\\\
’ y - - s - \\\\ !
- - N - \‘\. !
I*leatnonaanbra{y _— “Bibliothégue-nationale -- A
~of-Canada _ du Canada . . A~
TT— - . . . :\\\’
-, Canadian Theses Service  Service des’ théses canadiennes - Rl
’ Ottawa, Canada ’ T ; e Tty o
* K1A ON4 ~. - S

.
> . - - .
~ . . ~
/ \
~ .
. . . . .
. . N
.. w
' . .

. ¢ : * .
. __ ' s T !
- - - . . ! |
T~ - . N c":r% -
- o> ~ > . [ e
B Tzl hn " - (/ ’
<y 8 . -
\
NOTICE | -. o ’ - . AVIS
The quality of this-microformi is haavily dependentupon the La qualité de cette microforme dépend grandementdela . -
Lquality of the orlgmal thesis submitted for microfilming. qualité de la thése soumise au microfilmage. Nous'avons
Every effort has been'made to ensure the highest quality of. . tout fait pour assurer une qual:té supérieure de reproduc
reproduchon possible. tion. ~
L \
If pages are missing, contact the university which granted S'il manque des paggs veuillez ,communiquer avec s
the degree. / Iunlversne qui a conféré le grade. -
Some Fages may have indistinct print especially.if the La qualité d'impression de certaines pages peut laisser a
original pages were typed with a poor typewnter ribbon or désirer, surtout si les pages originales ont été dactylogra-
if the university sent us an inferior photocopy.- - phlees a l'aide d'un ruban usé ou sil'université nous a fait
= parvensgune photocopie de qualnte inférieure.
Previously copyrighted materials (journal articles, pub- Les documents qui font de;a I'objet d'un droit daute r
lished tests, etc.) are not hlmed . . (articles de revue, tests publés, etc.) ne sont pa
. . - microfiimeés. ;
Reproduction in full or in part of this mlcroform isgoverned . La reproduction, méme partielle, de cette microforme est
by the Canadian Copyright Act R.S.C. 1970, c. C-30. . ;‘ —soumise & la Lou canadrenne sur le droit d'auteur, SRC
¥ | 1970,c¢. C-30.
o . 4 ‘ . . v ) )
h 3 ‘ < \ Y -
\
~ \ % -‘
\ N ‘\ .\ ;

i | Canad"'



y

N\ B
v , \ N —

A"Proposalnfor Kemel Implementation of a Window Facllity for AS
Terminals in the UNIX System V Operating System. '

: -

Margareta Mihordea

f [ .
v AM R t T
s AMojorReport *o
™ — n S — o
The Department

of

S . " .. Computert Sclence

-

+ ‘ " B
. N .
‘ 1
. - . /

N

" Presented in Fson[al Fulfillment of the Re'qulrerhen'rs

for the Degree of Master in Computer Sclence at

Concordia‘Univesity
.Montréal, Québec, Canada v

March 1988 _

 {

"+ ©Margareta Mihordea, 1988

~ a
———

Cil



Permission has been granted
to the.National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

' The author/(copyright owner)

has regerved other
publicatibn rights, and
neither he thesis nor
extensive Textracts from it
may be printed or otherwise
reproduced| without his/her

written permission.

L'autorisation a é&té accordée
3 la Bibliothéque nationale
du Canada - de microfilmer

cette thése et de préter ou

de vendre des exemplaires du
filmo !

L'auteur- (titulaire du‘droit
d'auteur) se réserve °"les
autres droits de publication;

ni la thése ni de 1longs.
extraits d&e- celle-ci ne
‘doivent @&tre imprimés ou

autrement reproduits sans son
autorisation écrite.

-
-

“I9BN -0-315-44243-3



I

- , . ABSTRACT
A - . N . . ?\\

A Proposal for Kemel lmplementaﬂdn of a-Window
Facliity for ASCII Terminals in the UNIX System V Operating

x J : System

Margareta Mihordea

UNiX System V on the Cadmus processor has a standard Terminc;I driver for g
multiplexer board. This “repon‘ proposes the implementation of d~windowlng facllity
for the Cadmus, by extending the multiplexing capability of 'rhl§ standard driverto a -~
segond level: Wlndow-process pairs for each terminal, allocated from a common
pool on user request. This approach differs from the user level implementation
éncountered in most of the existing window faciiities, in-that the user level window
manager implements only Inltialization and termination functions, while the kernel

- additions handie window multiplexing ‘as a simple extension to the standard driver

functions. The advantage of our proposal consists of the fact that wlfh'uonly slight

“modifications In the kernel, the overhead due to the muttiple system calls of the user
level approach Is significantly diminished. In this work, the design proposal has been

restricted 1o full screen windows.

-



PE N

e -~ A
- . ‘
} ' ‘
v . k
. .
/o~ !
4 1
/
i
1 ‘,1"
¥
!
— t
» - , ‘
f.’\

- Acknowledgemeps

. . -

~

Je remercie Dr. T. Fancott dul pdf son aide, sa
confiance. en moi, soQ exigeance professionnelle de
haut niveau, a su rendre possible l'exécution de ce
travall, . - |

°




{/

t

3.2 Windox;vlng Architecture in the Blit Application

b e

‘y

; V-
) ) '
Table of Contents | - page
v{ ' ’
 Uist of FIgUres ... oo e TR ol
ONOPBI L. st S
INtrodUCHion v To v et Avressnerasanseensnas e )‘ ..... 1
. 1.1 Definitions and General TermsS..........ouuvendivngininnns. s 2
» 12 7 Wlﬁdows for Workstations or Terminals. ...........c.eevvvveeveninens . grrseneens 3
' 1.3.  The Goal of This Report........cccovverivrennns Ibertareenarnnrishestetbeenteseatenesiasarten 4
! 1.4, The Description of the Organization of This Reporf. .............................. 4
C4\cp’rer2 ........... T SRR 5
BACKOIOUNT ..ottt ettt e ve s bbb restre e e s e eesaaare s s ennteaesane 5
21,  The Command Interpreter.......... e 5
22 The'Display Manager. ... . \ .......................... 7
. 23 The Vitual Terminal EMUIGHOT (VIE)......ccvbumrsmrsrsi
Chapter......ciiiii e,
implementations of WlndowsN\ ...... rrree e ae sty
3. 'Gene’rol Concept of User Space Implementation for Windowing.. /..

----------------------------------

3.3.  Windowing Architecture In UNIX BSD 4.3........ccopveinreveninrinrienesfronan, 0

3.3.1  Dat@ SHUCIUIES......oviiriiiiie e sseneiens e svnesrnennyhssesvan s
332 Modes of Operation.......ccceeneee. e T S 21

333 PrOGraM OPBIGRON......c.civmmiieeriieesemiimseserissosemsessaforesrersssenes
34, WOW - A LOCOI EXPIMENL. ...oooscrrnrsnssertvcssoseseesnasisesfossssssnines %
Chapterd..,.....ccccovvvvvnnnnnn. ~.~__ .................................................................................. 31
""  The Teminal Control Approach in UNIX Sysferﬁ Vit eressssseseesosenss 3
41, The Present Architecture of the Termingl DHVET......... L..oeeeerireereen. W3

42.  The Main Data Structures of the Terminal Driver

43.  The Implicit Multiplexing/Demultiplexing Feature 7 the Q/DH Driver. 34
Chapter.......cccnnivnine, Ve LTV Q0
| The Design of the WINdOW DAVE......:.........ueemrermne / ................................. 40
5.1, General Presentation of Our Approach.......fuviconnennn. 7.4
52 Functional OVeIVIEW. ..o i e 4]
5.3.  The UserInterface...........ccccccviiiiisiivnn s fnniiveenons RIS x
54.  The Structures Needed‘lr?{Our APDIOOCH, . eooverer v eveeressnssesassenssnnions. 44
5.5,  The WINdow Driver..... ... s, 4




.

HEUT 86 T WINAOW MONGGEN. ..cvvseerverensessesssssssssssssssnnnsssssssssssssmssssssbacss i

) 57.° Overhead Conslderoﬂons et bt oessesssessasssssengeiesasstesssassassner, D)
K 58.  Extension to Multiple Windows,54
Chop’rerb. eert et e Ta s s st e ea bbb AA R R bt stes e sn e re st s s din s e Funsensss OO

Concluslons ...... .56
we 61, Future Deve!o‘pmenf..:....c............

REFERENCES. ..ci. e svvesunsissssssssssessessssassssessssmsss st seostssissmsseesesesnsechesaosssseseas epeserenn 3B

I

i
L N Y Y YN R P AT RY R PR R NY 57

APPBNGIX Tsivsssissiecssissbrsssesssssssmnisssssssssamssssssssmmmsssssssssssnssssmassssssssssssssnssssseng O
Appendix 2... -&

Appendix 365

r
i
-
EN -
-
-
o« -+
LY
-~
[y LI
-
N
-~
v
~
N
» = .
*
.
~
4 . \' (%4 .
X
.- -
\ .
.
i
»
- .
[ 4 -
-, a
»
¢ /“ .
\ '
¢ ( °
N h}
— - —
< ‘\ y
. -2
: .
o
. - - = :
Y
’
’ Y, \ =
' ~
“ 4
A
. 4 ! ¥ Y

[EN—

M <]



.vH : .
|
‘List of Figures ) | Page -
4 - . .
2.1 SHUGHIIE OF BRUWIN. ..o sessssssssssssssssssssssssssssssses S e
2.2 The Division of Labour In WSH......occimiiinninine, gresersenerentaess 7-
2.3 VT Processes, Devices and Data Flows........ R TR IO .. 10
2.4 The Virtual Terminal COntroller.................u.immes s oo 12
3.1 Windowing Virtual Terfninals on a Physical Termindl................... s 9
'3.2 The Screen Layout In WOW............. (rrereserernnen e aas vttt et e erannrae e renan et enene %
3.3 Implementation Detall In WOW..........cc..... ettt seessess e s esens s s v/
3.4 WOW CONMO! SHUCHUIBS....v.errrrrrree USROS SEIE:
4.1 Kernel Data Structures for Driver LINKGGe.......c.eervcvenrnnee. R <
4.2 The INformation FIGW in the Q/DH DIVET......ccuwmemrmsessmmrrsssin A y O
5:1 Functional Diogram for the Kemel Window Facility.............. reees et as s 4
5.2 Window Driver Data Structures ... cevee s svninnesen o Cvree e . 86
5.3 Modified tty Control ROUtINS.............cwuueuinnse: e s 4 '
5.4 Window Structure with Modified tty Control Routings....................... TN 48 '
A3.1 A Sample INHQD File ... S SR—— S
N ~
o -
| "
( , \
- b ~ “~ l )
!
| .
!
) T
|
' ‘ R
d
; ‘1 | :
j | _
/ i - L
o~ .



1 o
-\ o
. ? . 4
‘ ’ ' .
Chapter 1 ‘
. (\, ) » '
Introduction '

The concept of multiple windows on a user workstation has been with us
since Alan Kay introduced the Smalitalk (Te§8-1) environment In the early 70's. The
concept was essentially developed to repr.esem each mode of execution in a user |
session by a separate window, thus theoretically retaining all #formation
appropriate to that session accessible to the user in a visual format. In the words of
Alan Kay (Tes81) this constitutes the basis of what he calls an ‘integrated
environment®, where all fhelccpdbilities of a system are available to apply to any.
appropriate informgation. ‘

In the last few years the idea of an Integrated environmenf has beer}
adopted and developed by many noﬁ-Smcllfclk systems. A great number of
window facilities supporting both text and raster graphics displays have been
developed for a large range of pérsoncl computers (Apple Macintosh system,
GEMDOS and Microsoft Windows on MSDOS, and the Xerox Star ére a few
. examples) and larger configurations, including timeshared and network computers ‘
(Vf MS (Lan79), WINDOWS (Uni8é) and others ). .

in o-multiprogrammfng environment sﬁch as UNIX, a user can run different
programs in the bcé:kground while working on other jobs in his command interpreter
from the same terminal. The problem in running multiple programs without windows
resides In the fact that messages from the background processes will appear
asynchronously with the Input or output of the current procéss on fhebscme screen,
assuming appropriate system settings. ‘As stated by Jacob (Joc84) this happens
because ‘Traditional user Interfaces for computers that handle parallel processes
place all inputs and outputs In one chronological stream, identifying the process
associated with each, but ihferleovlng the qmé'. Although several tasks can be
executed iﬁ -porollel by maintaining a conventional terminai display environment,

only one task can be visibly active at any-given time. The user is thus forced to
' switch display contexts in order to monitor muttiple jobs.

These two problems can be solved by replacing the conventional display '
with a windowed one. Each of the related processes run from a given terminal is
associated with @ window, i.e. a re§eNed portion of the terminal screen. When



_/.'. T2 '

programs in difmfenf windows are run, their respective outputs containing compiller
messades. results, etc,, will be directed to the appropriate windows thus avoliding

the intermingling of messages an the screen. Additional functions such as creating o’

new window; switching between existing windows, and changing window size and
‘ goslﬂon, will provide the user the facllity of switching from one task to the other
without having to save and restart any program he is using. ‘
M We may say that wlhdo\«ved systems represent a natural step in the evolution
of the interface between humans and interactive computer software; *...a window-
based user interface enables a user to manage a collection of dialogues by
ossoclc’ring a spatial Ipcoﬂon with each dialogue, In much the same way one
organizes a desk’ (Jac84). The analogy with the desktop model is also mentioned In
(Mey81), (Gam84), as with the windowing tqchnioee each window S:orresponds to
anitem on paper or g dossler. : - -

A finiti r

A window Is defined ((JacB4), (Gam84), (Wei85) et al.) as a portion of the
terminal screen which may range in size from the area occupied by one character
up to the entire screen. We might call it a small screen. We should dlsﬂngﬁish
between system windows which simply display messages destined for user
guidance, and user created windows, each associated with a process in order to
allow programs to run in the same way as from a dedicated teminal.

Depending on the desired complexity and overhead, the windows may be
overlapped, tiled, full screen or combinations of all (BRUWIN. (Mey81), BSD 4.3
"WINDOWS (Uni86)). The user may switch fiack and forth between the windows
without loss of window context. ‘

v

A window which s visible partinlly or totally on the screen is said to be
*active’, meaning 'thm‘ output mc;y be displayed in these windows. Only one of
these active windows may accept keyboard data. fhé one which has been
selected by the-user to work in. This is called the current window. it has to be
completely visible and it is distinguished from the others by the presence of the
cursor. Some authors use the term *active’ referring to *current”, but from the
context it Is always possible to dgtec'r the right meaning. A newly created wln,dow' Is
always made current. Outputs appear in the visiblie windows as they are generated.



. '
- .
-~
’ .

A%

The main advantages of windowing are P - »
° . i | ’

1 W@ﬂ@ﬁﬂﬂﬂm_ﬂme_wm
'jm_emg_ﬂgn. For example .when debugging a program,the user may run the
program in one wlndpw and edit it in another. When noticing eror messages in
the former he will intervene Immediately by correcﬁng the error in the source
code in the other window. The user thus avolds switching betwéen an edit
mode and an éxecute mode. Altematively, the user may edit a program in
one window and upon need ask for information from an on-line manual in
another window. He q@/“mcy hold one window for maiiing In order foc
communicate his latest changes to his team mates, etc.

2. n hav | task r resen in ifferent
window. He can switch with minimal effort between tasks by switching between

windows. This Is similar to an increase of the nuymber of termindls in the systern.
Although it trcnsques to a need for more computing powér, this Is not @
problem as hardware Is Inexpensive, and ge'rﬂn!g more so every \;ecr, while
.the cost of manpower is constantly rising. '

~

The window facllities present two main disadvantages:

1.Windows compete with each other for screen space. A solution fo this Is

represented by overapping windows as figured out 'b_y Alan Kay.

ngmmﬂg due fo new functions needed In addition to

those .for regular screen management like mapping of ‘the outputs to the
"windows, muttiplexing and switching between windows.

4

12 Windows for Workstations or Termingls.

Some window systems are conceived for ordinary terminals (Rosetta
Smalitalk (War79), USCD p-System Windows (Tat82), VT (Gama84), WSH (Bre84)). Some
others may be adapted to run on bitmapped displays (CWSH (Wei85)) or raster-
graphics display (BRUWIN (Mey81)). There are also window sysferﬁs designed for
workstations (such as Xerox Interlisp Prograonmer's Assistant (Tel81) forDALTO
minicomputers, BLIT (Pik84), WINDOWS (Uni86), or Wm (Jac84)) where each vﬂpdow
A C contains a dialogue between an intelligent terminal and one of the computers in the
rfetwork. : ) I




- ‘\... Bl
. 4 \
. k ‘.
o P aad 0 .
13, The Goal of This Report.

This report presents a proposal for the deslgn o#**a” kernel level
lmplemenfcﬂon of the mulﬂplexing functions of a windowing display for ASCII .
'rermlncls The proposed deslgn Is bt:sed on a UNIX System V driver for a ty/
mumplexer board. This driver already handles multiplexed #ty input and output™ from
the interface board. In this work, we extend this multiplexing function 1o a second
level, the level of multiple windows on each terminal. The existing stfuciures, with
their synchronizing and ehoracter handling functions, are used to the greatest extent
. possible to provide each window with the same lovél of control as c.dedico’re;:i

terminal in a standard UNIX environment.  ~ (; : . N -
" Some user level software is needed 're control the inmohscﬂon and
termination of ptocesses in windows opened by the user. This software is minimal in
the proe:osed system, and is not active during normal winaow 1/0. )
14, Th i he Or ( > f Thi
" 'ch.2 surveys existing window faclity concepts concelved for ASCH terminals
in the last four years.
Ch.3 glves a detail study of Two exisﬂng window lmplementcﬂons namely Blit
(Pik84), for the conceptual part of mulﬂplexing a physical port between a number of

virtyal terminals, and WINDOWS (Uni86) vwhlch adapts the Blit concept to ASCII

. ferminals. Ch.3 also describes a local Concordla experiment, WOW (Loc&?) done

for our Unix V system on the Cadmus.

Ch.4 describes the tty driver architecture as it is encountered in the present
system V configuration for the CADMUS computer along with the main structures and
the control 1ermincl concept in Unix, The information In‘Ch.A gives the background of
oj approach tor a window facility Implemented using kernel modifications as
opposed to a user level implemem‘aﬂon

Ch.5 describes the modifications reqmjired to, the kernel tty driver routines in
order to implement a window facility. A discussion of the overhead for both the user
level ond kernel level implementations ls included as well as the extensions required
to this work to support overlapping windows.

g



21, The Command Interpreter.

I . Chapter 2 .
a A _
N ° T
Backgrounq

- r
The program implementing a window faclility Is usually referred to as a
window rnanoger and has a-number of modules for the different functions. The basic
modules encountered are: the display manager. the vlrfual iermlnf‘l emulator, the .

‘command interpreter (if non-sfcndord) and a mulflplexer The followlng material

emphasizes g few aspects of each as they appear in recent articles. - ¢

Y

Each user created window Is ossociated with a process runnlng a command-
interprefer which for UNIX is called a'shell (or cshell). - o ¢
There are basically two approaches related to this:

&

1. ‘J’_n_g_ﬂm_qgm_o_qgn ‘leaves the standard shell supplled with the respechve '

UNIX version and adds cddmonal code usuclly as pcr'r of the control progrom

" module In order to interpret control characters assigned:to winasw control

: fﬁanions (commcnds). An example of such a software architecture is given in
fig.2.1 (Mey81). 2

\ / . ) -
This approach implies two modes of operation:

1.An:jnput or process mode in which the user typed data is directed to the
) _ cument window where lt Is lnferpreted appropriately by the wlndow shell and
.2.A command mode where The user typed doTo is interpreted -as a window
opercﬂon (move, create, etc.). ‘

Fi " N v
Normally a special character such as escape ensures easy switching

- between the two modes. This method prbsents the cdvantgge ofieaving the UNIX

fcclhﬂes unchonged ¥
2. The second approach is based on an integrated window shell which is
achieved by modifying the conventional shell to understand the commands
for window operations. In this integrated approach the design consists of three

3 .

A

~€

v



¢
b
v Lk

distinct modules: a virtual formlnal emulator (vte) an Integrated wlndow

Interpreter and a router whlch appropriately swhches between the two. An
. example of this architecture is given.in Fig.2.2 (Bre84). )

/ ' * - 3
r ! ’
' ‘ ' ' ~ '
Display/VTE |~ "VTE/Task
Interfdee. ¢ | Interface -
; . . |
{
’\ st
] N _ Virtual ’
Displa g . " K Outputfrom task | Taskin

piay - Terminal ? g

Manager Emulator : c I
n '

' - (VTE) ontroller
' Input 1o task
* ! *

Create, change, move, , o Create and

- 1 Input Output .
cancel, destroy : K mediate -

communication
\\ ~ . ) —
" Figure 2.1

Structure of BRUWIN (Mey81)




I

—

tty input 1 l_ Process output . ———-u—

§

\ \\.\‘—4

. ) \ ]
v ' ¥
EMULATOR INTERPRETER' —

-~

~ —
~

T AU S e

screen . display process’  window . parse process .
control update signals control commands onitrol
. Fg.22

The Division of Labour in WSH-(Bre84)
The.advantage of this approach over the former Is that it elimlﬁc?gs an
additional command layer between the operating system and the user's shell .
. 7 " A9
The display manager groups functions related to the screen control in order
to maintain the appropriate display appearance. lts complexity may vary

according to the requested window operations. if complex, it is Implemented as a
separate module as in the: BRUWIN (Meny), WSH (Bre84), and CWSH (Wel85)

' systems. This gives a‘window facllity the possiBility of working with new versions of

display managers (Wel85). A further refinement of the gehe\rai design for a'display
manager is given in (Mey81). It should contain three main submodules: '
1. A command Interface submodule accepting user commands in a system
window(s) which may be either statically aliacated In a predefined area as In
BRUWIN (Mey81), WOW (Lac87), VT (Gam84), WINDOWS (Uni86) or dynamically

- allocated (usually near the cursory and erased when the messdge Is no longer
needed as encountered in fypléol PC windowing. '




The display 'mondger can accept commands In several lexical -forms
according to the terminal in use. For ASCI temiinals they are usually given as
.cryptic reduced function keys (RIG VIMS (LAN79), WSH (Bre84)) or written as
command strings which are either short, one character, ((Tat82), WOW
(Lac8?). WINDOWS (Uni86)) or long. a string of characters, (Wm (Jac84),
WINDOWS (Unig6). BRUWIN (Mey81)) or a combination of the two (CWSH
" (WeiB5)). R ‘

2.A display maintenance submodule manipulating Information which tells
when and where to draw the windows. . =

If overlapping: of windows Is'not required, the display manager Is simple,
controlling tiled windows In predefined viewing areas. With this scheme the
structure deflning the window contains the x,y coordinates of the upper left
hand corner and fis size.

If the facllity supplies sizing and/or overlapping window functions, then the
window structure contains additional information about the vlélbl_e part of a
window and window boundaries (Unib). This Information is used in order to build
routines which solve space c\onfiicts and redraw the windows. For example a
list of existing windows is needed (UCSD (Tat82), WINDOWS (Uni8é)) to show the
order In which they were displayed to ensure correct ove.rlcpblng when
several operations apply to them. A set of flags showing different
characteristics of the window such as scroliing, Is also required. For the redraw
strategy there are systems with the capabillity of drawing only the visible
portions of windows. The calculations involved in this case are complex, thus
possibly resulting in a slower time than when the window is completely redrawn
as done in BRUWIN (Mey81). -

3.A submodule for graphical operations which deals with primitives to draw
lines, boxes and characters. These primitives are needed to provide chns
and borders around the windows 'by outlining them. For simple ASCH terminals,
the borders may be drawn with horizontal and vertical bar characters (-, 1)
(WOW (Lac87)) or by using a different character for each new window (Tat82),
(Jac84)). For high resolution graphic temminals they may be formed of
continuous lines either coloured or with a different Intensity relative to the
screen. The window borders represent one frequent 1echn|qde to help the user
. dls?inguiéh his concurrent tasks _when hels worklpg with many windows ((Ho!86)).




9

-

It @ window facillity puts no limitation on the number of windows to be created

for a single user, even if the windows are properly outlined, the user may géf lost,

particularly If totally overlapped windows are allowed (BRUWIN (Mey81), WINDOWS

(Uni86), Wm (Jac84), CWSH (Wel85)). Some authors exclude from thelr window

defihition the *hidden windows® due to the ° violations of user interface principles*
((HolBo)) .

Another Technique helping user orienfcﬂon'ln the above situation is to supply
icons. An icon is a reduced box containing a graphic symbol which is
representative for the activity in the respective window. Icons are usually placed
close to the screen margins. Any Icpn can be made current by pointing to it \Qo the
cursor keys or a speclfic mechanism like a mouse.

A similar technique is proposed ((Hol86)) for ASCIl terminals. It consists of
replacement of the icons with shrunken windows, each one containing a character
string defining the activity of that window. These small windows are placed In a
similar manner to icons around the edges of the terminal screen. At any given time @
large screen area is left for the current window. An addttional window operation
should be provided in ordér to swap ‘any one of the shrunken windows with the
current window when the user so requires. )

The display manager functions are usually implemented by
accommodating specific changes to an already existing Screen Management,
Library Package such as gurses ((Jac8d), WOW (LacB7)). Another example using a
different screen package Is WINDOWS (Uni86) described in Ch.3. ]

According to (Unib), the curses package contains routines which *update a
screen with reasonable optimization, get input from the teminal in a screen oriented |
fashion and move the cursor optimally from one point to another independent of
the two previous functions®. All curses routines can access the TERMCAP database
"describing the 'rerminoi capabilities In a terminal independent foéhlon such that
*common terminal functions such as scroll, insert character, delete line, are looked
_up in the database with a generic name. Programs need only know these generic
names and not the specific codes” (Mey81). A display manager using the TERMCAP
feature (CWSH (Wei85), WSH (Bre84), Wm (Jac84) BRUWIN (Mey81)) has the following
advantages: ' . -

“1it may run on many different terminals
2.1t Is portable to other systems having this feature and
3.it allows all software using TERMCAP to'rur with no modifications.

v



10

The original version of wm (Jac84), which does not use curses, has grouped
" all terminol dependent code in a few simple routines which can be easily replaced
with other ones if a graphics terminal will be in use. ' ’

In the VIMS system (Lan79). the screen space is managed through an
hierarchical decomposition as done for graphics systems. The screen primitives are
of two kinds: logical primitives (window and superwindow), operated by processes
and which are mapped via configurations into physicdl primitives (viewport, region,
image), manipulated by the user. A configuration specifies the relative positions
and sizes- of a window. The images contain the invisible windows. The user swaps
between them by using a special key. : "

In VT (Gam84) (see Fig.2.3.), the screen management is done by a screen
driver process which along with a port mechanism forms the interface between
processes and the screen. The port Is a nonstandard call which has as effect the
creation of a named plpe. lts purpose Is to allow communication between arbitrary
processes through messages or st‘reoms (see Ch.S)".

: write shell
- . process output | process |°
) pipe £ PN
, : keyir} driver
/ KEYBOARD > process process CRT

- ' Fig23 -
VT processes, Devices and Data Flow (Gamas4)

When invoked for the first time. the window facility creates a full screen
window which becomes current. Any new window can be cregted by splitting the
current window elither horizontally or vertically (subject to some limitations as
described in (Gomsd])' at the cursor position indicated by 1h' user. The user thus
controls the display space through the window commands
facilty.

s In any windowing




11

Th I t

in a windowing enylronment each user created window shoula behave like
an interactive terminal. This Is achleved with a virtual terminal emulator (vie) module
which accomplishes for windows the functions done by the line discipline routines
normally associated with an interactive terminal.

The virtual terminal is *an abstraction of a real terminal’ ((Bre84), (Mey81)). It
h%% the role of supplying each window with UNIX terminal capabilities. Each window

" process will read and write its associated virtuolite minal instead of a physical line

corresponding to a real device (BRUWIN (Mey81)). This ensures device
independence as processes do their /O on q "universal terminal®. The translation
from device independent to device dependent code is still needed, but it is
performed in software by operating on the virtual teminal data structure (Mey81).

The existing window facilities use differenf'fechniqués in designing virtual
terminals inﬂuegced by the interprocess facllities of the UNIX version in question as
llustrated by a few examples given below.

In RIG VIMS (Lan79) the virtual terminal has three logical components: the
line, the pad and the window, each being managed by independent processes
called the LINE, the PAD and the SCREEN HANDLER respec:fivelyf They are created
with the first user access to the VIMS window and they form together the Virtual
Terminal Controller (VTC) as seen in Fig.2.4.below.

' A line is a structure, actually a queue of chardcters serving as ihpu1 énd to a
virtual ferminal. Any number of lines may be created, but only one may receive user
typed cha?octers; the one designated by the user as being “octive® (Lan79). When,
the characters are read by a user process they are echoed to their window in a
manner similar to a terminal driver function in a traditional interactive environment.
Moreover, the input may be processed In three modes: one character, one line or
one page at atime,

The pad Is a disk data structure which is a two dimensional array of lines
accessed by line number and character position within that line. The main functions

‘ of a pad are to store and edit virtual terminal- output. The pad is also used for

recovering from crashes through the use of two temporary disk files (Mey81). The
text editing feature of the pad refers to the cdrsor movement, character. word and
page deletion, character overwrite and Insertion, string location and substitution and
text selection and trdnisfer. The editing pad feature permits the use of the output of

¢




o
- 12 -
& Screen
- output control command
/ Handler L - .
/
input / _ : )
control y - - mapping
commands activation commands -
’ commands =
/Line Pad .
andler - Handler”
/ - ra
raq?@ts keyboard display
. g r input - commands
‘ i put ) - ¢° '
/ Terminal Terminal
, Input Output
: Handler . ) Handler
) | terminal
characters , output
KEYBOARD DISPLAY
) - [N :
Fig24

* The Virtual Terminal Controller (Lan79)

one Virtual Terminal as input to another in @ similar way as for UNIX pipes (Lakt79).

The third component of the RIG VIMS virtual terminal, the window structure, oo
sernves the purpose of the so called *virtual terminal mapper” (Mey81). In RIG VIMS it
is called the Screen Handler and it maps the pad contents o the screen..

The Inpuf( and output character kterpretation i done from the LINE and PAD

HANDLERS respectively which in turn communicate to their correspondlnd device
specific terminal Input and Output Handlers. The Line Handler also distinguishes
between different types of control characters. Some of these may come from .
screen mar.agement keys in which case the Screen Handler is activated from the

* Line Handler.



13 ’ N

To communicate with VIC, the application processes use a Virtual Terminal
Protocol which is not Influenced by the physical ‘terminal type. Terminal
dependency is handled by the protoc;ol between the terminal Input and Output
Handlers ond the terminal. With this strategy o wide range of devices may be
handled reliably. /

In the BRUWIN window system (Mey81), the virtual terminal emulator

" manipulates only one logical component, the map., which Is a two-dimensional

array of charactern~gddressed by the cursor. The map corresponds to the pad in
RIG VIMS (Lan79) but has no editing capabilities. There Is one map associated with

cursor position relative to its window and the number of characters a y In it
There are three routines belonging to the interface between vte and the display
manager: x_map, y_map and puttext. The first two routines correlate the vin‘dol
terminal cursor position to the physical device coordinates relative to the screen.
Based on the correlated value, the routine puttext calculates the cursor address
and calls a system wirite routine to insert a plece of text at that address.

The virtual terminal in BRUWIN is implemented with two (unidirectional) pipes
which constitute the read and the write communication paths between the control
program called the Task Mediator and the user wiqndow process. The child's (the
window process) standard channels are redirected to the pipes.

Consequently in the pipe BRUWIN version (\Meyel). the vte is split into two
parts: a vte_input and a vie_output routine perfzarmlng the input and output
character interpretation’ respectively as their RIG VIMS counterparts.

The pipe approach for implementing virtual terminals is also used in WSH
(Bre84), CWSH (Wei85), Wm (Jac84). VT (Gam84) and WOW (Lac87).

In VT (Gama4), the virtual terminal Is implemented with the above-mentioned
port mechanism. The disadvantage Is that the porf is not commonly provided In
different Unix versions. Hence the proposal of replacing it in future VT versions with
an mpx call. The effect of mpx is to crect‘e a multiplexed file, but even this
mechanism seems obsolete presently as explciined furt er on.

In WSH (Bre84), the virtual terminal emulator has Yo interpret characters
associated with window and process control in addition to those needed in the
conventional UNIX terminal environment as done in BRUWIN, due to the integrated




14

shell approach. Consequently it needs a more complex data structure which
consists of: '

-a display buffer and an input queue which are involved in updating functions and

-a display buffer pointer and a cursor which are used for mapping the buffer'ﬁ
contents to the coordinate system of the controlling shell; the cursor structure is also
affected when updating is done (insert line, s¢roll up, delete character, etc.).

. While pipéé‘cze c\nelegon’r UNIX way of substituting the standard terminat 1/O
channels for 1;‘19 pumose of controlling concumrent processes, they do not have the
features neccessary to run programs with access to real terminals (such as stty).
Consequently window managers implementing the virtual teminals communication
paths with pipes (WSH (Bre84), Wm (Jac84), CWSH (Wel85)) can not run programs
which use 'raw mode" such as most of the screen'ed'rtors. This is a mgjor limitation
for a successful window system as users work with screen editors most of the time.

The CWSH system ;in its original version solves this problem by emulating the
kernel functions in user mode via the UNIX ‘multiplexed files® mechanism which’
allows the interception of control characters at an intermediate user level through
special UNIX “ioctl" (input-output control) calls. Based on this, CWSH attempts to
intercept all UNIX kernel operations refering tal/O and interprets them relative to the
window process making the call. Consequénﬂy‘ for each window, CWSH duplicates
the line disciplines at the user level. While this method also allows user programs
running in windows to access window contro! functions via the special loctl calls
mentioned above, a feature which Is not available in other window systems like
BRUWIN or WSH, it still appears to be a complicated implementation. Moreover the
"multiplexed files® mechanism Is no longér provided in the recént UNIX releases, but
a derivative of it called ptty (pseudo terminal driver) (Pik84) has been made
available. While intended fo be used In future versions of CWSH, the pty
interprocess communication method is already in use In a newer version of BRUWIN
(Mey81), wm.v42 (JacB4) for Berkeley 4.2 UNIX and WINDOWS (Uni8é) for UNIX BSD 4.3,
both running on the VAX 780.

The pty driver (Unib) provides support for a device-pair of character devices,
one called a master, the other a slave and together a pty.

The slave device supplies to the processes an interface Identical to that of a
real terminal but with no hardware support. The pty offers a bidirectional
communication path similar to what a "bidirectional pipe” might be. Whatever s
written on the master Is given as input 19 the slave and vice-versa. In addition to
pipes. the ptys can handle echoing and line editing (Jac84). Along with a number of =

AN



—~—

b

o ¢

. f 190
iocti cplls opplied to ﬂ\Lm. they provide a tull Unix terminal efvironment in eacH

window thus eliminating the need of duplicating these functions as done in CWSH.
There Is a fixed number of pseudo terminals determined ot the configuration

fime, the default being 32. As they are a system wide resource (Jacsd). 'rhe'y put a

limitation on the total number of windows in use. -

Finally virtual terminals also use sockets for interprocess communication qs
p}ovided in BSD 4..3 WINDOWS. This approach is useful for processes located on
different machines. Thp tobvlous applléaﬂon Is for windowing in a computer network,




. phantom terminal) to communicate with the proqe,gs./ N

/ Implementations of Windows

. - l .
31 Genergl Concoept of UserSpace implementation for Windowing,

chch window Is normally associated to a process spawned by a control
program which needs a “virtugl terminal (olso eblled pseudo terminal or even

Each window process may be a control process as mentioned.in Appendix
3. A control process keeps track of.the states of its descendant processes which
usually correspond to different user commands.

A y_m.;gLie_Lrngg_l may be defined os a non- -hardware terminol which
behaves the same as a reol character devuce with echoing, CR/NL mapping and
interrupt catching being hcndled by the driver. A virtual terminal Is obtained by
establishing a software connection associated with some data structures Initiolized
cppropyicfély. The design of a virtual terminal therefore depends on the
interprocess facilities of the UNIX version in question and to a certain extent on the
designer's declslon (see dnshncﬂon befween WOW and OUR APPROACH).

Ina wlndow facllity there is -one physical port corresponding to the terminal
and a muttiple number of virtual terminals, one for each created window. The basic
functions of the co?trol program are:. '

1.Multiplexing when transmitting output from the virtual terminals to the physical
terminal

-

2. itiplexing when t_ronsmlﬁt‘ng input from the physical terminal 1o the
correct virtual terminal.

in exercising these functions, the control program needs extra information to

identify the window. This could be an ID number in a header which Is elther added (if

multiplexing) or stripped off (if demultiplexing) according to Nrecﬂon of

. communiration. The control program also needs the following functions! .

1.to distinguish between control information related to the window operations
. and data coming for/from the windows T



17
2.to poll all the software connections.

We will see in the following the distinctions in achleving these functions in
three different designs of a window facliity: in Bitt (Pik84), WINDOWS (Uni8é) and WOW
(Lac8?). The window facility may be provided in two ways: - -

1.The user logs into the cshell as in the original system and he may choose to
work with the regular screen or to Invoke the window facility as an cpblicoﬂon
program (available in one of the directories for instance /bin). '

2The user Is automatically logged In to the window facllity.

Obvibusly the first ppssiﬁlfy is to be preferred as the user ;ms more flexiblility
in chéosing what best fits his needs. In addition, no changes are involved In the
regular log-in. procedure'described in Appendix 3.

In our proposai (see Chap.5), the window facllity allows the user to open and
work with @ number of windows which is limited by the number of window terminal
structures in the system. The system operates on a first come, first served basis. The
usér of the window facility may take the maximum number of windows if so he wishes,
and if no one else has accessed them. The approach Is valid on the assumptian
that o user will not open windows without needing them. This assumption is
reasonable as a window facility ovailcblg to a number of different ’re-rminols on g
system is appropriate in an-environment where users are working in a team or at
least with a reasonable degree of cooperation. -

Two distinct windowing approaches cré presented and compared In the
following chapters: ‘

1.0ne_gpproach considers the implementation of window facility at the
opplicgtion level. This is lilustrated with two applications from the outside world,
Blit (Pik84), WINDOWS (Uni86) and with a Concordia University experiment, WOW
(Lac87) which has been conceptualy tested to a certain ‘extent (more work
would have to be done to make all the commands work).

2.A second approach referred to as Our Approach considers two alternatives
for the implementation of a window faclility-in the driver itself (kemnel) taking into
account the muttiplexing capablity of @/DH device. '

An _glternative scheme for the 1/O system called stregms has been\\‘
v ,

-

e ’




Ny~~~

proposed and implemented ((Rit84b), (Uni87a.b)). Its use In mulﬂblexlnd virtual
terminals appears in the Blit application (Pik84) and it is also summarized in (Bac8é).
Although conceived for a bitmap graphics terminal calied Biit, the software multi-
window environment can be used for ASCII terminals as well (Bac8b).

The.stream concept represents a reorganization of the UNIX character
device driver with the purpose of intreasing the efficiency due to the elimination of
the clists of the original driver. It was also intended to give a si'gnificom gain In
modularity. ' f

A sirearp consists of a set of linearly connected modules. It has two ends. the
injerfoce to the system on the process side, and the stream driver. Both ends are \,
opened when the terminal device is opened. Processes can "push’ and “pop”
modules onto or from an opened stream through appropriate ioctiQ calls, a feature
which offers great flexibility iIn combining modules according to the néed of the
application. 'x .

Each module consists of a pqlr of queue structures, one for input and”the
other for output. The modules communicate by passing messogés through a "put*
procedure as part of the queue structure from one module to another in the stream.
While in a module queue, a message Is processed by a "service” procedure which
is scheduled when the queue Is enabled. , 3

The Id‘ec behind the software multiplexer in Blit is the following: the control
program called mpx spawns a progess for each user created window. From this
child procéss, a cshell is executed which will communicate with the parent mpx
through a previously seét pseudo-terminal (pty). Ptys in Blit are software character
devices which are added to-the strdam concept In order to transmit data and
control messages between processei\@/rﬁ both directions. Ptys operate in odd-even
pailrs which can be found as pty fll% names in the /dev directory. When two:
processes initiate communication, each has to open a member of the pty file palr,
after which the data written on the odd member (also called the master) Is sent to
the input of the even member (also called the slave) and vice-versd (Unib). At most
one process can open the master, but more than one process may open the

-corresponding even-numbered file in order to communicate with the master. A§

ptys are just transmitters of messages with no terminal p;ocessslng mechanisms
attached to them, they need to be assisted by line discipline modules, yld, (as
ilustrated in Fig.3.1.(BacB6)) which achieve the terminal settings for the virtual

——

Y



S, -
-

' .+ 7 conneétion and which are pushed through an loctO call in the child before

- © - executing fhé cshaell. g L
f N e | -
ser
fa sh 1. .sh2 : mpx

.y Level = T . —

| . Kemnel ' _ 4 -

v ' Level , )
[ 2!
¥ ~ ,
¥ ’ ttyld . ttyld v
; ; £ .
| f
. ) ‘
|
T ”~

v .
o ply pty
, ‘ : pair 1 1. pair 2 4
. , ‘ ] N ! - driver
. » * . \'[ ‘ 3 ¢ )
) ’ N ' Fig.3.1 ‘
* - Windowing Virtuol Teminols on a Physical Terminal (BacBé]

2

The parent mpx needs to pus\r} message discipline modules whlch have the role of
., converting the control messages generated by loctlQ colls into data messages
: prefixed by a header identifying the type of the message. The data messages
obtained cs: above are to be read or written by mpx. reformatted with the

) ‘ . information about the virtual teminal ID and transmitted further to the physical tty.
. ' Mpx.c is invoked as @ mb>_< command by the wuser after he has successfully
logged in. Mpx.ls designéd as an infinite loop which does an 1/O polling based on a
D selectQ sysfem call used in a ﬁonblocklng mode. The selecf%) is followed by a

/




20

read() which reads the physical line. Mpx distinguishes between control commands
(such as creation of a window, switching control to another window, etc.) and data
- coming up for or from the virtual fty. In theg first case it takes appropriate action
according to the }especfive command, while In the second-casesft accomplishes
its demuttiplexing, respectively multiplexing function based on the id of the pseudo-
terminal contained in a header. . , '

The Blit architecture is of interest to us mainly as a predecessor of other
soffware multiplexers, in particular WINDOWS (Uni84). Its full architecture differs In that
it is designed to drive Infelligenf terminals which handle a part of the window
software. |

3.3 Windowing Architecture in UNIXBSD 4.3, B
Unix BSD 4.3 Implem-ents a window facllity called WINDOWS oh ASCII
terminals which is achieved as cn'cppllccﬂon program invoked by the user as @
‘window" comrﬁond possibly followed by some optional arguments. If no
qrguments are specified, by default two equally sized windows appear on the
. screen, each one with a cshell prompt womr{g for a user command 1o execute
(UNiBo). ’
Windows can overlap and are framed as needed. There are two types of
windows in this facility:

1.User windows which are created by user typed commands. Each 6ne Is
associated with ;J cshell process which commun.l‘ém_es with the parent control
program through a virtual terminal either of type pty or socket pair according to
the user request, the default being pty. Ljser windows may be in the foreground
" or not. Windows have system-assigned integer IDs from 1 to 9 displayed oldhg
with an optional user defined label string on the top edge of its frame.
2 Information windows which are used for displaying error messages and othge#®
information which are always in the foreground.
3.3.1 Dota Structures
Visible windows are maintained as a doubly linked list wwhead of window
structures ww_w (because of overlapping information I).; Each window has two

elements: \/\\/_

a

1.A_cursor which Is positioned relative to the window size. The cursor s defined
as a structure containing two integer coordinates, one for rows and one for



21 ‘ ‘

columns, with values updated from’fhe structure ww_w. This structure In tum '
- contains six integers, two for the window size representing the number of rows
and columns, and the other four for the position namely top. bottom. left and
right. The ww_w structure is initialized upon the opening of a window based on
fther default values or on the parameter values of the respecﬁve call in case
of a long command. ) |
2. A_ie_xj_b_uﬁe[ which may contain If so speciﬂed more lines than the window
itself. its defautt value being 512 bytes. '
The maln structure in this program is a window structure wWw, whlch contains:
informcﬂon necessary for the following purposes:

-to manipulate the window and cursor size and position

-to support a set of control functions such ¢s line and éhcrccter Ensertlon aond

deletion, mapping of \n to \r\n, etc., which are performed by functions

Belonglng to the fty driver

-to describe the type of vir’ruclt terminal in use (whether pty or sockets, its fd,

etc. - )

-to achleve I/O appropriately. For this purposé an output buffer is provided
which holds the data available from the virtud] terminals and which will be
written to the screen after being proces"séd by the lowest level driver routines.

3.3.2 Modes of Qperation

The window program operates in two modes ‘command and converscﬂon

in_command mode user keyboc:rd data Is Interpreted as- window
commands. They can be of two kinds: long (a sequence of meaningful characters)
or short (one character). The commands are echoed on the first row of the screen
representing the command window previously “opened” I'n.mcin.c. When refetring
to system windows, “opening" transiates into the allocation of a window structure,
the initiolization of those fields specffic to the window type which may be command,
frame or box window and displaying of a rectangular box ciorresponding to the
opened window on the screen. When referring to a user window, 'qpenlng' in
addition of the above ocﬂons involves the following steps:

-making the window current which implies the following oper@ions:
-fo select the window . ‘ -
-to bring it on the top of all windows



~ is based nn khe select() system calt In *corﬁblnoﬂon with setimp() and Iong/mb() \

- \..‘vv\/ A Rl

doupdatett
"to- -highlight its Idenﬂﬂer ‘and Iobel in reverse video
-3pavmlng a child process whh a cshell envlronment by calling wwspawn()
routine which L ' ) - '

- -spawns a child with using vforko,?or effjcfency : .' ¢ ‘

- -executes a cshell from the child which will prompt the user on the screen
watting forcommands | . _‘

-storing the'pid of the child in the oppropiiote fleld of the window structure

-marking ’rﬁe window state field in the ‘window \s’rruciure as having a process

(WWS_ HASPROC) It Is this field which when tested in mioop.c will

oufomoﬂcolly bring ‘the progrom into commond mode when the spawned

process dies- . .

¥

X In_ conversation mode two events may happen:

1.The -outputs from the pseudo ferminals are copied to )ihe respective output
buffers in the window structure and from there fo the terminal windows. This Is
done in the routine wwlo}nuxo whlch is the terminal output hondler and which Is
interrupted any hme user mpuf Is detected ‘ v

't

-

N TN

2.User input data is sent to the current wlndow There ore 1hree commonds
referning to the cument wlndow

-typing the respecﬂve window Id which selects It as.current window-and
v returns to conversation mode )
“-fyping % character followed by the respecﬂve window 1D which selacts tt
as the current window but remains in commond mode,
‘yping a cntrl A which selects the previous wiridow and returns to’
. conver;sotlon mode.

-~

) ‘e

*Typing an escape character while in convarsation mode switches, to
command mode. ) N

3.3.3 Program Opergtion ) ‘ '

. The heort of the program which ensures the 11O synchronlzo_ﬂon Is-achieved -
by two routiRes. wwiomux() ahd wrinf(), in mioop.c. The synchronization mechanism
system colls Qs oescribed tuther on. The keyboard typed characters are entered
by wwrint()\pto a linear input buffer and loter taken out either by wwgetcQ routine

-

’ - ‘

REPCGE
Al



23

cal'le'd from docmd( In command mode and lnterbreted as commands or by a
writeQ) system call*using the input pty file descriptor corresponding to the cumrent

window in conversation mode. Wwiomux(Q monitors the input keyboard buffer and.

whenevér it detects fhcf‘ it Is non-empty, it returns to the point of the call letting
wwrintQ) to handle the tty input. If no Input is present wwiomuxO continues its job as
output handler. Due to this behovlou}, wwiomuxQ Is invoked in both command and
conversation mode, thus exercising its role of multiplexing/demultiplexing as

suggested by its name.

Wwiomux(Q carries out its mul‘rlp‘l”e}xlng function when it polls all pseudo-
terminals In order to detect those having outputs for their windows in which case it
writes them to the terminal (many to one ). Its demultiplexing function s
accomplished when it returns to let Wrinfo to handle the one input from the terminal
which is to be directed by oddiﬁgnol code in mioop.c to the current window (one of
many!). .

This functionality Is ensured in wwiomux(Q by use of a seleck) system call
which has as timeout value a function which according of a previously set flag
called "noblock’, returns either a pointer to a zero-valued “timeval® structure tv, thus
ensuring @ non-blocking poll behaviour of select() or a zero pointer to the some

- structure which determines seleck) to biock.

]
The non-blocking poll occurs when at I€ast one of the cutput buffers of the
existing user window sfructures has data for its terminal window and the window can

accept it. In this particulor use, select() polls the process file descriptor set and .

returns its number of ready-to-read pseudo-terminal file descriptors. The file
descriptor set haos been formed prior to select) call by scanning the list of user
created windows which have room in their respective eutput buffers. The purpose of
the non-blocking selécf() is to allow the reading of any pseudo tty output that may
have arrived while the already existing data in the window buffers are written on the
terminal. This operation is done in a non—lnterruptcblé wwiwriteQ) routine also called
from wwiomux().

Wwwrite() tests one character at a time from the window buffer. According
to the type’ of character, special, control, extended or regular, it will take
appropriate action concerning the cursor position in the window (screen updating.
scrolling, etc). '

In performing special functions such as character and line Insertion ond
deletion to the terminal windows, wwriteQ Is assisted By low level routines hd\_/ing

pointers in a tt structure (defined in t1.h) which represents fHe Interface between the-

-

/

/,



24

window package and the terminal driver. In addition, three other fduncﬂans, HflushQ,
ttoutsO and ttwriteQ, In ttoutput.c are needed for buffered output,

The blocking select) occurs when cll indow output buffers are empty In
which case the "noblock” flag remains Inmcllzedwlo 0. Under this condition. a set/mpQ
call is done prior to selectp. If setympQO executes comectly, it returns a zero voEe.
Subsequently the flag "wwsetjmp” is set to 1. If ‘wwsetimp” is set and input data is
present, wwrint() enters a portion of code which executes a long/mpQ. Its purpose Is
to ;estore the environment.saved in wwjmpbuf by the last call to setimpQ in such a
way that qxecufion continues from wwiomux after set/mpQ. In this case it means that
wwiomuxO returns or in other words gets out of the blocking select(). The portion of
code fllustrating the above behaviour Is given below. '

if (Inoblock) {
if(setimpwwjmpbuf))
return: /*l.e. retum Is executed after the retum from longjmp0 in wwrint */
wwsetimp = 1; /* this occurs after the return of setjmp0 which

\ normally retums a 0 */

n = select(wwdtablesize, &Iimask, (fd_set*)0, (fd_set*)0,
© noblock ? &tv : (structure timeval *)0); - ;

The structure [mqsk in the above statement contains pty file descriptors
corresponding to those window structures which have room in their output butfer. It is
set with a function FD_SET (w - >ww_pty, &imask) which loads the pty file descriptors
which are ready in &imask,

in addition 30 the above role wwrinf(), the input interrupt handler, does the
following: ‘

-when called, it waits for input data 'from the termina! due to the setting of

FNDELAY flag in a fentO call

-if data Is avallable, it appends it at the current write position indicated by a

pointer ‘wwiq" inthe input buffer ! '

-it then resets the window flags such that subsequent reads (in other

functions) from the terminal are non-blocked. .



25

4 - |

WOW is a Concordia project which implements the window facility outside a
standard driver in a control program. pn a user request, it creates a number of
windows for him (within a predefined iimit) and executes user commands from those
windows. .

To achieve this, the control program mumplexes\ln software the physical
connection for the user's terminal and creates a virtual terminal for each such
soffware connection. ~

In WOW, ¢ virtual terminal appears on the real terminal screen as a small
rectangular box accessible to the user for reading and writing. This Is what is
conventionally called a window and represents the mapping of a memory area to
the monitor screen. The mapping In WOW is done through the use of the curses
package supplied with UNIX V which provides most of the low level window functions
of the cursor control. The Concordia project, WOW, added in new functions for
window manipulation such as: B

- change a window size within a minimum (5 * 8 *) and a maximum (full screen)
limits

- move the top window across the screen

- cregte a new window on the tpp of an old one while saving the contents of 'fhe
latter S o

- reactivate the lowest window to the top

- remove a window from the screen without logging off by putting it to sleep (in
the background). The background window becomes an icon in reverse video
in the left comar of the screen with its id number on K. lts text and area become
invisible and they are saved in the so—calleé phantorﬁ window, which s
invisible to the user and is located below the icon window

- reqctivate a background window by placing the cursor over the icon and
pressing the <ENTER> key |

-send a message or a command from a source window which Is to be
activated if not aready active to a recelver window, both identified by their IDs
-logout which releases a phantom terminal identified by its ID number and
removes the window from the screen $

- exit which finishes the control program after logging out all phantom terminals
previously opened and

- help which gives indications about the usage of the window facllity.




~

y ‘ ‘ 26

—. The above commands appear in a menu window In the upper left comer -
when the user Invokes the window facllity. The menu displays altemative control
characters for each existing command providing the user with the choice of giving
a command, namely either by using a distinct control character for each command
or placing the cursor on the corresponding menu line and pressing the-<ENTER> key.

Besldes the window types mentioned previously there also exists a two-line
message window at the bottom of the screen which guldes the user through
messages and lrg:c,trqcﬂons. The total screen area Is divided as shown in Fig.3.2.
below. v

~ Fgd2 *
The Screen Layout in WOW (Lac8?)

The following material is to be read in relation to Fig.3.3.



27

Cshell

-

ity 2

outpipe
inplpe

B /-/
/
Sulpipe
butpipe inpipe J—
vty 1 vtty n _
User level . . '
Kernel ‘ . L
T Q/DH tty
Ffre========1 driver
. )
. . y
Rardivere
’ DH11 hardware I
yia ' :
Cadmus // _
iI/0 ports N '
from
curses

Figure 3.3
' Implementation Detail in WOW

Internally a phantom terminal in WOW Is obtained in the following way. For
each window number requested (i.e., typed ln by the user), the control program
also referred to as the parent process takes the following actions: ‘

LY

B



28

-

1.0pens two pipes called inblpe and outpipe using the pipe system call
2.Forks a child ‘ - N

- 3.Einds a free entry for the user window number in the table data structure
described below and fills it in with the appropriate information.

—

The child does thefollowing:

1. Connects the four file descriptors of the pipes to'a vity structure by using an
ioctl) system call of the form Joctivalid_file_desc, PIOCVTTY, &vityb).
Following this call and by appropriately redirecting the two pipes’ file
descriptors, vityb.inpipe and vityb.outpipe wil correspond to the Input,
respectively to the output side of the phantom terminal. '
2.Executes a cshell which if successful prompts the user walting for ljls )
/ commands. Now, 1he’pcren'r and the child c\gmmunlcc’re through the two
pipes as described below. The child will transmit the cshell commands to the
parent by writing to the outpipe. The outpipe is cantinousty monitored (in
check_outputQ routine) by the parent through a non-blocking read achieved
with a previous fent) system call of the form:

fentkp.outpipe(RD) F_SETFL, fcntKp.outpipe(RD), F_GETFLO) | O_NDELAY). The
sparent will transmit the results of the cshell commands (In write_to_term()
routine) to the child by writing the Inpipe. The inpipe Is read by the child (the
cshell) only when the information Is ovqilcble. This occurs due to a blocking
read achieved by restoring the Initial (before forkin{; D tile_flags through
another f’cnﬂ() on stdin this time, The fcntk) s,ystem call appropriately used,
achieves the synchronization between the parent and the child processes.

The main data structures (see Fig.3.4. below) used by the control program are:
-a WINDOW structure defined in curses.h with fields holding information about
the current cursor (x.,y) coordinates, the maximum values (max x, max y)

- meagsured relaﬂvé to the starting coordinates (beg x. beg y). the address of

the first and last chafacter, et‘c.

-Q ﬂERM's’rructure defined in wow.h with fields contolninq information related

to ' ‘

-the: window id

" .whether the window Is put on background
&




. ‘ 29

-the packet-addressed or Issued to/from that window which s stored in @’

buffer of maximum 256 characters ) ’

-the pointer to the Idst character in the butfer

-the pointer to 1h§’WINDOW structure
-an qrrgy. vt_stk(MAXDEPTH) of pointers to VTERM structure defined in wow.h
acting as a window stack with position 0 always assigned to the current window
-an_grray. table(MAXDEPTH) (TABLESIZE) of integers with as mon\} entries as
windows allowed In the system, with each entry holding information about:

*"  the windowd
’ -the file descriptor of the outpipe

-the process id spawned by the control program for each newly ¢reated

window.

A3

3

We may notice in Fig.3.4 that the same window Id-appears in two places, In
thg-VTERM structure and in the corresponding “table® entry. This iId represents the
software link beMeen the window and the process created for it. This pcir is treated
as being the virtual teminal in WOW.

The control program consists of: \

-an Initialzation part which is responsible for the following:
-terminal screen initialization

-creation and initialization of the menu, message and background icon .

windows

-global variables and main data structures initialization
-G continuous monitoring Iéop waiting for a user command from those
displayed in the menu.

Software functions are provided (getkbd(, wgetchiwin), etc) to determine
whether the user-typed character is coming from the arrow keys, or comesponds to
one of the control characters from the menu, or is a regular character to be
appended to the window. A function whichwindowQ extracts the current cursor
position and, based on the appropriate pointer information, dejermlnés whéther the
cursor Is in one of the menu, background, message or user windows. It returns the
index of the comesponding WINDOW structure.




30

i
{
° | .
._.
$34n}ana)s joajun) mom HTC aInbII
[3215319YL{HI430HEWN]IIEL * ] MOANIm WY 3in [HLdIAHEWINSTIA
- . sass ‘lL'llIlI N , ﬂ—:- ‘llll'[. :
’ » LX1 Y] ‘ 1 N
- pr |
-_- Alull e—-- ‘III'I. —
| -~ of v
. [~ ) asns | e * .‘IIIIIII Q~
: Yo o T iopnsn
"oy ] ]
3 .| adidyno adiduy g ) _
Py I¢ { . P Shies
. .
¢ / ' “ . i
| ¢ . . L




3i -~

Chapter 4 o
The Terminal Control Approach in UNIX Sysiem V.

41 The Present Architecture of the Terminal Driver,

This secﬂor; presents a discussion of the architecture of the Unix driver for a
terminal multiplexer board. This driver Is discussed In detail to provide the
background for the presentation of the window manager architecture proposed in
this work. The internal multtiplexing capability of this driver can provide the basis of
many 6f the functions required by the windowing system p\resen'red in chapter 5. The
material presented here Is based on the Unix system V impiementation’of the tty dh
driver (tty muttipiexer board) for the Cadmus workstation. A dpcumenfed version of
this driver was previously produced as a project report submitted by D. Brown
(BroBé). -

The Q/DH driver is a kernel module serving as a software interface between
user processes and the terminal on which théy perform 1/O operatibns, as lustrated
by Fig.4.1. It controls the number of terminal devices defined by the value of DH11 in
the conf.h file. In the preéent configuration 8 terminals are connected.

The driver routines are -organted in two halves which communicate through
the tty structures, mainly the raw and canonical input queues and the output queue,
all maintained as g[ms ’

The driver routines belonging to the upper half represent the user interface to
the system and are called from processes by searching the character device
switch table. They contain code to copy from the user buffer to the appropriate

. queue, and vice versa.

The driver routines belonging to the lower half represent the interface to fhe
hardware control which handles interrupts and communicates with the machine.
They are called by the operating system through the device interrupt routines or less
frequently by the upper half routines. An example of the latter is the initiation of the
fransmission of the first block from the output queue as it will be seen in section 4.1.3.

. The design of the driver in two halves Is a classical organization used by Unix
for‘ehorcxcter device drivers, It has 1he‘fo'llowing advantages:

- It allows an Inherent I/Q synchronization. The upper half puts processes to
sleep when the lower half is not ready to service the I/O requests. When the 1/O

\
)




&<,

opércﬂon Is completed ‘hrough interrupt control, the upper half Is woken up. If - .
no input Is available the process remains blocked (asleep) in the upper half.

-It permits a separgtion between normal procassing done by 'upper—hclf
routines and hardware interrupts manipulated by the lower half routines.

UNIX treats a peripheral device, whether block or character, as a special
file. There Is one such file name for each |/O device in the system appearing in the

:direc'rory /dev. For example, the file for a terminal is referred to as /dev/tty#, for a

line printer as /dev/lptr, etc. This treatment of an 1/O device has the following
consequences in the design.of the driver:

-The peripheral device driver must be designed to respond to the file access
operations: open, close, read, write and ioctl. ‘ )

-Each peripheral device comesponds to an ihoqe created through the mknod
sysfém call. In the case of the creation of a special file corresponding to a
character device, this call is used to allocate an Inode containing int its file fyée
field the specification "character device" and In its block pointer field the
major and the minor numbers defined by the superuser. B

In the case of a character device, the major number is an integer used to *
index the character,device switch table. For each entry, this table contains pointers
to a set of driver r{:uﬁnes. for example dhopen, dhclose. dhread, dhwrite and dhioct!
for the dh driver. The major number specifies the driver type while the minor number
is-passed as a parameter to the above-mentioned routines and serves to select
from the set of data structures for the physical tty ports found in the array dh_tty0).

. As with cﬁy file, ln'order to be able fo do operations such as reading, writing
or controlling the device. the system neeqs to access the inode for the special file
from the system calls being made. This can be done only if the respective file has
been openéd with an openQ system call. The effect of openQ Is twofold:

- It creates the |linkage to the file Inode (created previously by mknoa system
calh through the three kemel data structures as shown In Fig.4.1.

- -it refurns (if successful) the file descriptor fd which indexes the array of the
file descriptor entries in the u_area. Fd is used In subsequent system calls
(read. write, eic.)to access the inode for the file through the chdin of pointers



o

~

| | - 33 . B

, »

asinFig. 4.1.In pcrﬂculor for ngn the upper half routine dhopen() Is col!ed
which does {he folloMng

[}
"\

. Al
N ot ,

.

-~
s
3

“ &
A ]
g) Q ! .
Levol Syslem calls v
- - - - .
. 1
Kemel
7 fd table file table inode table
. jor no.
A odeviwlable ] . ] . L j 1 minor no.
. ' 1 7 * Y .V .
© "] UR.| dnopen; dhclose; dhread; dhwrite; dhioct —
e R . N ,
‘ intermediate routines , /
. X ‘ . , |
. T
N LH. dhrint; ghxint F .
: -t B - o
/ driver
1 ‘
hardware e .
interface °

from DH11 Controller

' Fig 4.1 _
-+ Kernel Dctc S’rructures for Driver Lnkage

. -t estcblpshes a soﬁwore connection between the calling process and fhe

opened device by’ cccesslng the o;\)proprlofe dh_tty() entry
-t initializes the terminal control modes-

E)



 The main dota structure i Gplled try and it i described in appendix 1.

34

-it sets g hardware regls’rer In Q/DH device calied lpr kline parameter

register) based on the control modes '

-it pms the process to sleep in the case that no hordwore connecﬂon I

detetted

-when wakenup, it calls a line discipline routing to allocate a receiver buffer
" in tty structure. ‘ ‘

° L4
v

Y

a

In practice user programs do not usually open these terminal files. They are
normony opened byo the 'g_e_t_u process In the login plrocedure (described in
Appendlx 3). Getty invokes open system calls from a standard library function fopen
to set up the standard input, sfcnndcrd output and stondard error fd's,

42, The Main Dat T ] ]
The driver routhes and the main structures they ore_-using' are spread over @
few files: ’
-dh.c com‘olnlng_ the upper and lower hglf routines which are device _
dependent “ , f’
H0.c containing the line discipling routines which interpret input and output
-tty.c containing some general driver routines for the device 1ndépendem
code in support of the routines in dh.c and #0.c files -
-tty.h containing the basic structures needed for normal terminal 1/O.

~

n

43 The implicit Multiplexing/Demultiplexing Feature ot the Q/DH Drver,

Fig.4.2. shows a slmpliﬂed diagram of the driver data flow for both input and
output emphosizlng the main routines which participate in data transmission from
user space to the interface, and vice versa. l )

On the left hand side of Fig.4.2. we see a read system cgll belonging to a user

ptogram which requests a read of n characters from the terminal (stdin) into the

pro\grcm buffer buff.

N JAfter retrievlng the major and the minor numbers from the inode
correspondlng to stdin, the system call read, invokes the upper hatf dtiver routine’
dhread wn the minor number dev as parameter. Based on dev, dhread sets a
pointer tp to the corresponding fy structure and calls the upper half line discipline
rebﬁne ttread with tp as o parameter .




35

The major function of-tiread Is to copy data from the canonical queue lhto
the process user space at the Jocation u.w_base. If the canonical queue is. empty,,
ftread calls a support function canon which checks the raw queue to see whether it
is empty or not. '

If the raw queue’ls non-empty and the line dléclpllne flag ICANON s set.
indicating that canonical processing is. requested, canon will transfer chorcé'rers
from the raw quede to the canonical queue until it encounters a delimiter such as
newline or end of file. If ICANON Is not set, canon willl satisty the f&et requests directly
frogn the raw queue if at least MIN characters have been recelved on this queue.

if the raw queue Is empty, conon puts the process to sleep on the raw queue.
The process will be awakened later on by a low level line discipline routine #in when
a delimiter has been encountered. This condition allows fast bursts of input
characters in the case of a read requesting a number Z)f bytes exceeding a cblock
size CLSIZE. This improves the efficiency of the transfer which nommally Is done
character by character. The routine fin is called by the receiver interrupt routirie
ahrint.

After copying all the characters in a cblock from the canonjcal queue to the
user's memory, space, trread retums it to the cfreelist.

Looking on the Interface side, the Q/DH device driver polls all terminal lines to
see if they have user typed characters. If yes, the hardware stores any character
found frofm a terminal in an interface buffer called silo, in a two byte field. The higher
byte contains in bit positions 8-11 the line number on which the character has been
received and the lower byte contains the character itself.

When the level of the silo register exceeds the value set in the silo status
register, the hardware transfers one character from the slio to the nxch register,
sefting bit 15 of the Iatter to 1 to indicate that the character is valid. It then sends an
input interrupt. The system interrupt handler, in tum Issues a call to the low-level driver
intermupt routiné ahrint. )

The routine dhrint gets the register set base address in order to access the
confenf;,of nxch register. If the character in this registg'r is valid, dhrint starts a loop in
which it reads and processes one character at a hr‘?fe as Iong as the condition holds.

) "For each valild character, dhrint extracts the terminal number from bits 8-11 of the

upper byte to select the tty structure corresponding to that terminal and sets a
pointer fp to it. This pointer Is subsequently used for the following purposes:
-to.gccess other fields on the same tty structure in order to take appropriate
action according to the information contained in those fields and to the
| o

L4




‘
1 : A
.

7\ 36

rheanlng of the character. For excmple it might resume or susgend scrolling or
strip off or not the character to 7 bits dependlng on the Input modes of the
fermio structure.

-to gg_c_es; the receiver buffer called rxbuff In Fig.4.2. through the t_rbuf control
bloek-et#7e Hy structure In order to put the character in. ’
-as a parameter to the low level line discipline routine Hin. BN

The routine ftin extracts the character from the rx buffer, then uses the pointer
tp to access the Input control value t_flag of the tty structure for the terminal. This
value tells ttin how to process each input ch@:rcc?er depending on the setting of
different bit flags before putting it on the raw input queue. For example If ICLC Is set,
then it will do upper/lower case mapping or if INLCR s set, it will insert a n;w line

character after a camiage retum.
) After placing the character on ihe raw queue, Min accesses through the tp
pointer the 1_flag of the 1ty structure. which it Is used to control the terminal iine
discipline funlcfions. ) '
. If ISIG is set And the input character matches one of the control characters
ILU? or QUIT, tin performs the function assoclated to that character, else If ISIG Is not
set no checking Is done. )

It ICANON is set, canonical processing is enabled. This refers to the ﬁectmem
of erase and kil characters and the incrementation of the t_delct field of the tty
structure when encountering a delimiter. If t_delct Is non zero and the upper hatlf is
asleep in canon as mentioned previously, tin will wake it up.’Followlng this, canon
behaves as for the case of a non-empty raw queue as already explained.

If ECHO is set, the characters Ad're placed upon reception on the output
queue. This is done through a call to txputi which saves the characters to be
echoed on a temporary queue In case output is in progress at the time the echoing
- s requested. Otherwise txputi calls txput to put the characters on the output queue.

The routine tixput lpoks at c_oflag field of the tty structure which specifies the
treatment of output. We should mention that the routine txput Is also called from
Hwrite when writing to a terminal.

If OPOST i; set, output characters are postprocessed as indicated in
c_oflag. This means that delays may be added, tabs expanded, newlines
mapped o 'corrioge return, etc.. Otherwise, if OPOST is not set, the éhorocte'rs are
placed on the output Queue without change.



i( ' .37

if ECHO Is set, after placing the input Ehcracfem on the output queus, ftinalso P
calls dhprocQ with the command pargmeter T_OUTPUT in order 10. Initicte the
transmission of the first packet contained in a cbiock from the head of the output
queue. Additional explanation Is given when describing the transmission part.

In-summary, the mulﬂplex/demdiﬂplex funcﬂons for input characters’ take
place in the flow of do’ra as lllustrated in Fig.4.2. The terminal inputs are mulﬂplexed
by the hardware of the Inferfcce card, with the characters being stored 1ogether in
the silo register. These chorocters are acquired by the driver on interrupt, one by
one, and are buffered in the receiver buffer . The receiving software of the driver
described above demultiplexes them on the basis of bits 8-11, and distributes them
to their individual quéue sets, from which they are transferred to the respective user
spaces by the upper half rouﬂngs.

USER BUFFER (read) 1 user B/L!FFER {wiite)

---------

raw

queve output
. ueue
» canonical q
queue ‘ ’
. U ‘ dhproc ......
. 1 ttout

?@ . -

. dh_swap
& (o)

Fig 4.2
The Information Flow in the Q/DH Driver




38

Thé following material describes how transmission s accomplished. On the
right hohd side of Fig.4.2. we see Q wrlfe'sysfem call belonging to a user program
which requests to wiite on the terminal (stdout). )

. The write system call places the user data at the location u.u_base. Then It
calls the upper half driver dhwrite which computes the tty entry corresponding to the -
terminal, after which it invokes the upper hailf line discipline routine Hwrite.

The routime Hwrite normally takes the user data from the location u.u_base,
one character at a time and places it on the output queue by invoking txput. Ttwrite
can also do block processing if the number of'chcrccfers to be. wiiften Is greater '
than half of a cblock. In this case it gets a free cblock from the cfreelist, it coples the
number of characters from u.u_base into it and it calls Hxput to put the number of
characters in the cblock rather than one single character on the output queue. The
role of txput was presented above in the description of the receiving flow. '

While placing chorlocfer(s) from u.u_base to the output queue, ttwrite
checks the high water mark (HWM) representing a system specified level of{
choroc}ers in the output queus. If it is exceeded. Htwrite takes appropriate action to
shrink the queue by initiating the transmission of the first packet ( a cblock ) from its
head. This is done by calling o’lower‘ half general purpose device dependent
routine dhproe with the command parameter T_OUTPUT.

The routine dhproc is called from different places fE) do different jobs. If
dhproc is BUSY doing other woik, for example servicing another write call, or if thé
user typed a cnti-s character to stop the outpﬁf to his terminal, dhproc will not Initiate
transmission and it simply returns 10 the place of the cail In Hwrite. Cc_)nseq'uenﬂy
dhproc will not shrink the output queue. Therefore ttwrite makes a second check of
the HWM and if it is still exceeded. it goes to sleep on the output queuse. Ttwrite Is
awakened from the low level line discipline ffout when the number 6f characters in
the output queue drops below the on water mark (WM). This system specified limit
represents the level characters which triggers the wakeup of the routines to fill the
queue. When awakened, ttwrite resumes execution 6f the dhproc routine with the
command parameter T_OUTPUT.

’-The routine dhproc does the foilowlr)g:

1. Calls ttout in order to retrieve a cblock from the head of the output queue. It
then stores the cblock in the fransmission buffer ixbuff of Fig.4.2. If needed. tout'
will also wake up the upper half twrite. ‘

2. Calls dhswap which copies the characters from the tx buffer into the Io(%;el
transmission buffer dhout returning its address. While copying dhswap sw ps/

i
1




39

b

~

each palr of bytes, as 1hé order of bytes in the |pterfccé Is the reverse of that in
the memory.

3. Sets the proper bits of the Q/DH Interface registers so as to create the
conditions for a szseqwnt 22 bit DMA transfer. it then marks the terminal line
as being BUSY in order to allow the transmission to continue without Interruption.

Tﬁe next packet from the output queue will be transmitted when the lower
half transmission routine dhxint Is invoked. This occurs after the transmission of the
first packet following a hardware transmission 'inferrup'r (bit 15 of the system control

_register set by Q/DH device ). g -

The routine dhxint scans all the lines of the Interupting Q/OH device in order
to determine which ones are beMeén packet transmissions. For those lines, it calis
dhproc with the argument T_OUTPUT to get the next packet and 1o Initiate DMA
transfer to the specified line.

In summary, 'fhe multiplex/demultiplex funcfions on output, can be
characterized as illustrated in Fig.4.2. The outputs of the user processes are
transferred by the upper half routines into the output queues of the respective
terminals: These' queues are read py lower half routines and are formatted ond
stored in the single output buffer dhout ofn}he‘DHl 1 interface.

We may notice that for boih input and output, the software connection is
achleved by accessing the same tty structure for one same operation from both the
upper and the lower hqu routines.

The inherent multiplexing/demuttiplexing functions of the driver provide the
support for a set of terminals controlled through a single physical channel (the I/O
bus) to a slng]e interface (the muttiplexer board). The driver includes the code both
to control the terminal and to interpret and map characters where appropriate. By

l

extending this architecture to one further level of puttiplexing many of the functions
provided here may be used to control 1/O through windows, which may be treated
in 0 manner analogous to the handling of the instances of terminals in the driver
presented above.




40

Chapter §
Y

"The Design of the Window Driver

5).__General Presentation of Our Approach, , .

This chopter presents a proposal for implementing a window facllity for a
UNIX System VY facllity. This study is based on the driver design for the Cadmus
computer at Concordia University. The Cadmus driver Is quite standard and its
organization is typical for a tty driver.

The Cadmus driver, like most ty drivers in contemporary systems. drives a
multiplexor board with a number of tty ports {8 in this case). The driver design reflects '
this fact, with a ccpoclfy for multiplexing and demuttiplexing 1/O from the board to
the kernel data structures which represent instances of the tty driver. In this chapter,
we pre;sem a design which extends this multiplexing to a second level: windows on
each individual fymlnol ossoclc'réd with processes. We refer to this design concept
as the Window Driver, as the major part of the window control functions are
designed jnto a modified terminal driver. '

in the Window Driver,_eoch window is a pseudo—férmlnol represented by o
modified kernel tty structure called wity (see appendix 1) allocated from a common
pool. This structure will be accessed by both upper and lower driver half routines In g
manner similar to the method used in the Q/DH fty driver design. The detalls are
discussed in section 5.3.

As each window Is implemented through an instance of a modified tty
structure, we need 1o associate to it a special file name, as Is done for the physical
ports. These window file names have to be opened In order to be used. To remain
consistent with the structure of UNIX, the processes should be spcwned from the user
level. A user level window manager Is therefore still requlred in thls design to handie
window inlitialization, termingtion and process spawning. We should still emphasize
that in this approach the maonager code will be rather small os we do not have to
duplicate character processing. This Is already done by the driver line disciplines.
This in an advantage of our appradach over user-level implementations.



- 41 - .

52 Functional Overview. | 1
* The architecture of the proposed window system Is lllustrated In Fig.5.1. The

V»dndow driver is an extended version of a standard driver for a #ty muttiplexer éoard. -

’

Manager
4 .
[y
ny
&
Ve
rx buft
7 tx buff
nxch y
ol dhout

Fig.5.1.
Functional Diagram for the Keme! Window Faclility

As in the standard driver, it has a set of data structures for control and I/C toeach . . .
terminal of the multiplexer. In addition, however, the window driver has a pool of
s‘ructures for windqw control. Each Insfance of the modified structure has all the
features of a stantard ty structure, with several additional items cddea for window
display and control, such as a window buffer. '

R



| 42 .

5

Control of the windgws from the’kemel side Is effected by additional code In
the lower half of the driverls well as a modified line discipline to handle the -wlndc_)w
control.

The driver provides two modes of operation, standard and windowed. In the
‘standard mode of operation, the 1ermlncl Is handled by the standard driver routines
and data structures. The windowed mode Is initiated-by the user entering a WIN
command in his shell.‘ Thl§ command spawns a process, executes a window
manager which then in turn Initializes a window on the screen. This initialization
process is described in detail below but In brief, t consists of the opening of a wity
structure, the spawning of a process, the execution of a shell on that process. and
the required linking. both in user mode and in the kernel, of the windowing facllities to
the requesting terminal. It can be seen from this architecture that the setting up and
control of a window Is & task \dlvlded between the kemel and a user level process.
Once the window Is set up, however, 1/O is entirely handled by the kemel, in the
same way as for a standard terminal. _.

Each terminal may potentially have o window manager. This manager
handles user-levet window functions for all the windows associated with that
terminal, and has no effect on the other terminals. The pool of wity structures is, of
course, a limited resource. The structures are allocated on a first come, first served
basis, and when all are busy, a request for a window simply fails.

The design issues, the decisions and the detalls of the design are presented
in the following. ’

AN

53. The User Interfgce.

In order to focus on the aspect of multiplexing 1/O to the windows and to
highllghj‘ the problem of window control, we have restricted the scope of this
proposal to full screen windows rather than tiled or overdapping windows. The control
of window sizing and overiapping would require the addition to the kernel of
functions analogous to part of the Curses package. In a first view we prefer to
separate these from the c_:ctuol function of window control in the kemel.

The design of our system provides some flexibiliity for the user by dllowlng him

it o variable numbgr of windows within a fixed global limit. Admittedly, on a
small sysrem such as the CADMUS, the practical limit on the window pool is rather
small, but even contemporary personal computers now have this level\of power. As
an eiomple for this instance, we have selected 8 as an acceptable limit but with
more computing power this limit can be easily changed.

ork



» 43
There are three window commands in this approach:
\ "4
1.0pen a window which transiates to the creation of a blank screen with a cshell
process in it waiting for user commands. The newly created window becomes the
current window. ‘ . \
2Close a wipdow which applies only to the current window. In this case the wind
structure Is deallocated and retumed to the pool, its process killed and the window
preceding the one being closed Is displayed. An existing window is made current
by typing the control character cogesponding to the third operation below.
3.3witch-a window which selects next window on the queue, displays the contents of
its screen buffer and flags it as “cument”.

In the proposed design the window faciity pfovides the possibility of ernIng
concurrent programs while using the whole screen area. within the limitations of
screen |/O. An inactive window will suspend processing on screen 1/O unless the
user specifies otherwise. ’

In the design of the user interface, we may consider one of two possible
methods to implement the above commands : . : _ '

1. The user may type three distinct control characters, one for each of the three
operations above. o

2. The user may type a certain control chcrcct&r followed by a distinct integer value
according to the operation desired for the window. This solution presents the
following advantages over the first:

- the user always types the same control character but he has to remember the
integer value for the desired operation.

-it allows easy expansion of the facllity if new window operations are to be provided.

The' disadvantage presemed by the second method consists of the fact that
the modifications needed in the dhrintQ routine are complex. In the original design
one character at a time is taken from the nxch register of the hardware interface, put
In the receiver buffer pointed from the tty structure and subsequently processed and
sent to the appropiiate queues by different routines which all use the same pdln'rer
as dhrint does in order 'to access the appropriate dh_tty() entry. While this is
adequate for a design where we have one port per terminal, in the multiplexed
version the reception of the control character does not supply enough information



- 44

for the system tp access the dh_tty() entry comesponding 10 the window terminal
until the modified dhrint routine intercepts the above mentioned charqcter.

} We retain the first method, in which the user will type a distinct control

character for each designed window operation, as the simplest solution to

.Implement, and the mast convenient user interface. o

Note.In order to distinguish between a real and a window tty device we will

use the terms wity and tty In order to refer to two structyres for a window "device"

and a physical terminal device respectively (see oppéndlx .

D4, The Structures Needed in Our Approgach,

The basic structure is a mé,dlﬁed Hy. structure (see Appéndlx 1) which
includes information needed for managing the window devices. Instances of this
structure may be accessed from both the upper and the lower driver routines.

With this architecture, which defines windows as devices and which uses the
terminal management routines of the device driver to handle 1/O, the management
_of windows is similar to the management of the terminals in a conventional system.

_ Clearly there are many alternatives. The devices could be phantom devices
which do not exist in the /dev file, but instead constitute a pool of resé‘urces
managed solely by the wlndové driver. The implication In this case Is the addition of
non standard UNIX system calls to access them, which will lead to undesirable
complexity and an asymmetry in the handiing of 1/O through windows.

The choiceg of defining wity devices in /dev skirs this problem, and requires
only the addition of new driver functions which conform to the standard interface of
the UNIX system, This approach has no unde’slrcble side effects, and Is in complete
harmony with the UNIX concept. It leaves oper'i two altematives for coordination of
1hé window manager and the lower half multiplexer: manager selection and kernel
selection of the devicex (

Conventionally, a device is selected from the user level by a user process. If
the device is a window. however, some means must be provided to indicate to the
device driver which physical device is windowed. In the system proposed here, the
pool of wity devices must be mandged In such a way that any one of 8 terminal
users may access the next available device. If the wlndpw manager in the user fevel
of a given terminal has the responsibility of selecting a window device. t must do this
by occessing the wity devices sequentially, and ve}lfylng whether they have
already baen opened (an open Inode will be In-core, and will have a non-zero
* reference count). Great care must be faken to avold race condniéns. The manager

‘ {

PRy
=
A



45

A

must then convey an identifier of this device to the low/level multiplexer in answer to
the request formulated from tﬁe user generén‘ed cgntrol character. This can be
done through an- foctO calt (Appendix 2), as ft s mportant to leave standard
character |/O with strict UNIX functlono!i'ry. The implication \ls an addition of an loctl
.command . and a comesponding expansion of the ty structure.
- Kemel selection of the device Is simpler. In this case. the lower half of the
driver manages an aray of structures which repreiem‘ the window devices. The
dimension of the array Is a system configuration pord}neter. n reception of a new
window' control charadter, the driver selects a free window device, links it to a
queug associated with the requesting terminal. an outputs its identifier ;o the
window manager process on the standard terminal Jevice. This can be In the fom
of a character sting configured as a control sequenc\‘e. The window manager then -
opens the file of the identified wity device, spawns a process, links it to the wtty, and
invokes a shell. Race conditions are not a problem, as the wity number is assigned
by a sir;gle kemne! routine. The implementation details of the kemel 'selecﬂon
cﬁe.rncﬂve Is discussed below. Some detalls of manager selection are discussed in
‘Appendix 2. ‘ )
¢

95, The Window Driver,

The Window Briver is essentially o modified and expanded ty mulﬂplexér
board driver. While the data structures .of a window present some differences from
those of a terminal, they are sufficiently alike to be managed by the same set of

functions, expanded to handle the modifications. The standard driver structures and
functions were described in chapter 4. Here we present only the modifications.

Note that both device types can be managed by a single driver, due to the
similarity of the functions. The extra operations can be handled elther by new entry
points or conditional selection of the specific functions.

. Appéndix 1 illustrates the data structures of the window. The major cdc"iijional
element added is the window buffer, which retains an image of the contents being
. displayed in a window. When the window Is active, these contents are identical o
the window on the terminal screen. When inactive, they store the record of activity
which is suspended once the buffer Is full, or which continues ifspectﬁed by the user.

in addition to the wity structure (Appendix 1) there Is a globat amray of pointers
to linked lists of witys (Fig. 5.2), having one entry for each 1eminol. The pointers to the
receiver and fransmlﬂer puffers in both wity and tty structures can be initialized to
point to a single receiver and transmitter buffer respectively. This way }he lower half

L




et

i R
. ‘ ' *f{f/
46
<.

]

routines dhrinf) and dhxinfOda not have o be changed. The modifications needed
can be implemented in the line discipline routines.

w

extern struct wqueue { ’
int head;
inttail; . -
int curr;
struct wity ‘
fifo[NWTTY] , - ' o

. wqueue

, fifo -
-—1—®1 | curr ﬂj wity 1 - wity 2 | e

wqueue

>

active f] . . ’ ;

. Fg52 .
window Driver Data Structures

.




a7 \
\
USER BYFFER (red) USER BUFFER (write) )
:
;o (L
’ raw :
’ queue ::t:uuet i
cangnical .
. U D dhprot
T
} ) D
| S C :
witin !
-3
= ) o]
. — .‘wuy alloc ) : b~ |

&

Ghnm) @ny release )
- <wtty - switch ’

‘nxch reg

Y
Fig53

e o - e W Y . — e M G M G RSB Gin G S G S e W [ S S - T

dhout reg

Modified tty Control Routines ~ *

b4




i 4 USER BUFFER (read) USER BUFFER (write) \
wdread
ttread { El ‘
‘ | window :
raw
window = Queue
canonical
queugq

e : ' screen
butfer

C bl | S t o woutt” ] ,
part of dh_swap
structure

nxch re—g . dhout reg ®

Fig 5.4
Window Structure with Modified tty Control Routines
'
‘ For the input, #in will contain oddh.ionol cude, thuﬂs becoming witin. Before
- starting the character progessing according to the setting of the input flogs. witin will
check to see if the character coresponds to one' of the window control characters.
‘ If the character is an open command-for a new window. wttin calls a new”
function, wity_select. This function does the following:
-it scans the entries in the common pool of witys
-it picks up the first one which is not busy by checking the fteld "alloc™ and '
rﬁorks it busy .
-It enters the tty number which has acquired it in the new field "tyline"
-it links the wtty structure into the linked list belonging to’ 1he terminal entry In the
array active .
-it updote§ the field "curr” of the same entry to contain the wity integer number

-~



49

-It places a byte coding the ‘open® operation and the Iinteger id of the
acquired wity structure on the rdw queus of the terminal in order to be sent to
the Window Manager. - '
If the Ehardcter Is a command to close a window, witin calls a new function
wity_release. This function does the following: ;
-It Issues a kill signal to the process group in control of the window.
-t declloc;otes the cument wity structure for the terminal entry and it marks its
field *alloc” as free
-t updates the’ field ‘curr® with the lnfeggr number of the wity precedlng the
one belng closed
. -It calls the routine witty. flush which flushes the buffer of the new curmrent window
on fhe screen - :
Note that there is no direct communicctloa/wh‘h the Window Mancger Itis
necessary for the process group using the window to be killed before It has a
¢hance to oﬁempf /O on the uniinked window structure. The only way to
achieve thls is to kill it from the driver Hself. The Window Manager process will
recelve c signal informing it of the death of a child, and will take the usual
actionsin ’rhjs case. It does not attempt to respawn the child.
If the character is to switch a window, witin calls a new function wity_switch
which: ' " T

~

¥

-selects the next wity structure on the linked list for the terminal
-Updates the field “curr accrdingly
flushes the buffer of the current window s above
Note that the user level window anager is not involved in a switch between
. windows. : ° ’
' §
if the chorocterﬂped is no'f a’'window control character, witin sets the pointer
tp to the current wity structure for the terminal entry by accessing the array “active”,
puts the character on the faw queue of that wity structure after having processed it'in
the same way as for the terminal. B
« For ﬂi’fe transmission part, dhproc requires changes only in the statements
which colcblote the physical line number. This Is to be retrieved from the field
"ttyline” mentioned above. The routine ﬁouf'whlch Is invoked by dhproc becomes

4

g N




50"
N
witout. Before_ putting the character into the transmitter buffer, witout needs to
update tha output screen buffer when echoing the input or when the window
recelves output. Additionally. it invokes a scrolting function for the screen buffer. The
screen bufier is tO be maintained as a circular buffer with polnte}s to the top line,
bottom line and the cursor. '

As for the upper half window driver routines, they are to be found in .an extra
entry .in the cdavswitch table. This Is because the why files to be open'ed will be
found in /dev with a distinct major number from that of the tty files.

The routine wdopen will check whether the minor number Is valid, then It sets
. a pointer tp to the corresponding entry of the wtty array, marks the field t_state as
being open and calls ftopen to allocate the recelver buffer.

The routines wdclose, wdread, wawrite differ from their analogous tty routines
only with respect to the tp pointer which ls. set to select the appropricte entry of the
why array. Then they call dhclose. dhread and dhwrite respectively. The fact that
the modifications are not dramatic is normal, because these rauﬂneé refer to the
management of the queuses whlcﬁ is the same for both the terminal and the

)

windows. : e

-

The Window Manager Is a program which is basically responsible for
opening the window files and spawning the processes for them. it-does the following:
1.1t lssues a blécklng read for two bytes coresponding to the designed control
seduence. The proposal Is that the first byte codes the operation and the
. second one the window id

2. If the operation Is "open*, it Issues an-open call on the /dev/wty device
coresponding to the window id. ‘- '
3. It opens that file for read and write and #t redl}ects the td to-stdin, stdout and
stderr ,
4. 1t sets the wity parameters in the termio structure, speed, new line discipline,’
atc. as for a real tty
S. It spawns a process., ond executes a shell from it.

Orher operation codes are not used In the present propésol, but are
available for (uture extensions of thg system.



s

51

7. Overhegd Considergtions.

As a general rule, It is preferable to add features to Unix on the user level
r_other than In the kemel. It is therefore appropriate to provide a clear rationale for any
modifications made to the kemel, as proposed in this design. It should be noted, of
course, that all the proposed modifications are restricted to a driver, which follows
the standard Unix calling conventions with the exception of one additional iocti call.
In this sense, it can bé argued that the main body of the Unix kemel is not being
modified. The principal reason for proposing this design option Is, however, the
reduced overhead promised by this implementation.

A comparison of the overhead between @ diver implementation and a user
level implementation can be estimated on the basis of two factors: system calls and
data transfers. System calls Involve heavy overhead. Entry and exit from the kernel
requires invocation of trap processing together with thé library routines and functions
which support this operation. It Is also quite probable that a context switch-may also
occur if the system is not rather lightly loaded. Dqto transfer operations refer to the
copying of data from one buffer to another. Aready In a standard terminal driver,
this operation occurs up to four times: Iinterface to buffer, buffer to clist, clist to
canonical clist, and canonical clist to user buffer. This structure has evolved, With its
high overhead, from the design goal of presenting an absolutely standard interface
to user level programs. Any windowing system will add to this overhead, as seen
from the specifications below.

To estimate the overhead of a user level system, we have taken the
example of WOW, the system designed and implemented (in pre-prototype form)
in Concordia. The reason for using this example is its relative simplicity and the
accessibility of its code and design philosophy. Refering back to figure 3.3, it canbe
seen that the architecture of this system consists of a control-multiplexer process
connected 10 the window processes by vitual ity pipe pairs.

The operations Involved In the case of d [ead from a window consist
therefore of a i .

' 1.a read on the vity from the window process
2.a write on the vity by the multiplexer-manager
3.aread on the driver by the multtiplexer-managés
4.any other operations required to control and synchronize the above.

The actual system calls are as follows:




52
-read(STDIN, ch, 1) in the routine getkbd0 .
-write(table(where) (src_input), pkt, strlen(okt) In {hel%:tﬁ write_to_tem
-feod(fd, &ch, 1) In the routine get_ch, where 1d represents the file descriptor
of the outpipe -~

-reading user commands from the cshell which has been previously spawned
for the respective window on its creation. '

The actual data transfers for input are as follows:

-*(v -> Ichar++) = ¢, whi oples the user typed character in the Input buffer of
the VIERM structure. The p&Wler Ichar points to the current position of
pk1(PACKETSJZE) with PACKETSIZE dened as 255.

-win -> _y(y)(x++) = c, in the routine wdgddch which echoes the character to the
cument window

—

+  -while(*(packet++) = '(p+'+)) which coples the packet from screen buffer
pointed to by p to the muttiplexor buffer chilled packet(. :

e e ¢ - —

~*

A write operation is essentially the mirror image of the above.

/
!
i

'I;he overhead involved In the establishment of a window consists of '

1.a read of the contro! characters requesting a window
2.creation of vity

3.creation of a child process

4.linkage of the ity to the child

S.invokation of the cshell .
é.establishment of this child process as the cument window.

The system calls involved are s follows:

-read(STDIN., ch, 1) In the routine getkbd

-c'pe(p.inpipe) to create an Input pipe for the child

-pipe(p.outpipe) to create an output pipe for the child

-process-id = forkQ to create a child process

-locti(p.outplpe(WR), PIOCVTTY, (srtuct sgttyb®) &p) wh?re p Is @ pointer to
input and output pipe structure. This links the pipes into a vity. '



™ - 53

-12 closeQ and dupQ system calls for appropriate “redlrecﬂon of the file
descriptors for the pipes In both the child and the parent .~
-execip(*/bin/csh™ *-csh".*-I*,*-s",NULL) which spawns a cshell for the
windqw. All these system calls are done from the routine enter_new_user.
‘-sefpgrpo to ensure appropiate distribution of the Interrupts.

For\the proposed driver implementation we refer to figures 5.3 and 5.4. In this
case, the user level software is minimal, and is only required to create and terminate
the processes on which the windows are invoked. As a result, the read and write
operations on the user level have an cverhead which is identical to a regular
system. The number of system calls Is therefore identical. On the other hand. the .
increased complexity of the driver implies some overhead In data transfer. This is
principally the maintenance of the screen buffer, which Is done inside the driver. This
involves an extra copy of both iIncoming and outgoing qcfc, and the adjustment of
pointers to identify the screen top and bottom and the cursor position.

The actual additional datag transfers are as follows:

-for the window control, copying the tty number acquiring a new window into
the "ttyline" field of the wity structure, copying the acquired wity integer
number into the field "cun’, screen buffer fiushing of a current wingow.

-for the 1/O to the cumrent window, copying of each character from the window
output queue to the screen buffer and adjustment of the buffer pointers.

Compared with a standard driver, there are a number of additional t?sts
which must ‘be carried out on every character. These consist of testing for all
additional control characters 10 distinguish between a window command and all
other characters, text and control. In a user implementation, these operations are
done in the multiplexor or by virtual tty calls. As the driver is nomally set to raw mode.,
this testing is not duplicated. it may therefore be surmised that there is no significant
difference In character testing overhead between the two implementations,
although one is done on the user level and the other in the kemel.

A summary of the 1/O operations In the two methods is given below. It is clear
* that the driver implementation is far more efficient from the point of view of
operations on a single window. '




54

I/0 o,
Window Driver ) WOWwW
System calls direct read by user -read on the input side of the vity |
process from the window process.

-write on the Input side of the vity by
the multiplexer-manager

-read from stdin by the multiplexer-
, manager ,

-sysfem calls to support muttiplexing
operations: non-blocking reads on
all vity's, kilKO) to see If process still
alive. '

Dala copying In the kemel -from the read buffer to the.VTERM
“Transferp o .Of theincomihgand buftfer o
outgoing data to the -from the read buffer to the screen -
screen buffer at the butfer
current cursor posttion -from the VIERM buffer to the
packet buffer

-from the packet buffer to the vitual -
- terminal plpes

—

The present proposal has been restricted thus far to single full screen
Wlndows. This restriction has permitted us to highlight the essentiol dlﬂerencés
between multiplexing In a driver in the kemel level and multiplexing on the user level.
This does not imply, however, that multiple 6ver|opplng window implementation s

. Impractical In the window driver. In fact, & muttiple window display Is principolly-a
problem of cursor control, and the management of display rewriting on switching or
resizing of (windows. ,

Wa shall discuss ge essential functions required in the following, without

entering irL’to detail, as most of these operations are Implemented In an analogous
form on ﬂe user lavel by the curses package.

-3



55

. Communication with thé current window presents no problem, as the cursor
pq’smdn Ttan be controlled by appropriate cursor positioning commands. The ske of
the window con be stored in parameters associated with the screen buffer of each
window. These can be used 1o generate the appropriate commands o keep text
output within the window. Scrolling within a window presents a problem, as its control

in software implies rewriting the entire window contents with each line move. The

displaying would be limited practically to a non scrolled output.

Display rewtiting can be moncged by Inspecﬂon of the queue of dispiays.
Each screen affected may be rewritten from lowes1‘ to the highest, or current
window. '

As the techniques for this type of window mdncgement are well known and
currently used, it is not appropriate here to describe them In detail, but simply to
indlcoté that there is no problem in thelr Implen{entction in the driver apart from the
volume of additional code odded to the kernel. The level ‘g control described
above, however, constitutes a small subset of the curses package, and wduld not
represent a disproportionate addition. '




56 . S

Chapter 6

Conclusions

This report has presented a design proposal for a window facility based on
the extension of the multiplexing capability of the Q/DH muhlplexér board for UNIX
System V on a Cadmus computer to a second |e{/el: sets of windows for each
terminal, allocated from o-cpmmon pool. Although s?me of the driver routines,
namely dhread, dhwrite and dhproc and the line discipline routines ftin and Hout are
modified, the UNIX system interface remains the same. No additional system calis
are required, and all modified ones obey the standard calling conventions.
Atthough this design Is based on modifications in the kemel, a window manager s still
required, but its code Is minimal and it handles only window inftialization, process
spawning and the usual termination operations on *death of a chiid process™. No
character processing Is required at this level because 1t Is already done by the line
disciplines.

\ The modifications mentioned In Chopter 5 refer to new entries in the
vcdevswitch and the lineswitch tables, some modified driver and line discipline
routines, and a user level program in /bin.

With respect to the overhead. our proposal takes advantage of the natural
‘level of multiplexing In the driver, thus avoiding the many system calls needed in a
user implementation of a window faclity like WOW, particulorly for the wlndow
control, as seen from the summary on page 54. As a result, the overhead In our
proposal is reduced compared to a user level implementation.

Whilé we did not consider overlapping and outlining of windows in detall, the
techniques are well known, and would not ogd any original aspects to the design. it
is clear, however, that overlapping windows In our approach would increase the
driver size and overhead. Actually as most terminals are not designed for
overlapped windows, a full screen window facllity with icons which indicate the
preéence of other windows Is far more practical. The icons can bé labelled with
integers' instead of graphic symbols. Even so, the funcﬂonolhy{ does not compare
with the power of windows on personal computers which now cost hardly more, than
a terminal. Notwithstanding these aspects, the Increased power provided to o
terminal with relatively little overhead Is an attractive option. /

-



57

1

!

T

Thé significance of this work also relates to other applications which use
multiplexed 1/O. The same architecture Is applicable to communications on a
shared medium such as a Local Area Network where several users have access to
character 1/O through the same port. It Is also applicable for character I/O to
intelligent terminals as inr BLIT or to PC workstations, which can use their own bit
mapped drivers to display the multiplexed data as windows.

it seems unlikely that the future of the UNIX user interface will be based on
windowed ASCIl terminals. Prices of personal computers have dropped so rapidly in
the past few years, that it is already hard to justify the purchase of a teminal rather
than an intelligent device with its own bit mapped display. The software architecture
presented in this report Is, however even more appropriate to communication with
such devices, as multiplexed t;Uprﬁ on @ serial port can be demﬁmplexed far more
eqsily on aPC 1hon“qq an ASCII terminal. Some modiﬂcqtions in the design presented
here would be require&\puf these would lead to simplification rather than increased
compleidfy. The local mefnory In the PC removes the need for a screen buffer in the
driver, and the transfer of other functions could raise the speed potential of 1/O. -

Mcny\lnteresﬂng developments in the area of cooperation between a UNIX
system and a PC user interface are possible. The ideas developed in this work could
form the basis for simple and efficient designs.

e
M2




(Anci8s)
(Backé)

(Bre84)

(Bou78)

(Bro86)

{Gom84)
(Ker 84)
(Hol86)
(Jacsd)
(Ker78)

(Loc87)

8

Anderson R., "UNIX through windows", COMUNIX 1986, London, England,'3-5
June 1986, pp.115-121.

Bach J.M.. * The Deslgn of the UNIX Operating System * . Prentice - Hall
Inc. Englewood Citf NJ 1986,

Bresnahan, J.B., Barnard D.T., and Macleod J.A., "WSH - A New Command

‘Interpreter for UNIX', Software Practice and Experlence. Vol. 14(12),

December 1984, pp.1197-1205.

[

Bourne S.R., * Ihe UNIX Shell * BelI\System Technical Joumnal Vol.57 NST@
Part 2 July - August 1978. , 1

Brown D. " The Q/DH Device Driver * A Concordia Project June 1986.

Gammill R., Prithvi R., VT - A Virtual Terminal Window Package for Unix',

- ACM SIGSMALL, May 1984, pp.21-30.
' {

Kemighan B.W.«and Pike R.. * Ihe UNIX Programming Environment *
Prentice-Hall Englewood Cliffs NJ 1984,

Holcomb R., Tharp A.L., 'The Effect-on Man-machine Interfaces (or
opening doors with windows)', ACM SIGDOC Asterik (USA), Vol. 12, No. 3,
October 1986, pp.9-20. )

Jacob RJK.. "User - level Window Managers for UNIX", Proc. UniForum
Intemational Conference on Unix*, Washington DC, January 1984.

K'ernlgho°n B.W. and Ritchle D.M., ‘The C Programming Language *
Prentice - Hall Englewood Cliffs NJ 1978. '

Lacroix R. * WOW * A Concordia Project, May 1987.



Lan7?9)

o

?

(Mey81)
(Pik84)
(Pik85)
- (Quots)

(Rit78)
(Rit81)
(Rit840)

(Qn"jé)

(Tat82)

59

S

Lantz K.A., Rashid R.F.. *Virtual Terminal Management In a Muitlple
Process Environment", Proceedings of the Seventh Symposium on
Operating Systems Principles, December 1979, pp.86-97.

Meyrowitz N., Moser M., *BRUWIN": An Adaptable Design Strategy for
Window Manager / Vitual Terminal Systems”, ACM SIGOPS Conference, .
Vol 15, No 5, December 1981, pp180-189. \

Lo /]
Pike R., * The Blit : A Multiplexed Graphics Terminal * ., AT&T Bell
Laboratories Technical J;\mgl,\ Vol.63 No.8 Part 2 October 1984 pp1607-
1632, . i

»

Pike R. and Locanthi B., * Hardware / Software Irade-offs for Blitmap
Graphics on the Blit * , Software Practice and Experience Vol.15(2) pp131-
151 Feb.1985. —-

Quarterman J.S., Sliberschatz A.. Peterson J.L., "4.2BSD and 4.3BSD as
Examples of the Unix System®, Computing Surveys (USA), vol. 17, No.4,
December 1985, pp.379-418.

Ritchie D.M., ',A Retrospective * The Bell System Technical Journal, Vol.57
No.6 Part 2 July-August 1978, pp.1947-1970.

Ritchie D.M. and Thompson K. * Some Further Asbects of the UNIX Time-
Sharing System * , Mini-Micro Software Vol.6 No.3 1981, pp. 9-12.

Ritchie D.M.," The Evolution of the UNIX T Ime-Sharing System ", AT&T Bell
Laboratories Technical Joumal Vol.63 No.8 Part 2 October 1984 pp1577-1594.

Ritchie D.M., * A Stream Input Qutput System * . AT&T Bell Laboratories -
Techical Joumal Vol.63 No.8 Part 2 October 1984 pp1897-1910. ) '

Tate A., A Window Manager for the UCSD p-Bystem®, SIGSMALL
Newsletter, 8, (1), faosch 1982, pp.14-21. '




(Telg1)
(Tes81)
(Thid7)

(Unic)
(l.an)
(Unic)
(Unigs)

(Uni87a)

Unig7b)

War79)

‘(WeIBS)

t

60 s

Teltelman W. and Masinter L., ‘The Interlisp Programming Environment”,

: Computer 14 No. 4, opril 1981, pp.25-33,

Tesler Larry, 'The{ Smailitalk Environment®, Byte Vol. 6, No. 8, August 1981,
Pp.90-147. "

4

Thimbiey H., * IThe Design of g Termingl Independent Package ° .
Software-Practice and Experience, Vol.17(5) pp351-367 May 1987.

UNIX System V User Reference Manual.

« v

UNIX BSD 4.3. User heferqqce Manual,
UNIX System V Driver Source Code. -

UNIX BSD 4.3. Window Faciitty Source Code 1986,

_UNIX System V STREAMS Primet, AT&T, Prentice-Hall Inc, 1987, °

UNIX System V Sfreams Programmer's Guide, AT&T, PrentiCe-Hall Inc,
1987. ¢

P
N N

Warren S.K. gnd Abbe D., "Rosetta smalltalk: a convérsoﬂoncl. extensible

microcomputer language®, SIGSMALL Newsletter Vol. 5, No.2, 1979, pp.36-

5 ' ’

‘Welser M., "CWSH: The Windowing Shell of the Maryland Window

System’, Software-Practice and Expérlence. Vol. 155), May 1985, pp.515-

522,



RGN
"
it "

B

Appendix 1

A wity structure Is needed for each window terminal. This structure is, given
below. It Tepresents an extension of the tty structre. The new fields which do not
appdr in the tty structure are In bold characters.

#define NCC 13
#define BUFSIZE 256

, struct wity { -
: struct clist t_rowa:
struct clist' t_canq;
struct clist t_outq;
struct buff{ !
int nr;
- ‘ Int ne;
"~ inttb;
" intln
char y(BUFFERSIZE);
* int “firsich;
Int “lastch;
bool scroll;
* shuct cursor|
intr;
intc;
) } scrbutf;
‘ struct ccblock t_tbuf, .
* struct ccblock t_buf;
int(* t_proc)O:
ushort t_fflag;
ushort t_oflag;
ushort t_cfiag;
ushort t_lflag:
! int doc;

/-"t:olumh‘/

/*raw Input queue®/
/'ccno,nlc;:cl queue’p
["output queue®/
/*screen buffer®/
/*no. of rows*/ ’ i
[*no. of coldmns‘/

/*top. bottom*/ *

[*left, right*/

[*buffer®/

~ ["pointer 10 the first character®/

/*pointer to the last character®/
/*flag for scroling full screen window®/

’ /',&drscr control */

[‘row*]/

/*tx 9onfro| block*/
rx_control block*/
/*routine for window functions®/
{*input modes*/
[*output modes*/
/*control modes*/

e /tine discipline modes*/

/"wity allocated®/ -



4 \
- " 5
2 b z

62
int tiyfine; " /"to, which line the window Is tied to*/
short t_state: - /*internal state®/
short t_pgm: [*process group nome*/ )
chartiing; - J'ine discipiine*/
chart_deict: : [*delimiter count*®/
chart_tem; [*terminal type*®/
chart_tmflog; o ["terminal fiags*/ A
charteol -~ ‘. ° [*current column®/
chart_fow; © [curent row*/ '
chart_viow: . © J*variable row*/
chart_lrow; [*last physical row*/
char t_Hqcnf; ot /*no. high queue packets on t loutq*/
chart_dstat; ~ . [*'used by terminal handlers and LD*/

unsigned char t_cc(NCC);t [*seftable control chars'/



Appendix 2

AN

In the Manager Aitemgtive, In step 1, the Window Manager issues a biocking
read for only one character./Then the steps 2. 3, 4, and 5 are the same as for the
Driver Alternative. After step 5. it executes a modgled loct! call as described below In
order to communicate the id of the acquired wity file to the global structure "active'.
The effect of this ioctl call is to update the field “curr’ of the entry corresponding to
the terminal with the window id and to call wtty_ﬂuéh to fiush the screen buffer, in this
case a blank screen.

Iocfl() Is a system call controling a device. It actually transfers Information
from the user buffer to the driver or vice-versa. The standard function is as follows.

After extracting the mfijor and minor numbers as done from any system call,
foctK) invokes dh_ioct) upper half driver routine. The dh_ioctiO réuﬂne in its turn
calls a function ftiocom() which carries ouf one of the device dependent actions
specified in the argument,‘cmd” of the call. A process normally uses an /octk)
system call in the following way: .
. -it issues an joctl) with a particular command in order 10 get the terminal

parameters by accessing the cpprobﬂcﬁe fty drver structure fields
-it sets the terminal parameters to the desired values
-It Issues another ioct) with a appropriately chosen command which restores
1he parameters in the corresponding fields of the tty driver structure. The synth
of the locti0 call is given below: g

iociKfildes, cmd, arg), where "arg” may be declared in tw‘o"wcys:

_ .

1. As a pointer to a temnio structure defined as

struct termio {

unsigned short c_iflag /'input modes®/
unsigned short ¢c_oflag /'outpuf' modes*/
unsigned short c_cflag /*control modes*/
o unsigned short ¢_Iflag /*local modes*/
charc_ine /*line discipline*/

char c_cc(NCC) /*contftol characters”/




64
™\
}:
An example of o command using this is TCGETA which gets from the

system the parameters associated with the termindi and stores them in the termio ‘
structure referenced by arg. -

2. As an integer. An example of command using this form Is TCSBRK which
waits for the output to drain. If *arg" Is equal to 0, it sends a braak slgnél to the
terminal. For our purpose, in orderT to 1ron§mh an integer value to the lower half
dhrintQ routine we need to use the Iatter of the two forms.
The proposed modification involves the following:
-a new command to be coded in termio.h, let us call it MPXOPT (for
multiplexed option) '
-a few lines of code have to be oddéd in ttiocom(Q function to process
this new command, as outlined below: - '
register struct tty *tp; ¢
char * arg: . (
~ boolean flag = FALSE ; Integer line ;

case MPXOPT

ifthiword(arg) is nonnegative) {

line = tp - dh_tty /*calculate the port number */

active(line) ->.cum = hiword(arg) .

wity_flush(ip) ; /*his fiushes the wity butfer on the screen */

retum(flag = TRUE)

} where active(line) is the kernel 8 by 1 lm‘eQer arrqy mentioned
previously which Is accessible by both upper cnd‘ lower half driver /
routines ‘

-when returning from ttiocom, dh_ioctiQ invokes another r90ﬂne
dhparamQ. This routine sets the line parameter register for the terminal )
based on the control modes of the corresponding 1ty st ’ctgr\e. As our
modification does not refer to any hardware interface )/eu may Insert an

f(not flag) statement before calling dhparamo.



- g5

Appendix 3

Y.

In this appendix, we examine the sequence whlc?w Inltializes user processes on
the terminals of a system configured for muh‘iple users. Some aspects of the design of
the Window Manager are related to the functions of this program, in particular the
initialization sequence of the Manager.

The initialization of control processes for multiple terminals is handled by a set of

) programs sequenced by init. The set up of processes in a multiple window system can

follow an cno!ogous procedure, with approprate changes, of course, to the leveis on
which the Progrorﬁs will be executed, and detclls in thelr execution.

lnit ((Unia), (Bac86)) Is invoked In UNIX V as the last step in the boot procedure.’In
multi-user operation, init continously reads the file /etc/inittab and forks (l.e. spawns a

child) as many times as the number of physical terminals in this file such that a process is
created for each such terminal. This process becomes the control process meaning
that it will control all the processes initiated by the user from that terminal after he has
succesfully logged in. Typically the control process is the login shell.

Once in the'shell, the user may execute commands. Each command usually
represents a program which wns from a child spawned by the shell.

When typing input data from the keyboard. the user may press certain keys like
*delete” or "break’ by mistake or on purpose. These may be interpreted by the kernel
line disciplines as signals which are 1o be sent to user processes. This implies a uniform
treatment of all processes associated with a teminal, which has been made possible In
UNIX by including them Into the same group distinguished by a group process id, with the
parent being the process group leader. .

A process group Is established by issuing a setpgrpQ system call which will
initialize the p_pgrp fleld of the kemel process structure to the pid of the parent. All
processes spawned from the process group leader will inherit its group pid unless they
are specifically released following a sefpgrpQ system call (one such call for each
process to be.released!). This will make the process executing the call a group leader
for its future, descendants, a feature which Is used in the intalization of windows as
mentioned in section 3.1. ‘ '

~.




S \ - 66

If the process group leader opens a teminal (L.e. a /dev/tty* file comesponding
toa terminal ), the line discipline routines will associate it with the terminal if not clready
previously done and thus it will become a control process for the terminal hereaﬁerd‘
called the control termingl. |
The /etc/inittab file contains a table which is lllustrated below.
Getty Is a program which in a multiuser environment inlitializes individual terminal
lines where users might log In. it can be found in /etc directory. ‘

Format : identifier, state, action, process specification
Fields separated by colons

Comment at end of line preceded by '#'

1k s :initdefault:

7 co : 34: respawn : getty Sys'con console adm3a # / .

- - RS : # ' .
ot :34:repscwn;geﬂy [dev/Hy11 exta vi100 #

10112 34 : respawn : getty /dev/tty12 exta vi100 #

e : - #

id mtate action process

Fig.Al. A Sample Inittab File.

The significance of each field is given below:

id - identifies the entry ' 4

1siate - defines the run-level (one or multiple) which Is viewed as a software system
- configuration allowing only a selected.group of processes spawned by init to exist at
any given time; all processes with run levels differing from the target run level are forced
to terminate after a certain grace period.
gclion - indicates how to treat processes In the process field .
p_m_g_eﬁ_s_ - specifies a program name and [ts respective parameters which will be
passed as a command to a forked shell‘cfter being prefixed by "exec” character string

To each physical terminal In the system corresponds an inittab entry for which:

A}



“
67

1) The action fleld typically contains the character string'respawn® which when
Interpreted by init will have the following effect. if the process field for that entry
does not exist, Init will create it, after which it will continue scanning the inittab file
without waitting for tts termination. When such a process dies, it will recreate Ht. Else,
i thg process currently exists intt will dg ho‘fhing, but continue scanning the inittab
file. :
2) The process field contains the string “getty” folowed by a number of arguments
as seen in Fig.A.1. above. .
Getty must have at least one argument, the tty line. If it Is not provided., it will retum
a message error "no terminal line specified” and it will exit. Init will respawn the process
as mentioned earlier. ' -
After sefting character poln'rer.s to each argument, getty does The_ following:
- changes the directory 10 /dev .
- attempts to open the file specifying the particular terminal line for read and write
- as described previously in section 4.1.; if unsuccessful, getty exits and will try again .

when respawned by init, else ‘

- returns the file descriptor for the opened line redirected os stdin, qtdou’f, stdem

- appropriately initializes teminal parameters (via several loctl calls) to either the

specifled arguments or the default ones ‘

- writes a login message for thg respective line requesting a user name and waits

for an input ‘ .

- while reading the user name one character at a time, getty altempts to adapt the

system to'the speed and type of terminal in use

- If no name was supplied within a certain delay or abad name was given it will try

again; else (if successful),

- executes the login program with the user supplied name as argument
The login process writes a request for a password. When it receives the password, it ‘
checks it against the password file and If correct, it executes a "csh” program which will
prompt the user; if the operation Is not succesful, depending on the Unix version, it might
disconnect the user or allow him to retry. '

The csh is the last process in the sequence init -getty - login - shell. In this chain,

with each successful process execution, the previous process gets overlaid, except for
init which e?(ecu'res getty from a child. In fact the connection to the driver is achieved by



. - o 68

4

" @ successful open for the line and it continues to exist as long os the user
commands from-his login shell. !




