7 L . o . | LVl
l*)laﬂpn'al Library " Bibliothaque nationale
~"of Canada : ~ duCanada - ‘ . .

Canadian Theses Service . Services des thases c{nadi.enr"\es ‘

»

\ _(K)mwgﬁf anada : ‘ T / |
e T e - . . r N
9 ; PR i
¢ o o i)
. CANADIAN THESES - | THESES CANADIENNES
A o o
) P . - "
I N
* NOTICE AVIS

. R}

The quality of this microfiche is heavily dependent upon the La qualité de cette microfiche dépend grandement de la qualité
quality of the original thesis submltted for microfilming. Every de la thése soumise au microfilmage. Nous avons tout fait pour
effort has been made to ensure the highest quality of reproduc- assurer une qualité- supérieure de reproduction.

tion possible .

" If pages are missing, contact the university which Qranted the S'il manque des pages, veulllez communiquer avec I'univer-'

degree. N) - . sité qui a conféré le grade. .

Some pages may have fdistinct print especially if the original Lan'qualité d'impression de certaines pages peut laisser &
* pages were typed with a poor typewriter ribbon or if the univer- désirer surtout si les pages originales ont été dactylographiées

sity sent us an inferior photocopy. A I'aide d'un ruban Usé ou si I'université nous a fait parvenlr

' ‘ une photocopie de (qualité inférieure. &

‘ Previously copyrighted materials (journal articles published b Lés documents qui font déja I'objet d'un droit d'auteur (articles
tests, etc.) are nuM/ med de revue, examens publiés, etc.) ne sont pas microfilmés.
Reproductlon in-full or in part of this film is governed by the - Lareproduction, méme partielld, de ce microfilm est soumise
Canadian Copyright Act, R.S:C. 1970, c. c30. ~ & la Lol canadienne sur le droit d'auteur, SRC 1970, c. C-30.

i} \ A
THIS DISSERTATIO ' LATHESE AETE
HAS BEEN MICROFIL \ 'MICROFILMEE TELLE QUE
EXACTLY AS RECEIVED .. NOUS L'AVONS REGUE
/ , .
/ — .
<

= | | Canadi
NL-3”§'“M) b4 ' " > = a

&

A Proposal for the Concurrent Hlerarchlcal Control

of Robot Systems

John ‘Grub®ér Waller

F

A Theslé
. : in
The Department
of

Computer Science

Presented {n Partial Fulfillment of the Requirements -
For the Degree of Master of Computer Science at

Concofdia University
Montréal, Québec, Lanada

- " September 1985’
g

['d

~

© John Gruber ‘Waller, 1385

*e

rd

Permission has been granted
to the National Library of
Canada to microfilm- this
thesis and to lend or sell
copies "of the film.

The author (copyright owner)
has 'reserved other
publicatiion rights, and
‘neither ‘the thesis nor
extensive . extracts from it
may be printed or otherwise
reproduced without his/her
written permission,

q

o 4

-

a8 la
'du Canada

‘ni. la

(ISBN 9-315-30625-4

v
' ¥
L'autorisation a &t& accordée
Biblioth&que nationale

de microfilmer
cette th&se et de préter ou

de vendre des exemplalres du -

film. -,)
L'auteur (titulaire du droit
d’auteur) se réserve les
autres droits.de publication;
th2se ni de longs
extraits de celle-ci ne
doivent @&tre imprim&s ou
autrement reproduits. sans son
autorisation &crite.

/

/

[
/

4

‘-

o N " ABSTRACT

A Proposal- faor .thé Concurrent Hierarchical Control
of Robat Systems

3

John Gruber Waller

-A generalized robot control system referred
to <=_,gs the cross-coupled processldg hierarchy has

been proposed by the NSf;onai Bureau of Spaqyards,

.washington .DC The NBS proposal ts reviewed in

as Concurrent Hteranch&gal Control 1s presented.

Concurrent Hierarchical Contrpol is based on desjgn

operating systems. o oo

. <

o

this thests and an enhanced proposal referred Qo

ety . ,/ - -
principles which are common to real-time computer -

-

5 b

14

Table of Contents . . =~ = - /

pon

Introduction . T

Background

~

Derivation of the Cross—-coupled Processing Hierarchy "~

‘vectors - >
Functions i N
Feedback Control Loops
Linked Functions

Er:!r Correction
ConX¥ext Information
Prediction. Information

HLLLL LW
DNON-DWN =

Igsues Ralsed_by the.NBs Praposal

4,1 Principles of Hl;rarchy
4.2 Robot Control System Concepts

4. 2.1 Application of Hierarchy

Cross-coupled Processing Hierarchy

‘.

4. 2.2 Differences Between Robot Control and

S Timeshared Systems
4.3,vReal time Operating Systems
’ 4.3.1 Timing Problems
4.3.2 Multi-computer Isgsues
.4 System Eevelopment

4
. 4.5 The World Model
4 \\“

.6 Exception Processing

‘The Design of a Robot Operating Sysfem

Concurrency

The World Model :
Exception Processing

aaoaa
AL WN»

An Approach to Development Concurrent

Control
,,f

chitecturé

i O Feedback Control Loop
1. 0S Structure
1

1

1

A hl

6 1

6 2

6.1.3 0S System Calls
6 4

6 5

6

6.1

L

r

0S Tables

. 1. Hardware

.1.6 System Example
Ap lication Development
Downloading

System Performance

oo
HDWN

An Example of .a Robot Application

Communication and Synchronization‘

Hierarchical

L]

¥

L -~

7 Conclusions
N _
8 References

«

Appendix 1: An Example of

Appendix 2. An Example of

Appendix 3: CHC-05: An O§

Qo‘n'li,rol

-t

&

Y. Introduction ,

#

The stéucturlng of robotics software 1is becoming
increaslngly important, as both control~and‘sen§ory‘Fung-
tions in contemporary robots grow in complexlty.'whlle early
robot soféware was essentlall} dertved from numerical cof=
‘trol techniqués used in open-loop precision machine tools,
the programming of complex task sequenc%s, the handling of

’ﬁensory information, and the need for exception processing

has placed greater demands on robot control system design

This 1{increased need for .{:f:lﬁylity requires a

hierarchical structure analogous to the layered structures

e

.

of contémporary opqgetlng systems such as IBM-MVS or Unix.
ry "

There .are however, significant differences between the per-

formance goals of a general opurpose operating system and

r

robot control software Robot software does not require many
of the resource madagement‘funCtlons of ah operating system,
A 4

-but, . conversely imposes constraints defined 1n real-time by

fits functions and its coord}nation with external events. IH

'
e
'S

particular, the management of sensory feedback and the exe- : \‘«

cution of}emergency procedures that may arise suggest the

need for a communications function that 1s significantly

different from operating system requirements. In this way,

it resembles process control coupled with sophisticated pro-

gramming techniques.

A hierarchically organized computer or process—control

system wusually suggests that the hierarchy is based on ,

’

-2 -

several levels bf.absgraptlon, The lower levels take care of

.

simple routines, sUch as device drivers and buffertng, and

the upper levels take care of higher functians, such. as
' 1 N . £

s
7

resource ‘management policies and“ﬁqemunlcations protocols,K ¢
Levels of abstractjon are closely l[nked, the very term sug-
gesté that h)gheé " levelis -are wm¥rely distilled versions of

lower -evels. . !

However, another approach to robot control sy%tems is

the concept of levels of undérstawdtng This suggests that

lower levels may be equipped with their own intelligence to

make decisions '1ndependéntly of the higher ‘levels. It Is
often helpful tq take a human situation in order to exem-
AN
plify the point teing made Let us say that a person has
Just picked up a cup which,is tog-hbt to 'the touch. When the
cup has- been ‘grasped, the person quickly releases the cup
and withdraws his hand. It {s only after tae event that' the
person in fact understands what has taken place, the action
itseif has beén'a reflex. Nonefheless; a high priority sig-
na‘l has been sent to the ﬁrain, i1 ., a pain signal The
I v’ ‘
pain signal allows the brain to analyze the events after the °

"fact and choose subsequent actions, e. g , treat the burn and

cledn up the cup’s spilt contents.

-

In a system organfzed by levels of ab§tract!on, we. may
consider all deciston-making authority originates at the

top. By contrast, in our example the higher centres of the

brain have not been involved in the decision to withdraw the

E)

\

1

T

\

hand from the cup In a.system O(ganiéed by levels of under-
standing, -we mayl consider such adihorlty to be much more
dlstrlbuted‘thfbughopt the system 'Never£heless, the higher
centres may have an override ability. Our.human subject may
be.able to override the refley to release the hot cup if he
st?ongly~zdogs not wish to spill 1ts éontentsf However; he
musf deliberately choose to overrtde the refiex actionswhich
has been communidated to him by the pain signal. This would'
be a learned re:‘ponse. The_(piin signal provides é key to
understanding the s;stem, 1 e., communlcatioﬁ between levels
'of understanding tis accbmplisped tnfough messages, which

implies that message—basedAsystems may provide signtficant

results for robot control requirments.

For several years, the Natloﬁgl Bureau ~ of Standards

under the leadership of J.S.Albus and A.J. Barbera has been:

«

doing research 1n the area of generic robot control éyste@s
which address the 1issues Jtyplcal?of the example .outlined
abo‘f. The result of their work hés‘%eggmgpe development of
the ’cross—couﬁled processing hterarbhyi system which 1is the

first real attemp‘ at developing what might be <called a

general-purpose robot operating system. In this thesis an

<

" analysis of this work is presented as well a%; a proposal

4

referred to as Concurrent Hierarchncai Control. This seeks
S oW

to enhance the processing throughput of. the cross-coupled

"process{ng hierarchy by applying well-accepted principles of

)

..structure and development fodﬁp in mo&qrn operating system

design. In -so doing, it was found that processing

.
—

-

o

é
throughput could be substantially lmprovgd by approklmately
one ordﬁr of magnitude, with the added benefit of provldlhg
A ¥
a more user-friendly environment and therefore greater pro-

grammer productivity. A work bench approach has been

adopted which allows application Fflexibility and’. dyhamlc

_reconriguratibn as 6ppo§ed to-a single monothb]lc applica-

tion. . . >

’
/

v

ES . <

- ’ -

A brief description of the organization of this theslts
follows. A Chaptgr ltwo provtdés) sevéral examples of
computer—qonérolleg,;obot sfstems which ;re more sophistl;
cated ifhén, ﬁhe simple open-loqp pléyback rbbots inch are

now common in industry Chapter three provides background to”

the " National Bureau of Standards project in robot control

'systems which is used as a stafflng point for the study out--

lined in this thesis. Chapter four discusses the spectflic

‘}ssues of software design and implementation implied by the

A]

NBS pré]ect. Chapter five investigates how the NBS proposal
has addressed the issues outlined in chapter four-by defin-
ing an arc-welding robot application as'a specific example.

Possible élternatlves are i)éofdiscussed The proposal for

- 7

-,

-Cpncurrent Hierarchical Control and its supporting operating

system is presented in chapter six, including discussion of
the operating system architecture, programmer development,
dowhioadlng of the system ({nto satelltite processors, and

performahce evaluations. Conclusions are stated in chapter

.seven. ‘ - >

-

: 7)
» ' P

. | a .
" There are three-appendices in this thesis- appeéndix one,

gives the example application iétrﬁduced 1h_chapter Flvegas

R . Q . . - rs
Lt might appear’ using the concept of a cross~coupled hierar-

chy as outlined by the National Bureau of Standards. Appen-

ﬁix two gives the épecifﬁcatlons of the processes whlcm are
N 1 ¢ 4,

discussed in the example. in chapter five. In appendix‘three

a [y -

- ’ L
s provided a stub list of the subroutines written for- the

* 0

) : -
simulated operating system described 1n chapter six. ' —

>

-« At

»
6

[N

)

4

SN

I's

-

expréssed, in a strict hierarchy or in a flat structure, the

. ~ i : [. ? J' 4
x. !) ‘ - co ‘
2. Background . Co

- oL [N
o

The management of sensory Feedback and lts' tnberacttg‘\h

r

w

with a robot control ® structuré can be a hxghly complex

operatlonf While open-loop <control functions are eastly

s

Integration of sensory feedback can tnvolve, not only

-

predictable state lnformation such as.Poaltioﬁ sensing, heat

levels etc., but also exception iﬁiormatlon' which must

‘modify the ‘whole operational sequence, somgtlmeé'rédtcally

5

in case of emergency. Such emergéncleé include both cond{-
. - v * “

<

tions which are dangerous to equpognt as- well as, more'

e
lmportanﬁ/y dangerous to operators 1), Sensory Feedback of

exception conditions should provoke an immediate
& ' b .

all appropriate levels, from.-a reflex' reagtion of the

3

'motor; fevel of automatic sequencing, to {nput to decision

making software on a higher ‘cognitiveé’ leyé. of operation.

g
One of. the Flrst applications of robots was in the

~

exploratton of the Moon and the planets Well known examples

’

are NASA‘s Viking Landers which were iaunched- during . the

~mld-19705 to explore the surface of the plaagt Mars . The

Viking could be consldered ‘to be a robot 1in the «classlic
senge slgze iggwas;egu{pped with a shovel-like end-effector
used: to take soll gamples of -the Martian surface dne_ q}
Viking‘’s big dréwbac{s‘ was the long c?mmunxdatxon tq;n-
around time ;uth 1ts,teréestr{al copyrél station, becauie'lt

®

had 1little on-board congrol, 1t took as long as segefal

p-"\

‘esponse on -

RIRS

o

<
o

-~

~ : - 7 - ‘e N X
- . . .
‘A . * ‘ "
R . Vo - R
hours for 1t to ‘execute a simple command such as .redching

A

,out to take a'soil sample [21. L L - o
0 " \7

TheMA@siré to butld a robot Wwith greater autonomy
prompted’ NASA'% Jet Propﬁlsion\ Labora‘tory to'deve*tts
‘roving robot’. Autonomy fmplies é;eétgr jon—}oardv computer
;n; error recover; A. M. Thompson describes the control sys-
Lem for the .roving robot as consisting -of th;ee distinct
concﬁrrentiprocessesa vision, manlpula?or control and éu}L'
dance NE3/41. The three processqs‘are coordinated by an-exe-
cutive lﬁ a loosely defined hlerarchyi However, control.qOes

1 1 a .
not take place in_real-time. Thg JPL rover was capable of

reference and then Téferrjng to its internally stéredgmaps

4n order to navigate When the rover started out” on , its

s ?
control d&F susp Func%ions as navigation, sensory processing .

':T}VaIIQ mapping out a ‘terrain, storing maps for /futu?e'

path, 1t ‘was Blind and did not have the capability of real-’

time guidance wity the use of visual landmarks. S
£ "

o M ¢

Afi.area of robotics in which much research has been

conducted is compliant .control. It may be defined as that

©

. : .) . o
.control which performs an action which s made to comply

with sensory ?eedback. For example, for a robo} to-grasp an

A

egg requires not only a command to do 50, but also continu-
. , °

ous sensory feedback to ensure that phe éggﬁis being grasped

-

with jjust the right amount of force so that &t neither
cracks in -the robot’s nand nor falls from its grasp. One of

the»f!rst,experiments in robotics to tegt the use of compli-

S .

*

B , ‘ . N N . . §
. - - g - .
. [
. , ,

T . ‘ .
'yaqf contfol was undertaken at Edinburgh Universdty by

o ‘ 3 : (
R.Popplestone [5]. The-robot was able to recognize objects,
- # -
although not 1n real-time. ~However unce objects had been.

'recognized and positioned, it was able. to, do ‘an assembly

using compliant control based only on force sensing.

w0,

The Westinghouse Research and Development Centre has
recently been lnvofVed. in an experiment using real-time

visual input for the asseﬁblw of small electric motors “(67.

4 3
P

,The slgnlficahce of the wexperiment lies in the faét that

westinghouse nas‘attempted to puild a cost-effective ‘assem—I,_
bly system wusing robot. vision in real-time, and that the

system 1is designed for small batch rather than mass produc-
. . ¥ e T
‘tion. It 1is in .the” area of batch production, i e., the

manufacture of articles. 1in small quantities, where the

~™

industrial robot , 15 expected to find its greatest useful-

ness.

-

‘ A - . .
“The interaction of sensory processing with control

oy
©

functions has been the subject of much research. Lozano-

Perez [7] suggestis four general . categories of such func- -

~
~

tions: . - .] .
\
» 2 ; i 4)
initiationand termination of -functions,
selection of alternative actions
fdentificatdon of odbjects

compliant control - e § ,

x X X X

) .om N N
Nitzan [81 base¥ Justification of increased sensory

¢ -

" . N Y '
,lnteractiqn on four current inadequacies of iIndustrial’

L

' robots: ' ' ,

insufficient flexibility

openh~loop control

inability to process errors . %

high cost of accurate open-loop posttioning

x X X X

Laugier [(9X: describes the open—loop control of the tra-
k. L 2
jectory of a robot arm whose very complexity underlines the
2 ‘ P
. /
gains that <could be ,.made through sensory feedback. In

Laugler’s ekample,lthe programming is complex, the computa- "'

tion of coordinate transforms expensive, 'and the arm {tself

must be engineered to a very small tolerance of error.

»’ Hierarchlcal control is an approach frequently cited iIn
i . , '
the literature to address the complexity of robot software,

both with and without sensaory processing. The term s wused

in two broad senses: computer architecture, and software. In

the area of architectural hierarchy, C.S.G.Lee describes a
two-level micro-processor system which is ustd to control a

Unimate PUMA -robot C[10]. Mercer and Jincent describe ‘Func-

¥

tion to Function Architecture’ which is based on a set of

single card mlcro;compute#{ on a common bus [111].

q

k2 4 -

In the area of software hie?arcﬁy, Fr{edman [1213,.

Saridis [131, and Jappinen j?ld] have proposed various

approaches for structuring the thteraction of sensory pro-

tessing and command - processing. All use some version of a
‘world mOQel' to direct .cohtrol. functions, while sensory
functions: may moley:this model to adjust.to varying condi-
titons in the environment of the robot. The concept of ,world

Ll

model will be elaborated in section 3.1.6.

.

o

3

"lOf

] .

Friedman has identified the vslue‘of defining two com-
plementary brocgssxng sistems roperating 1n real-time, one
for sénsory processing apd the other for command pr;cesslng
Sensory processing may t}plcally be used by the command pro-
cessing system fof feedback and for learning, and command
processing may similardy Dbe used by sénsory processing to

o

brovlde contextual filtering of 1ncoming sensory data

o Sirldls has proposed a hierarchical control system

which consists of three layers organization, coordination

-

and hardware Cutting across the three }evels are three
hierarchies: command, vision and sensory The hardware level
represents the control hardware for sensors ‘and actuators

"The coordination level’ represents the drivers and filters

for sensors and actuators. The organtzation level represents

! 1

higher-level control aﬁifinterpretatlon. Sartdis agprqaén
. B i,) . . .
is based on the assumption that ({ncreasing “intelligence

implies decreased precision, i e, as sensory data s

L] . > A
increasingly refined the details are more generalized

.Jappinen has proposed the concept aof an acqu{red skill
'as a basis for a robot control system. Hfgher skjlls may be

def ined by combining lower skills tégether leading to a

-

[tst-1tke structure similar to a LISP program

o
N .
¢

Slﬁce the first space robots, there have been a number

of examples of computer,appllcatlohs-with'robots. However,

-

few commercially avatlable robots explioit computer technol-

.09y on 'anythlng but a relatively primitive level. Also,

»

L)

- 11 - o ‘ .
% . .

most appllcatﬁbns ‘0f- computer technology to robots in

+

research have been characterized by an ad-ho§ approach to

the problem -The most significant exception to this ‘trend
: , . A

has. been the work conducted by J.‘S.éulbus et al at the

National Bureau of Standards in WasnlngtOA DC.

/

‘ v

e

L

N

_12..

v

3. Derivation of the Cross-coupled Processing Hierarchy

N
t '

In 1977, R.G. Abraham et al undertook a general survey

&"
overing such diverse areas as robot

of research in roboti
[2N
'vislon, coordina e, transformations, servo-motor control,

navigation, assembly and so forth t151 Thetir survey

uncovered no work which sought” to integrate the

this diverse research into a generalized robot control sys-
/7

tem. Recent years have seen the beginnings of this type of

,results of

¥
i

integrattfon.

.
H

» .
A proposal for a generalized approach approach has been

presented by Albus et al [16—-22] at the National Bureau of

Standards(NBS). They Brgue that the complexity of real—i]me
TN

zontrol requires some sort of modularization, which in turn

i

may imply a hierarchy of organization. Addlthnélly, they
maintain that sensory pﬁocess}ng, in partipula; visual pro-
cessing, is inherently hierarchical. The result of their
work {is a cross-—coupled prbcesslng hierarchy cons}stlng of
‘n’ levels, with each level containing a command processing
module and a sensory processing module. Each level 1s also
equipped with'a world model which 1includes the .potnt of
interaction from contrgl processing to sensory processing,
as well as sensory processing which interacts directly with

14

control processing (figure 3.8):

In this chapter we desqttggfﬁow the NBS cross-coupled
/("‘ .
processing hierarchy is pullt from a chain of feedback con-

) ﬁtrol mechanisms. The fefdback control mechanism s derived
1
. i . ,

H

.= 13 -

using vector notation. The goal of this chapter is to fami-

1) 2

Itarize the reader with the NBS proposal which is thé basis

and starting point for the work presented in this thesis. A

preliminary discussion 1is provided in section 3.1 to 3.7 of

the vector notation used by Albus to introduce the concept

- of the cross-coupled processing hierarchy. The reader may
4 ‘ .

wish to continue directly to section 3.8 where the cross-

coupled processing hierarchy is defined and described.

3.1. Vectors

The simplicitw of the derivation tn light of the signi-

ficance of the results is a gredat strength of the NBS propo-

Aj' .)
sal. In this chapter we start by discussing the detalls. of//;
that. derivation. ; , //

. . i 3

/

/

The NBS-uses vector notation in order to de;IVe the

cross—-coupled processing hierarchy. Almost any;pfng £an be
8o ‘

represented by a vector in multi-dimensional / space.. In

’

engineertng and cbmputer science appl!citlons, the state of
a physical or logical process is ‘often répreéented‘by a vec-

tor of parameters An object may even be defined with an

l,abstract tomponent part such as time For example, if we

ﬁtesume that the .variable W rep}esents the state of the
weather, then we may define a vector W = (wl,w2,w3,wd) which

represents four component scalars giving speclfib informa-

?

tion about the weather (figure 3.1) .

® LT
R

These scalars may be:

[l

W

- .
// wl = temperature
S w2 = humidity .
/ w3 =.wind velocity o
o w4 = rate of precipitation '

b

Therefore, is a vector .defined 1in a £ouﬁ-dimeo§10nal

¥ 'space“ The space Sw r1s Qeflhed by all the possible values ok .

4

N
/r »
. . Swmspace
Figure 3.2 ' ST
- . ;
W. The trajectory Tw represe%fs thé path traced by the -tip

. LN . \ o
. L ’
b . -
' ‘ . . A3
v .
. * 4 B

Tt

/ v ‘o
'

- 15 - °

0f ‘the vector W as It changes through time (figure 3.2). We

can represeni theg value of the trajecfory Tw' at any one

point in time/ 1.e., Wt = (wl,w2,w3,wd, t) where t would be

' ¢« ‘Q\W
represented by a fifth dimension orthogonal to the first
< . . ' e @“QF
four.’ ’ ‘ : ‘
3.2. Functions ‘ -

[' °

A function defines a relationship between vectors. .Let

>

us presume that the vector S represents some set of input

variables and that the vector P representgfthe correspontding

set of output var}ables. Assuming a one to one correspon-

dence from each input variable in S.'to.a single output vari-

abie in P, we can say that there is some function H which

. Ss=input space ' .

Figure 3.3 -

o

describes this relationship. This is shown by: P = H(S).
Correspondingly, if S traces out a trajectory as .it changes
through time, then P may be presumed to trace out some sort

of trajectory also (figure 3.3). The function H therefore

-maps the input traJechry Ts onto the output trajectory Tp.

. o

b T 18 -
A vector may be\deflned by component vectors For exam-

‘\ . .
ple, let wus say that the vector is .comprised of two.vec-

9

. .
tors C and F, where C° = (cl,c2,k3) and F = (f1,6f2,63)

Ao

/ | / . \'\) SP=bUtput space

Tp

e

Fi'gure 3.4

Therefar®, S = (cl,¢2,63,f1,F2,F3) or § = C+F “If C remains
J

constant while F changes through time, then C defines a set-

\

L S v 5 o R
point. I1f C represents a vector of command. instruttions and

\

F represents sensory feedback, then it may be said that a

single C vector can produce'a variety of output P vectors.

In the example shown in figure 3 4, the C wvector produces

three output vectors using the three different values of the

F vector.

A

¢

17

3 3. Feedback Control Méchanisms

» ' .
vector notation can be used in order to represent a

simple feedback control loop wused for servomechanisms. A
servomechanism is used to control the angular position of 3/

s

robot joint. It is equipped with an actuator to move the

i

Jélnt in a positive or negative dlrectlén, aﬁd with a.sensbr
which measu}es the angle of the joint at any point in time.
The dlffg:jfce‘between the present angle and the desired.
angle |is knowh as the error The sérvomechanlsm acttivates
the actuatd} until the error becomes zero. In FiguJe 3.5,
t%e input vector S (s divided into two gubvectors C and F,
whlch/represent command and feedback respectively. The com- '
mand vector provides the‘destred_positton of phe joint, the

feedback vector the actual value of the angle of the Joint.

If the error is zero, then the value of P will indicate that

the actuator is to be turned off. If the error |is posftlve
or negative, then the wvalue of.P will 1ndléate that the
actuatqr must be gctlvated in a positive or negative dlrec-;
tion. The H Functiph fs shown by a box and ln;lcates that

it maps input to output variables, t.e., it is a p}ocesslng

modl.Ile ° 4

1f the feedback vector F requires some processing, sdch—
as filtering or conQer?ion from analoéue to digital[tﬁen a
new function G may bg required for the processing of the
sé?sory signal (figure 3.6). Tﬁe function G is défdned as @ °

= G(E+R). The E vector {s the sensory signal. The R vector

— -

a

£

B - P
\ N 7 l > .
. Position - L
;5;" Sensor - Actuator
lfx.gi;‘:? ,,_n—h‘_“\\-\)
=z . N
' Environrhent \'I'Q-——)
A

[N
P

Figure 3.5

is information provided by the H module 'to help in inter-

.

preting the sensory signal. 'The @ vecfor 1s an output hav- N
. : e qk
ing two subvector components-athe F vector (sensory feed- ’?L»M/
'back) and another~vector En whose purpose will remain unde-—
fined at this polnt. Essentially,- the interpretative func- Ve
- //’ -

tion af the'H function has been relocated in the G function,

Nl

L | n

F ' I
- _ .l |)
G je— H -
- ' X)

{ Environrment

e : Figure.36 * . o
. 3 , < | D

-

and a “two-way communication has been deflned between them.

a

- 19 - ‘(
Taking our servomechanism examhle again, this ~‘would 'fmply
that the R vector prov;des t he posittSnal goal, 9 calculates
the errg:; and the Fgédback vector F tells the H #function
whether {t should advance, reverse, or stop the motion of

the actuator. We have at this point two distinct functions:

an H function which alters the state of the environment, and

[}

'a G function which interprets the state of the environment.

3

3.4. Linked functions

It is possiblé to conceive of a linkage of H functions,
such thdt the output of one is used as the input of another,
l.éf: Pn+l = Cﬁ (f!gure'3.7) If there i1s° a difference 1In
the rate of cﬁange of the F vectors, such that Ff changes
frequently and . F2 and F3 chaqge'lﬁixequently, :h;n the vec-—
tors PL, P2 agd P3 will change accordingly. This is what
would be expected if Fl represents low-level]l] sensory feed-
back wHich .changes fre&ently,'and F2 and F3 represent more
hlghly:proceséed'sensory lnformatigh’whach chani%s less fre—~
quently. For e;ambleh let us say that F! represents posi-
tional feedback 1ndipat1ng-ihe present angle ofswa‘ robot
Joint. While the jotint 1s°moﬂlng, then F1 is continuously
changing. L®t us say that F2 reéresents a boolean value

4

indicating whether the desired position indicated by Ci has

"been :;qugg;\éll the time that Fl is continuously changing

in value, F2 s false. Once the joint has reached the

L]

destired position, F2's value becpmes true. The vector F2

«?

thus changes its value infrequdntly with respect to Fl. In

)
]

o ° : y 1 A
o Y -
v " R + 4
- 3

- ~

H3 *
Pz * = - NP
c2 o ,
EQ‘.——_’. . h ‘.

!

i | C | :It1

‘ S ——

, : r

‘
A .

—

- : ‘ ~
Figure 3 7 _ ~

sensory processing, the mdre highfy processeq‘ the iInforma-’
tion, the less frequently it tends to change. It is on this
ﬁbasls that NBS justifies the céncept of hierarchical con-¥

f

trol.

' Feedback conirol'loopg, such as the one shown in figure

3.6, may dlso be linked in a similar way to the H modules in
,) figure -3.7. In this case, there is an added output vector E
' calculated by the G functions. The E vector outputted by a G

function provides prerssed sensory 1nformition|ro another G
"

v -, ¥

funétion‘ 'lf we "take our servomechanism example once again,

. then the GIi functlon wpuld also provtde present posgtlonal
1n§ormatgon to the Hl module, and would,prowtde processed
sensory. lhnformat_lo‘n to a G2 module 1indicating lwhet"er' the
ﬁove has been'completed or not (figure 3.8)..

"
Aty

R

| .

V a

- i ‘q i '
o LI Y H3 | .
4 Ff3 . -
E3 | | p3-
c2
. F2
»
G2 |, HZ
1R2 7
, E2 P2
y { %
F2 cr -} .
1))" !5
\ , L [I I
. - ' . &
o
. . . P1
) Env1ronment,)¢
4 < . ’
Figure 3.8
3.8. 'Error Correctton
'_ .) [:.
, This .vector notation can also be used to 1llustrate how

errors can ngZorrected The' exxstence of an error implies .

¥

the existence of some goal or ideal., against which present

reality 1is being compared. I[n fﬁgure 3.9“th15 is shown by
e .
the trajectdries TSl, Ts2 .and Ts3. These f?ajectortes

.

represent the - ideal trajectories of the S 1nput vectors to

the H modules. An § vector Is slmply the sum of a ’‘C’ com-

. mand vector and an ‘F’ feedback vector, therefore a-single S
1 1

vecton_such as 52.1 traces a.path Ts2 through space accord-

ing ‘to the changes in the feedback vector F2.1 whereas the

" bommand‘vector C2.1 remains constant. When a new command is

.

(3

-
’ : ' - 22 -

f

«

invoked, such as C2 2, then a new S vector S§2 2 is def{ned

and all feedback 1is subséquently defined as F2. 2.

’Xn the first diagram, there..is a slight deviation of

o

Tsl from the ideal tra{ectory caused_bz,unexpected feedback

Therefore, the S1 vector has a slightly dlfferent value 'and
the H module is able to calculate a_Pl command vector which
will seek to correctt the error We may take an example of an
arc. weﬂding robot where the temperature of the arc 1s

ad justed constantly in order to take care of minor varia-
ki -\\\dfgz/q\‘hwht ifs significant is that the error detected by

.the sensors does not cause any change to the squgry pro-

cessed information béing sent to the next-highest level.
)]

n . r

-
In-the second diagram, the feedback error indicated by

LY *

the deviation from the Tsl trajectory has been large enough
to affect the sensory feedback information at the S2 level.
Therefore, the S2 vector .has a value whlcﬁ Jbvlates from the

ideal and thus the H2 module can output another P2 command

.

vector in an effort to bring the sftuation back to normal.

For example, if we continue to take the example of an arc-

weldfng robot; let’s say that the arc temperature drops

drastically to rodm temperature 1ndicat1ng that the arc has

falled or that the tip has been frozen to the surFace of the
/]

metal. Now, the sensory information being transmitted to)‘

the next highest level 1{indicates an error, and the path

traced out by the 52 vectors has been perﬁurQed.'

>~

PR Figure39% .~ ;

L I ’ °

3.6. Context Information

-

The context lnforhatlon provided by the R vector to the

e W r

G .hoduie can be fllustrated using vectors. "In figure 3.10

-
1
O .

. . ‘ .
two separate sensory information vectors, Ea and Eb, are
veryyslmilar'}n value. This means that the G module may have

some difficulty in distinguishing bet@een the two wvalues

e —

However, |f another vector R. is added to the E vectors such
that @ = R+E, then Qa and Qb may be much more easy to dif-

ferentiate. This 1s the effect that the R vector input has

‘on the G module, i.e., it provides a context within which

.

the sensory 1{information wvector E can be laterpreted. This

context is provided by the command which 1is presently

’

2

> _he

S~ 24 -
\ .
, ‘ \

’

.selected 1n the H module The M module 15 defiped 1y *he

~

. o Figure 3.10 S e

-

Funct1onEQ91ch~{3\:jspon51ble for context " informatton It

has .vector 1nputs -the P vector which s tﬁe\ouépub ofy

.th; H module, and an X vector which draws from vartous otﬁef
sources o} information.to ﬂelp lo‘tﬁe 1nterpretatlon of sen-
§ory information, although these QOQrces are not speclfled

Therefore, we have .the relation R = M(P+X) (F1gure 3.11). .~ zv//f

3.7 Prediction Informatyon .
} .

As well as providing context to the G modules tPL heip

L > ~

.

in the 1interpretation ' of sensory data, the M modules also

l ‘s
———

provide a predldtfbm of what to expect, { e., a goal or an-

ideal against which present sensory i1nformation represented
: ; : ”
]
by the E.vector must be compared in order to calculate an '
: .. N - \ N D
error. The result of the comparison ts then fed directly .
- ,

LJ

back to the H module

»

The M moaule can be;consldered to be hard—-coded when |t

r*:". .

‘ladder~like structure whereby each module 1is tmpleménted as

- 25 -

is nbrmallyl executing. dHowever, 't may also‘be placed in a

se)?—modlfying-or learning moue This s accomplished by

) \\‘
£ c
) “ . l
F 1.
. > . P=H(C+F)
N N=G(R+E)
Q o + X P R=M(P+X)

in ba?ning mod
M(P+X+E)=E

Envuronment
A

Figure 3.11, . , o

'
3

‘Inputting the E vector.directly into the M modyle. This is

indicated in fighre 3.11 by'the vector°_shodn ~as @’ dashed

T 4

_11ne‘ This has the effect of making the vector R equlvalent

to the vector E so the G module produces a zero error.

'

-

'g.g. Cross-coupled Processing Hierarchy

In tts final form, the NBS proposil consists of ‘n’

feedback <control loops ©built' on top of one another in a
L4

‘

a finite state’ machiné (flgure 3 12) The entire system exe-
cutes once - every time. 1nterval t=28ms. At each time inter-—

val, evary modgle samples tts inputs ang”determines which
\ .

:ehtry*ln its table corresponds to 'the .input vector. The

entry to which the vector paints may either contain an out-

¢

! - 26 -

3

put value or a pointer to a procedure which " calculates an

-

I o[13 S
h 4
) G3 ——— M3 lg—d
Y
A ;
! z th .
-) ' -
62 (g M2 |g—— ‘)
1 ‘)
‘ Y
) 4
Gl l¢—— ™M
l“ \ '\f *
. : ¢) .
- Figure 3.12 ' ’

output value. -

The National Bureau of Standards has thus)dﬁ?lned a
gebertc control system for robots based on the feedback con-

trol loop mechanism. The conceptual simplicity of the

4

Cross—-coupled processing hierarchy belies tts effectiveness

. {)
and its significance. It 1s one of the first serious

dttempts at defining a generic approach to robotics software
by capitalizing on the feedback control | p'mechéntsm well

known in process con%rol applications
)

<

- 27 -

4. lssues Raised by the NBS Proposal

4.1. Principles of Hierarchy

Hierarchy 1s a much used and perhaps even abused con-
cept tn the fleld of computer science It is useful there-
fore to consider how _hierarchy is wunderstood 1in general
terms, and ,ghen how 1t may be spg:xflcally applied to the

problem of ‘robot controf systems.

One of the purposes of computer hierarchy 1is to sim-
plify a problem by dividing 1t up into tasks and the tasks
fnto subtasks Top-down and bottom-up design in structured

programming are well understood concepts.

_ A hterarchy may be -defined using the‘ pr/:clples of
graph theory Specifically, some types of hierarchy may be
represented by a tree Any hierarchy consists of'two types
of objlects: n;:es and edges. Examples of, nodes could be
procedures, data structures, processes or computers Exam-
plés of edges could be commands, data, messages or communi-
cation lines. Nodes are cqnnected' to each other through
edges in a spec:fic w;y. A tree 15 defined as a graph of
nodes and edges in thch there is one, and on]y one path
between every pair of nodes. A graph with more than one
path between any pair of nodes is defined as a network and
would be characterized by the existence of at least one

cycle or loop in its structure.. 1In an oriented tree [23],

one node_ is designated as the root, and the edges have a
. ‘ ' ul
' v

28 ',.‘ I \

*
1

direction with respect to the root. The paths.star?ytT/ﬁthé

N

root and trace themselves out toward the terminal nodes or
‘leaves (figure 4‘10. However, (it is hcohcelvabié that in

some circumstances the reverse might be true, i.e

»

paths lead to the root (figure 4 2) ° -

[

., that all -

2

-] ~

A structured program may be characterized as an

orleg;s& tree. ‘The nodes and the leaves beneath the root
represent prodédures, and the edges represent procedure
calls. The structure of a program in a language such as C

c6uld be represented by a two-level tree\{:th'ghe root node
being the procedure ‘main()’ and the leaves connectea to the
root being all other procédures. This {s because C is noi a
block structured language where procedures may be defined
within other procedures. However, the execution of a C pro-
gram 1is not necessarily represenféd by a two—leQel‘tree,
since procedures may cali other procedures. By‘ contrast,
thg structure of a Pascal program would be represented by an
n-level tree! since prdcedqres may be defined within ‘pro-
. cedures to any level of nesting Beéause programs written
1ﬂ'c and Pascal execute serially, we can say‘that Fhere _ts
never more than one node which is executing at any time at

a

any level.
1Y \ N

However, there is no reason why. some of the nodes of an
oriented tree may not be considered to operate in parallel,
particularly those which are found on the same level. A

program written {in a language such as Concurrent Pascal or

-

£

L]

and each edge being a command pointing downward from one-

and calculating its output during a 28 millisecond time

- 29 -
< -

Euclid [24]1 may define processes which are allowed to exe--

-

cute concurrently. Similarly, the.nodes (i.e.” CPUs) 'of a

[

multi{-computer system operate concurrently.

-

in the NBS project, three such oriented-tree Ilfike.

’

hierarchies are defined: the H, M and G hierarchies which
- /

handle the\cpﬂéand, world model and sensory processing Fpnc—

tions respectively Although each level contains only one

naode implemented as a frnite state machine, the execution

sequence (s represented.by an oriented tree with each node -

executing serially (fligure 4.3). The H hierarchy is the one
which 15 the most clea?ﬁy articulated in the literature pub-
lished by NBS It is a simple hierarchy with one hode at

each“level, each node being a finite state machine or FSM

machine to the next lower machine(The nodes in the H

hierarchy execute in parallel, each one sampling 1its {input

slice. However, there is only one node on each level and no
means by which commands on any one level can operate con-

currently.
/

In the G or sensory processing hierarchy, each node may

also be an FSM §ccord1ng to the authors. The edges connect=

"ing the G nodes are directed upwards and represent informa-

“tion processed by ©One G module sent to the next higher G

]

module- If we consider the edges between G modules to be

refeérences rather than information flow, then we can‘say

2

- 30 -

that the edges are pointing downward The G hierarchy also

conialns only one module af§ each level and there {s no con-
»

currency. implied at any sidgle level, -

The world model, although conceived as a hierarchy, has
‘ &

not been represented hierarchically in the literature pub-
lished by NBS. insteaq,‘M modules appear tobe autonombus on
each levél with no edges expllcitLy deffned from any M
module to any other M module. The X wvectors, wh}ch are
1nténd;d to, carry'lnforhation'From elsewhe;é in tﬁe system

to the M modules, have not been defined by the authors'

. 4 .
The cross-coupled processing hierarchy as put forward

by ‘NBS consists of these three tree—-like hierarchies, H,‘ﬁ
and G, connected togetherj~to form a single system. Hodevem
because. the links acrgss the éhree hierafchies o;erate i*n
two directtons, from the H to .the G hierarchy: and vice
vers;, the t}oss—coupled processing hierarchy actually fForms
a network since a loop is defined at each level Another
way to desérlbe the cross-coupled pfoféssing hierarchy is as
3 hlerarchiés crofs-coupled lnfé a network, or {f an ;ftlre
level 1is eohstdered to be a single node, as a ﬁlerarchy of
feedback controi loops. It may be more accurate to qualify

the <cross-coupled processing hierarchy as three hierarchies

crossscoupled into a network.

»

It is the arranbement of edjes and nodes which deter-
mines whether a particular structure or graph is a hierarchy

and what type of hierarchy it 1s There is another way Lo

£

R

understand hierarchy which is less figld than thg? suggested
by oftgpted trees It is referred to as hierarchy by levelw
by‘érown and ‘Denning f25].' In this approach a new obJéqt ls
defined, the 1evel,kby its distance from the root. A iévgr
hierarchy 1is exactly like an orfented tree with the excep~
tion that an edge may exist between a néde in one }evel and

a node {n any lower level (figure 4.4). This implies that

there*may be more than one path from the root to a node, but -

"

root
) ;ot

Figure 4.1
ot LT e e
. ‘ - . /\‘ g : eve
$ \ 3
e ,g/ } - < level 3
/
g " L ‘/{ \é/$ i level 2
- .'J *
o 4’ 2l)
.) (M level 1
P) .~
Figure 4.3 : Figure 4.4 ‘
there still are no cycles. There is only one direction
defined from a higher level to a lower level. Xinu is an

example of an operating system written using this approach

‘C264.. It exhtibits the advantage of being able to access

lower-level routines from high le?gis without the necessity
of passing routine calls through the intervening layers.

kl

-

g

—32—) v

The nature of the nodes in a tree or level hierarchy is
usually straight-forward. In the NBS model, the }odgs are
FSM modu{és. However, the exact naturé of.&the edges also
merits/ discussion. The nodes of a hlera&ggy may be con-
nected by control f]ow, information flow, physical connec-
tions, parent/child relationships etc. In the NBS model,
the edges.of the .H hierarchy are command messages (1i.e.
invocations) sent from a hlghér module to the péxt lower
module. Later v:;sions~of the model also ;nc}ude a ‘report’
from Jjeach lowér H module to the next h;gher module The
purpose~of the report Ks to return the status of an, efecutL
{ng procedure. This is similar lo‘what happens when a C pro-
gram makes a procedure call. When the ‘procedure termlg;tes
fts execution, it always returns a value ip‘the calling pro-
cedure which may be used to indicate status. Therefore, the~

1nvoke—commanﬁ/return-reporq function 1in the NBS model may

be considered to be ahalogpus to a Cdpr'OCEGUl"e call

However, edges do fiot necessarily need to represent
procedure calls. - In the G hierarchy of the NBS proposal,
the edges are directed from*® the bottom to the top, and

represent the flow of processed sensory fnformation There

is no suggéstloh that there 15 any Informatton returned
the form of a report indicating whether sensory information
has been received. If one were to consider an edge in the G

v - i N D
hierarchy to be a reference to a lower module by the next
higher one, then the edges <could be considered to be

directed downward from the top, and this would imply a two-

\

- 33 - A :

'3

way communication similar to that defined fogé?’g H_ hierar-
chy. In the NBS concept, edges are used to,represent infor-
M} -
. \ 3
mation flow between nodes, whether the informatifon s com-

mand information or sensory processed information.

In the context of a robot control system. however, edges

’»

*may represent other more specific relationshl&ﬁ bef.ween‘)

» e

nodes as well. They may represent messages sent fram oOne
néde to the next. A message may contain either control or
data information, dépendlng on how it is interpreted, but
the '1mpliéatlan is that the communication is only one way.
There is no status report returned to tﬁe calling module

unless {t 1s implemented by using a second message.

i

Edges may also.represent events., 1In such a hierarchy,

¢

. i]
there may be a central controlling program which interprets

events and readies processes according to various combina-

tions of events. In short, a structure which is stated to

be hierarchical may not actually be so from the point of

view of Standlgh’s oriented trees or Brown and Denning’s
hperarchy by level. Hierarchy is used in many diFFereqt
senses, but may be generalized to refer to a%y sy§t§w§iﬁ‘
which more than oné leve! has been defined Snd where” +the
levels are related by degrees qF difference of a set of

.]
attributes. : x

sj -
In summary, there are two justifications for the use of
ey)
hierarchy in a fgbot control system. First, hierarchy pro-

vides an appfoach’by which the enormous complexity of an
.- % '

/// ") . A i

application problem\}may be subdivided ”ln;o smaller more

manageable subproblems. Second, hierarchy may provide a

- -

method by which a‘task may execute subtasks concurrently
. , . . -

© “

4.2 ' Robot Control System Concepts

3
-

-

4.2.1. Application of Hiterarchy .

In the context of robotics, hierdrchical control may be

characterized metaphorically as a kind of structured pro-
gramming applied . .to mechanical control. In a structured pro-
gram, the o¢perands may be records, files or other data

ftems. The operators are arithmetic or‘lojical In vrobottic

b

6on€rolh the operands are objects and tﬁe operators. are

actions which are done to phystcaaly alter the position or"

- . . 1

composition of the objects ' ' , .

[

Complex systems tend to be best managed through ‘some

sart of hierarchical approach. Early in the history of.com-

puter programming, an executing program would need™ to take

' a1

‘care of all computer [/0 and other system operations. A pro- .

[) .

gram would even need to load its ownI}oader,befzfe {t could
start execution.. It soon hecame clear thgt if anoiner~p;o—.
Q:glr'a‘m were to run at. a level.hlghe} than the appllcatlon:pro-
, ~ gram, ‘then such Functiona as ioddlhg ;nd-[/O éou{d‘be'off-
- loaded from the application. Thisomeant tﬁat“th;‘appllcatioﬁ
programmer _ co;ld :cokcentrate more on thelactual natLre ;f
- the apgllcatlon,;anq less on loadiing and Tld: A goodqlndlcaf

.- . -

_'tion of the sophistication to which dpenatlng-systems'ha‘v“>

. .) . ' : * /

o

Y

-"35 - | §
< -

-

evolved is provided by the work 6f Brown 'and Denning [25]
outllﬁlng thetr multi-layer Bberatihg system. The principles
they articulate may be applieg to robot control systems with

some ' differences related to the nature of the control prob-

’ \. O
. T lem. ’ . N @

o

The deveLopmént of structired programming was similar.

Until the aavemt.df such programming lanéuages as € and Pas-

cal, dpplications were written in a slngle—iegel Fashioh,

-

i.e., every statement . of the\progkam was accessible fram

every(gther statement, and there could be any number of exit

L]

. L . :” .
points. As applications became more complex, it became more

difffcult to write good. programs. The advent of structured:
!]

X

p}ogramming introduced hlera(chyviﬁto”programming where pre-

‘viously none ez;sted.-lt allowed the programmer to do his

Job Iin a more efflcleni'mahner by simplifying the program-

ming process, t.e., by b;eaklng“it up into small manageable

It’ ’

syb-tasks. .It also led to the development of higher perfd&y-

mance computers with staéks, lntgrrupts,’memofy taggihg etc.

In robotics, the%nJhber and soghistlcation of 1/0 dey-

fces 1ts growing.. A robot’s 1/0 devices are used to measure

A

or.alter the ehvlrohment, as oppose& to a 'computerfs 1/0 .

3

1 . :
“devites whose purpose is to read ar write data. A robot’s

A

1/0 consists of such devices as touch, force, pdsition and

~

. optical sensors along)pith qctuato?s and end-effectors.

The only input devices installed on a typical (ndus-

trial rob:t today are joint position sensars which allow the
» ‘ ' ' '

-~ .

~ -

3 ! -36_

- robot to be servo-controlled, and a command console. A pro-

“gram for such a robot 1s usually a simple linear seduence °ﬂ,

.
" —

J " "joint positions with no conditional branchiag:"or subrou-

‘precise, ‘for the industrial robot usya}ly has no means of

detecting the objgst’s presence or absence This of course

an _automotive‘ arc—~welding robot may start welding thin air

\,
if the assembly line associated with it has broken dowh.

-

" Certainly it can be argued that an arc-welding robot mlghF

be more cost-effective {f 1t were able«to do a weld accord-
. ¢ .

3

as to ldentify the car model and adapt 1ts programming
N . r .

accordingly.

P

N

v
-

’)helghtensf the necessity .of ' looking at more sophisticated
, oy . -

robot control systems. This is not to say that an existing
. .

operating systeﬁ such as Unix may be applied to raobot con-
. » -
- trol;, the .constraints of the problem are quite different and

) the 1/0 devices of a robot demand different treatment

L.

¥
L -

: Systems . o ‘
. R ' ’

v ' -‘ N s

' 1f we presume that a process in a robot control system
represents a skill of some type, then processes do not need

. e - . *
ot to be created or destroyed. They may be started up at load-

time and allowed' to exist indefinitely. In a timeshared,

‘tines. The-position of the object ta be manipulatéd,must be

may lead to some rtdicgloué‘situations where,” for example,:"

ing to the actual position of the seam to be welded as we[l'

The growing range 3and complexity of sensory input-

4.2.2. Differences Between Robot Control and TYimeshared

N

, = 37 -

~

computer operating system such as Unix, processes may be

created or destroyed according to the often unpredictable

"needs of users. This ects such things as memory alloca-

v
[

tion, virtual memory, prode!g‘managément etc..

, »

In a robatic environmeﬁtt the operator of tné robot may
be .ﬁonsldered to bé the only userf There i's therefore no
user ﬁont$ntloﬁ for resources 1n the same way'as thgre'is‘in
a‘ timeshared environment, { e , a robot control system.ﬁés
different constraints for resource management than a Eom—
puter operating system. Processes cooperate rather than com=
pete for resources. The interaction -of such processes {5

‘-

similar to that of the ‘task Fofce"concept of Jones and

. Ousterhaut [27,28]. They, define a~task force as as a _group

of lndependenk concurrent procéssés which cooperate in order
to accomplish a single predef\fned task. In a task }orce, the
tasks of a :robot control s tem rely more on one,angther
than 1s the case with processes in a typical multiprogram-
ming system. In contrast to a ta;k force however,'there Is a

clear hierarchical structure to }he set of tasks Inter-

process communication therefore takes on special importance.

-

For the purpose of clarity, this thesis\wl}l refer to a pro-'

cess as ' an independent executable unit commonly found in

tlmeshare¢J&ystems whéf:kthey compete for resources and have

no functional relationship . to each other. A task will be

referred to as an independent executable unit which'is gen-

erally more functjon specific (1.e..smaller) than a process

-

and also competes for resources byt which Has\\kr Clearly

\
~

e

W

-y

. ' ' , — 38 - ')
, eagﬁ’ _’ :
defined and idter—dependeng relationship with other tasks.
.0 \

TA rdbqt control system may contain within. it some pro-
. cedure for moq1€ying its own structure, 1.e. it may have the
ability to learn or to optimize its performance. Thls”us not : \

typical of a computer operating system. : T

The purbose of a robot control system ts to effect some.
change on the environment, such as painting or welding
Therefore, the robot control system will usually have a goal
or an ideal with which [t can compare the present situation
A computer operating system does not require any such goal

L : ‘ o4
or 1deal with which to compare its present activity, apart
‘ * "

 from low-level traps lndicatlngﬁbotenttally disastrous error

conditions. -

Réal-time constralnt; in a robot control system are
&emanding Sensory data must be processed and decislons mad &~
with spiT® second timing. fﬁis s true particularly In the
case of exceptional or emergency conditlons, such as a work-
‘man . stumbling into a robot’s work area If a rogft control
system |is deVelope& entirely ad;hoc, then an off-the-shelf
oberatlng system may be used as a basl; for execution. How-
ever, an off-the-shelf operating system such as Unix or (RMX
£29]1 may contalin too many features that ;re not required.
As well, it may n&t contat’n features which are required,
such as support for hi@h-prlorlty expept}on conditions.
Certalinly a Qtandard multiprogramming operating system such

~

as Unix would bé inappropriate for run—-time use, although tt

'
A

- : .’.'. 39 -
R - [} A - i
- 3

-

may be suitable for development purposes. AD oberatfng Sys-—

-

tem such as {RMX or some other system intended for ‘proceés
ﬂcontrol‘ may\ be more approprléte for. run—time execution
}RMX for example, may be cbnflgured in suc{ a way 'thai‘ it
does qoﬁ contain htéher—leQel fFile and process management
features of a more sophfsticated Bperanidg system. Somehow,
a robot cohtrol system needs to comb{ne the real-time
respoﬁslveheéé of process control ;ith,the sophistication.of

¥

. mylti-user timeshared operating systems. '

d

4.3. Real-time Operating Systems

a

jw

1. "Timing Issues

4.
——
N
\

A robot control s;gtem be considered to be a very
sOphisticated real-tlmecfontrél system with stroﬁg stllari-’
ties to proce%s control. A rear;t;me operating 'system 'ﬁas
stringent‘Qreéuirements ‘on performance. ‘Itymusr be able to
receive and process aéynfhronous‘evenis within “strict time

-

response constraints. Rﬁ?l-tlme systems for process control

2 -

have often been designed ag-hoc since time response con-
straints have been so demanding, however there are now
avatlable off:the—shelf operating systems such'asulRMx which
‘are designed to provide a workbench for the déslgn‘of pro-

cess control applications on a single computer.

s

. The NBS approach to real-time constraints has been to

deslgﬂ the cross-coupled hierarchy such : each finite

-

state machine at each‘level‘executés at everg e interval

~ 240— .' /

v

t=28ms This lS"aéceptaplé 1F fge procedyre pointed to and
executed by an FSM podu]e at any time does“not'requxre more
tlﬁe, The 28ms constraint must accomodate the siowest pro-
cedure in the system, 1if hlgﬁer‘ levels are adde& to the
cross-coupleld p;ocessing hierarchy which exhibit greater
sophistf%ation, the 28ms constraint may need to be relaxed
fn order to accomodat; the longer processing time required

Albus states that the constraint that a procedure must have
finished 1its execution within 28ms ma; be relaxed so that
execution ma; cross a time interval boundary [f the time
interval boundary is relaxed, then the response time of the
procedure is some multiple.of 28ms and the response time of
the entire system has t; be altered accordingly. The cross-
ing af a tlmg 1nter§al :poundary’ also requires a .certain

amount of processing overhead to manage completed and ifncom-

pleted procedure states. By comparison, in a timeshared

operating system where time intervals are not used to deter--

<

mine process gchedulxng, procedures or , processes may be
scheduled to' execute, be interrupted, or terminate at com-
pletely unpredictable times. Additionally, the fact the
~each "finite state machine module'is required to sample ttg

-

inputs and produce an output at each time interval may ‘mean

o

that some modules will find tHat their lnpugs do not change
from one time fnterval to the ﬁ;xt, or change onl}l slowly
There- would therefore be no need for such a module to exe-
cute at all {f it could know whether {ts {nputs have been

éﬂtered or not. In operating system &eslgn,f§uch a scenartio

&

%

- 41 -

L R N ,
where inputs are checked on a regular basis is referred to

as polling or busywaiting The alternative approach is for a
change in input to cause a interrupt which informs the sys-— .

tem that the new input 1s available for th2 module

The cross-coupled processing hierarchy may bﬁfpﬁ(fed to
Vs .
faster hardware in order to overcome timing canstraints as

the finite state machine modules grow An alternative might
be to restructure the software of the control system in such
a way that would minimize the processing requirements of the

finite state module and {ts pnocedu&e entries
i

(-

Although the three hlerafchies; sensory processing,
waorld model and édmmand decomposition may theoretically
operate concgﬁiently, the actlons‘defined by any one module
cannot. A significant example i5 the lowest—level c9mmand
\ decomposition moaule, where many actions could be considered
to be " taking place simultaneously 1f allowed to The fact

-

that each module 1§ defined as a finite State machine means
that only one output 1s permitted at a time. The action.or
output from this module is a single 1linear command stream

tnitiating andltermlnatlng actions

4.3.2. Multi-computer lssues

. .

The NBS project includes a proposal for a hardware.
implementation of several Intel 8086 mlcrb-proceSSOﬁs and a
PDP-1{1 mini-computer, Inter-processor communication s to

be implemented using a ‘mall-drop’ system whereby each com-

J

, - 42 -

~
-

puter writes to and reads from a common memory at every time
interval The application 1s partitioned across the multi-

computer network by assigning the lower-level FSM modules

each to a 8086 micro-computer and plactng the remalnlng‘

higher—-level modules ln“;he mini-computer. It 1s possible
that a particular module does not fully explott the
resources provided by a mlbro—computer and spends some time
waiting for the end of the time 1nterval Also, the inflex-
#GTZ’;artitiqnlng of the application may cause “difflculttes
~1f the number oF’procegsors is variable due to thg fact that
the smallést object which can be moveéafrom one processar t&
another {s the FSM module [f there were a means to parti-
tion almodule across more than one processor, then a more

efficient "means of distributing processing requirements

might be devised.
o

Another issue {s the use of common memary FJr& message
transfer. . Common memoéy is a relatively fast and easy way
to implement lnterfproces?or communication, but common
hemory requlres‘ that the processors be bus-compatible aﬁd
that the physical distance between the processor be within a
narrowly defined»limlt.'lf a new processor were to be added
to the computer network, the bus—c%mpatlblltty problem;

might be considerable

If common memory were not used between processors, then
an alternative means of inter-processor communication would

need to be ‘implemented Processors may communicate using a

£

—43_

paraliel commdntcatlon port, i.e , a bus, or a Sj‘;al 1&ter—
face such as Ethernet New problems then arise, such as how
and whether ér not the processors'are to be synchronized
with one another and what is to be the communications proto-
col. The use of a multi-processor operating system may'also
be implied in order to render the hardware‘ transparent to

the application

4.4 System Development

Determinism of execution refers to the fact that ' every
conceivable set of input conditions has a pre-defined output"
associated with it. The cross—coupled processing hierarchy
is a deterministlc system. Such a system_optiﬁlzes process-—
ing quﬂv but at the cost of flexibility and a consequently
reduced capacity to process exception conditions. The NBS
work suggests that there has been considerable grappling
with this f{ssue, particularly in the the work of Shneier and
Kent (30,311, vwhose developmeng of the “ sensory processing
hierarchy fqr the cross-coupled procesétng hierarchy has
produced a software architecture which 1is very different
from the command decomposition hierarchy with which it is

intended to interact.

The NBS apbroach_to system development is to design H,
M and G modules by defining each as a finite state machine

with stajes¥able entries pointind to output vectors or to

procep~i»@ which calculate the value of the output vectors.

This approach produces what is called by Holt a monolfithic

. - 44 -

monitor (321, which includes Sll hardware and software sup-
port. An alternative would be to separate out of the appli-
cation those facilities which remain constant from one
application to the next; in short, to develop an operating

system as a workbench

In the workbench approach to systeﬁ deve lopment, either
a two-tiered module 1s produced composed of the application
and operating system linked into a single load module, or
the appllc;?ion is linked and then loaded onto a computer
which already contains ‘the run-time operating system The
lower level is the operating system, which ma; provide vari-
ous system facilities to the application such as scheduling,
memory management, file management, interrupt handling etc.
Although the operating system may ttself be designed as a
hierarchical system with information hiding between layers
as described by Brown and Denning (251, to the aappllcatlon

it appears as a single layer and that is how it will be con-

sidered here.

.

The development system need not be the same as Ehe
run-time operating system. For example, the application may
be written on Unix in C using j“ special library of robot

procedure calls, and compiled into a load module.

Any application is often structured using a particular
object, whether procedures as in Pascal and C, tasks as in
Concurrent Pascal (331 or modules as in Modula (341]. The

NBS project uses FSM modules as the main object to structure

which it has no table entry, {t

- 45 -

the application and it shows both strengths and weaknesses.
If tasks or processes are chosen as the main object for exe-

cution, then there is the possibility of concurrent execu-

tion of the commands contained within®a single FSM and flex-

P

ible partitioning over hardware boundaries

4.5. The World Model

+

A robot contrpl system should have a means of

representing the robot’s world at any given point in time.

Separating a world model from -other control system gom-

ponents is- one qf the First Steps in bullding,alsystem
unique to a roSotics appllcafion. The {NBS world model {is
designed to provide command contextuaﬁ'information'to the
sensory processing‘hierarchy to help in the Interpretation

of sensory ({input data. This concept may be expanded to

fnclude memory of previous events, heuristic processing and

3
5

r

~ " - (S

learned behaviour.

’ In its present Fcrh, the NBS system has the capability
to learn incremenfally if a giveﬁ set of sensory 1nputs 1isg

not recognized There are two ways of. accomplishing this:

first, when the system detects a set. of input conditions for

halts and walits for the

] » N
operator to {nsert a new table entry to han?le the present

'

set of conditions. the sensory information vector E

L 4

an M module which resets its output

Second,

can be inputted 1into

vector R to correspond to the same value as .the E vector.

D

...46_

4!i .

The world‘modeL ts described by NBS as a hierarchy of M
modules, with an X vector representiqg cbntextual informa-
tion derived from elsewhere in the system, providing the
hierarchical structure. Unfortunately, -the nature of the X

vector input is not speclﬁled,' so it has not been possible

to examine ™ in greater detail K - "

4 6. Exception Processing

o« .
Exception "processing fs required in the' case of , some

.unexpebted event, such as an unidentified object inside the

Ed

robot’s workplace, or ‘a, potentially destructive reading
detected on -a sensor‘s input Exception processing may be
characterized by two types self-protective reflex action,

s
and reasoned response to a change i1n environment An excep-

‘tion may provoke either or both of these reactions depending

on 1Its nature A reflex action 1s e tially a lower—level
, *n .
response. AN unexpected object 1n.the path of a robot arm

[y

must provoke an immediate stop or an avoidance manoeuvre

‘This responée would be implemented in the lower levels ' of

the processing hlerérchy Subsequently, the robot arm may
have to call for instructions or notify a higher manufactur-
ing level of the event This response would be the result‘of
a messages sent to the highest command(Ievgl, whlch' i1s the
decislon levél indicating what move to take next A robot
contkoi sysiem must take ln%o account the need for high-
priority processing to resbond to real 6r poteﬁttal.ené?gen—

>

cles.~

)
[« -

P N .)
- 47 -

B
5. Ihe Design of a Robot Operating System ,

- - *. The problem o; a robot operating system {s {llustrated
' ‘below with the specific example of an jrc-welding rbpot.
° The detailed definition of an example was of greatﬂ useful-
ness in {nvestigating the lssues associated with a robot
‘operating system and in demopstrating the viabtlity of the

.proposal made in this thesis. | ' '

5.1. An Example of a Robot Application

¥ .
The example defined was that of a hypothetical arc-
welding manipulator with five degrees of freedom and fts

\\ implementation_ is described In terms of <cross—coupled prd-

L

cessing hierarchy and Concurrent Hierarchlcal Control. Arc
. é\ L]
welding was chosen as an applitcation because several of the

2

L4

tAssues introduced in chapter four may be addressed by dis-—
'cuﬁsidg and concep;ﬁallzlng an arc-welding system.; “The
van}ety of sensors and actuators required for intelligent
arc wéldl;g is r;ch enough to demonstrate a reasonably com-
plex‘appllcatton. The application lends itself to some sort
of“struc:gred programming which can.i}lustrate the h{erarch—

tcal _and multi-proce€sor issues implied by a sophisticated.

robot control system.

t

The operation of a sensory controlled arc-welding mani-

7 o

pulator requires real-time processing and ‘can thus i{llus-
trate the probléﬁs encountered when a sophisticated

- hierarchically-organized system is required to operate under
- . ! (1

. :;:}

o
T

Y

~ 0 - a8 -

1 ¢4}

rigid time restraints. One measure of an arc-welding (oqbt

used in this thesis fs the number of\sensor and actuator

1

‘messages it can support per second (i e how quickly tpf'cqn

§espond to its environment)

The concept of exception processing can be well fllus~
trated with the application example since arc weldtng is by
nature a hazardous job, and an 1ﬁtellngenx robet must be

equipped to react instantly to potentially dangerous situh-

» N *

tions. The example also provides an opportd%lty_to address

issues related .to the concept of the world model.
[¢) -

In designing the example of an arc—%eldlng robét mani-
pulator, J.Engelbérgér proved -to be a vaIQ§b1e squrce of

-

information [35]. In arc welding..ah electric arc 1s gen-
erated between the welding electrode and the metal sgr;gce
to be welded The arc melt® the electrode as well as the

metal surfaces along the joint to be welded. A ‘constant sup-

e

ply of. electrode'ts moved forward to replace the electrode

which has been melted and deposited tn the weld. When a-

" Joint is to be welded, the initial step ts to turn on a con-

tinuous flood of an inert gas such as helium or argon. This

4
s

ﬁreyents the molten metal from oxidizing. Then a voltage
potential 1§‘generatéd betwéén the EIectrpde'qndbthe surface
and an arc is created. The position of the e}ectrbde needs
'!o‘ be at an dptimum distance from the joint in arder to

‘start and maintain the arc. If the electrode is too far then

there will not be enougﬁ.nea;'generated\to form a pool of

4 .
- 49.—
,
. an . B
.
1 t
)

molten metal. [f it Is too close, them the pocl of ‘molten

" meta’l will be téo hot -and too much of the metal surface will

melt away ‘If the electrode is touchlng'the metal surface,

‘“M

1

-

»

bhen"the_voltage across the arg¢ drops to zero and the elec-
¢ -

' T . o
trode will freeze to the metal surface A good weld will be

one in which there-is no metal build-up or blow holes

i

N -

Our theoretical manipulator is presumed to be equlipped

with devices to measure the following environmental con-

-

straints: - N

! ¥

position of joints 1 to 5 °

temperature in the vicinity oF the electrode
constant supply of inert _gas - X
constant supply of electrode material

flow of inert gas, on/off

-velocity of electrode material

start-of- -gap/endrof-gap indicators

range to gap to be Jolned '0-10 cm

x -

-

* X X X X XX

o

. ¢ . i
Our theoretical manipulator also has actuators capable

of the fetlowing primitive actions: . ' « ///V&

e,

move Joint 1 to 5 to a given angle
increase/decrease voltage to electrode
turn on/off inert gas ’ '
ad just velocity of electrode materijal

recognize start-of-gap/end-of-gap

x X X X X

~J ‘ ” * !

/ /°—-~___ ._‘__/./‘-—-\\ /' AN

Severg/é%vironmental constralnt5° such as heat smoke'

/'
pa/&(are not considered as part of the probLem defini-

tlon, althotigh they are nonetheless important. However, the

L Y

goal' of -this proposal 1is to 1investigate an-alternatjive.

approach to high-level control systems. -
» \
An example of an H hierarchy with thrée finite state
e v

.
f
" ' ¢ :
) - . ' :
e o . ’ -

i ! - 50 -
- s
\ : " ‘ -
machine modules has been derived and 15 provided in appendix

: . > ’ o
one. It'is a system comprised of three levels -of the com-

mand decomposition hierarchy. The first step 1n:design1nq
e . © i

\
the arc-welding ‘example in the cross—coupled processing

hierarchy was 10 define the sensors and-actuators and to
: éb§eflne the:H! module which supports them. Each tablesentry
provldés .;hree fields for input and tqo for output- the
three input fields form a vector comprised of the input com-
mand, sensory feedback infcrmation'and the,repgrt from the
lower“H module, the two output flelds comprise ‘the‘ Qmmand
- output to Jthe low;r H moddle and a report.returned to the
upper H module. Level H2 wae defined wusing ,thé tabie
entrlég of (HI, slm;larly H3fwas defkned using the entries gf
H2. UnfortunaieLy,flnsufficient information 1s ~provided as
to the exact nature of thecG and M hierarchies so there is
no meansﬂtd'efFectlvely deptve an example of them based on
:)

the example arc-welding manipulator

. Several processés within the same FSM module we}e ldeq—
 tified that ?ould conceivably take place in parallel In
module H1 FBr example, such ,*uﬁctlons as ménltorlng and
a&Justlng the arf voltage, check1n§ the iempératdre, moving
the actuators could all be imPJementéd as tasks executing
continuously rather than funcglons which are simply turned
on or off as in the cross-coupled processing hterarchy - In
appendix two the arc-welding.‘exaﬁnle is altered by first

identifying in the Hl, H2 and H3 modules elemental ' feedback

control loops and implementing them as discrete concurrent

4

-%

wf

. addressed 1in the example. < &

- 51 - _ . \

tasks. By.so‘doing, each task may be dpétcaibd to a single
Functfon; a;d is free to execdtg\BFTbéi e;ecute.accordlng to
demand, and the functions may be continuously monitored
rither than simply turned on or.off. In the ancurfgyt

Hferarchical Control® example 1in ‘apaendlx two, a more

detailed representation of the interaction of sensory pro-

cessing with command decomposition 1is provided than that

which could .be represented for the tross-coupled process]ng'

hierarchy. The world model hai,been distributed among all

the ‘tasks so that each maintains an image of its little bit

N
A

of the world; it is conceivable that a task may ‘be prompted

by another task to return some information it has stored in
o8, 3 :

its world modelP, although this has-~- not been specifically

- L 3

-

§.2. Concurrency : ‘ . =
r . .
b

There have .been numeroué proposalg over the years F.or‘

— -

programming 1anguages which support concurrent or parallel

o' ¢
processing. Brimnech Hansen [36] has developed a set of basic

~

principles that may be applied to languages which support
b ,

concurrent pfocessiﬂg.' Among, these, are CwQﬁurrent Pascal
] { . \‘

£331 and Modula [34]. : Y

e
/

) / r
In the <cross-coupled processing hierarchy, parall(?\

~

exgcutl&n exfsts because of the multi-computer hardware

arch!teé#ure, wlth‘lower-level‘ﬁodules being assigned one
N :

each to an Intel 8086-based micro-computer .and the remainder

' v
being assigned to a POP-11. It does not appear that:. any

-

e

-~

- 8582 -

, s
subtasks .within a module operate in any way but serially,

although 1t is suggested by Albus 'that the FSM modules may
éﬁecute‘ concurrently ‘on a single mlni—cohpute} if the need
existed. An FSM module is a very large object to manlpulaté
and distribute across.a‘ﬁurt14computer architecture wWithout
there being inefficiencies in the process{ng resources a-llo-
cated. A more flexible appréach to concurrency may be
applied to ?he monolithic levels of the cross-coupled pro-
cessing hierarchy The simplest way of dofng this woulé be
to redefine the procedures potnted to by an FSM ;;dule's
state ®able as concurrent tasks The module‘ln this way may
still bs defined as a finite state machine, bui_ the pro-
cedures\ may execute concurrently as tasks, ind'the smallest

ob ject of independent and therefore concurrent execution has

been- reduced in size from an FSM module to a procedure.

%

Such tasks may be divided into two types sensory tasks ana:

4
command decomposition task{g:>

1f each<procedure ls defined as a task, then each task

in the appllca%ion must have~assoc1atgd with it an execution

~ - s ,

priority. Sensory tasks should:ve gn@en‘ high priority for
the same reason that interrupts are given high priority in a

data communications network, because the interrupt may con-

tain .some {nformation required by a high-priority wgttfﬁq

task. Command decomposition tesks mi} therefore be given
lesser opriority. In this way, some of the inf.lexibtility of

the cross-coupled hierarchy can be dealt with, and resources

more flexibly allocated to where they are needed. for

-

[

- 53 - &«

gxample, a continuously executing sensory task which checks
for potentially dangerous conditions can be given a ;llghtly
ﬁlgher)priority and exclusive access to a very high pétority
command task designed to deal with emergencies. The command
task would rema&n suspended from uslpg system real-tlme
resources uﬁtil‘ an emergency condition was detected and it

was scheduled to execute.

Another slightly different approag? may be to de?lne
more than one finite state -machine at any level in the G, M
or H hierarchy In other words a broadened adaptation of
the NBS system with concurrency both betweeh levels and on
levels The Tlpité state machines may then execute con-

-

currently, and the application may be more closely charac-

terized by a Petri-net (371 Petri-n&ts are a modification

of finite state machines,; instead of requiring that a

machine move only from one state to the next, a machine can

‘move from one state Eg’several others and then back to one

state or on to more For example,‘movlng from one state to
several others may be,p implemented "by one finite state
maéhlne_calllng several others to execute conéuc!ently. The °
call would be cgmp}gtgqewﬁen all the machines had terminated

execution ' .

§.3. Communication and Synchronization

In the crossrcoupled processing hierarchy, communica-

tion 1s 1implemented (n a simple and straight-fdrward way
e

B N2 i .
%& 4 through common memory. Synchronization does not depend on

-~

- 54 -
communtcation bdut on the time interval of 28ms

A broadened approach to a robot control problém which’
explo]ts ﬁodern operating system design principles would
réquire more complex communxcatﬁon and synchrontzation tech-
niques . Presumabiy, the greater communication overhead
fmplied is made worthwhile by the more effective use of sys-
tem resou}ces and grgéter flextbility Also, in a system
which does not execute in lock-step at ;very time ln&erval,
communication needs to be.synchréntzed where ﬁeéessary such
as is now the case th an operating system 1like Unix where
signal() and wait() system calls are defined for ﬁrocess‘
synchronization. The communication lines Qefineq(between
processes may be characterized by the edges betwegn the

nodes of the control hierarchy

Presuming that concurrent tasks are the primary pro-
gramming tool, then there‘ aré .a number of ways in which
.tasks may communicate Th;y may communtcéte by pipes sudh
as processes do wunder Unix A pipe 1s an unnamed file of
any size under 4K bytes whlch' acts as a FIFO or first-
lnlflrgt-out queue. In Unix, pfoducer‘ and con;umer
prbcésses execute~concurrently on a ﬁlpe, 1 e ,lthe consumer
does not need to wait for the producer to complete execu-
tion. Therefore, a whole <chaln o:‘ concurrently exe;utlng
processed can be defined using pipes, and the chatn acts as

J

a single program As soon as information has entered the

pipe, the <consumer process can start execution, and the .

v

S

- 55 -

-

operating system enﬁu%es proper f{nformation transfer. If
the producer or consumer process fails in tts execution or
Unix is unable to effect the transfer, then Unix will inform
the user that the pipe has been broken, and the program ter-

PR

minated. ya

Another means of communication 1s through messages A
message sends information packets only one at a time, there
is therefore no FIFO queueing as with pipes A message may
be wused to send information, to indicate that an event has
taken place otfto signal a process In a message transfer,
the sending process may or may not be inForﬁed whether the
transfer has been successful or not I any additional
fnformation ({f required; such as the ~status of an ipvoked
proceés returned to a calling process, then th}ﬁ will ~usu-
aily require a separate message Message handling requires
some sort of operating system facility to effect the
transfer. e’ may be that messages are handled py a single
system message handlér, in which case- messages could be

.) &
prioritized and queued by the system.

1]

One of the implications of message ¢transfer {s that

messages do not necessarily need to be processed FIFO. In a

.

real-time system, i{f a new message has been received by a
process before an old message has been processed, it might{"“

be preferabhe to process the new message flrst'uand% dlﬂcard
v " :
or save the o0ld message,- if the new message has more

S
N

relevent information or a higher priority. 1In a robot con-

- 56 -

trol system for example, 1f a sensory process 1s m&nttorlng
the environment and sending messages ti a rééeiver process,
any previous message sent to the receiver process will no
longer be valid since it no longer represents the bresent
state of é%e environment, much like yesterday’s newspaper
does not give today’s news It may be preferable that the
receiver process 1ts messages LIFO, or last-in/first-out, or
that {t only process the most recent or . highest opriority

’

message

" Processes may also communicate through procedure callé

This 1s an approach used in Modula as dgscrlbed'by N.Wirth

£34)]. Processes may be defined in a Modula program so that
gldbal procedures are available in each process which are
available to every other process. The advantage of using a
\\///;?ocedure call 1s that there is always a return from the
call which 1ndicates to the calling proéess whether the pro-
cedure executed properly, and by implication, whether the
information was properly recei1ved by th; reéeivlng pracess.
Also, a procedure call may be invoked directly by the cal-
ling process without the need of i1nvoking any kernel facll:
ties 'glthough thls- is becauge the enttire appllcatlon\ﬁas
been compiled and linked into a single load module In a
mu‘lti-processor system, a remote procedure(é}ll may be used
to implement a program distributed across several proces-
sors. Schravastava and Panzieri ([(38] describe remotelprb-

cedure calls i{n terms of client and server, which correspond

to the invoking and the invoked procedures respectively.

- 57 -

When a client wishes to invoke a server (remote procedure),
*

ft must send a message over the Intgr—processoi Iink The

client will then wait for the server to return a reply mes-
sage when It has completed execution Although the praogram
syntax is In the form of a procedure call, the mechanism |is

actually an invoke message followed at some point by a reply

message.

5.4. The World Model - S

v

An example of a world model Function'May be gifven by
the task Cl (figure A2 1) for checking whether the welding
tip has Bpen fnadvertantly frozen to the metal surface to be
welded If the task 1Is active, then it knows that a very
high temperature and voltage is 5@ be expeéted. Unde} some
circumstances a high tempergture may be considered
dangerous ' For example, high temperatures are not ~“ekxpected
when the task Dl is executing and the gap 1is mereﬂy being

inspected to ensure that its dimensions are within accepted
4

tolerances But 1f €1 {s executing, then we know that D2

L4

,has invoked it and the context indicates that high tempera-

tures. are expected. If the temperature should dip and the
voltage drop to zero, then the task knows that the "tip has
been frozen and an evasiye action should be initiated This

. .
ls the same as the context inFormatxon, function provided in

the NBS world model. There may also be a task defined to

implement learned behavioutwg. Taking the system {llustrated
. =Sy,

in figure A2.1, we may define an exception processing task

- 58 -

D3 into which most or all sensory processed 1information s
sent, and whose solé®task 1s tb check for previously recog-
nized Patterns in order to take evasive actioﬁ. The pat-
terns to be recognized may be hard coded, or the task may be .
equipped with a heuristic that allows it to correlate sen- .

sory patterns with task reeults:

a4

The world model may\be Implementéd as an abstract data
type [37], 1| e ,~an object comprised of data structdres,plus
commands which operate éxcluslvely on those data structures
This gives advantage.to the programmer throQgh 1pformatloﬁ

/\.. Ak
hiding The compiler or development system takes care of

the details of structures and memory blocks and access to
them {s only through a clearly defined set of procedures

Since the J;orld model is intended to represent the robot’s
internal and external world, there would then be two 'data
structurgs: a sensory data structure and a command data‘
structure. A sensory daggystructuré would store all pro-
cessed . sensory information provided by a single task and a

command data structure would store the currently executing
' !

commands in a task. ' 4

In the NBS proposal, communication of world models 15
defined 1in one direction, from H module to G module: It
provides context and prediction tovthe G modules. However,
the world model might also be deftnéd to communicate tn the
reverse dlrect}on, from G modufe to H module, imply?ng that

its function include learned response.

, ‘ wap<’

' . - 59 -

<

1f the world model’s sensory data structures contain an
up-to-date representation of-all sensory informatioh, th;n
i1t would represent everything ' the robot knows abodt its
external world. BThis would allow the world model to recog-
nize patterns which may elicit 5 preprogrimmed or learned
response dléferent from what 1is presently executxq§ in the‘H
module. For examﬁle, if the robot were trying to 'achiéve a
certain goal but met with no success', then it mlghti consult
‘the world model to see if apother sequénce of commands is

permissible given the present state of the world as indi-
y .

—

cated by the sensory daya structurg. This approach to the
Qorld mo&el thus seeks to enhance the NBS concept of world
mode] to providg for the capacity of learned behaviour. This
capacity might be . presumed to exlst already within the
cross-coupled processing hierarchy, but ({t would have to

constitute part of an H module

Rt

Applicatton development may use the world model as -a
structuring tool; for example, 1f the robot application were
to be written using Modula, then each level might be written

as a module containing one world model and a number of

Q%\nwtasks. Tasks would communicate using procedure L calls, and

the world model %ight be defﬂne& as a monitor thereby ensur-
ing mutual eiclyslon Building up the system may 1involve
writing one module per level each containing a world model
and several sensory and command ta§F§ associated with {t.
The. modules would be deFXneg from level one to level n and

be linked together itnto a load module Externally defined

-~ 60 '~

i

S . - -

sys&em calls would allow inter-process communication between
” \

The’ modules. Or, the world modei may -be dLstrtjuted
throughout the sy;tem, with each patr ‘of sen;or§7335ﬁ}§3““f“w
tasks having access to their own private world model “Access .
to the world model of another pair in the system woudd
f;qulre a command to 1ts associated comfand task «‘/’//‘

\ ~“Tr_e'wq}f“ld model may also be aéggchated with procedures'
to 1mplemen{ adaptive learning and heuristic behaviour. ' A
world model which 1is capable’of sglf modification 1in real-
time would present problems {F‘Ehere:were no reFerence,polnt :
against@which lé could compare jitself The NBS proposal
daes provld? for a means of statically modifying®or ‘bre-
setting’ the wbrld‘model,where the programmer provldés the

i

real world reference point,.

Exception Processing

)

-

Implementation of excthldh précbssﬂig requires the
inclusion of task péirs at a.layer where the exception can
be identified and appropriate action taken A ref{ex—type
action will necessarily -‘be on a lower layer, e g., in the
case where an evasive manoeuvre is executed when visual sen-]
sors detect a sudden massive change in the perceived pat-
tern; 1in such a case, the pattern has not even been recog-
nized yet by the higher centrés “we may refer to the task
palrs as a seﬁsory exception task a;d an assassin respec-

tively. The sensory exception task should be able to receive

messages from all Jlower-level sensory tasks, and the’

»

- 61 -

e y

y assassin should be ab&e to execute or te suspend any*of‘tqé
. lower-level command tasks. For&example, as soonﬂas the sen-
‘sory exception task detécts an unldentffléd object in tﬁg
robot ‘s dorkspace,'a messagé 15 :sent to the appropriate
world mod;{ to check‘whether thé command context changes ghe
way in which thé sgnsory informgtion should be 1hterpreted.
If the sensory 1nfonmatlg%,indlcates a definite excedtlonag

condition, a®hessage tndicating this fact 1is sent to the

3

assassin which can then'take evasive action. Sensory excep-

‘tion tasks and .assassins are assigned a high execution g>

priority but would be expected to execute infrequently.
o~ . o

» o~
T—— .
~
? ~N+ . -
: BN
— 7
. A a
- * -~
s ‘ LN :
. ;) N ‘\‘ * 1 e . R f- —
o "‘ i . , K - /\
- . . o » { .)

-~ - - 62 -

6. An Approach to Deveiqgment Concurrent Hierarchical Con-

trol

.
~

At !
A distinction can be made between a robot control sys-
tem and the operating system which must be designed to sup-

port it. This s the “workbench .approach to appltication

s

design, in contrast to the monoltthic approécﬂ of butlding a

dedicated applitation as a single program The ;yétem

-

remains constant and provides fdcilities to the application,

This aflows the programmer to design and load different

3

tééEE”ontg/Lﬁe existing system as opposey to redesigning and
)

relinking 'the entire system each time, here¥ore improving

~

programmer productivity There ts much which {s provided in

- -

a multi-prog}ammjng operating system which {g not ré}ﬁlrad

-~

ln a real-time system. Partlcularly such facflittes as pro-

cess creation and termination, memory block management jblr—

tual memory and .file management may efther not exist or

| | Y

exist in a very different form in a real-time system. By
¢
contrast, other facilities such as interrupt handling and

)
-

message switching may be optimized - ’ ‘

—

o Tntzﬁzﬁapter describes a proposal for the design and

Q . -
tmplementatlon oF. an operating system which supports ‘Con- .
;\Jrent Hieﬁarchlcar Control based m\u/fhe prtnclples out=
lined in the grevious.chapter, and which will e referred to

as Concurrent Hieranchlcal Control Operating System, or
. W ‘. ! ' .
CHC-0S. = CHC-0S5 s an attempt to apply operating system

destgn principles to the problem of a robat control system

4

s

/_,.—I-...,-

o . - 63 - . ‘ 1

Py

while maintaining the ({ntegrity of the NBS .work Much of

CHC-0S has already been~simulated‘?ﬁd'proven to be wviable,

fn particular the task manager and message manager. . /‘
Fl A . M

. «
A significant feature of tdﬁgproposed pperating systém

ts that it 1is a message-based system, implying that the

sending of mes'sages between .processes ‘or Jdevices and

processes is optimized. To ensure that the receiving process

.2 . 14
maintains an up to date view of the warld, exclusive prior-

(%N

ity attention may be given to.the most redent message sent.

,Pfeviou§ messages may be <considered out* of date -and no

of

longer valid. This is in contrast to a timeshared operating
. e . .
system where all meséages are queued and processed FIFO and

no messages are superseded. Another significant feature is

-

a A . .
thatgthe operating system 1s/jptended to support a multi-

processor hardware configuration and make it ‘appear as a

single #ystem to the programmer. ' It is because of this that

»

the system modulds contPolling messadés and .communications

‘have been given | their prominent positxons -+n the 0S hierar-

t

chy so that a single set of message sour and destinations

may be defined across the system. Since the task force con-

figuration may only be added to and not taken away from,

.

i.e., new tasks may be installed but no task ‘may be ter-

. 1

minated, then it is possible to keep the same message tablé

in each processor arfd to make updates of ;he fnstallation of

a’new task in aﬂ;ldgle processor by broadcasting ‘to all pro-

cessors. ' —

- ' ‘ J ’

- 64 - i Co

- * v
! -
-

~Th€ layered structure /of CHC-0S was modelled after the ,

5

deslgn of the Xinu operating system which is a scaled-<down

1 '

version of Unlk £261, and after Brown and Dennihg's work on
. . ‘ >

multi-layered operating systems (2513
-

A\ . . \
Appendix three provides a list of procedure calls ¢for

CHC-0S. ~ . | ~ ,
’ \\
6.1. Architecture “&f’ b \ -
S .
6.1.1. Feedback Control Loop) e

?

The feadback control loop as described by Albugp et aj
. .

'is a fundamental component 6F\any.process control applica-

tigon and has been. in wide use for a long period of “time.

The principle of feedback contfog is easily understood and
examples aboynd‘of its use En everyday life, éuch as ther-
mostats in a home or motorcar. FHC-OS uses feedback control
loops as the atoﬁlc‘bulldlng b}i?%, unlike the cross-coypled
processing hgerarchy in which each feedback contrplnloop.ls
made up of three finite state machlnes‘whicn make up a sin-
gle tlevel The reason for making-the feedback control loop
the fundamental building block 1is to ‘render the control

problem more manageable by defining feedback control loops

for spegific functioas rather than for every function which

~ . —

must exist at a certain level of abstractlion. It fsgcon-
ceivable therefore that -a single level {n the <cross-coupled

. . P [
processing hierarchy may requlfe sgverél Feepgack control

]

loops If lmplitsgéeu under CHC-0S.

<

~ - 65 - ‘ i 3.

T,he':"feedback,!cont.rol loop (figure 6 1) contains a seng

sory processing -procedures, command processing procedures,

<

and world model- procedures and each loop contains the fFunc-

tionality exhibtt,‘ed'by‘a level in the cross—coupled process—

-

A «

Pt
- £ ¢]
$
N k3
- ¥x * MBS Feedback
M Control Loop
+ report
feedback invocation "1
' ® Cﬁﬁpmm -
’ | Sensory Context & |_Comrnand N) .
Processing Processing Concurrent Hierarchical
Rnsory
. . Control Task
History |
sensory invocations !
input
. - ¢
’ Figure 6.1
. A ,_
tnb hierarchy. It is intended that each lobp be written n

-~ S

C and\the nature of the program written is left to the pro-

grammer; a loop may be written as a finite state machine -or

[}

it may be written using heuristic algorlthms.\\ The only con-

“straints imposed on the praogrammer are ‘the input/output con-

[4
ventions to be followed in order to lntegrate the loop into

the system - The key of CHC>OS 1s that each loop is a'single
t.ask and may execute independently of other tasks according

]
\

66

to priority.

6.1.2. 0S gtructure

T

The structure of the operating system designed to sup-

port .Concurfent Hierarchical Comtral Is described in this

section and 1s represented diagrammatically in f:jures 6 2 -

2

L

)

: - System Manager: SYSMGR

User Manager: USRMGR
T

: MSGMGR COMMGR
_\-

Manager Manager

<,\ Device Manager: DEVYMGR |) ’
'
Task Manager: TSKMGR °

.
Memory Manager: MEMMGR .
¥ - " - \ 3
- ‘ ° Figure 6.2
and 6 3 A detailed descripxnon of the procedure calls

which have been deﬁﬁned at each level is provided in Appen-

-

dix three. In the.remainder of this sgctton each level is

described and i{llustrated with example procedures written in
C. CHC-0S 1s not synonomous with Concurrent Hterarchical

Control sinte the latter includes an ‘approach to program

development and user environment; nonetheless; it s an

-

E

essentfal component of the proposal.

-} -Message Comm ’

~

[

_67..

A scaled-down stmulated version of CHC-0S was written
and executed 7in order to'test some of the concepts on which
ft is based. The hardware consisted of Ewo Cadmus 8000 ‘éom—
puters connected by means of Ethérneg; the Cadmus 9000 is
based on the Motorola 68000' micro-processor ana supports
Unix. Each level of the 0S was coded in C, although not all
feafures described were supportéd It was demonstrateﬁ that
inter-processor message handling, the schedﬁlxng of tasks
agsording to message priarity, the definition of /Unix-like
system calls to support lbw-level robot tasks and‘the flexi-

ble Partitioning of robot applications over several processors

were all viable concepts worthy of further research

The Kernel

ghe kernel supports a ‘small number of low-level utili-
ties which (ncludes conPext switching, device IO and the

commuﬂqzatlons link. The kernel is the only part of the

¢ !

system which needs to be written i1n assembly language in.

order to interface with the hardware. All other modules are
Q >
written in C.)) *

The ﬁemory Manager: Memmgr
[2

Dynamic allocation of memory segments is not required
since (n a rélatlvely static system, tasks can be loaded

using absolute memory addressing. However, stack and queue

".management procedures are vrequired to support procedure

calls and task management. Stack space may bé allocated-

L)

- ,,-f%n
1

Unix CevSya

<

» |
install

setpri
invoke

Sysmgr

N\

___,__.;—"‘"'—F—-‘-__'_
'ad __,—;—'-'F_‘-—
;/ pans ~—
I"‘ I" / \\
!} f' readmsq Usrmgr readcomm ,
' | _setmsgpri N \
) — ' ——
tl tgete tskstat B \- T
qetc Isksta —_— \
‘l tpute entsk /"“‘\ I B i
| topen ,, \, wrﬁ escomm ') 5, ','
I . “telose trpsfrmsg 1 writeccorm A ',\ ','

‘\ . | |
newtsk Msgmgr }-—" T-— Conmgr || !
ready] "*-.._“_R R | ‘
suspend resetpri ‘1 | sleep
resched zetpri aete ." wait I

getpid . Sute ready v f
ready ‘ ; }
suspend l ! ' /
wait / C
changeowner Devmgr v f
* AN] / i newquele
K : ~— { - ” enqueue
——‘_‘—\-—_'f ,""\\ re ,dg f./ :‘ dequeue
’ NN T Qtests
r ¥ [‘
_-" ; P
! Tekmgr]
. S insertd .. :
; \ enqueue ~".' '=
! dequeuve ; ;
‘\\.. : Qtests .| : / et
— ' ~ '

Memmgr

Figure 6.3

rd

wait(sem)
\swnal(sM
|

ctxsw

incomm
outcomnm

69

dynami{cally and 1s manipulated using either stack or queue
procedures. The following procedure implements the procedure
‘dequeue’ which 15 used to remove an item from a/quade

whereever it is located on the queue:

struct tsktabentry rdyQ(203;- T~
dequeue(item)

int {tem,
{

o

truct tsﬁtabentry #¥mptr;

“mptr = &rdyQCitem];
(/// rdyQCmptr->@prevl.Qnext = mptr->qnext;
f‘ rdyQImptr->Gnext]. @prev = mptr->Qprev,

T, _return(item),;

The Task Manager - Tskmgr

n

The task manager is responsible for sch}duling tasks to
run on a processor. It keeps tasks in various queues, indi-
cating their present state, such as ready, suspended, sleep-

ing etc. The task manager hmay be called to reschedule the

4
processor, usually after an lngerrupt has been recefjved,
where it will <choose the task on the ready list with the
highest priority and give control of the processor to it.
Since there 1{s no ;equlrement for virtual memory and page

swapping, the executing task environment can be saved -and

the new task environment restored with great eF@tciency.

The task manager also provides procedures:. which can
alter the state of tasks and manage semaphores. Also, each
task has defined to it a set of inout and output ports which

are used for message passing. An example of a task manager

procedure ts.provlded below:

g

resched() ‘
{ ’ i
struct tentry *optr, /% old regs #/
struct tentry #nptr, /% new regs »/
optr = tsktablcurrent]; .
if(toptr- >state==CURRENT) &3 o
(lastkey(rdytall)(optr >prto))
return(0OK); A
if(optr->state== CURRENT) { R

‘1F((gett1me()<LlMlT) &&
(lastkey(rdytail)==optr- >prio))
return(oK), ‘

}
nptr = tsktablf(currtid= getlast(raytall))]
nptr->state = CURRENT,
enqueue(currtad, currtall),
ressetime(), :
ctxsw(&(optr->ps),&(nptr->ps)), /% switch. #/

<

The Device Manager. Devmgr ‘ ' -

- 4 .
The device manager handles interrupt drivers for all

physically connected. devices, including sensors, actuators

and any other device required to operate the system such as

discs, consoles or communication lines The purpose of the

dévlce,m;nager is slmpiy to effect the transfer of an “input
byte to a Quffe} or an‘ougput byte to a port fhe fnterrupt
Arivers are ertten in C When a processor has~been inter-
rupteg because of an lncomi&g byte, then the.devlce éanager
lnterrupi rouétne selected by the lntecrupt vector execute;,
and reads the byte Dff the device port The task manager
then selects a user-defined device driver and places the
6yte in the task’s appropriate input buffer and schedules
ihe task for execution. While the 1ntenru§t routine is exe~

cuting, the interrypted task is still the owner of the pro-

cessor, even though the processing it is doing is likely of

P
PNt
P

71

‘no iInterest to it At the end of the interrupt routine,

typlcal1y/the processor will be rescheduled and cohtrol may
pass ~to another task; this 1s same way 1nterrupt routines

are handled {n Unix. If another byte 1is read before the

device driver task has been able to use the previous byte,

then the previous byte is overwritten 1n the interests of

prioritizing the most recent {nformation

>

All the device interrupt routines for -all processors
are included in the device manager, however only a subset of

the total number of devices will be attached to any one pro-

.cessor. There are two ways of dealing with this situation:

first, a standard set of interrupt vectors may be loaded,

into each processor as long as no two devices anywhere in

"the system are associated with the same interrupt number;

. second, izg loader determines what interrupt routines to

associate

ith a vector according to a’ processor/

device/address table at load time

An example of a device manager procedure which reads

devices 1; ﬂspvided below:
/. , fx

Y

tl

bl

readdevidev)
int dev,
> ,
if(devtabl[dev]. type !='r/’)
return(SYSERR);
switch{(devtab{devl state) (
case DEVREADY-
devtabl(dev]l. flag = RECEIVED,
i ‘ e | returni(read(devtablCdevl. fp));
- : break; :
case DEVBUSY:
) — walt(dev),
break,

4 <

The Communications Manager: tommgr

\

The Communications: Manager supports 1n£er—pr6cessor
communication. A task may write a sensory or command mes—i?
s;ge dfrectly to a destination in any other processor since
it can tnitiate a message to another machine, however |t
cannot read from anothe; machine slnpe it cannot know what
is the lAtended destination of any incoming message. Any
1ncomlng message causes an interrupt scheduling the system
task (TSKO) for ,executi;n which then calls the Commgr to
read the incomlngﬁmessage and determine 1ts type and desti-
nation. The following procedure 15 an example taken from

Commgr.

-73-

.readcomm(bus, srctype srcid,srcport, msg)
- char, #bus;
’ int &srctype, #srcid, #srcport, #msg;
{ .
FILE %fp,;
fp = opendev(bus,"r'),
if(fscanf((fp,6 "Ad "Ad /d Ad*, &srctype &srcid,
&srcport,&msg)= EOF)) {
closedev(fp), -
return(gEOF); : '
}
else {
closedev(fp);
initdev(bus),;

¥ - o,

The Message Manager: Msqmqr

The message manager (s the level at which all message
passing between sources. and-destinations {n-.the system is
controlled. A source or a destination may be a task, a dev-

fce or a Unix file. Whenever a message is passed to a task, 7 °

A :
<543 ‘ " the message manager will call the task manager to ready the
receiving task and to reschedule the processor on the prin-

ciple that the sending of. a message‘may make séme waiting or
- .

suspended task ready for execution It ts the message

-- ~manager whith is primarily responsible ForQ:task scheduling

4
Ay i

"in the processor. The following procedure 1s used to write.
[#] N

a sensory n\e‘ssage from a lower to a higher-level task:

)ﬂ ’ - ¢ -
. .

£y
rew® et L

S

L 4

1

= 74 -
tputco)) - N
.int dst; :
char msg;
{ .
' struct msgtabentry %msgid, .

int src

src = gettid(),

msgid = msqgtabCsrc,dst]

1f(msgid==NULL) ,

" return{SYSERR); -
. switch(msgid->status) {

g case OK: .
usrtabldstl inportimsgid->dstl = msg; .
enqueue(Qprio, tsktabldstl. prio);
tsktabldst] prio = msgid->prio;
break; .

Tase SUSPENDED: : .
' return(SUSPENDED); -
break; ;
default: --.
" return(SYSERR);)
})
}

he User Manager: Usrmgr

i

The user has has no routines unjiquely associated with
it but nonetheless is an important part of the system Only

one other level exists above the user manager and 'it does
o e
not require any Usrmgr routt in order to manage tasks

since this may be done through the task manager.
»

Usrmgr acts as the interface between the user program-

mer and the operatlng’ system and has access to a seét of
GHC-0S system routines which are exported fhrough a header
called ‘Usrmgr h’; this ensures that the programmer has

access only to those system routines which are of fnterest

” -

to him. User tasks have access to a subset of subroutines

n

in Msgmgr for effecting message transfer, in Memmgr for user

list management, and in Tskmgr to allow the task to put

L

- 75 -

itself to sleep or optionally to wait after ilnvoking a

lower~-level task. When -tnvoking a lower—level task, a user

task may wait until the inv?ked task has reached completion

g or has been pre-empted, or it may contiinue executing con-
currently. If topen() 15 called to invoke the task and the
Jjnvoked task already belongs to the invoking task, then

there is no EhangeA

- A
Device drivers are also defined as .user tasks and are

.under wuser control CHC-0S 1s Intended merely to effect
}" byte transfer to or from’'the device drivers and does not

- ‘imply any interpretation of the byte stream.

» The System Ménager; Sysmqr

k2

The sy;tem'manager is udlquely associated with the task

N

TSKO since this the only task which Ras access to Sysmgr

.

routines. TSKO is scheduled by the commuqﬁthtfons -mangber

9 —

for execution when a message is being receiveg on an incaom-
" ing lnter-;;oceésor communjcations lin;f although the same
is not true for outgoing tnter-proce%sor communications
slncé that may be done by any-user task by using the mbssage
maﬁager. ?he'system~manager is also scheduled for executlon.
by the clock lnferrupt routine in the device manager and by
other 'hard%'re interrupts such as the communtc;tion&—pq

it must therefore be able to dlstlnguish interrupt types and
to do the housékeep}ng associated with each_type? The

interrupt routines handle the system clock and- emergency

interrupts such as power failurevor segmentation fault. ~.

d : -

W . B - o

- 76 - LA N
Al l\!f’

q

The system manager-also acts as the 1interface between

.-

the Unix syétem and each satelllite processor and is defined

with a set of procedures to pef@;ﬁ‘bnat interface The pro- ,

g

cedure ‘presented below 1is used’to implement a stmple invoca-

tton from the Unix Devegopment System to any task {(n a

: . ,
= satellite processor.: : ’

. -

¢

invoke(tsk), ~
int tsk; " »
{ o . .
ready(tsk),
resched(); .

6.1.3.- Operating System Tahlés -

As iﬁportant as the definition of systeml subroutines
for an operating gystem ‘are the stem tabBles. Most
timeshared c&mputer-operating systems have a standard com-
pl@mentl_of . tables thcﬂ are used to keep tr;ck of system
resources. Such standard tables include free memory? lls{s

. ,

. " and ‘mapé to virtual mskgry, process \Q:fles and device
tables. Since CHC-0S does®not nee; to haﬁdle a ‘dynamic i
timeshared environment, the table strufturgtﬁs simplifted.

&Jhe\tagk‘table dogs not veed to co;tatn quite as much ln;;r—
mation ‘as ; process fable; the free Memery list oﬁ%gineedé‘
to bother about alloéating medory bgt not gﬁrbage collec—
tion. " Virtual ‘memory'ls not required. }ﬁe primary differ-
enceyis the emphasis placed on messages in CHC-0S, .exemplt-

"fled by the -fact, that a system |ressage table has been

' "defined for the use of the'meséage manager n grderJvo coor-

—_— @

r i | \\ ’ ©
r . — K ‘
. dinate all inter-task communication i1n the system. -Also, in

a multi-computer envirorment, fﬁ?‘t@bleg do not need _to ‘.be
, : . T \ C
N AN updated from ,one system to tthe next, since every processor
. ' ' R : \ r E
Has an up-togdate view of what every other ppocessor con-

o

tains A descriptidn of each tabie is given below and the

‘&'{able structureibare provideg in Appehdkf three
~ , - 5 ~, ' v

- The méﬁ0r9~table ‘Memtab* keeps -track of remaining
unallocated mefhory as ? single block Memory 1s’allJEagéd

, -y R
\\;) pJ upon request as the application system s being built- up
w ‘ e gv 4 . ?
- uAtil there ts not enough room left in the memory block.
. . g

‘ The“task table ‘Tsktab’'provides the environment for
X ‘ ’ c 7
- - context switcthg. An entry in this table‘grovldes the

& € taﬁk's name— status, etc. Although within 3 feedback _con=

trol loop many of the indivtdual ﬂancttons haveﬂ been

0

“

\

} \referreﬁpto ‘as tasks for the sake of dbstusslon the only'

. , object whlcn is understood by Tsktab is one entlre Fgedback

M . A - . a e .
w- . P contrbl loop which is scheduled for execution as an entgiy.
- 4+ ,The %ﬁvice table ‘Devtab’ contains entries for devices

. “of two 'typeE, sensors‘énd actuators, therefore devices are
' N [' -
either input or outputr and ngt both -
. M
R B The message table ‘Msgtab’ contains information relat-
‘ - ‘ /

' r

fng. to each intér-takk link and defines message as a system
. / N '

—

- <

- P . . - . . '
tion regarding the priority &§f a message, séhrce and desti-

? . .

.)

/" natton’ and present status such as response pending.

' . i - ‘ .]) ‘1 | “
o , a‘ » ' ’ ~ R A ""'l 'g/
o g ’ - Ty . .
B R SR

3

"]A object in its own right. A Msgtab entry .includes {nforma-,

v
f(
v

*

AL

L

) | ~ - 78 - v |

o~

With each task 1s also associated a user struggure

-~]
-

s - “~ l\ .
referred to as ‘Usrtab’ which . containsg a

“ —
™,

user task has access-and where system user - procedures

. - N e
may interact Specifically, Usrtab contalns eight 1nput and

eight output méésqgé\bqntg which are assigned.by the install

program when the task 1s installed.

]

gﬁl.ﬂfﬁrhardware ,
s* ! .-
Concurrent Hierarchical Contror‘1; intended to run on a
set of Motorola 68000 based processors kflgure 6.4) The
i%raﬁgement of processors is hierarchical 1; two levels; one
mother processo; runs Unix and is required-for developmenf
and déwploadlng,léhd one or more satellite protessors - are
ioaded with CHC-0S fram Unix The Unix processor supports

terminals, discs etc , whille the satellite "processors sup-

Wport only sensors and actuators and require no other perf- -

4

Etherpnet

.
PR

T — '

- et HNM \\ .
t . Deviopment Satellite Satellite Satellite
.. 0 0 9
, Syem ¥

RIS

R x\h Figure 6.4 :
N S

r

-

pherals. Sufficient $emory is installed in each ‘satelliite

‘pna{qssor to abrogate the need for virtual memory. Communi-

) . : . /
cations takes pld¥e through an Ethernet s/‘frta'l link.

"" - - > ' F . -})
M : : \“/

¢ ® 3 - . L

L —

a
ke
5

i

€

- - 79 -

M '
¥

-
v

L

-

A simulatlbp of several modules of CHC-0S |has alr?aqy
Been wrlttéﬁ using a }wo procesgor conflguratioh gach pro-
cessor was a MC68000-based Unix.system and cthunlcated with
the other by means of Ethernet The modules which were

simulated in order to demonstrate the viability of the
A .

architecture 1included the memory 'manager, task manager, and

message and communications managers

6.1.5. A System Example

.
In figure 6 5 15 provided an example\of a system which

indicates how various capabilities of Céncurrent Hierarchi-
cal Control and CHC-0S may be exploited In the example, a
set of sengof;, S1, S and S3 have beén defined along w{th a
,5et of actuators M1l and M2; the sensors and acuators do not
necessarily restde on. the same processor. Another set of
lnﬁut/output obiects have beeg defi1ned in order to vhelp in
sfstem development, conirol and monitoring, these are a Unix
fnput file, ‘testfile’, a Unix output,Flle,h'lbg' and a Unix
terminal, ‘ttyo’. The +tasks Al and A2 are user-defined
drivers which read inputs and calculate the appropriate out-
puts as feedba control loops The tasks A3 and A4 are

» -

drivérs provided Oy e system.in order to fnterface to the

[2

Unix file system. /

«

Taking the sensor S1 as an example, if an interrupt 1is

' recelved by task Al from S and Al has been opened for exe-

cutlion by Bl, then it will executlet tﬁe priority level

[#ssigned "to, it by he Bl1/A1 command message and check its

“

- uset” invoke

v

Ci1

Al a2 |
N S
‘ PN PN
St} M1 S3 M2
s
Figure 6.5

fnputs Al will find that a message 1s

PN

testfile

A4

ceey

tty0 §

Tog

waiting to be picked

.db from S1 and may also check to see {f a message is walting

4

at S2 as well If there is no message walting at

1

S2, then

the read may be bfﬁcked or non-blocked depending on the

desire of the programmer. Al will then execute and prcduce

a

two outputs, one for the actuator Ml'and another to send to

Q -
the task Bl1. Also, if Al completes its task, ,t will return

°

. 'an eotsk, or end of task, message to Bl which terminates the

B1/Al command message

L]

Task A3 is a driver provided by the system which lntér-

v

Faces to a Unix File by sampling from ft at a certain rate

.whlbh is determined by the. person dgwploidlng :the- system

-from Unix. This provides a means by which a‘progrqmwsg can

’

3

O)

4

" enter test or other data into the system Task A4 is a sys-
tem provided driver which receives input from a Unix file
defined as a TTY device and another file defined as an out-
put lbg to record pertinent system events _ The {nterfaces
with tasks A3 and A4, {.e., the input/output ports, must be
defined to Unix - through its file system thereby allowing

;

dynamic user access to the Concurrent Hierarchical Control

1

system by means of a file interface
' - -

The'system example also fllustrates exception process-
fng. A The command message Cl/B! may i1ndicate that an excep-
tional situation.has arisen End that Bif should therefore
take coﬁirol of all A-level tasks and‘perhaps shut theP
QOwn. The message has a hlgh priority which would cause the
task Bl)tp execute at a.high priority. Message priorities

" are set from Unix and may be‘done dynamically allowing the

programmer to fine tune the system.

6 2. Application Development . ¢
‘ « . ‘>
)

All user tasks are written {n C and compiléd “in the

-

hY

include thé,Flle

Unix mother processor The programmer‘mustl

's;?fule.h’.lg order to gain écce@s to system procedures,
interrupt routines, and bqffer‘addresses ‘Sysfile.h’ may g \\~
e "

also be edited by the programmer 1in order to insert sensors

aqd actuators. Each sensor or actuator needs to be identl;

A

. i o >
fled by name, home machine and “hardware interrupt number.
|
The programmer will then compile ‘sysfile.h’ with 4
. Pl :
'sysfile.c‘_and other files through a Unix 'make"co@mandﬁtn

v

\ , -

- R . 3
\ «, . .
. . ‘)

- 82 -

‘order to create ‘sysfile’ which will be the new system
object module bf which CHC-0S 1s loaded into each satellite

processor. Discrepancies from satelllfg.‘b satellite are

resolved when sysfile is downloaded ¥

&
¢

The procedures which are available to the user program-—_
mer In sysfile h are quite few but may b@.lncreasedlby the
user slﬁce most of CHC-0S is written 1n C The " procedures
which are available® are shown below wlfh thelr accompanylng’

parameters: . . o

’

*
sensory 'tnput: tgetc(portEB]?&userbuff)
' - sensory output: &@utsiuserbuff)

command output{invoke, complete).

topen(task,parms)

‘tclose(task)

teotsk()

task management:sleep(self)
walt(se%f)

b

éémory management: .
' newqueue(list)
< enqueue(list)
dequeue(list)

s Qtests(list)

A"

" -

" éﬁce a program is written in C, it s then compiled
gnto. an -mebct file like any other program (n C; for exam-
ple, if the user wer? to write the driver ¥or Al, then his
squrce ”Filé wouid be named Al.c which would 1ncldde flle
sysfile.h. The object file produced by the compiler would
normaliy be Al.o, ’lndftatlng that 1t has beef compiled
without linking 1t to run undér'Unlx; hodeyer Forylthe sake

of sthpllclty, the object files have been presented in the

-, . ‘ ~

[x3

- 48

- ¥

1ite. This requlires that the loader on each satellite moi;-

..83..

L

next section without the suffix ‘' o

.

6.3. Downloading

N - g +

-« Downloading refers to qpe Qay in which the !appllcatlon

is \kgf up in the satellite processors from the Unix mother

’

processor. There arfe two aspects to downloading: one 1is

, from the poid\ of view of Unix in the source machine and the

other 15 from the point of view of CHC-OS in the destination
satellite ma:ﬁtne. A new command ‘install’ is.defined in
Unix {n order to alloy the user to initiate the downloading,
and another command ';nstail” resides in the system manager
of each satellite machine anpd 1is prompted by an inter--

proceséor tnvocation to TSKO. The prerdure “Install’ dis

analogous to the Unix ‘Urun’ command which allows the invo-

‘cation aof a p?ocess'on a foreign processor and may actually

be implemented with ‘urun’ in a Unix shell-script. When the
4 \

system Is first being brought up, the first file to be

imstalled is ’‘syjsfile’ which loads CHC~-0S into each satel-

tor the Ethernet| to determine when Wt is apout to receive an
. - N : e
object file. Th?re 1sA only one copy of ‘sysfile’ with

interfupt Yroutines tp handle all devices on the system; how-

ever, since the [file sysfile.h has been Included in sysfile,

] Y

there is enough |information to tell .the loaﬁfr which devices

]

are on which satellfte processor. The loader must therefo%e
- 4} . .
determine through sysfile which devices are attached at

’

" which {naterrupt and must then load the interrupt vector

. [

. ' '
A . 7 : * TR
~ 4

- 84 - ,

table with the addresses of only those interrupt routines (¢t
requires Once the loadlnguls completed, control is gtven

over to the system manager, 1 e , TSKO

The Concurrent Control Hierarchy is built up tncremen-
tally. Any mes;age path 1mplxés an upward'or downward direc-
tlan depending on whether it is a sensory or a command mes-
sage. No sensory messages are ever exchanged‘From one task
to anbtper which 1s at the same or a iower level, \simllarly
no command messag;s are ever exchanged from one task, to
another which is at tﬁe same or .a higher level TSKO must
monitor the Ethernet for any other lns&alls at any time.
The Unix ‘install’ will broadcast to all satellite proces-—
sor; when an ‘install’ is to take place. Even {f a satel-
‘lite 1s not selected to load a new task, it must nonetheless
update 1ts own system tables to reflect sych a system-wide
change. It 1s through the thoughtful use of ‘install’ that

these rules are maintained, although ‘install’ must also be

.
’

able to detect when the rules are being broken and the

nature of the hierarchy 1s threatened There 15 also a place

»

for writing a program in Unix which will read’'sysfile map’

and odtput a real-time graphic répresentation of the hlergr-

4

chy of tasks which is being built up under CHC-0S

4
»

The command syntax for .‘install’ follows the Unix con-

ventiion of command Ffollowed by options followed by file
names. Therfore, the command to load a satellite would hévb

the:following syntax where the option ‘-m2’ refers to satel-

*x. N * < .

o

lite processor number two

1

install -m2 sysfile

In Unix, system information is maintained 1in a- file
;alled ’sysflle map’ which is updated with each ‘install’.’
lt;;ontains information regarding the tasks whlcﬁ have been
loaded 1into all satellite processors. When a new ‘1nstall’
fs to be exeguted from Unix, ';pstall' will first ‘consult
sysfile.map in order to _ensure £hat the pasks with which the
'new taék will communtcaté already exist in the system. An
'ifnstall’ of a sysflleyimplies that the satellite is to be
reloaz:i-from‘scratch and that discrepancies may be created

in sysflle.map \

The full for%ﬁ* of the ‘install’'command is as follows:

install‘t—muiuogf

[tskl

Cinfilel. tnfileg]

[outfilel. outfile#]
where ‘m#’, ‘i#’, and ‘o’ in the aption ¥Field refer to
méchlne number, numbef of input files and number of 6utput
files respectively, ’‘tsk’ refers to the object file to be
loaded as a task, ‘inflle’ refers to sensors, Unix files or
other ;gsks to be used »A5 . sensory fnput; -and ‘outfile’
refers to actuators, Unix files or other tasks to be used
for cémmand ogutput, 1.e., other task to b:\.invoked The
pound -sign ‘4 refers to~ any. integer. Aaother comﬁand,
‘setpri’, may be used from Unix in order to set the priori-

ties of the message links, and by implication, the execution'

b

*

86

priority of the tasks which are the destination of)those
l4nks. The fact that this command may be executed dynami-
.cally allows the programmer the chance to fine tune the mes-
sage priorities of the system The format of the setpri

14
command i1s as follows: -

setpri [(-#3 [srctsk dsttskY

-

where ‘-#' refers to the priority given the message, for
example O0..99, and ‘srctsk’ and ‘dsttsk’ refers to the

source task and the destination task of the message The

. e

SOU;CG, destlLnation and Iimplied upward/downward direction

will identify the message by type and number to the mesiage

manager

-

3
. -

"4 We can take the example system jllustrated 1tn figure
\6.5'§nq show how_part'df 1t might be loaded from Unix onto a
set of three satellite processors _ _This may also be used to
lllust%atefhow the CHC—QS system tables will be altered dy-a

single ‘install’ command. Let wus take the example of

installations 1Ijn machine O a@b show in a slﬁpli{ted way the

entrle§ in C-0S‘s system tables Jjust after Lt has been
loaded w ysfile- A

Tsktgbo. TSKO
Revtabo: S1 :
b 52 i :‘
M1 '
- "Msgtabo: no entries
! ‘ -
. - 4 -
‘Then the following installs are executed from Unix: .
< - 2
. \9) n\

x/&

to load

8'7

-

finstall -m0t201 Al Si S2 M|
install -m0i203 B1 AL A2 Al A2 A3

Then a{iztables in sach machine will have been <changed to

reflect the installation.

’ - '.(“59"\

TsktabO- TSKO. _
: Al N
’ Bl c.@/’él .
DevtabO- 51
oot Y ’
Ml .
| |
MsgtabO: St/Al sensory
- - S2/Al sensory
CAL/ML command
- Al/Bl1 sensory
Bl/Al command /
All the ’‘install‘ and fsetp?l' commands can be included
into a single Unix shellscrlpt or command file allowing the

user to ‘install”’ all taéks with a single command. This 1is
- o

X

done once an g@plicatlon was prepared for a commercial
environment. Folkowing 15 a shellscript which would be used

the system i{llustrated in figure 6.5 onto a system

of tpree,sagelllte computers:

lnstéll

-install

install
fnstall
install
fnstall
install
finstall
install:
install
setpri
setpri

\

-mo

-ml .
-m2
-m0i201
-miflol
-m2i1
-m2ilol
-m0i203
-mii201
-m2{103
-9 N
-9 .,

sysfile

sysfile-

sysfile

Al S1 S2 M)

A2 S3 M2 K
A3 /Jusr/testfile .

A4 /dev/tty0 /usr/log

Bl Al A2 Al A2 A3 -
B2 A2 A3 A3 E

Cl A4 Bl B2 A4 ‘ ‘

A4 C1 -

Cl Bl }

-.88 -.

6.4. System Performanca

- There are many reasons for believing that the enhance-

ments which CHC-OS‘provides to the cross—-coupled processing

/

hierarchy will result in a substantial increase (n system

performance. There are two ways in which system performance

I
has been estimated. the first way {s to make a direct com-

-

parisan between Concurrent Hierarchical Control and the-
cross—-coupled processing hierarchy based on the. éxample
l}lustratea in figure 6 5. This provides‘a veéry broad esti-
mate of performance based on the prdcessing requiring tb
handle sensory fﬁput messages; the second way is to make an
approximation of the numb;r of software and hardware Inter-
rupts which can ‘be supparted by Concurrent glerachical Con-
trol, 1 e., how quickly it can 1nteract with lts environment

in the form of its sensors and actuators This provides a

more quantified estimate of performance.

For 'the first case, let us take a subset of the tasks

]

indicated 1in figure 6.5, specifically remoQ{ng only task A4 -

L]

which provides the user tnterface to Unix This provides us
with the system shown in figure 6.6 The functions supported
by the tasks in figure 6.7 must be paréltloned somewhat dif-
ferently 16 order to conform to qhe cross-coupled processing
hierarchy; speciftcally, all the concurrent tasks on a given’
level must be combined into a single feedback control loop.

1 v

It is assumed that the execution of a task under Concurrent
; .

‘Hierchical Control {is roughly similar to the execution of an
14 ' ’

/8 ' ') s

j'» N . ' ¢) ~ .) <.

=T \z - 89 - “ p
' . FSM (finite state machine) ynder the cross=coupled process-
::\\\5\\ ing hilerarchy. The partitioning has been done in the fol-

.lowing way:

? .

LN

H1 + M1+ Gli

- Al + A2 + ;} ==
Bl + B2 == H2 + M2 + G2 7
(of B =) H3 + M3 + G3
user iv?ke - . b:,;
- 0.‘ 'Y N
. o C1 .
- ? }, -

e
4

Al A2 A3
M § 3
CREY PN SRR T -
81§ M1 s3 M2 7 testfile. —
.. sz T : | SR

Figure 66"

‘The resuliting siruqture.ls-;howh in figure 6.7.

-,
*

We noé?%sbume that each sensory inp@t to vhgicéncurrent
Hierarchical Coatrol system, 1.e:, SI, 52, S3 and testfile
e - {nput_a mésshge once every 100 mil%ﬂseconds.- Stnce the mes;
L sages are received by fnterrupt, there is then,a iotal of ég;
’ mgﬁsgées r@cg}yed each second each one éausing a dri&e(task
to - execute. ‘Let us stum% also that five inputs to a'tagk

P Co R
! P - o4 -

A

.

(XY

. - 90 -
- H3
G |g—o M3 |lgu--—. -
&
- it '
- ' H2
v o
62 lg—f ™2 |g— = - _
4 i ,
- i
o Yo -]

. -T - " . 1 ‘4. ‘.
- . v

$1 5 ML e S -
S2 \ M2
S3 T ‘ :
testfile
Figure 6.7 '

at level'n will cause a sensory output: to 3 task at -level
n+l; therefore 1i'n our example, there will be.a total of %1

task execytlions/sec-or one execution/20Ms 1f we apply the
same principle to the crosg;coupled processing hierarchy, we

assume that the Gl module must be able to handle at least 40

A

messages per second. Since the cross-coupled processing. -

e o

.o . g
hierarchy is not interrupt driven, it must poll the sensors

, at such a rate that ensures.that no messagesibe lost TfﬁL:

PLY N wee

‘cally, a rule.of thumb is to Wble the avérage -rate In

.order to derive the polling rate;;whlch in this «ase would

be 80 times per second. . S{nce there ‘are nine FSMs: which

must execute 80~ times per ‘second, there are therefore 720

»

J ' AN ! .

!

e

’ - 91 -~

executions per second In other words, the cross-coupled

x @rocesslng hierarchy requxres 720 FSM executlion per second
i

¢ : and Concurrent Hierarchical Control requires 51 task execu-
&

-

tions in order ~to process the same incoming sensor} data.

4

~ ’ :
l1f the cross—-coupled processing hierarchy were to execute
lround=robin once every 28ms as '1s intended by .its authors)

then there would be 3200 FSM executions every slecond: The
. .
" dif ference 1n performance may be primarily attributed to the

elimination of busywaiting, although in Concurrent Hierarch-

ical Control there 1is an overhead implied by its greater

-

, sophistication which does not appear in thisrcompartson’
-2

The second means of approximating performance has been
to estimate the qroée%sing required by hardware and software
S . ' , :

igterrupts, which are analogous to sensor and actuator mes-
sage transfers respectively. An estimate was made of the

‘number of procedure callt each ynterrupf would generate and

of the length of code eagh procedure would execute A
L4 . 7 . \
Motorola MC6B000OLB was used as a basis for the performance

N estimate with a clock period of 8 Megahertz [39] ‘

-~
-

The obJ@ctiQe of the estimate was to determine how many

Y
1Y

sensor and actuator interrupts per secqnd could be handled

} .

by ‘a system wltﬁ one, two or three MCGBOOOLS satellite pro-
cessors. An example system routine ‘'was chosen as 3 basls for
maktng an estimate as to the size of-an ;verage system »nou-‘
o ;;QQ. The procedure"resched' was considered to be'oF Suffi-

& " ctent complexity. ‘Résched’ was taken from the task manager

e)

B

t e

]

-

- 92 -

’ ©
which was written as an early simulation for CHC-0S It is

- v 1 v
similar to the procedure by the same name written by Comer

£261. The procedure was compfled and an assembly language
' N

listing was produced which was then quantified tn order to

v : %
.get the total execution time 1n machine cycles It was
4 .

/'\—')

Y

, N ,)
found that the procedure ‘resched’ would execute—in_ a max-

imum of 300 «cycles with a set-up time of 50 cycles for a

S
total of 350 cycles per execu?(on which was used as an.aver-

ége for the execution of all @ystem procedure calis

\

A Y

Each interrupt 1s supported 67/;”EFTWQ(\ routine whigh

(.

is ' qsu}l;y written by the, user A driler r&utine neeijJto
. ' s

do more than just transfer data, some interpretation TS5 also

required. It was estimated that each driver .routine- when

‘called would execute for about 1050 cycles. or the equivalent

-

L3N 13

of three procedure calls. The driver routine schedules a

user task Given that gach user task "is probaply a ‘very

»

tightty programmed feedback control loép, 1t was estimateéd
that a' message arriving as the result of a hardware inter-

rupt or a software interrupt prompted by a message would
. o«
require about 2000 cycles worth oW processing within a user

task. Each user task on interfupt .or. completion also

reschedules the processaor whlchut}k s two procedure calls at

4 ’ . .
700 cycles. This is summarized inkfigure 6.7.

P f L] . -
.

N L .
It was previously assumed that relationship between the

numbfr of messages on a higher lﬁbel wltn‘réspegt‘tK a lower

level was one to five, and that assumption remains. valid for ..

’

" a

AN

-93_

this .estimate

-

It wds also assumed that the system .clock lé&terrupt

hakhgler would execute once every 16 7ms and that the inter-
¢ . - !

rupt handler made 10 p edure calls 1n order to do such

business as delta queue management, checking inter—-machine .

communications 1nput\and reschedulxng Therefore, the total
/

for clock prbcessing is 210,000 cycles per minute .

r

It was assumed that each interrupt required the .execu-
‘) ;

-

tion of five system'routines tnvolving the transfer of the
{
message to the right buffer andAkhe'readying of the -recefv-

ing task, and stm\larly for all message tfaqsfers.

-

'

Therefore, a sensorlor actuator xnfernupt requires.

A750 cycles for interrupt handling
1050 cycles for driver handling’
2000 cycles for user-written portion of drlver
.filtering, buffering
2100 cycles for message transfer
2000%cycles for consumer/producér task
. 700 cycles for rescheduling after task interruption
or completion ¢

Ay

In figure 6.7 1s illustrated the esflmate}- for processing

] R i .

time, the right hand side -indicates processing required when
4 .

all messages are sent to tasks within ¢the same processor;

the left hand side lnd{cates the overhead tncurred by using

[

inter~-processor communication ‘to transfer messages between
tasks on different machlne;, By assuming that every five’

messages at level nis associated with_one'message at level

o

n+l, "this means that each sensorfactuator interrupt is asso-

b

‘..Clateg with 1.25 task executions, one for’ the driver and

o

- . - 94 -. ;_
. ¥ /

0.25 for thé total of higher level.task executions There~°®

fore, by summ1n§ the“weighted values on the right -hand side

of figure 6 7, we can get the total processlné requlfed for

a single {nterrupt in a one machine configuration.
-

In order to calculate\¢he tmprovement which would be
offered by a multi-machine configuratton and to calculate

the extra overhead required for (inter-processor communica-

a9

tion, two assumptxons"'wqre made. first that the number of

fncoming messages would equal the number of outgoing mes-—
, b” -

sages, and second, that the ratio-of inter-processor mes-—

sages to local messages in 3 machine would be proportionate

to the ratio of total tasks in the system to.local tasks.

In reference to figure 6 6, it is illustrated that inter-.-

: : - N
processor communications produces interrupts also, although

for our performance study we are interested only " In sensor

- and actuator interrupts, therfore communications lnterruﬁts

are simply considered to be part of the overhead. ﬁ For an,
gncomlcg message, the 1:1t1a1 driver ftlter!bg has already
been done in the remote pnofessor, ;o the message is input-
ted in the locélkiessage madaéer. The.cggmunlcations inter-

rupt, the scheduling of the system manager etc., are part of

the overhead. For an outgoing message, the communications

manager procedures and-soétwqre fnterrupt routine are added
to the overhead.'Tf we continue to take 8125 as the number
of hlgﬁ@r level tasks executed per interrupt, in a two
machine conftgurétlon we can say that 0 125 of the tasks are

local and 0.125 are remote. Therefore O0.125 tasks per

1

AN

L4

-

‘;-95 - ’

interrupt requtre . 1nter-processor communications overhead
Sim larly, for a three machtne configuration, the estimate
fs "that for each interrupt, O 083 tasks are local.a%d 0. 166
2N - ‘

tasks are ,remote Having ‘derived} the total number of

R : .

machine - cycles required to process one interrupt and all
tasks associated with it, we can divide -it into 7,790,000
which s the total number of machine cycles remaining after

" clock.processing has been accounted for -

-~

With fhis_ information the following gabhe can be
derived - for multi—process&r confﬂgurﬁﬁlons'1ndlcatlng the

total number of sensor/actuator interrupts which can be sup-

“

/
ported: N

1 satellite 1150 interrupts/CPU/sec | »
- 1150 total interrupts/sec

2 satellites 1050 interrupts/CPU/sec
' 2100 total interrupts/sec

3 satellites 3025 interrupts/CPU/sec
. /3075 total interrupts/sec

Mowever, estimating the processing capacity required
for a real-time 1nterrupt-drlven“system is not a stépde Job.
Jn the Albus proposal, this is greatly simplified bi the
purely |determ1nlst1c nature of the finite stale machine
implementation. The Concurrent Hierarchical approach
présupposes that a more fleXible system based on asynchro-
nous task execution .is more appropriate to the problem of

A

robotic -control, although this makes the task of\esﬁlmatlng

CPU requirements rather difficult iince not all possible

v

v LN

scenarios .can be anticipated. 'If additional CPU qabacjjy is

required, CHC-0S {s conceived such that new processors may

‘be easily added tp'tby system and the additional overhead

required easily estimated. -

v -
»
]
'
7 s
-
'
.‘C
‘
D o~
A : -
w
#
o .
+ »
v
.~ '
\ ‘ -
‘-
’
.
*
.
» L}
¢
.
s o _‘
[[
-
-
by)
hY -
. - \L '
.
v .
- < :
° Y
¥
o .
(%Y -
< A .
i “|ﬂ'
H
.\ , .
. \\ .
LY v
1 -
~

Sz

"7 Cophclusions . £

4

¥

Prine 1n
N ‘

”

The matn purpose of this Zpesls has been to

detall the NBS -proposal fo, a cr055rcou(“é§ processing

-

hierarchy for robot control

nd to propose a system which
sy

seeks to enhance its strerngths- JThe author has gone on to

a

"underscore the issues raisgd by the concept of robot control-

7 : -
systems, and to suggest spme ways in which the cross-coupled

processing hierarchy might be .enhanced to berler"éxplott
modern oheratlng system concepts ’The principal result hag
bé;n to da{iﬁe small feedback control .loops as concurrent
tasks to control wvarious ‘sensors' and actuators, theéeby
eliminating ad-hoc /methaods 66 gxecuting very large prb—

ctedures (i.e ‘crpgss time interval boundaries) and busywait-

ing.

In hlerarch{cal, control, each
senso(/actﬁa or group 1s controlled by its own J;ntrol task,
and each co mand is ;dentifled with a task, as opposed\to a’
procedure /pointer in the NBS design Since each command is a
task, 1t/m$y be treated independently All tasksjmay there-
fore fxecute concurrently on the same processor or on
sep;r/te processors This sort of approach is flextble and
allpws a concurrent control hierarchy to be installed 6n a
variety of hardware architectures The use of multiple CPUs

xploitys the concepts of parallel processing in order to

assure fast computation in real-time
3

The world model 1s concefved to be a repository of all

4

[

-~ :— o e
v ' - 98 - # o
. , -

lnformathﬁ relating to the'state of the robot’s tﬁter@al

b

'Acﬁné'lemternal envjronmeht .Therefore, " the qorld ~. model
?eée;ves‘ l&pdf }rom both command ang sensory tasks. Con-
-currenL‘H}erarchlcal.Controﬂ' distributes the world modef
aﬁong fts tasks- {his allows the world model to predgc{
;ensory-information according tﬂ thé command context, and to

'S

lnterpr@t .and channel sensory feedback to the command task
as well as providing cont@kxt information to the Ssensory
task. The world model also has the capacity for adaptive

£y

behaviour by virtue of the fact that it is capable of recog-

®©,

nfzing any set of sensory conditions which may elicit a pre-
viously -learned response. This allows for the world model to
choose among several plﬂns of action when requested to do so

‘by 1ts command task.

¥

Concurrent Hlerar;hlcal Conl;ol supports workbench pro-
gramming because the operating system designed to optimize
robot control systems remains a constant. Different Qéts, of
tésks can be loaded onﬁo the 0SS without requiring the
relﬁnklng of the entire system, which suggests tﬁat Con-
&urrent Hierarchi-cal Control is in some ways another robot
language. However, what dlstlngul;hes Csncurrent Hierarchi-

. cal Control from befng. simply another robot language i{s the
fact that the ;per;tlng system <conceived to support Con-
current Htierarchical Control been designed with a speclflc
viéw to addressing the issues ral;ed by real-time sensory-.

interactive robot «control. Using timeshared operating sys-

tems as a basis, it adds features to optimize performance

\
and takes
mance.

away

.

~—,

: - 89 -

o

Ly

1

other features which would degrade perfor-
=~ »

14 J\
.
¢
t
)
.
.
©
. .
2
-
1]
. -
<
'l

¢

¢

«

L]

~

. - R
3

8. References : -\;‘ . .

€11 J.G.Fuller, "Death by Robot," OMNI, March 1984, New York

¢ > . “

. NY“ ' N) !‘ ' , - "-'J

M/
(21 J.A.Mitler,

-

"Autonomous guidance and control of a roving _

robot," Sth. International Joint Conference on Artificial

Inteliigence, 1977, -Cambridge MA, pp 759-760 - T

‘£3] A.M.Thompson, "The navigation system of the JPL robot," .
i i

P

5th International Joint Conference on Artificial Intel'li-

gence, 1977, Cambridge MA, pp.749-757,

.

4] R.Popplqsfone{ "Automatic .assembly wi}h the Edinburgh

arm eye system," Industrial Robots, Birkhauser Verlag, Basel

Switzerland, 1975 .

[5] A.G.Makhlin, "Robot control andiinspecS\gQ/ by multiple
* b’ .
camera vision system, ",

1981, "Tokyo, pp 121-128. | - o

v ",
£6] é.Sugarman, “The blue .coftar robot," IEEE’ Spectrum;

vol. 17, no.9, Sept. 1980, pp.52-59.

{7) " T.Lozano-Perez, '"Robotics,” Artificial lntelllgéﬁce[

o
vol. 19, no.2, Oct. 1982, pp.821-840. R ,

-~

(B) D.Nitzan et al, "The use of senssrg on robot systems,"
Proceedings of the Internatg{onal Conference on Advanced

.Robotics, Tokyo, 1983, ppl23-132. o

-

X Y
€93 C.Laugier, "A program for automatic grasping of objects

VA 7 Ay

lith Symposium on Industrial Robots, |

°

- 101 - |
" <
s

with 'é rodot arm;" 1ith International Symposium on Indus-

T

trial Robots, 1981, Tokyo, pp 287-294

14

.L10]1 C.SG Lee et al, “Hier;rchxcal control structure us:ng'

special purpase processors for th® control of robot .arms,"

A

IEEE. 1982 PRIP-~Pattern Recognition and Image Processing

Conference, pp 634-640
(111 A.Mercer and G Vincent, "Controllers built using func-

t&dn.éF functioh architecture,” The Industrial Robot, vol 9,‘

no.4, Dec. 1982 pp.228-232

Ak

[12] L.Friedman, "Robot learning and error correction," Sth

International Joint Confereénce on Artificial Intelligence,

1377, Cambridge MA.

[(131 G.N.Sar{dlsﬁ'"lntelligent robotic control," LEEE Tran-

sactions on Automatic Cohtrol, vol AC-28, no 5, May 1983,

pp. 547-557

+[141 H.Jappinen, "Sense/ controlldd flexible robot behavior, "

s e 4 . '
-International Journal of Compyter and Information Sciences,

vol. 10, no.2, April 1981, pp.105-125 ’ .

£151 R.G.Abraham et al, Westinghouse Research and Develop~

ment Center USA, International Fluidics Services, "State of
the art in adaptable-programmable assembly systems,6 " Keﬁps-

-

ton Bedford UK, 1977. .
. [

flG] J.S.Albus et al, "Hierarchical control for robots tn an

automated Factorx,Q::\13th International Sympoétum on

.
» s
.

B A
v -

8

¥

- 102 - .

s . N ! ~ o . N . ‘ .

Industrial Robots, Chicago, 1983, pp 13.29-13 43.

{171 A.J Barbera et al, “Concepté for real-time segsbry-
interactive control system architecture,” 1EEE 14th Annual

South-Eastern Symposium on System Théory, 1982, pp.121-126.

£181:J.5 Albus et al, "Programming a hierérghlcal robot con-

o ,) . '
trol. system, " {2th International Symposium on Industrial

Robots, Paris, 1982, pp.505-517

I3

(191 J.5 Albus et al,v "Hierarchical control. for sensgry
. . .

“interactive robots," .1lth Symposium on Industrial Robdts,’

1981, Tokyo, ppd497-505.
. .) : &\ .
£201 J.S. Albus, Brdins Behavior and Robots, McGraw Hill-

W

.

‘Byte, Peterborough NH, 188:. ~ a

. By (- ' ~‘ * .
€213 J. 5. Albus et al, "Theory and Practice of Hierarchical

Control,™ COMPCON- ‘1981, pp,18-39 |

(221 A J Bérbera_t;nstdtute for Computer Science’ and /Tech-

nology’), An 'Arcpitecturel for. a Robot Hierarchical Control

System, National Bureau of Standards, Washington DC, I

€23 J. A Standish, Data Structure Techﬁlques, epdlso

L

Wesley, Reading MA, 1980) . -

\
[24] J.W. Atwood, “Dévelopdehts in Programming Languages' for
Distributed Programming,"” International Conference of Com-
puters Systems & Stignal Processlhg, Bangalore lndlg,

Dec. 1984.

9]

’

' £281 J.K.Oustehhaﬂﬁzet al, "Medusa, an experimen

- 103 -

L | . N
£2851] & L.Brown & P J/Denning, """Advanced Operating Systems;"

[y

1EEE Computer, vol .17, no 10, Oct 1984, pp 173-130

-)
-

[26]{6.Comer, Operating System Design -The Xinu Approach,

L}

Prentice-Hall Inc , Englewood Cliffs NJ, 07632, 1984

-

271 A. Jones et al, "StaroO§, a.multiprocessor.operéttng Sys-
tem for the support of task forces," Proceedings of the’?th

Symposium on Operating Systems Pr!hclplgs, 54 GOPS, 1979,

e~ ’ // ‘

In distri-

pp.117-127. - : . .

buted operating system structure", CommupAtations of the

' -
_ACM, vol.23,<.n0o 2, Feb'1980, pp.92-105.
£29]1 1SBC Applications Handbook, Intel Corpbratlon, Santa
. .) e

. Clara CA 95051, 1981. "

.

£301 M. Shneier, "3-D Robot Vision," IEEE 1982 Prgceedings of

the lhterna;ional Canference on .Cybernetics and Soclety,
. - ' . D
pp. 332-336.) '

e

. 311 M Shneler et al, "Visual feedback for robot control,"”

IEEE 1982 Industryal Applications ' of Machine Viston,
pp.232-326. ° | G ‘ .

£321 k.C:Holp, Concurrent Euclid —Th% Unix System and Tunis,
S ’ * e
Addison-Wesley, Toronto Canada, 1983 . v

. 5

'C33]1 P.Brinch Hansen, "The Programmlng. Language Concurrent

Pascal," IEEE ETransactions on-Software Engineering, vol.l,
4 ‘

)
-

no 2, June 1975

Y . o

(349 N Wirth, '"Modula- a Language for Modular: Mu'ltiprogram- ;‘i?

ming," Software-Practice and Experience, Qol 7, 1977, pp.3-

35. g) .
y . . _ [
(351 J.Engerberger, Robotics in Practice, . AMA—American,%
Q' & B 2 R i
Management Association, 1980 ‘ - . .

\ . L s S ,
'[361 P Brinch Hansen, “Drstributed Processesiﬂ\A Cdncurrent
. & ‘e Y ' :
. o .
Programming Concept," Communications of the ACM, vol.21, {;

. -

no. 11, Nov.1978, pp934-941.
i "

1

- ~

r .
{371 J—;f;§@r,'Computer Systems’Arcnltetture, Computer 'Sci-
. - \) ' c .

ence Press, Rockville MD, 1980. ' - ’ . N

£381°S.K. Shrivastava & F Panzieri, "The design of ‘a reliable

¢

-

remote ;?qcedure call mechapism", IEEE Transaction; of Com- -

puters, vol.¥3r, no_i, July 1982, pp 692-697. ,

L

391 Motorola Microprocessors Data Manual, Austin TX,41981.
° .4

» 5 r

- . : - 105 -

§

Appendix 1. An example of cross-coupled processing

14
~

-

The followting 1's . a specification” of ' a task-
decomposition hierarchy or H module using the method dertved

by NBS{181. It can be compared with examples of H modules

~ B

prdvxded by NBS({18,19,21]1 The command processes which were

defined for the cross-coupled procésstng hierarchy example

3

of arc ‘welding are here redefined for the _concurrent
hierarchical control Vgrslon. Command processes are here

restructured 45 table entries In an H module

"1t was not possiblée to similarly derive the sensory
.] : ' o~ ' - :
processing and world model hierarchies (G and M modules

’

respectively) since ,little information s provided as to

-

“A

‘their exact nature.

At each level, all commands are executed using the com-
*) ‘ ‘ ,
mands of the next lower level or usihg procedures for simple

~

-

calculations.

- Auop umopmols -
3uopiold umopmols:
aUOpIOU UMOPMOTS

1teyj dnpaads
auop dnpoaads
auopiou dnpaads.
auopiou dnpoaads

11e3 seb .
440 seb
uo seb
. g " 11e3 seb
N uo sep
Aidwp 3131300
430 seb -
[te3 oue
330 Duae
. . 4o Jue
11e4 Jae
Uo 2ue
440 Jue
. . L
1124 aaow
3UOp-.aAOW -

(I-X)NMOAMONS
(T-X)NMOGMO TS

(1+X)dNA33ds

(1+X)dNA33dS.

IAva 350710
JATIVA 350710

IATIVA 3SPTD
3IATYA N3O

39VLTIOA 10D
39V1i10A 1ND
3OVLI0A LND
3OV1T0A dJd33A
JOVLI0A ADNI

440 SA0LOW
340 SHOLOW

dUOpPIou 3AOW (P3ads)INO SHOLOW

2uUO0pyIoU aaow

192A2] JXO9VU
01 j140day

‘d 0L
(S=Te334y31) 139

puewwo)

31€15 [9aAa]
IX3N Wo4 4 140day

NNO
|

1noawy 3}

-

1noawt)

00 NNOO

-

c” 1noawr)}
[Ins 91113109
Apdwa af1104q
11n3 arioq

O OO0

.

430 Jae
uo ouJe

- 00

¢

uo J4e

- 00

1noawil

0
0 PaAtaJe
c

paAjaae 30U

2 U@)«LLM 10U

v

P

. - 3140 due:

—— i —— - — - —

damoq:

Aqnxw = paads

N -
(1-¥X) ¢ paads ¢ 033d4S 3a03L
X = poaads I =233 QMAhwm.ﬁ
— .. N)
(1+x) = paads ¢ '
(1+Xx) > paads g d33d4S 30031
X = nmwnm I =233 3ONVAQVY '9
mc_aw_» seb 1 -)
buimol s jo0u seb 1 Sv9
Buimor; seb 1 L1¥3ANI 440 NNNL 'S
Buimoi s j0u seb : R _
o buimor 4 seb. 1 ‘- .
‘ ¢ - 1 SvO o
Bupmors 3jou seb T LY3INI NO NNNLP /|
. ' |
- . :
ploysasyy > dway 1| . .t _
Proysauul =« dwai | 23V 3I40 NiNd €
. T
. - 1 . .
pProysasyy =< -dway 1 ‘ .
proysaayl.> dway 1 JdvV NO NinlL ‘2
J z ® \
- c ’
(6 ° "0=paads)
- - T d 0L 3A0NW T
TH 3INA0OW
x2eqpaaj) .
Kiosuag pPURWWO)D

a

~X,
¥
"

N . «
i !/\)/V -
’ -) 3
[} . y N - - , B
.. g -
/ -~ 3
)
. .) Lo
~ N L] \w
. ') r 7/
L (1)3e - 0 -1 Poubire - e= . R
. d 0l)™ . , , . \
(1)1e10U. ~ (g-T1e33y1)L39 1 paubrie jou RS ‘ 1 (1)HOVOUddY 01
< . . - - “ ~.r n’ f‘- .

paddols(uof3150d)3ZINOWIN O 330 S403j0W - b, . L

paddois 3jou . 340 S¥HOLOW T uo suojow G-183ayl 1 (u011150d)d0LS 6

11e3 aaouw 440 SN0LOW © ULETT S - - .z .

auop aaouw 440 SHOLOW O . Pa3AtJaae - Z e
auopjou anod (P33dsS)INO SHOLOW 2 P3ATJae 04 - rA . .
. wwg 1V (P)HIA.) e - - (6 ~0=Qa33dS) -
3UOpJOU 3AOW 0L (G-TB33Y3I)139 2 - - T(P)¥1Q WWS IJAOW'B
T11ES UMOPMOLS - - o ~Inoawiy . - , rd . .
. ke . T o
. o] p)

108

aady d1) . - 0 auQp dAQuW 8943 d1y o
¥o0n31s dia(uo1i1t1sod)ol JAOW™ 9 auopiou aaouw, asauy diy 9 .
: .1 1Y . ,) . .
12n3s d11 (2-)310 NI 3A0W ¢ uop jtlem 1an3s diy g
A9n3s di3(uofl1sod)poL 3A0W 9 - § . - 934y d1y ¢ .
An1s dig } LIYM S auop aaouw ¥anis dt] ¢
Xon3s dil (Z-)d1@ NI 3A04 b 3Wopjou aaow ¥0n3s dil b
T LYY ~ . ,
9n3s d13 (Z-)¥IA NI 3AOW b 3430 seb yan3ys dy3 g
3on3s di3 . SV9 440 N¥NL € uo seb ¥on3s dry €
~Aon3s diy SV9 440 NiNL € 3430 oue xan3s d13 2
yonis dy3 0¥V 440 NanL- 2 uo odJe ¥onys d1y g
xon3s di13 - D8V 440 NiNnl - 2 paddoals ¥2n3s dry 1 (uotirsody
A3n3s digy (uor3rsod)doLs .1 C - Aonys dry 1 .dIl MJOILSNN v
awoy 1e - "0 auop aAow . - 1
awoy 3jej0Uu (3Woy) DL IAOW T duDpiIou dAOW - b -4 3WOH 0109 °€E
t1ey pram - 0 .- - - ,
130 pram g . - 0 3430 seb - . 4
uo pram SY9 440 NiniL 2 uo seb - . Z
uo’ pram SY9 430 NdNL T 330 aue = 1
uo pram SvV9 440 NinL 1 uo .oJe - T Q073M 440 Nanl ¢
11e} pram - o - , . - - .
uo pjrom ' - . 0 uo JuJe . - Z ;
430 piam JUV-NO NinL 2 ~-344Q J4e€ - 4
3430 pram 23V NO NinL 2 uo seb - 1 .
330 plam SVD NO NiNL 1 3440 seb - 1 a73M NO NiNL Y
- " zH 3INGON
[9Aal Ixau) 31€1S [3A3] Jamo] joegpoaay /
01 j140day puewWWO) 1XaN Wouj jaoday _- 05uU3s aje3s puewwod

» : . .\/,
- ’ . A‘\n
: - i

¢

3uUop pueIaa Co-

a33dS .

3uopIOU PJ4eIIJL 3A0N¥L1DIIT A¥VLIN

auop ajueape : -
. a3ads
auopiIou 3dueApe 3JAa0A123713 uU2<>QO

"3uo0p , anow . - -
. Am.monuwwnmy
dU0pIoU IAOW (P)HNIG wwg IJAOW

t

14eqsdeb e
j4e3sdeb jej0u
q4eisdeb jeqou
3 Mumammaumuoc

(13bael)HOVONLIY
T 1v (Q)XAIA NI 3A0OW
Z=1 ‘T+xew=xew '0g+p=p

j4e3s5deb jejou 1 L1v (PINIA NI 3AOW
: . Z+1=1

14e3sdeb qejou T LV (PINIA NI 3AOW
14e75deb jejou (13643)HOVOdIIY
j4eysdeb jejou 1 1v (PINIA NI 3AOMW
' 2=1"“Z=XBW ' 'AX U0 Q=D
14e315deb jeqjou (14815)01 3AOW

" paddoas -

. paddoys jou SY9 440 NiNnl
« paddois 1jo0u SV9 440 NNl
uthOam jou’ Jdv 440 Nant
paddois 1jou J¥v 440 Ninl
paddols 7jou (uo1i1i1sodydols

I3

(136407)HIVONdAY.

1

(o] 3UOp pue 134
auop
I- -10U paelad

.o.wcou asjueape
: auop
] -10U ajueape

o auop aaouw
1 auopijou aaow

0 (13baeq)ae
g£(3abuaeyyiejou
g(1abuaey)jejou
’ Xew=<¢1
A 3uop aaow

*xewsy
Z ~ ‘[uop aaouw
Z 9uopiou aaouw
£ - -

Z - auop aaouw
1'3U0pIOU 3AOW

Buimort 3
) 70u seb
buimoi s seb
440 oue
uo 2J4e
paddois

o]
€
€
>
r4
1 paddoas 1j0u

-

033dS 30034

- . ~-2373 Qyvi3dy-

<. 033d4dS 30031
- T =23713 3ONVAQY
u.m..ouumoamv

- 1 (P)¥1Q WWS IAQW

(19biej3)punoy

N N m

(1abueq)punoy 3ou

(33buel)punoj jou:
t3abiey)rpunoy j0u
(19b4eq)punoy

- NN

(1abuey)punos jou 1

.d¥d
40 1¥vLS GNiId 9

-

!
= NONMM

dols G

N

d33d4S 300312393 wW2<>Q<

3uoplou pram S 1V (P)NIQ NI 3AOW

,auopioy pram
3UOpjouU. pIam
,AUOpIOU plam

-
e
o

u.mcovuor piam

-

o

duopiou piom

£

Quop 323dsu’y

. 3uopiou 3o59adsuy
auopilou 312adsuy

auopijou 12a3dsul

No--deb

dUopPIou. 323dsuy

* Mojou deb

alopjou 31J7adsug
auopilou 12adsuy

<

duopiou oradsug

—— e —————

19A31 IXx3Uu

aUOpIoU plom .
auopijou ptram .

, 07 140d3y

S
S

sod 01 (P)dIA LIDY

dil ADILSNN
1v (P)Y¥1A NI 3A0W
1V (P)YYIA NI 3AOW

s0d 0L (P)¥IA 139

- §=5 (@33dS
34003123713 3ONVAQY
0713M NO Nanl

g73M NO N3OL

dv9 40 LdviS aNl3

- 4

3IHOH 0109
JWOH 0109
y (sod)dois

"
3IWOH 010D

sod 01 (p)dla@ 139
(s0d)dolLs

1V (P)AIQ NI 3AOW°

1V (P)YA1A NI 3A0W

sod 01 (P)Y¥IAQ 139

dv9 40 .1¥VLS ONI4

pucwwo-

t auop aAow

auop aaouw
/ _

p avapiou anow
//

v e :
N

440 pDiom
(14e315deb)e
(14€1S
-deb)ieqou

NONM

Lanl

awoy 13le
awoy jejbu

paddois
paddois j0u

MmMTTO

auop aAow

<

Y

dUOp 3AOW

uoplou aaluw

oNM N

- N
uo pram~

(a43uadixau)sod
proysaqayicdual

(d43udd31x3u)sod
‘proysaJdyi=dwaly

¥on3s di3

(34quasdeb)sod

‘s

(puadeb)je

M0 yipimdeb

(puadeb)jejou

~(@43juaddeb

’

Ao3jou

2 14e1sdeb je(asjuaadebd

. 14€135
T ~deb jejou
31e1s8 [d8A3d[Lmaom

1X3N wou4j j40d3y

————

1x3u)sod

M0 Uipimdeb

yipimdeb

1xav)sod

A2€eqpaay

Ai1osuag

N (RN B - NN T T

N N

o=t

alels

dvd 103dSNI 1

€H 37NAOKW

puewwo)

T

-

. . ﬁfx o . ,
e
' paddois BN S I ,paddois
paddois 3jou (s0d)dois 1 paddojsijou
- auop piom . - : o awoy e
: auop pram - 3JWOH 0109 (£ 3dwoy jejou
. auop—pram - 3JWOH 0109 £ jJj0 pram
auopilou pram a13m 440 N¥NL 9 . uo pram
auopiou plam - : P | 2 -
1ves pram ~ = - o INOFWY Y
) auopiou pram " dIL MDILSNN § ,
- auop pram @13mM 440 NanL 9 -
auopilou pIam s LV (P)AIA NI 3IAOK.
" - sod 0L (P)¥IQ 139 - .
Tl ~ 033d4S 300¥.12373 QuvL3Y
~ . , -1-525 p AUOp IAOW
° auopiou PIam s IV (PryIQ NI 3AOR ' :

. ‘s0d QL (PYNIA-L3ID

~

-~

s

Iy
)

|
-t

- K]

" 894y d11 G
xanis di3 g
¥2n3s d13 §

tpuadeb)re p

WO~

.

mogucmuuxm:vmoaw
proysaayid>dway ¢

~

x"‘\

.

‘\\ - 112 -
\ . "

. N —

W\ ¢

-) SN .
This appendix provides a detailed descriptxon

functions of the tasks which are shown in the example
./

cation of figure A2.1-

‘- *

Level 1 Control Loops

AL s Temp of arc:

'# read value

* fllter out spikes ln temperature
* read threshold from*C module

% compare temperature to threshold
sensor failure -

L

A2.¢C Ad Just voltage level:

appendixZ. An Examplg\gl Concurrenp,ﬂiggg&chlcal control -
\ ;

of the

appll—

adjust and maintain voltage at required level’

A2. s ‘'Voltage of. arc:
read value
filter spikes
sensor faflure

]
A3. ¢ Turn 1nert gas flow on/off-
¥ turn gas flow-on or off

_A3.s " Gas botttle éull/empty:

read pressure
sensor fallure

Gas flow on/off:
% read pressure in pipe
o * sensor fail

Ad. c Move to position(p) at speed(s)

read present position thetal 5

derive 715

.regulate speed of servomotors

calculate next posltlon to be reached withxn
milliseconds .

% send message to task CO.l

xx %%

A

-Using the matrix TS, this task calculates the~ theta

100

angles

- 113 -

o * . L

LY

»re&udred,in order to move the-end-effector to position=p

.

Ad. s Position of TS. '
read position of thetal-5
¥ calculate coordinate transform to get TS
servo fail

&
-

A5. ¢ Advance/retard electrode speed.

¥ read Speed of electrode being fed into arc
* advance or retard speed by lcm/s

This task advances or retards the'speed at which the elec-

trode is being fed 1nto the ‘arc. In the event tfrat the tra-

Jectory speed is increased, then the welectrode being fed

o

into the arc would also need to be Increased

AS. s Electrode speéd-
" # read speed
¥ sensor fall

AG.C ‘Stop/memorize position:
store value of TS5 for future reference
¥ store value of thetal-5 for-future reference

This task stores the présent position of the end-effector

and the theta angle values for each of the five joints.

A7.s Linear sensor:
" # determine linear binary image
.i# determine. distance to surface or gap
sensor fail

.
¥

The linear sensor is conceived to be-a linear sequence of

light sensors which s’ used to determine a marker. The
3

marker indicates the beginning of the gap to be “welded and

is used by the robot to line itself for welding or {nspec-

tion of the gap. The linear sensor ls"%iqo used to track

along the gap during welding or inspection

»
k3

A

B -4
- -'114 -
' i
Level 2 Control Loops i) //
B1.¢ Turn on/off weld: ' S
% send message to turn on inert gas
send message to turn on voltage to start-up value
. /
B2.¢c ' Stop/assassin- ’ j
’ # send message to stop servomotors (-5
¥ send message to turn off voltage ’
% send message to turn off inert gas
N~) 9 . g
This task effects a shut—down of the system. [Its wuse is
intended for excéption conditions. o o
. o ’
B3.c¢c Goto home: . oo

% place tip in home position
B4.c Move 5mm 1in direction(d) at Qpeedes{
* r;ad present position thetal-S
derive TS
* regulate speed of servomotors
* get next T5 from présent T8 b& translating pre;ent
TS by 5mq‘along‘a vector defined by d at T-origin

4

This task <calculates the "present position of the tip
(matrix=T5) of the end-effector using coordinate transform

. q
matrices, or a pre-processor may provide the value of T5. It

s concetvable that a method other than coordlnate'transforQ
matrices could be used {n order to determlne‘ the presenf
position of the end—effector since accuracy is not 'as cru-
cial in a sensory-feedback control sy;tem. The -+task then

calculates the theta angles required in order to move the

end-effector in direction=d at intervals of Smm.

n N N
- s . [
‘
.

N

- 115 -

Bt Approach target

. %

cent;f tip: over target at -distance of 5mm

The robot uses the feedback from 1ts itinear visyal sensor in

order

[P L

»4fng of the gap to be welded

-
17 =7

BS. s

to centre itself over a harker indicating the begin-

@

Target sighted/not sighted T

read linear binary image

determine if present and previous binary images
constitute the pattern of the target :
determine centre of target with respect to_ centre
of linear image

This task indicates whether the gap-start marker has been

sighted by the linear sensor

1

Level 3 Control Loops

‘-
-~ ¢ . ——

Unstick tip:

send message to stop motors

send message to memoriZe present position

send message to move .tip 90 degrees .away from gap

In the eventithat the t?p/touches‘the surface to be welded.

and becomes frozeﬁ to 1t, this task will attempt to free the

tip from the .surface. : . !

Cl.s

"C2.¢

»*

a ~

Tlp stuck/free

read temp of arc and change position over time
in ordﬁr to determine 1f th lp is stuck or free
Find start of gap- . : .
position tip at probable start o£ gap

read linear sensor

if linear sensor indicates target has been found
then send message to align oh target <§
else do spiral search

if spiral search ends in failure
then report search fail . *

I

Before .beginning .the welding sequence, the robot’ must find

1 t he

beginning of the gap to be welded This is accomplished

L]

~

R

- 116 -

by providing to the robot an approximate position where, the
¢

peginning of the gap s expected to Dbe. Once the end-

effector mers to that .position, then the linear sensor s

used in a spiral search path in order to find the .

, 0 . -

beglﬁhlng-gap marker. Once found, the tip is centred on the

marker.

C2.s . At-start or end of gap. .
using command contextual information, determine
whether tip is at start/end of gap or inbetween

N

Level 4 Control Loops

Ol.c Inspect gap- ,
send message to Fine start o& gap ' .«
move in predicted direction of gap -maintaining
distance from gap and alignment on gap centre ‘ e
compare gap width with acceptable threshold ¢
* {f gap width too wide
. then inspection fail
else {f gap width too narrow)
then linspectton fail - o7
else {f gap width OK .
then inspection -0K ' Ny

Before beginning a weld, thé gap ts -first inspected to make ’

certain that the gap width is not too wide or too narrow.

.

Q

Dl.s Target sighted/not Sighted
" # read linear binary image
determine tf present and previbus binary images
constitute the _pattern of the target
% determine centre of target with respect to, centre '
of linear sensor

'

13

&

This task indicates whether the gap-beginning marker has

-been Jighted by the linear sensor
Predicted next centre of gap
¥ read linear sensor ’ o
determine present centre of gap and present error
% using present and previous centres of gap, predict
next centre of gap (5mm in Y direction) , .

- : - 117 -

-— 2 '
. R /
L4 s

This task determinés the riext centre of the gap This is

. required for tracking ealong a curving gag 'The sensor is -

‘assumed to be located about Smm in front of the arc during

“welding. : ! « ’

Gap width OK/not OK. °*

read gap width threshold

read linear sensor and position '
determine distance to gap

determine whether gapxis presently too wide or not
wide enough

X X X X

v

P

D2. ¢ Wgld gap: . ™~ y

. % send message to find start of gap 4

¥ move in.predicted direction of gap matntaining
distapce from gap and alignment on gap centre

turngn weld

% using temperature feedback, maintain temperature
within given threshold :

1f temp > threshold then send messages to increase

- ’] speed of tip and advance electrode speed .
‘* # if temp < threshold then send messages to decrease
. - speed of tip and retard electraode speed
- _ # if target(end of gap) sighted then stop weldlng
The gap 1is welded an& the temperature 1s monitored i1n order
: o - : ’ A
to maintain an optimum. ;
. ' A ¢
p2. s Temp <=5 threshold- -
¥ using command contextual information, determine ° |
~ ’ whether -temp is above, below or equal to threshold

Level 5 tontrolkLooéé ' ' . - ‘

5 n ' ’ hidd

_él.c Stop/assassin:
' # send message to stop -
* memorlze position

- . - ' /-,

pl‘,'. >
. - .
M *
- ~ °
<
. o 1DAIIG . abovg 4 . (A~ OLSD_.._
- 2nSSdiyg -
. 3o B PN ' .
osuss 1060as . 10104 bnog i . : abneg o.m::eu
abu . : - IA[OA i mo 9110A JB)SW}|OA J08u »
meuny U4 ORI eds, Dog-imeyy HEAME N s : ommd o
" . ﬁ - m : ﬁ m . m , ﬁ w r m
: 1 c . N . . H H
 } U + P L] LI + +
Buoy -
padds paads a3 Jo N em 013
od o,
NN N D R I e I P s e
szIowBYy - - 1snlpy .u-.mu l&{ uaa wnu 1 1
v - v .
; 3 qv T 3 (44 1 % tv
m i : ¢ :
e [1
v i ‘
19619 usy H d01S . 110/u0
i juo ubyw 32150 9} . Py - Diam
Hl] WS sanyy - -] .
. Q 14 -
P S ¢ A % 3 -Z0 % - 10
I - 2y -
H Pus- puno)
< : nans pus'
asgpuld \ JLIRIS
¢ 3
.. - - & A)
- ; w & ‘
S - DR I 0 N O R P B : ’
. e e e . b e o ‘ L .
e ~:. S "- T
- .
- | +qeg u.o \ 909 10 dog jo
10 _o v: 52) 311u3) 2137 .
1M 713918 v ixau xau
3 ﬂ ¥ < ! ¢
- ui»:. bub:
t - . 5
i ‘ e - .
Y
] . -
L
- * N . R
~ . ']
N - - - ‘ . & .
d ‘ L X 5. - . <a
. . . v . B G
’ hd - . N > T t& -

v

»

s
- . LT .o '
- 119 -
1. Appendix 3. CHC-0S: An 0S for Concurrent Hierarchical
Control] . o
- . -7
1.1. System Routines
The following is a list of system calls and a brief
° desbriptlbn of their functions Manylsf the routine names
and their function have been either borrowed or inspired by
Comer‘t Xinu operating system [261 ' -
o
Kernel Routines
3 4
ctxsw() . .
inbyte() N < .
outbyte() . “
incomm() ’
' outcomm() :
The routines . inbyte() and outbyte() allow " the 2qlllng
task io. read and write to-a device by means of 10 ports
;o defined.in the CPY hardware. . The routines incomm() and
outcomm() are similar to inbyte() and outbyte() except that
h ¢ they are used gxcluslvelyvfor inter-processor communication
‘through a serial link such as Ethernet. The routine cLxswi()
performs a CPU context switch which allows the CPU to be
. L -
shared by a number of .tasks - concurrently. It s used
. _ . . i
exclusively by the task manager t)
]
. .
\ * ’
RN ° Memmgr Routines i L - ‘.
- ' f -
7 k
,r7 R n
¢
-~ ¢

= 120 -
~\

enqueue() . ‘ . _
. dequeue() - { : . f el

Insertd() ‘ . : ' -

gempty()
qnotemtpy()
“ghead()) ' : ‘ -
qtail¢) ' ‘ - o
semwait() '
‘semsignal() . . - ‘
alloc() .. , . ‘ '
load()) o ‘ ’

4
-

l . .
Memmgr. provides list management routines for the use of

"

task management as well as general use by a uéer-def!ned
task Enqueue() 15 used to pl%pe the poinber to an item onto
a polnter _llst. Each entry on the polnter lxst has filelds

for forward and backward pointers Dequeuel() is used to

V'

remove a pointer from “anywhere in a pointer list.” It may

L

W - N ’
therefore be-used in implement either FIFO (first-in/first-

out), LIFO ‘(last—lnlflrstfout)_ or random list management.
lnserfd(n_is used to insert a pointer into its proper ‘loca-+*

s

"tion on a delta list which ts a list of items waiting for
A\ % .

specific time perfods. Qempty() and gqnotemdty() provide’
: A

6601ean ‘values lnnAcatlng the status of a llst and gqhead()

and qtall() return list positions 1ndicating which polg;ers

are at the head and the tail of the list,

-

Semwait() and semsignal are routines wused -for the

management of semaphores.
T - r . ' L 4
Alloc() is used when the system.manager makes a request’

fnr’a memory bloeci from ‘memtaq: when a new task nee&s to be

.installed in the system. Load() actually loads an object

file from Unlx' into 'a satellite processor at the address

> oke

o

-
s

returned by alloc() K

Iskmgr Routlnes_

newtsk() T ' : e ¢
w8ady())] ‘ : -
suspend(7J . LA » - e
watt() ~ . . ° : o
sleep() h gt .
changowner() - - ’ : ﬁgm :
setpri() ' : :
resetpri()
- resched()
gettlq()
BN

~—

The task manager takes care of everything- to do with
task management through a task table called ‘tsktab’. The

newtsk() system.call is used by the system manager to cnéate

1

“a task on tpe task table during installation of a new task. E% y

"The system calls ready(), ‘suspend(), wait{) and sleep(iJ//(f

alter ?thquexecuflon status of a task and sleep() places the
. \ : . .

selected task on a delta list:

-

.Changeowner() alters the "owneF field of the tasks

. - . ' ——
tsktab entry to indicate which higheér-level task has invaoked

~

it \ihe owner will not be énanged if the message priority

; &
A A - . -

Ffom a new hlgher;leveJ task .to the task' in question 1is

lower thén'the messagé priority with the present higher-
level task. B ' .
. - v ‘ "’i\w‘

The roufine setpri() sets the priority of a task asso-

; . L.Clated with a speciflh command message to the task execution

.
4

¢
priority assoctated with the message priority, -in other
. e . '

»

1

- 122 = »

K
- LY

words, thé\ higher the command message priority inpvoking a

—

task, theé hijher the execution priority of the task.

P

+

Reschedd) 1s used by the task manager to reschedule the
‘ /

CPU accorﬂlng to some scheduling policy; resched() is the

“«

only routine whfch has access to the kernel routine ctxsw()
which physically effects the context switch. Although
resched() is a C procedure like any other, it will in fact

never return after {t‘’s"been called

-

Ge}tla() returns the task ID of the presently executing
task providing a means by which system.routines can identify

the task by which they’ve YHeen called.

a

.Devmgr RoLtlnes \) " v u
- P . A

getc()
putc()

@

N

The device.manager handles hardware and software f{nter-

A
1

rupt routines for sensors and actuators, and readies user-

defined device driver tasks for execution Getc() reads a

P

. (.-
character from a sengor or from ‘the commupiceizpns port and

is called by a hardware inte?rdpt routine. Putc() writes a

tharacter to an actutor or to the communications port and is

o

called 'by a software interrupt routine. .
. ' S

Commgr Routines

readcomm¢) \
_writescomm() ¢
writeccomm() ,) ' ‘ .

- 123 -

The .communications manager 1s -used to support all

g

inter-processor communication. The routing readcomm() 1s
used py'the system manager when {t responds to "a hardware
interrupt indicating that . a message (s coming in from

v
another machine. It reads the message, determines the mes-

%
sage type; whether command ar sensory, and then transfers
" the message to the message manager i1n otder to effect the
transfer The procedures writescomm() and writeccomm()

write sen?b??“én& command messages respectfvely’ to another

processor which has been determined by the message manager.’

Msgmgr Routines

tputc()
topen()
tclosel)
eotsk()
transfermsg()
msgstat()-

\ I3) |
f i
Tgetc() will gdt a sensory mesgage from a source
whether 1t‘s in the local CPU or a foreign CPU If the mes-
;age ¥transfer 1s local, then the message transfer 15
effected or ihe calling tagsk may be suspended {f there iIs as
yet’ no message to be transferred Tﬁe same thing happens
‘vwlth a foreign processor, -except that the task wakjnave to
watt on a message adbréssed speciflically for (it arriving

through the communtcations port. Tputc() will transfer a

sensory message to a destination without blocking to a local

~ F

. - 124 -
@ " '
CPU destination or to the communications manager 1f the des-

tination f{s tn a fareign CPU

<

Topen() 1nv6kes a task by sending a command messagf to
the ‘destlnatlon. If the 'destination task priority 1is
already higher-than th{‘message priority tryﬂng to gain coﬁ-
trol of 1t, then the calling task is placed on a waiting
queue associated with the dest;;atxon task. I¢f fhe new mes-
sage priority 1is higher, then the‘prevlous invoking task
must be pre-empted aqd 3 message to that eFF?ct is returﬁed
to it, then the owner field of the 1nvoked ta;k is altered
to reflect the change Tclose() releasés a task from -an
Invocation "and Eltﬁer hands over ownership of fhe task to

the next highest priority task on the waiting list or

suspends the task -

-~ Teotsk() refurns a normal task completion report to the
invoking task }he user task can check the statds of any
message implying the status of any task, through the pro-
cgdufe msgstat() This Qill lnf%rm the calling task whether
the destination task is OK, pre—empted, or if 1t completed
normally. How the pre-empted task handles the situation is
up to the user—programmer who may either retry the lnvoéa—

tion in which case he is placed on a wait queue, or take

evasive action

*

Newmsg() builds a new message entry into the heséage
. , .. L 3
entry and 1is used when the syst‘w\manager Is installing a

new task in the system. A parameter must indicate whether

“

. - 125 - \J/ ‘ b

~

the mességg is for sensgry-inforﬁatton or command‘ln§oca—
tion. ~ Setmpri() woulq be used typicaLiy when a new message
is defined, although it may conceivably be useq dyhamically
as‘Qell in order to test and Fine-tune sygtem. performance

The message priority indicates at what priority the recetv-

,/)ing task mugf’ifécute, - .

-
]
[y

o Transfermsg() 1is used by the communications manager: to
™\ . NN . :
transfer incoming inter-processor messages to the aparopri-

‘

ate destination task. .

Uusrmgr

. -
.

.

There are no routines defined within the user manager,
all higher level management - of wuser "tasks can be done

through the task manager

-

Sysmgr Routines

v lnstall()h
setpri() .) '
invoke() -

o

The‘install() procedure is lnvoked.only from the Unlx
development system and {s used to lnstallzé new task 1n.§
spec;fled machine. ln;tall() updates the ﬁessage tablgs “in
all machines and i{n t&e target macgine it requests a memory“
allocatton, loads and suspends the task, :;nd updates the

task table.

P

A - 126 - : .

The setpri() routine allows the user to spi' message
~ :

priorities dynamically from-Unix by permitting a real-time

1ink between'Unix and the message managers in the variou§

AN

prbceiiiiiy S o
. g) : ‘ . " .)

The.invoke().éroceq%ré|prdvide§-a.real-t&me. ltnk like
seiprl() which 'allowg the user- to manibu}ate the system by
séndlng a command message from Unix to a task in tﬁe same
way as a ias& to a t;sk does Invoke() allows him to invoke

or suspend any task in CHC-0S from Unix thereby allowing him
N ,

.to execute only subsets of tasks ‘The emtire'system would

be. started up®by an ‘invoke() being sent to the highest—level

“ ' -

task.
1.2 System Tables . {

Fblloding 1s presented the structure ofnvaréous"system
tables.

:

Memory Manager Table: Memtab - .

N

% base of segment
" # size of segment '

e

- 127 -
A

Task Manager Table: Tsktab
‘®:-name
machine
status(current
y ready
= suspended
' watting -~ -
3 asleep)
owner(message)
priority(owner)
sleep(msecs of sleep remaining)
.environment * pc
- , % baseaddr
limitaddr’
stkptr
stkliimit -

X X XX

* X x

Device Manager Table:.Devtab ‘

* name .

¥ status(OK '
,susp€;§2¢) -

buffer k oo

Message .Manager Table: Msgtabd :

® priority .

* status(OK _
suspended
pre-empted

i normal completion
abnormal completion)

* type(sensory .

© command)

y ‘# source(task,sensor)

Y+ % destinatiop(task,actuator)

Usr Manager Tables: Usrtab’

* input portsC(81
output portsiBl
’

e

%]

