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ABSTRACT

A Multiple Time-Scale Linearly Constrained Adaptive Beamformer

George Henry Niezgoda, Ph.D.

Concordia University, 1994

In the ocean environment source dynamics and a changing propagation medinm
determine the stationarity of wavefield measurements collected by a sensor array. As
well. under realistic conditions radiating energy from independent acoustic events
that overlap in time will generally differ in temporal duration. Large differences in
temporal extent between wavelield components present a problem for minimum vari-
ance distortionless response (MVDR) beamformer realizations restricted to computing,
a fixed number of weights simultaneously on a single time-scale. The difliculty arises
when adaptation time is greater than the time-scale of an interferer. Onee the inter-
ference event has disappeared, the mismatch in time-scale between the heamformer
and interferer leads to an unnecessary degradation in detection performance. fn
the hope of improving performance one possible approach involves reducing adap-
tation time. Unfortunately, the increase in weight noise variance aceompanying
the change in adaptation time may introduce a greater loss in performance than is
gained through a reduction in adaptation time. For this reason a MVDR implementa-
tion limited to simultaneously computing all adaptive weights on one timne-scale is
not an ideal candidate for mixed time-scale interference environments.,

This dissertation proposes a multiple time-scale version of the cascaded MVDR
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realization. A unique feature of the modular MVDR (M2VDR) beamformer is the flexibil-
ity of distributing adaptive weights among stages arranged in series. This property
enables adaptation over different time-scales. To cancel short duration interference
a multiple stage beamformer computes a small number of weights assigned to a
stage on a time-scale approximating the duration of the interferer. Since the stage
has fewer weights to compute than the total number available to the beamformer,
a greater reduction in adaptation time is possible without incurring performance
degradation from weight noise variance. To combat long duration interference events
other beamformer stages apply the remaining adaptive weights.

Closed form expressions relating adaptation time and adaptive degrees of free-
dom to mean output power, mean-squared error, and output signal-to-noise ratio
are derived for the M2VDR heamformer. Expressions for mean output power show the
necessity ol constraining the adaptation time of each stage to ensure that the beam-
former output is not ill-defined. Analysis indicates that adequate cancellation of
short duration interference occurs when a least-squares solution for the stage weight
vector depends on current input data samples. In addition. it is shown that the
minimnm mean-squares error occurs when the adaptation time assigned each stage
is greater than or equal to preceding stages. To maximize signal detection when
wavelield measurements include short duration interference events. the tradeoff be-
tween adaptation time and weight noise variance is examined. Assuining a Gaussian
approximation of the output power statistic, a closed form expression determines
the optimal adaptation time; otherwise optimization requires numerically evaluating
receiver operaling curves over different adaptation times. Simulation experiments
demonstrate the applicability of a multiple time-scale beamformer when wavefield

measurements contain short duration interference components.
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Chapter 1

Introduction

For the past several decades the problem of detecting and localizing acoustic energy
propagating in the occan medium from data collected by a passive array ol sensors
has been extensively investigated. Early examples of research in array processing
focus on non-adaptive detection and localization methods [1]-[8]. In [1]-[3] concern
centers on the application of Bayesian and Neyman-Pearson decision criteria in de-
tecting a signal in noise. Bryn [4] and Edelblute [5] derive the optimal detector for
a signal propagating in a non-dispersive medium. McDonough [6] generalized the
optimal detector to an arbitrary medium. MacDonald [8] and Bangs [7] develop
the maximum likelihood estimator for signal parameters including source location.
The preceding methods assume prior knowledge of the spatial and temporal cor-
relation properties of the signal and noise components of the wavefield to achieve
optimal performance. In general though, only estimates of the combined signal plus
noise correlation function of the wavefield are available. Further complicating the
detection and localization problem is the time-varying nature of the wavefield. This
implies that detection and localization operations must be performed by adapting
computations to sensor measurements.

In time-varying conditions an important factor affecting the ability to detect



and localize a signal is the appearance of interference or other continuous and inter
mittently radiating sources of acoustic energy. Such sources are a common feature
of the wavefield which appear in sensor measurements as spatially correlated noise.
Of particular concern are strong sources of interference that exhibit a high degree
of directionality. Such interferers tend to obscure the presence of weaker signals.
Because of wavefield dynamics, an extensive number of adaptive array processing
techniques have been proposed to suppress directional interference [9)-[19]. One
commonly taken approach is adaptive beamforming [9]-[14].

Before discussing adaptive beamforming, we brielly review the non-adaptive
ot conventional beamformer. For a detailed analysis of conventional beamforming
see [20]. The basis for a conventional beamformer is a model of the physical wave-
field that only considers the propagation delay between a source and the sensor
array. Such a model assumes that the shape of the incident wavetront is a known
function of the source location. Assuming an idealized free-space non-dispersive
medium, where the location of a sensor array is in the far-ficld of the sources, the
planar wavefront shown in Figure L.l provides an appropriate propagation maodel.
To spatially discriminate between different sources of acounstic energy, the heam-
former applies weights to sensor outputs that compensate for delays in a wavelront,
propagating from a hypothesized look direction. Snmming the weighted sensor out,
puts and squaring the output of the beamformer yields a power estimate of the
wavefield in the look direction. When this look direction coincides with the direc
tion of a propagation wavefront, spatial samples of the wavefront sum coherently at
the output of the heamformer. We refer to energy propagating in the look direction
as the signal component. Energy propagating outsicde the look direction is referred
to as interference. Since spatial samples of interference are not summed coherently
by the beamforming operation, signal power gain relative to interference and the
diffuse noise background results. Repeating the beamforming operation across a

spatial region of interest, power estimates made at each look direction form a power
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directionality map of the wavefield. Estimates of source power and location follow
by appropriately interpreting the peaks of the power directionality map.

For the conventional beamformer, accuracy in locating and detecting sources
depends on the spatial window formed by the sensor array and weights applied
to individual sensor outputs. Such a window imposes limits on the ability of a
beamformer to resolve closely spaced sources and reject noise. Suppose 12 equi-
spaced sensors are arranged along a straight line. Inter-sensor spacing is set to
d = c/(2f). where ¢ equals propagation speed and f frequency. Letting [ = IHz,
the narrow-band directional magnitude response, or beampattern, of this array toa
plane wave at a f = lHz is shown in Figures 1.2a and [.2b when sensor outputs are

weighted by uniform shading, ie:
Wm = L. form=1,2,..... \

and by the Hamming weights

0.34 — .046cos (=) forO0<m < M =1
W = () -

0 otherwise

where M equals the number of sensors. w,, corresponds to the weight applied to

the m®™

sensor output. 0 as shown on Figures 1.2a and 1.2h specifies bearing or the
angular direction of the plane wave relative to a coordinate reference perpendicular
to the array axis. We refer to this reference as the look direction. The magnitude
responses shown in Figures 1.2a and 1.2b illustrate the limitations placed on reso-
lution and interference suppression. Two attributes describe the beampattern; the
mainlobe width and sidelobe levels. For a conventional beamformer, changing sen-
sor weights to reduce the mainlobe width and improve resolution results in elevated
sidelobe levels. By reducing sidelobe attemiation the ability to detect a weak signal
degrades because of the increase in outpnut power caused by the leakage of noise from

outside the look direction. Conversely. lowering sidelobe levels to improve detection

performance causes a reduction in resolution performance.



Response (dB)

Response (dB)

Uniform Shading of Sensor Outputs

20 ' | ' T T T T
10 Mainlobe ]
B Beamformer Response .
0 - | Look Direction 7]
-10 - _
R \ .
-20 .
—30 I Sidelobe |
L Response i
-40 A -
-50
— 6 O 1 ] 1 1 | 1
-1.0 -0.5 0.0 0.5 1.0
sin§6§ Figure 1.2a
Hamming Shading of Sensor Outputs
20 ¥ I ¥ I L] I ¥
10 - Beamformer Mainlobe -
- Look Direction Response ]
0+ -
-10 Sidelobe T
B Response b
-20 - \ -
-30
-40
-50 |-
— 60 i | i 1
-1.0 -0.5 0.0 0.5 1.0

sin{6} Figure 1.2b

Conventional Beamformer: Magnitude Response
Figure 1.2



In the ocean medium, signal. interference. and noise dynamics restrict the op-
timality of a conventional beamformer to a fixed set of conditions. For instance, a
uniformly weighted linear array of sensors maximizes signal detection only when the
measured wavefield consists of a single signal embedded in diffuse noise. In weak
signal conditions, data independent beamforming becomes particularly susceptible
to performance degradation in the presence of strong time-varying directional inter
ference [15. 21]. This problem motivates the application of adaptive beamlorming
techniques that provide a way of trading detection performance in dilfuse noise for
interference suppression.

Historically, the methods proposed in [9]-{12] represent some of the first exam-
ples of adaptive heamforming. The adaptive noise cancellation solution developed
by Howells and Applebaum [9,10] applies in situations where a reference of the noise
process interfercring with the desired signal is available. A relevant case for this
noise canceller is machinery induced noise [22]. Acquiring a relerence involves plac-
ing accelerometers in proximity to the machinery. To remove interference, the noise
canceller adaptively combines the reference with the output of a conventional beam-
former in such a way as to minimize output power. Developed independently of the
Howells-Applebaum noise canceller, Widrow [11] proposes an adaptive heamformer
based on a reference generated by a wavefront model ol a signal emitted from o
postulated location. The beamformer computes weights that minimize the mean-
squared-error (MSE) between the bheamformer output and reference. The principal
drawback of Widrow’s approach becomes apparent when the reference is an inac-
curate model of actual wavefront propagation. Modeling errors arising from this
mismatch cause signal distortion and attenuation at the output of the beamformer
[23]-[26]. A generalization of the preceding techniques. proposed in [13, [1]. assumes
separate measurements of the signal and interference plus noise covartance matri-
ces. This leads to a bheamnformer solution that maximizes ontpnt signal-to-noise

ratio (SNR) by formulating sensor weights as the solution to a generalized cigenvalne

6



problem. However, for most practical situations. the signal and interference plus
noise covariance matrices cannot be measured separately.

In [9]-{11] beamformer weights depend on a reference of the interferer or the
desired signal. Such a reference effectively places soft constraints on the bearhformer
weights with the intent of preventing signal cancellation. Unfortunately, signal dis-
tortion arises under a variety of conditions. For instance, in the case of the noise
canceller [9, 10], a signal in the presence of an interferer of comparable strength
canses Lthe beamformer to attenuate the signal component of the wavefield [25. 26].
A similar effect occurs with the reference signal beamformer [11]. To overcome this
difficulty Levin and Green [27, 28] apply hard constraints to the beamformer re-
sponse. Frost [12] adopts a hard constraint strategy to form the linearly constrained
minimum variance distortionless response (MVDR) beamformer. For the MVDR beam-
former, imposing hard constraints entails computing weight that minimize total
beamformer ontput power subject to a unity gain response at selected spatial and
spectral points.  Assuming plane wave propagation and the same sensor array as
in Figure 1.2, Figure 1.3a illustrates the directional magnitude response of a MVDR
beamformer to diffuse noise. The beamformer uses a single point constraint. We
refer to Figure 1.3a as the quiescent response of the beamformer. In Figure 1.3b.
the appearance of an interferer causes adaptive weights to modify the beamformer
response by raising sidelobe levels and placing a null in the direction of the in-
terferer. As a result of this action. beamformer output power increases because of
diffuse noise leaking through the sidelobes. With the appearance of an interferer. the
beamformer trades detection performance in diffuse noise for adaptive interference
suppression.

As an alternative to point constraints [12]. derivative constraints {15, 29] im-
pose constraints on the beamformer response across a continuous spatial region.
Figenvector constraints introduced by Buckley [30] constrain the beamformer re-

sponse over spatial and temporal regions.
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The motivation of imposing hard constraints on the response of an adaptive
beamformer is to prevent signal distortion by maintaining a response over spatial
and temporal regions of interest. These spatial and temporal regions embody the
extent of the desired signal as perceived by the beamformer. Unfortunately, hard
constraints do not completely preclude distortion of the signal {23]-[26]. For in-
stance, distortion may arise when multi-path propagation conditions cause partial
correlation between the signal and interference components of the wavefield. ('on-
sequently, cancellation of the interferer results in attenuation of the desired signal
[26]. Signal distortion also occurs as a result of a mismatch between the incident
signal wavefront and the wavefront model used by the beamformer. Because of this
mismatch, components of the measured signal are mistaken for interference [23. 24].
Sensor position uncertainty has a similar effect on the signal [23. 24]. To increase the
robustness of an adaptive linearly constrained beamformer agaiust signal distortion.
[31] applies an additional set of quadratic inequality constraints of the heamformer
weights.

Whercas the resolving ability of a conventional beamformer depends on ar-
ray geometry and data independent sensor weights, an adaptive beamformer does
provide some improvement in resolution performance. The ability of the adaptive
beamformer to resolve two closely spaced signals is asymptotically limited by the SNR
at the output of the beamformer [22]. To improve upon resolution performance high
resolution techniques are applied [16]-[19]. Through an accurate modeling of the
wavefield, resolution performance of these techniques depends only on observation
time and the accuracy of the wavefield model [22]. Although offering better res-
olution performance than adaptive beamforming, high resolution’ methods depend
on long observation periods. precluding their application when components of the

wavefield are rapidly changing,.



1.1 Motivation

In the ocean environment, source dynamics and a changing propagation medium de-
termine the stationarity of waveficld measurements collected by a sensor array. As
well, under realistic conditions radiating energy from independent acoustic events
that overlap in time will generally differ in temporal duration. Large differences in
temporal extent between wavefield components present a problem for minimum vari-
ance distortionless response (MVDR) beamformer realizations restricted to computing
a fixed number of weights simultaneously on a single time-scale. The difliculty arises
when the adaptation time is greater than the time-scale of an interferer.

In responding to an interferer, the MVDR beamformer trades detection perlor
mance in diffuse noise for adaptive interference cancellation. When adaptation time
exceeds the time-scale of an interferer the tradeoff hetween diffuse noise and inter
ference cancellation no longer applies once the interference event has vanished from
the wavefield. Consequently, the beamlormer faces an increase in output power
that unnecessarily degrades detection performance in diffuse noise. In the hope of
improving performance. one possible approach involves reducing adaptation time.
Unfortunately, the increase in weight noise variance accompanying this change in
adaptation time may introduce a greater loss in performance than is gained through
reducing adaptation time. Reducing the number of adaptive beamformer weights,
by either increasing the constraints placed on the beamformer response or applying a
partially adaptive design technique, (eg: [32]-[36]), provides one method of reducing
adaptation time withont incurring performance degradation. However, with fewer
adaptive weights the ability of the beamformer to respond to multiple interferers
decreases. Because of these limitations, a MVDR beamformer restricted to simultane-
ously computing a fixed number of adaptive weights on one time-scale is not. an ideal
candidate for a mixed time-scale environment. This is particularly the case when
impulsive noise induced by biological, seismic or explosive phenomena. overlap in

time with longer duration wavefield components such as noise-like signals emitted
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by a distant ship.

Consider now two realizations of the single time-scale MVDR beamformer: the
direct implementation [12], Figure 1.4, and the generalized sidelobe canceller (GSC)
[37], Figure 1.5. The structure of the GSC follows from a decomposition of the
direct form weights w into data independent and unconstrained adaptive weights.
wq and w,. We refer to wq as the quiescent weight vector, since the response of the
beamformer depends solely on wq when sensor measurements consist of diffuse noise.
‘o maintain response constraints. the signal blocking matrix C prevents w, from
being applied to wavefield components in the spatial and spectral region constrained
by the beamformer.

The equivalence between a direct form MVDR realization and GSC depends on
the number ol adaptive degrees ol freedom (DOF) available to each beamformer.
We use this measure of beamformer adaptivity, instead of the number of adaptive
weights, to eliminate any ambiguity. Unlike adaptive weights. adaptive DOF provide
a precise and quantitative definition of beamformer adaptivity that refers directly
to the independently adaptable parameters in either w or wi,.

To illustrate the dilemma faced by a GSC in mixed time-scale interference
conditions we turn to an example consisting of a horizontal linear array of equi-
spaced sensors. Along with diffuse noise, suppose wavefield measurements contain
acoustic energy from two independent directional sources located in the far-field of
the array. Assume that the temporal duration of energy radiating from one source
is very short in comparison with the second event. We apply a GSC to generate a
power directionality map of the wavelield at a single frequency. The GSC maintains
unity gain response, through a single point constraint, at a look direction that
corresponds to a wavefront propagating at an angle perpendicular to the sensor
array. At this look direction the two directional sources present in the wavefield
appear as interference.

We tirst examine the case when adaptation time and the time-scale of the

11
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shorter duration interference event match. To investigate the effect of adaptation
time and adaptive interference suppression on the output power estimate, consider
the evolution of the beamformer magnitude response in time. Figure 1.6 shows the
evolution of the response. Attenuation in the response corresponds to a grey-level
scale, where increased shading represrnts increasing attenuation. The two dashed
horizontal lines on the figure indicate the effective duration of the short duration
interferer. The high level of variability suggested by Figure 1.6 indicates that weight
noise variance dominates detection performance. Increasing adaptation time, Iigure
L.7 shows the beamformer response maintaining a null beyond the temporal extent of
the short duration interferer. Although weight noise variance appears to have little
itmpact on the response. sidelobe levels remain elevated well after the short duration
interference event has disappear. Over the time interval sidelobe levels remain ele-
vated. increased leakage of diffuse noise into the output power estimate dominates
detection performance. As suggested by Figures 1.6 and 1.7, it is diflicult for a sin-
gle time-scale beamformer, adapting a fixed number of DOF. to maximize detection
performance in the presence of short duration interference. Since the beamformer
cannot reduce adaptation time without incurring an increase in weight noise vari-
ance, detection performance suffers because of increased beamformer output power
due to diffuse noise. When the occurrence of strong short duration interference is
frequent. as is the case in under-ice applications. detection performance of the single
time-scale beamformer may be severely affected over long periods of time.
Recently, Liu and Van Veen [38] reported a cascaded version of the lincarly
constrained MVDR beamformer. A unique feature of this modnlar MVDR (M2VDR)
beamformer is the flexibility of distributing adaptive DOF among stages arranged
in cascade. This property suggests the possibility of adapting beamformer DOF over
different time-scales. Motivated by the M2VDR realization. we propose a multiple
time-scale adaptive beamformer that combats interference in mixed time-scale con-

ditions. To cancel short duration intericrence, the beamformer computes a small

14
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number of weights assigned to a stage on a time-scale approximating the duration
of the interferer. With fewer weights, the beamformer stage introduces the pos-
sibility of larger rednctions in adaptation time that could he possible for a GSC
implementation of the MVDR beamformer. Furthermore. the M2VDR realization does
not curtail the ability to respond to multiple interferers since the beamformer applies

the remaining DOF, retained in other stages, against long duration interference.

1.2 Contributions and Outline

This thesis addresses the problem of adaptive beamforming in mixed time-scale
interference conditions.  To maximize detection performance when the temporal
duration between wavefield components differs substantially. we propose a multiple
time-scale M2VDR beamformer. Previous MVDR realizations. [12] and [37]. preclude the
simultaneons adaptation of DOF on diflerent time-scales. The M?VDR beamformer is
the only MVDR realization that permits multiple time-scale adaptation. This unique
feature provides increased flexibility in maximizing detection performance under
mixed time-scale interfereuce conditions without sacrificing interference cancellation
capability in multiple interferer settings.

The derivation of the M2VDR presented in [38] assumes the exact covariance
matrix of the measured wavefield. This leads to a set of stage weights that achieve
the minimum MSE at the output of the beamformer. However. under time-varying
conditions the ability to compnte beamformer stage on different time-scales has
not been previously investigated. The principle contribution of this thesis is the
development and analysis of a multiple time-scale MVDR beamformer.

The number of adaptive weight coefficients loosely serve as a measure of beam-
former adaptivity [39]. By decomposing the GSC into a modular realization, beam-
former weights appear in a form that naively suggests a dramatic increase in adaptiv-

ity. To correctly analyze this case we introduce a precise interpretation of adaptive
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DOF in Section 2.3. We show that a correct assessment ol adaptive DOF is the rank
of the signal blocking matrix.

Chapter 3 derives closed form expressions relating the adaptation time and
number of adaptive DOF assigned each M2VDR heamformer stage, to mean output
power, MSE, and output SNR. To simplify this analysis beamformer stage weights are
computed by non-overlapping block adaptation [40]. Two types of block adaptation
form the basis of our analysis. Type [ adaptation uses the same input data bloch
to compute weights and update the output. Type Il adaptation computes stage
weights based on a past input data block. Van Veen {H] examines in detail the
statistical properties of a Type [ implementation for the 6SC. Krolik and Swingler
[42] examine Type I and II GSC implementations. Niezgoda [13] derives the mean
output power and MSE expressions for the Type I M2VDR beamformer. Chapter 3
extends the analysis in [11]-[13] to derive the statistical properties of the MVDR I'vpe
[ and Il implementations. Expressions for mean output power show the necessity of
constraining the adaptation time of each stage to ensure that the beamformer ontput
is not ill-defined. For the beamformer output power to he a positive guantity we
show that the effective number of statistical DOF in an input data block must excecd
the total number of adaptive DOF adapted over the length of the input data block.

The first part of Chapter | examines the implementation of Type [ adaptation.
The important feature of Type I adaptation is the correlation between the heam
former weights and the current input data block. This allows the beamformer to
respond to a short duration interlerer over the same time interval interference sam-
ples appear at the input to the beamformer. In applying this adaptation scheme
to a multiple stage M2VDR beamlormer the ordering of stages becomes important.
Analysis indicates that the minimum mean-squares error (MMSE) at, the final heam
former output only occurs when the adaptation time assigned cach stage is greater
than or equal to preceding stages. The second half of Chapter 1 investigates the

effect signal blocking matrix design has on detection performance. ach stage of a




multiple time-scale M2VDR beamformer operates as a partial adaptive beamformer.
Partial adaptivity implies that only a subset of available DOF are used by the stage.
This has the same effect as increasing the number of constraints imposed on the
beamformer response. Spatially, partial adaptivity restricts the adaptive response
of the beamformer through the choice of signal blocking matrix. In a short duration
interference environment it is important to prevent interference components from
leaking into stages adapting on a longer time-scale than the interferer. Otherwise
residual components of the interference retained in these stages may cause a null
in the magnitude response to be maintained after the short duration interferer has
vanished. Any accompanying reduction in sidelobe level attenuation leads to an
increase in output power and a loss in detection performance. Chapter 4 derives an
approximate expression for array gain degradation due to signal blocking mismatch.

Chapter 5 investigates the maximization of detection performance during short
duration interference events for a two-stage beamformer. To maximize signal detec-
tion when wavelield measurements include short duration interference events. the
tradeoll between adaptation time and weight noise variance is examined. Assuming
a Ganssian approximation of the output power statistic, a closed form expression de-
termines the optimal adaptation time; otherwise optimization requires numerically
evaluating receiver operating curves over different adaptation times.

C'hapter 6 continues the investigation of M2VDR beamformer performance in an
impulsive interference environment by simulation experiments. The eflects of design
mismatch are re-examined. An alternative to Type I block adaptation is a modified
version of recursive least squares (RLS). Unlike block adaptation. RLS applies an
exponentially weighted window to input data. Although the effective memory of
RLS and block adaptation can be equated, the response of RLS to an impulsive
interference is prolonged by exponential weighting. On the positive side. RLS results
in staller levels of weight noise variance than block adaptation. As well Chapter 6

provides a qualitative comparison of detection and resolution performance for a GSC



and a two stage M®VDR beamformer in an impulsive interference environment.
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Chapter 2

The Multiple Stage Linearly
Constrained Adaptive

Beamformer

This chapter reviews the relationship between the direct form, GSC, and M2VDR real-
izations of the linearly constrained MVDR beamformer. Because of the M2VDR decom-
position, adaptive beamformer weights appear in a form suggesting an increase in
the number of adaptive DOF. To analyze this case correctly we introduce a precise
interpretation of adaptive DOF. Notationally, boldfaced lower-case and upper-case

svimbols denote vectors and matrices, respectively.

2.1 Background

To simplify our discussion, issues arising from propagation effects are de-coupled
from the problem of interference suppression by modeling the ocean as a non-
dispersive, homogeneous medium. Figure 1.1 provides an example of plane wave
propagation in this environment. Information pertaining to the location of an acous-

tic event is retained in the phase coherence of points along the wavefront radiating
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from the source. Suppose that an omni-directional sensor is located at

from an arbitrary reference point to observe the wavefield at time ¢ and frequency
f, where superscript T is transpose. At the sensor. sound pressure from a wavefront

induces a voltage represented by the complex exponential
w1 f) = aft,f) (KW (2.1

In this model, the wavenumber vector described by
k() = 2nle (22)

determines source location. where § = (£,. &,. E.)T is a unit vector aligned in the
direction of propagation, and c is propagation velocity. Sensor positions where the
product k¥(f)s is coustant. correspond to points of phase coherence. Completing
the description of (2.1), we model the source signal a(l. f) as a zero mean complex
random variable on the assumption that the amplitude and phase of o(/.[) are
unknown.

We now turn briefly to the relationship between the conventional and MVDR
narrow-band beamformers. Suppose that the wavefield consists of two statistically
independent directional sources and a noise component. A linear array of M equi-
spaced sensors measures the wavefield. The output of the 1t sensor. located at

)T

Spp = { Lps Ym +=m
is described by
. . T 9 T
It f) = au(t, f) eJ(27r]t+ka(f) Sm ) + ault, f) e.r(.nft+ko,(/) S ) + ol ) (2.3)

where & {a,(t, f)ap(t, [)*} = 0, and superscript * is complex conjugate. Statistical

expectation is denoted by £ { - }. Diffuse noise. represented by n,, (4. [). is modeled

N
o




as a zero mean spatially and temporally white process. independent of a,(t. f) and

(Y’)(ta f)

Let d(f) represent a wavenumber vector of a hypothesized wavefront. For

a conventional narrow-band heamformer, that applies uniforin weighting to each

2
} (2.4)

In the process of forming a power directionality map of the wavefield. suppose

sensor. output power equals

M

. T
Z -'l'm(t,j) e.ld (f18m

m=1

|
Poul(f) = Eig{

d(f) = k.(f). Hence, components of sensor measurements associated with k,(f)
sum coherently in (2.1). The ability of the beamformer to detect a source at the
wavenumber location k,(f) is affected by the second directional component of the

wavefield at ky(f) and diffuse noise. Rewriting (2.-1) as
2

, 2y L& o kT (s kT
Pourlf) = E{lonlt )} 37| O it
m=1

L 2

M
3 27 F =KL (N)8m+ KT ()5 m)
M

m=1

+& {lon(t. N)I*}

M

t27 > E{Inm(t, NI}

m=1

= MP,(f) + M¢Py(f) + P,([f) (2.

[SV]
ot
=

where
Plf) = &{laalt. NI}
P(f) = &{lew(t. NI}
P(f) = &{Imm(t, NI’}

The factor 0 < ¢ £ | accounts for the attenuation in the beamformer response

in the direction corresponding to ky(f). Note that attenuation of the response

decreases as ka( f) approaches k,(f). SNR at the output of the beamformer is

MP,(f)
M(,'Pb(f) + Pn(j)

SNRout(f) = (2.6)




With SNR at the input to a sensor given by

Pa(Sf)
Po(f) + Py(S)

the relative improvement, or array gain (AG) of the conventional beamformer over a

SNRin( f) =

single sensor is

_ SNRowt(S) | + INR(f) -
Aben(/) = SNRin(f) AI([%—.\I(INRU’)) (2.7)
where
, P
INR(f) = pb(({'))

equals interference-to-noise ratio (INR). As indicated by (L.7). AGep decreases as
the two directional sources move closer together and INR increases. However, for a
narrowband MVDR beamformer. the relative improvement in AG over the conventional

beamformer is

AG ‘ MAINRY(f) )
Mworl )y IRUD g 2.8)
AGga(f) I + WINR(/S)
[13]. Observe that the stronger the interferer, the larger the relative gain of the MVDR

heamformer.

2.2 Review of the M? VDR Beamformer

The first part of this discussion describes the direct form realization of the linearly
constrained adaptive wide-band beamformer as shown in Figure 1.1, To provide an
adaptive response over a region of frequencies a tapped-delay line of length J follows
each sensor output. In contrast, a narrow-band beamformer only requires a single

weight per sensor output. For a M sensor wide-band array let
[, 1 T T 1 \T g
x[n] = (xl[n] x,{n] ... x‘,[n!) (2.9)

describe the M.J x | vector of sensor measnurements samples held by the beamformer

tapped-delay line structure at sampling instant, n, where
X/[H]
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is the M x1 vector of measurements contained in the (*® tap of each sensor channel.

We refer to x[n] as one snapshot of data. To comnplete the description. let
T T T\T .
w o= (w1 w2...wJ) (2.10)

be the M.Jx 1 adaptive weight vector of the beamformer. where the M x1 vector w,
contains weights applied at the #*8 tap of each sensor channel.

To optimize w, the beamformer minimizes output power
¢ t 2 i
Pout = & ’ wx([n] I (2.11)

subjeet to a set of linear constraints placed on the spatial and temporal response of
the beamformer. Superscript ! denotes complex conjugate transpose. As previously
mentioned, linear constraints ensure that the desired signal passes throngh to the
beamformer output with unity gain. We express this constrained minimization
problem by

n&i,n (thw) subject to  Clw =f (2.12)
where

R = E{ x([n]x![n] }

equals the covariance matrix of x[n]. To maintain constraints on beamformer weights
the solution {or w must satisly

Clw=rf

where C is the MJ XK constraint matrix. and f the A x| response vector f. A’
equals the number of linear constraints imposed on the beamformer response. The

solution to (2.12) equals [12]
-1
w = R7'C(C'R™'C) f (2.13)

The generalized sidelobe canceller, shown in Figure 1.3, provides an alterna-
tive realization of the direct form MVDR beamformer. This implementation of the

MVDR beamiormer decomposes the weight vector w into two terms: wq the M.J x|
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quiescent weight vector. and w, the (MJ — K)x 1 adaptive weight vector. o relate

the direct form beamformer and the GSC, we express w in terms of wy and w, as
w = wy, — Cw, (2.4 0
[37], where
-1
— t
wg = C(C'C) ™ f
The adaptive weight vector w, given by
SIS
w, = (CfRC) Ctqu (2.15)
follows from the solution to the unconstrained minimization. [37). given by

min (wq - 6w,l)T R (wq - Cwa) (2.16)

Wa

Determined by the the orthogonal complement to C. C defines the M. (). ()

MJ — K. signal blocking matrix. Since
C'C =04

the desired intention of the blocking matrix is to prevent adaptive cancellation of 1he

signal. We assume throughout this thesis that the colunms ol € are mdependent.
ie:

rank (6) = WJ-N
In this instance the beamformer is said to be fully adapti.e. Otherwise if

rank (C) < UJ-K

the beamformer is said to be partially adaptive.

To develop the P stage realization of the MVDR beamformer. shown in Figure

2.1. we first express (2.16) in the form
. =3 t = ; R -
min (w} (L, - TB)' R (1, - TB) w, (2.17)
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where
N D
B=(C'RC) TR
equals the solution to (2.17). The relationship between the (M.J — K)x.MJ matrix
B and w, is

wa, = Bwg

As shown in Appendix A.l, central to the development of the multiple stage heam-

former is the equivalence between (2.17) and the minimization
— £t —
M —_ — l) 2
ngntr ((L\,J CB) R (I,\” CB)) (2.13)

By equating (2.17) to (2.18) [38] establishes a relationship between the GSC and a
cascade of P adaptive beamformer stages through the expression
(Wq - Cwa) = (IMJ - GB) w,
P ——
= H (IM_[ — CrB;) w, (..). lg)

p=l

For the (* stage of the cascade. described by the expression
Ly - C/By

B, represents the O, x MJ adaptive weight matrix. and C, denotes the M./xQ,

signal blocking matrix formed by column partitioning C as

where

= Q= MJ-K

iM-
<
o~y

Observe that since
rank (6;) < MJ-K for P >2

each stage of the M2VDR beamformer is partially adaptive.

[
-1
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Figure 2.1
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Letting x,[n] denote the MJx1 output vector of the PP stage,
2 = o\
xp(n] = [T (Tsrs — CrBr) xo[n] (2.20)
(=1
where xg[n] = x[n] is the sensor output vector. The adaptive weight matrix By

follows from the solution to

O™
o
—
—

n&i{n tr ((IMJ - 6[Bf)t R, (IMJ - -C'fBg)) (2.

where
P, = W.g (IMJ - —C—FBi’)f R/, (IMJ - _ﬁer) Wq

‘/th

equals the output power of the {*" stage and

B, = (C'R.,C,)” CIR.-,

the (0 stage weights that minimize Py, Assuming that & {xi_i[n]} = 0y, fov

¢ =1,2, ... P+ L. the covariance matrix for x,-;[n] equals

R = £{ xfnlx][n] |

2.3 Adaptive Degrees of Freedom

Adaptive degrees of {reedom have in the past been typically associated with the
number of unconstrained beamformer weights [39]. For the GSC there is an explicit
correspondence between M J — K adaptive DOF and the (M.J — K)x1 weight vector
w,. However, such a relationship does not exist for the M*VDR beamformer. No-
tice that the dimensions of By exceeds the number of adaptive weight coefficients
available to a GSC assigned the blocking matrix C,. By relating DOF to the elements
defining w, or B,, we are lead to the erroneous conclusion that a M2VDR decomposi-
tion of the GSC increases the number of adaptive DOF. This section develops a concise
interpretation of acdaptive DOF by equating the number of DOF with the rank of the

signal blocking maturix.



We begin by first considering an example consisting of a 2 sensor, single tap
array, where x[n] is the 2x1 sensor measurement vector. To simplily our discussion
we assume that all quantities are real-valued. For the 2 sensor case the GSC controls
the response of the array by a single linear counstraint and one adaptive DOF. "To
demonstrate that the number of adaptive DOF equals the rank of the signal blocking
matrix C. we apply a geometric interpretation to th» GSC that describes a random
variable as a vector quantity [44]. We begin by examining the scalar weight vector
W,. Suppose

yln] = ng[n]

and

n] = —CTX[II]

are zero mean scalar random variables with standard deviation o and @, respectively,

Then the solution to

n,l'\an & {l yln] = wai])” } (12.22)
in terms of o and & is
we = Siyniinl} Wllinl} pe (2.23)
g

E {x[n)?}

where the correlation coefficient between y[n] and #[n]is 0 < p < 1. rom (2.23)

the output of the GSC takes the form

eln] = yln] - /)g—.i'[n]
= y[r] — gln] (2.24)
where
itn] = pZ i)

Ef{elnliln]y =0

) {e?[n]} = o (l - /)z)
E{e[nyln]} = o* (l - /)2)
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Next, we identify the random variables y[n]. #[n]. and ¢[n] with the 2x1 real
vectors v, vz, and v, respectively. Assigning to each of these vectors a length

equal to the standard deviation of the random variable identified with the vector,

sel,
T _ 2
V,Vy = 0
T )
V;_.VJ"- = J
Ty, _ o~
V,Vi = 00p

As shown in Figure 2.2, a geometric interpretation of the GSC follows from v, and
vi, where span(v;) denotes the linear span of v;z. To complete the description of

the GSC. we project v, onto Vi to form

T
v, = p;vf (225)
the optimal linear estimate of v,,. where
Ve = VvV, — Vv, (2.26)

is the error vector between v, and vy, In this discription of the GSC. the inner-

products

and
vliv, = of (1 - p‘z)
correspond to the correlation properties » stween e[n], y[n], and y[r]. Returning to
(2.25), we see that a single parameter or degree of freedom governs the adaptation
of wa on aone dimensional sub-space determined by the span of GTx[n].
('onsider now a single stage M2VDR decomposition of the GSC. Expressing x[r]
explicitly as

x[n) = ( 2i[n), 22[n] )
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the GSC

Figure 2.2
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we model the sensor outputs xy{n] and z,[n] by two zero mean random variables
with standard deviation o, and o4, respectively. The correlation coeflicient between

£y[n] and x,[n] is

Furthermore, let

Turning to the solution of
2
min £ {‘x[n] - Bi|n]| } (2.27)

we see that the weight vector

—Tee—\ ! =T N
B =(b.b)=(CRC) TR (2.28)
consists of two terms.
Letting a2 be the variance of &{n], we express b, and by as
.
by, = p— (2.29)
and
) 9 -
b-z = P2 (230)
o

where py and gy are correlation coefficients determined from
E{x [n]2[n)} = a0p

E{x2n)i[n]} = 020p2
The geometric description of the beamformer shown by Figure 2.3 follows by as-
signing a 2x 1 real vector to each of the random variables .r\[n]. &3[n]. and &[n]. so
that

T — 2
Vo Ve = 0)
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y
ViV, = o}
T v
VJ.1 ry = 00
T .
V“Vl = o oMm
and
Ty, —
V”VJ = 09T

. T (g
Vi, = pr—Vp = [),‘V;. \“..'”)
o
for £ = 1.2. where
VF‘ = Vrl - V,-l
Ve, = Vpp — Vi,

represent the output of the beamformer. Since v, and v,, hoth lie entirely on the
sub-space spanned by v;. the vectors are linearly dependent. Relating v, and v,
by

Ve, = TV, (2.42)
it is apparent that there can only be one independent parameter or degree of freedom
governing adaptation. As with the GSC, the single DOF is restricted to a subspace
determined by v;. Observe further that the GSC first adds v, to v,,, then projects
the sum onto a sub-space of vi. The M2VDR beamlformer reverses the operation by
projecting v, and v, onto a sub-space of v; to form v,, and v;,, then summing
so that

Vy = Vi, +V,‘.2
Since the summation and projection operations are distributive the GSC and M2VDR
beamformer are equivalent.

We now proceed to the case of a M sensor, J tap M2VDR heamformer consisting

of P adaptive stages. For the £*P stage, the solution to

[réi'rlg{ ‘ Xr_1[n] = BFx,[n] IJ } (2.33)
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takes the form of the Q;x AMJ matrix

— =l
B, = (C/R...C/) C/R.., (2.34)
where
Xs = 6;1:)(,:_1
and

R = E{x._l[n]x}‘_,[n]}

By initial inspection the dimension of By suggests that the (% stage has ¢, M./
adaptive DOF instead of ;. To properly analyze B, we apply an argument similar

to that used in the praceding discussion. Let the 2x 1 real vectorv,, , beassociated

with the random variable

(X:’-I[HI)J = .1'4'_1_,[”]
such that
T aop = E{wiy )i} il #K .
Vv(__l'lvfl—l,k = , (2.5%)
ot = & {.r,‘_,d[n]} i) =k
for jok = 1,2.....MJ. Likewise, let vi,,, beidentificd with
(X")m = ‘I"',Hl
where
T OmO, pmy, = & {,i';,,"[n].i',",[n[} if m#y o
ViwVe, = 4 } | (:2.36)
On = E{J‘,'m[n]} ifm=y
and
T - vy e
View Ve, = Tu¥;0m,; (2.37)
form,j = 1.2,....Q,. Hence. the optimal lincar estimate ol v,, | | Even v, s
-9 g
V.i‘,'] = ij._“vi-, m = 1”,"1_[VJ.'I',“ ('2"8)

m
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where

T
—_ 5 J
bP.mJ = Py = (Bp)m]
Tm
IFrom (2.38) and
O
View = /)mkg__vi‘c,m = brmkVigm
m
we see that
b/m
amny .
Vie, = b Vi (239)
?,mk

Because of the dependence between weight coeflicients indicated by (2.39). the num-
ber ol inclependently adaptable DOF must equal the dimension of X, or the rank of

C,.
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Chapter 3

Statistical Analysis of the
Multiple Time-Scale M2VDR

Beamformer

In the preceding chapter the formulation of MVDR beamlormier weights assumes prior
knowledge of the covariance matrix R. However, because of changes in the propaga-
tion medium and source dynamics the covariance matrix ol sensor measurcments will
be time-varying. Hence, weights can only be computed from sensor measurements
observed over a finite time observation interval. We assume that the sensor measure-
ment covariance matrix does not change over this time interval, In this discussion we
refer to the number of sensor samples used to compute a single beamformer weight,
estimate as adaptation time.

Suppose x[n] are independent and icdentically distributed (1.2.d.), zero mean
Gaussian random vectors. In this case the maximum likelihood estimate of R is
Wishart distributed {45]. A Wishart distribution is the multivariate equivalent of
the chi-squared distribution. As shown by Goodman [45], the mumber of statistical
degrees of freedom associated with the covariance matrix estimate equals the nmmber

of sensor measurement vectors used in forming the estimate. By increasing the
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number of statistical DOF, estimator variance decreases.

Statistical properties of the minimum variance beamformer are examined in
[14], and [16]-[48]. For a narrow-band MVDR beamformer assuming i.1i.d. zero mean
Gaussian distributed sensor output vectors, Capon [46] shows that the output power
estimate is a Chi-squared distributed random variable. Capon relates the number
of statistical degrees of freedom associated with the power estimate to the difference
between the adaptation time and number of adaptive DOF. This relationship shows
that increasing the number of statistical DOF relative to the number of adaptive DOF
reduces the variance of the power estimate. In [47] the distribution of output SNR for
the narrow-band heamformer is derived assuming noise only data. Monzingo and
Miller [14] analyze ontput SNR and MSE for several beamformer implementations.
Steinhardt [18] derives a closed lorm expression for the marginal probability density
function (pdf) of the narrow-band MVDR beamformer weight vector.

Recently Van Veen [41] examined in detail the statistical properties of the lin-
carly constrained MVDR beamformer for the case when the same input data record is
used to compute the weight vector and update the beamformer outpnt. We refer to
this adaptation scheme as a Type [ implementation. Expressions are derived in [11]
that relate the number of adaptive DOF and adaptation time to the mean outpnt
power and MSE of the beamformer. Analysis of mean output power reveals that a
reduction in signal power occurs in proportion to the ratio of adaptive DOF to adap-
tation time. Capon and Goodman [16] make a similar observation. As adaptation
time decreases in relation to the number of adaptive DOF. total output power of the
beamformer approaches zero. One interpretation of this signal cancellation effect
views the solution for the beamformer weights in the context of least squares (LS).
When the data length equals the number of beamformer DOF. the LS problem forms
an exactly determined system of equations. The solution to this problem leads to a
zero beamformer output,

An alternative explanation for the reduction in mean output power observed

39



by [41], is given by Krolik and Swingler [12]. They show that a signi | cancellation
effect arises because of correlation between w, and input data. Correlation hetween
the beamformer weights and input data causes the adaptive path o the GSC to
generate a scaled version of the desired signal. Consequently, a partial cancellation
of the signal results at the beamformer output. Signal cancellation r~ avoided by
ensuring that beamformer weights are computed from a past input data vecord, thus
de-correlating the weight estimates from the current input data vecord. We reletr to
this adaptation scheme as a Type II implementation.

[n this chapter we extend the results obtained in 1L 120 16] to exannne the
statistical properties of the Type [ and Il multiple time-scale M2VDR heamformers.
Our discussion focuses on mean output power, MSE and output SNR when beam
former stages are adapted over different time-scales. To simplify analvsis we model
wavefield measurements as a wide sense stationary process. Weight estimates are
computed by block adaptation [rom non-overlapping, rectangularly windowed, con
tiguous blocks of data. The length of a data block used in computing a weieh
estimate defines adaptation time. As an addition measure to ensure i tractable
analysis. we assume that the flow of data across the beamfomer takes the following,
form. Type I adaptation uses the same sequence of data blocks to compute stage
weights and update the stage output. This approach requires the succeeding stage 10
sit idle until all necessary data blocks have been processed by the preceding stage,
Type II adaptation uses the past data block to compute weights and update the
stage output. Although the weights of a succeeding stage can be compnted withont,
delay. our Type [I scheme still requires this stage to idle until its cnrrent input data

block is made available by the preceding stage.
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3.1 Mean Output Power (Type I)

Mean output power of the single time-scale MVDR beamformer has heen examined
in [11. 12, 46]. Each of these investigators showed that a Type I implementation
causes output power to be scaled below the level that would be attained had the
trie data covariance matrix been used in computing beamformer weights. In the
following discussion we extend these results to the multiple time-scale beamformer.

Suppose x{n] are 1.1.d.. zero mean complex circular Gaussian random vec-
tors. Assuming that beamformer weights are computed over non-overlapping blocks

of data, let

X,._l[/\‘] = ( XI,__l[l -+ (I\‘ - l)Lp]. x,,_1[2 + (1\' - l)LP]' e .xp_l[l\'Lp] ) (3.1)

for k€It deseribe the input data block to the pt® stage. where the A.Jx 1 vector
X,-1[n] is the output of the pt — 1 stage. It denotes all positive non-zero integers.
The inpnt data snapshot to the first stage is Xo[n]. L, equals the adaptation time
assigned to the p™ stage. \daptation time of the p*® stage is constrained to be an
th

integer multiple of the adaptation time used in the (p— 1) age. so that

L, = m,L,_;, m, € It

for p =2.3,.... P. This ensures that the adaptation time of any stage is an integer
multiple of L. the adaptation time of the first stage. Employing block adaptation

we write the output of the pt® stage as
Z,[F = (x,[1 4+ (k=1Lp). X2+ (kA =1Ly}, ... x,[kL,]) (3.2)

Note that Z,[k] is constructed from L, data vectors while the input data block to
the (p + 1) stage, X,[k]. has Lp4; columnn vectors. Letting k correspond to the

sampling index of the data block containing the vectors
XL+ (K=D)L x, [k
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we express X, [4] as
X,[k] = (Zp[R]). Zy[k + 1) oo Zy[k 4+ gy = 1)) (3.3)
Given X,_([] an estimate of B, {ollows from the solution to

mintr (X, [] - ﬁ;[k]x,,[k])* (X_, k] — X! [4]B,[k]) (3.1)

P

where
Y ~t
Xp[k] = CXpi[K]
describes the output of the signal blocking operation. The LS solution to (3. 1) equals

N — e |
Bk = (CIX,-allX)KG,) ™ TIX, [HX]_, (4 (35)

r=
We then write the output of the ptP stage as
— t
x[] = (IMJ - CI’BI’U"']> Xp-1lf]
= x,1[f} - B [k]%,[(] (:3.6)
for
¢ = (L+ (=1L, (24 (k=1)L,). ... kL,

where

: rall
xl’[ﬂ = Cpxp- 1 [P]

A power estimate based on the output of the first p stages follows by applying the

quiescent weight vector wq to the sample covariance matrix formed from
Z, k] = (x,[L+ (k=1L %024 (k= 1)L,] ... x,[kL,]) (3.7)

From (3.7) the power estimate equals

I
—wiZ,[k)Z}[Mwqg (3.8)
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The next part of our discussion derives a closed form expression for the ex-

peeted value of (3.8) in terms of the beamformer parameters

Qr, {=1,2,....p

and

Ly, F=1,2,...,p

The sample index associated with the input and output data blocks is omitted for
clarity unless otherwise required by the discussion.

Assuming that input data vectors entering the first beamformer stage are
i.1.d. complex Gaussian distributed. the M.Jx M.J sample covariance matrix es-
timate

|

R, = ; XoX! (3.9)
/1

has the complex Wishart distribution
LiRy ~ Wyy(Li,Ry)

where Ly equals the number of statistical degrees of freedom [19]. Substituting (3.9)

into (3.8). the power estimate at the input to the first stage. ie:
o = wiRowg (3.10)
has the distribution
LiPy ~ Wi (Ly,Po)
[19. 30], where
Py = wéRowCl

The expected value of (3.10) follows by normalizing By by Pg to form the chi-squared

random variable

~ \*(Ly) (3.11)



where L equals the statistical degrees of freedom of the chi-squared random variable.

and

since
£{bo} =Py
C'onsider now the output power estimate derived from the first adaptive stage.

From (3.-4). (3.5) and (3.8)

- L 1 S — —
Poo= wiXoXiwg - -wh (XuXIT, (TIXXIT) T CIXGXL) wy
1
L f
= -L—lquIZIWq
= wiRwq (3.12)

where the distribution of XoX{ is known under our previous assumptions to he a
Wishart random matrix. To evaluate the expected value of (3.12) we turn 1o the

following proposition.
Proposition 3.1 Suppose that Y is a« NxL random matrir such thal
YY!' ~ Wy (LX)
IfE is a NxQ non-random matrir then the random malver deseribed by
A = YY' - YY'E(E'YY'E)" E'YY!'
has the Wishart distribution
A~ Wy (L-0Q.35)

where
Tx = £-3E(E'ZE) E'T
for L > (.0
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(See Appendix B.2 for a proof).

From Proposition 3.1 we observe that
. — = I
LR, = XX} - XoX{CT, (CXuXIT))” T\XoX}

where

. 1
R, = L—lzlz{

has the Wishart distribution
LR, ~ Wy (Li—QuR,)

where
R, = Ro - R,C, (CR,C,)” CIR
1 = o T i 1401 140
Henee the first stage power estimate is distributed as
LiPy ~ Wi (L =Qp.P)
where
P| = W;leq
Now evaluating the expected value of Py we have

&P}

il

1 1
EW;E{ZIZ;‘}wq = —wl (L~ Q) Riwg

Ly
- (-9

= (I —a)Py (3.13)

where

Ly

ln order for the power estimate to be a positive definite quantity L; must be larger

431

than the aumber of adaptive DOF assigned to the stage. ie:
L| > (¢
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This condition ensures that the covariance matrix estimate R, does not have an ill-
defined Wishart distribution. Since L; is equal to the number of statistical degrees
of freedom associated with Ry, the inequality L, > @, suggests that the number of
arlaptive DOF can not exceed or be equal to the statistical DOF available at the input
to the stage. Furthermore, when L; < @, holds the system is underdetermined.
This results in an ambiguous mapping of data by the beamformer.

In the case f the second stage, the output power estimate is formed hy

a 1 l =5 (=t — _l—‘t
P = wWiXiXlwg - 7w (x,x{cg [Cx.X[T) 7 TIX XY ) wy

— L t7z t

= qu 2Z-2Wq

= wiR,wq (311

where
Rz = 'I—Z2Z£
Ly

Since Z,[k]Z}[k] is Wishart distributed with L, — Q, DOF, the product X, [#]X![4].
expressed as the sum of i.1.d. matrices
my—1
X, kXK = S Zi[k +AZ [k +7) (3.15)
=0

is Wishart distributed with my(L, — ;) DOF [50]. By Proposition 3.1 the sample

covariance matrix at the output of the second stage

R, = 7,2}

XX - X,XIG, (CIX,X|C,)” Tix,X| (3.16)
has the distribution

LRy ~ Wary (ma( Ly — Q) = (02, Ry) (3.17)




where

R2 = Rl - Rl_C—-z (6;]1;62) CQRI
The second stage power estimate
pz = W;f{z[k‘]wq

is then Wishart distributed with mq(L; — Q1) — @, DOF. Taking the expectation B,

we then have

- l
E{B,) = —L—;wflf,' {ZQZ.E} Wq
h Qz)
= (1-F-F)p 318
( L L) (3.18)
Since moyly = Ly we have
E{F} = (1 —q — )Py (3.19)
where
a, = 92
2 L
and

P, = wflewq
Observe from (3.18) that
Ly > myQy + @,
must hold in order that output power be a positive definite quantity.

We now use an argument similar to the one used for the first and second

stages to show by induction that the output power for the p*® stage will have the

distribution
. p-1 p
Ly ~ Wit Ly = 3 | I me|Qx = Qp Py (3.20)
k=1 \r=k+1
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and a mean value equal to

p
E{B,} = (1 —-Z(\,,) P, (3.21)

q=1

where
P, = wflR,,wq
_ = (! &Y '&t
R, = R,., -R,_C,(C,R,_,C,) TR,

and

Q,

a, =
J’l

The form of the p*® stage mean output power given by {3.21) points to a fundamental
limitation imposed on the multiple time scale heamformer. As suggested by (3.21),
for the power estimate at the output of the pt stage to be a positive gquantity we
require

P
Yoy < | (3.22)

=1

to be satisfied. or equivalently

p—1 p
Z( H mp) Qe + Q, < Lp (3.23)

k=1 \F=k+1
This condition implies that the number of i.1.d. data blocks used in compnting,

a single power estimnate at the p*® stage must be greater than the total number ol

adaptive DOF estimated by the beamformer.

3.2 Mean-Squared-Error (Type I)

In a Type I implementation partial signal cancellation occurs hecanse of correla-
tion between beamformer weights and input data. When signal cancellation is not
correctly taken into account in the analysis of MSE. as in [41], an overly pessimistic
prediction of performance will result [12]. The first part of this discussion focuses

on an appropriatc measure for MSE.
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Recall that the signal component of the measured wavefield is orthogonal to
the linear span of the beamformer signal blocking matrix. Likewise wavefield com-
ponents contained in the linear span of C constitute noise. We then rewrite the

input data block Xo[4] as the sum of signal and noise components,
Xolk] = Solk] + Xonlk] (3.24)

where

ClSolk] = Og,1,. ¢=1.2 ....P

Solk] and Xy (k] represent the signal and noise components of the measiired wave-
field. We assume that Sg[k] and Xg[k] are statistically independent, zero mean
complex Gaussian random processes. Extending our notation to subsequent stages,
let

Xp-1[k] = Sp_i[k] + Xpoip[k] (3.25)

where

Sl,_|[k] = ( SU[I\] S(j[!\'*‘ l] [N S()[ll\' + m,, — l] )

for p > . Observe that the signal passes the first beamformer stage undistorted if
and only if

8{Z1 ISO} = SO (326)

holds. A similar condition applies to subsequent stages. At the p*® stage. the signal

passes without distortion if and only if
E{Z,|S,-1} = S, (3.27)

is satislied. To quantify the signal cancellation effect £ {Z, | S,—} must be evalu-
ated.

The output of the first beamformer stage is

Z, = (Iy - CiB)'Xo (3.28)
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where

n — —\ - —
Bl = (CIX()XI,Cl) C{X()xlt)

Substituting (3.24) into the expression for By, we rewrite Zy in the form

— S — -t
Z, = So + Xom — XonX$,Ci (C1XoyX,Th) ClXay

ra =t ral -1 ralh G 9.
~ 50X}, C1 (CiXoyXinTi) T\ Xy (:3.29)
From (3.29) the conditional expectation of Z; given Sy equals

. — —\ !
E{Z, | S} = So — Sof {x{,,,,cl(c{x.,_,,x.*,,,,c.) C{x.,_,,}

—_ — o~
- & {Xo,,,Xf,',,Cl (CIX()‘"X(‘,J'CJ C:xn.u} (:3.30)

where
S{Xu.n} = Oyt

Given that

ClXyn

is Gaussian distributed with zero mean, we may show that
& (& RN el
€ {Xonrxf),nQ (CIXO,,,X.T,',,C,) C,X.,,,}
equals zero.

Proposition 3.2 Let V) and V, denote QxN and MxN random natriees, re-
spectively. Assume that Vy and Vy are correlated. Supposmg that Vi and V, haoe

a jointly Gaussian distribution and
Vi, ~ N(0, %y, )
sz ~ N(O.E-z'l)
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then

£ {V{ (viv)™ vlv;} = Owu
]
(See Appendix B.2 for a proof).

Letting
Vl = EIXU.W

and

Vz = Xo,n

we deduce from Proposition 3.2 that
o t = (et t m=\ &t R
< XU,'I’XU,’I’C t (C 1 XU.T’X()"’ICI) Cl XO.T’ = 01‘1-].[41 ( 3.31 )

To evaluate

— [ —_\ -l —
£ {x(t‘,,c, (T1XonX$4Ch) cfxo,,,}

cousider the following,.

Proposition 3.3 Suppose thal V describes a QXL random natric with 1.i.d

columns which arc symmetrically distributed about zero, then

e{vi(vw) v} = 9,

a

(See [12] as well as Appendix B.3 for a proof).
Observing that column vectors of EIXO_,, are independent zero mean Gaussian
distributed, we apply Proposition 3.3 to the third term in (3.30) and write

. — = =l
B {xf),,,C. (C1XonX},T)) c{xo,,,} = ?—‘1,,, (3.32)
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From (3.31) and (3.32) the conditional expectation of Z; given Sy equals a scaled

version of the desired signal, ie:
eizils) = (1 - 9-‘) So
= (1 = a1) So (3.33)

indicating a partial cancellation of the signal. In the following discussion we examine
a similar effect at the output of the second stage.

For the second stage the degree ol signal cancellation is determined from
E1{Z, | $\}
where S, is composed of m, non-overlapping samples of S, and
Xilk] = (Zy[M Zyfk + 1) ... Zy[hk +my— 1))
From (3.29) we rewrite Z, as

Z] =5 + Zl‘s + Zl.n ($3.31)

so that
_ t = (& t =\ =t -
ZI,S - = SOXU,nCI (CIXO,nXU,nCI) Clxu.r) (-5.-{'))

and

& (& Y '&t
ZIY-,, = Xo'n - XO'".X.(E’"C] (Clxl),"’x(t)vncl) CIX”-"
(:3.36)
where Z, 5 is a result of the signal appearing in the estimated heamformer weights,

and X, 5 corresponds to the noise only component of Z;. We now express X, as

the sum
Xl = S] + Xl,s + X]’" (3:‘7)
where

Xl.s[k] = (Zl.;[k] Zl‘s[k-f- l} e Zl.S[/"' 4y —- l])
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and

Xiglk] = (Zglk] Zoglk+1] ... Zoglk +ma— 1)
Substituting (3.37) into
te (Bhx . xte ) &t .
Z, = X, - X,XIC, (C}xXIC,) CX, (3.38)
the output of the second stage is rewritten as

—_— —_— =1
Z, = S + Xis~8X],C, (C1X19X!|,,C:) TiXuy

—_— = _— =1
+X1a = XigX1yC: (CiX19X1,C2)” TiXuy
(3.39)

stnee

xl,sxl{,n =0

I'he conditional expectation of Z, equals

— —_— _ = e
£4Z, | S1) = s,+‘~:{x,_s|s,}-slg{x1_,,c2 (ThX, X!, T2) c.ﬁx,,,,}

——— fmm — \ ! e
iy {xl,,,x{',,c.z (CiX1 X! ,Co) c;xl,,,} (3.40)

where
5{ X1'n | S] } = Ox\lJ.Lz

To apply Propositions 3.2 and 3.3 to (3.40). as we did in analyzing the first
stage. X,y must be Gaussian distributed. Unfortunately, because of the action of

the first stage. output data will not be Gaussian distributed even though
1
xlﬂlxl.n

ts Wishart distributed. As an alternative. observe that Z, n conditional on 6})(0,,,

15 Gaussian distributed with zero mean (see Appendix B.4). It then follows that
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X5 conditional on
Co,n = (—C.IXO",’[I\']. GIX()_"[L' + l], e ._C—{ X()_"[l\' + nr, — l]) (‘ th

is Gaussian distributed with zero mean. To take advantage of this observation we

rewrite £ {Z; | S;} in the equivalent form

E{2:)8,} = E{€{Z:/Cos.5:}IS:}
= (l-a)S,

s, &l¢ t & (¢t t =\ =t . -
-8:£1€(X1,C, (TiXunX!,,C:)  CiXyylCun.Si 1S,

—_— [ R
- 8 {5 {xl.nx'{.nc‘.’ (CEXI.1)X{.1]C.’) C[»Xl.ul('u.na SI } |Sl}

3. 12)
Evaluating the inner expectation in (3.4 observe that sinee
Xl |CU,I]* Sl
is zero mean Gaussian distributed it follows from Proposition 3.3 that
B N Q. .
8 {X{J'CQ (C-ZXL"XI‘"CQ) CLXI.'I)ICU.TP Sl} = I = (¥ (3. |”
By Proposition 3.2
£ X X!, Ce (TIX, X1, C.) " CiXumlC = ~
1,12 2% L 2 2 l.nl‘—(mp Sl = 0.\I.I‘I,, ("-‘H)
From (3.42), (3.43), and (3.44), £{Z, | Sy} equals
E{Z, ]S} = (I — oy — y) S, (:3.10)

Extending our analysis to succeeding stages of the beamformer we mav show

by induction that the expectation of Z,, given S,_; takes the form

P
{2,181} = (l - Zm) Sp-1 (3.16)
i=1

8




where

Z, = S, + X5 + Xy

Note further that
—_ 1 —t ) -
Zps = -S,aXi_,C (c Xp-10XisCh)  CrXpoiy (3.47)

and

. J
Z’l n - Xp—l n - x])—l 7]-xp—-] ]'C (C Xp—l nXP-l n ) C,)X])—I.I] (""Lb)
for p21. As indicated by (3.6) the output of the p™* stage contains a scaled version
ol the signal. Since this scaling is only affected by known beamformer parameters.
(ie: oy (= 1,2.....p). it is necessary to account for (3.16) in the definition of MSE to
arrive at an aceurate measure of performance. an accurate measure of performance.

IFirst. we consider the standard definition of MSE as applied to the p* stage.

l . 2
o= Vl_t{ w;(Z,.—S,»_l)‘}
p
| . 2
= (| Wi (2= £(Z, 18,1} + (2, 1S} — S,m0) | }
p
! Il t
- [—u{wq ,—‘,{Z,,|Sp l} l}
o
! Iy t(c ! 2
+ 7—9 {' \Vq(b {Zr, | Sp—l} - S,,__l) ’ }
L
= & +b) (3.49)
where

by = ZL {’w (E4{Z) | Sp-1} - S”")‘z}
e e vl (S} we
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equals mean squared conditional bias. Since b; is dependent only on the number of

adaptive weights and adaptation time. and not on noise power, the term

& = f;f{\“%(zp—-i{zplqu}>r} (3.50)

provides a definition of MSE which is corrected for the signal cancellation effeet
associated with a Tvpe I implementation. By substituting (3.16} into (3.50) we
express the corrected MSE for a p stage network as
14 r P
& = (1 - Za,-) Pon + Z(v,,(l - Z«\,)Ps (3.51)
/=1 =1 r=1

where noise power at the output of the p*™ stage is
= (1 =\ 't \
pp.n = w:fl (Rp—l.”l] - Rp—l,ncp (C,,Rp—l.l)c’p> -’,»Rp~l.l') Wq

and R,y 5 is the covariance matrix of X,_; 5. such that

—_ —_— -~ =
Rp—lﬂ] = Rp—).l) - Rp—Z.I)Cp—l (CT R,)—.’.I]Cp—l) C:t

p=1 p~1

R—/'AJ.I)
for p > 2. Signal power equals
P = wiRswq

where

m:lq&ﬁ'}

-1
I, P

As a final point we evaluate (3.49) so that
P P
i = (1 - m) Pon + D Pq (:3.52)
/=1 n=1
equals the uncorrected MSE of the beamforzner. In comparing this expression with
(3.51) we observe that ¢, provides a misleading measure of MSE by the factor
P

»
O,IZ(YI‘ Ps
1 f=1

1=
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3.3 Signal Cancellation

To illustrate how the choice of
@, and L,

affects the output power of the Type I heamformer consider a simulation experiment
consisting of a single source embedded in additive white Gaussian noise. We assume
that the vectors x[n] are i.1.d.. Source and noise processes of the wavefield are
statistically independent. The spatial field is measured by a 12 sensor single tap
equi-spaced array pre-steered to the source location. 11 DOF are available to a two

stage adaptive beamformer. To verify (3.21) a; and ¢, are varied as

( l L= -7
= -/ anc Q9 = =
M L] 2 7712L1 L'z
for ( = 1.2,....10. Based on 130 independent Monte Carlo trials Figure 3.1 shows

output. power of the two stage beamformer plotted as

lOlOgm (E {f’)}) - 1010810 (Pg)

for various values of a; and a3 given f and m,. Overlaid onto igure 3.1 are the-
oretical results obtained from (3.21) A measure of 0dB on the figure implies zero
degradation in output power. Note from Figure 3.1 that as the ratio of DOF to adap-
tation time approaches | the signal cancellation effect becomes more pronounced.
To provide a closer examination of signal cancellation recall first that for a

finite adaptation time the p** stage weights are computed from
B,k = (CX,_i[k]X!_,(K]C,) ™ T'X,, )X}, [k 3.5
(k] = (CXpoa[KIX][K]T,) TyX, (kX 4] (3.53)
Rewriting X,_; explicitly in terms of a signal and noise component as
x.p_] = Sp..[ + X])—I.S 4+ Xp—-l." (3.:)4)

where S,_y denotes the signal component, such that
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and X,,_y 5 is the noise term. Expanding By[A] in terms of (3.34) as

. =it t s\ '&t t
Bp = (C,,xp— l,nxp— |88/ CI’) CpXP"l vnxl"l»"

— T =
+ (€I X1 X} 10Cr) TXpmrmShos (3.55)

we observe that the signal component appears in the weight estimate. However. if

the noise component is renwved from the data. (ie: X,_1 2 =0), then

~

B, = 0q, v (3.56)

suggesting that partial cancellation of output power estimate occurs only in the

presence of noise.

3.4 Mean Output Power (Type II)

For comparison purposes the mean output power of the Type [ implementation is
analyzed in this section. When signal and noise cornponents remain stationary over
loug, periods of time a Type Il adaptation scheme is generally preferred over a Type
[ approach. One reason for this choice is the signal cancellation eflect discussed
previously. A second reason favoring a Ty pe [l implementation is the inherent delay
which accompanies the processing of input data by Type I adaptation. Throughout
this discussion the notation used in the preceding analysis is retained. Since the
Type Il implementation does not compute beamformer weights from the current
input data block we introduce additional notation to distinguish current input data
from data used to compute beamformer weights.

Let Y,_, describe the M.JxL, data block used to compute the p** stage
weights. Data vectors contained in Y,-, are derived from the preceding input data

block such that

Y, (k] = (Zpyfk=my + 1] Zpy[k=mp+2) ... 2y [h]) (3.57)
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where the current input data block is defined as before by
X,,_l[k] = ( Zp—][k] Zp—l[k + 1] N Zp-—l[k + mpy — l])

Since there is no data overlap between Y,_[k] and X,_,{k] these matrices are sta-
tistically independent. For the Type II beamformer the estimate of B, is written

as
o — N
B, = (ClY,.,Y!.,T,) C)Y,.Y], (3.58)

Consider now the power estimate of the first stage, which we write as

~ 1 P —_
P, = L—Wl; (I,\[J - B{C{) XQXS (I,\[_[ - C|B|) Wy (:3.59)
1

Observe that for this adaptation scheme the weight estimate B, and the out data
block Xg are statistically independent. The expected value of (3.59) can then be

written as
~ (A A=t =0 "
¢ {Pl} = Wég {(I_\[_[ - B:Cl) R, (I\I_[ - ClB|)}Wq (:3.60)
To proceed further we apply the following proposition.

Proposition 3.4 Let C denote a non-random M.Jx () matvie and w a M.J <1 vee-

tor. Supposing that

YY! ~ Wy, (L.3)

then the conditional distribution of

~

Bw = (C'YY'C)” C'YY'w

given
CtYY'C
is

Bw | C'YY'C ~ NQ( Bw, P(CYY'C)” )
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where

Bw = (C'=C)” C'sw

and

P = wiSw — wiEC (cfzc)"cfzw

a

( See Appendix B.5 for a proof).

Sinee Y(,Y.B is Wishart distributed. the conditional distribution of ﬁlwq is
5 =t te= =t te .
B,wq | CY,Y[C, ~ Mo, <B1wq, P (TIY,YITY) ) (3.61)

where
P, = wR tRoC, (CIR,C,)” TR
I = WallgWq — Wit 101) 1 oWq

by Proposition 3..1. Based on (3.61). (3.60) is rewritten in the form

E{ﬁl} = W:‘1 (I,\“ — BIE{) RO (I_\[_] - —GlBl)wq

——

+ & {&{w} (Bl - B]) TIR,C, (B - Bi) wq | T Y, YIC: }}

= P, +tr (€IR061£ {COV {Elwq | EIYOY‘Eél}})

(3.62)
Noting from (3.61) that
. — — — — -1
cov{ Bywq | TIY,Y{C, } = P, (C]Y,Y{C))
& {B} simplifies to
<A =tn & o (&t tem )7 2
& {P[} = P, -+ Pltr <ClR()Cl‘t {(CIY0Y0C1> }) (-3.63)
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where
—t —_— 1 | — _y 1
E{(ClYOYE,C,) } - 5. (CIR.T))
by ([49]. pp. 330). The mean output power of stage one can then be expressed in

terms of Ly and @, as

~ I — — et
g {Pl} = Pl + ﬁpltr (CIROC| (C:R()Cl) )
— Wl

Q,
= Pj+——=P
YTL—Q !

L
= P, (3.6:1)
| - (431

In deriving (3.61). analysis hinged on
YoY]
being Wishart distributed in order for the random vector
B,w, | ClY,Y!C,
to be Gaussian distributed. Turning to the weight estimate of the second stage, je:
B, = (_C'I,Y.YI'C})—] Cly,y! (3.63)

observe that Y;Y! is not Wishart distributed. This is a consegnence of the inpt
data block being statistically independent of the adaptive stage weights. Henee,
the direct application of Propesition 3.1 is precluded. To remedy this sitnation we

consider the approximation
Z,[K|Z}[k] | C Yok YSFIT) ~ Wars(Ly, k) (3.66)
which we base on an empirical investigation. where
w = 1+t (CIRG: (ClYalk]YIHIC) )
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and

R, = € {Zi(uzilk)

Note that
| 1

Ll"‘Ql - l—al

where vy = (01/L;. Now to extend our approximation into the second stage. the

E{m} =1+ (3.67)

distribution of

~

|
R, = T—Y,[k]YI[k]
»

1 m;

= [—Z Zy(k + =1 = my)Zk + 0 = | = my] (3.68)
‘2 =1
ts approximated by
Y\ Y! | Co~Wary (Lz. ToRy) (3.69)

where
Cy = ('c‘IY(,[A- ~ )Yk = mo)Cr. ... Tk = Y[k - 1]Cy)

and
mq

Iy = Z‘Yk-/

=1

Irom

l N ral ral - nd
n = EW(; (I‘\[J ad BECE) XIXI (I‘\[_] - CQBQ) Wq (-3 I'O)

o

we note that since ﬁ) and X are statistically independent. £ {P,} can be rewritten

as
E{P} = - _lmw;s {(Tyy - BITY) Ry (T - C.B,) } wq (3.71)
where
R = € (XX}

Under the approximation that

Y. Y! |G
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is Wishart distributed. the distribution of
ngq I —C—.LY[YIEQ.CQ

will be

B.wt | CF te . =t t= \7! g

QWq | CzY]Y]C'}aC() ~ NQ2 BQWq, 10P-2 (CzlelC.’) (3.72)
where ,
P, = wiRiwg - wiR,C; (CiRiC.) ClRiw,

from (3.69) and Proposition 3.4. By applving the same approach taken in the
analysis of the first stage, we rewrite (3.71) in the {orm

E{P,} = : (W; (IMJ - B'S—C—;) R, (IMJ - C.B,) w,

l"‘CYl

+ L (5 {E,' {wt (BT — BB) ’C_.tR|—C—'3 (B

1—(\!1

— B_;) Wq l CLY|YIEJ.C()}})

= 1 (P-z +tr (EQR,EE {cov {]A3zwq | _C—.LYlY{C—‘._,}}))

1 —
" (3.73)

From (3.72)

cov { Bywg[CLY,YITC ) ~ 1P, (LY YIC,)
£ {P,} simplifies further to

£ (P} =~ _la, (P2 +Pytr (CiR,C}S {l‘(, (ELY,YIE,)~I })) (3.71)

such that

£ {(@YlYIC})-l | c(,} ~ 1 _] 0 (Clr,C,)" (3.75)
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[70]. We then write the mean output power of the second beamformer stage as

E(B) ~ —— <p2 +T _QQPgtr (CIRC. (TIRTy) '))

1-—CY|

- (P2+—Q—2——P2)

e La—Qq

1
= P, (3.76)
(I—a){l—ay) °

As a further approximation consider

We extend our results to the p™ stage by applying an argument similar to

1

~————P, 37T
(l-a;—-a~;_)2 (3.77)

that used in the preceding analysis of the second stage. We approximate the output

power of the p* stage by the expression

A {
${P,} x ————P, 3.78
a2 (1 =0, ar) ( )
where
- (=t _\ =1 —=t
P, = wiR,_,wq — w/R,.,C,(C}R,-,C,) C,R,.1wq
and

R,1 = R,_; — R,esCpoy (C)_|R,-.C,mt) T
for p> 1.

To verity the accuracy of (3.78) we numerically compare this expression with
the mean output power estimates obtained through Monte Carlo simulation. The
simulation experiment is identical to that used previously for the Type [ beamformer.
Our array consists of 12 sensors followed by a two stage M2VDR beamformer. Input
data vectors to the first stage are taken to be i.i.d.. Measured data consists of
a source compounent scaled to 3dB and spatial white noise uncorrelated with the
source. Figure 3.2 shows the mean output power level obtained from (3.78) and by

simulation for various values of Ly, Ly, @, and Q,. As indicated by this figure our

approximation of € {B,} is effectively identical with the experimental results.
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3.5 Mean-Squared-Error (Type II)

Unlike a Type I implementation, the Type [T M2VDR beamformer is not characterized
by a signal cancellation effect. To demonstrate this, recall that the output of the

Type Il p* stage is equal to

p=1

t & (& t &\ &t an
z, = X0 — Y,0Y),G,(CY,.Y!_C,) CX, (3.79)

where B, and X, are uncorrelated. As a means of verifying that the signal does

not experience partial cancellation we evaluate the conditional expectation
<
v {Zp l Sp—l}

where S,_ is the desired signal component of X,_,. From (3.79) we have

-1

g < < C (¢t r'el t
£12,15,.1] = L{x,,_.|s,,_l}—Q{Y,,_,Y*_,c,, (TlY,..Y!_,C,) c,,xp_.|s,,_1}

—_— [ R
S, — 5{\(,,_,3(T T, (ClY,..1Y!_,T,) c“}s,‘_‘

p=1 P

Sp—l (‘SO)

: rell
since C,S,_y = 0g,.L,.

Without the need to correct for signal cancellation. MSE in the p*f stage is
determined from

_ 71_;{| w}(2,~5,-1) [}

[£3%
=
|

= {-; (5 {W&szf,wq - Wgsp—lsl-lwq})




Substituting (3.78) into (3.81). an approximate expression for MSE is given by

p
Yl

gy R >—Ppn + ——'—2',,———133 (182
l—Za,- l-—Zo,
=1 =1

where P, and Pg are defined as in (3.51).

Notice from (3.82) that as adaptation time scale is reduced, or additional
adaptive DOF assigned to a stage, MSE increases. In contrast, a decrease in adapta-
tion time scale or an increase in the number of adaptive DOF leads to a reduction
in the desired signal power and a subsequent decrease in MSE for a Type 1 heam
former. To resolve the apparent difference in performance between the Type Land 11

beamformer implementations output SNR (SNRgy¢ ) is examined in the next section.

3.6 Output SNR

(‘omparing the MSE expressions derived for the Type I and [ beamformers, we ave
left with the impression that the implementations differ substantially i detection
performance for the same assignment of adaptive DOF and adaptation timme. ‘To re-
solve this apparent difference in performance outpnt SNR is examined. For the Type
[ and I GSC implementations. it is shown in [12] that both adaptation schemes
achieve identical SNRout performance even though the respective MSE of cach heain-
former differs. Employing the same definition of SMReyy as given in {12]. we may
show as well that the performance of the Type I and [T M?VDR implementations are
equal with respect to SNRyyt.

The SNRout of a beamformer is described by the ratio of mean out put power
of the desired signal to mean output noise power. Following [42]. SNRyyy for the p'

stage of a Type [ beamformer is redefined as
2
£ {]s{w;z,, S )| }
2
E{‘ wh(Z, - £ {2,1S,1}) | }

SNRout(p) = (3.583)
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to acconnt for the signal cancellation effect. From our analysis of MSE for the Type

[ structure (3.83) can be expressed in the form

SNRout(p) = =
Sp
p 2
(l - Z at’) Ps
=1
= p » P
=1 [ =1
p )
(1 - ch) SNRout( )
= = (3.84)
| + Z oy mout(p)
1=1

where SNRgyt(p) corresponds to the infinite time output SNR as defined by

— P,
S Rout([)) = E“"
pn

Turuing to the ptt stage of a Type Il implementation. trom (3.82) ortput SNR

for the stage can be expressed as

Ps
SNROUt’(p) = p -1 p p -1
(l —‘ZO’") Pp,]"l + ZC\/’ (1 '—‘ZO‘;) PS
=1 =1 =1

P
(l - Z (\y) SNRout(p)
=1

- . (3.85)
I + Z a¢SNRoyut ()

=1

Comparison of (3.34) and (3.83) leads us to conclude. as in the case of the GSC
{12]. that the Tvpe and 11 multiple stage M2VDR beamformer implementations are

cquinalent with respect to output SNR.
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Chapter 4

Beamformer Design and Multiple

Time-Scale Adaptation

A unique feature of the M2VDR beamformer is the flexibility of distributing adaptive
DOF among stages arranged in cascade. This property enables simultancous adapta
tion of DOF over different time-seales. The ability to adapt on multiple time scales
is a particularily useful feature in combating mixed time-scale interferers. For
stance. to cancel short duration interference. a multiple stage beamformer compntes
a small number of weights assigned to a stage on a time-scale approsimating the
duration of the interferer. With lewer weights, the beamformer stage introduees
the possibility of larger reductions in adaptation time then could be possible for a
GSC implementation. Furthermore. the M2VDR realization does not enrtail the ability
to respond to multiple interferers since the heamformer applies the remaining DOF,
retained in other stages, against long duration interference. However, in order for
the beamformer to be effective. attention must be paid to the choice of adaptation
scheme and the columns of the signal blocking matrices assigned to individual stages,
From the derivation of the M2VDR beamformer. (2.21). we see that adaptive
weights are computed from the output of individual stages as shown in Figare 1ola,

and not from the final output of the beamlormer. as wonld be the case i ignre

1)
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4.1b. Assuming an infinite observation period. stage weights derived locally as
shown in Figure 4.la, minimize MSE at the final output of the beamformer [:38].
Furthermore. prior knowledge of the input data covariance matrix, Ry allows stages
to be arbitrarily arranged without affecting final MSE performance. This is not the
case under time varying conditions. For the adaptive beamformer. the ability to
derive weights solely from the ouiput of individual stages is the key factor that
allows stages to be adapted on different adaptation periods.  Otherwise, il cach
stage adapts from the final beamformer output. weight estimates hecome dependent
on the longest time scale employed by the beamformer.

When all interference components of the wavetield are slowly time varving, ap-
plying either a Type [ or Il adaptation implementation does not affect final output
SNR. A Type Il implementation is generally preferred under slowly time varying con
ditions to prevent a delay in updating the output of the beamformer. The presence
of short duration interference causes Type 11 adaptation to place a nnll in the beam-
former response after the event has passed. This situation motivates 1s to consider
Type I adaptation to synchronize the beamformer response with the enrrent mput
data sample. In the first part of this chapter we examine the issue of stage ordering
under Type [ adaptation.

By decomposing a GSC into a M?VDR realization cach stage of the network
corresponds to a partially adaptive beamformer operating on fewer than MJ - K
adaptive DOF. Partially adaptive beamformer realizations have in the past heen used
to reduce the number of adaptive DOF. This has the effect of offsetting the compu
tational burden imposed by large arrays on computing beamformer weights. (ep:
[35, 36, 39]). In reducing the number of adaptive DOF available for intetlereuce can
cellation care must be exercised to ensure that a significant percentage of interferer
power is passed through the signal blocking operation. In other words. the design of
the signal blocking matrix should maximize the intersection between the interference

subspace and the span of the signal blocking matrix. A similar design problemn faces

~1
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the mmltiple time scale beamformer. In the second part of this chapter we consider

how performance is affected by the choice of signal blocking matrix.

4.1 Minimum Mean-Squares Error and Stage Adap-
tation
IFrom the derivation of the M2VDR beamformer, the unconstrained minimization
ngn (W; (IM.I - EB)Jr Ry (IMJ - GB) wq)

can be decomposed into P minimizations of the form

. — o\t —
l%l,“ tr ((I,\[J - C"Bi’) Rf_l (I‘\[J - Cfo)) ( l:l)
for ¢ = 1.2..... P. As suggested by (4.1). the formulation of B, is dependent only

on the ontput of the ptt stage and not on the final beamformer output. In this
section we re-examine this property of the M2VDR beamformer when stage weights
are adaptively estimated.

Constder a deterministic least squares (LS) solution for the adaptive weights
of cach stage based on Type | adaptation. The global optimality of the p*™ stage
weights with respect to the final output error of the beamformer depends on the
orthogonality condition underlying the minimum mean-squares error (MMSE) solution
151, 52]. A definition of the orthogonality condition that is necessary and sufficient
for the multiple stage heamformer under Type [ adaptation follows.

Let the output data block for the pt® stage equal

Zp = (IA‘IJ - Blté:,)xp—l
= X,., - BX, (1.2)
where
T X, = X,




At the p™ stage. the local MMSE solution requires the output of the stage to he

orthogonal to the noise component 5(,,. ie:
(Xp-1 — BIX, )X! = Z,X! = 0 (1.3)

To ensure that the computation of B, is independent of succeeding stages, we further

require that
(X;'_] —_ ﬁ}i;’) X:, = Z;X; = 0 ( I |)

for ¢ > p. where B, follows from (3.5). When (L.1) is satistied we sav that global

MMSE has been achieved. To elaborate, suppose
Lpax = max(L,, p=1.2, ... .P)
where
Xomax(k] = (xo[l + (k = 1) Laax]. Xo[24 (k= 1) lnax]. ... Xa[kLnax])

represents the total number of sensor ontput vectors that wonld be processed by
the P stage beamformer over any Lpag sample interval. The interference and noise

component of Xy nay follows from
Xomax = C'Xnax
where C = (El. C,. ..., 6;)). If
Xpmaxlk] = (xp[l + (k= 1) Lpax]s Xo[2+ (k= 1) Lgag]. .. Xo[kLmax])

is the output of the P stage due 10 Xpgax[k] the best linear estimate of the signal
component

S(),max = C ' Xmax

is made by the heamformer when

Xtt).max“‘]x-/‘.max“'] =0
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Otherwise. if the above condition is not met then the global MMSE solution can only
he reached by adapting cach stage from the final beamnformer output. When this
happens all stages are effectively adapting on same time scale. ie: Lpax.

In this chapter, to simplify notation we remove indices on the zero matrix

Omn-

4.1.1 Adaptation Period: L,=L, (=1,...,F

Correlation between the input data block and the estimated weights characterizes
the Type Iimplementation. It is this feature of Type I adaptation that introduces
the possibility of global MMSE. Suppose that the same adaptation period is assigned

to all stages of the beamformer,

We apply (1.3) and (L. 1) as requisite conditions for global MMSE.

Observe for the first stage that

~ — —_— —_— —_ -1 — —_—
z,X] = XX|C - X,X{T, (C/X,X}|C)) TIX.X{C

= 0 (£5)
Henee,
(Xi - BiX,) X! = (Ius - BIC}) X.X]
= 0 (-1.6)

since Xy = Zy. Proceeding by induction

(X.—-, - ]315(») X! = (IMJ - BIC—I) X, X!

= 0 (1.7)

-3
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At the second stage we find that

Z.X} = 0 (1.8)
and
(Xl’—-l - ﬁ;i;) Xg - Z;X)

=0 (L.,

for f=3..... P.

Proceeding to the ptt stage we have

(X -BIX) X! =0 (1.10)
fort=p+1..... P — 1. As a consequence of (1.10). weights compnted by I'yvpe |

adaptation when L, = L. ¢ = 1...., P result in global MMSE.

4.1.2 Adaptation Period: L,>L,, (>p

This section examines MMSE when stages are adapted over different time-seales. Sup
pose

L, < Ly fort>p
In this case we observe that

Z,X! =0

holds. To proceed further define Xy, as the MJxn, L, block matrix

XO‘;'_] = ( X()[IL] X()[k + l] PR Xu[lu,' oy - l] ) (ll I)
Since
X'Xlt)‘l(j‘ = ZZI[/“‘*'J]XJ)[A' +‘J}C| = 0 (1.12)
i=1
where

Xy = (Z)MZ\k+1) o0 Ty lk vy, - 1))
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and

Zi[k+ XSk +(Cy = 0

the relationship between X and the second stage is

- ~ —_ - = ra =1 ral
(X, - BIX,)X},C = XX[C, (CIX,X[T,) TXiX,C,

= 0
A similar argument can be used to show that
(Xio -BIX)X{, T =0, forf>1
xtending our analysis to the pt® stage
(X— - BIX) X},C, = 0
for { > p. where
Xpotw = (Zpy M Zpy[M+ 1] o0 Zpoglb+my —my) )

Thus for L,>1L,, (>p stage weights satisfy the global MMSE criteria.

4.1.3 Adaptation Period: L, < L,, { > p

Assume now that the stages are rearranged so that

Ly, > Ly, for €>p

(4.13)

(4.14)

(4.13)

To adapt our notation to this ordering of stages we partition X,_;[4] and Z,[] into

L4+ my — mpp

non-overlapping data blocks. so that

Xt k] = ( Xpporn k] Xpon (K] o Xpmtasmpempen 1)

(4.16)




and
Z,(W = (XK Xpalk] o Xgasmp-npnlk]) (1L17)

where X(,_1.0[k] and X, o[k] are MJXx L,y matrices. Notice that X, [k] corre

sponds to the input data block to the p*® + I stage. Furthermore, let

; &t ol &t
X.p[k] = (Cpx(p-l,l)[}"] Cpx(p—l.'ll[/\'] ‘e C,,X(Iy_l_H—m,,—m,,H)[A-] )

= (X(pvl)[k] X(pc‘!)[l"] e X(P.l+lll,,—lll,.4.| )[A‘] ) ( I |‘\‘)

At the ptP stage.

z, = X,-B!X,
— t = (t b= et
= X,.-X,X_,C, (CX,..X]_,C,) TX,.,
we have

Z,X! =0 (1.19)

(‘onsider now the output of the pt + 1 stage. which we write as

Zp+1 = (Z/J-H‘!- Zp+l,2’ v Z]1+I,I+m,,—m,,“) (ll“)

where
xt,c, (Cx,.x!,c,)" ¢
Zp+l,t - Xp.l'—xp,&' ]).VCI‘( pEep, ¥ ,,‘/(/p) ,.Xp,l’

We then express the product Z,,HX; by

l+mp—mpy

Y ral ral rail -1 —'1.' Y
ZonXi= 3 (x,,, - X,.X!,C, (C'x,,X!,C,) c,,x,,,,> X' ,.C,
/=1
(1.21)

Since X, is formed from X,_,. and not just X,_, ;. we have
P, 2 I} .

X,/ X!_,,C,#0 (1.22)
Mence
2,1, X! #0 (1.23)



Since X, is not orthogonal to the output of succeeding stages. as suggested by
(4.233), global MMSE cannot be achieved at the final beamformer output. Our analysis
of the Type | implementation indicates that the global MMSE solution is conditional

on
Le<L,, for ¢ >p
Intuitively this condition ensures that input data blocks to the p*™ stage, ie:

Xp-—l[k]~ X,,_l[l;—i— l]. X,,_.l[k + 1] e

are independent of each other. This allows the stage to compute B,,[k + (] using
only the L, column vectors from X,_ [k + €] without detrimentally affecting the

linal beamformer error.

4.2 Signal Blocking Matrix Design and Mismatch

Distributing adaptive DOF across a cascade of stages enables the M2VDR beamformer
to simultaneously adapt DOF on different time-scales. Since individnal stages have
less DOF than the total available to the beamformer, a stage can apply a larger
reduction in adaptation time before weight noise variance causes performance to de-
grade. Although this feature allows a closer match between adaptation time and the
time-scale of an interferer, performance degrades nevertheless with an inappropriate
choice of signal blocking matrix. In this section we examine how the choice of signal
blocking matrix affects performance.

The signal blocking matrix C acts as a dimension reducing transformation
on X[n]. preventing beamformer weight estimates from being applied to the signal
component of the measured wavefield. Two factors dictate the choice of signal
blocking matrix for a single stage fully adaptive “eamformer (ie: P = ] and Q =
M.J — k). First, to ensure that the desired signal passes undistorted through the
beamformer € must satisfy

c'c = o.




Second, the columns of C must be linearly independent so that rank (C) corre

sponds to the number of adaptive DOF. Suppose

and J. A = 1. A form typically used for C is

-1 1 00
C = 0 =1L 1 0 ... | = (&¢c.. &) (121)
0 0 —1 |

/

where each adaptive DOF. represented by a column of C. emiploys informatic @ onl
along two adjacent rows of the data sample covariance matrix. with covarjanee
elements from remaining rows blocked. Because of this choice of blocking matrix
each beamformer DOF adapts on data from one sensor pair.

By distributing DOF between P stages. the rank of the signal bloching matiis
assigned to a particular stage is less than AJ — K. o this sense the p*™® stape
operates as a partially adaptive beamformer over a @, << MJ - K dimensional
subspace, ie:

span (—C,.) C span (C)
Partial adaptivity implies that components of X,_; lving only in span ((f,,) will
be regarded as interference by the pt? stage. If we were to assime that the same
adaptation period is assigned to each stage then the M2VDR beamformer and GSC age

identical when
IJ
MI-K =Y
r=1
holds, and computed weights are associated with the same record ol sensor mea

surements.  In this case we can use the columns given by (1L.21) in defining the

blocking matrix of cach stage. When adaptation time-scale differs hetween stapes.
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the cohimns of each blocking matrix operate over a different time-scale. This sug-
gests that the pt® stage is tuned to interference components spatially and temporally
through span (C—‘,,) and the adaptation time assigned to the stage. Since computed
stage weights are no longer dependent on the same record of sensor measurements,
cach stage must be treated as a partially adaptive beamformer.

A key factor affecting the performance of a partially adaptive beamformer is
the degree to which an interferer lies in the span of the signal blocking matrix. When
the signal blocking matrix is mismatched only partial cancellation of the interferer
oceurs. In the context of a multiple time-scale M*VDR heamformer. mismatch be-
tween the signal blocking matrix ol a stage and an interferer vesults in interference
components leaking into the succeeding stage. This situation does not present a
problem when the interferer appears over a temporal duration that is greater than
ot equal to the adaptation time of the succeeding stage. However, performance
may degrade if the duration of leaked interference components is shorter than the
adaptation of this stage.

Suppose the measured interference component of the wavetield is represented
by v[r]. Assume that the adaptation period of the pth stage is matched to the
time-scale of the interference. Set

v[n] € span(C) + span (6,,) + span (6;) (4.25)
where ( > p, Le > Ly, and

C\C =0

With the appearance of v{n] the pt' stage maintains a null in the beamformer
response in the direction of the interferer over the duration of the interference.
Since v[n] is only partially spanned by C, interference components leak into the (th
stage weight estimates. With Ly > L, the (th stage maintains a null in the response
longer than the duration of interferer. Maintaining the null past the duration of the
interferer may result in an unnecessary clevation of sidelobe levels. leading to an

increase in beamtormer output power because of diffuse noise.
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4.2.1 Array Gain Degradation

As suggested in the preceding discussion, an important lactor affecting performance
is the match between the measured interference wavefield and the signal blocking,
matrix assigned to a stage tuned to the temporal duration ol the interferer. In
this section a lower bound for array gain (AG) degradation is derived when signal
blocking matrix mismatch causes an increase in beamformer output power. To derve
this bound we assume kunowledge of the signal, interference, and noise covariance
matrices. To simplify analysis a two stage beamformer assigned a total ol ()
M.J — N DOF, with L, < L, is considered. We choose C; to lie in the orthogonal
complement of Cy,
CiC, =0

where

=t= rilal

CC = Iy. and, C,C, = Iy,

Suppose wavefield measurements consist of the three components
Xoln] = s{n] + vin] + nn! (1.200)

where s[n] is the signal, vin] interference. and g{n] diffuse noise. The temporal

duration of v[n] is represented by f4. Let
P, = wf,‘stq
where Ry equals the covariance matrix of the signal. and
ClRy=0 CTlR,=0
s = Wy =
The covariance matrix of n{n] is
R, = Pnlyy (1.27)

where Pp equals noise power as measured at an individnal sensor. Let Ry represent.

the covariance matrix associated with the interference component. so that
Ry € span (6,) + span (CT,) + span(C) (4.25)

N2




To examine the effect a short duration interferer has on beamformer output power
when components of v{n] leak into the second stage we proceed as follows.

With Ly < Ly, the weight matrix of the second stage retains components of
v(n] after the interference event has vanished. Reflecting this condition in the first
stage. we set

B, = (GIR,,E)_l c'r, = C! (1.20)
where
xp[n] = s{n] + nln]

corresponds to sensor outputs after v[n| has disappeared. From (1.29). the covari

ance metrix for the output of the first stage equals
(Lus - BIT]) (Rs + Ry) (Lus = TiBy) = Ru+Po (Luy = TC)  (130)

To account, for residual components of vin] retained by the second stage weights we

set,

— =l
B = (Ct (uRy + Pnlasy) Cz) CL (#Ry + Palasy) (131

given that
& &t &t
Pncz (IA\I.I - CIC|) = pncz
where
Ly~ 14
L,

scales interference power retained in By accordingly to the adaptation time of the

b=

second stage. Notice that
C!R,C, = CIR,,C
2 v 2 - 2 V2 2
where Ry, embodies the components of Ry spanned by C,, ic:
= (e Vet ral
R., = C;(C;C:) C,R, R,, € span(C,)

Since



and

&t
PnWIl (IMJ - C)Cl) = ing

we express output power of the second stage by

Pout = W) (IMJ - B;G;)(Rs + PnIMJ)(IMJ - E'sz) Wq

= Pg + P, (l + wéBgégﬁngwq)

— e R -1
= Ps -+ Pn (l + l W;/leCg (C;ﬂRng + PnIQz)

Suppose

Ry € span (61) + span (6-,;)

so that Ry has no component on the constraint subspace. From (-1.32) we then have
Pout = Ps + Py

sinee wf]Rv = 0. C'onsequently when an interferer lies in a null of the beamformer
quiescent response, leakage of interference components between stages does not affect
output power. In other words. no work is done by the adaptive weights since wq
provides all interference suppression.

Rewrite (1.32) as
2 e
Pt = Ps + (1 + |7/°)Pq (4.33)

where
2

— _— -1
witR,C, (C;;le C, + PnIQ,)

2 —
v =

T P .
o expand |v]® further, we vewrite Ry as

—1j2__1]2

R, = P, R, R, (4.34)
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where P, equals interference power measured al a single sensor.

matrix square root of

— 1
R, = —R
v pv v
Let
—t =1/
CIR, = GA"'H'

. . —ts5/?
denote the singular value decomposition of C,R,, , where

A

diag ( Mv Ase oo Ay )

where rank (Ry) = ny. The singular values 0<A\ <1, b = 1,2....

/2
and Ry s the

(1.35)

.Dy. correspond

to the traction of interference power leaked into the second stage adaptive weights.

—t ==t/
The right and left singular vectors of C.;R:, " are
G = (88 - &)
and
H = ( 111 ll-z hMJ )

From (4.35) we have

|2 ‘2

—1j2___1j2__ —_—
v nINR wiR, R, C, (nINR C}R,

1.—--’/2 1/2 -1 ‘TZ
pINR w/R, HA" (LINRA + Iyp,)"' G

Ny

At INR?
=4 (1 + AguINR)

w;ﬁ‘l,/zhkh{.ﬁ:,/zwq

B A\ ?INR? 4
= M il 5 cos® (&)
&1 (1 + A puINR)
where
P
INR = —
n

+ IQZ)”I

(1.36)




and

M cos? (&) = W(T;R_:/zhkhzﬁyzwq

Observe that & is the angle between the left singular vector hy and the response

veetor of the quiescent weights to the interferer, ie:

=1/2
wfl v

: = . +=1/2 . .
Suppose Cy is well matched to RV/ and INR >> |. Under these assumptions

we sel,

’\k ~ 1. V l\:
and

A, INR? N

(1 + A\¢INR)?

Henee.
Pour = Py + Po(l+]7[)
< Ps + Po( | +ny M cos?(£nax) ) (1.37)
where
Smax = ( €k~| max (C052(£k))- k=1.2.....n, )

From (L37). we bound AG by

M
(140, M Cosz(fmax) )

< AG < M (1.38)

where
(e
cos” ({nax)
is dependent on the response of the quiescent weights and the signal blocking matrix

to the interferer. Notice as well that (£.38) depends on ny. the dimension of residual

interference components retained in the second stage weights.
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Chapter 5

The Impulsive Interference

Environment

In the ocean medium impulsive sources ol energy are induced by hiological, seismic
and explosive events. Examples of impulsive noise phenomenon inelude cracking
ice. marine animals, and transient mechanical noise from vessels [33. 510 We reler
to an acoustic event as impulsive when energy radiating from a source s transient
and highly concentrated in time. The occurrence of impnlsive noise in the presence
of slowly time varying interferers poses a difficulty for MVDR realizations restiicted
to simultancously adapting a fixed number of DOF on one time-scale. The problem
arises when the beamformer computes weights on an adaptation time greater than
the duration of the impulsive interferer. As suggested in the preceding chapter. this
may lead to an unnecessary degradation in detection performance hecause heam
former weights retain residual components of the interferer after the event vanishes,
The presence of residual interference components in the weight estimate forees the
beamformer to maintain a null in the magnitude response against a phantom in
terferer. This causes an elevation in the sidelobes of the magnitnde response that,
reduces the attenuation of diffuse noise. Consequently. heamformer ontput power

increased because of diffuse noise. degrading the ability to detect weak signals.
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To minimize the time interval over which detection performance degrades be-
cause of diffuse noise. we are inclined to reduce heamformer adaptation time. Un-
fortunately, by reducing adaptation time for a fixed number of DOF. weight noise
variance increases, From (3.84), output SNR for a single stage beamformer equals

(I — Q/L) SNRoy
I + Q/L SNRout

SNRout = (5. 1)

where SNRyyg represents the infinite time output SNR of the beamformer. @ and L
define the number of adaptive DOF and adaptation time assigned to the beamformer.
respectively, For example. reducing L to match the temporal duration of the inter-
ference event decreases output SNR as indicated by (5.1). We attributed this effect to
an increase in weight noise variance. An exact expression for weight noise variance
lollows.

Assuming Type [ adaptation, we express the GSC weight estimate by

W, = Bw, = (C'RC)” CT'iw, (3.2)
where
R = XX
L
and X is the current M.Jx L input data block. From (3.62). the covariance of W,
eqials
cov{w,} = E{E{(ﬁ - B) wqw:fl (f} - B)t | C—fflﬁ}}
= E{cov{ﬁwq | 61R6}}
L (etpe) ™! - .
= 3 (CT'RT)  Pou (5.3)
where
L
_ < t
R = ;¢ {x*{}



and
P = w} (R - RT (T'RT) ' T'R) w,

Observe from (5.3) that when Q is fixed. reducing adaptation time leads to an in
crease in weight noise variance. However. by decreasing (Q it is possible to reduce
L to a larger extent without incurring the same increase in variance. For the GSC
and direct forth MVDR realization, reducing Q degrades the ability of the bheamformer
in responding to the simultancous appearance of mulliple interferers. Uhis problem
does not arise lor the multiple stage M2VDR beamformer since the overall number ol
DOF remains fixed. To reduce adaptation time at an individual stage withont incur
ring an increase in weight noise variance, we decrease the number of DOF assigned
to the stage. Excess DOF are redistributed across other parts of the heamformer
cascade to preserve the capability of responding to multiple interferers.

I'he ability of the multiple time-scale beamformer to adjust both the mumber
of adaptive DOF and adaptation time of cach stage allows greater Hexibility in ma
mizing detection performance. This enables L, to be approximately matehed 1o the

temporal extent of the interferer. and Q, adjusted so that
[AI - CJI

corresponds to an acceptable level of weight noise variance,

In this chapter a two stage beamformer is analyzed, 'The discussion focses
on the design of C; and the optimization of £; when wavefield measurements con
tain impulsive interference components. To deal with short duration impulsive type
interference, the first stage is assigned a rapid rate of adaptation and correspond
ingly a small number of DOF. The succeeding stage functions as a conventional MVDR
beamformer in the sense that remaining DOF are adapted over a temporal duration

matched to slowly time varying interferers.
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5.1 Signal Blocking: The Narrow-band Problem

To allow for the maximuin degree of flexibility in selecting L, it is imperative that
the minimum number of adaptive DOF be assigned to the first stage. This condition
minimizes the impact of weight noise variance on performance as L is reduced. In
the narrow-band problem we only require a single adaptive DOF for each independent
interferer in the waveficld [15]. However, to ensure optimal interference suppression
the columns of C; must be matched to the incident interference wavefront.
Suppose M equi-spaced sensors are aligned in the horizontal plane along the
x-axis as shown in Figure 5.1. For the narrow-band problem we set J = 1. The

planar wavefront depicted in the figure represents interference. Applying (2.1).

x( f) = a(t, f)e’* ' f) (5.4)
where
l‘,)(/') - (l (~J'37rigs1n(0). (1‘,2.—.5{95111(0). t‘Jz.-r‘—ﬁ'—'CﬁLdsmw))

is the response veetor of the array to the interferer. d inter-sensor spacing. ¢ wave-
front propagation velocity. and A = ¢/ f wavelength. We equate 4. the angle sub-
tended by the direction of propagation and the y-axis of Figure 5.1. with the wave-
front direction of arrvival (DOA). If the DOA were known, the optimal choice for the
first stage signal blocking matrix corresponds to the projection of ry(f) onto the

orthogonal complement of the signal constraint matrix C. ie:

ot
<t
Sv—

S = (1 - c(cc”) ™ ) ni) (5.

Since § is unknown, and time varying, we can only consider maximizing the spatial
response of Cy over regions of possible interference activity. Identifying such regions,
beam-based designs (eg: [10],[55])-[57]) for partially adaptive beamformers can be
applied in forming C,.

Assume ¢<Q possible locations of interference activity, where Q equals the

total number of DOF available to the beamformer. We identify each interference
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location by a response veetor

re,(f) = <1, i ismion | artflsanog e’”w;cl-)ﬂsmwt))

where 0y equals the £ hypothesized DOA for an interferer. For ¢ such angles, set

A = (v (/). re())s .. xo,(N) (5.6)

Fach column of A, or beam. corresponds to the response of a uniformly weighted
conventional beamformer. where the magnitude resnonse of ry, is maximum at ;.

From (5.5). the projection of A onto the orthogonal complement of C equals

ot
~1
~—

H, = (I,‘, - c(ccT)"cT)A (5.

H, corresponds to the optimal choice for C; given A. However. to ensure flexibility
in selecting Ly when ¢ is large. we require a low rank ( Q) < ¢ ) approximation of
H,. Let
A, O Ut .
Hy = (S,.8) (3.8)
0 A, U,t
correspond to the singular value decomposition (SVD) of Hy. where S, and S, equal
MxQy and Mx (¢ — Q) "unitary matrices”. respectively. A, and Ay are Q,x (),
and (¢ = Q) x (¢ — Q1) diagonal matrices containing the singular values of H, ar-
ranged in descending order of magnitude. U, and U, equal ¢xQ, and ¢x (¢ — Q)
“unitary matrices”, respectively. We may then form the rank @, least squares ap-
proximation of H; by

H, = S,A,U! (3.9)

such that

C, follows from

H, = C,T! (3.10)



where T is a ¢x (2, transformation. Setting
T = U,
the first stage signal blocking matrix takes the form
C, = S.A, (011

The choice for @y is influenced by two factors, the number of impulsive interference

events occurring simultaneously. and the time-scale of interference,

5.2 Signal Blocking: The Wide-band Problem

Unlike the narrow-band beamformer. wide-band processing entails an adaptive ve
spouse in both the spatial and temporal domains. Heneeo the requirement for a tap
delay line. .J > 1. We begin this discussion by describing « model for impulsive

interference measurements retained in the beamformer tap delay line,

5.2.1 Background

sSuppose the W.Jx 1 measurement vector of sensor outputs consists of the three

independent components
x[n] =s[n] + Av[n] + n»] (5.12)

where s[n] and n{r] represent the signal and noise components of sensor measue

ments, respectively. At the ontput of a sensor
— 1 t
Pa = wiE {s[u]s'[n]} wq
equals average signal power and
Po = wi& {nlnln'[n]} wq
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average noise power. 4v[n] represents an impulsive interference component at the
output of the sensors. Applying the quiescent weight vector to 3v([n] over an obser-

vation interval of [, samples, interference power equals

Elk

Pv=_—'

L

Suppose that the most significant percentage of interference energy is concen-

trated within a finite temporal duration of tq samples. Set
(vin]), = 0 outside the interval T;<n<T; + tq — 1 (3.13)

where 7'y corresponds to the sample instant when the impulsive interference first
appears in the measured data. Characterizing v([n] in this nanner, the entire spatial
and temporal extent of the interferer across the array is encompassed within the
column matrix

V=(v(Ty) viTi+ )e..v(Ti+ta—1)) (5.14)

We scale ( vin] ), so that

0 < wiVViwg < M (5.15)

To incorporate the spatial /temporal properties of the impulsive interferer in
the sample covariance matrix of x[n] observe that 3v[n] impacts

L-1

R -i— Y x[n + xt[n + (] (5.16)
=0

after the sample instant n > Tj. Without loss of generality set
T; =0

We then describe the sample covariance matrix of x[n] by

|B1*

1 L-1

R = 7 (slas'(e) + nieln'(e) + VvV (5.17)
=0
when L2>tg. Over L samples INR equals
INR = o7 5.18
- (5.18)
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To complete the description of the impulsive interferer denote
ny = rank(V) < t4

as interference dimensionality. Interference dimensionality increases as the direction

of arrival (DOA) approaches endfire, (ie: 0] = 90° on Figure 5.1).

5.2.2 Assigning Adaptive Degrees of Freedom

Over the temporal duration of the impulsive interferer the sample covarianee matris
of sensor measurements is
» L i t Nt [ '/”"’ t -
R = TZ( [(s'1e] + nltin*[(]) + =VV (5.19)
d =1 d

Suppose that the average power of the impulsive interferer over [y samples is mueh

larger than the power of the signal and noise components ol x([n]. i

13° |31*
P, = — >>P; and Py = — >>P,
lq la
[n this instance we approximate R by
R, ~ p,VV! (5.20)

From (5.20), the power estimate of the first stage is then written as
a = (= =\ = -
B, ~ PywlV (I,d - VIT, (Tlvv'T)) ctv) Viwg (5.1

where the level of interference cancellation is shown to depend on the projection ol

V onto the subspace described by the linear span span (“C'rV). Sinee
rank (_C—l) =0, and rank(V) = n,
the rank of 6{\/ is bounded by
rank (C—IV) = min((/},.ny) (5.22)
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Henee.

Ql = ny Sy

establishes the minimum number of adaptive DOF required by the first -tage for
maximuim interference suppression. Without prior knowledge of V the possibility
of an over or underdetermined estimate of @, is likely. For the overdetermined case
n, < (Q;, weight noise variance may impair the ability to match the adaptation
time scale to the temporal duration of the interference. When ny > . the leakage
of impulsive interference components into the second stage becomes a concern.

Suppese Vois known. Let
V = FQST (3.23)
deseribe the SVD of V. Ignore for the moment the constraint
Clc=0
imposed on the first stage signal blocking matrix. Substituting
C, =FQ (5.24)
into (H.21)

B, ~ PywlV (I,d _ VIG, (E{vvf'c,)"élv) Vtw,

I

Powi FOST (L, - S(57S)"'ST) SOTF" w,

0 (5.25)

so that total interference cancellation is achicved. Re-imposing 'GIC = (. we project

FQ onto the orthogonal complement of C,

Ut
[
(>

—

G, = (IW ~c(cte)” Cf> FO (5.

to tind the optimal setting for C|.
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Since prior knowledge of V is precluded. a partially adaptive signal blocking
matrix design strategy must be adopted. Van Veen [58] disensses wide-band beam
based design. The eigenstructure and power minimization approaches discussed in
[33]-[40] provide other examples of wide-band partially adaptive beamformer design.
The eigenstructur= technique [40] is prone to overdetermined solutions. Since min-
imization of @, is an important factor in our design criteria this method proves
inappropriate. The intractability of the optimization problem associated with the

power minimization method [34] results in a suboptimal solution.

5.3 Optimization of Adaptation Time-Scale

Suppose that a wavelield ha:- two candidate models, summarized by the hypotheses
B: x[n] = iy
and
Hy:  x[n] = s[n] + ninl
In selecting between Hy and Hy. (ie: the presence or absence of asignal), a detector
compares the heamformer ontput power estimate with a threshold. When output
power exceeded this threshold we choose Hy, otherwise Hy is accepted. The random
nature of the beamformer power estimate introduces uncertainty in the decision
made by the detector. Assuming a fixed number of DOF, the degree of uncertainty
increases as adaptation time decrcases, since a reduction in adaptation time trans
lates to an increase in weight noise variance. We stunmarize this binary detection
problem in Figure 5.2. In Figure 5.2a, the probability density functions for Hy and
H; are shown when a slow rate of adaptation is applied in computing bheamformer
weights. where
Psyn = Psg + Pp

equals the mean value of output power under Hy. The shaded area shown in the figure

represents the probability of choosing H; when Hy is true. We refer to this probability
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as the probability of false alarm (PFA). Observe from Figure 3.2b that decreasing
adaptation time increases PFA through the increase of weight noise variance. Note
that weight variance affects the probability density function (pdf) of beamformer
output power under Hy and H, equally.

Consider now the binary hypothesis problem that arises when an impulsive
interferer appears in sensor measurements. Assuming the adaptation time of the
first stage is longer than the duration of the interferer. we summarize this detection
problem by

Ho:  x[n] = svin] + nln]
and

Hy: x[n] = s[n] + 3vin] + nn

With adaptation time L, longer than tq4. residual components of the interferer are
retained in the first stage beamformer weights after the event has vanished from
sensor measurements. :\s previously mentioned. this gives rise to an inerease in ot

put noise power. Figure 5.3b illustrates the detection problem in for this sitnation.

where Pz now represents output noise power such that
Pa 2 P,

Note that

Psyi = Pg + Pji

equals mean output power under H;. Maintaining the threshold decision level, w.
constant, we see from Figure 5.3b that because of a higher output noise power level,
PFA increases. To optimally select [, we propose decreasing adaptation time to a
point where output noise power and weight noise variance results in a minimmm
PFA. Such a strategy is intended to minimize the affect of impulsive interference on
performance by trading weight noise variance for detection performance in diffuse

noise.

99



Figure 5.3a

Output
P=+" Pow%r

Impulsive Interference
event Is present In
measured sensor data

Figure 5.3b

f—_Hi

Output
Ps P 340 Powper

Probabliity of False
Alarm

—_—— = K Declslon Threshold Level

Signal Detection in Diffuse Noise
and Impulsive Interference

Figure 5.3

100




5.3.1 Closed Form Optimization of L,
For the purpose of this analysis we assume that
h < @y << Ly >> |

thus allowing us to approximate P, by a Gaussian distribution [39].

PFA at the output of the beamformer equals

S o l’S,
PFA = erfc(h "{A“IH”})

N
te
-1
—

where x represents the decision threshold level determined for a fixed PFA. and

erfc(a) = ~dy

2 o
—=[ e
VT Ja
is the complementary error function. Setting
N — 5 {png()}
var {P,|H,}

b =

probability of detection (PD) equals

PD = erfc( ¢h-DI) (5.28)
where
Var{lsle|)}
var {P,|H, }
and

oI - E {P,H, } —‘8{152|H,,} (5.29)
var {P,[H, }

defines the detection index (DI). Assuming that
cx 1

PD is a monotonic function in DI. Under this assumption maximizing DI is equivalent,
to maximizing PD. lence. an optimal choice for L, follows from

JDI

— = ) 5.30
L, (5.30)
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Suppose Ly > l4. From (5.26). we set the first stage signal blocking matrix

to

C, = (IMJ -c(cte)” c*) FQ.

Because of the mismatch between L; and t4 output power increases due to diffuse
noise. Adapting (1.32) to our analysis, output power of the first stage is approxi-
mated by
Ho: Pro~ (L + Tl)Pa (531
Hi: Poom Pa+ (L4 7[P)Pa '
where

w!R,C, (_C—IRVE + PnI:\IJ)_

7 = (1 +

The scaling factor

1)

L —t4
L,

takes into consideration the differences between beamformer adaptation time and

Eo=

the duration of the interference. Taking into account L; and Q. we approximate

the mean ontput power of the first stage by

Ho: E{P) ~ (1-2) (1 + 727 P (5.32)
Hio E{P) ~ (=) (Ps + (1 + 7[FF)P)
At the output of the second stage we have
5 _ Q1 @ =2 _—
£pan} = (1- 7= F) (1 + 7P P (5:33)
- G - = .
s} = (1- 2B (1w AR+ R) )

and

var {By|Hy} = (1 _ @ —Q—”) (L + m*) Pa + ps‘f (5.35)



Substituting (5.33). (5.34). and (5.39) into (5.29).,

TNR [8
SWRour (/1 — - — 2

DI = T — (5.36)
(1+ 77°) + MRou
where
22 SNRout (2
0L 21— (14 Dy 4 SRR L]
Bl Ol ik (3.47)

Li~ty 12 s 2
(1 B+ o)
Setting (5.37) to zero, the optimal solution for L follows from the positive root of

the quadratic expression

2T (Ly = Q) L2 = 3137 Qi Laly + La@y (1P ta ~ Lo (1 + SWRoe)) = 0
(5.3%)

such that

= __3__. 8 [’2(l+§—ﬁ§out)_ ~_(‘_)‘3"
STy (l+\jl+9cgl< =k ’d)(' i ))

(5.39)

~

As suggested by (5.39), the magnitude of [71* in relation 1o SNReyy is an impor
tant factor in optimizing L. To demonstrate this point Ly, Qy. and Ly ave fixed, and
the temporal duration of the impulsive interferer is set 1o 1g = 2 samples. Fignure 5.5
shows a series of curves determined from (5.39), with each curve corresponding to a
fixed value of SNRyy;. Note that as SWRoye increases in relation to [F]° less emphasis
is placed on matching L, with the temporal duration of the interferer. Included on

Figure 5.4 is the point where Ly equals Q. Observe from the figure that (5.39)
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yields values of Ly that are greater than @;. This ensures that beamformer power
estimates are positive quantities.

Notice that we have assume prior knowledge of the duration of the impulsw -
interferer. Such information would be available in such applications as active sonar.
However, for many phenomena, including seismic events or cracking ice, tq will be
unknown or behave as a random variable. Under these conditions the usefulness ot

(5.39) is limited because of the sensitivity of this expression to tq.

5.3.2 Numerical Optimization of L,

In formulating a closed form expression for L; a Gaussian approximation of the
heamformer output power statistic is required. As an alternative strategy. we opti-
mize Ly directly through a comparison of receiver operating curves generated from
the true PDF of B,. where each receiver operating curve (ROC) is associated with a
set. value for L. Recall that the PDF of the beamformer output power estimate is

defined by the Wishart density function

( v )N/z_le-—-u/('ZPg'()

P2

Tom, (V) = P, 2NIT (N/2)

where I'(V/2) is the gamma function, and

C .
Pao = —%‘—L%) (1 +717 )Py

Py, = ( —%—%) ((l+ﬂ|7|2)Pn+Ps)

Thus for a fixed value of L;, PFA is given by

PFA = / £p,1m, (v) dv (5.41)
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and
. _
PO = [ fa (v)av (5.42)
L3

where cach ROC is generated for a fixed value of L by varying the detection threshold
x. An optimal choice for L; which optimizes detection performance follows from the
ROC corresponding to the highest PD for the lowest PFA.

To demonstrate the ROC approach, set

Ps = 3
Pn = ].0
|7 [F =20
and
g = 2
where Q. (02, and L, are set to
Q=2
Q2 =9
and
L, = 256

The adaptation time of the first stage is varied between 4 and 128. From (5.11)
and (5.42) the corresponding set of ROCs are shown in Figure 5.5. Observe from the
figure that [ = 16 optimizes detection performance. Substituting the same scenario

into the closed form expression given in (5.39). we find that L, = 15.8.

5.3.3 Convergence Rate and Dynamic Adaptation

Ihrough our discussion in this and preceding chapters we have assumed block adap-
tation in the computation of stage weights. Such an approach to adaptation entails

two ditliculties.  First. the beamformer output is delayed according to the number
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of input samples used to form the covariance matrix estimate of input data. Sec-
ond, block adaptation requires a matrix inverse operation to compute beamformer
weights. As an alternative, a large nuinber of dynamic adaptation strategies, that
recursively update beamformer weights from input data, have been proposed (eg:
[12.37] and [60]-[62]).

As suggested by Figure 5.4, the range of adaptation times for the first stage
makes necessary an adaptation algorithm that is capable of a rapid rate of conver-
gence. Moreover. the convergence rate of an adaptation scheme must be insensitive
to the condition number, or ratio of maximum to minimum eigenvalues of the input
covariance matrix. This property is critical, since covariance matrices with large
condition numbers may result when high energy impulsive interference is present.
If the convergence rate of an adaptation algorithm is larger than the scale-time re-
auiired to suppress an interferer. then detection performance degrades. Consequently
least-mean-square (LMS) algorithms. such as those suggested in [12. 37]. are not ideal
candidates because of condition number sensitivity. Self-orthogonalizing LMS rou-
tines provide greater robustness against large condition number situations [61. 62).
Alternatively, recursive least squares (RLS) adaptation is immune to ill-conditioned
covariance matrices [52]. Unfortunately. the drawback of RLS is computational in-
tensity. This however does not pose a great problem for the M2VDR beamformer
since RLS need only be applied to stages assigned a small number of adaptive DOF,
I'or a stage assigned one DOF, RLS adaptation translates to scalar operations. In
the next chapter we briefly examine the application of RLS adaptation to the M2VDR

beamformer.




Chapter 6

Simulation Results and

Discussion

This chapter continues the investigation of impulsive interference suppression and
the two stage M2VDR beamformer by simulation experiment. We have in the preceding
chapters identified two key aspects of M2VDR beamlormer design: adaptation time,
and the signal blocking matrix. The first part of this chapter examines, through
simulation the impact beamformer design. particularly mismatch in Ly and Cy. has
on performance. The second half of the chapter focuses on a comparative simula

tion study of detecticn and localization performance in an impulsive interference

environment between the M2VDR beamformer and the single time-scale GSC.

6.1 Background

Simulation experiments are based on a two stage M2VDR narrow-band beamformes
implemented in the frequency domain. Figure 5.1 depicts the geometry for our array,

where M = 12 sensors and .JJ = | taps. Inter-sensor spacing eqnals
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for f = 1.0 Hz. c equals propagation speed. To implement the beamformer we first
partition sampled sensor outputs into non-overlapping segments of V' samples each.
Let

Xolk] = (xo[l + (A= 1)N], %02+ (k= 1)N]. ... .xo[kN])

deseribe the A data segment or snapshot, where
Xo[l + (A = 1)V]

represents the M x| sensor measurement vector at sampling instant (4 (h—=1).V. V
is chosen to be much larger than the maximum propagation delay of a signal across
the array. This ensurves that the frequency coefficients. found by taking the dis-
crete Fourier transform (DFT) of Xg[k], are effectively uncorrelated. Non-overlapping
snapshots are used in this investigation to eliminate correlation between successive
frequency estimates. In practice though. snapshots are overlapped to reduce vari-

ance in spectral power estimates. Taking the DFT along the rows of Xy[4]. let
m()[k. j]

represent the M x| vector of frequency coefficients of sensor outputs at frequency
f. Over an observation period of L dala segments, the covariance matrix or cross

spectral density matrix (CSDM) sample estimate of xy[k. f] takes the form

A L
Ro(f) = 73 eolk. Slabfi]]
k=1

Consider the response of the array to a plane wave arriving from #. For the

kB data segment., we have

zo[k.f] = a(f)rs(f)

where
l.”(” = (l. (,12:.'%1-51n(0). ejlh'échsin(o). (‘J‘z:r“”—'c'ﬂ—qsmw))
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For convenience let o[k, f = Hz] = xylk]. Suppose zy[h] consists ol the

following statistically independent components
zo[k] = s(h] + ulk] + v[k] + nlk] (6.1)

where s[k] represents the frequency coeflicient vector of the desived the signal. Fre-
quency coefficients of directional interferers are represented by a slowly time varying
process u[k] and an impulsive component v(k]. plk] cortesponds to frequency com

ponents of diffuse noise. Let s{k], u[k]. and k] be modeled by wide sense stationary

zerc mean complex Gaussian random processes, such that

Pg 1‘\/1?{,. k= m

& { slklstim]} = (6.2)

0. otherwise
Poryr . b = m
f{ u[l.']ut[m]} = b (6.3)
0. otherwise
and
. Poly. b = m
& { n[l.']nf[m]} = ? ' (6.1)
] otherwise

where ry, = 1o, (f = 1Hz). We model the impulsive component v{k] by

VPoro. for Ty < k< Ty +1q—1

0. othierwise

vik] =

where Py is a constant. Note that tg, the duration of the interferer. and Ty, the
beginning point of the interferer, are now in units of snapshots.

In previous analysis, we computed beamformer weights from non-overlapping
data blocks. An alternative to this approach is recursive adaptation. Sinee strong
impulsive interference may lead to large cigenvalue spreads in CSDM estimates, adapt.-
ing the first beamformer stage by least-mean-square (LMS) adaptation is precinded,
We then turn to a recursive least squares (RLS) implementation. which is insensitive
to the dynamic range of CSDM eigenvalues. In order for RLS adaptation to fune-

tion correctly in an impulsive interference environment. the scheme requizes a minor
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modification to operate as a Type | implementation. A RLS adaptation procedure

is described in Appendix C.

6.2 Design Mismatch

To demonstrate the impact of design mismatch, consider a scenario consisting of
a slowly time varying source and an impulsive event located at ¢, = —14” and
0. = =3, respectively. From the previous discussion a signal component appears to

the beamformer as a plane wave arriving from ¢ = 0°. Using this wavefield scenario

sel
——-—1 1
w = .
Y/
and
|
C = —==1.
12
[urthermore we set the duration of the impulsive event to {4 = | data segiuent.

C‘omponents of the measured wavefield are scaled as follows

P —
10 log“,(P—s) = 10 log,, (SNRoyt) = 13dB
n

Py .
10 1log,, (—) = 15dB
Py
and

P
10 log,, (p—") = 30dB
n

The heamformer is described by
Q, = | DOF

Qs = 10 DOF

and

L, = 100 snapshots




In the first part of our investigation we let the first stage signal blocking matrix
C, equal

-C_l = (I” - CCT>P()|

o=36"
To see how C; responds to the different components of @y[k] we plot the spatial

magnitude response of the signal blocking matrix. The response of Cy is given by

T —_
ClrriC,

from =90 < # < 90. Figure 6.1 shows a plot of the response. Notice first
that the signal blocking matrix maintains the beamformer constraint by having, zero
response at the desired signal location (ie: ¢ = 0°). Observe as well that the slowly

time varying interferer is located in a null of the response, ie:
Ciry, = 0

Hence. u[k] appears eflectively as a single component to the lirst stage. Since the
impulsive interferer lies in a sidelobe of the signal blocking matrix response we sav
that C, is mismatched to v{k].

Assuming block adaptation. the optimal choice for Ly follows from (5.39)

3 8 [ Ly(1 4 SNRout) ) 0,
L1 = ———— Qi [ 1+ |1+ ( —ra) (1 - )
! A1 = cz.z/L.z)(")l 90Q, 17|° d ( L./
(6.5)
For the narrow-band beamformer we have
— 2 _ t t = —=t el -1
|5 * = | INR, wlrg,r} C) ( INR, Ciry,r), Cy + 1)
_ _INR) pup, (6.6)
(INR,B, + 1)*
where
P, = w;rg"rzwwq

- ratl ral
/)u = C i rou r;/.‘ C 1
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Beamformer || I,
1 !
2 20
3 50

Table 6.1: First Stage Adaptation Time.

and

From (6.5)

Ly = 20 snapshots

(Consider now the effect of varying L, over a range ol values given in Table 6.1,
For each entry in the table, we examine the evolution of the beamformer magnitude
response and output noise power over a duration of 500 snapshots. To generate the
magnitude response on a snapshot by snapshot basis we use a sliding rectangular

window over the data input to each beamformor stage. Lettiog
walk] = w! (Ly = CiBy[k]) (L — T:Bu[k]) wq (6.7)
the magnitude response of the beamformer is
Bo(k] = wi[kjroriw,[k]

Note that the maximum response of the beamformer is at 0 = 0V, Outpnt power

due to diffuse noise at snapshot k follows from the inner produet
Pout{h] = in;[k]wa[lc] (6.8)

The evolution of the beamformer magnitude spatial response, under different,
adaptation times, is shown in the forin of waterfall and grey level power maps in
Figures 6.2 through 6.7. The grey level scale corresponds to Figures 1.6 and 1.7. The

evolution of noise output power is simmarized in Figure 6.8, From Figures 6.2, 6.3
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and 6.8a. we note the dominance of weight noise when Ly = L Observe from Figure
6.3 the null in the magnitude response at 6,. Since C; and vy, [n] are mismatchend,
the null appears alter the event has vanished because of v[n] leaking into the secoud
stage. As a consequence of interference leakage sidelobe levels remain unnecessacily
elevated. However, the dominant feature here is weight noise variance. Increasing,
L to 50 snapshots elevates sidelobe levels well past the duration of the unpulsive
interferer as indicated by Figures 6.1. 6.5 and 6.3c. Observe from these figures the
reduction in sidelobe attenuation as indicated by the white regions on Fignre 6.0
just following the appearance of the impulsive interferer. To optimally trade weieln
noise variance for detection performance in diffuse noise we set L, = 20. Results
for this adaptation time are summarized in Figures 6.6, 6.7, and 6.8 Onr concern
here is to minimize the degradation in detection performance after the impulsive
interferer has vanished.

Repeating the experiments as outlined in Table 6 1. a summary ol noise oul
put power under RLS adaptation is shown in Figure 6.9. First. anlike the resnlts
obtained by block adaptation. weight noise is no longer o dominating Tactor, s
is particularly evident in the case of Ly = | snapshots. Second. we observe that
output noise power following the impulsive event reflects the exponential weighting
implicit in the RLS implementation ontline in Appendix €. Although the effect ol
weight noise on output noise power is less than block adaptation atis apparent from
Figure 6.9 that the impulsive interferer illicits a longer response from the RLS algo
rithm than block adaptation. This results in an increase in ontput power over the
duration of the response. Based on these observations the choice for £y as derived
for block adaptation, may not provide an accurate tradeofl between weight nome
variance and detection performance in diffuse noise in the case of RLS adaptation.

Our investigation so far has assumed a mismateh between Cpoand vk, We

now consider the case when the first stage blocking matrix is well matched 1o the
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impulsive interferer, ie:

61 = (I;\l - CCT)P,)I

=t

The evolution of noise power. under block adaptation. for this choice of C, is shown
in Figure 6.10, for values of L; given in Table 6.1. Evident from these results is the
dominance of weight noise on performance for all values of L. From Figure 6.10 it
appears that the best strategy here is to maximize adaptation time. Repeating our
calculation of (6.3) we find that the optimal value for adaptation time approximately
equals

L, = 100 snapshots

This suggests a strong coupling between the choice of signal blocking matrix and

L. We investigate this result further by varying
C, = (L, - cC)ny (6.9)

from —90°<#<90°. Figure 6.11 shows optimal values for L, for different chotees of
C, determined from (6.9). Of particular note is the inervease in Ly when G s elosely
matched to the interference wavelront at 0 = 0,

Set L, = 100 snapshots under the assumption that C, is optimally selected,
We now continue our discussion by examining the impact an impulsive interferer has
on the output power of the first stage after the interferer has vanished from sensor
measurements. Immediately after the impulsive interferer has vanished from sensos

measurements, we approximate output power of the first stage by

Pout = I‘IPS + Pn (1 +

— — — -1}4
qu;l'oul'};' C] (PVC:PU,,I‘,'),’C| + Pn) } ) “)'))

: ot
Given C = %-1\13 we rewrite C g, as

— 1
Cirg, = ng (IM - Tll‘"ﬂ') ry,
|
= W - ?vl-l';"l”l':‘zrg.
= M — Mcos®(£) = Msin*(€) (6.10)
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[Likewise

1
t t — T t
wirgrg wg = —1lyrgr;ly
q 7. q A‘/I A7 B

= Mcos?(§) (6.11)

Substituting (6.10) and (6.11) into (6.9),

MINR,sin?(6) \°
Pout IPg + Pp |l + W (MINR,,sinz(f) ] cos“ (&) (6.12)

Sinee . is in close proximity to 0 = 0° we have
sin®(€) = 0

and

Pout ® MPs + Py,

for the first stage assuming an optimal choice for sigeal blocking matrix. In cor-
rectly selecting € the affect of v[n] on output power is shown to be negligible.
Conseqnently the impact of vik] on the selection of L, is minimal. making the min-
mnization of weight noise variance the principle priority in optimizing adaptation

time.

6.3 Spatial Power Estimates

Animportant feature of an adaptive beamformer is the ability to detect and localize
signals under strong interference conditions. In this discussion we focus our simu-
lation study on the spatial power cstimates made by the M?VDR beamformer and
t he single time-scale GSC when strong impulsive components are present in sensor
measnrements.  Power directionality maps. relating a power estimate to a spatial
location, are employed to provide a qualitative assessment of performance. We as-
sume 2 directional sources in the wavefield. Table 6.2 summarizes three scenarios of

interest. I scenario I we observe a weak. slowly time varying source and a strong

128



Scenario Source 1 Souree !

Source | SNR DPuration Source | SNR | Duration
Bearing | (dB) | (snapshots) || Bearing | (dB) | (snapshots)

-353° d 100 —~.3° 30 OO
2 -hH3° 10 100 -57° 30 100
3 —53° 10 100 -57 30 |

Table 6.2: Wavelield Scenarios.

impulsive event. For the next two cases given in Table 6.2, resolution performance is
evaluated by considering two strong sources placed in close proximity to each other.

We set the beamlormer to

Q= 1

Q) = 10

L, = 20
and

L, = 100

P

C, is selected from a eigenvector of (-1.21). and the signal blocking matrix associated
with the GSC is defined from (4.21). Adaptation time of the GSC equals [ = 10U,

Power directionality maps [or scenario | are shown in Fignres 6,12 and 6. 134,
where results from 25 independent experiments have been overlaid. Observe from
Figure 6.12 the inability of the GSC to detect the weak signal. We attribmed this
degradation in detection performance to increased noise ontput power.

Resolution performance describes the ability of the heamformer to diserim
inate closely spaced sources. Consider first scenario 2. In Figures 6.14 and 6.1
closely both the GSC and M2VDR beamformer are unable to discern the presence of
two slowly time varying sources. Replacing one sonrce with an impulsive event. as
indicated by scenario 3. observe from Figures 6.16 and 6.17 that the M2VDR beam-

former discriminates between the two sources in this case. 'To correctly interpret
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the difference between Figures 6.16 and 6.17 recall that resolution performance of
the MVDR beamfornner is dependent on output SNR. In the case of the GSC, a null will
be maintained in the direction of the impulsive source over L>tq. Consequently.
as we have previonsly seen, noise power at the output of the beamformer increases
hecause of reduced attenuation in the response sidelobes. This has the effect of
reducing output SNR and thus degrading resolution performance. Since noise out-
put power is elevated for a far short period in the case of the M2VDR heamformer.
output SNR will be higher than for the GSC. We would then expect better resolution

performance from the MVDR beamformer.
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Chapter 7

Summary

The application of adaptive beamforming to the mixed time-scale interference en

vironment has been addressed. The problem in such a setting arises when large
differences in temporal extent between wavefield components exist. This presents a
difficulty for MVDR beamformer realizations restricted to computing a fixed number
of weights simultaneously on a single time-scale. When adaptation time s greater
than the time-scale of an interferer an unnecessary degradation in detection per

formance may occur. Unfortunately reducing adaptation time does not remedy the
problem. The reason for this is the increase in weight noise variance accompanying,
the change in adaptation time. The increase in variance may introdnce a greater
loss in performance than is gained through a reduction in adaptation time. For this
reason a MVDR implementation limited to simultaneously computing all adaptive
weights on one time-scale is not an ideal candidate for mixed time seale interference
environments.

This thesis introduces a multiple stage beamformer that is capable of siml
taneously adapting subsets of DOF on different time-scales. Becanse of the ability
to adapt on different time-scales, the M2VDR beamformer has an advantage in short
duration interference environments over previons MVDR realizations.  For instianee.

to cancel short duration interference. the beamformer computes a simall munber of
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weights assigned to a stage on a time-scale approximating the duration of the inter-
ferer. With fewer weights, the beamformer stage introduces the possibility of larger
reductions in adaptation time then could be possible for a GSC implementation that
must adapt M.J — K DOF. Furthermore. the M2VDR realization does not curtail the
ability to respond to multiple interferers since the beamformer applies the remaining
DOF. retained in other stages. against long duration interference.

Strong impulsive interference has a particularly detrimental affect on detection
pertormance. The principle reason for this is the short duration of the event. and the
slow convergence rate of a single time-scale MVDR adapting a large number of DOF.
To deal with impulsive type interference we propose a two stage MVDR beamformer.
The first stage is assigned a rapid rate of adaptation and correspondingly a small
number of DOF. The succeeding stage functions as a conventional MVDR heamformer
in the sense that remaining DOF are adapted over a temporal duration matched to
slowly time varving interferers.

(‘ritical to the performance of the M2VDR beamformer is the adaptation scheme
nsed to compute weights, adaptation time, and signal blocking matrix. 'n this thesis
we have discussed two adaptation schemes. Type I adaptation uses the same input
data block to compute weights and upate the output. Type Il adaptation computes
stage weights based on a past input data block. Correlation between the adaptive
weights and the input data block characterizes Type | adaptation. This canses
output power to be scaled. However, a comparison of SNR. generated by Tvpe [ and I1
tmplementations, indicates that both schemes yield equivalent output signal to noise
ratio. In an impulsive interference environment Type [ adaptation has an important
advantage over Type 1. Since the temporal duration of the impulsive interferer is
short, weights computed by a Type Il implementation inay overlook the interferer
since the weights are not synchronized with input data samples. Although Type I1
weights place a null in the location of the interferer. this will occur after the impulsive

mterference components have passed through the beamformer. This problem is
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eliminated by synchronizing input data with the computation of beamformer weights
(ie: Type I adaptation).

To ensure that each beamformer stage adapts on a diferent time-scale, stages
wust be arranged in increasing order of adaptation time. Hence, the adaptation time
of a stage must be greater than or equal to adaptation times of preceding stages.
Otherwise the adaptation of DOF will be coupled to the other stages. In addition,
when stages are not correctly arranged. global minimum mean-squares error cannot
be achieved.

In selecting an appropriate adaptation time for a rapidly adapting stage, two
factors must be considered. First, when adaptation time is greater than the dura-
tion of an interferer, output power remains unnecessarily elevated after the event
has vanished. Second, decreasing adaptation time causes weight noise variance to
increase. In both these cases detection performance may degrade. To seleet adap
tation time we propose an optimization criterion that trades weight noise vartance
against detection performance in diffuse noise. The approach selects an adaptation
time that corresponds to the ROC representing the minimum PFA and maximum PD
during a short duration interference event. Modeling heamformer outpat power
by a Gaussian random variable, we derive a closed form solution for adaptation
time. When a Gaussian assumption is not valid. the optimal choice for adaptation
is derived numerically.

Another critical element for the M?VDR beamformer is the design of the signal
blocking matrix. In this design problem we recall two important characterstics of
the M2VDR beamformer. Even though the beamformer uses all DOF. ) = M.J - K |
each stage operates as a partially adaptive beamformer, y < Q. Second, a rapidly
adapting stage can only use a few DOF to ensure that the eflects of weight noise
variance on detection performance are minimized. In designing a signal blocking
matrix for a rapidly stage we must ensure that DOF assigned to the stage are of

ficiently used. Otherwise, interference suppression degrades. Along with reducing
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interference suppression. a poorly designed signal blocking matrix may result in in-
terference appearing in the adaptive weights of subsequent stages. This has the
effect of prolonging the duration a response null is maintained in the direction of a
short duration interferer. In this thesis we derive approximate expression relating

AG to signal blocking matrix mismatch.

7.1 Future Extensions

A limiting factor affecting the performance of the M2VDR beamformer is the match
between the signal blocking matrix and the interference wavefield. Any future inves-
tigation of the beamformer must deal with the problem of partially adaptive design.
Although extensive literature exists for the design of partially adaptive beamform-
ers, the problem posed by the M2VDR is unique. In addition to providing a efficient
use of DOF at cach stage, a partially adaptive design must account for any coupling
between stages.  Otherwise short duration interference components will leak into
stages adapting over a longer time-scale. One possible approach would be to adap-
tively select the column elements of the first beamformer stage. In the case of a
narrow-band beamformer this would simply imply a steering operation. However.,
adapting the signal blocking structure in a wide-band framework presents a far more
challenging problem.

Recently multichannel parametric modeling has been applied to the array pro-
cessing problem (ie: [63]-[65]). The primary motivation for applying multichannel
parametric modeling is to decrease the statistical variability of wideband covari-
ance matrix estimate through low order parametric models. As with previous work
in adaptive beamforming, the approaches taken in [63]-[65] assume that the com-
ponents of the measured wavefield are stationary over the same time period. An
attempt at applying Kalman filtering to account for the time varving nature of the

wavetield has been considered in [65]). Given the success of the multiple time-scale
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beamformer in dealing with a mixed time-scale environment we are motivated to
consider a muitiple time-scale version of multichannel parametric techniques. Such
an approach would partition the state space of the parametric model in such a way
as to adapt subsets of state variables over different time-scales.

Throughout this thesis we have treated impulsive interference as a singular
event. A discussion of the frequency of occurrence or other statistical properties of
impulsive noise has not been included as part of designing the signal blocking matrix
and adaptation time. Statistics of impulsive noise have heen used (eg: [53, 66]) to
formulate appropriate detectors under such noise conditions. To improve upon the
design of the M?VDR beamformer we suggest that an explicit model of impulsive noise
be used (see [66]). In addition to providing an accurate model for signal blocking
design, opvimization ol adaptation will be able to taken into account the temporal
statistics of impulsive noise.

This thesis has viewed the M2VDR heamformer as a vehicle for multiple time-
scale adaptation. Alternatively, the decomposition can be used to design a dynamie
adaptation scheme that permite a rapid rate of convergence without sensitivity to the
input covariance matrix condition number. Sell-orthogonalizing LMS strategies have
been proposed as solution to this problem (eg:[62]). As suggested by our application
of RLS in chapter 6, an alternative approach could be considered.  Suppose we
decompose the GSC into as many stages as there are adaptive DOF. By imiplementing,
RLS at each stage, adaptation becomes a scalar operation. This eliminates the issue
of computational complexity. Furthermore, we decouple. or orthogonalize, cach
stage by selecting signal blocking matrices that are orthogonal to cach other. Such
a scheme allows for rapid convergence rates with immunity to the condition mumber
of the input covariance matrix.

In conclusion this thesis has shown that a conventional MVDR heamlormer is
not the ideal beamformer structure to optimize detection performance when the

time-scale of wavefield components differ substantially. Under such conditions. the
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multiple time-scale M2VDR beamformer introduces a greater degree of flexibility in

optimizing detection performance.
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Appendix A

Derivations - Chapter 2

A.1 M?VDR and GSC Equivalence

Define

«(B) = w} (Iy1s - CB)"R (Lyy - TB) wq (\1)
and

e(B)=tr ((IMJ-GB)TR(IMJ-—C—B)) (\.).)

as the quadratic error for the GSC and single stage M2VDR beamformer. respectively.
Setting the partial derivative of ¢(B) with respect to B to zero.
do(B)

_ 9=t S Yall s Yl t .
i)B—. = —2C quwq +2C RCBwqwq =0 (A3)

the minimum quadratic error associated with the GSC is determined from
C—'REBwqw:‘1 = fftquw(fl (A
From (A.5) weight matrix B must then equal
B=(C'RC) C'R (A.5)
Rewrite ¢(B) in the form
¢(B) = tr (-B'C'R - RCB + B'C'RCB + R) (A.6)
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Setting the partial derivative of (A.6) with respect to B to sero,

de(B)

= —')_1 el C = {)
5B 2CR+2C RCB

From (A.7) the weight matrix B is determined from

C'RCB =C'R

such that
_1 _f

B=(C'RC) CR

thus establishing the equivalence between ¢(B) and ((B).

(N7

(\.8)

(A




Appendix B

Derivations - Chapter 3

B.1 Proof: Proposition 3.1

Detining the NQ x N(Q partitioned matrix by
A = Ay A
Ay Ap
Y
( Y! Y'E ) (B.1)
E'Y

YY! YY'E
E'YY! E'YY'E

il

we note that

YY! ~ Wy (LX)

and

E'YY'E ~ v (L.E'SE)
In addition by ([50]. Corollary 3.2.6) the distribution of A is given by
A ~ Wyg(L.Z) (B2)
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where

Now letting

A = Ay —ApAZAy

= YY'-YY'E(E'YY'E)" E'YY' (1.3)
we may applay ([50]. Theorem 3.2.10) and write the distribution of A as
A~ Wy (L-Q.3,) (3.1

where

£x = £-ZE(E'SE) E'S

B.2 Proof: Proposition 3.2

Let

£ {v} (vavi)™ vzv{} - € {5 {v; (v,v))"'v

(B.5)
Note that by ([30]. Theorem 1.2.11) the condition distribution of V| given Vs
V{ | V, ~ N(szuzzls DY z) (B.6)

where

E112 - En - 2”2;2'2“




Since

£ {V{ l V'z} = ngzzle

(B.5) is equal to

i

£ {v.g (vavi)™ VQV{} £{Vi) Tt

= 0

B.3 Proof: Proposition 3.3

Fxpressing V in the column partitioned form
V = (vivy ... v)
where the Q x 1 column vectors v, are 1.1.d.. rewrite
r=vi(vvi)'v

in the form ,

L
' = (vivy ... vL)t (Zwvf.) (Vi va ... vy)
=1

where

{ -1

L
(P )mn = vrfn varfu + Z V’VI Vi

f =1
\ (#£m /

(B.9)

(B.10)

(B.11)

since the column vectors of 'V are symmetrically distributed about zero the expec-

tation of (I'),,,,, will not change if the random sample vector v,, is negated (ie: - v, ).

Notice that if f(v,) is some function of the sample vector v,, then

f{f(vm)} = S{f(_vm)}



Hence from (B.11) the following relationship must hold
\ -1

L
( r )mn = vrtn vm.vytn + Z V,'V[T-

(=1,
(#n

L
= vl (=Dvavh+ Y vev!

implying that

for m#n.

v, (3.1

Since £{(I'),,.,} equals zero for ms#n we need only consider the matrix ele

ments & {(T'),,,,} in evaluating € {T'}. Noting that the diagonal elements of £{I'}

are identically distributed we can then write
E{L} = E{I),} Iy

where

E{(T),,) = %S{tr(r)}

Evaluating tr (I),
tr(l') = +¢r (’V'r (VV*)_l V)

= w((vv)” vv!)
Q

(B.13)

(13.14)



substituting this result back into (B.13) we then have

£4r} = QL.IL (B.13)

B.4 The Conditional Distribution of Z, ,
Foxpand Z, , in terms of X, as
t & (&t t =\ &t :
Zi.. = Xo, —X0.X},C (C1X0.X5,81) " TiXo., (B.16)

Applying ([30] Theorem L1.2.11) the distribution of X, conditional on C_IXOJ, is

defined by

Xou | %o ~ N 0271 X Tiio) (B.17)
where
o= RO.rna-l
., = CiRy,C
and

—_— f— —_ =]
EH»'Z = Ro,n - R—i).nCl (CIRU.ncl) CIRI).n

. - =t . . C )
From (B.17) Zy,, | C Xq,,. is Gaussian distributed with a mean value equal to

E{21, 1T Xon} = € {Xou | TiXon}

1

. — -1 —
—~& {X().nx(f)',;cl (C{XO.,zX(T),,,Cl) CIXO.n l CIXO.H}

il

21‘222_2I -C-I Xo.u

— &{Xon | TiXo0..} X1, T (T1X0.X),C1) ™ T Ko




1=t
- E]gz'g'glclx”'”

— —_ = — -l
- 135 C1 X0 X8 (C1 X0, X5, C1) Tl X,

= 0 (B.18)

B.5 Proof: Proposition 3.4

Consider first the distribution of CYYtw conditional on CtYY'!'C. Deline

A~Wop (L. Ta) (B.19)
where
A = A Ap
A,y Ay
wlY
= ( Yiw Y!C )

cly

wiYYlw wlYY!C

CtYYiw C'YY'C
and

wtZw wiZC
Sa =
Ctzw ClYY!C

[rom ([50], Theorem 3.2.10) observe that
CYY'w | C'YY!C ~ n(C'YY'CBw, P(C'YY'C)) (13.20)

where
B = (ctsc) ' ¢'s

P = wisw - wfzc(cfxc)" C'Sw
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It then follows from (B.20) that
Bw | ClYY'C ~ N (Bw, p(chYTc)“') (B.21)
where
£{Bw| C'YY'C} = Bw

and
1

cov {Bw | C'YY'C} = (chch)"' cov{ClYY'w | C'YY!C} (C'YY!C)

1

(ctyytc)™ (c'yytc) (ctyyic) e

i

(ctyytc)™'p
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Appendix C

Recursive Least Squares

Adaptation

From [52]. the RLS update of By[n] proceeds from the error
e[n] = x|n] - Bl[n - l]éix[n]

the gain estimate
-1 rall
T P[n — 1]Cx[n]
|+ r=1xt[n]C\P[n - 1|Cx[n]

and the error covariance estimate

kin] =

Pln] = 7~ 'Pln — 1] = 7~ 'k[n]x![n]C, Pl - 1]
where the effective memory of the system is determined [rom
0 <r <
From the above. the weight matrix update equals
Bi[n] = Bi[n — 1] + k[n]el[n]

where

P0)=¢'Ty for0<€<<|
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and

B,0)j=0

This particular modification to RLS applies By{n] to the input data of the first stage

at sample n instead of at n + 1,
z:[n] = x[n] - BI[n]C!x[n] (C.5)

Note from ((1.2) and ((.3) that the computational complexity of the RLS algorithm
is dictated by M and the number of adaptive DOF assigned to the stage. lence. to
realize a practical implementation of the beamformer it is necessary for @) to be
small. Adaptation of the second stage can proceed by either a LMS (eg: [15. 14])
scheme or by block adaptation [40]. Note that the memory of the RLS algorithm can

be related to the adaptation period of a block implementation by

l
L, = l snapshots
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