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‘A Muscular Response Model of the ’
Human Lumbar Sp1ne'in the Pe'rfug)maglg:e of a
Sagittal Plane Dedd Lift ’
Albert R. Carbone *

A sag'i:tta‘ll ‘plan"é mathematical model of the lumbar spine has been
developed. The model computes the resultant forces. on t‘hé various
spinal components as a function of the muscle activity, spinal geometry
and extetrn_al ]oad. Keeping the spinal geometry and external load
constant, th;e resultant forces are wused to combute the musculo -

skeletal stress as a function of muscle activity. The musculo -
+ I ta S

oy

" skeletal stress is then minimized with respsect to ‘the muscle activity

to yield muscle activity’ p‘atterns. '

1

4

The muscle activity patterns prédicted by the mode1 for Tow weight

dead 1lifts ‘are ' compared with available experimental results.
¢

te

Preliminary comparisons show the model able to- pred'ict gross muscle

behavior.-*The model has been used to predict the\muscle activity

patterns required to subject the spine to equalized compression - stress
at all lumbar levels over a wide r”ange of weights for d_iffer:ent spinal

geometries., . / "
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Chapter 1 Introduction -

Low back pain is the Teading cause of disability in the United
States today, afflicting eight to nine million people [ 33, 34 1. It is
the most common ¥isability in pérsons under the kage of 45; in those
over 45, it is third only after arthritis and heart. d1sease L 10, 33 1.

It ?s est1mated that two out of three people will have low back pain at

some time in their lives, usua]ly between the ages of 20 and 50

[ 247,39 1. The fact that back problems are so common in people of
working age is not coincidental; most back problems are work-related.
The ecdnomic effects of back pain and injury are stagger{ng. Baﬁk
problems are second only to the common céﬂ&was a cause of absenteeism
in industry [ 2, 20, 21, 26, 35 1. It is responsible for 93 million
lost workdays every year [ 9, 39 ] and is. the leading cause of reduced
work capacity [ 2, 34 1. The ipgvage loss in income ‘and benefits 1is
$22,000 per person [ 34 1. Back injury accounts for ${ billion annually
in sick pay and wages [ 24 ]. Low back pain is the most common cause of
workman's combensation payments [ 34 ]. In 1976, thirty eight percent
of all compensation baid was %or back injury [ 41 1. Fifteen to -18
percent of all occupational injuries are back injuries [ 16 1. All*
occupational injuries afe increasing in frequency, but back injurie;

are increasing faster than any other [ 16, 41 1.
' S

A

'Attempts have been made to develop a screening'method to . identify
those T1ikely to develop back pain and to aid in planning pﬁévention.
Back X-rays once were touted as such a mechanism. However, extensive

research has shown that the findings on X-rays do not correlate with

r



,(‘Ehe development of back pain and are thus useless as predictors
. ’ 4
[ 1,20, 351 )

i . » .

% . A recently developed screening mechanism is Ethe exercise test,
which is based on thé premise that weakness of the low back, abdominal,
and hip flexor muscles predisposes one to back pain. The exercise test
ﬁeasures the strength of these mﬁéc]es as well as gverall physical
condition. Job placement and the need for an exerciZe program to
.strengthen muscles are determined by‘the test resu]ts.'As yet there is
little iqformation as to the predictive anq preventive value ‘of this-
method [ 9, 24,.35, 40 1. .

Another aQenue towards understanding'back pain is through the use

of mathematical modelling. A useful gpinal model would be one that

enabled physicians to estimate the health of .an individuals' back by

analyzing that individua]s; spinal geometry and muscular activity’while

the individuﬁ] performed some light weightﬁifting task. This requires

the derivation of mathematical relationships betweeﬁ observable data

(spinal geometry, EMG signals) and the résh]ting farces acting' on the

various spinal components.

This thesis describes the development of a mathematicgl mode]l of

the Tlumbar spine ]n the performance of a sagittal plane dead 1ift. The

relevarit anatomy of the spine 1is presented. aThe types of spinal

injuries that occur are discussed. Other mathematical mﬁdels of the

spine are reviewed and the functional requirements of a model are ygﬂ

established. The components of.the Tumbar spine necessary to simulate a

sagittal plane dead 1ift are represented mathematically to form a model
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" which compiites the forces acting on the various spinal components.. A

controi criterion 1{s presented and implemented in- a closed loop system

. to drive the model. Experimental results from an EMG study of subjects’

‘performing dead 1ifts are used for comparison against muscle activity

patterns predicted by the model. Although the number of subjects .tested

is too' small to make conclusive StﬂteTEEE§9’éb°“t the experimental

results acquired, some \pattekns of gyséfé activity common to most

_subjects ban be discerned. The model is used to predict muscle activity

»

‘patterns neébﬁsary to maintain equalized compression stress at all

lumbar levels for a wide range of weights and spinal flexion angles.
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" Chapter 2 Physiology of the Spine
- /

I

2.1) Description of the Vertebral Column

4 -
The vertebral column is composed of 24 vertebrae, plus the sacrum
and coccyx. The first 7 vertebrae constitute the cervical spine; the

next 12 vertebrae constitute the thoracic spine and the last 5

nyertebrae constitute the lumbar spine. The spine rests on the sacrum,

which is composed of 5 fused vertebrae. The coccyx ( “tld' bone" ) is

- composed of between 3 and 5 small fused bones. The vgrtebra] column

exhibits 4 distinct curvatures: the cervical curve, the thoracic. curve,

the lumbar curve and the sacral curve (Figure 2.1).

 This thesis deals primarily with the Jlumbar spine, thus the
description will concentrate on those components relevant to thasTumbar
region.

)

2.2) Lumbar Vertgbraé and Sacrum

fﬂe individual vertebrae in the 1lumbar region have a similar
structure. A typical lumbar vertebra has a bony body (the centrum), and
a posterior bony ring (the neural afch). The neural arch contain§ the
articular, transverse and spinous processes. The centrum’is an ellipti-
cal mass of cqnce]lou§’bone'surrounded by a thin shell of cortical
bone. 'The neural érch is comﬁosed of‘twq pedicles and two laminae. The
seven processes aré on these structures (Figure 2.2). Two typical

lumbar vertebrae are illustrated in Figure 2.3.
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The sacrum is illustrated in Figure 2.4. It is responsible for

“transmitting any Tload on the spine to the hips and subsequently to ‘the

. . )
ground. The sacrum is somewhat wedge shaped and is stabilized in the

pelvic gfidle by the Auricular surfaces and reinforced by the
sacrétligc ligaments. Gunterberg.[ 19 ] has described the Toad bearing

portions - of the pelvic gridle as an arch with lateral pillars and a

keystone (Figure 2.5).

2.3) Intervertebral Disc
v

The interverteb;al discs separate the individual vertebrae from
one another. The disc is comprised of 3 parts: the nucleus pulposus,
the annulus fibrosus and the cartilaginous end plates (Figure 2.6). The
nuc[eus is coﬁposed of a network of fine fibrous strands in a micro-
protein gell. The lumbar nucleus accounts for between 30% ‘and 50% of
the total disc cross sectional area. The annulus fibrosus is made of
codcentric laminated bands of annular fibers. The fibers are oriented
in oqposite directions at + 30 degrees with respect to the placement
of th; disc. The annulus fibrosus surrounds the nucleus and forms the
outer boundary ‘of the disk. The annular fibers are attached to the end
plates.vThe end-plates in turn are attached to the centrum of the

vertebrae sandwiching the particiular disc.
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Posterior view of the sacrum and coccyx.
, ( from Spence and Mason [ 37 ] )

Figure 2.4
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] The-sacrum~as a load bearing member. ..
(Left) Reinforcement of the sacrum by the sacroiliac ligaments.

) (Right) View of the satrum as the keystone of an arch.
( from White and Panjabi [ 42 1)
' ) Figure 2.5
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A typical intervertebral disc. . o
( from White and Panjabi [ 42 ] ) .
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>
) - - :a
o ‘ ’ Y

ot St g e e

a2

el et d v b ot 2 ko b LM S e




'}
e i ';N
10 . g
: T - . - o ~- . "{_
2.4) Spine Ligaments .. - . ‘ . '
: ,‘ ‘ .
"There are 7 spine‘ligaﬁ nts as depicted ;n‘ figure 2.7. The two ™ ‘
important 1ligaments for this study are_;he 1nterspin5us ;nd the supra-’
" spinous 1igaments: Collegtively they will be called the mid]iné b = 'i
_ligamentf ' ' | j
: ¢ {
; . 2.5) Lumbodorsal Fascia. ?
; i *The Tumbordosal fasc{a is a dense ligamentous sheét that surrounds P
‘ the bulk of the Erfctbf Spin;; muscle bundle “and jé?ns theamidline ]

ligament. As the Erector Spinae muscles ‘contract, they tend to push

this ligameﬁtous sheet in the posterior direction(( Figure 2.8 ). The
L

Transversus Abdominis and Internal Obliques muscles insert into” the .

Sonim S e w1 N i wand it

o
N

, lateral edges ‘of the fascia. When these muscles gpntraét} they act on T
: the fascia to extend -the spine ( Figure 2.9 ). ' .
‘ . . ' , A

-

206) MUSC]ES . [ N \

®

ir o - \é/ spine wilh_ 1iqam%pts but without muscles s’ an unstable :
% structure. 'Lucas and Bresler [ 29 ] demonstrated that a fresh cadaveric jJ
% f' spine witﬁout the rib cage that was fixed at the s;crum‘/and oriented\’/ AN :
Z ‘ vertically cou{d support a maximum lead of 4 1bs. p1;g;d teﬁtr§11y on ) . ﬁ

the first thoracic vertebra. Anyuload greater than 4 1bs. caused the

spine to be permanently displaced from its central position,

I
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Figure 2.7

A transverse section through the trunk.
( Modified from Helleur [ 22 ] )
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It is obvious that muscular action is needed for movement and
maintenance of the upright posture of the spine. The muscles that
control the motion of the lumbar spine can be jdentified by their
location, either ,anterior or posterior to the spinal column. The
anterior muscles :Le the four abdominal muscles: External Oblique,
Internal  Oblique, Transverus Abdominis and Rectus Abdominis. The
posterior muscles are: Iliocostalis Lumborum, Sacrospinalis, Medialis
Spina]ié (these .3 con%titute the Erector Spinae bundle), Mu]tifidué,
hqadrétus Lumborum, Latissimus Dorsi. The Psoas muscle cannot be
c1éssified' as  an anterior or posterior mascle due to Hts‘unique
location, but, noﬁe the less, it also controls the motion 6? the spine.

The muscles considered in this thesis are illustrated in chapter 5.
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Chapter 3 Types of Spinal Injuries

3.1) Compression and Torsion Injuries

Common ‘back disorders are a result of the mechanical failure of
the spine. Two _common disk injuries have been ,identified which
correspond to two different types 'of fnechanical failure of the spine:

the compression injury and the torsic/n injury.

The compression injury starts centrally with a fracture to the end
plate, sometimeg followed by injection of part of the nucleus into the
vertebs{l body. Neither the annulus nor the facets are damaged ( Figure

3.1).

The injured end plate permits the .nvasion of the avascular

"nucleus and the avascular inner partion of the annulus by granulation

' (healing) tissue. The effect of this is to dissolve or hydrolyse the

avas&u]ar porfion of the disk. With progression the disk loses its
thickness while the outer layers of the annulus remain relatively well

N

preserved. With loss of disk thickness the facet joint subluxates and

1

becomes arthritic.

The fracture of the end plate is an undisplated ‘fracture‘ of
cancellous bone which heals rlapid1y; The symptoms are short lived,
typically lasting fwo weeks. The facet joint arthritis appears late; at
this stage symptoms may aTso arise from a reduction in si;e of the
spinal canal (lateral and central spinal stenosis).

j
/
\

~



“

Compression Injury

Figure 3.1

Torsion Injury

Figure 3.2
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The torsion injury 1is characterized bj damage of the annulus
occurring simultaneously with damage to the facet joint. The outer
rings of the annulus are torn off t vertebral end plate, and
separation occurs between the 1aminati:iy‘bf the annulus. There is no
damage to the nucleus or to the 'end plate. The facet Jjoint shows
subchondral fracture, with consequent collapse of the articular

surfaces and chronic synovitis (Figure 3.2).

The basic injury here is to collagenous ligamentous tissue which
requires six weeks to -regajn 80% of its strength. Because tﬁe injury
involves both the disk and the facet joint, it is more difficult for
the joint to stabilize itself and recurrence 1is frequent. The
condifion is progressive, and may lead to spinal stenosis, instability,

and degenerative spondilolisthesis.

In the laboratory, a compression injury 1is ‘easily produced by
compressi’hg the joint' between 300 1bs/1’n2 to 900 1bs/1’n:2 [ 36 ].
Given that an average vertebra has an area of 3.5 1n2, this
translates into 1loads of bétween 1050 1bs and 3150 1bs. The torsic;nal
injury can be seen with as littie as 2 to 3 degrees of forced rotation

requiring only 195 to 300 inch-1bs of torque [ 14 ].
3.2) Relative Frequency of Injuries

In a series of 100 patients [ 13, 28 ] 64% exhibited torsional
injuries and 35% exhibited axial compression dinjury. The torsional

injury occurs mainly at the fourth level. Almost 100% of fourth joint
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problems are torsional injuries. Almost 100%39f the compression
injuries occur at the Lg/S; level. Double injuries (that is, joint
injured with both coinpréssion and torsion) occurred in 22% of the
cases; these double injuries were invariably at the L5/51 leval.

i

Table 3.1 reflects the probabilities of injuries (any injury,
compr‘gssion, torsion)  amongst  patients compla"ining of backache

and sciatica, or sciatica alone. The important frequency of torsional

_injury cannot be overlooked. This table.suggests that the probability
' - »

of a third type of injury giving symptoms is remote. A third type of

injury has so far not been recognized in autopsy material.

It is to be noted from the above description of pathology that\

both types of injuries can give rise to .identical symptomology. Hence
symptoms cannot be used to diagnose a ‘type of injury because identical

symptoms may arise-from different injuries.

Therefore the injury caused by a certain task cannot be identified
from the patient's symptoms. Because of this basic difficulty it is not
possible to relate .directly tasks to the injury mode. Sucﬁ a
re]atiqnship is central to the defim’tion. of tasks that will not injure

any given individual.
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JOINT. P(injury) P(compress’roni P(torsion)
\ L, o o<1y <1% K1 % :
: Loty - <1% <1% ™ <1 %
Ly~ <5 % <1% <1%
Ly/Ls 47 % <1 % .76 % ;.
| L5/slr$ 47 % 98 ¥ 22 % |
. : ' T,
| o’ 100 % 100 % 100 % 1
# I
Clinical Determination of the various probabilities of inj"ury. o x
L ’ Tab]e 3-1 - * :'.
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Chapter 4 Modelling of the Spine

a.1) A Review of Spine Models '

The evolution of spine models over the years can be followed . in

" the literature. Early models by Latham[ 28 ] and Hess & Lombard [ 23 ]

were of the continuum type. This approach assumed the spine  to be a
continuous rod or beam that had homogeneous material properties. Latham

.modelled the spine as a vertical weightless spring with two masses, one

- at either end.. The top mass represented the body and the bottom mass

représented a seat. This model was subjected to high accelerations in
the axial direction in an attempt to obtain dynamic load factors for
the spine as a function of the spring constant. The model 'cou1d not
deal with non-axial 'loads. The human spine has a natural curvature to

it which causes the internal loads to be non-axial in nature. The

Latham ‘'model is structurally %nadequate to describe the response of the

spine to axial acceleration. Hess & Lombard modelled the head and trunk

as an elastic rod. They curve fitted experimental. data of head
.displacement during impact accelerations and used this information to
tune model parameters to yield the same results. But the spine is

neither a beam nor an elastic rod. The continuum models cannot simulate

physiological behavior,
[ ]
The next type of model that became popular was the discr\ete
parameter type. ~ This approach treats the spine as a structure composed
of various elements. These elements ( '\'/ertebrﬂ bodies, intervertebral

discs, Tigaments ) aré assumed to have different material properties.
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Toth [ 38 ] and Aquino [ 5 ] modelled the vertebrae as rigid bodies and
the intervertebral discs as springs and dashpots. They ignored the

muscles and Tligaments. Belytscho et al [ 8 ] modelled the ligaments as

L e P R P L s S e ]

s

springs and the contents of the abdominal cavity as stacked

hydrodynamic elements. The inai,,n problem with these models is that they

IPEN A

-

ignore the fact that muscles can exert forces.

P

‘The basic philosophy of the continuum and discrete parameter
models is the simulation of the human spine éhrough the study and .
modelling of the material properties of the constituent members of the ’
spine. This is the fundamental flaw. These mode].; are spring/dashpot or
elastic rod representations of a living system capable of generating -
internal forces independent of external forces. The muscles, under the
active control of the central nervous system, act on the spine. This

-constitutes a control system. Thus a control system approach should be

used to model the spine. ' -

The muscular response models incorporate the control  system’
approach. In these models, the spine is repr;esented as a series of
_rigid bodies ( the vertebrae ) that are hinged ‘to each other by
intervertebral joints and held togg£her by muscles and ligaments. The
muscles and ligaments are described by lines of. action between their

points of origin and insertion on the skeleton. The muscles are assumed

to exert forces based on their activity level. Given a vector of muscle -

activity levels, the moments and rection forces are caicu]ated at the

joints, Some control/cr)&ﬁion/isformed based on these moments and

‘ reaction forces as a function of the muscle activity levels. This

AN

DR F R e ST DWW AL TS

N L RE L L

&
»

*

. L , T



e o T AR T AT, S T

N

21

control criterion is then expressed in terms of an objective function |
and minimized with respect to muscle activity leviels through the use of
optimization techniques. The output of the optimization is a muscle.
firing strategy fhat minimizes the objective function. Thus the control
system.
N
Avrikar and Seireg [ 6 ] used this approach to model the spilne of

a seated individual. They formed a control criterion based on the sum

'of the muscle forces, the sum of the reaction forces at the joints and

. the sum of the moments at the joints. The resulting objective function

was linearly dependant on the stress levels in the joints and muscles.

i

Gracovetsky et al [ 18 1 developed a sagittal plane 'model of the
lumbar spine in the performance of a dead 1ift. The fgrces generated by
the weight lifted are supported by the Tigaments, muscles and IV
joints. The range %f motion of the lumbar spine and the measurements
required to locate the various muscles and ligaments are obtained from
sagittal plane radiographs of a subject performing an actual dead lift.
The cross sectional areas of the muscles are obtained from cross
sectional anatomical slices. This allows the representation (;f the
muscies and ligaments as vector forces with the resultant of all these
forces estimated at the bisector of the disc. The forces generated by
the weight lifted are estimated at a line joining the hip and shoulder,
the movement of which 1is followed in lateral photographs. The forces

along this hip - shoulder line are then translated to ea?v of the five

lumbar  segments and decomposed into their shear dnd compression

" components,

e
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An objective function based on the resultant shear force at each
lumbar ‘segment, the muscular stress and the ligament moment induced all
as a function of muscle activity is minimized through the application
of an optimizétion technique. The result is thé distribution {of moments
between ligaments and muscles which produce a minimum of shear at the
bisector of the intervertebral joint.' The hypothesis here is that the
human uses a feedback mechanism to monitor the shear and thus select

the best combination of muscles and ligaments to accomplish the given

'task. This constitutes the basis of a control system ( Figure 4.1 ).

. A

The Gracovetsky model database: incorporates radiographs and
measurements taken of a weightlifting champion. The choice of the
weig“htlifter was deliberate, givjng the researchers the opportunity to
tune their model. They hypothesized that the weightlifter was a
champion because he used his system in an optimal fashion: at his
maximum 1ift all his biological resources were used to their maximum
level, but the risk of injury at the same time was reduced to a minimum

level,

While the hypothesis df shear minimization could not be tested by
direct measurements, the deductions from theory were subjected to

experimental verification. The Gracovetsky model wass used to simulate

certain measurements observed on volunteers performing light tasks. The

following results were obtained.

-y
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1. Integrated ‘EMG pattern.. B .
1 ‘ The calculated integrated EMG value of the Sacrospinalis and the

Multifidus was found to be substantially linear for a range of weight ‘

lifted between zero and 90 pounds. This linear relationship has been‘

T AR g

confirmed l;y Andersson [ 4 ], In addition, it was found that by using
a conversion factor of 1 uv = 1.28 1bs/1'n2, the calculated muscle

activity could be superimposed on the experimental data ( Figure 4.2 ).

4

' + 2. Disc pressure . ‘
o
As early as 1960, Nachemson [ ‘32 ] found gxperimentaﬂy a Hr@
relationship bethen disc pressure ( measured in the nucleus pulposus )

I LN

.~

and weight supported by the spinal column in the case of small weights.

The calculations of the model confirm this finding. ,

Nt Py

The -researchers did not place too much emphasis on the importance { ]
of disc pressure because they did not believe that the disc pressure
t‘ruly‘ described the instantaneous load carrying capacity of the joint.

3. Abdominal pressure

A Tinear relation between internal abdominal pressure (IAP) and

R B

weight Tifted has been ;'eported for small weight;; [‘3 1. The

calculations indicated that as the wéight Tifted increases, the IAP

tended to a maximum not exceeding 9.7 to 11.6 1bs/inZ.

s



Muscle output for 40° flexion

1bs/in? g SacPospinalis

30~ Multifidus

Internal
Obliques

15 ~ Latissimus Dorsi - v
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Quadratus
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Correlation between measured
_ EMG and calculated muscle output
" ( Sacrospinalis + Multifidus )

EMG
- (uV)
70 » measured
50 1 .
. computed
v 30-Jll l ‘ . ‘
. ] 1uV = 1,28, 1bs/in2
10 - o
0 ¥ T - L A\
0 20 . 40 60

External Load
- (1bs),

Comparison of calculated and measngd EMG patterns.,

(Left) Relationship between the muscle output a¢ the external ldaé’

Lumborum
-
0 v v v -
0 10 . 20 30
Weight
(1bs)
increases

for a spinal flexion angle of 40 degrees. (Right) The solid

line is the summed Sacrospinalis and Multifidus output from the graph
to the left. The measured points were acquired experimentally using EMG
techiniques by Andersson et al [ 4 J. (Modified from Gracovetsky et al

C 18 1.

- ) ' | ‘ Figure 4.2 .

4

!

P

TS




. R N
[ Te— . . . N
- ¢ —— ) v BT ¢ Yo Ty T W STt e § o5 s gy g N I
. - » ] I
B

‘ “‘ ‘ .
- 4= Moment of the erectores. o .

o

The maximum extension momen}x:‘req'uired for weightlifting ﬁas\, been
A

estimatéd by McNeill et al to be 2250 in-lbs at L5/S1 [ 31 1. j

Gracovetsky et al predicted this 'value with their own calculations. The

f model calculated that the moment value of 2250 in-lbs occured at two
¢ s —, i

points: the maximum static 1ift of 120 1bs, and the maximum dynamic ;

1ift of 400 1bs.

[ )

5- The ALPHA; position: .
\ o [ ‘ .‘ - \ :
An important feature of the model is the ALPHA; angle. This -is -

the angle of spine  flexion, the hip-shoulder -angle, at which the ’
- midline ligament is first bron}ght under t'ension ( Figure 4.3 ). At this ' A

significant .point in the motion, thé moment may be balanced by either

i

ligament qr muscle, and is accompanied by a change in EMG output. -In .
full- forward flexion with all muscles relaxed, ligament tension is Just y

sufficient to support the moment due to bodyweight.: This angle was

S e

measured. -in the weightlifter to be 45 degrees compared 'to a mode]l

3 ' “ prediction of 47 degrees.

i Despite the fact that the model appeared t<; calculate results _in
the physiological range, the :e’searchers were unsatisfied with certain P i

+~ _ aspects of its behaviour. They are:
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Definition of the ALPHA0 angle

The angle of forward flexion at which the
first brought under tension is defined ALPHA.

Figure 4.3
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1) The pattern of EMG calculated from . the force of muscle

contraction did not exhibit the muscle relaxation noted‘by Floyd and .

"Silver to occur in full forward flexion [ 15 J.

2) For weights belew 120 1bs the model could not eqdalize the
compression stress at all levels'whereas\for weights above 120 1bs; the

model gave equalized stress at all levelsf

.

| 3) The switchover mechanism from muscle to 7ligament ‘strategy

appeared abrupt rather than smooth as was expected. °
" Acquiring the database was a long and Tlaborious task. Computer

imp]émentation of the model was clumsy due to the siie and structure of

' the database and the generation of simulation resultd used inordinate

amounts of cpmputer time. Four areas that .cou1d be improved ‘were

recognized. They are outl?ﬁgd below:

i

1) The motion of the dead 1ift was approximated by taking eight

sagittal plane radiographs of a subject performing a'dead 1ift. The

radiographs recorded the spinal geometry in the upright position and at

forward flexion angles of 10 to 70 degrees ( in increments of 10
degrees ). Measurements, were then taken from each of the eight
rédiographs to build the database for the model. Building a database

for a new subject required a whole new set of radiographs and

-

associated measurements.
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2) Locating the same point on eight different radiographs was
difficult dué to the. low quality and resolution of the radiograph
images. Muscle and ligament attachment points had to be averaged over
the resulting cluster of points measured on the eight radiographs.

Becausevof this, the descriptions of the muscle and Tligament lines of

action obtained from the radiographs were rough approximations.

3) The anatomy was described according to the understanding of its

function at the time.  Low weight simulation results of the model
B
indicated that the functions of some anatomical components had to be

reassessed.

4) The structure of the control system é&gquations did -not permit
the use of a specialized optimization a]dorithm. The algorithm emp]oyed

I4

was slow and sometimes did not converge.
4.2) The Functional Requirements of  a Mathematical -Model.

In the performance of any task, normal individuals will exhibit
changes in many parameters such as spinal geometry, muscle activity
(EMG), blood pressure, pulse rate and the like. The sum total of . all

these changes may be defined as normal physiologic§1 behaviour,

The measurable physiological behaviour of the lumbar spine may be
defined as those pertinent parameters which have been measured in the

living. These include:

mh oY S i 2
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The internal abdominal pressure.

(a4
]

The disc pressure.

(28]
]

The muscle activity patterns as monitored by EMS. | %

E-
]

The maximum extensor moment. )

(2]
]

The change in spinal geometry. E

' . B

LA

; " Taking X-Rays and the measurement of internal abdominal pressure,

disc pressure and EMG with needle electrodes are invasive techniques.

: Avoiding invasive techniques leaves two non-invasive techniques:
1- Monitoring muscle activity with surface electrodes. :

2- Measuring geometrical changes using external skin markings

(although skin motion introduces some error). '

A mathematical model should relate measurable physiological i
parameters to the forces developed in the joint, and evaluate the

compression and shear induced by a given task. o -

To ascertain the applicability of a model to healthy individual
performance, the model must be able to assess the effect of individual g
variations of spinal structures on overai] function, Because spinal
injury leaves its stigmata on the measured physiological behaviour of

the individual, the model should assess the differences between injured

e T N

and normal individuals. .
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The. basic philosophy of the Gracovetsky model ( the control system
approach ) has been used to develop a new model that satisfies these

requirements by incorporating the following features:

1) The motion of the Lumbar Spine during flexion is computed = given

a subject's ALPHAO ang]é and one sagittal plane radiograph in the

erect stance._

.

2) A coordinate frame of reference is used for the muscte and

Tigament attachment points. This gives accurate descriptions of the

muscle and ligament lines of -action. ‘

3) The descriptions of -the muscles and ligaments have been

‘refined. For example, Sacrospinalis has been modified to recognize the

»
differences in the mechanical behaviour of its medial portion (Medialis

Spinalis) as comparéd to its deep and superficial portions.

I

4) The control system criterion has been structured as a positive

- definite quadratic optimization problem with linear constraints. A

' robust optimiéation algorithm tailored to this type of problem has been

implemented. ( In this context, ‘'robust' means an'a1gorithm that is
successful in obtaining an optimal solution for a wide range of

problems. )

’ v
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Chapter 5 Quattization of the Relevant Spinal Anatomy

5.1) Introduction *

As described in Chapter 2, ‘the human back is a complex structure
of muscle, bone, Tligament and cartilage. To model all of the constit-
uent components would be a near - impossible task. Rather, the com-

ponents that have been modelled are those which are thought to be the

most ihportant for the performance of a dead 1ift, along with others

that could not be omitted without sacrificing completeness. In all, 11
muscles and 2 ligament structures have been modelled.
.

The modelling of a muscle ;equi?es a description of its points of
origin and insertion on the‘skeleton. how it is distributed among its
attachment points ( lines of action ) and the cross - sgctiona] area of
the muscle. The cross - sectional area of a muscle determines the magni-
tude of force it exerts for some levél of muscle activity. Muscle activ-
ity is defined in units of pressure. Thus muscle activity multiplied by
muscle cross - sectional area gives force. Modelling a ligament
requires all of the above except the cross - sectional area. This 1is

because a ligament is a passive member ( acting 1like a cable ) and

knowledge of its cross - sectional area is not necessary to compute the

tensile force it supports when tightened. The muscles and ligaments are

modelled as vectors given a magnitude ( muscle force-or tensile force )
' !

and direction ( line of action ).
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The muscles and ligaments modelled follow three types of attach-
ment patterns. Some run from the thorax to the pelvis and sacrum, com-
pletely skipping the lumbar vertebrae; some run from the thorax to the

Tumbar vertebrae and some run from the lumbar vertebrae to the sacrum

~and pelvis. The three regions of attachment can be identified as tho-

racic, vertebral and pelvic - sacral. The  attachment points of the

muscles and ligaments modelled in these regions were determined by con-

sulting appropriate anatomy books [ 25, 30, 37 ]. A cross sectional

.anatomy book was used to determine the muscle areas [ 11 J].

The resulting attachment points are illustrated in Figures 5.1,
5.2 and 5.3. Note that the attachment points are repfésented by poinfs
whereas in vivo the attachment points are usually attachment areas. The
attachment pdints used are at the centroids of the attachment areas
found in anatomy books (Figure 5.4). In this way a muscle or ligament
force induced ovef the attachment ;rea or at the attachmgnt point will

yield the same net global effect. -

5.1) The Muscles !

PSOAS

The Psoas inserts into the lesser trochanter of the femur, curves
around the anterior part of the pelvis and fans-out to attachments at
T12 and L1 through L4. The Psoas is assumed to skip L5, as it often
does in vivo. The cross - sectional area of the muscle is 2.46 in2

and each of the five strands is assumed to have 1/5 of the muscle area

(Figure 5.5).
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. Rectus Abdominis
, External 0Obliques

“(Posterior part)

ITiocostalis Lumborum
(Superficial part)
Medialis Spinalis’

. Latissimus Dorsi

Quadratus Lumborum
Psoas

Multifidus
Sacrospinalis
(Superficial part)

2,3, 8,5
6,7, 8

10
11
12
13, 14
15 '

Thoracic Attachment-Points.

Figure 5.1
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Psoas 1
‘Medialis Spinalis 2
Multifidus 3,4
Latissimus Dorsi 5

(Spinal part)

Midline, Fascia 6
Sacrospinalis 7
(Deep part)

Vertebral Attachment Points.

- Figure 5.2
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External Obliques
(Posterior part)
. Quadratus Lumborum

Iliocostalis Lumborum -

(Superficial part)
Multifidus »
Latissimus Dorsi
(Spinal part)
Latissimus Dorsi
(Superficial part)
Midline '
Psoas
Rectus Abdominis
Fascia
. Sacrospinalis
(Deep part)

+

Pelvic - Sacral AQFachment Points.

Figure 5.3

1, 2,3, 4

5
6,

9,
14

15

17

18
19
20
21

7, 8.
10, 41, 12, 13

!
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Psoas attachment area.

)

¢ . -
Averaging of a muscle attachment 'érea
.to a muscle attachment point.

Figure 5.4 —
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Medialis Spinalis : - External Obligques
Figure 5.7 , 4 (Posterior part)
> Figure 5.8
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RECTUS ABDOMINIS

"The Rectus Abdominis is modelled as a single strand from the pubic

LY

~arch to the Xiphoid process. It has a cross - sectional area of 0.9

-

¥ in2 (Figure 5.6).
1 ““ °
/ MEDIALIS SPINALIS

|

“

L : kThe Medialis Spinalis has digitations from 5ts thoracic attachment

point to the spinous processes of L1 to L5. The attachment at L1 is

ignored because it does not exert any force on- the Lumbar IV Jjoints.
The muscle has a cross - sectional area of 1.8‘ir)fZ at L2. Each of the -
four. strands f;om L2 to' L5 are assumed to have 1/4 of this area (Fjguré

st . ,

.

EXTERNAE OBLIQUQS (Posterior part) ‘ ) N

Y

o
R T TP
-

+

This part of the.muscle is a broad sheet that extends down from

the ribs to the Iliac cresf. Mbdelliﬂg the External Obliques as a

R PR e v g

single strand is inappropriate. Thus it is modelled as . four strands.
’ , . o
The muscle has a cross - sectional area of 4.375 in and each strand

is assumed to have 1/4 of the area g;quref5.8). The anterior part of

ORI TR AT

the muscle has been :ignored.

4
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Iliocostalis Lumborum _

(Superficial part)
' Figure 5.9

™

Latissimus Dorsi’
Figure 5.11

Quadratus Lumborum
Figure 5.10

Sacrospinalis
Figure 5.12
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ILI0COSTALIS LUMBORUM

The superficial part Iliocostalis Lumborum, originates on the Iliac 4
e .
crest and inserts into the angles of the ribs. Since the attachment

points at the ribs are spread out, Iliocostalis Lumborum (super fcial)

[T O Sy U

1s modelled with three strands to better represent the structure of the :
musc}e. It has a cre®ss - sect1ona1 area of 1.89 1n2 with each strand
having 1/3 the area (Figure 5.9). The deep part of Iliocostalis Y

*Lumborum is Tumped with the deep part of Sacrospinalis. . §

R

- QUADRATUS LUMBORUM .

e 'Thé Quadratus Lumborum originates on the Iliac crest and the Ilio-
) 1umbar‘ tigament and inserts into the lower borde} of the twelfth rib f
| and transverse processes of the upper lumbar vertebrae. The vertebral « ° o
? ™ attachments arge negligibly small and so ignored. The muscle is modelled'
as a single.strakd from the twelf?h rib to an aver%ged location of the

Ilijac crest and Niolumbar 1igameﬁt. The muscle has a cross - sectional

ey e s,

area of 1.4 in% (Figure 5.10).

i T : .
‘ LATISSIMUS DORSI | . . ) : P
. ¢ A ' _/

ORI

The Latjsé?mus‘Dorsi originates on the 1liac crest and a*ong the

L T gy G
v T

. spinous propésses of the Ilumbar vertebrae and the sacrum. It runs up
L AT ' ) > ,
N R " the lateral ‘wall of the thorax to insert into the upper = humerus. The

muscle is givideﬁ into tho parts,- the pe]v[g part that driginates on

the Iliac crest and the vertebral part. that ori[ingtes on the spinous

o r
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processes of the lumbar vertebrae and the sacrum. Because of its posit-
o

fon on the back, the 1line: of'action of the Latissimus Dorsi Ean be

R DM e RN -

assumed to. act on the ténth rib near the spine. The pelvic part is

-

o

modelled as a single strand with- a crosg~ sectional area of 1.22

in2, The vertebral part is modelled as five stqudg\-gbing from L2 to

o o
AER Rt aE T

e ORSADFLRTEO] 2

L5 and the sacrum with a cross - sectional area of 2.65 1n2. Each

\

strand of the vertebral part is assumed to have 1/5 the area (Figure

P

5.11).

[3 L

P——

SACROSPINALIS

The Sacrospinalis is divided into a superficial portion and a ~deep

portion,. The superficial portion “is modelled as a siﬁgTe strand running
\ from the posterior part of the ribs to the posterior part of the iiiac
crest. This strand has an area of 1.8 in’, The &eep portion has %
f stran?s running from the Tlower vposterior parts of the transverse -
f ﬁrdcesseS"to the deorsal’ seﬁment of ghe‘iliac crest. The deep part of ‘
{ ITiocostalis Lumborﬁm is similar in structure and function to the deep )
g : part of Sacrospinalis and thus the two muscles are lumped together. ‘
Each strand of the two lumped musecles has an area of 1.73~in? (Figure.

5.12). . B N v

MULT IF 10US : .
. ! ) ! \v

The Multifidus is.a complex muscle. The origins are on the ' post-

N ym%:«.rrd-x bra s f e s et e T e 8T g

erior surface of the sacrum and the transverse processes of the verte-

brae. The insertions are in the spinous processes of « the vertebrae. A




\

Multifidus °

Figure 5.13
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given origin on the transverse process of a vertebra has three strands

going to the spinous processes of the three vertebrae immediately above

- it. There are five strands from the origins on the sacrum. These five

e

“—5\
[ERPPIRT R S

oot

Vi . 'strands run to the spinous process of L5. Two of fhese strands run to
3 the spinous process of L4 and one strand runs to the spinous process of

L3. ‘The muscle area at any level is a constant 2 in? and s assumed

divided evenly among the' strands active at “that level (Figui'e 5.13).

v e wmemearas §

, .. MIDLINE

3
/

° | This h"gament has attachments on the tips of the spinous /p’rocesses

afd” in the sacrum. The structure of the midiihe from L1 to L2 to L3 can

25 s AT KA S TR 7 w3

be modelled as a single strand. From L3 to L4 to L5 to"the' sacrum the

midline is distributed between the three vertebrae to the sacrum. This

4 _ structure is best modelled as a strand from ‘each spinous prcﬁsswo the
! R \

.sacrum (Figure 5.14).

et e bk e s LRt s AL o oo+ 5 1

i c FASCIA

\]

’
I

S ' ‘

Peoe ¢ The lumbodorsal féscia inserts into the tips of the spinous

o BEE ek mmir

ey

processes and”™ into the iliac tuberosity. The Transversus Abdominis and

)

Internal 0Obliques both ‘act on its lateral edges. A lateral pull on t-he
edges of the ’fascia 1pducés forces'on the spine that bring the spinous
processes closer together, thus extending the\spine. The fascia covers
the Erector Spinae muscle bundle which gives "it an angled inse_[,rtkioni
into the spinous processes at L3 and L4 dep'ending on the .size of\ the

Erector Spinae. The" combined muscle cross -.sectional area’ of} the




Midline

* Figure 5.14 .

Fascia

- Figure 5.15

-
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Transversus Abdominis and Internal 0b]ique§ as they act -on the fascia
is 3.37 in? (Figure 5.15).

5.3) Grouping of the mus(fcles.

Sevéral of the muscles modelled are seen to act as a single func-
tional unit. That is to say that-when one .particular muscle in the func-

tional wunit ( g}‘oup ) s active, the other muscles in that group will

exhibit similar activity. A given group is assumed to be able to exhib-

it activity independently of other groups.

The Iliocostalis Lumborum, the Medialis Spina]isﬂ and the Saéro-

Ispinah’s constitute such a group ( the Erector Spinae ). Some abdominal

muscles - the External Obliques, the Internal Obliques and the frans-

t AN

versus Abdominis also constitute a group:".' The remaining muscles are
each considgred as individual groups. The muscle groups are numbered in
table 5.1, e

1
1S

5.4) The Hip Extensors.
The hip exténsors are not explicitely modelled. These muscles act

on the pelvis & sacrum and ar-'e“ the principal muscles used to maintain

y

the position of the pelvic girdle in reaction to moments induced by

external loads, lumbar muscle activity and 1ligament tension .on the

spine. Farfan “EI2 1 has calculated the maximum moment the hip

extensors can Euppoi‘t to be 14000 in-1bs. /

ek R
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Group
Number

Group 1
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Constituent muscles in group

Medialis Spinalis, Iliocostalis Lumborum,
Sacrospinalis 1 -

Multifidus J L
Latissimus Dorsi

Quadratus Lumborum

Psoas

Rectus Abdominis

External Obliques (Posterior part),
Internal Obliques, Transversus Abdominis

o

™~
o

Numbering of the Muscle Groubs.'

Table 5.1

okl
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5.5) Motion of the Lumbar Spine in the Sagittal Plane.

Computation of the directions and magnitudes of the internal and
extefnal forces acting upon the various intervertebral joints of the ﬂ
Lumbar Spine requires the relative positions in space of all the force
vectors, as well as the geometry of the Lumbar Spine itself. The geo-
metry is obtained from a sagittal plane X-Ray of the spine in the up-

right position. The data defining the geometry are: 1) the coordinates

'of the centers of rotation of each lumbar intervertebral joint ( taken

to be located at the intersection of the line through the posterior
th;rd of the dis~c and the disc bisector )(Figure 5.16), 2) the disc
inclination angle of each Joint (Figure 5.17) and the initial disc
wedge angle (Figure 5.18).
«
The motion of the unloaded Lumbar Spine ( i.e. only bearing the
body weight ) f]gxing in the sagittal plane .15 divided 1into two
seéa,rate arcs: 1) From the erect stance to a forward flexion angle of
between : 35 & 50 degrees the spiné unfolds about an essentially
stationary pelvis ( spine flexion ). During spine flexion the‘ pelvis
w1‘11. rotate about 3 degrees, which-is negligible whan compared to the
rotafcior'f of the sbine. The disc inclination angle varies for this
mtion. 2) Fron this forward flexion angle to full flex:iop,"the
rotation of the entire Lumbar Spine is determined by the rotation of
the pelvis around the hips ( hip flexion ). The disc inclination angle
stays constant fbr this range of motion. The forward flexton angle

which marks the transition ‘between the two arcs of motion is denoted

‘ALPHA‘O(see Figure 4.3). As a load s applied to the spine, the

——
-
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pelvis is ‘'tucked' (-rotated is such a way as to straighten. the lumbar
curve ) which decreases the ALPHA) angle (Figure 5.19). ' ,

‘Given 'the spfnal geometry for the wupright position and ‘the

ALPHAy  angle, it s pessible to generate the spinal geometry for any 1
angle of forward flexion. The motion of a dead 1ift is modelled by

eight images of the spine at flexion angles of 0 to 70 degrees (Figure -

5.20). A full description of the mathematics  involved in  the

computation of the motion of the spine is given in APPENDIX A.

o
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7Chapter 6 Derivation of the'”Systegn Equa{ions

N\
6.10) lz'érces acting on- the Spine
: L £

n

" The force induced when lifting a load is transmitted to the ground
viav the spine, the pelvis and the legs. The total force exerted at any
IV joint ‘of the lumbar spine can be divided into 3 constituent forces:

. 3 ' \ o o
The: force due to the load and body weight, the summed force due to.

-muscular ,.\ctivity and the sumed force due to ']'igament tension. These

forces also\induce moments at the IV joints (Figure 6.1).

\E !
G \
P

6\2\) Definition of Center of Reactjon and Shear & Compression

Summing the three constituent forces yields the net force exerted
at each IV joint. Th]s net force can be decomposed into two orthogonal
forces exerted on each IV jmr{t shear force and compresswon force, as
shown in F1gure 6.2. The positwe shear direction for each IV joint 1s

defined by a unit vector parallel to the disc bisector pointing in the

anterior direction. The positive compression direction for each IV

Joint is defined by a unit vector perpendicular to the disc bisector

L

'poi’nting towards\th‘e IV joint below it (Figure 6.3). ‘Prior to computing

4
the moments at each IV joint (Figure 6.4), an axis about which the
moments act upon for .each IV joint must be determined. The axis

( center of reaction ) can be arbitrarily placed on the disc bisector

between the anterior and posterior ,e@f the disc. The center of

‘reaction can r?nge +40% of the size of the disc, from thé center of

R v
the disc. The shear and compression unit vectors have their origins*at
'u’, -

these centers of reaction. -
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» Muscle Force
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+
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Translation of Force Vectors
{ *'to yield two orthogonal forces -
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is the unit vector defining the _
positive compression direction -

is the unit vector defining the
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- b
ﬁ"' (BEXFE)+ (DMXFM) + (DLXFL)

'
tne resultant moment

the effective lever arm of the extsrnal Toad & body weight:
the force due to the external load & body weight

the lever arm of the muscle line of aciion

the muscle force vector._ ' ' N
the Hever arm of the’ligament-Jine of action

the ligament force vector

Computation of Momefts
about Center of Reaction

Figure 6.4 | , .

*




e L T

60

6.3) Equilibrium Condition
Static equilibrium at each IV joint requires that the net force at
each level be balanced, as well as the net moment at each level be -

zerb. The IV joints resist the shear and compression forces acting on

them, thus balancing the net force. The resistive fp;ces of the IV
joints are assumed to have their lines of action through the center of
reaction so they do not induce any moment. The moment equilibrium

.equation’ about every center of reaction is

Load and Body Weight moment + ' (6.1)
i Muscle moment + Ligament moment = 0
\ % : \
t M .
This equation must be satisfied at each Tumbar level for the load to be

7 balanced.
6.4) Muscle Moment Matrix

1 : Mdscu]ar activity exerts forces on the lumbar ‘spine. For a given
muscle, the magnitude of the force it exerts is given by the product of
that muscles' cross - sectional area and é}ts activity ™ (firing

- pressure). The direction of the force is given by the muscles' line of

/

action. Thus given a magnitude and direction, the muscle forces can be

described by force vectors (Figure 6.5).

These muscle force vectors induce moments about the centers - of

reaction. The ~derivations. of muscle moment at each cénter of rgpction N

6 _ ‘ . ~
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‘muscle force vector

Unit
" Vector

Muscle Force
Vector

Muscle line
of action

.unit vector along muscle line of action

A
muscle cross sectional area

muscle activity

“»

Definition of the
Muscle Force Vector
Figure 6.5
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as a fupctidh of muscle activity for a]] the muscles are given in
APPENDIX B. ’
~

As described in Chépter 5, the 11 muscles nndel]éd,chn be seen to
act as 7 distinct groups. This leads to the creation of a musc]e moment
matrix. The muscle moment matrix is a [ 5 x 7 1 matrix whgse Tows
fepresent the - 5 IV centers of reaction and whose columns represent the
individual muscle groups. The i,jth entry in the muscle moment matrix
-is  the muscle activity to musqlevmoment scaling factor for level 'i' of
group 'j'. Thus if ' the muscle - moment mat#ix is multiplied by a
(7 x13] muscle activity vector, the result is a [ 56 x1 1] vector
'containing the muscle induced moment at each lumbar IV joint:

Y

6.5) Ligament Ténsion, Resultant Shear & Compression as functions

of Muscle Activity

As state& in section 6.3, for equilibrium to be obta?ﬁed the net
moment- at each IV joint must Sé zero. Refering to equation 6.1, the
load and body weight moment are constant and so are independent éf
muscle -activity. However .the muscle moment ‘is a function of muscle
Ec;ivity. fso]a;ihg the ‘ligamént moment on the left hand side of

equation 6.1 yields

Ligament moment = \ S (6.2)
. , ] . .
- ( Load and Body Weight moment + Muscle moment )

" The ligament moment 1s a function of the muscle moment and' is therefore

a function of muscle activity. . Given the - ligament moment, it is

¢
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possible to derive the ligament tension in each strand as a, function of

~

muscle activity.
The external load and body weight forces can be decomposed into
éhear and compression forces at each IV joint (Figure 3.6). Since these

forces are constant, so are the shear and compression: forces that they

jnduce. Similarly the muscle force and ligament strand tension can also .
be decomposed into shear and compression forces ‘at each IV "joint.

.Because both the muscle force and ligament strand tension are functions

of muscle activity so are the shear and compression forces that they

induce.

~—

6.6) Net Ligament Tension Matrix

The ligament strand tgnsiqn equations are based upon the external

load moment, the body weight moment, the muscle moment matrix and the

lines of action of the ligaments. The net 1ligament tension at each
level follows from the ligament strand tension equations. The

derivations are performed in APPENDIX B. The result of the derivations

js the following system of linear equations:

. , B - T
HMTNy 1oeee . HMTN K HMTNK N
. b ‘K; HMTNK .TN1
: K3 TR || 22 6.3)

: K Kg |* | HMTNK, N3 -
HATNg 3...:.. HMTNg 7 'is HMTNK g :"4
. " D6 N
5

| K7 | AR
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-

F. is the force due to the external
load & body weight )

":ME is the moment thduced by the external
load & body weight '
BE is.the effective lever arm of the
external load & body weight

|

! \ * +» -+
o ‘\ ME = DE X FE
. AT >
SE =Se FE
+ A+
Cg = CoFg

Translation of External Load
and Body Weight to the ‘
Center of Reaction
as.-a couple
Y .

. Figure 6.6
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where: _

HMTN, § is the muscle activity to net ligament tension scaling

. factor for level 'i‘ of group 'j’. - ‘ B
HMTKK is the net ligament tension at level 'i' due to an
external load and the body weight. . '
Kj is the muscle group activity of‘group ‘j"g
TNi is the net ligaﬁent tension at level ‘i
, 6.7) Resultant Shea} & Compression Matricies

-

. It is possible to derive the resultant shear and compression at

each IV joint as a function of muscle activity. These derivations are

performed in APPENDIX B. The resulting linear systems of equations are
simi]ar in form to the net 1ligament . tension equations. The Shear

equations are:

SHRY | +evees SHR K iRy | ] Sy
;b o b K; SHRK 5 Sy (5.4
: : K SHRK3 S3 -
: : KZ ]+ | sHreg | 7| S |
SHRg g weeees SHRg 7 25 SHRKg . Sg .
‘s °
"7
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e

where:

SHRi’j_is the muscle activity & ligament tension to shear

force scaling factor for level 'i' of group ‘'j'.

1 B E

*SHRK - is the shear force at-level 'i' due to an external load

and the body weight.

Kj is the muscle group activity of group 'j'

' \} \f -
5 s the resultant shear at level® ‘1! .

. ]
o v
‘ .

The compression equations are:

CMPy g =vees . CHp Ky CMPK Cq
. 11 b 1.7 K CMPKZ i Cz 3
: : K3 CMPK ¢3 | (6.5
« : Ka CMPK Cq :
3 ¢ o4
CMPs'i cses e CMP5'7. ‘li,s CMPKS . 9'5
* 56
| %7

where:,

.‘\R

force scaling factor for level 'i' of group 'j'.

CMPi,j is the muscle activity &'1igameﬁt tension to compression

>
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o A

CMPK, 1is the compression force at level 'i' due to an external
load and the body weight

< n

' Kj is the muscle group activity af group 'j'

a

C; is the resultant compression -at level 'i' - .

Equations 6.3, 6.4 and 6.5 are functions of muscle activity that.

.gjvé' the resulting forces acting on the various spinal components. The

o ¢

equations are not intended tg be ‘used to solve'for the muscle activity

given a shear, " compression or. tensior value. The equations are '

. structured in this fashion for use in the imp]gﬁentation of the model,

1

as described in -the next. chapter.
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I L
. jsz monitoring the stress at*each IV joint could modify muscular

L4

: externa] forces and the mechanical properties of

1_a.priorifjts Exfstenqe. ' ~ o

Vf} " C se

- Chapter 7 Fornation of the Sginql Control Systen

" 7.1) Feedback Hypothesislamd Contro1 C?}éerion. .. 5
/f , - . .

/ .
s ' ®
As djscussed in Chapte7 4, there are numerous models in which mus-

*

qles, ]igaments,, and joihts are represented by springs and dashpots.

Such models rasponé‘blind]y to external forces or loads: The joints act
elements in whiéch internal stresses are fully determined by

4
its components. This

as passive

approach iynores the fact that the joint is deformed and damaged! when
over]oaded Preservation of thé spine as a functiona] unit requires
that each IV joing remains undamaged. It reasonable to hypothesize that

for its own proteot1on the joint reacts to its 1ntenna1 stress to con-

trol the force exerted upgieit by the applieq Toad. A feedback mechan-"

activ-

ity in such a way as to minimize stress at the joints and’ therefore re-

duce the risk of inﬁury The ligaments could be connected to this feed-

back mechan\sm ‘to mlnimize their stress through the control of muscular

activity, Fina]ly. the stress induced in the muscles by their activity

ar
-

1 , »

could also be monitgged and controlled by the feedback mechan1sm L

6-* )
-
2

t

The hypothesis . 1mp1ies'that the cehtra] nervous system can mohitor

muscu1o - skeletal stiess 1eve1s in the spine and use this 1nformatlon ’

o to ‘cabrdinate muscu]ar_ﬂctivity in order to perform a task with the min-
- imum musculo - skeleta] stress possible. No such, moni oring system has

been crecognized by_neurophysiologists, but this 1s not a reason to‘deny ~

\
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v.Systemutheory fs used to describe the spinal structure and control
v - . .

‘= theary {s used to describe the role of musculo - ske]eta[ stress infor-q

mat:on in tue determination of muscular activity during the performance
0 .

sk. ' #
‘ﬂ;._~ . 9

£

' The model of the lumbar, spine presented in this thesis computes
the resultant shear and compress10n at the intervertebral Joints anﬁf
the ligament tension as a function of \spina1 geometry, external load

.and musc]e activity. Given the spinal ggomélry ( flexion ang]ef/ and an ,

-) .external lo;d allows the model to be described as a ,sygtdm -with con-,

// stant inputs ( external load and flexion anglq&», variable inputs ( mus-

cle activity;), and outputs ( shear, cbmpﬁession‘ and 1igament
. tension ). Th1s open loop systém is 11lustrated in Flgure 7.1. Simulat- -
fon of the feedback loop requires the muscu]ar stresqy the ligament ‘
stress and the‘jo%nt stress. This infoymatlon:is_then’1pput to a coq- -

trol system whose .output is muscle'activityv'This close& 1uup'system is

i1lustrated in FiQuﬂé'?.Z. ) R 4 : )
;‘ﬂ-—.-». N ; - . . L ' o
7.2) Transformation of the Control Criterion to an Objective : ;
A 7 . , .
Function. . - . . e
P ‘ ' % K o v )

Couputer imp1émenté§ion-qf'the feedbacé“1oop requires numerical .
‘representatjon of muscular stress, ligament St}éss an¢ joint stress.
Muscular stress 1is assuméu to pe>prouu}fional to the square of the mu%-
cﬁe activity level. The 11§aMént stress is-the s&uaré‘of the 11gament
tension yThe joint stregs is the Euclidean notm of ‘the joint shear and o

? . 4 . ' . (../ «')\

-
b}
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compression. Without any loss of generality and to simplify the .hathe-
matics, the square of the joint stress is used. This quantity is the

Joint shear squared plus the‘joiﬁt compression squared.

*

Formulation of the objective function is achieved by summing these
components together after multiplying them by arbitrary scaling fact-

ors. The result is a quadratic fuction of the muscle activity.

5 ) ‘
oK) = T, (Py s)Z+ ? (7.1)

(Py )2 +

™~
—
<
w
.

Ty )2+
N !

L, (Pq - K{)z +

K7)2

~

—

o
[5,]
.

where:

S, 1is the resaltant shear at lumbar level 'L' as a

. function of muscle activity

~ . ¢ \ !
<

* CL is the resultant compression at lumbar level ‘L' as a°
" function of muscle activity v
» - '

Ty 1is the resultamt ligament tension at lumbar level 'L' as a

function of muscle activity

.
‘b 4

- ., .. - - . ; . ‘ . LY . N : '
- {K, is the muscle group- activity for group '#* - S
% - -~ { Coa ! .- . '
¢ - » o v X
: . ' / e
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r.

Pl to P3 are scaling factors for the shear, compression and
\»

ligament tensign , '

[

-P4 is the scaling fiztor for muscle groups 1 to 6 °

Pc is the scaling factor for muscle group 7
&

The scaling factors' are used to modify .the contribufions of the

wvarious componehts to the overall objective function. This featuré is-

B
w,

used to tune the model to simulate physiological muscle activity. e

tuning of the model is discussed in chapter 8. Separation of the mus-
cle group scaling factors,permits the manipulation of group 7 1independ-

enily of grdups 1 to 6.

y A\
i . \
With some algebraic manipulation this equation can be writtgn in
1 . '
“gy the. standard quadratic form: : .
‘ L
MR Y A Y A ~ _ (7.2)

x

4
P

The full derivation of the objective function and its transformation to
" the stan¥ard quadratic form is given in APPENDIX C.
7.3) System Constraints
“'Muscles exert force when contracfing. A myscle can only pull, not

“ to. i ' . - ,
push. The method used to model the muscle force vectors interprets pos-
) ‘ , ’ - "S r“a ,’ 3

s ph
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iti(e muscle activity levels as a pull and negative musLe activity Tev-

- els as a push. Thus the muscle activity level must be’constrained to be

greater than or eqda'l to zero. Similarly, ligaments can support tension
but. not compress'ion, just 1ike a cable. In the ’Hgament tensior{ equat-

fons, a negative tension implies a compression. Thus the net Tigament

tension must be greater than or equal to zero. An pper, bound on the '

magnitude of the ligament tension, TLIM' can also be fimposed. These

three sets of constraints define a range of feasible muscle activity

Jevels in which a minima of the objective function is to be found.

7.4) Minimization of the Objective Function
N 4 .
The optimization problem is stated as the minimization of a ‘quad-

ratic function

ok) =gtk +ctyx+a : ) (7.2)
A , Coe

e

subject to the following linear constraints:

K\i P 0’ j = 1,---,7 4 \ (703)&
’
® JEI HMTNL.j’ Kj + HMTNKL ] 0. OL. = 1.0.- ’5 (7-4,
. ’ D
jfi -HMTN| go Kg + Tqq -HMTRG > 0, L= 1,008 (7.5),
’ f’ " ' a ;{a‘:‘

+

]
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Equation 7.3 constrains the muscle activity levels of all the 7 groups

to be greater than or oS to zero.

. - g oN
Equation 7.4 constrains.the net l1igament tension at all levels to be
greater than or equal to zero.
N {

N N ) | -

‘Equation 7.5 constrains the net 1igament tension at all Tevels to be i
less than or equal to some upper bound, TLIM- ’, ,

¢ N ) ‘2
The' algorithm employed to ~ pbtain solutions s specificaﬂy,’ ' '

designed for positive definite quadratic programing problems. Thus the

only restriction on using this algorithm is that matrix G is positive
definite. This algorithm is described in APPENDIX D. 3
‘ ) ¥

’ {
1
- L4 - -
A ) f »
o\,‘ . a
, g - ' :
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Chapter 8 Experimental Results and Coq)ufér ‘Silulatiqns ot

8.1) Introduction

It was beyond the :nanda_te of‘ this thesis work to design

experiments for and collect data from subjects performing weightlifting
\ tasks. However, another study at Concordia called for a preliminary
invest'igation/ of the muscle activity “patterns for a small number of
.subjects performing dead 1ifts with low weights. Thus the opportﬁnity
presented %tself to compare the.experimental results from the study to
computer simulation results. Although the pumber of subjects tested was
notn large enough to make conclusive statements about muscle activity

patterns during Ehe performanée of dead nyts, some common patterns did .

}
emerge.

Section 8.2 describes the data acqui‘sitkion procedure used in the
study. Section 8.3 presents the common muscle activity pattern;
observed in the experimental data. Sectjon 8.4 d;scribes tuning the
model' to yield similar.results. Section 8.5 deals with equ.aHzing the
compression stres& in the spine over a range of weights.

8.2) Data ,Acquisitiqn . , T _‘ ¢

U

t Muscle activity was. mondtored on subjects performing simple

weightlifting tasks. The tasks‘ required al su“t')jet:t to bend‘fortward,:.
grasp a weight and pick it up. The 'weights‘lifﬁe;i rauged from 0 to 50,
,pounds.” EgG signals from the Erector Spinae. Mu]tiftdus, Rectus
" Abdominis and- External 0bliques were acquired with surface micro -

electrodes. _Th’é electrodes * uere placed smetrically on the left md )

\

/2

o
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right sides of the subject.

The EMG signals were analog bandpass filtered with the passband
between 10 and 250 Hz. The resulting signals were digitized at a 1kHz
rate with 12 bits accuracy (1 part in 4096 ) and recorded on a mass
storage comwter‘ disk. Once the task was completed, the acquired
signals were processed to remove artifacts and smooth the data to yield

an envelope of the monitored muscle activity (Figure 8.1).

1

The position of the subject during the task is synchf'pnized with
the EMG signal acquis‘ition by using stop action photography ‘at 4 fr:ames
pér second. The hips and shoulders of the subject are identified with
markers so an accurate measurement of the flexion angle as a function:

of time can be obtained.

This experimental procedure allows the envelope of the muscle

activity to be plotted versus the subject's forward flexion -angle,

8.3) Experimental Results ' ] g
? . .

1

The muscle activity of a number of subje'cts was acquired. The,.‘
" experimental results were scrutiniized to establish similar patterns of )
muscle ‘activit,x across -the subjects, Aberrant muscle a;tivities for
1isolated cases "were not considered when gstpblishtng .the patterns. All
the subjects demonstrated 'agti\(ity in  the Erector Spinae and
Mu]tifidlis. The ievel lof activfty incréased as the size of the \weight'
lifted increisedl The 'Rectys ' Aj!‘:'dominish and External Obliques were
s‘ﬂ'en: for uiost subﬁacts; 'slightly active for soune subjects and 596de

-

" sporadic activity in isolated cases. |
4 s : « .

' . .

':;’-6' ",
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Typical muscle activity of the Erector Spinae and the Multifidus
for a Hft of 25 pounds plotted aga'lnst‘ the forward‘ flexion angle is
given in figure 8.2,

Several subjects exhibited the Floyd and Silver [ 15 ] response in
their Erector Spinae activity. The muscle group activity would peak for
some flexion _angle, then fall off and begin to ‘rise again as the

flexion angle increased. This is shown in figure 8.3..
8.4) Simulation of Experimental Results

The model yields muscle activities’ by finding the minima of
equation 7.1 subject to the constrai‘nts imposed upon the range of
solutions. For a given set of Pi's, a unique set of muscle activities
is cbmpqted. Once a task is defined by the weight lifted and'the spinal

- geometry, the P.'s are the only degrees of freedom with which to tune
the model. ' ' -
f v b}
The model was tuned to simulate the muscle activity of tt_)e' Erector
-Spinae and Multifidus of figure 8.2. Setting P, and Ps to unity and

imposing no upper limit on the ligament tension value, the wvalues

%

Pp = .1, P2 = .23 "ad .Pg = .2 yleld the nuscle activities for the
Erector Spinae and Multifidus shown in figure 8.4a. The shapes of the

curves agree in' the region from 0 to 50 degrees ' but after 50‘degi'eps
the experimenteﬂ curves. have .an infiection point whereas the conmdfed‘l
curves continue to rise. Using the same P1 S fof- the range 0 to 50 N

degrees, but making P3 =19 at 60 dégrees  and Py "= .18 at 70
degrees. causes., the .computed curves to exhibit the sme type of,' .
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The Floyd &:Silver muscle activity ;}qttern for the Erector -Spinag
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]

&en simulated by imposing an upper bound on the net ligament
v ¢

tension of 130 pounds until a flexion angle of 48 degrees is  attained

=

and by setting Py = .35, P, = .35, Py = .24, Pyl =Pg ='1.o_.'. 2
' The computed curgg){/p)otted in figure 8.5. - Lo ’ .
~ . 3’
5 -8.5)“Equa1izati’on of Cxomm*ession Stress * .. )
3 ‘ o v/ | L -
& . CL No]ff s law [ 43 ] states that bdne grows when subjected to \
’ ) stress. The stress a bone experignces can be 1n\ﬂerr~ed from the size of ] )"

R e R

the bone. The Jumbar vertebrae increase in size from L1 to L5. The

SN ratio of the centrum area “of L5 to Llsis 1.2:]. That is, L5 has 20% .,
v £ - more centrum area than L1 Since the vertebrae meiperience a greater R
i A magmtude of compresswn streSs than sHear stress on the centrum, it is b }'
L ’ - 3
ro reasonab]e to assume froyl Wolff's law that L5 ‘experiences 20% more g !
)! Q 1
f’ . compression than L1 at any f]ex1an angle for an"yawe1ght. ) Uy ‘
. /\ . . ) J )
] % . . !
. Lifts of 0, 25, 50, 100, 200, 300 and 400 pounds have been v i
' : ~
= /4
o simu]ate%."‘ to yield a spread of compression between L1 and L5 of

C o ~
20% + .05% for all angles. The parameters used for aach weight and

; the salient results are presented in table - 8.1. Fors the 406 pound ‘ Cd

R T 3 . K
AT sunu]atwn the maximum muscge moment at LS5 was -computed to be 2137 g
4

. inch-pounds, the maximum muscle actwity was 697pounds/1nch2 and

"}'
¥
M

. the maximum compression at L5 was 3101 pounds. These values conform to \

the lim\s\'for a'maximum 1ift put forward by Gracovetsky et 1 [ 18 1. |

' . ;
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Weight

300.
200.
S 100.
( 50.
SR 25.

e . g

L

[P

ﬂ_,,,&, i s o

S
400,

0.

.0555 0555 .0555 12, . 2421. 5121. 1638. 53.4
.0555 0855 .0555  15.5  1762. 3750. 1162. 37.9
_.0555 .0555 .0625 29.  1119. 2107. 951, 31.0
0555 Josss 0740  38.5  820. 1242, 94l. 30.6
.0555 70555 .0860  46.25  675. 810. 947. 30.8

e

0555 0555 .1090 - 48, 532. 402. 937. 30.4
~  Ppe=pg=10 . } - r

/ L]
The resultant compression at L5 (1bs).

¢

The ligament moment at Lg (in-1bs).

The myscle moment at Lg (in-1bs).

The maximum muscle activity (1bs/ip2).

. Input parameters, and results for equalized

compression stress simulations.

Table 8.1 ) o :

r ) . =N
VA 4 | .
i

P MR R R R SR Wy

RECRTONAN o Wit G i;‘

s 84 ~
%7? : 5 hd ! { '
. \
/ ._../.”
P P, - ¢ . . v
1 2 3 .Alphag Cs. Ls Mg Act.

' - . . . ot
.053’5 .0555 0555 8. - 3101. ‘ 6526. 2137. 69.7 °
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The maximum muscle moments computed for weights of 0, 25, 50 and

100 pounds are similar. This may seem contradictory at first, for as

the weight increases the muscle moment stays relatively cgﬂstant. What

‘must be takem into account however is the the ALPHA) angle. As the

weight increases, the ALPHA; angle s seen to decrease. This implies

that the ligaments are balancing any additional moment due to' the extra
weight that is not being balanced by the 'muscles. Examining the
ligament moment column in table B.1, we see that this is indeed the

case. As the weight gets heavier, the muscle moment increases and the

ALPHAG angle decreases until ‘at 400 pounds the muscle moment is at

its nlaximum and t(ne ALPHAO'angle is at its minimum. !

> AN ‘

A

The degrees of freedom offered by the P.is and @the ALPHAO'

angle proved insufficient to genell'ate the spread of compression equal

" to 20% for all weights and at all levels. An additional § degrees of

‘freedom, are ﬂavaﬂable by the choice of the location of the center of
reaction at each lumbar level. As stated in chapter 6, the centers of

reaction can arbitrarily be placed within the disc at a distance of

' +40% the size of the disc from the center of the disc. The center of

reaction at L5 was fixed at the most anterior portion (+.4). The center

"~ of reaction at L1 was chosen at each angle for every weight so as to

give a spread of compression of 20%. The locations of the centers of
reag:tion at L2, L3 and L4 were computed through the use of liﬁear

interpolation based on the locations of thé centers of reaction of L1

4

and L5.

D N L

.
-

A

&
-

b
]
i
P
‘4
%
H
5

s
RN . -3 “WM%




86

The locationef fhe center of reaction of Ll for ‘every weight
plotted against the fle;ion ‘angle s given in figur;e 8.6. From the
family of curves plotted, it can be seen that as the flexion angle
. "lncreases, the“center of reaction moves towards the posteFior portion‘
) of the disc. Interrestingly enough, this migration towards the
posterior portion of the disc occur‘s at smaller ﬂe.xion angles for

. lower weights.

1

}

[

2

£

J
; : .

: .. Displacing the center ‘of reaction so as to yield the desired
; . . .
} result of a 20X spread of compression may seem 1ike an artificial
!

method-to get that result. But there is a reason for considering the

s

displacement of ' the centers of rotation as a-alid tuning mechanism,

it is the action of the Psqa’sﬁ muscle.

AN
\

w f -

-

. The Psoas ha,s uniqlue ;ttachmentss to the . individual vertebrae of

' the 1lumbar |spine ( Figure . 5.5 ). It is 1in a. perfect position to
modulate the location of the centers of reaction of the vertebrae, Thus

it is propc;s‘adw that the " function _ of the “Psoag is to.modulate the

centers of reaction of the individual vertebrae in such a fashion that

ST

¢
- any task an individual performs subjects his/her spine to equal stress

per unit area at all levels. ) ; :

E

- r— —— " S RO NSRS 4 e e

: 1
~In this thesis the Psoas has not been modelled” to function” as a }\

modulator o{’ the centers of rotation, but rather as a 'weightlifting'
ot , {

muscle. As a 'weightlifting®' muscle it fares poorly, being the only
muscle that the model never recruits. But it has been shown in the-

literature [ 7 ] that the Psoas exhibits constait activity when an

¢
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,wﬂ’ﬁdividuﬂ moves his/her torso. It can be concluded that the Psoas is

1mproper‘ly modeﬂed as a 'weightHfting muscle and must be modelled in
another capacity. Following this train of thought, the closed loop
system ﬂlu;trated in figure 7.2 can be expanded so that stress is
milnimized by the muscles best suited to do so and stress is equalized

by the Psoas modulating the locations.of the centers of reaction of the

s lumbar vertebrae ( Figure 8.7 )
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Closeg loop system with stress minimizatfon and equalization
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Figure 8.7

’ et tu e o

- . »
V] B N ! . ’
om——— Y N : . ‘ : :
. & y e
?' 4 \ :
o . b
. o4
4
. L]
] ! i
| -_ . -' ‘
{ - ' Externs! Flexion ", ?‘
k Load Angle H
. ‘ ) P
| , J | L. j
) Center of Reaction modulation ) -
Shear ————p ‘Sl'mr & (‘::‘-armion ‘
‘ Muscle Activity ° | MODEL | Compression——p{ - Joint Stress* f
___Ligament Ligament Tension
Tension’ to R e
g Ligament Stress -
; ' S
b
' scle Activity
H > . to
% Muscle Stress J ‘g‘
i ) i
1. - \ . .
‘1 CONTROL ] Muscle Stress
‘ v SYSTEM le—— | igament Stress
i
; (ninimizelle __ Joint Stress— ]
i %
i d .
i CONTROL ,
: ' 4 Psoas SYSTEM |4 *
: (equalize) .
; .
: » A .
:4 " //
! \ :
z - &




TH e on v e o

-
TTEY e
o, gy

. e ORI R e -

L]
b

90

Chapter 9 Conclusfons
The relevant anatomy of the lumbar spine in the performanfe of a
dead ' 1ift has been represented mathematically to form a model whi_ch'
éomputes the resultant forces acting on the various spinal components
as a function of muscle activity. A control criterion which expresses

the musculo ~ skeletal stress as a function of . these .resultant forcgs

has been formed mathematically as an objective furfction.” The objective
function is minimized with respect to muscu'la'r activity to predict the

muscle activity patterns during the perfirmance of a dead 1ift. A

comparison of experimental data from subjects performing 1ight weight
dead 1ifts and model - pred;'cted muscle activity patterns.shows the
model capable of simulating ;nusc1e activity patterns common to a number
of subjects. Also sirﬁhated is the Floyd & Silver shutoff. It should be
noted however that the ekperimental da;t;a' came fﬁr[om a small group of

test subjects. Before any conclusive statements are made about the

. ¢ model's ability to predict muscle activity patterns, a more detailed
— »

study involving the 'collection and classification of muscle aﬁtivity

patterns is required. ~

The model has been tuned to predict the muscle activity patterns

required for a series of dead lifts ranging from 0 to 400 pounds so

that the compression stress at all levels could be equalized. It was

. discovered that the scaling factors (Pi's) did not offer enough

.degrees of freedom to obtain the desired stress equalization. The

addit ional degrees of freedom necessary were attained by modulating the

locationy of the centers of rea;tion of the ‘five lumbar Tlavels. The
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modulation pitterns for different wei’ghts and different angles formed a

non-random family of nested curves. Given that the modulation patterns

exhibited non-random behavior, the Psoas ‘was proposed as " the mechanism

through which the centers of-reaction are modulated. A system in which
‘wefghtlifting' "muscles are controlled by a stress minimization
subsystem and the Psoas 1is controlled l?y a stress equaHzation
subsystem is presented. * ) «

The model detponstrated, based on the assumption that the centers
of reaction could be modulated, that it was possible to find sets of
locations for the centers of reaction and muscle activity patterns such
that the compression stress in the spine. could be equalized at all
levels for all weights and angles. Furthermore, the predicted muscle
ac'tivjty pattern§ indicated that for equalized compression stress to be
achieyed sorﬁe minimum Tlevel of muscle activity must be maintained

regar/dless of the weight.

b4
\

_ Future work basebd on this model could be to reasses the ‘role— of
the Psoas muscle, change its mathematical description to make it

modulate the locations df the centers of reaction and introduce the

stress equalization loop in the overall model. .
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Appendix A: Computation of the Motion o€ the Spine Ai '
AW . | X . N
I\ h A.1l) Description of Spinal Motion 3 . o 1

The task simulated in this thesis is a sagittal plane dead Tift.

v The motion of a dead 1ift is modelled by ei’ght images of the spine at

- ' flexion an\gles: of 0 to 70 degrees, in increments of 10 degrees (Figure
« > _' .

5.20). .From a sagittal plane X-Ray Yof a subject in the upright
position, it is possible to estimate the "coordinatesT of the five
‘ centers of  gotation of the Lumbar IV joints  ( ¢x; .cyj)

\
(Figure 5.16), thg disc inclination angles ( DA; ) (Figure 5.179 and

the initial disc wedge angles ( DWI, (Figure 5.18). The'centers of

PUUE S

f'otationr are takén to be Aocated t the intersection of the Ting
through tha posterfor third of the disc and kthe disc bisector.
. Calculdtion of the motion of the spine also requires the flexion angle ’

\}\ . (ALPHAO') which delimits the transition -between the two arcs of.
!

motion of the lumbar spine: spine flexion and hip flexion.. At_ the

: ~ ALPHA; angle, the spine is fully flexed. Thi%ﬁesu]ts in a near
linear spinal. lofdosfs, The str@g}atening of the lumbar curve is

=~ modelled by assuming all the centers of rotation to be collinear at a

. - = .
% * flexion angle of ALPHA0 degrees (Figure A.1), < 7
) * i . i -
; N Disc deformation due to compression is ignored, thus " the distance ’
between the individual centers of rotation does not change. The distan-
ces are calculated from the initial coordinates and are maintained

P B .
X _ throughout. the computations. Let the distance between the center of rot- .

L
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the centers of rotation are assumed coll

Figure A.l
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Determination of the distance-between
adjacent centers of rotation

" Figure A.2
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ation. of .L; and the center of rotation of Lyi be D; (Figure

A.2). The equation defining D; is:

’

Di = (( cxy - CXj+1 )2+( CY4 > CY5+1 )?)* (A1)

Once these distances are calculated the locations of the centers of rot-

ation at ALPHA0 can be calculated. Lg . is fixed, hence its coordin-

ate at ALPHA; is its location in the upright position, Let the coord-

1

[4
"inates of the center .of _ rotation . for L. at ALPHAO be

(]txi, 1ty;). Thus we have:

(A.2)°
(A.3)

'l_tx = X
5 5 -

lty5 =Yg

_The ‘location of the center of ‘rotation of Ly can now be deter-
po)
mined: it is on a ]ine intersecting ("{;5’ ]tys ) that has been

rotated ALPHA) degrees from the upright position and is at a distance

D4 from ( ]txsw “ltysa). The éhuations defining the location of

(tx,, ty, ) are:

o / ‘
1Ex, = Jtxg - Dy * SINC ALPHA; ) . (A.4)
1ty4 = Tty + 0y * COS( ALPHA, ) : (A.5)

/

In general, the equations defining the location of the center of rotat-

ion of Li are:

& -~
1txi

Ttx ,y - Dy * SINC ALPHA ) - " (A.6)

i+1 - Dy,

T8Y; = Tty + D5 * COS( ALPHA ) ~ (A.7)
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A.2) Spine Flexion ‘ -
This arc of motion corresponds to a flexion angle between 0 gnd'
AL'PHA0 degrees. When the spine flexes, the center of rotation of }5

is assumed not to move. Ly rotates about lg» Ly rotates about

Lyp L, about Ly and L; about L,. Let the Tlocation of the
“cente} of rotation .of Ui be ( ufxi, u%yi ). For any ALPHA:
UfXg = oxg J (A.8)
ufyh = o5 (A.9)

i

_ Before calcu]afing the location§ of//;i to Lg, the angle
( BETAi ) through which level ‘'i' must rotate about level 5 to go
from its initial positioﬁ to its fully flexed position at ALPHA0 must
be computed for levels 1 to 4. BETA; is the angle between the level
'i' vector going from ( CXS' cyg Y to .{ CXj> CYy ) and the unit
vector at k CXg, cy; ) describing the fully flexed 1imit of motion
of the spine at AL#HAO (Figure A.3). The unit vector is given by:

-

”
[

V= (-SINC ALPHA; ), COSC ALPHAG ) )% . (A1)

1
.

The level 'i' vector is given by:

.

Vi= (Coxj-cx5 ), (eyp - cys )t (A1)

" The angle between the two vectors is given by the dot produét relation-

ship:

‘y
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* ( frac - 1.0 ) + ALPHA, (A.14)

»

: )
slope angle = 90 + BEIAi

v
-~

The Tine with this slope angle représents /the rotation of level 'i'

‘about L5 proportional to the total angle level 'i' must rotate

through to reach its position at ALPHA0 (Figure A.4).

STEP 2) The intersection between the line and the circle is determined

' [ ]
as follows.

~ v

e —~ < ik s s b e
101
. BETA, = cos™! | Y'Yy , T (Ad2).
/
vl
_ s
The fraction of forward flexion is defined as: /
- . 3 \ /
frac = (ALPHA) / (ALPHAQ) =~ S (A3
" The ?Tequ locations of levels 1 to 4 are calculated by applying steps-
1 to 3 with 'i’ goix;g from 4 to 1: ' . 4
¥
STEP 1) The location of.lével 'i' is calculated by determining the int-
ersection of a circle with a radius equal to IJ1 cehteréd at
( ufxi+1, ufyj41 ) with a  Tine ‘passing  through  ( cxg, Cyg ) .
- that has & $lope angle given by: W
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2.1) The differentials of the slope are computed: .
" DX = COS( slope angle ) ' . (A.15)
DY = SIN( slope angle ) . ' "~ (A.16)

If the absolute value of DX is less than .00l then the line is near
vertical through L. and this is treated as a special case: go to step
2.6. )

2.2) The slope and Y - intercept of the line are computed:

SLOPE = DY / DX ‘ - . (A.17)

YINT = CYg - SLOPE * cxg ‘ - .(A.IB)'
We now have the s1opé ~ intercept form of the line, i.e.

Y = SLOPE * X'+ YINT ‘ (A.19)
lThe equatisn of the circle is

( X -.S;xi+1 2y - ufyie) - D2 ., '*. | (A.20)

. 2.3) Substituting 'Y' in equation A.20 with equation A.19 yields the

foJlbﬁing quadratic equation:

A* X2 +BrX4+Cc=0 : | . (A.21)

A
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with: !
A= 1.0+ SLOPEZ - P (A.22) °
B = 2.0%( SLOPE * ( YINT - ufy, . ) - ufxqey ) (A.23)
=UfxZ 4 (YINT - ufygy 02 - 052 (A.24)

2.4) Solving the quadratic equation gives two solutions, X1 and  X,.

These two X - values are used in equation A.19 to compute two Y -

- "values:
Y{ = SLOPE * X; + YINT : - (A.25)
Y, -

SLOPE * X7 + YINT ’ © (A.26)

The intersection of the circle and the line 1is at two points -
( Xl» Yl )‘g}and ( X, Yp ). The proper point must be determined.
As stated earlier, given the upright position of the spine ( 0 degrees
flexion ) the path of tﬁe Tumbar spine is computed in flexion angle
increments of 10 degrees, from 10 to 70 degrees. Thus when ~computing
the current position of level 'i' the previous position of level 'i' is
available. The point that is chosen is the one that is' the closest to
the previous position of level 'i*.

N .

2.5) Let the previous position of Jevel ‘i' be at point

(PX;, PY, ). The distances between this point and the two intersect-

fons are given by:: ' 1 '

DST) = ( (X - PX )2 + . ¥, - PY, )2 )i ' (A.27) -
DST, = ( ( Xy - PX; )2+ ( ¥y - pYy 22 ) ' - (a28)
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If DST; {5 greater than DST, then set ) L.
ufxg = X | | (h29)
ufy, - Y, _ ‘ . ) (A.3p) 4 )
else if DST, is greater than DST; then set :
uij. = X , (A.31)
ufyi = Y ' . , . (A.32)
. /
Go to Step 3. . M
‘é.G) The special case of a vertical line through L5 is easily dealt
with. Since it is- a vertical line, the X - coordinate does not Change.
A1l that needs to be computed is the location of the Y - coordinate"‘on’
the circle. There are two so]ufcions, but the proper one is the Y - co-
ordinate ¢losest to the previous position of level 'i'. From geometric
- considerations, it is the Y - coordinate with the largest value. Thus: ¢
ufx; = cxg © (A.33)
uEYi = ufypay + (07 = ot - ufxgy 0D (A.34) )

~

STEP 3) Having computed ufx. ang ufy;, the previous location vari-

ables are updated:

PXi = ufx" . ~w (A.35)
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A.3) Hip Flexion

'

When the flexion anglebALPHA is greater than ALPHA)  the entire

spine and pelvis rotaté/ about the hips as a rigid body (Figure A.5).
The Tumbar spine is locked in its completely flexed position with all
the c'enters of rotation assumed to be collinear. The net rotation angle

about the hips is equal to the flexion angle minus ALPHA

,:’
g
n
[
§
r's
?
%
;

0
' MG = ALPHA - ALPHA, C (A.37) E
o . %
The locations of t‘ centers of rotation are determined by rotating the
} . . '. . Y
; coordinates  of the centers of rotation at ALPHAG  ( 1txy, Ttyy ) ;
’ by ANG degrees. Let the location of the center of rotation of Ly be ' :
, ( xr.  yry ). The equations defining ( xrj, yry ) are: %‘
! | :
: T * . . . ‘A
; XEy o= Ttx; * COS( ANG ) - Tty; * SIN( ANG ) (A.38) . f
L ‘ J
{ Yrg = Ttxy * SINC ANG ) + Tty; * COS( ANG ) (A.39) {
cgj ’ ’Sf
't ) },
] A.4) Disc Inclination Angle §
+ ) \ v i “z‘(
i3 ) . N ‘ « . 3
The disc inclination angles describe the orientations in space of i

the five Tlumbar interventebra] join‘ts’ with respect to the Hip -
Shoulder 11ne. Each joint has associated with it an imaginary line that

bisects the disc and intersects the center of rotation for that joint.

cy g

The disc inclination angle is defined as the angle between a line per-
- pendicular to the Hip - Shoulder 1line and the bisector of that disc \
(Figure 5.17).

" . \
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Spinal rotation about the hips ds a rigid body

for flexion angles greater than ‘ALP"HAO ’

N

Figure A.5
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Computation of the disc inclination angle for any flexion angle
ALPHA is based ubon three' assumptions: 1) For -a flexion angle of

ALPHA) degrees, all the disc inclination angles are zero. This

implies that at ALPHA, 411 the discs are perpendicular to the Hip -
Shoulder line (Figure 5.18). 2) For all flexion angles greater than

{

ALPHA, the. disc inclination angles remain zero. This implies that

the spine is locked in its fully flexed position relative to the

~—

belyis. 3) For f]gxion angles less than ALPHAO’ the.disc inclination

‘angle goes to zero linearly proportional to ALPHA divided'by ALPHAO?

<

Let the disc inclination éngle in the upright position for level

' be GAMMA;  The equations defining the disc inclination-angle

relative to a line normal to the Hi? - Shoulder line for any ALPHA are:

\

DAr; = GAMMA; * (1 - frac ) ALPHA < ALPHA, : (A.40)
DArj =0 W ALPHA > ALPHA, (A.41)
, h
To transform this angle to the reference coordinate system it need only
be rotdted by the given f]ex1on angle. - )
DA e ' ‘
i = DAr; + ALPHA ALPHA < ALPHAO (A.42)
ol
. ¥
DA, = ALPHA  ALPHA > ALPHA, (A.43)
5 .
) ) . \
*
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A.5) Disc Wedge Angle ’ -

When in the upright position, the endplates of any gtven vertebral
t

body' in the Tlumbar region are usually not quite parallel, to those of

Rather, they make some

the vertebral body either above OC%QETOW it.
small angle with respect to the disc bisector. This angle is defined as

the disc wedge angle (Figure 5.18). As the spine unfolds to its ‘ o

ALPHA; position, the disc wedge angle decreases to some terminal

‘ ‘value at the ALPHA0 position (Figure A.6). For flexion angles gréater

than ALPHA,, the. disc wedge angle remains at its terminal value ( the
spine is fully flexed ). Compression of the disc causes it to deform,
but the change is small for the range of éomé;ession forces consideréd
jn this study and is\\}hus fignored. For flexion angles less than

'BL?HAO the disc wedge angles are assumed to vary linearly from their

jnitial to terminal values proportional to ALPHA divided by ALPHAO,

Let DWI; and OWT; be the initial and terminal values of the disc

wedge angle for level 'i'. The disc wedge angle, DW. s given by:

DW; = DWI; + (DWT{-DI;) * frac ALPHA < ALPHA (A.48)
DH, &\ pw - “ALPHA > ALPHAq (A.45)
J ’ 1]
/ -
/ 1
’ r
) {
. 2N
v
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The Terminal Disc Wedge Angle
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Appendix B: Derivation of the System Equations.

In this section the resuitant shear and compressioﬁ at the five
Ium?ar intervertebral joints and the ligament tengion are derived as a
function of muscle a;tivity and external load. The forces and moments
induced by theh individual muséles \E?e derived. Thé muscle grouping
described in chapter 5 is used to assemble a Vmusclﬁ moment matrix.

Given the external load and muscle moment matrix, the lTigament tension

.equations are derived. Finally the resultant shear and compression

equationsAare derived. !
B.1) Muscle Force Ebd Muscle Moﬁent .

Muscle acfivity produces muscle force. The muscle force vector is
defined by its direction ('a unit vector along the muscle strand line
of action ) and its magnitude ( the produgt of muscle activity and
muscle strand cross gectiohal area ) ( Figure B.1 ).

w Py ‘

-> ” A - .
FM=K'A . FM ~ ' (B'l)\
where:

-

FM is the muscle force vector -

K is the muscle activity ’
" A is the muscle strand cross sectional area’ °

s ~

FM is the unit vector along the muscle strand line of action

R = PR~ PO s et o
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Unit
=, Vector
.’ .
. FM : Muscle Force .
. ‘ ‘s Vector
. N 2 Muscle line
, . ‘ of action
» " -
FM =K * A FM

where:

.
-

Y
Fu is the muscle force vector

K is the muscle activity

-

A is the muscle strand cross sectional area

Fy is the unit vector along the muscle strand line of action

Muscle Force Vector

Figure B.1
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By combining the muscle strand cross sectional area and the unit

vector, the muscle force vector can be written as the product of the

muscle ‘activity and a muscle activity to force scaling vékzgr.

FA

A -
A . FM (’8-2)

Fy=K«FA “\ | | (63)

» ;:;.

is the

T

M is the
is the

} =

“-n

M is the

Mode1ling
like equation

at an IV joint

_ muscle. Thus

produc% of the

ing vector.

'»

¢

is the muscle activity to force scaling vector

muscle strand cross sectional area

unit vector along the muscle strand line of action

o

muscle activity

muscle force vector

an individual muscle will yield muscle force equation§

B.3 for each lumbar IV joint. The resultant muscle force -

is often the summed forces of several strands of that

the' resultant muscle force vector can be written as the

muscle activity and a net muscle activity to force scal-

B 2 B

i = T : .

Py = K« PN ; " (8.5)
© / . -
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FNi .is the net muscle activity to force scaling vector

for level 'i!
FAj is the muscle activity to force scaling vector for

muscle sérand *j' acting on level 'i'

N is the number of muscle strands acting on level 'i'

s
K is the muscle activity ‘
- ) , »
FMR' is the resultant muscle force on level 'i'
i

The moment about a particular center of rehctibp is given by the vector

' Cross broduct of the lever arm distance vector ( running from the
center of reaction to the origin of the muscle strand line of action )
and the’ muscle strand force vector (lFigure 8.2')

ﬁ = 5' . X EM - / R (BIG)

where:
- .
M is the moment induced by the muscle activity
Di,j is the lever arm distance vector from center of reaction 'i'.
to the origin of the line of action of muscle strand 'j'
‘ « N Po
Fﬁ' s the force vector of muscle strand 'j' o
J

The muscle strand cross sectional area is constant. The distance

vector and line of action unit vector are constant for any given =

flexion angle. Furthermore, all the vectors'lie in the saggital plane

with only X & Y components. The cross product of these vectors will

T

LI
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enter of |
eaction 'i' +
[ FM.
' J

is the moment induced by the muscle activity'

i,j is the lever arm distance vector from center of reaction 'i'
to the origin of the line of action of muscle strand ‘j'

ot A

$

FM is the force vector of muscle strand 'j'

'( . .Moment induced by the muscle force vector.

a

Figure 8.2

e
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i
i
l
'

yield a vecéor in the Z dvirection. The sign of the Z direction
compqnent indicates fts orientation. To simplify the mathematics, the
result of the éross product will be written as a scaled trip’lé product
preserving the Z direction component. This simplification is valid only
because of the two dimensional nature: of the model. Extending the model
to three dimensions would modify the equilibrium conditions stated. in
chapter 5 and would necessitate rewriting the equations.

Factoring. out the'muscle activitx, the moment can be written' as
the scalar product of the muscle activity and a muscle activity to

moment scaling factor denoted MSF.

M=K .MSF (8.7a)

/

i

" MSF = [51',5 X FAj].- 2. o (B.7b)

o

In the referte coordinate system, a positive m nt is counter-

‘clockwise and\a negative moment is clockwise.

", ‘ : {

Modelling an individual muscle will yield a moment equation 1like
equation B.7a for each lumbar IV joint. The resultant moment at an IV
joint is often due to several -strands of ®the muscle each inducing

moments at the IV joint. Thus the resultant moment can be writte?u‘ as

the product of the muscle activity and a net muscle actiyity to moment

scaling factor. The five net scaling factors can be assembled in a

C 5 X1 ] vector. Multiplying this vector by the muscle activity yields




o e XA S— ST

TR T a8, oo Y 500 S b s e et £

117

)

a [5x1 ] vector of the resultant moments induced by the muscle at

the IV joints.

F Ml_ MSFI- ) v . ' . , e
Mz MSFZ ' 3 '
M = MSF, | ' K .
3 - K’ 3 . , o

: MS MSF5

%
where: < \
M, is the moment induced at level 'i'

MSF1 is the net muscle activity to moment scaling”factor .

for level ‘i’

m—

K - is the muscle activity

" These results will be used to derive the net muscle activity to
force s‘ca]ing' vectors and the net musg]e activity to moment scaling

-

factors for all the muscles.

PSOAS

Refer to figure B.3 for the numbering and directions of the muscle

strands.

CENTER OF REACTION R, (1§ = 1to4 )

T i+l »

FN; = £ FA, S | \ :
1 j:l J : . (8 9) i
itl » , A ’ A . )
MSF; = [jgl(D- j X FA5)] o1 ©. . (B.10)

1,) / .
’ . !
Y : , .
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Psoas
Figure B.3

_  hedialis Spinalis

Figure B.5

e x e e

LDV

-
>

Rectus Abdominis
Figure B.4

External Obliques

(Posterior part)
Figure B.6
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CENTER OF REACTION RS ' N ' ¢ »
¥
- 2 2 | : | (8.11) 5
= 2 . \g
s jl-.;l FA ) ?
. 5 » + A : < (8.12) ) }?
RECTUS ABDOMINIS
; ‘Refer to figure B.4 for the direction of the muscle strand. ‘
' ¢
i CENTER OF REACTION R, ( § =1to 5 )
|
% i
i -+ 2
? FN; = FA . _ , (B.13) ;
“ ‘ +> + A '
: MSFi = [Di,l X“FAI] e 7 ¢ (8.14) ‘s
MEDIALIS SPINALIS
Refer to figure B.5 for-the numbering and directions of | tﬁe muscle §
L, strands . o % .
o o
f CENTER OF REACTION Ri (i=1t 4) 3
i ;
’:; + 4 - 4 . , - (B 15) ;;
:1 FN.i = jE'l FAJ- . ‘ : . . z
| B xBaaled B.16)

CENTER OF REACTION R5 ]
As it has been modelled, Medialis Spinalis does not exert any force nor

induce any moment on center of reaction .

FNg = (0,0,0)% (8.17)

MSFg = 0 Y - (8.18)




(/E | | -
EXTERNAL OBLIQUES (Posterior part)

Refer to figure B.6 for the numbering and directions of the muscle

strands. 3
'Y - ¢
. CENTER OF REACTION Ri (i=1t%tob5) ’
‘ | < :g
> 4 » w;j
FN; =A j§1 FAJ (B.19) . - g
| ]
(B.?O)

) 4§ » > A
MSFi = [ng (Di,j X FAJ')] o7

&

R I S R

ILIOCOSTALIS LUMBORUM (Superficial part)"
Refer to figure B.7 for the numbering and directions, of the muscle :

 redres s

strands.

CENTER OF REACTION Ri (i=1t5)

T Y (8.21) g

1 j=1 J i

;

I\ > + A - : ' 4

MSH; = [JEI Di,j X'FAj)] o7 . (8.22) j

1

QUADRATUS L UMBORUM §

- ;

Refer to figure B.8 for the direction of the muscle strand. g

CENTER OF REACTION R. (i =1 to5 ) :
+ -+ ' .
Ny = FA ' ' (8.23)
(B.24)

-D< -+ A
MSF" = [Di,l X FAI] w4 ' ) .

LATISSINUS DORS]
Refer to figdre B.9 for the numbering and directions of the muscle

i

strands. ‘ o
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Iliocostalis Lumborum
(Superficial part)
Figure B.7

R,

Latissimus Dorsi
Figure B.9

Quadratus Lumborum
Figure B.8

Sacrospinalis
Figure B.10
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CENTER OF REACTION Ry (i=1t05) R
S IR S S @)
. = s ¢ X 3 e ¢
MsFy = [, (D45 X FA; \

SACROSPINALIS & DEEP ILIOCOSTALIS LUMBORUM

Refer to figure B.10 for the .agmbering and T direction of the muscle 5
' l

strands. N
(CENTER OF REACTION' R, ( i =1to5) ‘
> 1+1 hd - . ) ’ 7) -
FN; = .1 FA { (8.2 ’
: j=1 . : i
R i+l » > A - !
MSFi = [j§1 (Di,j X FAj)} o # (8.28)
MULTIF IDUS

This is a complex muscle. Levels 1 to 4 have six muscle strands
acting on each level. Level 5 has five muscle strands acting on it. The
muscle strands are defined in table B.1 by tﬁeir attachmeﬁt points.
Refer to figure B.1l for the location of the attachment points. -
CENTER OF?REACTION Ry (i=1to4)

> 6 -> ' :
FN; = I, FA; Lo (B.29) .

J:l J

. ’ + + + > -+ + o+ + + h’? L
MSFi = [(Dlx FA1)+(DZX(FA2+ FA4))+(D3X(FA3+ FA5+ FAG))]OZ {B.30)
CENTER OF REACTION R, -
’ ‘ 3 ) ‘
' + 5 » ’ p :
"o FNg = £ FA;~ N ‘ (8.31)
N j=1 j ‘ - '

R

+» +» A ' ’
MSFS = [Dl X FNs] o 1 . (5.32)
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MUSCLE '«

STANDS

FAl

adn
FA,
-l
FA

3
FA4
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‘ .
N Q’ ‘ Y
\ LUMBAR LEVEL
1 2 3 4 5
fRoM 70 FROM TO FROM TO .FROM‘ TO  FROM TO ~_ .
11 V22 T2 it Vi2:. Va1 Vs2 Vs1 P
T2 Vo2 V11 ﬂ: Va1 Vaz Va1 V52 Vg1 P

TVl Va2 Vp V32 V31 V42 Va1 Vsp Vs P3

e Vi Y Va2 Va V2 Va1 P11 Va1 Pq
Vi1 V2 Va1 Va2 Va1 Vs2 Va1 P1 V51 Pg
Vin Va2 V2 Vsz V33 P1 Va1 Pp - -

"Muscle strand and lever arm distance

-

vectqrs for Multifidus

(& . .
* A o LY
Table B.1 o e SR
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" Multifidus

Figure B8.11
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Fascia

Figure B.12
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;fASCIA\ifuTERNAL 0BLIQUES & TRANSVERSUS ABDOMINIS)

er to figure B.12 for the numbering and directions of the
Fascia strands. A unit force pull on the edges of the Faséia at a given
iével by the Internal Obliques & Transversus\ Abdominis s assumed to
induce [ﬁnit force along the Fasci;}strand at that level. The Fascia
strands at leve]s.3 & 4 are rotated in the saggi@a] plane by e’~degree$;
Thi; models the Fascia's angled insertion at those 1e9els due to its
wrapping around the bulk of the Erector Spinae muscle bundle. For d‘
‘indiviaual lwith a large Erector Spinae muscle bundle, ¢ can vary
betw;en 10 & 20 degrees. ' ‘ |

CENTER ‘OF REACTION Ri

PN = A (B.33a)
I g =[Tcoste) -sinle) O | PNy i =3, 4 : (8.33b)
sin{e) cosle} O . = '
0 0 1
b <> . N .
MSF; = [Dg j x FN;] o 2 . (B.34)
B.2) Muscle Moment Matrix ‘

L

" The eleven muscles desgribed can be divided into'seven ,independeﬁt
groups. The. muscles constituting a éroup a;e assumed to have the same
muscle activity, Thus the equivalent net muscle activity to force
scaling vectors and net muscle activity to moment ;caling factors fﬁr
muscles within a group can be summed. Given that- the moments aré

calculated for 5 IV joints and that there are 7 indébendent muscle

groups, a ‘L 5 x 7 ] ‘muscle moment matrix can be constructed: The,

b

L
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.1,Jth entry in the matrix is‘thg net muscle group acti&ity to moment
scaling factor' for IJ?el 'i' of group 'j'. Multiplying the muscle
moment ‘matri x by al 7 x 1 1] vector of mdéc]e.group activities yields a
(.5x 1] vector of the‘rgsu]tant musclé momgnt at each IV joint of the

lhmbar spine. -

3

[GM1 1 eeeereennns GM; 5] KN RMy |
1,1 "1, o
: : K2 2 E
: : K3 | . | RM3 (B.35)
: I B L I '
. GM5’1~-ov -------- GM5’7 KS RMS'
| O %
| %7 )
where:

v

GMj,j is—the net muscle group activity to moment scaling factor '
for level 'i‘' of group 'j' ’ o

Kj is the muscle group activity of group 'j'

RM.  is the resultant muscle moment at-level 'i'
Group 1 is comprised of three muscles: ﬁedialis Spinalis, Iliiocosta]is
Lumborulm and Sacrospinalis. Thus the ffrst column oé the muscle moment
ma;rix is formed by summing the <components of equations B.16, B.18,
B.22 and B.28 corresbonding to the same level 'i'. Group Zlis the
"Multifidus only, so the second column of the matfix is formed with
equations B.30 for levels l‘to 4 and equation B.32 for level 5. Group, 3'
is the Latissimus Dorsi only. The third column of the matrix is forméd

wih equation B.26. Group 4 is the Quadratus Lumborum only. The fourth

-~
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’ X column of the matrix is formed yith equation B.24. Group 5 is the Psoas
only, thus the fifth column of the matrix is formed with equation B.10 ‘
for levels 1 to 4 and equation B.12 for level 5. Rectus Abdominis is
the sole muscle .in group 6. The sixth column of the matrix is formed

. with equation B.14. Group 7 is comprised of three muscles, the External

.
- “ P
. . F
B
.
BY e SR L 47 e B s e qm“ﬁmﬁw -

: i
Obliques (Posterior part), the Internal Obliques and the Transversus |
, !
' / Abdominis. The seventh column of the matrix is formed by summing the
] N 1
] components of equations B.20 and B.34 corresponding to the same level ‘ %' -
] *i'. The muscle groups and the constituent e&uations are summarized in %
: { ) ;
i table B.Z2. i .
: 1
z v

B.3) Ligament Tension Matrix

¢ ]

There are essentially three forces inducing moments at any- lumbar

f . §
’ IV joint: the external forces ( comprising of the external load and 5
{ H
§ ~ body weight ), the muscle force and the ligament force. Static %
a‘équilibrium dictates that the resultant moment at all IV joints be ?
¥
v Zero. . ‘
! OEM; o+ RMy 4 LMy = 0 . (8.36) ° ‘
+ . 35"
‘ Where: %
. N ere: ; é
g
! fﬁé
, EM. {s the external moment induced by an external load and the ' §
1 i :

body weight at fevel ‘i

RM; is the resultant-muscle moment at level 'i'

LM; is the ligament moment at level '{'

- R R P . i R S




ln

:/,//// (Posterior part)

GROUP NUMBER MUSCLES IN GROUP EQUATIONS

1 Medialis Spinalis \ . B.{G, B.18
ITliocostalis Lumborum - B.22
Sacrospinalis T B.28°

2 Multifidus B.30, B.32

. | '
3 Latissimus Dﬂéli ) X B.26

\

4 Quadratus Lumborum B.24

5 ' Psoas ' ‘ B.10, B.12

- )
6 . Rectus Abdominis B.14
' . . 3

7 External Obliques - B.20

- . Internal Obliques ’
: .} B.34

Transversus Abdominis

Equafions defining the net muscle activity to
to mopent scaling factors for the Muscle Groups

4

Table B.2

128
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Isolating the ligament moment.in equation B.36 yields
. ‘ ' P

13

LM.‘ = - (EM, + RM..) . T (B.37)

The desired result is the'lfgament tension in each strand 'i'. The
ligament 1ine of action unit vectors are defihed in figure 8.13. The .
ligament force vector for strand 'i' is given by the product of the ,
ligament tensioﬁ. in strandp 'i' and the ligament line of action unit

- vector for strand 'i'. ~

+> A
T, =T: «T ‘ (B.38)
Li 1 L'i ,
, , .
where:
[Y g
- . . - ) -
T, is the ligament force vector for strand 'i'
i
T, is the ligament tension in strand 'i'
T . is_.the ligament .-line of action unit vector for strand 'i' ) .

i
. The ligagent moment at each level 'i' can be computed. D, j 1s the

“level arm distance vector from center of'reaction 'i! to unit vectoQ\

IJ'I.
s A A '
{ .’“
mz,m ly, = Tp = [Dp 2 x T ] o 2 (8.40)
+» ~ A . ‘
= L] 0 T Z . 8'41)
LM3 Tyo | 3,3 % L3] . , (
(T4 + [D T T | BaaxT et (8.42) :
= . + [ 3 [ . .
L, 3+ [04,3 x T,] 4 * [Dg,4 xT,
J
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* Midline Strand Definitions.

Figure B.13 ) | g
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+> A + A ’ .
LMS = (T3 . [05,3 X TL3] + T4 . [05’4-X TL4] , ‘ (8&43)

L d A A
+T5. (D55 x T ) e 2

The ligamént/tension is computed by substitﬁting equation B.37 into
equations B.39 to B.43. The ‘resultant muscle moment at level 'i' can be
written as the dot product of row 'i' of the muscle moment matrix and

the muscle group activity vector.

. L (s
! RMi = 55 Mgt Ky '
where: _
« rl
% . . . .
BMi is the resultant muscle moment at level ‘'i‘

' GMi’j is the net muscle group activity to moment scaling factor

for levely 'i' of group 'j'

/

Kj is the muscle group activity of group 'j'

The ligament tension in strand 1 is given by combining equations B.37,

B8.39, and B.44. .

~
-

»> ~ . A 7 ’ L { )
Tl . [Dl,l X TLl] e 7 = - (EMI + .21 GMl,j . Kj) pa (8-45

J:

ALt

After some algebraic manipulation, equation B.45 is reduced to
l . (*
- 7 ! . *

Tl = jgl MTNl’j . Kj + MTNKl (8-46)

" — where:
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GM,y ‘
MINg § = - (8.47)
USERINER
. .
MTNK; = - " - _ (B.48) ;
[01,1 X TLI] L Z (:",
{ The Tigament tension in strand 2 is similarly computed. Combining %
; equations B.37, B.40 and B.44 yields :
‘} . + A A 7 . ’
- Tp « [Dp,2 % TLZ] o 1=- (EMp+ & GMy 5 < Kj) . (B.49) L
i
‘é
.Reducing equation B.49 yields i
L . , .
; / 3
{ A A
i B . f
1 where !
] ‘§ N %
. GM, ‘ ]
, v MTNy 5 = - 2,3 (B.51) 1
; (02,5 x Ty, e 2 . ,
+ © ’ .
H MTNKy = - EMa - © (B.52) :
) & A .2
' The ligament tension in strand 3 is 7forn'|ed‘by combining e‘quations B.37, é‘
B.41 and B.44. ' 3
i
: ' ;%
+ A A * - 7 .
- 1=« {(EM7:+ £ GM « K ) (8-53) K
T3 By x T ) e (BMg-+ I @35 Ky) \ é
' ' ’ ('
Reducing equation B.53 yields
: Tq = ; MTN o Ky + MTNK ‘ = . (B.54)
3‘ j,l 3’J j 3 N i .
'] . L * ' N
!

N . S - B
sty L . vt "
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where:
, o " GM : T
MINg 5 =" - — : 3,3 : . " (B.55) ;
? Dy 2 X T o
} re [ l3 L3] ° 4'( \z
N ~ ' -~ o ' ’
! . EM ,
. MTNK3 = . - /3\ = (8.56)
= [03,3 X TL3] ° Z

The ligament tension in strand 4 is formed by combining equations B.37,

! . B.42 and B.44. i
| | E
- ' > A A \ 7 ~
: ‘. \\‘ T4~[D4’4X TL4] o7 = -(EM4+j§1m4,j.KJ+T3.[B4,3XTL3]‘i) (8-57) :
/ ‘ :
, | Substituting equation B.54 for T3 and simplifying yields .® . i (
) 2 ) ' ;
, ’ _ 17 [ . &
/ T4 = El MTN4’J . KJ + MTNK4 | . . (}5&')’ oo
! where: ' ) ‘ »
i ‘ oDy ax T 162 ) ' | 5
! (GMy, j*+ MINg 5-[Dg 3% T(,le " (B.59) :
: MTNy 5 = -
5 BRSRE SR
§ ”~ [04,4 X L4]. .
% . (EMg + MTNKqe[Dg ax T, _JoZ )
. X .
MTNKy = - o 3 &3 L3 (8.60)
(04,8 xT ] e .
g j
' The Tigament tension in strand 5 is formed by combining equations B(.37,

B.43 and B.44.
-> ~ A 7 . + A +> A A
TS.[DS,SXTLS].Z = -(EMS +j_i__:lGM5,j.Kj+(T3.[DS,3XTL3]+T4'[DS,4XTL4] ).Z)
(B.61) S

Subs,tituting'equation B.54 for T3 and equation B.58 for 'T4 and
simplifying yields ‘ ‘ )
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7 »
Tg = & MTNg § « Ky + MTNKg (8.62)
where: .
+ A + ? Ii) /’,//"/
((:Ms’j"' (;MTN3,j.[DS,3x TL3] + MT'N4’j'[DS.4X' L4] )o -
Mg 5 = - ¥ rr— ' )
- I s sx T )el :
5 (8.63) - -*
. + A -+ A A .
(EM5+ (MTNK3-[DS’3x TL3] + MTNK4 . [DS‘,AX TL ])e2)
: . MTNKS T - > N 4
- C 3 Y A
3 . [Ds,s X TL] [ ) Z
. ) , (8.64)
1 ‘ Equations B.46, B.50, B.54, B.58, and B.62 can be arranged in matrix ;
. , .ll ' /-. 1
form: - '
MTNy yaeenes MiNg 5 | Tk ] e T :
bt s Ko HTNK, Ty ‘ 1
E K K MTNK3 T3 ) f
MTNS 1-0'-0- MTNS 7 KS MTNKS Ts 7
» K L) K6 i
¢ LK7...
1 where: S ' ” '
3 . 4
’: 4 ' . “

MTN,-’j is the muscle activity to ligame'nt tension scaling faqtorf

for strand 'i' of group- ' J*

.

1

e ho o

. MTNK;  §s the ligament tension in strand 'i' due to an external

16ad and the body weight

K is the muscle group activity of group 'j*

R

A

4 ‘ T "+ is the resultant Ygamenf tension in strand ‘i’ .

» - -

Nt meim e ke pem woam s men dmrge v st A v
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The net ligament tension at' levels 1, 2 and 3 {is simply the

tensiop in the respective Iligapent strands. Ligament strands 3 and 4

exert force on level 4, thus the net ligament tension at level 4 is the

sum @f the tension in strands 3 and 4. Similarly ligament strands .3, 4

Snd 5 exert force on level 5. Thus the net ligament tension at level 5°

Wg the sum of .the tension in strands 3, 4 and 5. The net ligament

tension equations can be put in a form similar to equation B.65:

i - “ [, -
H'f’m"‘lv. R HMTNI,T 'K(l ::;:‘él TN]
: : 2 2 Ty
. E K3 HMTNK3 _ 21
H : Ky WING | = | TN
HATNG 1.o. . HMNg 5 Kg HMTNKs | f Ty,
Kg Ty,
Ng
- K7 |5 ]
‘ y (8-66)
whére: T {is the net ligament tension at level 'i'
1 .
HMTNK; = MTNK; & i=1,2,3 (8.67)
N 1' y ~
- = .68
HNTNK; = T MTNG, 6= 4, 5 (.68)
‘ = s i = = e e 069
HMTNi’j MTN."J' 1 1, 2, 3 j 1, ,7 (B )
i <y
- : i = i = 1,eea, B.70)
HMTN; 5= E. MTNp g =4, 5 §x e (

3

Equation B.66 is equation 6.3

- PR ——

in chapter 6.




P

FG

W

136

.

B.4) Resultant Shear and Compression Matricies

[ 4

The net force acting on any IV joint is the ghm of the muscle

force, the Jigament force, the external load force and the body weight -
force .acting on that joint, a |
-+ > -+ -> ‘s
Frer; = Fexry * Fuwus; * Fuig; {8.71)
where:
-
F

EXTi is the external load and body weight force at level 'i'

s

¢

n

Mus. is the net muscle force at level 'i'
i - :

; nd
- '
Flig. is the net ligament force at level 'i'
j
- i A
' Fygr. is the resultant force at level 'i'
i
This net-force can be decomposed along shear andycompressioﬁ .directidn§
defined by two unit vectors (Figure B.14) . o .
N L]
-»> A t [
S, =F S. 4 ‘ (8.72) .
1 NET.i.l , )
e T '
x A , ’ " (8.73)
Ci = FneT, * G o : , :
. . i .. ¢’ )
where: , ,
- . Tl ’ : . v
FNET. is the resultant force at level 'i' ‘
- 1 '
S.i is the unit vector defining the positive shear direction
for level 'i! oL o ’

S

- -~ o~ o

l\, | ‘ a ' )
‘ ' ’ Co ..

[..,u,_..~.,.,, s ke . o ot mme e e -




~ 3 - : ) 137

iy
£
Pt

EXT, \ . | .

»

Decomposition of net force into.shear & compression components.

| Figure B.14 N

4 -8

-~
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&

\ !
. 12 .

S5 is the projection of FﬁET on S R -
C1 , is the unit vector defining the positive compression

direction for lgyel !
)4’ ’ -
Ci  is the projection of Fygy on Cj - ///
The seven muscle groups each have five net muscle group activity
L

3

to force scaling vectors associated with them. In a fashion similar to

[N

‘the formation of the muscle moment mat?ix, the net muscle force at any

» level is given by
: A

R -~
F 1 K | - (B.74) e
= z .® PE . . ) -
MUS; = g1 MG 50 :
where: - VA

-» ) v C ' oo R
FMG.’% is the 'net muscle grpup activity to force scaling ’

i, ,

’ vector for level *‘i'\of group 'j' (see Table B.3)

KJ ~ is the muscle group adgivity of group 'j'
Fuus. s the net muscle force at level 'i' :

> )
The ligament force vectors are given by equation B.38. e,

-+ A «
Ty = Tioe Ty . (8.38) .
where: ,
» , ) . . [ )
-- N .

TLi is the ligament force vector at level ‘i’

. i § t tensi t 141" co Y
. Ii‘ s the ligament tension at leve ‘r . ¢
% “ ~ ¥
“ N @ - N . Al /
- N ,S \( N
) s
i ) .
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" GROUP NUMBER MUSCLES IN GROUP . EQUATIOﬁ§
1 Medialis Spinalis %1‘!‘?’8.17
I1liocostalis Lumborum B:21 .
' Sacrosbina]is B.27
2. Multifidus 8.29, 8.31 ) oy
\
3 Latissimus Dorsi B.25
4 Quadratus Lumborumn B.23 " . .
," «
5 Psoas o B.9, B.11 ,
6 Rectus Abdominis B.13
( oA
7 External Obliques B.19
(Posterior part)
Internal Obliques N ‘ -
N% B.33a, B.33b
Transversus Abdominis ' . ~
' ’
Equations defining the net muscle activity to
: to force scaTing vectors for the Mdscle Groups
Table B.3 .
) \ y
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'TLi is the ligament line of action unit vector at level 'i‘

. )

The resultant force at level 'i' ( for 1 =1 to 3 ) s given by

-

B, = Fexr. ¢ Fuge + B ‘
\ / NETy = Fexty * Fuwus; * Fuig; . ' (B.71)
Substituting equations B.74, B.38, and B. 46 ( is1 ), B.50 ( i=2)
B 54 ( i=3 ) 1nto equation B.71 yields
F Fopr + 2 F (7MTN K MTNK)T
= + . +
NET; = PEXT; * 5% TMGy 5° 5 j Ly
(B 75)
[ S ¥
The resultant shear and compression“at level 'i' are given by ~
-» A f '
S; = FygT. @ S o ., (8.76)
. : 1 ~ .
- C - FNET Y ei \. . . .o '(8077)

hAd

-

Substituting equation B.75 into equation B.76'and reducing yields

or

7 . : :
Si = 1,9 % i ~ B.78
Sy = ) SRy 5 oy w70
with:
-+ . ~ A .
’ ’ v ) '
: N | R n - C |
SHRK.‘ E (FEXTi + MTNKi . TL'i) [ Si . - ' (8-80)

'd

) Substituting‘equation B.75 into equation B.77 and reducing yﬁe]ds

. ‘ - - -
. ) - )
‘. ’
. - R

' vy - . N it et it ke e 8 5 ot it aa e A M war e e

-
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£ " ¢ ' (B.81)
Cp = (£ CMPy 5 = Ky + CMPKy | | .
with:
. . . | |
. d
-+ ~ A .
‘ = 5. ~ B.83
¥ CHPK; = (Fyp, + MTNKS T ) e G ( &(

The resultant force at level 4 is given by
?

» ; +» T > -»> '
FNETq = FepTy * Fausy *FLIG, . .

At level 4, the net ligament fofce is given by

Substituting equations B.54 and B.58 into equation B.85 and then
. substituting equation B.85 and B.74 into equation B.84 yields

-t F - K+ (0
= + .

NET, EXT, j§1 MGgq i 51

&

MTNg jKg+ MTNK3)T)
7 - o -
+ MTINg seK: + MTNKg)eT (B8.86)
(I, MTNg, 5K; ) Te, |

[

I 4 ’
. The resultant shear and compress{gn at level 4 are givgnfby

¥

-» A . ' ' '

‘

/ . _-* e
g Co = Frerg®Ca 4

.80

i n N ’
b 4 Fligg = T3 Ty *Ta = Ty, ‘ o (B.85) )

s t e : e £-een R N T
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Substituting equation B.B6 into equation B,87 and reducing yields

-1 " (8.89)
with: °
{ <
b ? . A A - * )
SHR4’j = (FMG4.J' + MTNB,j . L3 + MTN4,j . TL4) ® 54 - (B.go
A A A ' N
SHRKg = (Feyy, + MTHKg « T+ #Tikg - T ) @ S (8.91)

/ , : .
Substituting equation B.86 into equation B.88 and reducing 'yields

' 7 ' (8.92)
- CMP, < « Ky + CMPK .
Co = &) MPa,5 - %y 4

with: ; . ’ . )
B

= . CA . ’ ~ A ’

&

> A i ~ A
CHPKg = (Fgyy, + MTNKy « T+ MTNKg = T),) o g . (B.94)

The resulfant force at level 5 is given by

-

+ + ' -+ > ot ‘ ,‘ ' (B.gé)
FNeTg = Fextg * Fusg * FLigg o
&

Ai level 5, the net ligament force is given by

(8.96)

> A A A
Fliggm T3 Ty * Ta s Ty * Ts 0 Tig

B T D T T s
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Substituting equations 8. 54, B.58 and B.62 into equation B.96 and then
substituting equation B.96 and B.74 into equation B 95 3de1ds

Iy
T

F SN - K+(%MTN K +MTNKR) o T
NETS EXTS j-"l. Mst J jg 3,:] j 30 L3

8

’ 7
+(J2 MTN4 J‘K +MTNK4) TL +(j£ MlNS j.Kj+MTNK5) TL
(8.97)

The resultant shear and compression at level 5 are given by
+> A
S. £ F S ‘ - (B.98)
) 5 NETg ® 5 ' .

(B.99)

o A
C5 = Frerg ® Cs

. Substituting equation B.97 into equatjon B.98 and reducing yields

55 = j£1 SHRS,j . Kj + SHRKS Al A (8.100)
with:

o A A A A ©

SHR5,j = (FMGS,j+ MTN J"TL3+ MTN4’j'TL4+ MTN5’j' TLS)OSS (8-1013

A A A A
SHRKS (FEXTS NK3 °TL3+ [QTNK4- Tl.-4+ MTNKS' TLS)OSS (8.102)

-

Substituting equation B.97 into equation B.99 and reducing yields

7 : '

- with:

o TP < ST S

g
,;‘?
g
b
i
%
]

o PRSI i N i

N

v o D AT
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CMPS,j (FMG j+ MTN3J TL + MTN4 J° TL ‘*‘ MTNS i TL )‘Cs )
-(8.104

2

Adih

v (Borr 4 WTHRS T T R 105)

- ~ t

P

Equations B.78, B.89, and B.100 can be arranged in matrix form

7 » - ’ 3
: SHRy y -+ee-- SHR Ky 1] | SHRK 5 ]
. K 3 _ 3
| : Gl s | 7| sy [P (Be208
' : 4 4 2
¥ SHRs 1 e SHRS.', Ks SHRKS 5 g
: | K7 | |
where ;

’

C e ke P

SHR,-,J js the muscle activity &.ligament tension to, shear

force scaling factor for level 'i' of group 'j'

‘. »
. is the shear force at level "1 due to an external load

and the body weiéht

is the muscle group activity of group *j'

TRTTRE W PN A TS Vw4 e can o myman W

is the resultant shear at level 'i'

A

e

Equatwn %é 106 is equation 6.4 in chapter 6.

‘(

g

) : /i
uﬁhons B.81, 8.92 and B.103 can also be arranged in matrix form '

. —'
e e 47y

NPy g eoenre CMP K ey |t G 0
‘ J b e LT K; e C, \
j : K3 CMPK3 | | C3
| ‘ ke | ¥ | ovexg || cq (8.107)
) “ i ‘c 5’1‘ essuann CMPS," KS CMPKS c5
. aE : Ke
¥ ? K7 .
|
!. 0
S r
——— { N e |
’ AN 1 L i i oot e 35 - wmh
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" where: .
, S :
e, j Is'the muscle activity & Tigament tension to compression
force scaling factor for level 'i' of group 'j'
CMPKi is the compression force at level 'i' due to an external
load an the body weight
Ky© is the muscle group activity of group 'j' ’
C,- is the resultant compression at level 'i' .

]

Equation B.107 is equation 6.5 in chapter 6.

T

B.5) .System Equations and Spinal Geometry

The motion of the dead 1ift is‘godelled with eight images of the
Tumbar | spine in successive stages of forward 'fiexion. Each image
i represents some spinal géometry. The attachment points of the 1ligaments
and nuscles -and the coordinates of the centers of reaction are defined
by the spinal geometry. Thus for each image the lever arm distance
vectors and muscle and ligament Tline of action unit vect:.ors can\‘be
computed, as well as the shear and compression unit vectors - for each

lumbar l'e\;eI.

This implies that the° systeﬁi equations are a function of the
spina].' geometry. When si;nulating a dead 1ift, the system equations
describing the task must be formed for each flexion angle considered.

In the case of this thesis, eight sets of system equations aré/fdrmed.

2

B DK = e Lrrenafon

o SR EE TR S et RO o B PN s Rt b S B
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- from equation B.66.

Appendix C: Derivation of Quadratic Objective Function,

C.1) Introduction

4
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-

The objective function representing the control criterion is giver

by equation 7.1.

5
o(g) = LE‘I (Py - SL)Z +

5 o
. px P-C)2+
&y P2 - G

o

(Py TNL)2 +

L=1

(Pg » Ki)2 +

M

.- =l
K (Ps" K7)2

where:

7

from equation B.106

7

from equation B.107 and )

7 .
TN = T HMTNL,j . Kj + HMTNKL

L J=1

-~

(7.1)

(C.1)

(C.2)

PR
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,1/ Equation/7.1 &an be written in the standard quadratic form:

,

i

O(K) =4 Kt GE*+ St K +A c.6)

where:

N
¢

Qisa[7x7]matrix

Cisal7 x1]vector

A is a constant’

o

isal 7 x 1‘] vector of muscle group activities

Given an arbitrary scalar function

f(x) =gty +e (€.5)
' where: ! | ,
d, xare [ N x1 ] vectors and e is a sc.alar.
| it is possible to form
Fly) = f(,;) . flx) | - ‘ ©.6)
Expanding C.6 yields s »
. | F(x) = (4% +e) « (gl +.0) o e
’"F(zs) = gtx gty + 2edty + o2 | o ‘- : ‘(c'.a)

CenSlss

et

5 el d s TR BACARTIAR St omn @ s\ atns” Y 3

Gt A%+ T W -




~ 4

- o
}
. §
. .

, Fm = ‘*(5" Gx+gtx +A | ﬁ (c.9) f i
where: | _ ' .- ' L
G=2dd | (symetric matri:f) | . : (c.10)l . A
9.5 = 2 '_di - d; (C.ll‘)
¢ = 2ed . | . | | ‘(C.IZ) i
“ T 2 Y ‘ e ' ‘
‘A= eZ‘ | R o o | ,‘ (C.14) §J‘ .

[}

This resu]tf‘will be used to reduce equations C.1, C.2, ‘and C.3 to their

quadratic forms. : . : )
C.2) Reduction of Sﬁe{fquation to Quadratic Form o f
\ . “ ?
Lo
Let the shear component of equation 7.1 be' gjven by 3
5 ® 2 ‘ B . .
01(5) = L§1 (P1-SL) . (C.15) -

e EY

Substituting equation C.1 into equation C.15 yields

#5 1
0,(K) = P{- Zp Gk SR g Ky + SHRK )2 ¢ C o (c.e)
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and 'with some algebratc manipulation, this can be reduced to

-

0p(K) =% k* Spy & + Sty K + Sge . (C.17)

where:

SRM is a [ 7 x 3 ] symetric matrix with elements s,

1,3
5 S ‘ )

- 2 . » - . 4 .

Smj 5 " 2P I, SHRL .« SHRL ; '<c. 18) ‘
\ o
\\ng is a[ 7 x 1] vector with elements Svi
t . ’ .
. 5 .
. 2 ) .
Sy, = 2P I SHR i - SHRK_ (t': 19)
SRC is'‘a constant " ,\
5 ) ’ .. . PR

2 2 (C.20)
Spe = P§ I SHRK _ ,
RC = PI E; °FRRL . \

C.3) Reduction of Compression Equation to Quadratic Form
{

Let the compression component of equation 7.1 be given by

[ )

5‘ ’ .
02(K) = E (Pg c)? . (e2n)

.Substituting. equation.C.2 into -equation' C.21 yields !

L

L]
)

' 5 7 .
0(K) = P§ + \Z) (Z) O 5 Ky cMpk )2 (c.22) .

S
g

and with some.algebraic manipulation, this can be r;educed toﬁ
)



. ~ . ,02(5) = 35511 CRM_5 + EI%V K+ CRC o ) : (C.23)

oy
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"

-~

where:

Cam is a [ T x 7 ] symmetric matrix with elements cp

, 1,J
5
2 .

Cp, . =25 T CMP . « CMP. - - : .. (C.24)

mi’j . 2 L=1 L,i L£,J C i . N

Cav s a[ 7 x 1 1 vector with elements c,,

. ‘ : N i v
. 5 5 . . * , . , . y
Cy. = 2P5 T CMP_ ; o CMPK (C.25)
i L=1 : _

Coc s a constaht -
) \ 5 2 ‘ ; . ) ' i “

Tpe = P T, CMPKE - (c.26)

L.4) Reduction of Net Ligament Tension Equation to Quadratic Form

-+

Let the,net'ligmngnt tension -component of equation 7.1 be 'given by

. 2 ~ : (c.27)
= L (P3e Ty ) . - (L.
03(K) = £ (P3 N T e o
-S,ubsti%uing equation C.3 into equation (.27 yields 3
03(%) = P§ 2 (2 HMTN, oy + HMTNK )2 (c.28)
¥ L=1 ' j=1 37 '

9

and with some algebraic manipulation; this can be reduced to

F




~

'where:

in' the form . -

EUSIER AR S

°

3

TRM isal7x7 ] symetric matrix

Y A

[3,]

. L
t. =202 T HMIN, !« HMTN, .
mj C3s1 bl Lsd

Ty is gl 7x1 Jévector with elements tvi

* o : >
o5
ty, = 2°% (B HMTNL 5 o HMTNK
oo
ng is a constant |
Tec = P 2. HMTNKZ
RC = ©3 (E, FMINKj
! C
- S 1

[N

Writing the muscle stress, given'by
. ' & 6 »g‘ Y .
04(K) = £ (P4‘Fi)2 + pgk2 K

4

h}

C.S)‘Myscie Stress in the Quadrafic Form \

with elements tm

1,3

(C.30)

. (C.31)

<@



'Y

-

*

1

.

"is straiéhtforward. uMatrik MS is simply

O

C.6) Assembing the Objective Function

RN

"t s

0(K) = I 05(K)

“In the standard form

'

0(K) =a;‘ GK+CEK+A

> where:

152

(C.35)

Cw

The objective is given by summing the four sub-objective fur_lctions'

k)

(c.36)

i

(C.4)
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~ Appendix D: The Dpf;mizatiunhA]gﬁrithm.

D.1) Introduction i .

{
[

The control criteribn described in Chapter 7 1is the migimization
of musculo skeletal stress. This criterion is expressed mathematically

3

as a quadratic function of muscle activity. The des1rep ‘result is. the
'm1n1m1zat1on of this function with respect to muscle a£€1v1ty. Certain
inequality constraints are placed on the range of: feasible solutions,-
sich as positive muscle actfyiti, positive. net 1igament°tension and net
ligament tension Tess than or equal to some prescrihed maximum. These .
constraints are all linear functions' of " the muscle adtiudty The

@
equality constraints imposed are that the fresultant moment at eachv

level be zero. The system equations are structured so that the equa]ity

[

-

constraints are -always sat1§f1ed (see equation 6.1).

eThe'optﬂmiiation algorithm described in this section is modified

4 .
© from the notes of a graduate level ‘course in optimization techniques

"given at Concordia Unfuersity.

{ | , v

‘,3%2) Statement of the Praoblem U
P %, j
\Sée formal statement Qf the problem 1s- ‘
MIN {F(x) =% xt 6 x+ ¢t x + a} : DR LB )
A XxeR ’ ' .
- C{(ﬁ)ﬁ’ é? X - by =0 | i=1, 2,.1:,R (o,z{

A, e - ‘
Cilx) =afx-by>0 f=R+ 1,0 M - (D.3)

9
’



L

{ D.3) Opfimality. Conditions \ : ~ :
A}
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where:
,
G is an g N x N ] positive definite symmetric matrix N

" cisan[Nx1] vector
a is a constant /»)

Equation D.2 expresses the 'R' equality constraints and equation 0.3

expresses the !M-R' inequality constraints.
; ‘

b

A point §*fs a solution to the problem if and only if:

i) x"is a feasible point (it satisfies equations D.2 and D.3)

i1) KUHN-TUCKER multipliers Ajcan bg found such that

(") = : A Ui + 1 AT vCy(xD) B (D.4)
- i=1 e * ..
. . el . .
i - . :
A0, L el S0 (D.5)
‘ \
1] = (g™ =0, A =RrR*1,0M - (0.6

- -

Al

II‘is the set of active inequality constraints.
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D.4) (Main Steps of the Algorithm
STEP 1 \
. s

At the current .feasible poin% x(k), a feasible dineéiion

g(k) ifs obtained such that the point 5(k) + g(k) minimi zes

F(g) subject to the condition that the  presently active constraints

~remain active. It 1is possible that p(k) is equal to zero. If this

.is so, then two cases arise:

%) A11 the KUHN-TUCKER multipliers of the active_ﬁgﬁequality
constraints are greater than or eqda] to zero (equation D.5 fis
satisfied). This means that 4(K) j5 ¥ the sblution).

B

ii) One or more of the KUHN-TUCkEh multipliers of ‘the active

. /1nequ911ty - constraints is negative.’' The inequality constraint

.correspondfnglfdpthe most negative K-T multiplier is released from the

active inequality constréint set. A ﬁgw .feasible direction g(k) is-

o

obtained such "that the point 5(k) + g(k) minimizes ‘h(g)
subject to the ~condition ﬁ?hu(\gthé revised active gonstraints remain

A !

active'and that it'-is also a feasible poinf with ..respect to the -

constraint just re]ease&: . -— ..

>
<

'STEP 2 - - L

f . 3
i

A line search is pefformed from 5(k) along p(k) on the

function  F(x) to obtain  the best feasible point x(¥*1). set
. ’ [ 4 N )

k'=k + 1 and go to STEP I.
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D.5) Computation of p(k)
N ‘ -
. Let 5(k) be the present feasible point. The vector g(k)

that will minimize -F(x) subject to the condition that the present -

gctive constraints remain active is the solution to- .

MIN {Q(p) = F(x(K)+p) = F(x(K))eu plap + (6xK)ec)tpra)  (D.7)

peRrN ‘
Ci(l‘k)*ﬂ) = (.th(k)?b-; M+ ,Qitf, =0 i=1,2,...,R (D.8) '
Ci(l(k)ny = (Qitz(k)-bi)+ g?ﬂ =0 iely i - (D.9)

Where I, is the set of ative 1inequality constraints. diven that |
xk)is a  feasible point and that Ci(f(k))=0, the problem

-,

" reduces to
A f .
MIN { Q(R) =% pte p + (6x{K)eg)tp + a) " (D.10)
perN \ : I a T
- ’gf‘e = 0 i=1, 2,...,R and 'IeIl ' (D.11)
, ' /_\'"‘: Iy
Let * ' \ . .
Ry be equal to the number of elements in set I.

t = R+ R; pe the total number of active constraints at the
| point ,(K) - ) |

/
“Alk) ‘be the [ N x t ] matrix-whose columns are the a;

vedtors corresponqing td the active con§tra1nts.

Assume that the rank of A(K) is equal to, t.
. .0 ¥

- ]
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Fa

) be the t-dimensional subspace generated by the columns
of (k) | (
- st be the orthogonal complement of S (dimension N-t) °

2(k) bean [ N x (N-t) ] orthogonal matrix whose columns

form a basis fbr S‘.

v

Thus, any vector p that satisfies equation D.11 must be an element of

st and can be generated by the matrix 7(k)

p = 1(k)p, (0.12)

where:

-

Pp is an [ (N-t) x 1 ] column vector.
\

4

Using equation D.12 reduces the problm to the .equivalent unconstrained

problem. *
. t i t . Y .
- MIN [Q(Rp) =% £ GpPa * gp Bp * 23} : ~(p.13)
EERN-t ' . -
where: - ' .
Gp\='Z“‘)tG z(k) : S (D.14)
9 Q'Z(k)t (Qé(k) +¢) | ;) (D.15)
~ ¥

Equation D.14 is the projected Hessian matrix of F(x) and ’equatioﬁ
D.15 is _tke projected gradiént vector of F(x) at x(k). The

minimum point of equation D.13 js given by P;:

L I ~1 ) ' " '
. BA ® - Gp gp : | ‘ (0016)
~thus g(k) can be obtained using equation D.12
”

plk) o g(Klpx o (0.17) -

.
. ’
. % ‘

—

%L-

-
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" it satisfies all the constraints, it is y,

\ ‘ .
\
i

" '0.6) Line Search along p(k)
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The point 5(k)+g(k) fs the minimum point of :F(g) subject
to - thg condifion; that the presently active constraints are satisfied.

The poinf may violate some of the presently inactive constraints. If

*

- ! ‘ .

To determine the new point zs“‘*1), the Jargest feasible step

amax along the direction g(k). that can be taken without violating
any inactive constraints 1is calculated. The oy for inactive

constraint 'i' is given by sofVing:

.

Ci(é(k) +agplkh =0 (D.18)
T s
ielp, Ip = M-I} (set of inactive constraints) (D.19)
for @;. ‘Using equation D.3, équation D.18 can be reduced to
TR )
(k) L ‘ S | i
aj = 'é—}q:é-(ﬂ-l’ iely : (D.20)
-1 AR . .

The smallest non-zero o is chosen as og,,:
- max

QMAX = MIN {ai}' ielz ¢ ) . N (0021) ‘

i‘ai> 0

»

Any value of a, greater than o . will be such that the point

5(k) + ag(k) will violate at least one constraint.

*

The optimum step size along direction B(k), is 1. However, if

“ %nax s less than 1, atﬁén the step size must be:reduced to apax.

-

Thus,

A}
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aopPT E MIN (“MAX,I} (0-22)
R ) !

Note that if « ~ 45 less than 1, the new feasible point g (k+1)

activates the inequality constraint corresponding to Crax-

D.7) Det%rmination of Z(k).

The formal statement of the problem assumes the range of feasible
! s
solutions to be {n N-dimensional space. Active constraints reduce the

range of solutions to some subspace less than N-dimensions. The search
direction g(k) i& in this smaller subspace. Thematrix 7(&) forms
the basis of this subspace.

,//As’éféted in section D.5," A(K) i an T Nxt ] matrix whose
colums are the a;'s corresponding to the 't' active constraints at

5(k). Matrix A(K) can: be premultiplied by an [ N x N 1 orthogonal

‘matrix k) to yield an [ Nx t 3 matrix. o®) can be chosen so

_that the resultant matrix has embedded in it an upper’triangu]ar 'mgtrix

R(K) §n its first 't' rows adq,}eros in its last [ N-t J rows.

o) k) = 7 R(k)] t ‘ (D.24)
. * o | N-t " - | \

e ' B B )

®
\
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®

The process whereby k) 45 determined so as to yield R(K) ‘is

called the @R fgctor{zation‘ of A(k). . This f§ctorization ’15‘
’ accomplished by using the Givens transformation to construct orthogonal
Givens matrices and. then mu]t{p1ying the matrices together to yield
k) and subsequently R(K), 'Assuming the rank of’ alk) ato be 't*,

\

the matrix R(K) j¢ nonsingular.

The matrix Z(k) is obtained by partitioning q(k),

NG of) ] ¢ | | ‘
........ (D.25)
Qék) N-t ’ )

k) (k)b . -

of%) o) = 0 ~ (D.26)
t .

. alk) = Q{k) R(k? o o D.27)
< : \

Equation D.26 implies that the column space of Atk) is the samg as
the column space of Ql(k)t. Equations D.26 and D.27 combined
‘imp1y that the column space of Qz(k)t ié orthogonal to thé
column space of Alk), The- columns of. QZU‘)t are .orthogonal.

Thus,

t ’ .
2(k) = ofk) | L (0.28)

'
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. s
Every tjme the basis of active constraints is modified, a new’

Alk) matrix is formed. Thus the R factorization must be applied to
* the new A(k) to produce a. new 2(k),

D.8) Deteémination of Kuhn-Tucker Multipliers
)

Let g(k) be a feasible point. Equation D.4 can be written

" A(k) A(k) = VF(E(k)) (D.29)
‘l -
where:
L(k) is the Kuhn-Tucker multiplier vector corresponding to the ﬁ
point (k)
Equation D.29 can be solved by replacing A(k) by its QR factorization
- S (Y (ks Iz_gf‘_‘l_z] ' _ g (D.30)
L @ 0 ¢ ’ )
' ; | ! (ht ]
RecalT that Q(k) {s orthogonal so Q = Qlk),  Substituting
equdtion D.30 into equation D.29 yields ‘ B .
} . . -
QU [l T (k) < grqylk)y h .
b Lo - " . (D.31)
k)t |
partitioning Q gives . :
N . ‘ ) ‘ﬁ , ) .

se00tes

Eik)‘

05"’3] [(k):l G .vp(gkh T (a2




) ) o " ‘ e
t .
Recalling that Ql(k) = Ql(k), equation D.32 becomes
plk) k) - Q{k) wr(xtkDy | o (D.33)
R(K) 45 upper triangular and ° Q{k) oF(x(k)) 4s ra  vector, o

equation D.33:can be solved by backward substitution.
D.9) Comments

This algorithm is computationally ver& fast. If the 1n1tfa1 point
chosen, g(b), is fully constrained ( i.e. N inequality constraints
ac?ive ), the algorithm will find a solution in at mo;t oN iterations.
This’ is due to the fact that every iteration reduces éhe solution range
by one dimension. '

. )

)
A -
An outline of the algorithm is given in figure D.1. The algorithm
implemented does not deal with eqdality Qenstraints, as discussed in

section D.1. é
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Outline of optimization algorithm

s . Figure D.1 -

o

Q) INPUTS: G, ¢, CON, 5(0)’ N, NC ' . .

1)

2)

3)

o

G- s the [ Nx N ] matrix

is the [ N x 1 ] vector . ) o

3]

(0) is the initial point

X
“N is the dimension of the problem

NC is the number of inequality.constaints .

_"CON is the [ N x NC ] matrix of constrathts

4)

5)

6)

7)

Determine if G is positive definte, - o
YES: goto 2 ° NO: exit ) ‘ .

-
LY

Set matrix Q equal to the [ N x N ] identity matrix.

r

Determine, the set of active constraints. : ’
4 ! T

&

Are there any. active constraints ?

YES:VgoEo 5 NO: gotg 1. ' #

Build the active constraint matrix and QR factor it - " ~

Is the number of active constraints less than N 7 K

Yes: goto 11  NO: goto 7 ' g |

Form9F(x(K)y, 15 ||orix(®d]|ec 1074 2
- YES:- exit NO: goto 8 ' K

e 2 Y A
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" 8) Are there any active constraints ?

" YES: goto 9 NO: goto 11

9)  Determine Kuhn-Tucker multipliers. ‘ <(
Are any of them negative ? (see notes) - o
YES: goto 10 NO: exit , o, I} -

%
0\6

-10) Re1epse constraint corresponding to the most
' negative Kuhn-Tucker multipier. T
Update active constraint matrix and QR factgr it.

"f
11) Find search direction p(k), ool

A\

-

12) Determine opr. Form (kD) o (k) aopT p(K),
| If aop} <1, activate the corresponding constraint,

update the active constraint matrix and QR factor it.

-

c
-

13) Goto?7 - .-

NORES: . . - S N
, . - T 7
If all the K-T multipliers are positive and 'N' ‘constraints are

&

- active then the solution has\been found. ;

N L)

If ,all‘ the K-T multipiiers are positive and less than 'N'

. constraints are active then a Tine search is done to eliminate the .
pgiifbility of finding a'solutiop with positive K-T qut§ that - can
sti11 be minimized. ] N

o

-



