record
1 var status: Boolean
¥ var count: SignedInt

end record

4 This example declares r to be a record with fields

called status and count.

I.3

99

. Sets - these are essentially bit strings.

var s: Set of 0..2

Set variable s is a set of three bDbits which can be

individually changed and inspected.

Literal Values

A literal is an object which denotes its own value. CE

literals include:

I.4

Integer literals, e.g., 921 and 4887678

Boolean literals, e.g., true and false

Character literals, e.g., $X and $y. All character
literals are preceded by the dollar sign ($)
character.

String literals, e.g., 'this is a test’. All

character literals must be enclosed in quotes.

Control Structures

These include the following:

loop, end loop, exit
if, then, else, elseif, endif
case, otherwise, endcase

begin, end

| - 2oaala oA

100

I.5 Type Converters

CE has strong type checking; this means that the compiler
disallows unlikely combinations of types such as adding the
integer 14 to the Boolean value true. To allow for less
rigorous type checking, CE defines TypeConverters, which do
not generate any code but allow the bit pattern representing

a value to be considered to be a value of another type.

I.6 Sample CE Module

Below is an example of a CE implementation of a stack. Two
operations Push and Pop are defined on a data structure
called Table. Push adds an item to Table and Pop returns
the most recently added item to Table. The initially block
sets the number of items in Table to zero when execution
begins.
var stack:
module
exports (push,pop)
const depth := 1..10
var top: 0..Depth
var table: array 1l..Depth of signedint
procedure push(i:signedint)=
imports (var top, var table)

begin

101
top := top + 1
table(top) := i
end push
procedure pop(var i:signedint) =
imports (var top, var table)
begin
i := table(top)
top :=top -1
end pop
initially
imports (var top)
begin
top := 0
end

end module

I.7 CE Input/Output Package

The CE 1I/0 package has four levels of I/0 sophistication
which can be selectively ‘"included" in the compilation

process. These levels are as follows:

I0/1 - terminal standard input/output (GET and PUT)
. I0/2 - program arguments and sequential files (READ and
WRITE)

. I0/3 - temporary and non argument sequential files

102
(ASSIGN and DEASSIGN)

. I0/4 - record, array storage IO; random access files

The I/0 package is independently coded and implemented. All
references to it in the compiler are made via generated

procedure calls.

I.8 CE Intermediate Code

The CE compiler makes four passes over the source input and
its intermediate forms. The first three of these, the
parser, semantic analyzer and storage allocator are machine
independent. The fourth, the code generator, is the only one
that has to be changed to port the compiler to another
machine. The intermediate code, which will be transformed
and interpreted by the microprogranmed interpreter, is the

output of the storage allocation pass.

The intermediate representation of the module stack is shown

below.

aNewline 1

aNewfile 26 PUB:[KUARLALL.TEST]TEST2.E
aModule

aldenttext 5 STACK

aNewline 7

aProcedure

aRoutineIndex 0

aldenttext 4 PUSH

aNewline 9
aBegin
aNewline 10
aDataDescriptor
aAssign
aDataDescriptor
aDataDescriptor
aAdd
aEndExpression
aNewLine 11
aDataDescriptor
aSubs
aDataDescriptor
aEndExpression
aEndSubs
abDataDescriptor
aDataDescriptor
aDataDescriptor
aDataDescriptor
aAssign
aDataDescriptor
aEndExpression

aNewLine 12

162

162

162

162

129

162

103

127

127
127
127
127

o O O o

20

I I

o O o o

O W KB m

IR e

104
aEndBegin
aNewLine 13
aProcedure
aRoutineIndex 1

aIdentText 3 POP

the representation of procedure POP is similar
aNewline 19
aInitially
aRoutinelIndex
aNewline 21
aBegin
aNewline 22
aDataDescriptor 162 1 0 O 2 0 0
aAssign
aDataDescriptor 1 127 1 O 1 0 0
aEndExpression
aNewline 23
aEndBegin
aNewline 24
aEndModule
aEndOfFile

An aNewline token refers to the source line number that

generated the code following it. The aNewFile token

105
indicates the file from which the source program was read.
The most complex structure in the intermediate language is
the specification of data objects. A simple data object is
represented by an "aDataDescriptor" token which has five

fields as shown below:

Status | Base | Representation | Value | Displacement

The status field is a bit string with the following
encoding:

bits significance

o
'

direct addressing

- indirect addressing

- double indirect addressing

- register operand

- index register

operand has a lexic base

- operand on four byte boundary
- operand on two byte boundary

- auto decrement mode is on

L @ ~ (=)} (8.} > w N -
t

- auto increment mode is on

10 - operand is temporary variable

11 - operand is on runtime stack and a
temporary variable

12 - operand has temporary base register

13 - operand has temporary index register

106
The base field describes the location of the operand. There

are five possibilities:

- in global read/write storage area
- on runtime stack - local to module storage

in global read only storage area

- w [[l
)

- in a register

127 - immediate operand in DataDescriptor itself

The representation field indicates the type of operand and
the value field indicates the sign of the operand. 1In the
case of a nonscalar operand, such as an array, the value
field indicates the total size of the operand. The operand

can be one of the following.

. float

. double float

. nonscalar - table or array etc.
. signed long (4 bytes)

. signed word (2 bytes)

. unsigned byte

. unsigned woxrd(2 bytes)

The displacement field gives the displacement of the operand

from one of the bases described in the base field. In the

case of an immediate operand this field contains the actual

107
value of the operand. The displacement and value fields are
both 32 bits long and are implemented as two 16 bit values.

The other three fields are 16 bits long.

An array element requires at least six data descriptors for

its specification. These are:

. start location and size of array
. subscript

. lower bound

. upper bound-1

. size of item

. attributes of item (eg.signed/unsigned)

Arrays of more than one dimension will have additional

subscript datadescriptors.

I.9 Sieve Of Erathosthenes

The sieve of Erathosthenes is a prime number generation
algorithm and is heavily CPU bound. It was used to
benchmark the microprogrammed interpreter. Below is the CE
implementation of the Sieve of Eratosthenes algorithm for
prime numbers; this implementation also outputs the value of
the largest prime number and the number of prime numbers

found.

o = AR T

— WelFN 0T AT T aeRTIERITTE e o Ty TR T T

108
var sieve:
module
include ‘io%3’
initally
imports var (io)
begin
var flags: array 1..8192 of signedint
register var i: signedint
var Jj: signedint
var k: signedint
var count: signedint
var iter: signedint
var prime signedint
iter :=1
loop
exit when iter :=101
iter := iter + 1
count := 0
i =1
loop
exit when I = 8192
flags(i) := i
I =1 +1
end loop
iz:=1

109
exit when i := 8192
if flags(i) not = 0 then
prime := i + i + 1
count := count + 1
k := i + prime
if k <= 8191 then
j s= k
loop
exit when j >= 8191
flags(j) := 0
J 2= J + prime
end loop
end if
end if
is=4i+1
end loop
end loop
io.Putint(prime,8)
io.Putstring(’ is the largest of $e’)
io.Putint (count,6)
end

end module

110
APPENDIX IXI: SEL 32/75 COMPUTER

The SEL 32/75 is a high speed, general purpose, digital
computer system. It is designed for a variety of scientific,
data acquisition and real time applications. A basic system
includes a central processing unit, main memory subsystem,

and microprogrammed I/O controllers.

The following sections provide amplifying data on the SEL
computer. A complete description can be obtained from

[SEL1] and [SEL2].
II.1 SEL Assembly Language Directives

The intermediate code of the CE compiler was translated into
Ecode-I and Ecode-II for interpretation by the
microprogrammed interpreter on the SEL. Ecode-I and Ecode-
I1I programs are generated using the SEL assembly language
directives. The first instruction in an Ecode program is a
jump to the interpreter and the rest of the program consists
of the GEN data statement defining instructions to be
interpreted. A description of the SEL assembly language

directives used in Ecode generation is given below:

Directive/Instruction

PROGRAM NAME

EXT

DEF

BOUND

BL

GEN

LABEL
LABEL

LABEL
N/B

LABEL EQU VALUE

RES
END

LABEL

111

Comment

Indicates start of assembly
language program called NAME
Externally referenced name LABEL
Defines LABEL for external
reference

Foxces the program counter to an
N byte boundary; for example N =
4 indicates fullword boundary
and N = 2 indicates halfwoxrd
boundary .

Branch and link to LABEL

Define N bits of memory with
value By for example GEN
8/1,8/2,8/3,8/4 generates the
bit configuration: 0000 0001
0000 0010 0000 0011 0000 0100
Equals tag; equates LABEL with
VALUE

Reserves N bytes of memory

Marks end of assembly language
program and indicates LABEL as

starting address of execution.

112
APPENDIX III: ECODE-I AND INTERPRETER I

The folowing sections provide more detailed information on

Ecode-I and Interpreter I.
III.1 Instruction Set

The Ecode-l instruction set consists of 253 instructions

which are listed at the end of Appendix 1II by category.
ITII.2 Ecode-I Representation Of CE Module

The Ecode-I representation of the CE module stack described
in Appendix I, and derived from its intermediate form also

described in Appendix I, is shown below with comments.

PROGRAM
EXT INTERPRET
DEF STACK

DEF PUSH
DEF POP
BOUND ¢4

START EQU $
BL INTERPRET call interpret
GEN 8/13,1/0,2/1,1/0,1/0,19/W(0) zero top stack
GEN 8/27,1/1,2/0,1/1,1/0,19/4 iner Stack ptr

STACK EQU
GEN
GEN
PUSH EQU
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

GEN
GEN
GEN
POP EQU
GEN
GEN
GEN
GEN
GEN
GEN
GEN

113

$

8/25,1/1,2/0,1/1,1/0,19/1001 set line number
8/1,1/1,2/0,1/1,1/0,19/W(134) branch to 134

$

8/25,1/1,2/0,1/1,1/0,19/1011 set line number
8/81,1/0,2/0,1/0,1/0,19/H(U) top = top + 1
8/26,24/0 incr line num
8/32,1/0,2/0,1/0,1/0,19/H(U) stack <-- top
8/0,1/1,2/1,1/0,1/0,19/W(0)
8/23,1/1,2/1,1/0,1/0,19/W(0) shift left 1bit
8/0,1/1,2/0,1/1,1/0,19/1
8/80,1/1,2/0,1/1,1/0,19/W(U)+4 set address to
8/0,1/1,2/1,1/0,1/0,19/W(0) table + top*2

8/32,1/0,2/1,1/0,1/0,19/W(-8) table(top)=I
8/0,1/1,2/1,1/1,1/0,19/W(0)
8/29,1/0,2/0,1/0,1/0,19/W(0) return

$

8/25,1/1,2/0,1/1,1/0,19/1022 set line number
8/32,1/0,2/0,1/0,1/0,19/H(U) stack <-- top
8/0,1/1,2/1,1/0,1/0,19/W(0)
8/23,1/1,2/1,1/0,1/0,19/W(0) shift left 1bit
8/0,1/1,2/0,1/1,1/0,19/1
8/80,1/1,2/0,1/1,1/0,19/W(U)+4 set address to
8/0,1/1,2/1,1/0,1/0,19/W(0) table + top*2

114

GEN 8/32,1/1,2/1,1/1,1/0,19/W(0) I=table(top)
GEN 8/0,1/0,2/1,1/0,1/0,19/W(-8)
GEN 8/26,24/0 incr line num
GEN 8/81,1/0,2/0,1/0,1/0,19/H(U) top = top + 1
GEN 8/29,1/0,2/0,1/0,1/0,19/W(0) return

I34 EQU $
GEN 8/25,1/1,2/0,1/1,1/0,19/1028 set line number
GEN 8/13,1/0,2/0,1/0,1/0,19/H(U) top=0

GEN 8/29,1/0,2/0,1/0,1/0,19/0 return
BOUND ¢
M EQU $
BOUND ¢
4 EQU $
RES 6W top, table

END START

III.3 Parallel Execution

As a measurement of the degree of instruction execution
overlap with memory reads, consider the actual microcode
executed for sample instructions "A = B + C" and "A = A + D"
where A, C, and D are in memory and B is a register. The
microcode sections of the interpreter executed are shown in
the next two sections. The results are summarized below.
These results were obtained by totalling the number of

microprocgram statements executed for the expression in the

115

Expressions Mcode I P1l/Ll1

L1 Pl (overlap)

A=B+C 53 24 45%
A=A+D 39 21 54%
where
A = 16 bit signed integer on run time stack
directly addressed
B = 16 bit signed integer in register three
C = 32 bit signed integer in global storage
indirectly addressed
D= 16 bit signed integer on run time stack
directly addressed
Ll= number of microinstructions executed
Pl=

number of microinstructions executed in

parallel with a memory read.

III.3.1 Execution Of Expression A = A + D

The Ecode-I instruction generated for this expression is:

GEN 8/32,1/0,2/1,1/0,1/0,19/H(0) OPCODE:OPERAND D
GEN 8/0,1/1,2/1,1/0,1/0,19/H(0) OPERAND A

116
The code segments which are executed for this expression are
shown below with timing and overlap figures. The time
column indicates the order in which the instructions are
executed and the time, in machine cycles, at execution. The
memory read column indicates the time, in machine cycles,
which has elapsed for outstanding memory instruction (I) and
data (D) reads. Each memory read takes six machine cycles,
or 900 nanoseconds, and all microinstructions executed
during this period are performed in parallel with the read.
There is one entry in this column for each outstanding
memory read. The program segments show only the code

actually executed; the code for branches not taken, for

example, is not shown.

Memory
Label Microinstructions Time Reads comments

DI |
S_MASK EQU €00800000; sign mask
DECODE EQU 0; decode reg
R_MASK EQU €00400000; reg mask
PCMASK EQU 8; pgm cnt reg
orP1 EQU 2; operand 1
OP2 EQU 3; operand 2

*GOTO ADD2 0 0 Jjump table

ADD2

ASSIGN

FETCH_2

POS1

117

EQU $

*LINK FETCH_2; 2
T=R(OP1); 35
S=S+R (DECODE) ; 36
T=R(OP1)+T, *GOTO ASSIGN; 37

IF SIGNSAVE *GOTO REG,NOD=I0;38

WRITE; 39
*JUMPS ; 40
S=@00080000&I0 3
NU=S_MASK&1I0; 4
MARIX=R(X)+I0; 5
IF ALUZ *GOTO POS1; 6

IF INDIR *GOTO C27; 7
READ; 8
INCRN; 9
IF SHWORD *GOTO $+2; 10
NL=S_MASK; 11
IlTOI0,FETCHPC; 12

o O o o

o O o o

»m s W NN = O

o o o O

o O o o

- 0 O O O O

call fetch_2
save oper 1
decode instr

add D, A

is A reg ?
write A mem

next instr

save F bit D
test sign ext
address D

D in reg ?

D indirect ?
read D

set flag
test sign ext
set flag

read nextinst

A A A S

ot i

POS2

C41

Cl4

118
S=@00080000&I0;
NOD=S_MASK&I0;

MARIX=R(X)+I0;

IF ALUZ *GOTO POS2,R(OP2)=R(X);

IF NCTR4 *GOTO Cl4;
IF NCTRO *GOTO C41;

R(OP1)=DI(SE),*GOTO C14;

IF INDIR *GOTO C25;
READ, NU=R (PCMASK) , I1TOIO;
T=S:MAR, INCRN;

IF %HWORD *GOTO $+2;
NL=S_MASK;

FETCHPC;
SCRATCH(2)=T;

MAR=T;

CLRS,T=10;
S=SNIBL,TNIBL;
S=SNIBL,TNIBL;

NOD=R (PCMASK) , SAVESIGN;

13
14
15

16

17
18

20
21
22

23
24
25
26
27
28
29
30

0O O O O o o u»nn » w
O o W & W NN+ O O

save F bit A
test sign ext
address of A

A in reg ?

zero £ill D ?

sign ext D ?

store D inreg

locate A
read A

store addr A

sign ext ?
set flag

read nextinst
save addr A
return addr
decode instr
decode instr

decode instr

119

IF NCTRO *GOTO C42; 32 00 signext C ?
C42 R(OP2)=DI(SE); 33 00 store A inreg
*JUMPJ ; 34 0 0 return

I1I1.3.2 Execution of Expression A = B + C

The Ecode-~I instruction generated for this expression is:

GEN 8/44,1/1,2/3,1/1,1/0,19/0 OPCODE:OPERAND B
GEN 8/0,1/0,2/0,1/1,1/1,19/W(VU) OPERAND C
GEN 8/0,1/0,2/1,1/0,1/0,19/H(4) OPERAND A
Memory
Read
Label Microinstructions Time DI comments
S_MASK EQU €00800000; sign mask
DECODE EQU 0 decode reg
R_MASK EQU €00400000; reg mask
PCMASK EQU 8; pgm cnt reg

(0) 31 EQU 2; operand 1

OoP2

ADD3

ASSIGN

FETCH_3

DIR1

120

EQU 3;

*GOTO ADD3 1
EQU $
*LINK FETCH_3; 2
T=R(0P2) ; 48
S=S+R(DECODE) ; 49
T=R(OPl1)+T,*GOTO ASSIGN; 50

IF SIGNSAVE *GOTO REG,NOD=1I0;51

WRITE;

*JUMPS;

S=@00080000;
NU=S_MASK&IO0;
MARIX=R(X)+I0;

IF ALUZ *GOTO POS1;

IF INDIR *GOTO DIRi;

NL.=€00080000;

NOD=R_MASK&IO;

52
53

L N~) T ¥ | B R 7S]

o O o o

(=) [(=] o o

o o o o

o O O o o

operand 2

jump table

call fetch_3

decode instr

add B, C

is A reg ?
write A mem

next instr

save F bit B
test sign ext
address of B
B in reg ?

B direct ?

set flag

test B addr ?

Cl

C24

POS2

Cl4

C25

121
R(OP1)=R(X)+IO0(SE);
IF ALUZ *GOTO C19,NOD=IO0;
IF BMUX16 *GOTO Cl1,T=R(X);

I1TOIO,R(OP1)=T;
FETCHPC, *GOTO C24;

S=@00080000&1I0;
NOD=S_MASK&IO;
MARIX=R(X)&I0;

10
11

13
14

15
16
17

IF ALUZ *GOTO POS2,R(OP2)=R(X);

IF NCTR4 *GOTO C14;
IF INDIR *GOTO C25;

READ, FRCWORD;
NU=@00080000&10;
I1TOIO,FETCHPC;

IF NALUZ *GOTO $+2;
INCRN;

18

19

20

21
22
23
24
25

05

(S R~ I VS N N

06

w NN = O O

address of B
B in addr ?

check sign B?

no sign ext

read nextinst

save F bit C
test sign ext
address of C

is C in reg ?

zZero fi;l B

is Cindirect?

read addr C?
save F bit C
read nextinst
sign extendC?

set flag

A R R TR TRt T RT T TR R T T e T

122

=DI; 26 6 4 address of C
READ; 27 15 read C
IF NCTRZ *GOTO $+3; 28 2 6 sign ext C ?
IF $HWORD *GOTO $+2; 29 3 0 is C 16 bits?
NL=S_MASK; not executed
S=@0008000&I10; 30 4 0 save F bit A
NOD=R_MASK&IO0; 31 50 is a reg ?
MARIX=R(X)+I0,*GOTO D1; 32 6 0 address of A
IF NALUZ *GOTO DIR3; 33 0 0 locate A
IF INDIR *GOTO INDIR3; 34 0 0 is Aindirect?
T=S:MAR; 35 0 0 set up addr A
I1TOIO0,FETCHPC; 36 0 1 read nextinst
SCRATCH(2)=T; 37 0 2 save T reg
MAR=T; 38 0 3 MAR = addr A
T=I10,CLRS; 39 0 4 decode instr
S=SNIBL,TNIBL; 40 0 5 decode instr
S=SNIBL,TNIBL; 41 0 6 decode instr
NOD=R (PCMASK) ,SAVESIGN; 42 0 0 set flag
IF NCTR4 *GOTO J2; 43 0 0 sign ext C ?
IF SNCTRO *GOTO $+3; 44 00 is C 32 bits?
R(OP2)=DI(SE); not executed
*JUMPJ ; not executed
IF NCTRZ *GOTO Jl; 45 00 zero f£fill C ?

R(OP2)=DI; 46 0 0 store C inreg

123
*JUMPJ ; 47 0 0 return

124

Ecode-I Instructions By Category

1. Branch Instructions opcode
branch always 1
branch greater than 2
branch less than 3
branch equal to 4
branch greater than 5

or equal to
branch less than 6
or equal to
branch not equal 7
branch never 8
branch tn predefined 9
routine

2. Miscellaneous Instructions
make long word 10
set byte address 11
boolean not 12
zero operand 13
compare 14
abort 15
convert to set 16
nonscalar assign 17
negate 18
new line 25
increment new line 26
adjust stack pointer 27
set half word address 28
return 29

3. Fixed Point Arithmetic
divide assign 3 19
divide assign 2 20
mod assign 3 21
mod assign 2 22
assign 32
minus assign 48
add 3 64
add 2 80
subtract 3 96
subtract 2 112
multiply 3 128

multiply 2 144

125
4, Logical Instructions

logical and 3
logical and 2
logical or 3
logical or 2

5. Set Manipulation Instructions

set difference 3
gset difference 2

6. Shift Instructions

shift left
shift right

5. Short Arithmetic Instructions

short assign (1-15)

short minus assign (1-15)
short add 3 (1-15)

short add 2 (1-15)

short subtract 3 (1-15)
short subtract 2 (1-15)
short multiply 3 (1-15)
short multiply 2

6. Short Logical Instructions

short logical and 3 (1-15)
short logical and 2 (1-15)
short logical or 3 (1-15)
short logical or 2 (1-15)

Opcode

160
176
192
208

224
240

23
24

16l
177
193
209

7. Short Set Manipulation Instructions

short set difference 3 (1-135)
short set difference 2 (1-135)

225
241

175
191
207
223

239
255

126

APPENDIX IV: ECODE-II AND INTERPRETER II

The folowing sections provide more detailed information on

Ecode-II and Interpreter 1II.

IV.1 Instruction Set

The Ecode-Il instruction set consists of 216 instructions

which are listed at the end of Appendix IV by category.

IV.2 Ecode-II Representation of CE Module

The Ecode-II representation of the CE module stack described
in Appendix I, and derived from its intermediate form also

described in Appendix I, is shown below with comments.

PROGRAM
EXT INTERPRET
DEF STACK

DEF PUSH
DEF POP
BOUND 4

START EQU $

BL INTERPRET call interpret

GEN 8/8,1/0,2/1,1/0,1/0,19/W(0) zero top stack

STACK

PUSH

POP

GEN
EQU
GEN
GEN
EQU
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
EQU
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

127
8/27,1/1,2/0,1/1,1/0,19/4
$
8/32,1/1,2/0,1/1,1/0,19/1001
8/1,1/1,2/0,1/1,1/0,19/W(134)
$
8/32,1/1,2/0,1/1,1/0,19/1011
8/154,0,2/0,1/0,1/0,19/H(U)

8/33,1/1,2/0,1/1,1/0,19/44

8/44,1/0,2/0,1/0,1/0,19/H(U)
8/31,1/1,2/1,1/0,1/0,19/W(0)
8/31,1/1,2/1,1/0,1/0,19/W(0)
8/0,1/0,2/1,1/0,1/0,5/1,16/59
8/59,1/1,2/0,1/1,1/0,19/W(U)+4
8/44,1/1,2/1,1/0,1/0,19/W(0)
8/44,1/0,2/1,1/0,1/0,19/W(-8)
8/36,1/1,2/1,1/1,1/0,19/W(0)
8/36,1/0,2/0,1/0,1/0,19/W(0)
$
8/32,1/1,2/0,1/1,1/0,19/1022
8/44,1/0,2/0,1/0,1/0,19/H(U)
8/31,1/1,2/1,1/0,1/0,19/W(0)
8/31,1/1,2/1,1/0,1/0,19/W(0)
8/59,1/0,2/1,1/0,5/1,16/0
8/59,1/1,2/0,1/1,1/0,19/W(U)+4
8/44,1/1,2/1,1/0,1/0,19/W(0)
8/44,1/1,2/1,1/1,1/0,19/W(0)

incr Stack ptr

set line number

branch to 134

set line number
top = top + 1
incr line num

stack <-- top

shift left 1lbit

set address to

table + top*2

table(top)=1

return

set line number

stack <-- top

shift left 1lbit

set address to
table + top*2

I=table(top)

i b o S S

128

GEN 8/33,1/1,2/1,1/0,1/0,19/W(-8)
GEN 8/33,1/1,2/0,1/1,1/0,19/58 incr line num
GEN 8/58,1/0,2/0,1/0,1/0,19/H(U) top = top + 1
GEN 8/36,1/1,2/0,1/1,1/0,19/1
GEN 8/36,1/0,2/0,1/0,1/0,19/W(0) return

134 EQU $
GEN 8/32,1/1,2/0,1/1,1/0,19/1028 set line number
GEN 8/8,1/0,2/0,1/0,1/0,19/H(U) top=0

GEN 8/36,1/0,2/0,1/0,1/0,19/0 return
BOUND 4
M EQU $
BOUND ¢4
U EQU $
RES 6w top, table

END START

IV.3 Parallel Execution

As a measurement of the degree of instruction execution
overlap with memory reads, consider the actual microcode
executed for sample instructions "A = B + C" and "A = A + D"
where A, C, and D are in memory and B is in a register. The
microcode sections of the interpreter executed are shown in
the next two sections. The results are summarized below and
compared with those obtained with Ecode-I and interpreter I.

These results were obtained by totalling the number of

microprogram statements

129

actual implementation of the interpreter.

executed for the expression in the

Expressions|Ecode-I Pl/L1 Ecode-II P2/L2
L1 Pl (overlap)f L2 P2 (overlap)| L1/L2
A=B+C 53 24 45% 24 21 87% 2.24
A=A+0D 39 21 54% 22 15 68% 1.77
where
A = 16 bit signed integer on run time stack
directly addressed
B = 16 bit signed integer in register three
C= 32 bit signed integer in global storage
indirectly addressed
D= 16 bit signed integer on run time stack
directly addressed .
Ll, L2 = number of microinstructions executed
Pl, P2 = number of microinstructions executed

in parallel with a memory read.

Iv.3.1 Execution of Expression A = A + D

The Ecode-~II instruction generated for this expression is:

GEN

GEN

8/44,1/0,2/1,1/0,1/0,19/H(0)
8/XX,1/0,2/1,1/0,1/0,19/H(4)

OPERAND A

OPCODE:OPERAND D

130
XX = Next opcode
The code segments which are executed for this expression are
shown below with timing and overlap figures. The time
column indicates the order in which the instructions are
executed and the time, in machine cycles, at execution. The
memory read column indicates the time, in machine cycles,
which has elapsed for outstanding memory instruction (I) and
data (D) reads. Each memory read takes six machine cycles,
or 900 nanoseconds, and all microinstructions executed
during this period are performed in parallel with the read.
There is one entry in this column for each outstanding
memory read. The program segments show only the code
actually executed; the code for branches not taken, for

example, are not shown.

Memory

Read
Label Microinstructions Time D I comments
SIGN EQU €00800000; sign mask
DECODE EQU 0:; decode reg
R_MASK EQU @00400000; reg mask
PCMASK EQU 8; pgm cnt regqg
OP1 EQU 2; operand 1
or2 EQU 3; operand 2

STMASK EQU 9; equate tag

ADD2MM

MADD2

JS3

MM2

Cl

131

MARIX=R(X)+I0,SDEST, *LINK MM2; jump table
1 00
*GOTO MADD2; 18 00

IF $SIGNSAVE *GOTO $+2,T=R(OP2)+DI; sign ext?

19 00
T=R(0OP2)+DI(SE); 20 0 0 sign ext A
WRITE, *GOTO JS3 21 0 0 storeA
*JUMPS ; 22 0 0 next instr
READ,CLRS; 2 1 0 read D
NOD=SIGN&IO; 3 20 sign ext D ?

IF INDIR *GOTO INDIR1,I1TOI(Q,NOD=S,SAVESIGN;
4 3 0 is Dindirect?

IF ALUZ *GOTO $+2,FETCHPC; 5 4 1 read nextinst

MARIX=R(X)+I0,SDEST,*GOTO Cl; 6 5 2 address of A

NOD=SIGN&IO; 7 6 3 test sign A?
R(OP2)=DI(SE),READ; 8 0 4 store D inreg
IF ALUZ *GOTO C4; 9 05

132

NOD=R (STMASK) , *GOTO C4,SAVESIGN;

IF INDIR *GOTO MM2.IND,T=I0;
I1TOIO0,FETCHPC;

MAR=S;

CLRS;

S=SNIBL,TNIBL;
S=SNIBL,TNIBL;

S=SLEFT+R (DECODE) , *JUMPJ ;

10
11
12
13
14
15
16

o © o o o o o o
A U e W N+ O O

17

IV.3.2 Execution OF Expression A =B + C

locate A

A indirect ?
read nextinst
MAR = addr A
decode

next

instr

return

The Ecode-II program generated for this expression is:

GEN 8/44,1/0,2/0,1/1,1/1,19/W(V) OPCODE:OPERAND C
GEN 8/0,1/1,2/3,2/1,1/0,3/0,1/1,15/55 OPERAND B
GEN 1/1,7/0,1/0,2/1,1/0,1/0,19/H(4) OPERAND A
Memory
Read
Label Microinstructions Time D I comments
SIGN EQU €00800000; sign mask
DECODE EQU 0; decode reg
R_MASK EQU 800400000; reg mask
PCMASK EQU 8; pgm cnt reg

OP1
OP2
STMASK

ADD3RM

ADD3

MP3

JS

RM3

INDIR2

133

EQU 2; operand 1
EQU 3; operand 2
EQU 9; equate tag

MARIX=R(X)+I0,*LINK RM3; 1 00 jump table

BMUX=N, *GOTO ADD3; 21 50
=R(OP2),IF %BMUX00 *GOTO MP3; dest. R/M ?
. 22 6 0

T=R(OP1)+T,WRITE, *GOTO JS; 23 0 0 B+C write A

*JUMPS; 24 00 next instr
READ; 2 10 read C
NU=SIGN&IO; 3 2 0 sign ext B ?

IF INDIR *GOTO INDIR2,I1TOIO,FETCHPC; next instr
. 4 21
IF ALUZ *GOTO $+2,NOD=R(PCMASK),SAVESIGN;
5 4 2 set flag
NOD=R (STMASK) , SAVESIGN; 6 5 3 save sign ext
S=R(DECODE) :10; 7 6 4 decode instr

134
IF BMUX16 *GOTO $+2,R(OP1)=R(X); sign ext C?
8 05
R(OP1)=T(Z2E); not executed
MAR=DI; 9 06 addr of C
READ,R(TMP)=S,I1TOIO0; 10 10 read C
BMUX=I0; 11 20 test dest
FETCHPC, IF BMUX00 *GOTO RIMM; next instr
. 12 31
RIMM MARIX=R(X)+I0,SDEST,IF SIGNSAVEZ *GOTO $+2;
13 4 2 addr of A
R(OP2)=DI,*GOTO $+2; 14 52 wait for C
15 6 3 store C
R(OP2)=DI(SE); not executed
IF INDIR *GOTO IND3; 16 0 4 A indirect ?
I1TOIO0,FETCHPC; 17 15 next instr.
18 26 wait for mem
MAR=S,DECRN; 19 3 0 save addr ofA
S=R(TMP) ,*JUMPJ; 20 4 0 return

135

Ecode~II Instructions By Category

1. Branch Instructions Opcode
jump direct address 1
jump memory address 2
branch to predefined routine 3
branch not equal 24
return 36

2. Compare Instructions
compare RR 9
compare RI 10
compare RA 11
compare RM 12
compare MR 13
compare MI 14
compare MA 15
compare MM 16
compare AR 17
compare Al 18
compare AA 19
compare AM 20
compare IR 21
compare IA 22
compare IM 23

3. Miscellaneous Instructions
make long word 4
set byte address 5
boolean not 6
zero register 7
zZero memory 8
abort 25
convert to set 26
nonscalar assign 27
negate register 28
negate memory 29
newline 32
increment newline 33
adjust stack pointer 34

set halfword address 35

136

4. Shift Instructions Opcode
shift register 30
shift memory 31

5. Fixed Point Arithmetic

assign RR 37
assign RI 38
assign RA 39
assign RM 40
assign MR 41
assign MI 42
assign MA 43
assign MM 44
minus assign RR 45
minus assign RI 46
minus assign RA 47
minus assign RM 48
minus assign MR 49
minus assign MI 50
minus assign MA 51
minus assign MM 52
add2 RR 53
add2 RI 54
add2 RA 55
add2 RM 56
add2 MR 57
add2 MI 58
add2 MA 59
add2 MM 60
subtract2 RR 61
subtract2 RI 62
subtract2 RA 63
subtract2 RM 64
subtract2 MR 65
subtract2 MI 66
subtract2 MA 67
subtract2 MM 68
add3 RR 93
add3 RI 94
add3 RA 95

add3 RM 96

137

add3 MR 97
add3 M1 98
add3 MA 99
add3 MM 100
add3 AR 101
add3 Al 102
add3 AA 103
add3 AM 104
subtract3 RR 105
subtract3 RI 106
subtract3 RA 107
subtract3 RM 108
subtract3 MR 109
subtract3 MI 110
subtract3 MA 111
subtract3 MM 112
subtract3 AR 113
subtract3 AI 114
subtract3 AA 115
subtract3 AM 116
multiply3 153
multiply?2 169
mod3 185
mod2 201
6. Logical Instructions
logical and2 RR 69
logical and2 RI 70
logical and2 RA 71
logical and2 RM 72
logical and2 MR 73
logical and2 MI 74
logical and2 MA 75
logical and2 MM 76
logical or2 RR 77
logical or2 RI 78
logical or2 RA 79
logical or2 RM 80
logical or2 MR 81
logical or2 Ml 82
logical or2 MA 83
logical or2 MM 84

138

logical and3 RR 117
logical and3 RI 118
logical and3 RA 119
logical and3 RM 120
logical and3 MR 121
logical and3 MI 122
logical and3 MA 123
logical and3 MM 124
logical and3 AR 125
logical and3 AI 126
logical and3 AA 127
logical and3 AM 128
logical or3 RR 129
logical or3 RI 130
logical or3 RA 131
logical oxr3 RM 132
logical or3 MR 133
logical oxr3 MI 134
logical or3 MA 135
logical or3 MM 136
logical or3 AR 137
logical or3 Al 138
logical or3 AA 139
logical or3 AM 140
Set Manipulation Instructions
set differerce2 RR 85
set difference2 RI 86
set difference2 RA 87
set difference2 RM 88
set differerce2 MR 89
set difference2 MI 90
set difference2 MA 91
set difference2 MM 92
set difference3 RR 141
set difference3d RI 142
set difference3 RA 143
set difference3 RM 144
set difference3 MR 145
set difference3 MI 146
set difference3d MA 147

139
gset differencel MM

set differencel AR
set difference3 AI
set differencel AA
set difference3l AM

8. Short Fixed Point Arithmetic

short assign M (1-15)
short add3 M (1-15)
short subtracti M (1-15)
short and3 M (1-15)

R indicates register operand
M indicates memory operand

I indicates immediate operand
A indicates address operand

148

149
150
151
152

154
170
186
202

168
184
200
216

