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ABSTRACT

A Primitive Selection Method
For
Unconstrained Line Structures

Siamak Moradmand

In syntactic (structural) pattern recognition, each pattern is expressed as
a composition of its constituents called subpatterns or pattern primitives or
atoms. Evidently, for this approach to be advantageous, these atoms should
be much easier to recognize than the patterns themselves. Decomposition
(fragmentation) algorithms partition a pattern into simple parts. The need
for such algorithms exists because global features are not suitable for

describing complex patterns.

A decomposition algorithm for unconstrained (i.e. Chinese characters)
line structures is proposed which fragments the structure into primitives.
Each primitive is represented by a junction point and the segments
connecting to it. We will verify which part of the segment (skeleton,contour
or both) is the best representative of its nature and most reliable in such a

representation scheme.
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1.- INTRODUCTION

The many mathematical techniques used to solve pattern recognition
problems may be grouped into two general approaches [1,2]. They are the
decision-theoretic or statistical approach and structural or syntactic approach
[3,4]. In the decision-theoretic approach, a set of characteristic measurements,
called features, are extracted from the pattern. Each pattern is represented by
a feature vector, and the recognition of euch pattern is usually made by
partitioning the feature space. On the other hand, in the syntactic approach,
each pattern is expressed as a composition of its constituents called,
subpatterns or pattern primitives(atoms). This approach draws an analogy
between the structure of pattern and the syntax of a language. The
recognition of each pattern is usually made by parsing the pattern structure
according to a given set of syntax rules. Patterns are specified as building
out of pattern primitives in various ways of composition just as phrases and
sentences are built up by concatenating words and words are built up by

concatenating characters.

Evidently, for this approach to be advantageous, the simplest subpatterns
selected, called “pattern primitives or atoms”, should be much easier to
recognize than the patterns themselves. The “language” which provides the
structural description of patterns in terms of a set of pattern primitives and
their composition operations, is called “ pattern description language”. The
rules governing the composition of primitives into pattern are usually specified
by the so-called “grammar” of the pattern description language. After each
primitive within the pattern is identified, the recognition process is accomplished

by performing a syntax analysis or parsing of the “sentence” describing the



given pattern to determine whether or not it is syntactically(or grammatically)

correct with respect to the specified grammar.

A syntactic pattern recognition system can be considered as consisting of
three major parts [7); namely, preprocessing, pattern description or
representation, and syntax analysis. The function of preprocessing include: (i)
pattern encoding and approximation, and (i) filtering, restoration and
enhancement. An in_ut pattern is first coded or approximated by some
convenient form for further processing. For example, a black and white picture
can be coded in terms of a gridlor a matrix) of 0's and 1's, cr a waveform
can be approximated by its time samples or a truncated Fouriers series
expansion. In order to make the processing in the later stages of the system
more efficient, some sort of “data compression” is often applied at this stage.
Then, techniques of filtering, restoration and/or enhancement will be used to
clean the noise, to restore the degradation,and/or to improve the quality of the
coded(or approximated) patterns. At the output of preproces.or, persumably we
have patterns with reasonably “good quality”. Each preprocessed pattern is

then represented by a language-like structure.

The operation of pattern-representation process consists of (i) pattern
segmentation, and (ii) primitive(for atom) extraction. In order to represent a
pattern in terms of its subpatterns, we must segmentize the pattern and, in
the meantime, identify(or extract) the primitives and relations in it. In other
words, each preprocessed pattern is segmentized into subpatterns and pattern
primitives(atoms) based on prespecified syntactic or composition operations.
Each pattern is now represented by a set of primitives with specified syntactic

operations. For example, in terms of “concatenation” operation, each pattern is



represented by a string of (concatenated) primitives. More sophisticated

systems should be able to detect various syntactic relations within the pattern.

The decision on whether or not the representation(pattern) is syntactically
correct(i.e., belongs to the class of patterns described by the given syntax or
grammar) will be performed by the “syntax analyzer” or “parser”. When
performing the syntax analysis or parsing, the analyzer can usually produce a
complete syntactic description, in terms of a parse or parsing-tree, of the
pattern, provided it is syntactically correct. —Otherwise, ihe pattern is either
rejected or analyzed on the basis of other given grammars, which persumably

describe other possible classes of patterns under consideration.

1.1- PRIMITIVE SELECTION

The first step in formulating a syntactic model for pattern description is
the determination of a set of primitives in terms of which the patterns of
interest may be described. This will be largely influenced by the nature of the
data, the specific application in question, and the technology available for
implementing the system. There is no general solution for the primitive
selection problem at this time[5,6]. The following requirements usually serve

as a guideline for selecting pattern primitives[7] :

(i) The primitives should serve as basic pattern elements to provide a
compact but adequate description of the data in terms of specified structural

relations(e.g., the concatenation operation).



(i) The primitives should be easily extracted or organized by existing
non-linguistic niethods, since they a.e considered to be simple and compact

patterns and their structural information not important.

For example for speech patterns, phonemes are naturzlly -onsidered as a
good set of primitives with the concatenation relation. Similarly, strokes have
been suggested as primitives in describing handwriting. However, for al
pictorial patterns, there is no such “universal picture element” analogous to

phonemes in speech or strokes in handw.iting.

Sometimes, in order to provide an adequate description of the patterus,
the primitives should contain the information which is important to the specific
application in question. For example if the size(or shape or Ixation) is
important in the recognition problern, then the primitives should contain
information relating to size(or shape or location) so that patterns from different
classes are distinguished by whatever method is to be applied to analyze the
descriptions. This requirement often results in a need for semantic information

in describing primitives[6].

One of the earliest papers describing the decomposition of picterial patterns
into primitives[8] presented a conceptually appealing method which allows the
recognition system to (heuristically) determine the primitives by inepection of
training ssmples. A pattern is first examined by a programmed scan, the
result of the scan is to produce descriptions of segments of the picture which
are divisions conveniently produced by the scanning process, and not necessarily
true divisions. The scanning process also includes preprocessing routines for

noise-cleaning, gap-filling, and curve-following. The subnictures obtained in the
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scan are analyzed and connected, when appropriate, into true picture parts; a
description is given in terms of the lengt. and slope of straight-line segments
and the length and curvature of curved segments. The structural relations
among various segments(primitives) of a picture is expressed in terme of a
connection table(table of joints). The assembly program produces a “statement”
which gives a complete description of the pattern. The description is
independent of the orientation and the size of the picture, the lengths of the
various parts being given relative to one another. It is, in effect, a coded
representation of the pattern and may be regarded as a one-dimensicnal string
consisting of symbols chosen from a specified alphabet. The coded
representation gives the length, slope and curvaturts to other of each primitive,

together with details of the ends and joints to other primitives.

A formal model for the abstract description of english cursive script has
been proposed by EDEN and HALLE[9]. The primitives are four distinct line

segments in the form of a triplet:

= [,y ), Ly )8,
o [(le y‘]l) (sz yjz) J]

where (xj,yj)’s represent the approximate location of the end points of the line
segment, and ﬁj refers to the sense of rotation from the first to the second
end point. Gj is positive if the sense of rotation is clockwise and negative if

counter clockwise. The forr primitives are:
0,=((1,0),(0,0),+] “bar” H

03(1,1),0,0,4] LU 5



04=[0,0,0,1),+] “arch” [
0,,~1(1,6,0,0),+], O<e<l, “loop” [

They can be transformed by changing the sign of 6 or by reflection about the
horizontal or vertical axis. These transformations generate 28 strokes(because
of symmetry, the arch generates only four strokes), but only nine of them are

of interest in the english script commonly used

Another example is the recognition of Chinese charscters[10,11,12,13], from
the knowledge about the structure of Chinese characters. a small number of

simple segmentation operations such as:

%egmemauon %j % 7/;/‘///%

Structural
Relation

nght-left above-below surrounding

[t8)) (ab) (s)

can be used. Each operation also generates a particular structural relation
between the two neighbouring primitives. Applying these opereations
recursively, that is, segmentizing each subpattern again by any one of the
three operations, we can segmentize a Chinese character into its primitives. If
the primitives can be extracted or recognized by existing techniques, a Chinese
character can be described syntactically with the given set of structural
relations. An illustrative example is given in figure 1.1-1. It is anticipated
that the resulting structural descriptions will be much more complex if we

choose basic strokes as the primitives.
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C. Y. Suen[14] has classified the structural features into the following

main fami'lies:

- Line segments and edges: Edges and line segments are detected from the
character. From the above information, such features as line lengths, and
line ends can be obtained.

- Outline of the character: The contour of a character is traced. Contour
tracing can generate the following features:
- Line tips or end points.
- Length of line segments, including perimeter.
- Sharp angles, protrusions and spikes: > J/\ A
- Arcs, bends: N C
- Splits: ==
- Loops, circles: QO
- Points of inflection: §
- Concavities and convexities: ?

- Center-line of the character: By applying the thinning process on a
character outline, the center-line of a character commonly called skeleton is
obtained. From the skeleton the following features can be obtained:

- Line tips.
- Straight line segments, horizontal and vertical.
- Diagonal lines, slants.

Concavities.

- Loops.

Intersections, forks, branches, nodes.

More general methods for primitive selection may be grouped roughly into
methods emphasizing boundaries(or skeleton)[15,16] and methods emphasizing
regions[17,18]. For line patterns or puatterrs described by boundaries or
skeletons, line segments are often suggested as primitives. A straight line
segment could be characterized by the locations of its beginning(head) and
end(tail), its length, and/or slope. Similarly, a curve segment might be
described in terms of its head and tail and its curvature. The information
characterizing the primitives can be considered as their ascociated semantic
information or as features wused for primitive recognition. Through the
structural description and the semantic specification of a pattern, the semantic

information associated with its subpatterns or the pattern itself can then be



determined. For pattern description in terms of regions, half-planes have been
proposed as primitives. Shape and texture measurements are often used for

the description of regions.

In the remainder of this report we propose a primitive selection method
for images of unconstrained line structures. Maps, sketches, wiring diagrams,
engineering drawings, musical notes and pentagrams, pages of printed or hand
written text, etc., are all examples of images which contain structures of lines.
The interpretation or the meaning of the configuration of lines in such images
depends on their origin. If the image is a line drawing of a natural scene,
then it is immediately understandable to us. However, if the image
represents, say some Chinese writing, or a logic circuit diagram, then specific

knowledge(learning) is required before the contents can be understood.

There is no reason to believe that the image processing mechanism differs
according to whether we are reading a page of text, studying a circuit
diagram, or we are trying to recognize some ideograms. Of course, recognition
of complex line configuration is a closed loop process, where the “knowledge
base” determines which configuration of lines are meaningful and which are
not, but before use of such knowledge can be made, the lines in the image

have to be described in a convenient mathematical or computational form.

For maximum generality, it will be assumed that the image content is
completely unknown. The line structures in the image may be in any
positions and orientations, and they may overlap. There are no restrictions on
the number of line structure in the image, nor on the size of the structures.

The only constraints on the image content are: (i) image is in binary form, (ii)



the lines in the binary image can be thinned without loss of significant
information or seriously degrading the original information. A relatively lengthy
preprocessing [29] sequence is required to bring information in the image into a

form suitable for decomposition(fragmentation) algorithm.

“al

Lo

Figure 1.1-1: A structural description of a Chinese character.
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2.- PRE-PROCESSING

Preprocessing is necessary to modify the input such that it meets the
requirements of the fragmentation algorithm. The preprocessing includes of: (i)
Distance Function, (ii) Thinning, (iii) Labelling and (iv) Dilatation of Segment
Labels.

2.1- DISTANCE TO CLOSEST CONTOUR

In conventional usage, some form of a distance measure is computed over
all the 1-valued pixels within a “blob” to the closest contour pixel of the blob.
This gives a measure of the object. Thus, the conventional distance
calculations give a distance function Dist(i,j) value for each of the 1-valued
pixels in the image. Dist(i,j) is the distance of pixel (i,j) to the contour pixel

(ic,je) which is closest to it.

The algorithm uses the 3 by 3 neighborhood N, they require a definition
of connectivity within N (4- or 8- connected), and are iterated until all the
pixels within all the blobs have been assigned a distance value. The

connectivity patterns are shown in figure 2.1-1.

4-connected 8-connected
i-1 i i+l i-1 i i+l
j-1 - % - * % *
j * P % % P %
j+1 - % - * * *
Figure 2.1-1: Connectivity on a square grid within a 3 by 3

neighbourhood N with the central pixel P . The peripheral
pixes N’ are indicated by *s. Pixels indicated by -’s are
not used. (a) 4-connectivity. (b) 8-connectivity.
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In the distance computations, however, the distance value is loaded back
into image to serve as a memory of distance already computed, since the
range of the 3 by 3 operator is only one pixel. The background pixels in the
image are indicated by zeros (0’s) and the foreground pixels are indicated by
one’s (1's). Thus, it is simplest to assign the value 2 to contour pixels, the
value 3 to the pixels next to the 2-valued pixels (contour), 4 to those next to
8, etc. The procedure stops when all the 1-valued pixels “have been used up”.
The input image is Inpix(ij) and the resultant distance image is Distpix(,j),

See figure 2.1.2,

The “distance to the closest contour” function gives the distance of every
l-valued pixel to its closest contour. Likewise if the distance is computed over
the background (0-valued) pixels, then the distance of these pixels to their
respective closest contours are obtained. Consequently the distance function can
be used to measure the local thickness of the objects in the foreground and the

background distances (gaps) between the objects.
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2.2- THINNING

The so-called skeletonization or thinning of an object may be said to
“remove the flesh of the object and only leave its skeleton”. For example, a
four-cornered star or diamond would be represented by two crossing thin lines,
a thick binary image becomes a thin binary line in the middle of the thick
line, a circle reduces to a point at its center, an ellipse reduces to its major
axes, and so on. Ideally, thinning reduces a thick binary object to its skeleton
which consists of thin binary lines of connected pixels, i.e., there are no gaps

in the lines.

In principle, the result of thinning should resemble what we would
ourselves draw as the basic axes, the backbone, the skeleton, or the “stick
figure” of an object. However, in practice we should not expect such ideal
results since our concepts of what constitutes a skeleton of an object is based
on different knowledge than what is available to the computer at this stage of
processing. Thinning produces results which may resemble the ideal skeleton of
an object only in very idealized circumstances since thinning is very sensitive

to noise.

There are more than a dozen different thinning methods, depending on the
form of the skeleton that one wants or rather hopes to obtain. The results of
thinning also dep>nd on the connectivity used, i.e., whether the final skeleton

is to be 4-connected or 8-connected.

Among the many methods, only the so-called “perfect thinning” is used
here [20] . The word “perfect” does not mean that the thinning is perfect,

actually the result could be very poor indeed. “Perfect” in the present case
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only means that no more pixels can be removed from the skeleton, except from
the ends of the thin lines, without breaking the connectivity of the skeleton
(thin lines). Thus if the ends of already thin lines and single pixels are not
to be removed, there is not even one single pixel that can be removed without
breaking the connectivity of the skeleton. This is absolutely true for perfect

thinning and that is where the name “perfect” originated.

Thinning is an iterative operation which removes edge pixels from the
object. One “layer” of pixel is removed per iteration cycle. However, if the
pixel to be removed is going to break connectivity of the remaining pixels, then
this pixel is not removed. The iteration stops when no more pixels can be
removed. Thinning may be looked upon as a form of constrained erosion
where the erosion does not remove a pixel if the removal would break
connectivity between the remaining pixels. Pixel removal is also stopped at the
ends of already thin lines, otherwise a thin line would be “chewed away” at

the ends until only one pixel remains.

Our visual system persumably uses a closed loop process where
information from the recognition stages feeds back to preprocessing allowing the
alternatives provided by preprocessing to be used selectively or where the poor
results are suppressed. Of course, such a feedback has to be done also in
computer vision systems, but we have to clearly acknowledge at what stage of

‘the processing we are at the moment and what information is available.

There are several possible ways to constrain the thinning process,
depending on the situation and what one wants to achieve. Frequently, the

different methods are used in various combinations:
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1) Try to remove the “sources of trouble” before the thinning process is
started.

2) Use some measure of “local importance” of the region or some specific
logic to contrel the thinning.

3) Synchronize the thinning process between two or more images such that
the results are in the registration.

4) Constrain the thinning process to specific labelled objects rather than
applying it to all the 1-valued pixels indiscriminantly.

5) Correct the results after thinning.

Among the constraints we chose “Constrained distance” which works as

following.

2.2.1- CONSTRAINED DISTANCE

The 8-connected 3 by 3 neigbourhood N8 is used, with its central pixel P
and periphery N8’. Basically the problem is to constrain the thinning process
such that one image is the constraint(Distpix(i,j)) while another one(Inpix(,j)) is
eroded subject to the constraint of not breaking connectivity. From the IN8
neighbourhood it is impossible to decide if a single 0-valued pixel represents a
hole in an object or if the O-valued pixel is at the periphery of the object.
Likewise, a 1-valued pixel on a spur cannot be distinguished from an end pixel
on a thin or a thinned line. Thus, the necessary information to “tame” the
thinning process is not contained within the local 3 by 3 neighbourhood N8
which is used by the thinning logic. It may be noted that even the thinning
operation itself requires a slightly larger “view” that N8 since track has to be
kept of the pixels removed during thinning. In order to constrain the thinning
process, there are several questions that need clear answers, remembering that
the objects are unknown. The main questions are:

a) Where do we want the skeleton to be with respect to the object?



1b

) What information is or can be made available for constraining thinning?

The simplest answer to both questions, in the absence of knowledge about
object identity, is to force the skeleton to be as close as possible to the local
maxima, ridge, and other central points of the distance to the closest contour
function. This places the skeleton pixels at equal distance from the
neighbouring closest contours. The procedure involves “hill climbing” on the
distance function(measure), erosion constrained not to break connectivity, and
thinning. However, the elementary distance function is very sensitive to noise
within the objects but is not sensitive to spurs on the contours of the objects.
Thus, the elementary distance function is suitable for controlling spurs on the
objects but is not suitable for controlling the effects of holes within the objects.
However, the distance function can also be constrained, for example, to compute
the distance to n (n=2,3,) closest contour pixels instead of just to one (n=1)

contour pixel. Figure 2.2.1-1 shows the result of thinning.
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2.2.2. PROPERTIES OF PERFECTLY THINNED SKELETONS

Even though elementary thinning is very sensitive to noise within the
image and to “spurs” or “fur” at the edges of objects, and also rather erratic
and time consuming to carry out, the perfectly thinned skeleton possesses many
imporatant end useful properties which are rather difficult to find by other

means.

The properties of the prfectly thinned skeletons can be detected by wvery
simple logic based on the pixels within the 8-connected 3 by 3 neighborhood N.

The various cases are illustrated in figure 2.2.2-1.

000 000 001 1C1 101 100 * ** * %+
010 010 010 010 010 011 *P* *
000 010 010 010 101 110 *** **x
@) ®) © G) 0) ® ™) )

Figure 2.2.2-1:The basic properties of the perfectly thinned skeletons.  The
1-valued pixel at P is : (a) A lonely pixel. () A line end. (¢

Pixel on a line segment. (d,e and f) Junction pixels. (N and
N) The 3 by 3 neighbourhood.

Clearly, if the central pixel P of N is 1-valued, and we count the number n of

1-valued pixels in N’, then:

1) If n=0 then the pixel P may represent just a single noise pixel or it may
be the centre of some more or less circular object(case (a)).

2) If n=1 then P is some form of “end” pixel (case (b)). Whether this “end”
belongs to a long line or to a very short line, or is even a poorly formed
centre of a ‘blob”, we do not know yet. Several further computations
have to be carried out before this decision can be made.
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38) If »=2 then P is a pixel on a line segment (case (c)). Again, whether
this line segment is long or short, or even if we want to call it a line, is
not yet known.

4) If n>2 then P is some form of “junction” pixel (cases (d), (e) and ().
In other words some form of “split” is occuring in the object, or two or
more lines may be crossing. All we know at this moment is tbat this
region could not be thinned down to any of the forms shown in cases (a),
M), or (©.

The above information about the pixel P is obtained with the following
elementary logic: If (P.eq.1) then count pixels in N. Use the count n as
desr~ibed. Thus, if the input image is called Thinpix(i,j), then

For all pixels j and i Do
If(thinpix(i,j).eq.1) Then

Count 1l-valued pixels in N’
Enddo i and j

The different pixel types in the perfectly thinned image will be considered
to belong to two categories, namely, the junction pixels (case 4), ara all the
“other” pixels (cases 1, 2 ,and 8). The junction pixels indicate that some form
of line crossing is taking place. The “other” pixels will be called “segment”
pixels from now on, since they imply some form of line in the image. At this
stage of processing we still do not know which pixels can be considered to

“belong together” and form larger entities.

The junction pixels tend to have many different configurations, depending
on the coinplexity of the junction regions in the image. If the image has very
poor spatial resolution, then very large junction region may be formed. This
situation is easy to detect after some further processing. However, there are
two special situation that sometimes occur, which s!-.uld be known. These are

shown in figure 2.2.2-2, where the junction is a square block of four pixels, or
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a diamond of five pixels. The centre of the diamond region may be set to
zero, since the crossing number is eight. These configurations do not have any

special significance.

0000 00100 00100
1001 00100 00100
0110 11111 11011
0110 00100 00100
1001 00100 00100

Figure 2.2.2-2: Some rather rare junction configurations.

In addition to all the other difficulties with thinning, the further “damage”
done by perfect thinning is best seen at 90 degree corners that are lined up
with the square grid. A real case is shown in figure 2.2.2-3. This kind of
behaviour is not desirable, since perfect square corners have been removed.
The situation, however, is rather unusual since it is seldom possible to line up
an image so exactly with the quantizing grid that horizontal and vertical lines

remain as single rows or columns of pixel.
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The next processing steps consist of separating the junction pixels from
the segment pixels. One may create two new images, call them
Junction-pix(i,j) and Segment-pix(i,j). The original binary input image is called
Inpix(i,j) and the perfectly thinned image is called Thinpix(i,j). The thinned
image was obtained from the function “Thin”, i.e.:

Thinpix(i,j) = Thin(Inpix(i,j),connect=8,Pixel-type=1, Max-iter=sufficient)

In order to separate the junction and segment pixels, the procedure

consists of the following “program” steps:

For all pixels j and i Do
Junction-pix(i,j)=0
Segment-pix(i,j)=0
If(Thinpix(i,j).eq.1)Then

compute n ; (number of l-valued pixels in N)

If (n > 2)Then
Junction-pix(,j)
Segment-pix(i,j)

Else

Junction-pix(i,j)
Segment-pix(i,j)

Endif

Endif

Enddo i and j

[}
-0 (=]

For descriptive convenience, this “program” can be separated into two
operations, where one computes the junctions only, and the other computes the

segments only. Thus, for notational convenience, these operations will be

written as:

Junction-pix(i,j) = Junctions(Thinpix(i,j)) and

Segment-pix(i,j) = Segments(Thinpix(,j)).
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In order to save computer memory space, the junction and end point
pixels may be marked negative (-1), and the segment pixels positive (+1).
The background pixels in both cases are 0 (zero). Now only one output image
is needed. Call it JSpix(i,j) where the J represents “junctions” and S represent

“segments”,see figure 2.2.2-4,

Figure 2.2.2-4: Marked thinned image, junctions and end

points are indicated by @’s and segments are
indicated by *’s.
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2.2.3- CORRECTION OF THINNING DEFECTS

The perfectly thinned binary image Thinpix(i,j) is obtained from the input
binary image Inpix(i,j) by thinning function called “Thin”. The detailes and the

properties of the “perfectly” thinned image were given in section 2.2.2

Symbolically, this process was indics led by:
Thinpix(@i,j) = Thin(Inpix(i,j), connectivity=8,Pixel-type=1)

There are three special cases that may cause some problems in later
analysis based on the perfectly thinned imagzs. One is the perfectly clozed
thin line which has neither an end nor a beginning, see figure 2.2.3-1(a). The
other case is the doubly connected segment which is only one pixel long but

(or a junction and an end point), see figure

joins two junction pixels
2.2.3-1(b).The last but not least is the case of a very long segment which

could be broken into two new segments, see figure 2.2.3-1(c).

0000000000000000000 0000000000000000000 0x000000000000000x0
0000000000000000000 0000000000000000000  0100000000000000010
0000000000000000000  0000000000000000000  0010000000000000100
0000000000000000000 0000000000000000000  0001000000000001000
0000011111100000000 0000001000001000000  00001000000G0010000
000010C000010000000 0000000100010000000 0000010000000100000
0000106000010000000 00000000x1x00000000  0000001000001000000
0000010000100000000 0000000100000000000  0000001000001000000
0000001111000000000 0000001000000000660  0000000111110000000
0000000000000000000 0000000000000000000  0000000000000000000
(a) ) ©
Figure 2.2.3-1:Special cases. (a) The perfectly closed thin line with no

junctions and ends. (b) The doubly connected single pixel long
segment indicated by the underlined 1-valued pixel. (c¢) The
very long segment. The x’s represent junction or end point

pixels.
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The generalized correction of thinning defects consists of :

(1)

@)

3

All doubly connected segments that are one pixel long are converted
to junctions.

A perfectly closed thin line(loop) is broken into two segments by
ingerting two new junctions.

For any segment S1 calculate the distance between its two
ends(el,e2) and call it d1, then for every pixel Pi of Sl calculate its
distance from the line connecting el and e2, and call this distance
d2. Now if d2 > d1 then split S1 at Pi into segments S2 and S3
creating the new junction e3[19].

Figure 2.2.3-2 shows the thinned image after correction.
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Figure 2.2.3-2: Marked thinned image after correction of
thinning defects.
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2.3- SKELETON LABELLING

After thinning, marking, and correction of thinning defects, the O0-valued
pixels in Thinpix(i,j) represent background and the 1-valued pixels are for
foreground. Consequently, the segment pixels are all the remaining 1l-valued
pixels in Thinpix(ij) which are neither junction pixels nor end points, and the

“program” can be of the following form:

For all pixels j and i Do
JSpix(i,j) = Thinpix(i,j) ;copy
If(Thinpix(i,j).Eq.1) Then

compute n; (n is the no. of 1-valued pixels in N8)
If (1<n<2) then JSpix(i,j)= -1
Endif

Enddo i and j

which is abbreviated to:

JSpix(i,j) = Junseg(Thinpix(i,j))

In order to save computer memory space, the junctions will be given
negative label numbers(i.e., ~3, —4, ---) and the segments will be given positive
label numbers@.e., 4, 5, :-). We should notice that the selection of —3 and +4
as starting labels in our case is quite accidental and we could have started
with any other negative and positive numbers. This numbers are used for the
sake of representation and except the sign(negative or positive) the values do
not carry any specific meanning. The connectivity in both cases is 8.

Symbolically this labelling operation is indicated by:

LJSpix(i,j) = LabeldS(JSpix(i,j),connectivity=8)
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where “labelJS” indicates the labelling operation and LJSpix(i,j) is the
junction, end point and segment labelled image. However, note that the

operation LabelJS is composed of two labelling operations, i.e.:
LJ-pix(i,j)=Label(Thinpix(i,j),connect.=8, pixel-type=1,start-label=4)

LJSpix(,j)=Label(LJ-pix(,j), connect.=8, pixel-type=—1,start-label=—3)

where LJ-pix(i,j) is the “junction labelelled” image, see figure 2.3-1.

Now it is easy to determine the size of the junction regions and the
lengths of the segments in the image. Actually, we can obtain two kinds of
measures, namely, the size and length measured as a p’... count from
LJSpix(i,j), and measured in terms of the average local thickness by using the

values of the distance to the closest contour.

The processing of the skeleton information may be continued for
determining segment shape, connectivity of segments across junctions to form
lines, line shapes, etc., and also which segments should be changed or
eliminated. The information regarding labels of segments, junctions, and end
points are collected into a tabular structured form. Labels are used as relative

addresses.
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2.4- SEGMENTS LABELS DILATION

The purpose of dilation is to increase the size of the 1-valued or
foreground regions in the image (or to increase the size of 0-valued background
regions, but not both the zero and one valued regions at the same time). In
each dilation cycle(iteration) one layer of external countour pixel is added to the
l-valued regions in the image. The sizes of the object are thus increased
systematically by “sticking or plating” new edges onto the old edges layer by

layer.

Constrained dilation is based on additional information derived from the
local 3 by 3 neighbourhood N8 or N4, depending on the required connectivity,
or the constraints are derived from other registered images. Additional control
is obtained by usiny labelled images and forcing the operations to be carried

out only on specific labels.

The unconstrained 8-connected dilation operator is based on the following
logic within the 8-connected 3 by 3 neighbourhood N8, where P is the center
pixel of N8 and NB, is the periphery of N8. The input image is Inpix(i,j) and
the output image is Outpix(,j): “ If the pixel P is on a O-valued pixel in
Inpix(i,j), and there is at least one 1l-valued pixel in N8’ of Inpix(i,j), then

Outpix(i,j)=1, else Outpix(,j)=Inpix(,j.”

The constraints that we impose onto the dilation operator is subject to a
constraint image. In this case the dilation iz only carried out if “allowed” by
another registered image called Mask(i,j).  The mask image allows us to
prevent the dilation from occurring in the regions where dilation is not wanted.

Say dilation is allowed if the pixel in Mask(i,j) is 1 and not allowed if the
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pixel is O.

Now the basic constrained 8-connected dilation operator has the following
logic within the (8-connected) 3 by 3 neighbourhood N8, where P is the center
pixel of N8 and NS' is the periphery of N8. The input image is LJSpix(i,j),
the constraining image is Inpix(i,j), and the output image is Dilpix(i,j). The
procedure consists of :

“If the pixel P is on a O-valued pixel in LJSpix(i,j), and the pixel P is on

a l-valued pixel in Inpix(i,j), and there is at least one K-valued pixel in

(NS’) of LJSpix(i,j), and the setting of the pixel at P to K in Outpix(i,j)

does not change the connectivity among the differently labelled (non-zero)

pixels in N8, then Dilpix(i,j)=K, else Dilpix(i,j) =LISpix(ij) .”

The results of segment labels dilation are shown in figure 2.4-1.
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3.- FRAGMENTATION ALGORITHM

It is assumed that an object in the picture can be considered to coneist of
certain pieces, primitives or “atoms”. A relatively simple object would consist
of only one atom and a more complicated object of a certain arrangement of
several atoms. The atom aggregates(molecules) may be further compounded
into “macromolecules”. At present each atom in the aggregate has the same

weight.

Since the picture content is unknown, nor is there any knowledge
available about the orientation, position, size, and distortion of the objects, a
recognition algorithm can not be applied directly. However, it is possible to
apply local differential operators to obtain gray level gradients(both in
magnitude and direction), second derivative operators, local extremum operators
for computing contour points, contour curvature operators, to compute local
statistics on the above, etc. For the lack of a general name, the results of

all such local operators will be calied “point feature”.

There is, of course, nothing novel in these computations. It should only
be noticed that the point features can be computed without knowing what the
picture contains and they are “attached” to the unknown objecte and also to
the background. When the objects in the picture are moved, the point features
belonging to the objects “follow” the objects. Exceptions usually occur only at
new contact boundaries between objects or when two previously touching or
overlapping objects are separated. The problem really is to decide which of the
possible computable point features are preferable and least subject to

computational errors caused by noise. The selection of preferable point feature
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requires also the knowledge of how the atoms are to be presented in the

computer.

Since the number and type of the primitives or atoms out of which an
object may be considered to be made up is rather indeterminate, they should
not be left to direct human specification. It is desirable to invent an
algorithm which, when operating on the point features, specifies both the
location and the size of each atomi. The algorithm is thus required to specify
both the location of an atcm and the neightwourhood in the picture which is to

be called an atom, while the atom is still unknown (i.e. unrecognized).

Edge, line and corner detectors, template matching, etc. are applicatinns
of this idea when the algorithm is constructed to detect a particular atom.
However, it is also possible to construct algorithms which, instead of detecting
a particular shape, only detect neighbourhoods in the picture for which
relatively coherant descriptions can be formulated independent of “what has
happened” to the object in the picture. The medial axis transform is one such
algorithm,

The primitives (atoms) are not chosen arbitrarily, nor are they chosen by
operator. The computer is programmed to select its own atoms or primitives
by applying an algorithm. The algorithm determines the location of the atom
and what part of the object is to be considered as one atom. The following

cosidereations[27] lead to this procedure:

1) Since no restriction have been placed on the number of objects in the
picture, their location, size, rotation, distortion, etc., it is obvious that
no template matching procedure will work in reasonable time.
Contour following is also unlikely to succeed since the objects may
touch or even overlap to a certain degree and may be “multiply
connected”.
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2) Even though the present objects are black and white, this is no
reason to make the procedures less general. Thus, *he first question
to be answered is: what useful information can be extracted from the
picture if nothing is known about its contents?

3) Recognition of an unknown atom requires the information gathered
about the atom, to be compared with some previously stored
information. What formm this comparison takes is not really too
important. To make the comparison procedure practical, however,
requires that the description of the atom is normalized and weighed
in some sense before the comnparison is carried out.

4) The number and type of atoms(primitives) out of which an object
may be considered to be composed, is quite indeterminate, especially
when the object becomes complex. Even for a triangle, the primitives
may consist of a line(i.e. 3 lines arranged properly), a corner, two
corners, or three corners, a corner with variable angle and the shape
of the area inside the boundary. Which of descriptions is to be
prefered?

5) The key to the problem of selecting the primit’ -es ig, whether or not
thev are recognized. This is not an impossiblity. It does not really
matter what these primitives actually are, even though it may be
preferable to program the computer so ihat it selects primitives which
agree with human opinions.

The above conditions are not easy to satisfy in a general case, and no
general solution is claimed. The algorithm used in ihe present program does

not use any of the mentioned point feature and worke ¢ . ‘lowing:

“Consider a junction point (xj,yj) in the picture as the origin of a polar

o

co-ordinate system (r,/). In each angular direction 8 (6= 0°, 6°, 12°, -,

,354°) the radial distance r (r,, -+, Tor,) to the pixel (contour
0 354

6 12’
pixel or skeleton pixel or both) which belongs to the segment conuecting to
this junction is measured. The (r,0) description[21] of the neighbourhood,
as seen from point xj, yj, thus resembles a radar picture of coast lines

seen from a ship.”



34

All the necessary information for the algorithm are now available from the
pre-processing steps. Labelled skeleton is in LJSpix(i,j);(see figure 2.3-1),
labelled contours was obtained from Dilpix(ij) and Distpix(i,j) at edges by

“AND'ing” op: 1tion;(see figure 3-1) .
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......... P I R P I I
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.o R I I I
e I N I A I R I
....... I R I

Figure 3-1: Labelled contour of the image.
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3.1- (r,/)) DESCRIPTION

The algorithm defines neighbourhoods in the picture which will be called
atoms after a proper description of the neighbourhood has been formed. The

neighbourhood could be defined in terms of one of the following:

1- Contour pixels

2- Skeleton pixels

3- Both contour and skeleton pixels

Thus complicated objec is automatically fragmented into atoms and
computer has, so to say, selected its own atoms for the object. Obviously this
procedure is meaningful only if the atoms so selected are the same for a given
object, irrespective of where in the picture the object is located, how it is
rotated and irrespective of what size it is. Variations in atoms will, of course,

be caused by limited distortion of object shape, but this should not prevent the

algorithm from finding the atoms.

To formulate a description for the atoms and to normalize the description
before rscognition is now a rather simple matter. By using a polar co-ordinate
representation of the neighbourhood, the description consista of a set of 2-tuples

(r,0) around the junction points (xj, yj). This is represented as a table:

xj’yj = Co-ordinates of junction point

é,r = 2-tuples, one for each segment pixel (contour,skeleton,or both)
where 6 = the angular direction, r = the radial distance to pixel

The procedure breaks down a complicated object into atoms, and
normalizes the description of each atom. Theoretically speaking “ideal atoms”

should exist, but since .o attempt is made to “force” atom shapes onto the
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machine, in practise it is only possible to show the machine images of “ideal
atoms” from which, hopefully, the machine will extract the “ideal atoms”.
However, at present the problem of selecting ideal atoms is simply ignored
since, it is not going to be a major programming problem to allow the

machine to select its own ideal atoms.

The following discussion is based on the assumption that the machine'’s
“memories” have been zeroes, i.e. it is completely “newborn”. When the
machine has located all atoms in the object, and normalized, weighed and
matched them against each other, a supervised selection of “ideal atoms”

starts.

There are two lists in the machine’s memory. These are called “a list of
presently seen atoms” , “a list of ideal or memory atoms” . The machine is

programmed to proceed as follows:
1) The list of seen atoms is zeroed.

2) The atoms in the picture are found, normalized, and stored in the
list of seen atoms.

3) The list of seen atoms are comnared against the list of ideal atoms.

4) If there is an atom that does not compare vel. enough to any of
the ideal atoms then insert this atom into the list of ideal atoms.

In order to handle segments variations, once the atom is extracted we
chop it by a multiple of its avarage shortest distance to nearest contour pixels.
Avarage shortest distance is computed by averaging the distances between the
junction point and the nearest segment pixels, in this experiment the multiple
value is set to 3, see figure 3.1-1. The extracted atoms are shown in figures
3.1-2, 3.1-3 and 3.1-4, where The atoms have been placed close to each other

while still retaining the approximate shape of the original character. Since
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atoms are built around junctions, the end points such as c,d}] and m have
disappeared. Of course in the case of a lone segment the end points
information(which are preserved and available) are of importance but since the
concern of this project is with the junction points, so we leave the lone

segments and end points out.
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3.2- NORMALIZATION and WEIGHING

In many cases, patterns are normalized in the preprocessing process.
Size, position, skew and line width are the types of normalization used. In
fact size normalization is a very common technique used in pattern
recognition[14]. Rotation(d) can not be normalized but radii can be normalized.
Since (r,§) descriptions are multivalued functions(i.e. for the same value of ¢
we might have several radii) thus, we can not use correlation as a messure of
similarity. To overcome this problem we have devised our own scheme which
operates in two steps:

a) Normalization and Weighing

b) Matching

Where normalization and weighing are described in this section and
matching will be described in the next section. The average radius is used to
normalize the size, thus the (r,f) description is transformed into a binary
image of 37 by 60 pixels. Each (r,/) description is transformed into a

l-valued entry (i,j) in the new image as following(see figure 3.2-1):
j= 6/6°
i=(r—r avr)/ ( (ravr— rstd) /nslots)+s

n= no. of l-valued pixels

n
r =3 r
avr = k
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n
re tdnSQRT(k{:l(rk—r a v

avr=Average, std=Standard deviation

nslots=No. of slots=6, s=3nslots+1

By weighing we simply mean to assign a positive value to O-valued pixels

depending on how far they are from the l-valued pixels, in other words this is

a kind of distance measure. Weighing the new representation of (r,0)

description, is done in two phases. But before describing these two phases we

need two definitions:

DEF.1-

DEF.2-

Zero-column (or O-column) is a column which consists of zero’s and
nothing else.
One-column (or 1l-column) is a column which has at least a one as

one of its entries.

The two phases are as following:

1

2)

Weigh zero-columns. The O-columns are surrounded by two
one-columns Gl,jz), starting from column j1 toward j2 assign values
(staring from 2,3,) to all the entries of the o-columns. Now do the
reverse i.e., starting starting from j2 toward j1 assign values
(starting from 2,3,:) to the o-columns , providing that the new value

is less than the previousely assigned value.

Weigh one-columns.There are 3 cases
2.1) If the 1l-column has only One 1l-valued entry in row i, then
assign values (starting from 2,3, in both directions(upward &

dec anward).
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2.2) If the 1-column has two 1l-valued entries(in rows il'i2)’ then
starting from i1 toward i2 assign values (starting from 2,3,-)
to the pixels in the column. Now do the reverse i.e., starting
from i2 toward il assign values to the pixels in the column
providing that the new value is less than the previousely
assigned value. The entries in the column that fall beyond i1
and i2 are assigned values as it was mentioned in 2.1.

2.3) If the 1l-column has more than two 1-valued entries then a

combination of 2.1 and 2.2 is used.

Figure 3.2-2 shows the weighed atom.
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Figure 3.2-1: The normalized version of the “Contour” atom
shown in fig. 3.1-1
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Figure 3.2-2: Weighed “Contour” atom , the 1-valued entries

are shown by *s and the numerals are
mod(10).
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3.3- MATCHING

Given that the normalization is consistent, irrespective of how the atom
was originally located in the picture, the recognition of the atom is straight

forward.

Thus, the conditions laid down in the beginning have all been met. The
object can be fragmented algorithmically, atom descriptions can be obtained and
these can be normalized and weighed before any recognition is attempted. The

recognition of individual atom is now quite simple.

Each of the observable or non-ideal atoms a, of a given type have an
“idealized” version ai from which they can be derived provided the size (S) and
rotation (R) are known. In the analysis of a picture the situation is exactly
opposite. It has been possible to costruct a representation of an unknown but
observable atom, a to a certain degree of accuracy, and it has been possible
to normalize it for size, but not for rotation. However, it is known how to

rotate the unknown atom 8.

Assume that the machine “knows” a set of “ideal” or “memory” atoms
ail,aiz,---,ai;,---,a;. The unknown atom a, is normalized for size and weighed
(a;l) and compared with all the memory atoms. The comparison procedure
congists of computing a weighted distance between a;l and ai{ , k=1,2,...n for

all rotations 4, i.e.:

= i ’ i M = oo . =
duk(o) = dnstance(au . ak), k=1,2,---,n; =0 to 2«

Distance between atoms a, and ai{ if the rotation angle is 01, is calculated as

following:
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Set totl,t;otz,nl,n2 to zero;
For all pixels i1 and j1 Do
Ii‘(au(il,jl).eq.l)then
Begin
n1=n1+1
- P o
tot, tot1+ak(11,,)1) 1
Endif
1.jl).eq.l)t.hen

Begin
n2=n2+1

If(ai(i

tot2=tot2+au(i -1
Endif

Enddo i1 and j1

1¥1

dis1=tol:1/n1

dis‘.2=tot;2/n2

. R

dxstance(au.ak) = (dlsl+d1s2)/2
If a, and aL perfectly match then distance(au.ai{) would have a wvalue equal
zero, otherwise distance(au.a;{) > 0 depending on how bad they mismatch(
. !
dlstance(au.ak)ZO).

The rotation angle (6;) which gives the minimum distance a* gives the best
k uk

matching orientation between a, and ai{, ie.

d:lk(ol':) = mini(x:)um (duk(ﬁ)); k=1,2,---,n
The comparison is carried out for all the ideal atoms in the memory. The
unknown atom is considered to correspond to the ideal atom which has the

lowest distance (d*@6%)), provided this distance is below a limit dm ie.:
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d*@") = minirlr:um(d;k )

This procedure selects one ideal atom ai‘ as being the one “nearest” to the
unknown atom a;l. If d*e" < d_ then unknown atom a;l is considered to be
ai"I , but is rotated by angle ¢* and it has a certain size relation (Su/Si) with
respect to ai'(size of au=Su, gize of ai*=Si, size being defined as the average
radius( T )). If d*¢%) > d_ then the unknown atom is a new one and it is
added to the machine’s list of “ideal” ato.1.

The results of matching for different type of atoms are shown in tables 3.8.1,
3.3.2 and 3.8.3. The values values in each entry give the minimum distance
for the best matching orientation. As pointed out before a zero shows a

perfect match.
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4o 0.853]|0.000]0.817[1.2271 195:1.053 0.8
—_ |
-+ |1.000/0.817|0.000|1.281|1.235{1.209|0.918
|
- | |
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| |
| |
- 1.137]1.195]1.2>c|1.182]|0.00011.119|1.080
| | |
- | |
1.149(1.,05311.209/1.37511.119{0.000]1.236
| |
I T T
- 1.00610.811]0.918]|1.286(1.080(1.236|/0.000
; | | | |
!; |o.921[1.244}1.134{1.129(|1.159]|1.203(|1.269
- ! | |
H t |
*]0.971]1.05911.06911.291]1.301]1.165|1.128
| |
- I |
- |0.954]1 194}1.201|1.225|1.347(|1.427|1.251
| |
| |
|1.073}1.100)1v.14011.247]1.231]1.430]1.275
| !
| |
|0.890 0.194=0.635 1.272)1 264:0.925 0.868

| |

lo.97110.954
| |

1.059(1.194
1.069]1.20
1.291]1.225
1.301{1.347

TABLE 8.3-1: Matching results of “Contour” atoms.
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TABLE 3.3-2: Matching results of “Skeleton” atoms.
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TABLE 3.3-3: Matching results of “Contour and Skeleton” atoms,
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4. ATOMS INTERRELATIONSHIP AND OBJECT RECOGNITION

After pattern primitives are selected, the next step is the construction of
a grammar(or grammars) which will generate a language(or languages) to
describe the patterns under study. It is known that increased descriptive
power of a language is paid for in terms of increased complexity of the syntax
analysis system(recognizer or acceptor). Finite-state automata are capable of
recognizing finite-state languages, although the descriptive power of finite-state
language is also known to be weaker than that of context-free and
context-sensitive languages. On the other hand, nonfinite, nondeterministic
procedures are required, in general, to recognize languages generated by
context-free and context-sensitive grammars. The selection of & particular
grammar for pattern description is affected by the primitives selected, and by

the tradeoff between the grammar’s descriptive power and analysis efficiency.

If the primitives selected are very simple, more complex grammars may
have to be used for pattern description. On the other hand, the use of
sophisticated primitives may result in rather simple grammars for pattern
description, which in turn will result in fast recognition algorithms. The
interplay between the complexities of primitives and of pattern grammars is
certainly very important in the design of a syntactic pattern recognition
system. Context-free programmed grammars, which maintain the simplicity of
context-free grammars but can generate context-sensitive languages, have

recently been suggested for patter description[6].
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A number of special languages have been proposed for the description of
patterns such as English and Chinese characters, chromosone images, spark
chamber pictures, two-dimensional mathematics, chemical structures, spoken
words and finger print patterns{4,22]. For the purpose of effectively describing
high dimensional patterns, high dimensional grammars such as Web grammars,
array grammars, graph grammars, tree grammars, and shape grammars have

been used for syntactic pattern recognition[4,23,24].

Ideally speaking, it would be nice to have a grammatical(or structural)
inference machine which would infer a grammar from a given et of patterns.
Unfortunately, not many convenient grammatical inference algorithms are
presently available for this purpose. Nevertheless, recent literatures have
indicated that some simple grammatical inference algorithms have already been
applied to syntactic pattern recognition, particularly through man-machine

interaction{25,27].

To describe the relationship between the various atrms that constitute an
object is now relatively straightforward. The description, however, has to be
“relativistic”. The situation is best illustrated with an example. Assume that
an object consists of ideal atoms ai1 and a;. In the object ai1 occurs in two

different sizes and rotations, i.e., a'! has two present(observable) realizations,

1

. e i, . i 1.
i.e., a1 al(Sl,A ), where Sl—sxze w.r.t. ag; Al—rotatxon w.r.t. a;. If a; is

to be used as a starting point for locating another atom say a“lz, then the
distance d1 9 and the angular direction ¢12 where to find a?, have to be
given with respect to ai. If the object is magnified by a factor m, the

size(Sl) of ai is m times larger and the distance d is also m times larger.

1,2
Thus a description of where the next atom is to be located can be given in
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terms of d1 2/S1 and 1/;1 o measured with respect to '\1' The machine is now
able to estimate the location of the next atom irrespective of the size and
rotation of the object. The distortion of the object or inaccurate location of ai

only introduces an error term into the estimation where a? is to be found[28].

In the recognition part, the taught relationships are used to guide the
machine from the identified atoms to the expected atoms until an object of the
desired class has been identified or all the usable taught relationships have
been exhausted. Due to the limits of this work, the atoms interrelationship

and object recognition parts have not been implemented.
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5.- RESULTS OF EXPERIMENTS
Two experiments were implemented which will be described in the following:
EXPERIMENT 1 :

In this experiment we will verify which of the representation scheme is
most reliable and best representative of the atom. Referring to tables
3.3-1,3.3-2 and 3.3-3, if we set the matching threshold to 0.25 then all three
schemes are equivalent and each will classify 12 unique atons which will be

referred to by using the following conventions:
Ci = “Contour” atom no. i
Si = “Skeleton” atom no. i

CSi = “Contour and Skeleton” atom no, i

The atoms are as following:

= N Sy= Cs,= _
Cp= ’: S= - CS,~ :—
Cs= o Sg= CSg= e
Cpm - Sy~ cs,= =
Cs~ Sg= CS.= i
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Ce~ — S — CSg= =
Cp= P2 8,~ — CS,- 1=
Cg~ Sg= CSg= ”
Cq= Sg= CSq=

Cyo= - $10= CS1p= =
Cn $11- CSyy-
C12” S12” C8pp= -

Starting with “Contour” representation we will increase the threshold and
examine how each representation classifies atoms. At threshold=0.50 atoms
CQ,C11 are in the same class which is a meaningful classification, at threshold
set to 0.75, atoms 03 and 012 are classified similar which is a reasonable
classification. If we increase the threshold to 1.00 we will see that atoms
C1:CC3:Cq:CrCaiCrpr

2-segments and 3-segments are similar, which is not an acceptable classification

012 are gignaled similar implying that atoms of

at all. By increasing the threshold to 1.25,1.50,-, we will see that the
classification degrades even further by putting the 2-segment, 3-segment and
4-segments in the same class, so we conclude that “Contour” representation is

not a good representation.



&7

Next we verify “Contour and Skeleton” atoms. At threshold set to 0.50
atoms CS9 and CS11 are classified similar. At threshold set to 0.75 atoms
CS1 and CS8 are classified similar implying that a 3-segment atom is similar
to a 2-segment atom . This representation even degrades more at threshold
set to 1.00 by classifing atoms 083,085 ,CS7,CS12 similar, implying that
2-segment, 3-segment and 4.segment atonis are similar. The same trend
would follow by increasing the threshold to 1.25,1.50,---, implying that this is

not a good representation scheme.

Finally we come to “Skeleton” atoms, at threshold set to 0.50 atoms
SB’SQ and S11 are classified similar which is quite a good classification. At
thrsholds 0.75,1.00 nothing will change but at threshold set to 1.25 we will
see new classes, first, atoms S1 and SG’ second, atoms 82 and S7, and third,
atoms S3 and 812 are signaled similar which is a very good classification.
By increasing the threshold to 1.50,1.75,-, the classification starts degrading,
but we observed that at threshold set to 1.25 the classification of atoms to
similar classes was acceptable and good so we conclude that the most reliable
and best representative of the property of atoms is the “Skeleton”

representation.

EXPERIMENT 1I :

We observed in experiment I that “Skeletons” are most reliable in
representing atoms. In experiment II we passed all the 50 characters in the
data set (see appendix I) through the fragmentation program and based on the
discussion in section 3.3 about 1deal and non-ideal atoms and by using a

supervised selection of ideal atoms constructed a data base of ideal atoms. We
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observed that a set of eleven atoms (see figure 5-1) were sufficient to identify
and recognize all the atoms produced by the fragmentation procedure. Since
the characters were too small, fat, and sometimes had touching parts, some of
the atoms look similar or consist of a few pixels. We believe that an

automated selection of ideal atoms will produce more accurate results.

----------------

Figure 5-1: Ideal atoms.
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8.- CONCLUSION

We have defined a method for fragmenting unconstrained line structures
(i.e., Chinese characters) which is very simple and straightforward. After
preprocessing, the junction points are selected as the center points of primitives.
Each primitive(atom) is constructed out of a junction and the segments

connecting to it. We also implemented two experiments.

In the first experiment we verified which of the representation
scheme(skeleton, contour, or both) is most reliable and best representative of
the atom. We observed that the skeleton of such structures are more reliable
and carry more information than the contour or a combination of contour and

skeleton.

In the second experiment we passed 50 Chinese character through the
process to see how many different atoms are there. We observed that almost

a handful of such atoms is sufficient to define any structure .

Our method is far from complete and we believe that there is a lot of
room for improvement in any aspects. The characters(data set) used for our
work were too small, fat and sometimes had touching parts which caused
problems. Larger and thinner characters, and a better thinning algorithm
which preserves the main characteristics of the line structure would improve

the results drastically.
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8.- APPENDIX I

The data set consists of the following 50 Chinese characters.
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