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ABSTRACT

A Rate-Distortion Theorefig Approach to Pattern Recognition

““

.

In ;hls work, a fundamental model for the pattern recdgnltlon process based
on a generallzed communication s§stem model 1s presented. Applylng this n'lodel
to several examples, Interesting conc]uélons Including the relatlonshlp between
the performance of the classifler and the number and the quality of the features

- {
Is drawn. Based on these concluslons, the 1dea of vector recognltion, l.e., con-

[ d
current classiflcatlon of several patterns s suggested and substantlated. To
remedy the problem of co atlogal complexity which may result as a conse-
quence of conslderlng several patterns at one tlme, a new sample set condensing

method and several new fast nearest nelghbor search algorithms are presented

and other possibllitles are discussed.
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CHAPTER 1 -

Introduction ~ )
- . - ’

. \ .
. o - -

— 7

2
U

The flelds of informatlon theory, In particular, the area of rate-distortion

. A

theory, and pattern recognltion \‘(stand as well developed disciplines. While the

areas of Interest to researchers Im the two flelds have ‘overlapped 11 the past [1]-

/

[6], up to now no comprehensive effort has been made to relate the phllosophy,

gqals; and analytlcal techniqyes of these two disciplines? This work Is motivated

b the bellef that such an ekamination of the two flelds would uncover a number

LY

of Interesting new research questlons, would add to phe understanding of the

fields, both.separately and together, and would provide a basls-for increased col-

-
Y
2

laboration among researchers.

v
[N

\ ’ .
‘Rate-distortion theory Is the branch of Informatlon theory dealing with data

>

compresslon. A rate-distortion function R(D) may be assoclated with each glven
Y .

stochastically modeled informatlon source and.a distortlon measure. This func- .

”

tlon gives the mifimum number of blts peJ sample, l.e., the rate R (D), required

(9

to represent the source so that 1t can be repx’od,gced with an_average distortion

not exceeding a certath value D [7], 7 ) ‘ K

Pattern recognition 1s defined as the categorization of the Input data (pat-

s v

‘ ) -4
terns) iato ldentifiable classes via the extractlon of significant features or attrl-

< ———

butes of the data from a background of irrelevant detall [8]. In this sen_ée any
patte“rn recognlition problem can be viewed as a data compression probﬂlem.‘ On

the /Q)her‘hand, multivariate distributions, defiied over the pattern space, pro-
Y ’ ’ c i

<

P



Y

g

. ~ - v <9 3 .

S . . ‘ ) . : f
vlde a suiltable model for the varlabllity of pattern representatlon, l.e., the pat;
tern ‘Eeneratlng mechanism can be modeled using statlstical distrlbutlions, in a
manner simtlar to the modell_ng of Information sources and channels In informa-
“tlon tlieory. Statistical mode'llng of the pattern generating mecQanlsm tbgether
let,h the applfcatlon of the concepts from statlstical declsion theory has reéult.ed

. )e - ) .
in a branch of pattern recognition, called statlstl¢al :91' declslonr theoretic pattern

recognition, which has domlnated the fleld for the last two decades [9)-}12].
y ' .
The above conslderatlons polnt to a close relamo?lsl}lp between pattern

recogrnitlon and rate-distortion theory..By treatlng the patterns to be categorized
as the outputs of a nolsy channel and asslgning a numerical penalty to each

erroneous classificatlon, 1t 1s possible to formulate a communlcation channel’

»

mdel for the pattern recognition process, simllar to the model used for dé}ivlng
N .

~

the rate-distortion functlon. In thls sense, the rate-distortion function can prdvlde

N

a relationshlp between thé average ‘ﬁro‘bablllty of classiflcation error and the'
. A . ’\. -

number and the quality pf the obstrvatlons. N

{
Vv

. The first push In the directlon of applylng rate-distortion theery to pattern
recognition was mé.de by Pearl [2] and Crolotte and Pearl [3, 4]. Pearl [é] t.reate;i
th_e pattern recognltion proéess as a question answering system. In his formula-
tlon, the rate-distortlon function provides a lower bound on the numb:er of
classification rules that the s;ystem‘should memorlze versus thé accuracy of Its
answers. His results are limlited to statistically independent patterns and show
that, In thls case, the'fe;iuctlon In the memory space induced by the error-
tolerance Is not drastlc. More recently, Chou and Gray [8] have used rate-
distortlon theory 1n order to demonstrate the substantial sub-optimality of pat-

tern recognition systems er}l\ploylng a declslon tree structur:e.



In this work, we present a fundamental model for the pattern recognition

"

process based on the generalizatlon of rate-distortlon -proposed by Dobrushin and
. Tsybakov [13]. Using this model, we find the explicit expresslon for the rate-

i

distortlon functlon for the case of anependent, equlprobable classes and also
) S
derive a simple recurslve method for the numerlical evaluatlon of the rate-

.
dlstorzlon function when the a prlorl probabllitles are not equal. We also compute

\ ' ) tight bounds to the rape:dlstortlon function In the case of correlated patterns.
The result of sich computation Indicates that a reductlon-1n the probabllity -of

error for a glven rate ls.posslble by Increasing the number of pat%erns c?nsldeh‘e{‘

. at one time. ”1"1l1 our formulation, the rate then corresponds tothe average number

. ‘ of dichotomles answered by the pattérn recognizer in order to classify the pat-
‘ terns. Treating the patt;\rns iIn batch also enables us to achleve fractl_or;al raves,

. l.e., le’ss than one .t){nary question answered per pattern. These conclusions paral-

}el those which sugport the use of vectoy q'uantlzatlon Instead of scalaf' quantiza-
tfon In source coding. Based on these results, we propose the ldea of vector recog-
nlticn, l.c., classifylng several patterns concurrently, and using a typlcal example,
“demonstrate the superlority "of this approach over conventional pattern-by-
pattern classification. By computing )the rate-distortlon function for several
dimensions, l.e., the number of patterns consldered atf/a time, and for different

degrees of degradation, 1t Is shown th_at the Improvement In performance result-

ing from the Increase In dimension depends on the quallty of the observation.

- 1.1 Major Contribution(s of the Work ' I .

\

. |
The maln objective of this thesls Is to present a Tate-dlstortlon theoretic for-

., mulamoq for the basic problem of pabLern recognlition-and apply a number of con-
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cepts from rz}te-dlsnomon theory to pattern recognition. The major contributions

of this work can i)e summarized as follows: -

R . \ . :
1- A fundamental model for the pattern recognition process based on the

notion of a nolsy sourge\ Is presented. ‘\\

2- Applylng the model to two-class patter&ecognltlon,’the expllc‘lt exprés—
slon for the rate-distortion function for the case of independent patterns and
equal a priorl ;)robabmtles Is found and a slmple recurslve method for numerlcal

"evaluation of the rate-distortlon function when the a priorl propab{lltles are not

equal 1s derlved.

. 3- For correlated patterns, tight bounds to the rate-distortion Tunctlon are

computed. ’ ) ¢

*

4- Based on the flumerlcal computatlon of the rate-dlstortion function for a
different number of patterns and dlfferent degrees of degradatlon, several interest-
17ng ¢oncluslons, including the advantage of delayed decision or vector recognition

are drawn.

5- Justlflcation for a feature selectlon methodology based on the direct use of

N ——

. the expression for the probabllity of error Is presented.

6- A new method for condensing the sample set In nearest nelghbor pattern

classification-1s derived and discussed.

7- Several new fast nearest nelghbor search algorlthx_ns are derlved afnd dis-

cussed.

P

1.2 Structure of the Thesis -~

- . S
The thesls conslsts of two parts. The first part, Chapters 2 and 3, Is devoted

.4

. v . _



to pattern recognltion. These two chapters, while contalning s.evergl new results
in parametrlc and nonparametric statistical pattern classificatlon, outline the
= basic concepts of s.t,at,lstlcai pattern recognitlon and serve as an Introduction for
the remalnder of the t])/gsls. The second p;;rt, of the thesls, Chapters 4-7, Is

- devoted to an exploration of the relatlonshlp between rate-distortlon theory and

pat,terh recognition. A brief summary of the chapters_follows.

In Chaéter 2, we discuss the parametric (Bayes) pattern r;acognmon. In this
chapter, beside presenting the necgssary concepts of decislon theoretlc pattern
recognltion, essential to the understanding of the relationshlp establlshed later

— between pattern recognition and data compression, a feature selectlon strategy
based on the dlrect utllizatlon of the expresslon for the Bayes probablilty of error

is formuiated and Justified. Examples of application of t:hls method to two-class

Gausslan pattern classification are also Included.

. Chapter 3 1s devoted to a class of noriparametric pattern classification
methods, called nearest nelghBor pattern classiflcatlon. In this 'chapt,er, ﬁrst'.
different nearest nelghbor rules are dlscussed brlefly and thelr performance \,L

- compared with that of optimal (Bayes) classification. Next, In order to overcome

one of t:he major difficulties Involved In nearest nelghbor rules, arising from the’

infilnite sample size %squt,lon, a nevY algorithm for sample set condensing based
on véctor quantizatlon and editlng Is proposed. Furthermore, In thls chapter,
several new fast algorlthms for nearest nelghbor search are presented. These algo-
rithms, while very useful In conventlonal nearest nélghbor pattern classification,

are inaln]y Intended to make the ldea of nonparametric vector recognition more

pra<tical.

In Chapter 4, after present;lng the necessary .detalls from rate-distortion

theory, the generallzed communlcation model of Dobrushin and Tsybakov Is
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dlss’ussed and used to model the pattern recognltlon process. In —addltlon, the use
.of Blahut's computational algorlthn{ Is suggested for numerical calculafon of the
rate-distortion functlon and Its ap llcabfllty Is demonstrated by computing the

rate-distortion function for a speclfic example. _ : -

«;‘In Chapter 5, the general model of Chapter 41s applled to the two-class pat-
tern recognition problem. It Is shown that,‘ln the case of Independent, equlprob-
able classes, due to the exlsting- symmetry, the exact expresslon for the rate-
distortion functlon can be (found. In thl§ chapter, a slmple method is also
presented for the numerlcal computation oi‘ the rate-distortlon functlon In the

- case of two classes with different a priorl probablllties.

In Chapter 6, tight bounds to‘the rate-distortion function for several exam-

ples with correlated patterns are computed. Based on these examples, several
Intersting concluslons are reached. One Important conclusion polnts to the

eflictency of delayed declslon or vector recognition. Examp}es" to suppbrt this

polnt and other concluslons are also Included. S

Chapter 7 summarizes the contents of the theslis, outllnes the Important
implications of the rate-distortlon theoretlc approach to pattern recognition, and

offers suggestions in regard to future research dlrections.

-



: , ~ CHAPTER 2

N

Parametric (Bayes) Pattern Recognition

As was stéhed In Chapter 1, In many sltuatlons the pattern generating
mechanism can be modeled using well-known multivariate distributlon (denslty)
functions anci, therefore, declslon theoretic methods can be u@d to derlve optlmal
classiflers. This results In barametrlc or Bayeslan pattern recognltlo.n. Here, 1t Is
assumed that the pattern classﬁicatlon prohlem can be pbsed In a probabllistic
way and that all probabllities Involved are elt,her‘known or -can be derived from
the data. In this chapter we dlscuss the parametrlc abpr‘oach. ‘We first present the
géneral formulatlon of the problem and then speclalize :to the Gausslan case. .
Filnally, a feature extractlon method based on the direct use of the exl;r_esslon for
the Bayes probabliity of errc\>r Is presented. This method Is based on the argu-
ment formulated by Kovalevsky [14]. Kovalevéky's argument Is based on the fact
that the most economical and the most Informative feature Is the declslon func-
tion I1tself, and, therefore, dividing the,classificatlon taskr Into two separate
phases, l.e., first searching for the “good” features and then derlving the declsion
function based on these "good" features, inevitably results n a loss of Informa-
tlon, and, therefore, Is Ineffective. This argument can be viewed as a dlrect result
of ‘t;hg data processlﬁg theorem of Information theory [15]. In our view, In
parametiric pattern 'recognltlon, thls grgument supports /[the direct use of the

exprésslon for the probabllity of error, instead of Intertlass distance measures




which are only Indirectly related to the probabllity of classification error, for the

purpose of feature selectlon.

2.1 Formulation of the Pattern Classification Problem.

First, we model the pattern generating 17’echamsm and then discuss the
model for the declslon-making process. -Assume that there are M pattern classes

Z,, Ty..., Ipy and an arbltrary pattern belongs to class z; with a priorl probabll-

M -
Ity Pl(z,), P(z;)>0 and Y} P(zx;)=1. Patterns are represented by k-.

1=1
dimenslonal feature vectors g = (z,, ..., 2; ). The feature vector g can ‘be con-
sldered as a random vector taking values In some k-dimensional feature space Z.
For example, If feature vectors are real-valued, le., z;€ER, j=1,..., k, then
7 = R’c . The generatlon of patterns Is assumed to be governed by the mulclvg;‘l-/'
ate condltlonal probablilty denslty functions p(z| <z, ), 1=1, ..., M. That /ls,/ ’
when nature Is In state z; 1t generates patterns distributed accorc;lng top (g] E/r, )-
These pr:obablllty density functions model the Inherent varlablilty of the Ipa’:tterns

as well as the approxlmatlon incurred due to our observatlon and measurement.

The a prlorl probabllitles and the class conditlonal densitles d/lscussed ai)ove
enab_le us to model a wlde range of pattern generating mechgtﬁsms. Now, we
model the (i';aclslo'n-maklng or classificatlon process. The func/mon of the classifler
can be speclfled by a function f (z). This functlion specifies to which class a glven
pattern 2 should be asslgned, e.g., f (2) = :i; means that the pattern z should be
classlfled as a member of pattern class z; . Usually, f (z) takes values z,, ..., Ty,
however, In some cases when there Is a great deal of amblguity Involved it is

helpful to defer the declsion about a glven pattern by rejecting 1t for speclal han-

¢



dling. In such cases, an extra declslon option: is allowed, e.g., f (z) = Z g, Where
T o denotes the reject optlon. Here, i’or an M -class problem we have M + 1 possl-
ble declslons\. Another element which should be defined in order ﬁo complete'the
model ls. the loss functlon. A loss functlon X(z; |xj) s a non-negative real
~number specifylng the penalty for declding in favor of class z; whenj\the actual
class Is In fact :z:; . The loss functlon &etermlnes the serlousness of each
c;asslﬁcatlon error. In the lmportant speclal case; In which all wrong declslons are
equally harmful ancll right declslons result In no penalty, we can use the probabll-
1ty of error criterlon, l.e., . g )
o, ‘ £¥ 7 . ' -
o Az |z3~) == { o - (2.1)
- _ _ 1, 1#] :

*

In the case with rejection optlon, assuming that a constant loss >\, is Incurred for

each rejectlon, we have,

CooTRER

oL
K5
K

Nz |2;) = {1, 07t 57 - (2:2)

(3
- L A, 1==0,

where X\, s called the rejection threshold.

o

2.2 Bayes Decision Rule

’

In terms of the definltions glven In the previous sectlon, the goal of statisti-
. cal ‘declsion thedry Is to devise a declslon rule f (2) In such a way that the aver-
age loss per declsion Is as small as possible. In thls section, we first examine the

+

_general loss functlon case and then speclallze to the case for which we employ the

' B -
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probability of error criterlon.”

2.2.1 Bayes Decision Rule for Minimum Risk wogE

Assume -that we want to classify an arbltrary pattern z of unknown class z.
Observatlon of the pattern z changes our Informatlon at;ou.t the state of nature
from a priorl probablllties P (z;) to z posterlorl probabllitles P (z;- | z). Where
P(z; |2) 1s theﬂ.probablllty that nature Is In state z;, glven that pattern z Is

observed. The a posterlorl probability P (z; | z) can be computed from p(z|z)

by Bayes rule: ﬂ ) “4 ;
p(z|z)P(z) '
) P (xi I.&) _ P (ﬁ) [ R (2.3)
\'vhex"e ' ) ‘ -
o -
M - 3
p@)= Y p@&|z;)P(z5). (2.4)
¥ j-—_:l 1, .

Assume that upen observing a particular pa\vtem z, we declde that 1t belonbgs

“to class z; whlle 1t actually ‘be!ongs to z;. By making this declslon, we will Incur

tl\loss Mz; | z;). Since the probabliity that z bekongs to z; 1s P(z; | z), the

N T
expected loss assoclated with decldlng z; s,

M
) R(z; {2) =-3 Mz | z;)P(z |2) . : (2.5)

j=1
In declslon theoretlc terminology, an expected loss Is called [lsK , and R (z; | z)1s

known as the conditlonal risk. For any observation z, the expected loss Is minlm-

ized by selectlng the class which guarantees the minimum condlitional risk.

Since the declslon rule Is a functlon [ (z) that tells us which declsion to

i
H

|

/



make for every possible pattern z, we can see from (2.5) that a partlcular decision "

{ runctlon|has the conditional risk, . -
\ . M : . .
R @)= 3 NJ/-@)|z;)P(z5 |z), (2.6)
. = =
1, and the average risk Is glven b){, . . .
R =[R(f@|Dr@dz, (2.7)

\

where dz denotes a volume element in k-dimenslonal feature space and the

l

# .. Integral extends over the entire feature space. Since p (z)=>0 for all z, 1t Is clear

that the Integrael In (2.7) can be minlmized by mlnfmlzlng the conditional risk for
Ed ' .

each z, l.e., to minlmize the overall risk, we should compute the conditional risk,

. , M .
. R(z; |2)= 3 Nz; | 2;)P(z; |2), (2.8)
. ¢ ' =

.
A

for all i and select the class z; for which R (z; | z) Is minimum. In other words,

r

. the Bayes deciston rule can be stated as follows, ) *

- ‘ Declde z; If R(z; |2) < R(z; [z) forall j . (2.9)

Note that tles may possibly occur, l.e., 1t Is possible that more than one declslon

minimizes the condlitional risk. In such a case, the conditional risk 1s not affected

-

by the way of breaking the tle and, therefore, any tle-breaking rule can be used.

From (2.9) we can see that the Bayes declslon rule has the minimum cond!-

’

tlonal risk, ) ’ \

R'@=mnR( | o
[ 1]



M M ) . i . . . ‘
= min ] Mz; | z;)P(z; |2), - (2.10)
all L ) .

and the minimum a\ferage risk,

. R'=[R'@r@dz. : (2.11)

which Is called the Bayes risk and Is the Ilmit of excelience beyond which 1t is /

§

lmpossible to go [12]. - ' ,

e s
2.2.2 ErrorjReject,’Tradeqff | L9 / '
’ U -
. A

We now constder the case of M \(;lass pattern recognltlon with M +1 decl- )

’

slons. The extra declslon (rejecn optlon) Is reserved ror the case where there is not
enough evidence for classifylng a particular patterr(l Into one of M classés.
Assuming that correct declslons Incur no penalty, all erroneous declslons are

equally serlous, and assoclatjlng' a constant loss with each rejectlon, we have the,

loss function of (2.2). With this cholce of loss function, the ditlonal risk will
be, = t:

. M

R(zolz)= XA PGEjla)=), (2.12a)
J=1 .

. ) /

and - ' . j

~

R(z; |2) = f}P(\zj |zr=1-P(z; |2), i=1, ..M. (2.12b)
i

We note that the conditlonal risk R (z; | z), ¥ 0, In thils case, Is the conditlonal

probablllty of classification error assoclated with the “declglon f @)= z; . Now,

- accordlng to (2.9), the declslon rule can be written as,
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%, It Rz Iz)=1’p;%R(zj'lz) S

- @ = . NS - BN CRE)
NETET 3! )x,. <?1;%‘R($j|1.),'\\ . °

\

s+~ Or using+2,12b),
A

....-;g:';‘-';z N\
@ s ° - . \\ ‘\ .
z, It P |z)= 'maxMP(zj|1)21'—>\,,/4
- 1=1,..,
f (@)= ' i o (2.14)
- To, If max P(z; |2) <1-\,. '
-0 j=1..M ( J l ) . r

. . ~
It 1s clear that for the M-class problem, — < max P(z; < 1, so for the

L}

reject option to be activated we should have 0 < X\ . <¥MA;—1-. \'

The decislon function of (2.14) partltlohs the feature space Into M accep-

tance reglons Z,, ..., Z) and one rejectlon reglon Z,.~The acceptance reglon Z;

T b

contalns all of the patterns which are classified as z; and Is described by

o -
L]

Z; = {z| P(z; |2)= max: P(z; |z) 2 1-)\,}. (2.15)
j=1,..M

sreey

The overall acceptance reglon Is 2, = Z,UZ,U ... UZ). The rejection reglon
contalns all of the patterns'whlch are rejected, l.e,,
Q \

Zo={z| 1~-X\ > .max P(z;|2)}. (2.18)
J=L..M ) : ‘

AN

It Is clear that Z = Z4UZ,, where Z denotes the entire feature space.

b

.For a glven pattern 3, the acceptance probabllity for the decision f (z) = x,-\

is,
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¥ |
Py,= [p@dz i=1,..M, (2.17)
X 2, ) : :
and the average accéptance probabllity or acceptance ratio 1s, iy C S
M B S }
] Py =Y Py; = [r@)dz. (2.18)
i=1 2y 7 : . .

<4

Slinllarl&. the probabllity of rejJection or rejection rate Is, _ )
. ‘ . co
! / . ~
Pp = [p@)dz. ‘ (2.19)
Z, ~ )
A »

*

Acceptance of the declslon [ (z) = z; glves rise to elther a classlfication error or

o

' correct declslon with probablllltles, , | - y B \
Pp;= Iz“l - P(z; | 2)lp @dzy ' S (2.20)

and , ‘/ ‘ .. . . ‘ '
| . Poi = g P (fv.- | 2)p (z)d.z.. 3 (2.';21)

-~

%

respectively. As for the acceptance rate, the average probabllity of error, or error

rate Is, . L

- .M , C
- Pp = ¥ Pp; = [E'@p@iz,  (222)
. ZA _ — i .

» .
. - ,

and the average probabllity of correct declsion Is, Q

. ‘
, f_j .

i=1

M . i “
Po=YPo;i=[0-E'@r@dz, ,(,2_23)\
. ZA \

where, . e v

Fn )
‘
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" The overall rlsk assoclated with the Bayes rule can also be wrltte

- ‘ . -15- } ' e
' * v > B
I . / I\ N ’
E’(z) = ‘min R(a:, |z_)—1- max P (z; |z) . (2.24)
i =1,..., i=},.. M .
Given the underlylng distributlons, the acceptance rate P, of the Bayes rule. ~ w

Is a function of the rejection threshold only. The reason for this 1s that the boun-

" dary of the acceptance reglon Z; of (2.15) over which the Integral of (2.17) Is cale. _,
. - ‘ L SN - .

culated de_pénds on X\, only. Therefore, wé can write P4, = P, ()\,). The same . .
argument, applles to the probabllitiesiof rejection, Elasslﬁcatlon error, and cSrrect. .

decislon; thus, we can denote them by Py (), ), Pg(},), and Po (), ). It Is easy to - y
- r

see that these probablilties are_related by,

° -7 3 ®
. . ’ . .

CPgO)=1-PR(\), (2.25) .

and

PAOv)=PgO) +Pch). . ©

-

"R*=R*(\;)and 1s relar.e\to the’ classlﬂcatlon error probabllity and the relec- ™~

tlon rate as, ) -

. . N '
. o o |
‘R*(\)=[R"@p (@dz= [mm[E"* @), ]p@)dz -~
S R SR -
= [E* (z)p(z )z + fkrp(z)dz N e :
. Za 2
. Y =Pp\) + M PrON) . ' t (2.27)

" From (2.27), the optimality of the Bayes declslon rule c'anhbe formulated as

follows: For a given pattern classificatlon problem, among all the classifiers with

—

rqlection rate equal to Prp (). ) the m{res classifler has the lowest average

»

’
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probability of classificatlon error. Or, alternatively, for a given probabllity of
"classificatlon error, the Bayés‘ rule rejects less patterns than any other

classification scheme. ,

~

From (2.25) and (2.26), we observe that the probabliltles P,;()\, ) Py(N )
Pg ()\,‘), and P (\,) are not independent and lénowlng any two of them Is
sumc}ent to completely characterlze the performanc’o:e of the Bayes declslon rule.
The followlng theorem takes us one furt\h‘er step and shows't,hat; knowlng Just one
of these probabllities 6ver the full range of )x,'enables us to co.mput,e the obhert

Al

.three. '

Theorem 2.1 : Let Pgp(\,) and Pg()\,) denote the probabilitles of
\ .
. c]asslﬂgatlon error and rejection of the Bayes rule. Then, we have,

A -
Pe(\,) =~ [XdPRp(\). (2.28)
. (4] .

N . Proof:
v ! ..
Denote the reject{on reglon for a certaln value \ of{the rejection threshold
_ by Zo. Now, assume that we decrea§e the rejection thresholrd by A\, le;

M =\ - AX. This results In an expanslon ‘of the rejection reglon from Z, to

2t = Z\JAZ, Any pattern z In the Incremental reglon AZ, would have been’

accepted If the relectlon threshold had been X, l.e.,

X E*(z) = <N, (.
(2). rjn;réR(x, lz) < , (2.20)

\ \i'hereas the same pattern will be relected now that the rejection threshold Is

reduced to X — AN, Le.,




"\

{ . E'@ > N-AaN. » (2.30)-
So, for any z € AZ, we have, . C .
< | . . : :
N AN<ET(@) S, v 4(2.31).
or, ‘
1 ) ! ) .
o =AMy @W<E'@p@< @. (2.32)

L

Integrating (2.32) with respect'to z over-the Incremental reglon AZ, we have,

. . O = ANAPR (V) < -aPg (V) < NAPR (V) . (2.33)

~

Now, golng from the Incremental change A\ to the differentlal d ),
APg (\) — dPgp(\), APg (_>\)-—+ dPp ()\), and AMNAPp (M) — 0. Therefore, the

upper and lower limits in (2.33) colnclde and we have,

: \ ’ o\
dPp(\) = ~\dPg (\) . (2.34)

Integrating with resp?ct to A\, we get the desired result, l.e,,

N -

Pg(\,) =~ [XdPg()\)
17

] -)(2.:\35)

Relatlon (2.28) describes the tradeoff between the probability of classification

error and the reject,lop rate. It Indlcates that the knowledge/of the rejection rate
versus )\ Is_ the only thing n(;eded for calculating the average probabllity of

classification error. This relatlon proves useful In c\assmcr"&error rate estima-

-

" tlon[16]. » . ~

¥
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.as that of the zero-one loss functlon.
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2.2.3 Minimum Error Rate Classification

LN . — - . RS
-

Here, we conslder the case of the zero-one loss functlon of (2.1). The

-

difference with the case studled above ls that we do not have the rejlect opt,lon

and u an observmg a patt,em, the classifler decldes In favor of one of M pattern

" classes. Note that t,he fact that we take zero and one as the cost of correct and

erroneous declslons does not involve any loss of generallty. We show in f&p‘pendlx .
2.A that for- a loss functlon which asslgns constant costs t"b correct and wrong

declslons, e.g., )\c and )\, , respectlively, the Bayes declslon rule wlll be the same

'i‘he case consldered here can be looked at yet In another way. We ‘showed

that In the previous case for the reject optlgn to be actlvated we should have’

. : * P
A < MMI ‘Therefore, the present:-case can be consldered as a speclal case of
. o
the previous one, l.e., with A\, > M—l

M
The Importance of the case consldered here Is that the risk assoclated with
thls loss runct,lonsls preclsely the average probabliity of erfor, slnce the cond!-

tlonal risk In thils case s, ' P

R(:L‘,' |.Z.) = E )\(l‘,' Ixj)B(zj I.Z.)

. J=1 . j
= Y P(z; |2)
i -
=1-P( D), “ (2.36)

and P'(:z:,: | ) Is the conditional probability that ; Is the correct declslon. In

order to mlnlmize the overall risk, the classifler should make ‘decislons In a way



-

3

. probability P (z; Iz_) Is maxlmlzed Therefore, the minlmum error rate decislon

-

which minimizes-the condftlonal risk for any particular pattern. Thus, to minlm-

" Ize the average probablllt,y of error, we should select ¢+ such that the g posteriorl

’
»

rulels, .- . '

.Declde z; I P(z; |2) > P(z; |z) forall j54i . ’ (2.37)

" Then, the an;rage probability of error assoclated with this decislon rule 1s,

R*=Pg—= [[1-max P(z |2lp(2)dz
z o

't '
[ M - . ‘ ) ' Y -
= N [0=-P|2r@dz ,
“ 1e=12,,
M . . - _'\ F
=1- 5 [P |op@dz=1- P, " (2.38)
. =17, . : '

where P 1s the average probabliity of correct decision.

2.3 Two-Class Pattern Recognition - “ : . ) - (

“

In this section, we conslder the two-class pattern recognition problerﬁ. We

speclalize the results for the general case considered In the previous section In

" order to derive the decislon rule and the expresston for ‘the probabllity of error. In

Pz, | z) > P(r,|2) and declde 1, otherwise. Alternatively, we can define the

. )

the next sectlon, we dlscuss the example of Gausslan or normal patterns.

¢ -

_In this case the Bayes declsldn rule can be simply swated as: declde z, If

discriminant function [10] .
‘ . 1
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L9@=P@EN2)-P(z,|2), " (239)

ry .

and-then state the declslon rule as: declde z, If g(z) > O and declde z, other-
wise, Itflé necessary to.point out that the cholce of the discriminant functlon ls

not unique. First, notlce that from (2.3), the conditlon P (z, |z) > P(z,|2) s

equivalent to, ’ v
Peyp@ls) > Peiplzlzd), 0 (240
and, t,herefore; choosing | \ z
( ' ;J(z)=P(ml)p(zlml)_-P(mz)p(zl%), (2.41)

as the dlscriminant functlon has the same effect as that of (2.38). On the other

hand, for any monotonically Increasing function 7O

L

JPEdp@|z))> J[PEdr(z]zy), (2.42)

Is equivalent to (2.40) and-hence choosing

g@=/fIP@plec)-f[Pp(z|z,), (2.43)

results In the same declsion rule. A common cholce for the function f (.) Is the
logarithmlc functlon. Using the logarithmlc functlon, we get the following

discriminant function,

o

og pz|z,) log P(z,)
P(Z|'$g)' P(zy)

v

g(z) =1 (2.44)

/

T e
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Usling ((2.38), the probabllity of error for lthe two-class case 1s found to be,

~

PE=;u—P(zl|z)1p(z)dz+'{u-P(%m]pmdz,_ (2a5)

where

Z,={z|P(z,|2)>P(z,]2)}, (2.46)

4

_and Z,=2Z . Noting that P (z,]2) + P(z,]2) =1 and uslng (2.3), we obtaln,

Pg =P@)[pls)dz+Py[pr@|s)dz. . (247)
* Zg Z] ,
2.4 Two-Class Gaussian Problem ]

|
The general multivarlate normal denslty 1s written as, {

¥ o
i

.

k !

P@=(2m ? || Fexp [%@ -wTEE - a)] : (2.48)

-

where 2 = (2,, ..., zk)T Is a k-dimenslonal column vector, g == (4, ..., Py )7,

" where u; = E [z;], and T 1s a k Xk covarlance matrix with (¢, 7 )th element

/

o1y = El(a - wi)zj - )l - (249)

The notation | £ | denotes the determinant of L.

The covarlénc_e matrlx £ 1s symmetric, positive semldefinite. However, we
are mostly- Interested In the case in wmch’ L 1s positlve definite. Since, If the rank
.of £1s k' < k, we can reduce the px:oblem to a k -dimensional problem by
“selecting a subset of the orlginal features consisting of k' linearly independent

variables for which the resultlng covarlance rx_latle ¥’ 1s then positive definite,

- 4
I




y -92-

\ It 1s common to wrlte (2.48) as p (z) = MN(u , ). It can be easlly shown that
the distrlbutlon of any llnear comblnation of normally distributed random varl-
ables Is agal:n norm'al[17]. In part;lculér, IfA1sakXn matrix andy = A Tz_ Is

an n-dimenslonal vector, then p (y) = N(4A Tu,ATxTA).

Now, assume that we have two classes with a priorl probabllitles P (z,) and

P (z,), and also assume that the class conditlonal densitles are Gausslan, l.e.,

. k L :
pz|z;)=1(2m) ?|%; | %exp -';—@~E;)TE}1(1~Q,~)] , 1=1,2.(2.50)

v

<

The discriminant functlon of- the type (2.44) for thls case can be easlly found to

be, ' \ .
9(&)———21% = —42(2—21) TiE-uy) o
P(z,)
1. Ts1¢, _ 1
+ 2(1 uo) T (z u?)—l-log P, (2.51)

[

_The declslon boundarles deflned by ¢ (z)=O0 are, In the geheral case, hyperqua-
drics and can assume any of the forms - palrs of hyperplanes, hyperspheres,
~hyperellipsolds, hyperparabololds, and hyperhyperbololds. From (2.47), the proba-

bllity of error Is,

Pp=P(z,) [ p@lz)da+P(z,) [ pler)dz.  (2.52)
. 9(z)<0 g(2)>0

)
» {.4.1 Case of Equal Covariance Matrices

Now, we conslder an important speclal case where patterns belonging to two

!
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classes have the same ’'covarlance matrices but different mean vectors, le,
. H "

$, = £, = I. For this case, the first term In (2.51) Is equal to zero and expand-

Ing the second and third terms, the quadratic form zr £z 1s canceled -and we

"have, ’

»

@)= lz - =(u+ )1Tz-‘<—- )+ 1 Pz
g\z)= > I3 ') Ly—4o og PGz,

(2.53)

The discriminant function of (2.53) Is linear and, therefore, the declslon boundary
_—eET

in thils case Is a hyperplane.

Defline, . , .
. 1 T X . ’
L@ =I[z- E(l&x"‘l&e)] =7 —u) (2.54)
and,
P(z,)
o= log Play (2.55)

o
Then the Bayes decislon rule may be expressed as: declde z, If L (z) > a, and
declde 7, otherwlse. The average probabllity of error for thls declslon rule can be

wrltten as,

Py =P )PriL(@<a|z,] + PE)PriL@>a|zy).  (2:56)

When z belongs to the class z, It Is a Gausslan random vector distributed

. L
as, p(z) = N(u,, ). Since L(z) Is a linear functlon of z, It 1s also Gausslan

with mean,

-

<%

— " T
EIL@ = 1@ =l - S0 + k) S - k)

.
1
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1 _ ' .
= ;(ﬂf" EQ)T =, - 8y) : - (2.87)
and varlance, ‘ ‘ ‘ C
e Tor]
/ v o& .
= (1) ~ )T TN, - 1s,) - : (2.58)

ed

Tﬁus, L+(z) has the density N (-;-A , A), where A 1s the Mahalanobls distance
between u, and p,, le., .
' (
+ . ’ T =
" ) A= (1 - i) By ~ ko) - (2.59)

Similarly, 1t can be shown that for z belonglng to r,, the probabllity density

function for L (z) Is N'(—-;-A , A). Therefore, (2.58) can be wrltten as,

Pz &

1
P, = L w-
E vera Lexp[ YN

2 ) o

P(z,) % 1 ALl ) : o
+ NN {exp[—;A—(w-i-—é—) Jdw . ‘ (2.6?)

r‘\b

r

This expression can also be written as, v

(2.81)

Pp =P(@)Erfe(-—=+ —2‘/—Z~> +PlaBrfe(o=+ —ﬁ-‘;) :

where,

Erfe(z) = r\/l—-;_;“fe dy - (2.82)
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Néw, we show that the probabllity of error‘ 1s a monotonlecally de“c‘reaslng

“

o~
function of A and, subsequently suggest a feature selectlon criterion for this case.

Differentlating (2.80) with respect to A, we have,

A Y
-, ¢ 4 . .
dPp o 1 1 . va 2
da T avEtwEr ‘”‘”‘D-[‘;('—\/z ) } ]
o 1 . 1, o va 2
, oava TR P e [“5‘7: ) } - @3

P(z,) | K

Noting that a = log }7(—%, and performing some algebralc manipulation, (2.63)
z, ,
-?

becomes,

da ova

dP E -~

It 1s clear that 1A < 0 and, therefore, Pg 1s a monotonlcally decreasing func-

(2,64)

dP VP (z,)P ’
. E (z,) (ZQ)exp[—%(-i—z-{——?—)}»

©

tlon of A. This fact can be!used In s'elesctlng the best features In this case. In par- -

1

ticular, assume that £ Is a dlagonal matrlx with dlagonal elements 01?, N 2,
This assumption does not entall any loss of generallty, since, In geperal. the
matrix T can be written as £ = P7IAP, where A 1s a diagonal matrlx, and per-
for'mlng t,hé ‘change of \;arlable‘ - y= Pz, we ‘have
p(y|z) = N‘(g’i yA), 1=1,2, where, u; = Pu; , 1=1, 2. Therefore, the

case of an arbltrary covarlance matrix can be reduced to the case of a dlagonal

matrlx with a rotation of coordinates.

'Y

In the case of £ = diag [a,%, ..., 04 %], A can be written as,

(2.85)
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Now, assume that we want to select k' < k features from the k original

features. It 1s natural to choose the k' features assoclated with the largest values

" e

g;

"2.4.2 Case of Equal Mean Vectors

Hege, we consider the case where p(z | z; ) = N(u& , &; ), ¢ =1,2. Since, with
N(o, &;), 1=1.2, without,

a change of variable y = z— u we have p x|z ) =
loss of generatlty, we assume g = 0. For thls chse, the dlscrjmlnant function g (z)

can be written as, ; .

1, 5 1, P(z,)
= ——] - =zl (-3, l ' 2.66
g (z) 2og122| ] (=, 2 )g+ ogP(xz) (2.68)

and the probabllity of error is,

-—— ,

k 1
. L 1 i
Pgp = P(z))(2m) 2 |=,| % [exp [—;z_T T, 11_}d1
Z,
L] . ‘ .
S S
+ P(zy)em) 2 | £, 2 [exp -=zT%, 2 |dz, . (2.87)
7 Z, 2
o _Where, * s
s -1 -1 | P(z,)
Z,={z| 2T -5,z + log—— < 210g i } , (2:68)
| Z, | P(zgy™ "
, and Z, = Z,. Since X, and X, are real symmetric and positive definite, we can
find a matrix B such that, ’ ,
RN . RTSR =1 and RTS,R =14, )
s '

Fogee
ey

SR

R e
/
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where Alsa dlagonal matrix with dlagonal elemeénts A\, 2> ...2 A\; >0 which are

roots of the equation |5, - \X%,| =0 [18]. Lety =R Tz In (2. 87).to obtaln,
2 " Al

ko
) 1
Pgp =P(z,)(2m) * [ expl->x"yldy
' . Y(d) :
N _ |
+ P(a:Q)(27r) B |A| 2 1) exp[—-—-xTA“x_]dx, . ' (2.69)

Yo

4

where,

YQ)= {xl E(l——)y, > Z‘log)x +2logP(x1)}."' (2.70)
i=1. § =1 P(z,p) "

P

The probabllity of error can be equlvalently written as.

L]
-

e

Py = P(z)Pr

k(i )Y2> logh; + 21 Play y
— og o -
s'gl Ni ‘ lgl gP(xz) )

0 P(z,)
+ P (z,)Pr z;(x -1)Y;% < Zlogk + 2log

Z 2 P @a) ] @7

S

where the Y;'s are Independent NV (0, 1) randomn varlables.

2.4.3 A Feature Selection Algorithm

Here, we show that the expression for the probablility of error gl\;en by (2.73)
. can be used to evaluate the features. The following theorem shows t,_ha't those
features for which X\; s farther from 1 are more sultable 1n the sense that they
decrease the probabllity of érror more. We wlil use this result for deriving a -

feature selection algorithm. e ’
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Theorem 2.2 : The probability of error defined by (2.73) 1s monotonically
decreasing with \; for each X\; >1 and mqnot(;nlcally Increasing with X\; for each

A\ <1.

The proof of the theorem may be found In the Appendix 2.B. [ ]

-1

The above theorem can be used In order to: extract a set of [ <k features
from the orlginal k features. In partlcular, when all \;’'s are greater (smaller)

than one, the problem lIs stralghtforward. In such a case, we plck | <k largest

(smallest) \;'s and form the feature vector y = L T z, where the i th column of
i g ith

the matrlx L 1Is the elgenvector of £,7'%, correspondlngeo the elgenvatiie X

" .
_When some'of the \;'s are smaller than one and.some are greater than one the

problem s more difficult., However, the folloWwing observations make the search

for good features easler.

PDefine [ +1 s'ilbsets S (p), p=0, ..., | of the set-{\,, ..., A\; } as follows;~

Sl (P) = {>\1’ ) >\p ’>‘n-(1-p)’~"' >‘Ic} .

The quantlties A, ..., N, are the p smallest, and A\, _(j_p) ..., Ay are the l-p

<

largest, elgenvalues. S; (0) contalns the ! largest elgenvalues and S;(!) contalns

the | smallest elgenvalues. A natural consequence of Theorem 2.2 Is that thé

elgénvalues corresponding to the best [ features are glven by one of the subsets

e

S;(p) p=0, .., 1.1t Is also clear that If S;(m) outperforms S;(m +1) 1t also.

outperforms S;(m' ), m" >m +1. Similarly, If S;{m) outperforms §;(m-1), 1t

also outperforms S(m'")ym'" <m-1. o

Based on the above observatlons, we propose the following algorithm: for the

, feature selection:

—_y

—,,.—‘0"""



Step 1 : Find )\, -.., \;, the elgenvalues of £,7'S,. ° ‘

-

Step 2 : ‘Find P;(0) and P (/) the probabllity of errors corresponding to
S; (0) and S; (1), respectively. It P;(l) < £,(0), then set j =l-b

. and go to 3. Else, set 5 =1 and go to 3.

Step 3 : If j <!, find P, ("j) the probabllity of error corresponding to S (7 ).
Else, set S; * =S, (5 -1) and stop. ° N
' - . .
“Step 4 : If P(7)<P;(5-1),set § =3 +1 and go to 3.

Else, set S * =S, (5 -1) and stop.
Step 5 : If 4°>0 then, find -P; (7). Else S * =5, (7 +1) and stop,

Step 6 : It Pp(X)<P;(j+1),set =7 +1 and go to 5. ‘

Else S; ' =5, (j +1) and stop.”

o .

In the above algorithm P; () Is'the prcbabllity of error when the feature set

wlt,ﬁ elgenvalues represented by S;(J) Is used, l.e.,

-

Pi(7)= P(z)Pr

» (1——1—-)y,-2> > lég;\-+2‘logP(zl)
in(y N i€ P (z,)

+ P (z,)Pr

) (X-—;)u'2< » log)\-+2log-ﬂ£—l-)-’
Tel(5) l‘ ' el ' P (z,) n

where I;(5) Is the set of Indices of elgenvalues ®velonging to S; () le,,

LH={1,...., 0 k~(I-7) ..., k}, and y;'s’are L.1.d. N(0,1) random variables.

P;(7) can be found using Monte-Carlo simulation. For large values of k and !,

-
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P

the asymptotlc approximate formula of Morgera-Datta[19} can be used.

“We have applied t,he/above algorithm to four examples which are of practical

Interest. In the first .and second example, the feature vectors are distributed
L]

according to a first-order Gauss-Markov density. The covarlance matrices in this

~ ] .
case are of ‘Toeplitz fofm, with an element Oy of the covariance matrix given as,

'

O

p—y . . —— 'al'.—jl
'0 L¥) al‘—]l ¢ \ :

In the first example, we Use a,=1 for the patterns belonging to the "ﬂrst, t T
class ahd a,=0.5 for those Belonglng to the second class. The second example

. uses a,;=1.0 and or,==0.23. In the third example the patterns are generated

E

accordlng to a second-order Gauss-Markov denslty, with an element of the
) - . -

covariance matrix given as, . .
t N

-

[
.

olij)=¢Poyi 1 +eT0 il
We have ‘use'd f,=1.0 and v,=1.4 for the first class and B,=0.2 and ~,=2.0 for
i - , ) -
the second class. In the fourth example, the first covarlance matrlgg is first-order’

Markov with @,==2.0 and the second one Is second order Markov with f§,=0.5

' Wt
and ’72=2-0- ° b

’ v L.

In each case, we have assumed equal a prlorl probablllities. Each feature' vec-

a

tor conslsts of 40 features. Table 2.1 shows the best 10 features extracted from

\the 40 inélnal features In each case. These examples lllustrate a compression of

the original data space by 75%. ¥

4

A

A
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’ . Elgenvalues Selected
| Example s, , == —
I_;x;'gest,. Smallest
+ -Flirst-order lF‘lrst—order
1 ‘Markov Markov 10 0
o,=1.0 @,==0.5
Flrst-order _ Flirst-order ‘
2 "Markov Markov 10 0
: o,=1.0 \a2=0.25 ' |
Second-order Second-order ’
,3 , " Markov Markov 10 ‘ 0
fi=1.0,v,=1.4 | B,=02,~,=2 o }
First-order Second-order o
T4 Markov Markov 8 w9
0, =2.0 £, =0.5 , 7,=2.0

In thils chapter, we discussed the parametric app.roach to pattern recognition
lr}xgeneral, and its application to the case of probabllity of error loss function and
Gau§sl\an feature vectors. Also, a feature selectlon methodology based on :the

dircet ﬁyf the expression for the probabllity of error was In’trdduced and Its

In the parametric pattern classificatlon, the pattern generating mechanism Is

'

Table 2.1 : Elgenvalues selected using the new method.

2.5 Discussion

¢

application\ln two speclal cases of interest was discussed.

S~

g

¥

¢
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modeled In & manner simllar to the modeling of the source and channel in infor-'

]

mation theory. This not only enables us to view the pattern classifigaon prob-
lem as a hypothesls testlng problem, ahd, therefore apply the decislon theoretle
conqepts in ordér {P design and evaluate the performance of the optimum

classifiers, but also, as we will show In Chapter 4, makes it po_sslblé to épply a

communication system model to the pattern recognitlon problem In order to

obtaln lower bounds on the performance of the classifier versus its complexity.

-

While the mbdellng of pattern generating mechanilsm using multivarlate dis-

tributions s valld In general, the ‘éss‘umptlon' made In parametric pattern

classification regarding the avallabllity of these distributions Is not always true.
This observation calls for a different approach, called the nonparametric pattern

chassification method, which does not require advance knowlédge of the pattern

-

statisties, In the next chapter, we will dlsQuss a category of nonparametric

methods called the nearest gelghbor rules, -

7



Appendices , .

~
N

2.A Classification Rule for the General Losg Function

v -

¢

In this appendlx, we show that the Bayes decislon rule for the loss function,

-

S | Ae =3 .
Nz | z;) = ‘ (2.A.1)
P X, 1547

[

Is the same as the one derlved for the zero-one loss functlon of (2.1). The condl-

tlonal risk for the loss function of (2.A.1) Is,

R(‘Ta Il)= 2)\(1‘ I-TJ)P(:EJ IZ-)

1_1
) N
=X Pz [2)+ X T P(z; | 2)
T A
e =X, = N\ -\ )P (3; | 2) (2.A.2) .

Since A, >\, , In order to minimlze the conditlonal risk we need to maxl;mze the

a posterlori probabllity P (z; | z), l.e., the de'clslon rule Is,

- -

v

"Decide r, It P(z; |2) > P(z; |g) for all ji

which Is the same as the declslon rule glven by (2.?37).
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2.B Proof of Theorem 2.2
In this appendlx, we provide a proof for Theorem 2.2. Assume that we have .
A=(\,, .. )\,‘) Take ,\_’ =()\ , ...» Ax' ) which differs from ) only In one com-
_ ponent, e.g., k j' >X;>1. Denote the probablllty of error correspondlng to A

« and ' by Pg()) and Pg (\' ), respectively, then from (2.68), we have,

i

N _k ) k
Pp(\' )=P(z,)2m) * [ exp [—%E,y,-z}dx

S oY) =1
; :
kg -1 k 2
Ny 2 : Yi
+PGem) 2O\ )" [ ex|-5 B35
=t PO ) =1
" _i .1 k 1(
< P)em [ ep(-> 3y’ |dy
Y j=1 | )
: £k - . 1 kvl
: + P(zy)em) 2T N )~ [ exp |- 3055
’ . . =1 Y(m ] f1=1"t

 PlaPr| 3 (1oL )‘ > S log; + 2l P(z)
= P(z,)Pr v o o
! X=3 l y' .2—31 g gP(z2)

+P(z )Pr (1-——))\ ! < 4 iog)\- + 2lc;gP(ml)
2 'gl X' yl i§l , t P’(xz)

~o

< P(z )P zk:(l ) >'§:l A + 21 (z4)
z r — — o o
! =1 y’ t =1 ¢ gP(z2)

) |: k P(z l)] % l ) )
+P(z)Pr| X% ()\'.;1)y. < Zlogk +210g = Pp()) -

i=1 - P(z,)

»
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The first 1nequality is due to optimallty of the Bayes declislon rule and the

“second equallty results from the fact that (1—%—)&-’ > (1--)%-4-»\,- = \;-1 for

! 1 ]

_all 1. This proves the first part of Theorem 2.2, 1.e., It shows that the probabllity

of error 1s monotonlcally decreasing with A i .ror each \ j=L

o ".

"To prove the second part of* the theorem, we take )’ .Which Is different

“from X only ‘In one component \;’’ <X;<1‘'and In a similar way, show that

P )< Pp). ‘
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CHAPTER 3

Nearest Neighbor Pattern Classification

The Bayes classificatlon rule dlscilssed In Chapter 2 rellies on the assumption
that the parametric form of the pattern generating mechanlsm Is known In
advance. However, In many practical situatlons such an assumptlon Is not valld.
This glves rise to the use of nongarametrlc. methods that can be used wlthout

]
assuming tha‘l the form of the undgerlylng densitles 1s known.

There. are several different nonparathetric methods. These can be divided:
into two maln categorles. ‘The first category comnsists of those technlques which
try to estimate the underlying densltles, e.g., using Parzen windows [20], [21], and
then deslgn the optlmal classifler based on the estimated densities. The second
category attempts to totally bypass the probabllity estimatlon py derlving the

deciston rule directly from the avallable data samples. Different nearest nelghbor

.rules are examples of this approach. This chapter Is devoted to thls category of '

non-parametric technlques. First, different nearest nelghbor rules are discussed
and some practical problems Involved In using these methods are addressed, e.g.,
the computatlonal complexity and storage requirement resulting from a large
sample slze assumption. Next, In order to remedy these problems, a new method
for sam’ple set condensing based on a comblnation of vector quantlization and
editing technlques, and several new fast nearest nelghbor.search algorithms Is

presented.
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3.1 Nearest Neighbor Rules

The neares_t nelghbor rules exchange the need for the knowledge of the
underlyling dlétrlbutlons for that of i(nowlng a large number of correctly classified
sample pqtterns. By dolng so, the nearest neighbor rules bring us a lot closer to
the reallty of the practical problems. The baslic ldea behind the nearest neighbor
rules Is that the patterns which are closer In the feature space are llkely elther to
belong tp the same claés or to have about the same a posterjor! probabllity distri-
" bution. The first case glves rise to phe single nearest nelghbc;r rule, 1-NN, whlle
the second prompts the use of a k-nearest nelghbor rule, k-NN. The first formula-
tion of NN rules was glven by Fix and Hodges [22],. [23]. Cover and Hart[24] have
demonstrated the admlissibility of the 1-NN rule, In the sense that 1t has strictly
lower probabllity of error than any other k-NN rule for certaln classes of distribu-
tlons. They have also established the relatlonship between the probabllity of error

for the 1-NN rule and the minimum {(Bayes) probabllity of error In terms of a

lower and an upper bound.

3.1.1 1-NN Classiﬁcatioq Rule ' -

/

Assume that we haye a set S; of n palrs of st,at.lst,lc;ally independent, ldent',l-
cally distributed random varlables (z;,,Z), ..., (Z; » Zp )s wh'ere Z;'s take
values in a space Z u;;bn which a metric d Is deflned, and the z;'s take value In
the set {1,..,M}. Each z; represents the actual (true) class of z;. Now,
assume that a new palr (z, z) Is drawn ~a(:cordlng to the same distribution, but
we are onlyl glven z and asked to estimate Its class . The single ne?.rest nelghbor

rule decldes that z belongs to the class z' 1If 2/ €{z,+...+ 2, } 1s the closest

polnt to z according to the metric d, where z' s the category of ' . In other

'




PO
i

eig ‘
[TV

WO_rds,

/

. 2 =z' If d(z;z,')=.mln d(i,z,,-). (3.1)
i=1,..n

It 1s easy to show that If the metric space Z 1s separable then the nearest nelgh-

bor z' converges In probability to g with n, l.e.,

n

Z — 2z n probabllity , C o

Furthermore, the reléilonshlp between the probabllity of error for the 1-NN rule .//

and the Bayeg probablility of error can be glven as [24],

rd

M Py, (3.2)

Pp' < Pp' <Pp*(2-
g' S Pp’ SFpT(2- 54—
for an M -class problem, where Pp* 1s the Bayes probabllity of error and Pg’ Is
the average probabllity of error for the”1-NN rule. For the two-class pattern

’ /‘
recognition situation, M =2, we have, ~ -

- Pp' < Pp' <2Pg*(1-Pg'). | (3.3)

. From (3.3), we notice that the 1-NN probabllity of error 1s bounded from
above by twice the Bayes error rate. Thls, in a sense, shows that half of the
classification Informatlon avallable In an Inflnite collectlon of classifled samples Is
contained In the first nearest nelghbor. This hilportant result provided much of
the Incentlve for the widespread Interest in the nearest neighbor rules over the

last decade.
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3.1.2 Other Nearest Neighbor Rules

" A natural extenslon of the single nearest nelghbor rule Is the k-NN rule. The
k-NN rule conslsts of collecting k nearest nelghbors of z in S,, and assigning 2 tol
the class to whlch the malority oHt/; WIE-NN'belong. As wlt,h the Bayes rule, we
can safeguard ourselves against exc;esslve clasélﬁcatlon error by resorting to the

\
reJect option. Under this mode of operation, a c_lasslﬁcat.lon decislon Is made only

e

If one of the classes recelves a number of votes at least equal to a qualifylng
majorlty level [, otherwlse the pattern Is rejected. This rule is the (k-!)}NN rule.
This last class of rules can stlll t;e generalized by letting the é.cceptance level
depend on the decislon ionbe made. In other words, we decide 2 = 7, If at l;east

l;-NN among k-NN to z are from class z; . This rule Is the (k—l; }-NN rule.

It ean be shown that the probablllity of error for the X-NN rule Is a decreas-
Ing runctlén of k-and 1s upper bounded by twice the Bayes error rat.e”and con-
verges to the Bayes error rate as k grows arbltrarlly large [25).

3.2 Condensing the Sample Set

N

Thé bounds glven In the prevlous sectlon for the probabllity of error of the
nearest nelghbor rules relles on the assumption of Inflnlte sarpple size. However,
ln: practice a large sample slze makes the rule very demanding In terms of the
needed storage space_and computational complexity. To remedy the latter situa-
tion, one approaeﬁ*‘/l's" to devise fast algorithms for nearest nelghbor search [26]-
[28]. While these 'élgo;lthms reduce the computational complexity compared with
the brute force search, the complexity stlll remalns considerably high and the

memory size Is not altered or even Increases. Another approach to the computa-

,»

s “-J;.“’".."\,‘E“’E
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tlopal complexity and-memory slize reductlon 1s the coﬂdenslng of the sample set,
l.e., only keeping a moderate number of polnts and discardlng the rest (28], [30].
In this sectlon, a new method for reducing the size of the sample set uslng a com-
bination of vector quantizatlon and an edlting technlque based on the evaluation
of the performance of the sample polnts Is presented. Later, we present several *’
fast algorithms which can reduce the computational complexity of nearest nelgh—

bor search.

3.2.1 Vector Quantization

4

Vector Quantization (VQ) Is a data compresslon method used In Image and
speech coding. It is a .genera'llzat.lon of scalar quantizatlon schemes such as PCM.
While In scalagy quantizatlon each sample.!s treated lndependen*;ly, In vector
quantization several consecutlve samples of the source are encoded together as a
vector. The reason for the Increasing Interest In VQ Is the fact that vector encod-
ing the source can result In lower distortion for a glve—n rate. Vector quantization
Is not unknowfl to the pat,te;'n recognltion community. In:fact, It appears In

another gulse, namely, the K-means clustering algorlthm In the pattern recogni-

tlon lterature [31] and Is used malnly tn unsupervised learning [32].

A k-dlx}lenslonal vector quantlzer Q of slze N can be consldered as a ma%
plng from the Kk-dimensional vector space RF. Into a finlte subset
Y = {y; ;% =1,...,N} (33]. The subset Y is called a codebook and its ele-
ments are called codewords or reproduclng v%ctors. The codewords
Y, b = 1/, ..., N partition the space R¥ into N reglons S;,t=1,..,N,

such thati




| S =0l Q@=1x}. (3.4)

Therefore, a vector quantizer can be completely specified In terms of the code-
book Y and the partition § = {S; ,# =1, ... ,N}.

3.2.2 Design Procedure for Vector Quantizer

i

‘The performance of the VQ Is judged by the average distortion between 1ts
input and output. The distortion caused by quantizing z Into @ (z)!s glven by a

non-negative function d (z , @ (2)),

d(.,.):R"_XY—»R.'

The optimal vector quantlzer should minimlize the average distortion
Eld(Z , @(Z))]. The most general formulation of the design proéedure for a vec-
tor quantizet Is glven by Linde, Buzo, and Gray [34] and, therefore, 1s usually

v

r'pt'erred to as the LBG algorithm. The LBG algorithm 1s based on the following

two necessary optimallty propertles and results 1n a locally optimal quantizer:

Property 1: For a given codebook, the best partition Is the one based on

the nearest nelghbor rule, l.e.,

S={z|dz,u)<d@ x;) foralj}. (3-5)

For the Euclidean or squared-error distortlon measure, l.e.,

[Weg

\ _
dz.y)= 2 Wij -2l . L (3.8)

J=1

i.he regions S; described by (3.5) are called the Voronol reglons.

4

o
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age distortion will be minimized if the reproductio vecz\or XY, correépondlng to

S; Is taken to be 2(S;), defined as,

e :

| 4S;)=min"Eld(z, u | 2681 )

1

2

a

/
( /Here 2(S; ) Is called the centrold of S;: It can be shown that for the Euclidean

@ distortion measure the centrold Is given by,
\

uS;)=Elz | 2651 . | | (3.5)

|
\
- \

The LBG algorithm iteratively us'e‘s the above ‘pwo properblest in order to
oﬁtlmlze the quantizer. Glven a iong sequence of traﬁ:;lng vectors and an Inltlal

‘ cvodebook, 1t first encodes eth vector hto one of the codewords based on the |
nearest nelghbor rule and then replaces each codeword with the .centrold_of all

. . input vectors mappéd Into it. These two steps are repeat,ed untll the relative

- change In distortion falls below some prescribed, small threshold level. LI

, H

\

3.2.3 Sarnple Set Condensing Using VQ

- 4

Vec\ck)\r quantlzation can be used for selecting a small ’qumber of prototypes

|
or templates from a large set of feature vectors. To do so, we first design a code-

.book of size N <n uslng/ihe sample set »7; t alnlng(set,.“ In the next stage, we

label the codewords or terftplates found N the first stage by encoding the feature
|

vectors and labellng each template with the label of the n}aJorlty of feature vec-

tors mapped Into 1t.

1 .
~ . i

. . J -
It Is obvlous that not all of the templates have the same importance from a
- - [ » -

classificatlon standpolint. Therefore, 1t Is natural to evaluate the performance of

’
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the templates formed uslng vector quantization based on thelr contributlon to the

probabllity of érror_ and discard those templates which are not essentlal for the

classification purpose. The following edlting algorithm Is based on the assessment
L)

of the effect of presence or absence of each of the templates.

°

ISenote the first and second nearest nelghbors to a glven feature veétor z
among the codewords generated using \./Q by Q_’D and 2"’ . Let, 2z, 2! ;3.nd z"
denote the labels of z, 2’ and z''", respectively. If 2/ =z'’ , then 2' does not
have any effect on the classificatlon of the partlcular feature vector gz, bg_acause 1n
this case z'’ can c‘lasslfy z as good (bad) as z' . Simllarly, when z' sz and
z! ;é:z:. the presence of z' does not have any eflect on the classlficatlon of z.
But, If z! =z £z, then the presence of z' c;prevent;s' an error. On the other
hand, when =’ %z =xz'" , then the presence of gz’ results 1n an error which had
otherwlse been avolded. Based on these observations, we propose the followlng

editing algorithm for selecting N, </V templates from N templates generated

using vector quantization. This algorithm, in each lteration, calculates a function

=J

J (&,) for eachghemplate Z;, and relects the Z; with the sfnallest valiie of (&) .

‘The function #f (.) measures the role of each template In reducing the probability

N

of classification error. °

Step O : N’_ «—N .

«

Step 1: 1 +1 . . .
Ly |
Step 2 : Encode z; uslng codewords &,, ..., 2y \to find the first and second
> ' 1 N
nearest neighbors g’ and'z” .
Step 3 : Let . 3
@ )+1, ¥ g7 =z#z” ,
J@)=\/E&)-1, If zg! Fx=g" |’ (3.9)
@ ). otherwise
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4 \ .
Stép4 :s+—1411M1<n go to\2. ‘
"Step 5 : Edlt (discard) the codeword 2; .wli:h the smallest f (.Z.j )
N «— N!' -1,
Step 8 : If N/ >N, go to 1. Else, stop. s
4 v
" 3.2.4 An Exa’inpka of the Application of the Condensing Algorithm.
. , ' : @
As an example, conslder the two class pattern recognition problem with
. .
o ' ¢
equal 2 priorl probabllitles, l.e., P(z,)= P(z,) = -12- Also, assume that the
" reature'vectors are four—dlmenslonal‘ real vectors with ‘class conditlonal probabll-
" . “
[ty densifies p(1|z,_) N(g, i), i=1, 2, where, g, =(1,1,1,1 )T a
: ' 22_(—'}7 1" —l)T ’ "
’ : [ 1 pi pi’ Pi:’{] : '
. . p.2 ) oo
o s, = p'2 i P Ol 1 =1, 2. (3.10)
. , Pi® P 1 P T :
¢ pi%0i® i 1| R
That Is, the feature vectors are ﬂrst order Gauss—Markov random varlables. Let
s p, = 0.3 and p, = 0.7. The Bayes probab)llty of error for this example Is around

0.0718. [See Appendlx 3.A.]

To apply the procedure dlscussed above to thls example, ﬁrst using t,hé LBG
algorlthm, an /N =16 polnt vector quantizer was deslgnéd for a sample set, of slize
n =10000 containlng an eqﬁal nu\mber of feature vectors from each class. The
probabllity of error for the 16 templates was found to be 0.0786 which lg\close to

” the Bayes probabllity of error. Then, each codeword was labeled with the lapel of

L 4

the majority of feature erctors falllng into'its Voronol regloh. Finally, using the
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t

ptroposed edlt;hg algorithm, N/s <16 templates were.selected from the 16 tem-

plates originally gdherated. ¥

] Table 3.1 shows the probablilty of error forN'’ ='4, ..., 0 for the feature

.

vectors Inslde and outslde the sample set. The values In the third column of

'Table 3.1 afe the result of averaging the probability of error for several data sets

o

generated according to the same dls)trlbutlon, but with different seeds. It can be

seen Trom Ta})‘lke.l that the first seven templates discarded had no overall effect
¢ ’ ,

on the probablility of classification error.

Probabllity of Error
Number of 'Templat,es v '
in out
9 " | 0.07886 0.0793
.8 | .0.0787 0.0795
7 0.0789 0.0802
. ) 6 0.0797 0.0813
f 5 0.0831 | 0.0852
Q
4 0.0859 0.0874

o Tab_le 3.1 : Probablllty of classification error

versus the number of templates.

-

3.3 Fast Nearest Neighbor'Seairch Algorithms

The ngarest.nelghbor search problem conslsts of finding the polnt.’ closest to

a query polnt among /N polnts In k-dimenslonal space, R*, where N is equal to

"



the tot,;xl-number of polnts In the sample set if no condensing Is performed or Is
eqqa] to the “number of templates formed usilng a condensing algorithm such ‘as
the one discussed 1n the prevlous section. In on(; dimension, the problem can be
easlly solved In logarithmic time using a prellmlnary sorting. Sorting does not,
howev?r, generallzé to higher dimenslons and, In general, the compl.ltatlonal com-
plexity 1s a llnear functlon of N [35]. To find the nearest nelghbor to a new
feature vector, we need to find its distance from each of /N sample polnts, and
then compare these distances in order to find the close;st point. Therefore, for
each vector, N dlsl:anc.e computations and N - 1 comparisons are required. In
the case of the Euclidean "distance” of (3.8), each distance calculatlon requlres k
multlpllé'at,lons and 2]c — 1 additlons (subtractions). Thus, to classify each new

pattern, k X N multiplications, (2k —1)N additions, and N - 1 comparisons need

to be performed. The computatlonal coinplexity can alternatively be expressed in

terms of N multipllcatlons,‘ (2 - %)N additlons, , and ]—V—k—— comparlsons per

feature.

In the next thre;: sectlons several new fast search algorithms are prese.nted
which can conslderably reduce the number orH ;equlred operations 1n comparlson.
with those Indlcated above by performing appropriate tests prlor to distance cal-
cula@'lon for each template, thereby avolding distance calculation for those tem-
plates which fall these tests. These algorithms can be useful In nearest neighbor
sea;-ch, in general, and In the case 61‘ condensed 'sample set, In partlcular. These
algorlthms cah also be used most convenlently for reduclng the complexlty of
speech and inlage coders basedl on vector quantization. In .the latter case; the
algorithms can be used both In the design and the encodlng stages of a vector

A

quantizer.



3.4 The Hypercube Algorithm

In the algorithm proposed. here, the complexity Is reduced by performing a
simple test before.computing the distance for each template (codeword) and
rejecting those temp'lates which fall the test[38]. The test consists of comparing
the absolute error assoclated with each component of the codevector Y,
l z; — ¥ |, with the square-root of the minlmum distortlon found t,l}us-rar,
where z; and Yij denote the 7th component of the feature vec,tor Z and the tem-
plate y,, respectlvely. This test Is equlvalent to first cilecklng If a glven template
“ Is Inslde a hypercube enscrlt;)ng the hypersphere centered around the feature vec-
tor, with radius equal to the square-root of the minimum distortlon found thus
far, and if so, then performing checking Inslde the hypérsphere itself. Ellmlng.tlng
the need to compute the distance for the rejected templates, this test results In a
drastlc reduction in the ﬁumb)r of mult,lpllc.atlons and additlons. The number of
subtractions 1s also conslderably reduced. The number of compa;"lsons Increases,
however, still there is a conslderable sa‘vlng In terms of the got,al number of
required operations. For those templates which fall the test, we save £ multlpil-
catlons, k-1 additlons, and the remalning subtractions. Denoting the average

number of rejected codewords by N’ | the average number of requlred ‘mumpll-b

catlons per sample 1s N,, = N - N’ and the average number of addltlons is

N, =(1- %)(N -~ N'). The average number of subtractions required 1s

N, =(N-N")+ N x-i:, where k s the average number of components

checked before a codeword 1s rejected. Since we perform one comparison after

™

each subtractlon and one after each set of k multiplicatlons, the number of com-

parisons s,
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¥

k

. [
-2 — (N - N/ N' %= NN
k ( N' )+ Xk+ A

The square-root Introduced In this test Is an Infrequent operation which does ~

N, =N,.+

not have a slgnificant effect on the overall complexity. Furthermore, 1t can be

Y

pei‘formed using elther a look-up table or a crude approximation.

3.4.1 Simulation Results for Hypercube Algorithm

We used a sample set consisting of 5000 k-dimensional vectors drawn from a
first order Géuss—I;/Iarkov process havlng.a correlation coefliclent of p = 0.9, and
using the LBG algorithm, with a stopplng threshold e=0.05>, we designed a code-
book contalnlng N = of temglates. In terms of data compression t;ermlnology,

thls corresponds to a rate of one b [sample, since the rate r s related to N and

og¥Y v
blts/sample.

L

1
k byr =

Hypercube Method

Lt}

Table 3.2 : Comparlson of the complexity of the hypercube algorithm

to the conventlonal algorithm.

Conventional Method Required Total
Dimension X ' operations -
k X + - comp X + - ‘comp % % %
3 8 533 8 233 3 92 261 560 6 90 49 80 43
4 . 16 12 16 375 4 90 368 8 96 10.19 3062 58.07
5 32 2560 | 32 62 6 68 535 1‘4 88 16 22 16 62 45 02
6 64 53 33 64 10 50 9 80 B 17 25 49 2712 12 76 36 79
7 128 10971 128 18 14 14.38 12 32 4571 47.7.6 ‘ 11 23 3130
8 256 224 256 31 87 23 35 20 43 84 83 87 70 912 28 17
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. Table 3.2 compares the number of multipllicatlonsy addltlons, subtractions,
and comparlisons per sample (feature) for the new algorithm and the conveint,lonal
full search algorithm, for dimenslions 3 to 8. From Table 3.2, it can be seen that
for large k, the number of multiplications Is reduced to as low as 9% and the
total number of operatlons Is reduced to 28%, both referenced to the correspond-

ing values foq the full search method.

'Uslng the partial dlstortloﬂ calculatlon method proposed b& -Cheng et al. [37]
and Da Bel and Gray [38], while computing the distortlon for those codewords
which pass the hypercube test, can further reduce the number of multfp,llgat\ons
and adélt!ons, at the price of a further Increase In the number of comparlsons.

Here, Instead of computing the complete distortion for a codewbrd Y. le,

k .
D) (y,-j -2 )2, and then comparing 1t with the minimum distortion found thus
.j=l

far, a comparlson Is performed after adding each term, and If for any [ < k, the

]

l
3 (y,j =2y )2 exceeds the previous minlmum distortlon, the

partial dlstortlon
- J :l

codeword Is rejected without.completing the distortlon calculation.

o

HC) HC2

X + - comp. X + - | comp.

0.9 | 23.35 | 20.43 84.83 87.70 16.33 13.08 84.83 98.81
0.5 | 39.25 | 34.33 | 117.98 122.89 | 26.67 21.97 117.98 139.95

0.0 | 50.82 | 44.47 131.46 137.77 31.02 24.39 131.46 1565.85

Table 3.3 : The eflect of Incluslon of partlal] distortion method,

k =8, N = 256.
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4
Table 3.3 compares the performance of the new method with (HC2) or
without (HC1) the partlal distortlon calculation, for £ = 8 and cases of highly
correlated (p = 0.9) and weakly correlated (p == 0.5) (;,auss-Markov and memory-

less (p = 0.) Gausslan sources. Table 3.3 shows that the effect of Incluslon of the

partlal distortlon method 1s more profound for less correlated sources.

3.4.2 Comparison with Other Methods

Tab}e 3.4 compares the performance of the new algorithm with several
methods found In the llterature. Since the algor‘lthm desérlbed here does not
require any precomputations and/or extra memory, we have llmited the com-
parlson to those methods which require none or little precomputation and extra

memory. The methods used for comparlson are the partlal distortlon method of

Method

. X + - comp. | X + - comp.

HC1 | 23.35 | 20.43 | 84.83 | 8748% 3025 | 34.3¢ | 117.98 | 122.89,
HC2 | 16.33 | 13.98 | 8483 |“0881 | 26.67 | 21.97.| 117.98 | 130.95
DaBei |69.39 |37.30 | 69.39 | 69.39 | 9349 | 61.49 | 93.49 | 03.49

Minimax 3.83 2.99 | 256 308.87 7.25 5.43 | 256 404.99

k-d tree 415.28 | 45 28 69.30 | 103.84 | 102,70 | 102.70 | 145.34 | 213.71

Table 3.4 : Comparlson of performance of the proposed algorithm

to other algorithms, £t = 8, N = 258.

Da Bel and Gray [38], the minimax method of Cheng et al. (with step 5 ) [37],
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" and the k-d tree of Friedman et al. [27]. The comparison Is done for dlmqnsion
k = 8 and strongly correlated (p = 0.9) and weakly correlated (p = 0.5) Gauss-

Markov sources.

+ Table 3.14 shows that In terms of the number of multiplications, the glven
method 1Is only Inferlor to the minimax method. In terms of the total number of
operatloﬁs, ‘the new algorlithm outperforms all of the .above methods.

3.5 Improved Hypercube Method *
, N

The method discussed above can be made even more efficlent,\especlally In
terms of reduction In the number of requlred multipllcations, by ﬂrst\ffndlng a
tentative match for the Input vector and then, confinlng the search 'Lo a small
area around that tentative match [39].' The algorithm discussed here, consists of
two phases. In the first phase of the algorithm a tentatlve match for the input
vector Is found using a procedure called the ghrinking hypercube -method. The
result of this method 1s the same as that of the minimax method of [37], l.e., 1t
finds the codevector which minimizes the [ norm of z — y,, but requires far less
subtractions and comparisons. In the second r;hase of the algorithm, other tem-

plates are checked agalnst the tentatlve match found In the first phase using the

hypercube test previously dlscussed.

In the shrinking hyvpercube method, we start from a hypercube centered
around the Input vector. The hypercube Is a§§umed large enough to ensure that
at least one codeword Is contalned Inslde 1t. We then search through the code-
book rqr a template lylng within this hypercube. When the first such template,

say y,, is found, we reduce the slde of the hypercube to 2r,, , where,
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Y, = m?x | zj = yi; |

It 1s clear that thls Is a smaller hypercube than the previous one and also 1t
does not contaln any of t;he-prevlously rejected templates. To avold the need for
searching the entire codebook In the second phase of the algorithm, we can keep
the Indlces of the rejected templates In separate lists, depending on the value of
thelr last. error magnitude checked before belng rejected In the first phase. Thls
procedure Is continued until we find a hypercube with no templates 1nside, but
with one t¢mplate on one of its sldes. We take thls template as a tentatlve‘ " best”
match and confe our search tQ Inslde a h.ypersphere with radlus equal to the
square-root of the distortion due to thls tentatlve t,eniplat;e. Usling the hypercu?e
test discussed before, we then search for a posslbly better match among the tem-
plates In the list(s) with corresponding value(s) less than the square-root of the

distortlon between the tentatlve codeword énd the Input vector.

3.5.1 Simulation Results for the Improved Algorithm

A dlscrete Gauss-Markov source having a correlatlon coefflclent of p = 0.9 Is

1

used. In each case, we have used a tralning set consisting of 5000 vectors. The
codebook slze 1s N = 2¥, Table 3.5 compares theq’number of multiplications,
additions (plus subtractions), and comparisons per sample for the new algorlthm
and the conventlonal full search algorithm, for the dimenslons 3 to 8. Table 3.5
shows that usilng the Improved method, p'he number of multiplications requlfed

can be reduced to as low as 2.67%2% and the total number of operations can be as

low as 24.8%, both compared to the full search method.

/
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: Full Search Method Improved Method Required Total
1]
Dimension ; X operations
X + comp. | X + comp % %
3 8 13.33 2.33 122 528 8.30 15 25 62.43 \
4 '16 28 375 149 838 | 1263 9 31 " 4712
* t
5 32| 576 62 216 | 1404 | 2049 6.75 38 30
6 64 | 11733 | 105 | 339 | 2385 | 3440 530 | 3218
7 ."128 | 23771 | 1814 [ 532 | 41.22 | 5942 416 27.60
8 256 | 480 3187 | 683 | 7702 | 105.07 267 24 60

Table 3.5 : Comparlson of the complex!ity of the Improved algorithm

to the full search algorithm.

3.5.2 Thenyperpyxl-amid Test . , >
|

Whll('l the hypercube test rejects the malority of unsultable templates, for
higher dimenslons and larger codebooks there Is still a falrly high probablitty th;zt
-a template passing this test does nét lle Inside the hypersphere Inscribed by the

'
hypercubve. Fg this reason, an extra test based on the fol]owlné Inequality may
prove useful In further reducing the number of multiplications. However, this
reductlon 1n the number of required multiplications Is alt the price of a further
Increase in the number of hoth comparisins and addltions. Therefore, use of this
test Is only Jjustified If the cost of multiplication 1s consldered to be much more

expersive than that of comparison and additlon for the glven operating environ-

ment and Implementatlon. . -



The Hvperpvramild Inequality: | o

ok .
I E(z vi;¥<d?, then Y |z -y;| < dvk ,

i i=1 j=1

The proof of the lnequallty may. be found In Appendix 3.B. The name or the

K

1nequéilty I1s due to the fact that. 2 l2; ~y;; | = d \/— describes the surface

o i=1
- /
of a /h yperpyramlid In k-dimenslonal space [40].

| Now, let the minimum distortlon found before testing the template Y, be
dzlAfter ensurlng that |zj ~ Yij | <d,j7=1,.k , we start addlng up the
ab}éolute errors, and 'g;;;er each additlon compare the‘accumulated\absol‘ute error
with d \/I-c_ If 1t Is greater, we reject that template. Table 3.6 shows the effect of
the Incluslon of the hyperpyramid test for cllmenslons k =8,7,8 for the same

%au‘ss—Markov source.

[

/ ° Dimenslon X + comp.
) 8 1.82 | 24.18 35.25
7 ' '1.86 42.79 61.30

" 8 . ’ 2.13 | 77,83 | 109.65 "

Table 3.8 : The effect of Inclusion of

the hyperpyramid test.

3.8 Voronoi Region Algorithm

An Important characteristic of the algorithms discussed so.far Is the fact

- that they do not requlre a:ny precomputatlgns or extra memory. In thils sectlon,

we present a method which requires a small amount of precomputation and extra

storage space. However, for this algorithm, the Increase In the number of



comparlsons for a glven reduction In the number of multiplications Is less than

that of previously discussed algorithms, and, therefore, it Is more sultable in the

case where‘all three basic operations are consldered to be of almost the same

complexlty. Thls Is In fact the case with some of the new geneg‘al purpbse digltal
slgnal processors such as the TMS32020. Fu\-thermore, this algorithm hasia sim-
ple encodlng procedure which makes it .éppeallng for mlgroprocessor Implementa-
tlon of real-time speech cc;ders and speech recognizers. The algorithm s baseq on

the one-to-one correspondence between the codevectors and the Vorpndl regions

assoclated with them [42].

[y

The templates y; ,t=1, -, N, partitlon the the space Rk, Into N

reglons S; , i-==1, - -, N, such that:

A\

si={a:la-x < la-x 2. as). @

< There Is a one-to-one correspondehce between the templates and the Voronol
reglons, l.e., If an Input vector z Is contained In S;, then the templateﬁarest to
1t 1s y; . Conversely, If z does nat lle Inslde S;, evidently y; can not be Its nearest
nelghbor. We use this negétlve aspect of the correspondence in order to relect a

large rumber of codewords from conslderation without calculating thelr distance

from z.

.

For each template y, , let 'r,~ = 4/d;, where, -«
d; = max||z-¥; ||? . (3.12)
4 €5, 3
.Now, for a given Input vector z If,

Izj - yl'j | > 1, . (3'13)

for some j€{1, ..., k}, then we can be sure that y, Is not the nearest codevector

to z.

T a“:;‘,“;‘,
A
B
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Also notlce that If the smallest distortion fougd before checking y; Is d,

then y; cannot be a better match than the previous ”best” match If,

lz; ~y5 | >Vd ' (3.14)
Therefore, while encodlng an Input vector Z, we can rejeet the codeword y; 1f,

\

: ; - . |
lzj —wi | >n' (3.15),
where ;' .= min(r; ,Vd ). '

\

" 3.8.1 Required Precomputation and Extra Memory
: . =

U‘slng a sufficlently long trajning sequence, we deterthine d,- 's and, therefore,
r;'s. In order to make sure that the algorithm performs well for ‘vectors outslde
the fralnlng sequence, we can add some margin to the r;'s. Then, we sort the r;’s
In ascending order and sort the codebook accordingly. Thls sorting 1s performed
In order to avold the comparison to find the minimum of r; and‘ﬁ after a ca;l-

dldate template Is found. Thagnls, after finding some.codevector y; such that,.

la-w l1?=d <2, - ' (3.168)
‘we have, ) ) ) ; ‘ :
\ vd <1 <, Sop alle >1., - (3.17)
" and, therefore, )
ri! =mn(r ,Vd )=Vd . (3.18)
Thus, there Is no need for fet,cinng r; and cofnparlng It with \/E , for ¢+ >1.
S L

]
The complex!ty of finding d; 's Is the same as one lteration of the design pro-

. )
cedure plus one comparison per tralning vector. This can be performed durlng the
last stages of the deslgn procedure, and wlll add one comparison per tralning vec-
tor per iteration to the overall computation required for designing the codebook.

N square-root operations are required to find the r;'s when d;’s are found. The




Q

sorting of the codebook can be performed by O (/NlogN) comparisons, using the
mergesort algorithm [41]. We need an extra memory area to store N scalars, l.e.,

the r;’s. Since the mefnory required to store the codebook Itself 1s kN, the algo-

Tl
¢

" rithm increases the memory requirement by a fagtor of l

3.6.2 The Encoding Procddure

To encode an Input vector z, we start from the first codeword, l.e., the one

with the smallest 'r;, and search for a codeword for which |z; - y,:j |
holds for all j€{1, ..., k}. After finding such a codevector, we start calculating

Its distance wlth z using the "partlal distance” method. This means that If for

some'l <k the partlal distance Z (vi; — 2;)° exceeds d;, we relect y; without
SR i=1

‘ ok -

completing .the distortion calculation. If 37 (yi; - z; »? < d;, we take y; as a.
=

> . ) , )

tentative match, and continue the search for finding a possibly bett,er match

among the remalmng codevectdrs. However, for the remainlng codewords, lnst,ead
of fetchlng r;, we use Vd for comparison, where d 1s the smaliest. dlstortlon
found Lhus far. A Fortran program describing the encoding procedure may be
founci In Appendix 3.C. . ., ' e

3.6.3 An Alternative to r; )

Instead of r;, we can use’ & defined as, - ;
£
. t; = max max lyij -2 | - (3.19)
- lesl J . ‘ :

<
b}

In' other words, {; 1s the maximum error magn.lt,ude for Input vectors In S;.
Since the error due to each component Is normally less than the square-root of

the total distortion, using {; Instead of r; may result In a more efliclent
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algorithm. However, the precomputation required for finding ¢; i1s more than that
for r; .'In fact;,*we require k comp;lrisons pe;r tralning vector, l.e., k-1 comparis-
ons ro‘r“ﬁndlhg the largest component error of each tralnlng vector and one com-
parlson to compare It with the previous ;.

o

N
The encoding procedure-ls simllar to that of the prevlous case, except for the -
fact that we need to fetch {;'s untll we find a codevector whose distortiopn Is less
than.t; 2. The rgqulred modlficatlons for thls case are Included In the program In

Appendlx 3,C.

3.8.4 Simulation Results for Voronoi Region Algorithm

A dlscrete Gat;ss-Mai'kov source having a correlatfon co&lclent of p=0.01s
used. Table 3.7 compares the number of multlpllcatlons, addltlons, and comparls-
ons per sample for the algorithm, when 7; 1s used, and the conventional full
search algc;mhm., for the dimensions 4 to 8. In each case, we have used ;\ tralning
set conslstifig of 5000 vectors. The number of templatesp s N = 2F, Table/ 3.8
shows the corresponding values for the case where ({; 1s used. The entries of the
last two columns indlcate that, for lar%é"‘COdebooks, by using the new method the
number of required multiplications can be reduced to as low as 2.23% of those
required by the conventlonal full search method, while the total number of opera-

tions can be reducéd to as low as 22%. The tables also show that using {; results

In lower complex!ity, but the difference Is not considerable.

<

Tables 3.9 and 3.10 demonstrate the appllcation of-thls method to speech
samples. In each éase, 262,656 speech samples extracted from the Texas Instru-

ments connected digit database are used.
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Full Search Method New Method % %
Dimension required required
X + comp )Q -+ comp X operations
4
4 16 28 375 3 06 g 41 9.41 1913 45 82
1
5 32 576 62 4 05 16 20 16 20 12 66 38.05
6 64 117 33 10.5 521 26 74 2674 814 30.59
74 128 23771 18 14 6 56 4591 45 91 513 25 63
8 256 480 31 87 8 65 80 54- 80 54 338 22.10

Table 3.7 : Comparison of the complexity of the new algorithm

(Gauss-Markov source)

:

(r; used) to the full search algorithm.

Full Search Method New Method % %
Dimension wrequnred required
5 X + comp X + comp X operations

4 16 28 3.75 2 34 4— 901 9 36 ,14.63 43.37‘

5 3'2' 576 62 328 ' 1558 1595 1025 36 34

6 64 117 33 10,5 383 ‘%5 50 25.83 5.98 28 75

7 128 23771 18 14 455 | 4400 44 31 355 24.19

8 25(.5 480 AS‘A 570 | 7932 79 60 ‘ 223 21.44

\

Table 3.8 : Complexity of the new algorithm ,when {; is used,

versus the full search method.

(Gauss-Markov source)
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. ' Full Search Method " New Method % N %
Dimension . required required
T X + comp X | + comp X operation;
4 - | 18] 28 375 | 207 | 708 | 708 | 1293 45 82
] 5 32| 576 62 | 323 | 1249 | 1249 | 1009 29 45
- '“ 6 64 | 11733 | 105 | 39144 1966 | 1966 6.16 22.55
- 7 128 | 23771 | 1814 | 625 35 82 | 3582 488 20 29
g . | 256 | 480 3187 | 777 |le0.81 { 6081 304 16 85
‘ f
:Table 3.9 : Comparison of the c-orflplexlt;y of the new algorithm
’ (r; used) to the full sfearch algorithm.

(Speech szf‘mples) ’

|
] B

T Full Search Method N&\v Method % "%
Dimension - - required | required
\ ,
X + comp X + comp X operations
4 16 28 375 174 701 729 ‘10 88 33 59
5 32 576 62 282 12 26 12,51 8 81 as 80
6 64 117 33 105 325 18 90 19 12 5.08 21 51
: 7 128 | 237 71 18 14 455 33.14 33 38 3565 18.52
8 256 | 480 3187 603 58 08 5832 2 36 . "15.94

Table 3.10 : Complexity of the new algorithm ,when t; Is used,

versus th{full search m' hod.

- . ' (Speech samples}
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3.7 Discussion

In this cﬁapter, different nearest nelghbor ciassificatlon rules were dlscgssed.
Hi)wever, maln attentlon wz;:‘placed on the single neargst nelghbor rule. In order
to overcome the computational complexity problem, a new condenslng algorithm
for sample size reducblpn, based on. the appllication ‘of K-means clustering algé—
rithm or vector quantization, was presented an‘q a typléal example was worked
out. Also, several nev;.' fast nearest search algorlthms were proposed which cail
c;onslderably reduce the search time. Thgse fas';; algorithms may prove speclally

useful In vector recognition discussed in Chapter. 6. In thls case, several consecu-
tlve feature vectors are treated at the same time; there‘rore, the comﬁ‘texlty of

+

searching for the nearest nelghbor Is a more ‘serlous conslderation.
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Appendices -
: y
.3.A Probability of Error for the Illustrative Example

-

Since the covarlance matrices £, and ¥, are real, symmetric, and positive

deflnite, a matrix R can be found such that, -

\

- RTS,R =1 and RTS,R =4

where, A Is a dlagonal matrix with dlagonal elements X\, < X\, < A3 < A\, which
' are the*roots of the equation | =, - \Z, | = 0, and the 7th column of R Is the,
elgenvector of the palr (X, , Z,) corresponding to A\; . For'the values of pl' = 0.3
: and p, = 0.7, we have, . .
0.362 -0.6068 -0.847 -0.427
R = ~0.846 0.539 -0.218 -0.379

0.846 0.539 0.218 -0.379 .
-0.362 -0.608 0.647 -0.427

and

-

Performing the change of varlable y=R T(z - 4;), we have,

p(1|$1)=N(O,I) aDdP(1|$2)=N(V,A)where,
P

v=RT(u?-pu)=(0,0268,0,3224)

- Now, uslng (2.51) and (2.52) 1t Is easy to show that, o,




4 (i~ ) 4
Pg! = =Pr| o {52 - —=——} > Y logk
.2 i=1 Ai i=1 ,
/

§ =1 =1

‘ . : 1 4 A 4
! + EPr E {(y.\/x + Vi )2 - yig} < E 10g>\,‘

where the y;'s are L1.d. N(0, 1) random variab}es. A value of Pg* = 0.0718

was round'uslng a M6Mte Carlo approach with a sample size of 80000.
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3.B Proof of the Hyperpyramid Inequality

Proof of the Hyperpyramid inequality :

Letting w; = |2; =4 |, J§ .= 1., k, We can write the Inequallty as

‘follows :

L

k .k ,
I for w; 2> 0, p¥ w;? < d?,  then TP wi < dJ[T
J=] ' =1

Proof. We prove the Inequality using Inductlon. For k = 1, it 1s trivial.

Therefore, 1t 1s enough to show $hat If 1t Is true for k£ — 1, It Is also true for k,

k> 1. ‘ ,
Now, assume that the Inequallty Is true for k - 1, l.e.,

t-1 k-1 i
Ywil<d® = Yw;, <dVk -1

J=1 j=1

Then,

k k-1
Ywil<dt = YNwi<d?-w?

j=1 j=t
k-1
=2 Y w; < /(k-1)d?- w?)
j=1
k
. = Y w; <k -1)d?- w2+ w
j=1

The only thing that we need to prove Is ;

] . .,

Vik -1)(d?-w )+ w < dVE
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Wrlte

(o) = /(b - 1)(d® - w.?) + wy
: Fof w; € [0, d], this function has a maximum,
__ (2k -1) 2k -1)
f max( k) 4k -3
4k -3 o ‘ '

So, .
"\

—————s (2k —1) 1
’_\/(/c 1)(d w,,)+w,,_<_md<\/Fd

the last lnequality;ls true for alt k > 1.




3.C Encoding Procedure for-Voronoi Region Algorithm

In thls appendix, we glve the Fortran program describing the encoding pro-
cedure, 'Yer the case where r; Is used. Unnecessary detalls are omitted for the sake

< /

of brevity. The necessary changes for the ~case of {; are added as comments.

‘ prograrm fast
read, (z(}), J.=1,k)

¢ When .{; s used, the fgllowlng

¢ llne should be added. : ,

c dm==o00

do 25 1=1,N
do 15 J=i,k ' | .
w(1)= abs(y(10}20)) |

y _ if (w(}).gt.r(1)) goto 25 .- ' 7
15 continue )
c When t; Is used, the followlng - S - - ’
v line is not necessary

dm=r(1)*%2.

d=w(1)*x2.

do 20 j=.2,l( - ‘ . S

d=d+w(J)**2.

if (d.gt.dm) goto 25 _ : .0
20 continue ‘

dml=d

t==sqrt(dm)

. m'—_-l .




25

26
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goto 26

When {; s used, the above line |

should be replaced by the following line.

if (t.le.r(1)) goto 26
continue ~

do 40 1=m+],N

. do 30 J=1,k

w())=abs(y(t,))-2()))

30

.35

40 -

if (W()).gt.t) goto 40
continue |
d=w(1)**2.

do 35 J=2k
d=d+w(J)**2.

if (d.gt.dm) goto 40,

continue

dm=d _ ‘

t==sqrt(dm)

m=={

continue

print, m | \ : ‘ .
stop

end

L5
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CHAPTER 4 L :

The Rate-Distortion Theoretic Model for Pattern Recognition

In this chapter, we present a model for-the pattern recognitlon process,
based on the generallzed corﬁmunlcatlon system model proposed by Dobrushin
and Tsybaicov[w]. We begin thils éhapter with an lntroﬁuctlon to rate-distortlon
theory and its generallzatlion. After thls 1ntroductlop, the model for the patterp
recognition proi)lem Is discussed.

»

4.1 I‘?.a.te-Distortion Theory

4

Rate-distortlon theory Is the mathematical theory of data compresélon. For

. * _ s /
any statistically modeled source and a glven distortlon measure, 1t establishes the
relatlonship between the minlmum number of blts per source samplle required to

encode the source and the average distortlon after decodlng.

The classical communlcations system model of Shannon[43], [44].1s shown In

Flgure 4.1. The deslgner does not generally have any control over the source,

user, and channel but s usually free to construct the encoders and decoders. The

channel - coding theorem [43], [15], states that channel encoders and channel
f

decoders can be fqund which ensure an arbltrarlly small error probabllity for mes-

sages transmitted through the channel encoder, channel, and channel decoder, as

. long as the message rate does not exceed the capacity of the channel. For this
y \
reason, In the development -of rate-distortlon theory, It is assumed that the

\ -

/ +

i
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transmisslon between the source encoder and source decoder Is nolseless. This
assumption reéults In the source coding mode§l shown In Figure 4.2. This médel
can also be adopted for the storage of data Iln a computer, where the capaclty of
the nolseless channel corresponds to the llﬁllted amount or.memory allowed per
source symbol [45]. In pattern recognitlon applications, the capaclty of the nolse-

less channel may represent the storage required to store the declslon rules [4].

’

4

4.1.1 Definition of the Rate-Distortion Function

v

For a discrete memoryless source, the 'r‘ane-dlstdrtldn function Is deflned as
_follows. Assume a discrete memoryless source with output X taking vélues r with
'proba'blllt,les P(z), where z €{1,..,M}. The set Ay ;_{1....,M} 1s_called the
source alphabet. Denote the reproducing alphabet, l.é/., %h’e?tom)\l’@: values
of £, by Ay ={1,...,N } . To evaluate the quality of reconstructlon of the
source output by the encoder-decoder palr we need to deflne a fidellty criterlon.
Let p(z,£) be the distortlon caused when the source output Is z and the output

of decoder is Z#. The quality of the reproduction can be Judged by the ensemble

" average of p(z ,£) over the Joint probabllity' distributlion for z and £, l.e.,

d(X.X)= E{p(X,X)} = $YPE)QE |2)(z.2), (4.1)

z 2

where @ (£ | =) Is the conditional probability distribution of £ glven X =z . For
a given distortlon D, we define the set of admlssible conditional distributions of

£ glven z as,

o = {@%e 12): E{ox 1) < 0} (4.2

]
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Then the rate-distortion functlon Is deflned as follows,

RMD)= mh IX:X), | (4.3)
Q(2 |2)EQp . : :

where I(X ;X Ms the average mutual Information between X and X given by,

[(X:X) = ggp(x)cg(z,'{x)log%)i)-;’ (4.4)
, 2

 The rate-distortion function R(D) cen be found by minimizlng I(X;X) of

i, .

(4.4) subject to the following constralnts: \

, QE [z)20, (4.5)
' .EQ(f lz)=1, : (4.8)
: LN
‘and,
TRP(E)QE [z)oE, s <D . ' (47)
z 2 p

Constralnts (4.5) and (4.8) are needed due to the fact that Q2 |z)Isa condl-

tlonal, probability which should be non-negative and sum to one for each glven .

The constralnt (4.7) 1s merely the average distortlon condltlon of (4.2). This

minimization can be performed using the method of Lagrange multipliers.

Before.stating the results of such a minimlization, we conslder two Important

_quantitles, D, and D ,,. The quantlty D, denotes tlie minlmum average dis-

tortlon achlevable. From (4.7) It Is seen that the minlmum posslble value of the

average distortlon Is found by setting Q(£ | z)=1 for 2 which minimlzes

oz ,2) le.,

-

L " Dpu=3PEk), - 48)




S

~where, I
p(z ) = minp(z,2) . S (4.9)
1 z + . M

It p(z,2)=0 for at least one £.for each z., then D iy, = 0. Otherwise, we can

use the modifled distortlon measure p(z,2) = p(z,2) - p(z ). Then, the relatlon

between the rate-distortlon function of the source with respect to p(z,2), say"

R(D), and the orlginal rate-distortion ' function, R (D), will then be
RD)=RO-Du. :

D ooy IS the least average distortlon achlevable when I(X;X) =0, L.e., D oy
1s t?e average dlstortlon assoclated with the best guess we can make when we
know oﬁly the statlstlcs of the source, t?ut we do not have any knowledge of the

“specific outputs. 'i‘he average mutual information 1s zero if anc?pnly if X and X

are statistically independent, l.e., when Q (2 |.1:) = @ (%) for all :z: and £.
)

. Therefore, In this case, d (X ,X) can be written as,

i

d(X . X)= Q)P (z)p(z,2) . . . (4.10)
2 T
The minimum of d(X,X) of (4.10) Is found. by. setting @ (2 )=,1" for £ which
_@;lnlmlzeé'EP (x)p(z",é), le, . , . ,
: ‘I
D-max =min P (z)o(z,£) .~ © (4.11)
¢ .

4

R (D) Is only deflned for D 2> D qins 15 positive for Dy < D < Doy

and vanlshes for D > D,,,. It can also be shown that R (12 ) 1s monotonically

wa

]
decreasing and downward convex in thelnterval D . < D < D, [7].
t \ . * " ’

- 1
~ : -~

~

ROt

¥y
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4.1:.2 The Parametric Expression for R (D)

- [}

»

As stated above, the varlational problem defining R (D ) can be solved using

- the method of Lagrange multipllers which results in -the following set of

b

oA

s . C
L

parametric expresslons for D and R [7],

)

D " SNz )P (2)Q (2)e* A2 2) p(z ’f)’ (4.12)
z 2
and
¥
: ’ R = sD +' 3P (z)logh(z), . (4.13)
whef'e, ) ) , ' l ~
Nz ) = [EQ(z)eW-“ r | " (4.14)
t ' 2 . . .
and S :
‘ - ‘ . e
Q@) =5P@QE [2) - (4.15)

Is the marginal probat‘y of i . The coefliclents A\(z ) should satisfy the following

refatlons:
¢(2)= Y NMz)P(z)e** B =1 1f Q (2)$q , (4.162)
and . | ® N
) ¢ (i)‘——.: Ex(é )&_(qaje*k(z ) <1 It Q(2)=0. (4.‘16b)
: 2

LN

_ Each value of s €(-00,0] defines a polnt (Qs ,R,) on R(D). It can be shown
that s is the slope of the rate-distortion functlon, l.e. , R,' (D,) = s. To find

the rate-distortlon functlon; we should first solve (4.14) and (4.16) for Q'('ft) and

N
e )

i
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Xz ) and then substitute these In (4.12) and (4.13). This 1s.not always an easy
task, with the analytic form of the rate-distortlon functlon not known, except for
some specific cases for which some sort of symmetry holds. A very useful compu-
tational algorithm 1s avallable, however, which can be used to numerically obtaln
‘t,he R(]5) curve. This algorithm 1s due to Blahut [48] and -1s applicable to a
variety of memoryless sources and can also be used to numerlcally evaluate an
“

upper bound for the rate-distortion function for sources with memory by comput-

Ing the rate-dlstortion functlon of n-tuples of the source for moderate values of

n.

-+

4.1.3 The Ra.te-Distortior‘l Function for the Source With Memory

For the case of a source with memory, the rate-distortion i‘uncthn Is deflned

as, . . /
RMD):="1lm R, (D) (417)
+ n—o .
wZ(ere, ' '
R,(D)= n?' mm IX;X). (4.18)
: Q| xeQp . .

!

The n-tuple x = (2 ..., Z, ) conslsts of n consecutlve source letters. Simllarly,

X == (&,,...,4, ) conslsts of nconsecutive reproducing letters. The quantltles QD‘

v
and 1(X ; X) are defined In the same fashlon as (4.2) and (4.4), except for the

" fact that the probabllities Involved here are defined over n-vectors of source and

e

reproduclng alphabets.
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4.1.4 The Source Coding Theorems for the Classical Model

The importance of the rate-dlistortlon functiop lles in the fact that R(D)1s

4 .
the minlmum pos'slble rate at which the source can be encoded with an average
distortion not exceeding D . This can be elegantly and concfgely stated In terms

of the source coding theorem and 1ts converse [7):

)

Theorem 4.1- Source Coding Theorem:

Given any ¢ > 0 and N large enough, a block code can ‘i)e found with
blocklength N and rate B < R(D) + ¢ such that the average distortion

d <D +e

| Theqrém 4.2- Converse Source Coding Theorem:

For any source encoder-decoder palr, 1t Is Impossible to achlqve average dls-

tortlon less than or equal to D whenever R < R (D).

4.2 A Ge\neralized Communications System Model

Up to this polnt we have aésumed that the deslgner has access to the output
of the Informatlon source and, therefore\, can encode 1t dlrectly. It was also
assumed that the output of t,.he decoder Is dellvered to the user wlthout further
distortlon. Dobrushin and Tsybakov [13] havezven different examples of several
cases for which the above assumptlons are not true, and have proposed a general-
\zation of the classlcal communleation system model of Figure 4.1. This model

N

has been further studled by Wolf and Zlv [47] and its discrete case has been for-

_mulated by Berger [7]. In this model, two extra mappings representing the nolse

. ' ' ’
at the source and recelver have been added to the classical 'model of Figure 4.1.

The more complete, or gerieral, model Is shown in Flgure 4.3. In this model, the-
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conditlonal probabllitles Q,(z |z) and Q,(% | 2) represent the mnolse at the
source and recelver, respectively. In the speclal case wl}ere there 1s no additional
nolse at the source and recelver, the generallzed model clearly reduces to the clas-
sical one.

Ass‘umlng distortionless transmission through the channel encoder, channel,
and channel decoder, as in the prevlous case, results In the source coding model
of f‘lgure‘4.4. In this case, the rate-distortlon function can be found by minimiz-
Ing the average mutual Information between Z and Z, l.e., I(Z;Z), subject to
the conditlon that the average distortlon between X and X be less than or equal

to a certaln value D . We notlce here, that while the mutual lnforngatlon between

Z and Z 1s considered, the minlmlization Is performed with respect to a condition

imposed on X and X.In an attempt to make the equations deflnlng the rate- °

distortlon functlon In thls case simllar to the corresponding equations derlved for

the previously consldered case, we might try to replace the conditlon on X and

X with an equlvalent condltion on Z and Z.
N

For each conditlonal probabllity distribution Q (2 |z), the corresponding

condltlonal probabllity distributlon P (£ | z) over 2 and z 1s,

-

P |2)= Y0, |2)Q. | 2)Q(2 | 2). i (4.18)
2 |

¥4
Now, Jf we define the modified distortion measure p(z,2) as,)

L Ree) = - zzP(z)Ql(z|x)Q2(a*:|z)p(z£p (420

where,

Q.(z) = LP)Q (= |2), R CEY

!
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then, It Is easy to show that,‘,

v

E(nZ.2)) = $10,(2)Q (2 | 2)0(z ) -
z, z 3

]

= 3P (z)P(2 ﬂl]z Yo(z ,2) -
z g

t

E, {p(X.X)}

LY

In other words, p(z,2) as defined by (4.20), when applled to-Z and 2 , has the
same effect as applylng p(z,£) to X and X. Thus, }'eproduclng X with an aver-
AN

age distortion D 'wlt,h respect to p(z,%) Is equlvalent to reproducing Z with an

R N
average distortion D with respect to p(z,2). -
Now, we can deflne the rate-distortion functlon as follows, ) -
~ R(D):= min I(Z:2), (4.22)
LT Q(2]|2)EQ
where
\ » a
@p ={Q(z~ Iz):E{p(Z.Z)}SD}/. (4.23)

, : o '
For the generalized communication systtm model of Flgure 4.3, the source

coding theorem and Its converse can be stated as [13] :

Theorem 4.3- Source Coding Theorem for the Case of Additional Noise:

For all ¢€>0 and D >0, 1t Is possible to deslgn the 'encodt_ar and decoder of
Flgure 4.4 so that the system reproduces the source output with fidellty D +4¢ and

rate R <R (D )+e.
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Theorem 4.4- Converse Source Coding Theorem for the Case of Addi-

tional Noise:

~

It 1s Impossible to reproduce the éource, using the system of Flgure 4.4, with

an average distortlon less than or equal to D whenever B <R (D).

4.3 Modeling of the Pattern Recognition Process
} I -

In thls sectlon, we use the generallzed communlcatlons system model ais-
cussed In the previous sectlon to model the pattern recognltion process. We con-
slder the feature vectors. representing the patterns as the outputs of a noisy chan-
nel whose Inputs are the oblects belonging to two or morf;a,ttern classes. In thls
sense, the source can be viewed as nature, while the Interference channel
represents our measureﬂment devices. The encoder can be viewed as a feature
extrac£or which provldes the decoder (the decisilon-making device) with the

required Information for classifylng the patterns. The goal of the encoder-decoder

palr 1s to minimlze the probability of misclassification sublect to some constraint

\\ i ,
plate matching, or the average length of the tree when a declsion tree Is used.

on the computational complexity, e.g., the number of templates examlined In tem-

The above mentloned model 1s shown In Flgure 4\.5.\For the case of M class

pattern recognition, the source outputs are Ty Tgrcny Ty where

’

z; €{0, ..., M-1}. The encoder only has access to the feature vectors z,, ..., Z

n'°'

where z; = (2;,, ..., 2jx ). The feature vectors z; can be elther real-valted or

dlscrete—value‘d' (e.g., blnaﬁ‘y). ‘We assume the latter, however, generallzation to
- \

real-valued vectors Is stralghtforward. The relatlon between the feature vectors

and the classes to which they belong 1s glven by the class condlitlonal probablllty

distributlon Q(z |z ). For each sequence of feature vectors, 2, ..., Z,, the

-

.

5
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encoder generates a binary sequence, to which the dgcoder assigns the sequence of
classes £, ..., £, . The performance of the pattern recognition systfm, then, ¢an
be evaluated by the relationship between the average number of Information bits
provided to the decoder, _and the average distortion between the source sequence
(actual classes), ,, .., T,, and the declslons made by the decoder, le.,
£,, ..., 2, . In terms of rate-distortion theorgtic concepts, this relatlonshlp can be

expr"essed as,
R(D)= n;lnI(Z;X) : (4.24)
5 -

where the quantity I(Z;X ) Is the average mutual Information between Z and X,

’

1ZX)=250 @P | pgl&lD (4.25)
: i P(‘E)
and - ) '
( Q@ =P@)Q|z). (4.26)

P
'

The .minimum In (4.24) Is taken over all encoder-decoder palrs, l.e., over all con-
ditignal Probabllity distributions P (£ | z) which result In an average distortlon
(probabliity of error) between X and X less than or equal to a given value D,

l.e.,

¥
Pp = {_P(ﬁ |z): d(X .X) < D}., . (4.27)
where,' ' .
d(X,.X)= P ()P (2 |z)p(z.8). (4.28)
z 2 . ' . n '

. , o
The quantity p(z,£) Is the penalty of decldlng In favor of £ when the pattern

.

A}
”

R+
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actually belongs to class 2 and,

P lz)=3Q@|z)P [z). ™ (4.29)
. z .

. f
To translate the fidelity condltlon of (4.27) Into a condition on Z and X, we

define the equivalent distortion measure p(z,2 ) as follows :

Plast) = Q1@§P(x)Q(zlz>p(x.z). - 459)

Then the ecylvalent fidelity condition can be written as,

-

Py ={P(i|_é): d(Z,X)SD}‘, . (4.:'31)

where,

. . »

d(ZX) =50 @P (¢ | p@s). 482
z 2

4.3.1 Probability of §pror Criterion -

v

Since we are Interested In mlnlmlzlﬁg the averdge probabillty of error, we

use the following dlstortlon measure, e
: 1 &g ' ;.
. Z) = ! ’ 4.33
p(z,2) { 0 P g , (4.33)
With thils cholce of p(z ,£ ), we have, .

e dX X)= EZI"(z‘)P(ﬁ |:z:)p(:c,:i‘)~ | .
z £ )

=EP(3})2P(£ I.'l:)
z Lz

o,
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= 3P (z)Pr (€| z)=Pr(€),

~

where, Pr (€) I1s the averaée probabllity of error and Pr (€ | z)ls the probabllity

of error for a given .

For p(z ,2) described by (4.33), p(z,£ ) 1s,

pz.2) =

Q(_) EP(x)Q(ﬂx). '(4.34)

Since,

S PE)Q|z)=PE)Qk|s)- P(X=2)Q@|X=t)
. T #1 z
- l

— Q@)-P(X=6)Q|X=2).

Therefore, p(z,%) can alternatively be expressed as,
. ¥

Hpt)=1-PX=2 |2)" (4.35)

where P (X =2 Iz) Is the a posterior] probabllity of £ given z.
F) <

4.3.2 The parametric Form of the Bate-Distortion Function

The minimum value of the average distortion D min 18

Dpin = Z} Q (z)i(z) , | (4.36)

where, .

p(z) = mlnp(m) = mln N P(2)Q(z|2)

Q(_),;é,z ,
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™~
| - ‘ . =1-maxP(X=2 |2), , (4.37)
2
and, therefore,
Dopn=3mn Y P(z)Qz]|z)
z % rste
=1-YQ@maxP(X=2|z) .- . (4.38)
z 2

#n other words, D i, Is achleved when for each z,°the pattern recognlzer decldes

in favor of the class with highest a posterlori probabllity, l.e., If 1t uses the Baye-

slan declslon rule.

The minlmum expected distortion when the system does, not have any

-

knowledge of the speclfic feature vectors Is,
V4

D pax = min}; @ (2)p(z.2)
L1

7%mz)c2(z)[1 - P(X=¢ |2z)]

-~

= mln[l - P(X=a": )

\k

/=1~ maxP (X z2) . ' (4.39)
; z

i; . I's
i /
This result ds expected, since, In thls case, the only reasonable strategy Is to

always deplde in favor of the class wlt,h the highest a priorl probabllity.

The /rate-dlstomon function R (D) 1s positive and monotonically non-

lncreash}g for Dpyn <D < D .« and 1s zero for D(> D - The rate- distor-
)

tlon functlon 1s not defined for D & D ;.. We note that, In this case, D ;<0

In g;e'n,'ral. To reduce R (D) to a standard rate-distortion function, l.e,, one with

A

&
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~

D‘m,n=0p~e define the followlng distortion measure,

H@t) =pat)- (@) . (4.40)

-—(13- P(z)Q(z|z)
a@ Q(z')z;éf ; J’:gf

= maxP(_X =3 |__) P(X*—:t |z) .

Fl

\

Then R (D )=R (D - D,,,) forall D > D, s Where R (D) Is the rate-distortlon
function of the source Z with distribution @ (z) with respect to fidelity criterlon

p(z,2) and R (D) 1s the original rate-distortion function.

The parametric expression for R (D), similar to (4.11) and (4.12), Is,

D = zzme(z)P(f)eW“p(z.m . (4.41)
Z 2
and,
R =sD + YQ (z)logh(z) , © (4.42)
’ Z

where A\(z) Is defined as,

- ’ —1
Nz) = [P (2)eX2)| | L (4.43)
‘2
and satisfles the following inequallty,

SM2)Q (z)eP2t) <1 (4.44)
" A

<

The Inequality 1n (4.445 should hold with equallty for those & for which

P()>o. Q
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4.3.3 Numerical Computation of R(D)

As stated In the previous section, solving the above equations to derlve the
expllclt expression for R(D)1s difficult for the general case. However, R(D) can
be ndmerlcally evaluated using the following recursion, called Blahut's algorithm

(46]. ’
-For any) s <0, wer  start from any probabllity  M-vector

Po =.[P4(0), ..., Po(M~-1)], having strictly. positive components and recursively

define B, = [P, (0), ..., P, (M~1)] s,

N . v

Pp(8)=cn(8)P, (2), | (4.45)
where,-
(@) =S @Q@e M , . (a68)
Z .
and,
A, (2) = [.zpn(i)ea‘m’”}_l . © (4.46b)
£

It can be shown that _P_,, converges to the probabllity M-vector E(s) that gen-
erates the polnt on R (D) at which R’ (D) = s [48]). Furthermore, 1t can be

“shown that (7],

Ri.w>RWD, )2 R,y - log[m:tx ¢, (2], (4.47)

»

where (Dp41 v Bpyy) 15 the polnt found by substltuting the P, 1(#)s and

An +1(2)'s Into (4.41) and (4.42). Therefore, In order to generate a polnt lylng less

’
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than e above the R (D) curve,' we only need to Iterate (4.45) and (4.48) untll

log|max ¢, (2)] < e.
. £ ,

4.3.4 An Illustrative Example

>

p
We conclude this chapter by finding the rate-distortlon function for a typlcal
example. Conslder a four-class pattern recognitlon system, l.e., z€{0, 1, 2, 3},

’

having ten binary features, z==(z, ..., o), Where z; €{0, 1}. Let the g prlorl pro-

.babllities be P(0) = P (3) = % and P (1) = P (2)y= -;— The Interference chan-

nel @ 1Is a symmetric channel deflned as follows: @ (2; | 0), { =1, ..., 10 are unl-
formly placed in the interval [0.1, 0.19); @ (z, | 1)"s are unlformly placed In the

Interval [0.2, 0.29]; @ (2; | 3)==1-Q (z; | 0); and Q (z; |2)=1'—Q (2 { 1), where,"

[

Q(z |z)= Prob. (=1 X=z) .

The features are assumed Independent and, therefore,
“pa

S
Qla) = T1Q*(x [9)1-Q(x |)"™
t=1

The rate-distortion curve for this example 1s glven In Figure 4.8. This example

-not only demonstrates the applicatlon of the method discussed above, but also

may prove useful In findlng the rate-distortion functlon of the much more
difflcult and realistic case of a binary source with memory discussed in Chapter 8.

This Is due to the fact that for a binary symmetric Markov séurce with transition

probability 711-, In order to find the rate-distortion functlon for n =2, l.e., R,(D),

i

|
we have to conslder four compound classes (1,1),(1,2),(2,1), and (2,2) with proba-




bllities -:i-,-i-,-l—, and 3-, respectively.
8 8 8 8

4.4 Dis&xssion -
: ) ¢

'

In this chapter, the classlc;xl 'corlnmunwatlon model of Shannon ar;d its gen-
)

erallzation due o Dobrushin”and Tsybakov were Introduced. Thel advantage of
the generallzed model lleé In th:a fact that 1t can tal.'(e Into consldera\mon the extra
Interferences at tﬂe source and recelver wfllch axf not under systems designer’'s
. control. Thl(s generalized model Is sultable for modellhg' of the pattern recognition
process, wh;are pzitterns can be consldered as the outputs of a nolsy source.
Therefore, in thlé chapter, we have used‘ this generalized communication system
in order to model the palt,t,er)n. recognition process énd presented t,'he interpreta-

" tlon-of the elements of thlé model. In Chapter 5, we wlll apply-thls model to

4, two-class pattern recognlition problem with sstatistically Independent- patterns.

The applicatlon of the model to correlated patterns together with certalin
o

. . | .
Interesting concluslong appear In Chapter 6. . | )
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¥ ' * CHAPTER 5

| Y
b Application of the Model: IUncorrelated Patterns

' / In this chapter, we conslder ¢ o—class pat,t.er recognition, with statls:tlcally,
lndependent patterns, 1n the cent t of rate-djstortlon theory First, we conslder

’ * the general case, l.e., we do not make any assumptlons restricting elther the

. ’ values off the a priorl probabilities of the rlasses or the form of the lnterfta‘}'ence

11\ chah\nel mociellng the patter gengratlon Sy\uechanlsm. For this general case, we
v speclalize the h;e‘t,hod discuyssed In the pre\‘\?lous chapter and derlve a recurslve

\ﬁ/ formula fér the numerical/evaluation of the rate-distortion function. Second, we
consider the case with equlprobable classes and a symmetry conditlon Imposed on
the Interference channéel. For this case, 1£ Is possible to derlve the explicit form of

the rate-distortion fufiction.

5.1 General Two-Class Pattern Recognition S \

o
L] - . ‘ .

- The géne al two-class pattern recognition, problem can be formulated as fol-

1

lo{vs. Assun) that the patte‘rns belong to classes O and 1 wlth probabllities p and

1-p, respt;c/t,lvely. In terms of the model considered In the previous ch.apter, this

means /hat X takes values z€{0,1} with probabllitles P (X =0)=p and

. 1
P (X #=1)=1-p . Without any loss of generality, we assume that p S;' The pat-

) A

terns are represented by the feature vectors z with claéé\cond!t§onal distributions '

if

(z]0) and Q (z | 1); therefore the marginal probabllity of the feature ve&or z
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ls' glven by,

13
.

QW) =pQ@|0) + (1-p)Q @|1) . . 7 (8.)

The encoder takes one or several feature vectbrs as Its Input and gengrat,gs a set
of definltlons or declslon rules to be used by the decoder ln‘ordér to estimate the
class(es) to. which the pattern(s) represented by the feature vector(s) actually
belong. Sinte any set of deflnitions or rules can be expreésed as a bﬁxar.}" sequence,
the output of the encoder can be viewed as a number of dichotomles asked by the
decoder and answered by the encoder, l.)efore the former makes 1ts declslon. The
goal of the encoder-decoder palr s to minimize the amount of Informatlon pro-
Vldéd to the decoder by the encoder, l.e., to mlnimlzé the number of questlons
that require answers, while maln‘talnlng a certaln level of rellabllity of the decl-
slons made by the decoder. In fact, the encoder In our model represents a feature
extractor and the rate-distortion function found- gh_""ég?" an Indlcatlon of the
- ‘
minimum number of features that must be examined In order to achleve a certaln

accuracy level of the declélgns.

We denote the output of the decoder by X as before, where X ta'kes values
z €{0, 1}. The operation of the encoder-decoder pa\i’ can be modeled using the
_transitlon probabllities P»(fc | z). The problem then 'ls to find the P{(2 |2)'s In
such a way that the average Information conveyed to the decoder about the pat-‘

terns, l.e., 7(Z;X) 1s minimized. The quantity I(Z;X) Is the average mutual

Informatlon between Z and X ‘and Is deflned as,

)

1) =T % Q@P @ |ee LD o (5.2)
Z 2 =0 P("z)

~—

— ‘ POlz) "Palz) R
%}Q@)[P(Olz)logxp(o) +P {1 | z)log Pa) ]

' .
'
——y %0
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_ tgrlan can be expressed In the matrix form,

1

) .
- ' -04 -
Al
. .
.
1

where P (& =XQ @)P 3 | 2) Is the pro‘bablll—ty that the decoder degldes In favor

of the class £ . . .

[

As discussed earller, thls minjmlzation Is not: an unconstrained optlinlzat.lon

problem. .In other words, the conditional probabilitles which minimize I (Z;f( )

| . ) .
should also guarantee a certain amount of rellabllity of the decoder declsions.

The constralnt to be satisfled 1s expressed as,

— 4

dX,X)= f] ZP(m)P(E Iz)p(x 2)< b, " (5.3)
=0 2 =0

-
i

where p(z',2) 1s the cost of declding in favor of £ when the pattern actually

belongs to the class z. As before’, we take the probablility of error fidellty crl- '

terion, \.e., p(z 2)—-1 b,p» where b6, Is the Kronecker delta. This fldellt,y fl'

A

=l T ew

-

"For this distortion measure, d (X ,X ) wlll be equal to the average probabllity of

error, l.e., : ' ( )

<

d(X.X)=PO)P1|0)+PWPO|1). - (5.5)

The fidelity condition expressed as (5.3) does not expose the relation to the .

transition probabllltlés Pz | z). However, we note that,

.

P(2 |z)=3Q(z|z)P(¢ |2). - (5.8)
" ,

~ |

In derlving (5.8), we have utilized the fact that the output of the decoder for a

glven z does not depend on z, lLe., P(2 | z,2) = P(z | ). In opher words, the l

3 . * .

*1

-

+
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variables X, Z, and X form a Markov' chaln. Now, substituting (5.8) In (5.3),‘we

have, R . _ ; ! \

dXX)= % zP(z){z:chlx P(z lz)]p(m ) - .. (57)
2 =02 =0
\ . - x ‘

‘EZP(f IZ)IEP(z)Q(_Iz)p(x £N<D

Z2=0
-
¢fore, we can define the equivalent distortion measure p(z,% ) as,
P(._ z,8) = (5.8)
Q (-&) z =0 . . 4
and, therefore, write the éonst;ralnt of (5.7.) as, i v
Q(ZX) =% Z) Q (2)P (4, Iz)b(z.,f) <D . (5.9)

r. zf—o

For the probabllity of error distortion measure (5.4), the quantliy P2(z,2) can be

written as,

Lo -p)Qz|1) - 44

p(z.2) °e |
- Z, =

: % pQ(z|0) p—1 .
- Q@ ' .

(5.10)

\

-

Thmmue that the average distortlon d(Z,X) can assume, l.e.,

D i 1s found using (4.38); :

{ - . - -~ --- - -

D iy = zmm{u—p)qul) pQ (|0} - © (s.11)



"

This value of D in 1s achleved by declding In favér of the class with the higher

posteriorl pljobablllty for each pattern Zz. %

The quantity Dmm le., the minimum averaﬁe probabllity of error -achlev-

able when no lnf‘ormatlon is conveyed to the dec&ler concerning the speclﬁc pat- .

' /
" terns, Is found from (4.39) as, \' °

. Dpg= mmzcz(_)p(_z) )
- mm[g(l—p Q@l1), EPQ z]0)]

f (5.12)

3 =mln;/—p,p]——p.-

<
~ /

/ i = bt
Note that D, Is achleved by always declding In favor of the class with higher a

priori prébablllt;y, in.this case, class 17 slnce It Is assumed that p‘S;—.

*  The quantitles D, afd D_,, determine the end polnts of t'he‘rate-

ki

s [ 3 . "
_distortlon function R(D ). The rate-distortion functlon Is only deflned for

L]

D 2 Dyin and s posltlve and monotonically non-increasing In the, lnterval

Dmm <D <Dy It Is zero for D 2>D .. ‘ ::

Since p(z,%)>0- for all z and all £, Dmin;éo. However, we can transform the

rate-distortion function R (D) Into a rate-distortion function with D ;=0 by

,

Introduclng the translated dlstort'~n measure §(z,2) as, -

/ o\ .
Pat) = pz.t) - pla) S (sa3)
where,” -
o p(z) = minp(z,2)
] . ‘ "‘ )
J ,
* ' -

2 S A

e
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5.1.1 Parametric Expression for the Rate-Distortion Function

- .

- v :
Now, we can first ind the rate-distortlon function R (D) of the source z

with probat;lmy d\strlbutlah function @ (2) with respect to the dlstortlon‘ meas-
ure ﬁz__z_,;t) and then fAnd the rate-distortion functlon >E (D), le., the rate-
distortlon functlon of the source z with respect to the ﬁdellty criterion p(;z_,:t)
using Lhebrelat,lon R(D) =‘1~2 (D - D gin) for all D -3 D;mn- For the distortion

measure of (5.10) we have,

\ , SN
0, * 1 2€2Z,,
(z,0) = : (5.14)
0(1) ’ 1t 1€Z1 [ . !
and,. - ' . K
6@ | »  if z€2Z,,
) =1 - :  (5.14D)
a, . ir Z,EZI ,
Ly ' s
_where,
(1-p)Q (z | 1) - pQ (2] 0) |
f(z) = , . (515
@ T . Q@ ' (6:25)
- and the sets Zy and Z, are defined s, : ‘ \
Zo={z | PQ|0)>(-p)QE|1},  (5.160)
and,” : ] ( .
Z,={z | rQz|0) < (1-9p)Q|1)}. (5.16b)

.
»
\

The rate-distortlon functlon R(D.) can be expressed In the followling

parametric form using (4.41) and (4:42),




Wwhere, . i | |
Mz) = [P (0) + P(1)e7* D). ‘for 2€Z4, (5.188) )
and, ' vl ) ’ '
A@) = [P(0)¢*%® + P (1) ‘tor g€, - (5.18D)
The X(g)'s should satisfy, - . .
L S@0@ + SHeQ @ =1, " (s92)
Z, 2 ,
and, o
TADQ @e™" + TN@Q @) =1 . (5.18b)
Zo . - Z T :
-, Since, P (0) + P(1)= 1, then S |
, .. . . s e
. [ . ' A R . .\
1 SR ¢ .
\Nz) = — — . for z€Z,," 5.20a) -
M) P(0)+ (1-P(o)et&=a =~ » -~ 0 (6:202)
and, . - )
. 1 . . . '
Az) = — - , - for 2€Z, . - {5.20Db
S ’ P(o)e""(l).+ (1-P (0)) \ ! ( ‘ )
o Sulbs.t,ltutlng‘the A(z)'s of (5.20) Into (5:19), we obtaln,
s Y i , .
i Q (2)- : /
. . = 5.21a
? P() + (1-P (0))e %D o (_ )
and, , ' B T —
T Q (z)e %8 S
- =1. . (5.21b)
PO+ 0P @ N
o i M

y ’ . o - f~

D = SXDQ @P 0@ - D@ WP Wi (.17

and, B :

R = sD. +Q u)logk(z;, T ’ (;.17b)
: T 3 : ‘

*
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’by 1-P (O)

)

-
\ AJ

- . ’ : o
- Multiplylng the first summation by P (0) and the second summatloxi

and adding the results, we have,

-

"c(OP ) +c(1)1-PO)=NQ@ =1
. . . A

- .
where ¢ (0) Is the summatlon of (5,212) and ¢ (lﬁ) s the summation of (5:21b). We

.

. . [

note that, ¢ oo ~ £

c(0y=1 <=> c(1)=1.

. , .
In other words, whenever one of the constra.l;é:s.\br (5.21) Is satisfled, the other

IS )

one Is also automatically satisfled. Therefore, In oi'der to find the rate-distortion

function R (D), we can first solve,

o - Q@) L - :
‘ %P(0)+(1-P(o))e—80(z) 1, . (5.22)

L] -~

for each s <0 to find P (0), then uslng (5.20), we can find the A\(z)'s, and finally

‘substituting In (5.17), we can find the corresponding D and R.

" 5.1.2 Numerical Computation of the Ra!;eeDistoftion Function

In order to solve (5.22) numerically, we can use the following recursive

" method. Start'wlth any P o(0)>0 and define,

¢, © =3 ' Q(z) (5.232)

2 Po(0) + (1-P, (0))e~* R
and,

P, .,(0) = P, (0)c, .(o). o (5.23b)

%

It 1s easy {t}) verify the convergence of the above fecurslon. We note that, for

anyo < P,(0) <1, | , - o

et
oy



-

_and (5.17b), we can calculate the value of D and R .

~Pa(0) < Po(0) <1, If ¢, (0)>1,
and, C ) " )

0 < P, 0 < P (0), - If ¢, (0)<1.

Thus starting from any 0< P ,(0)<1, the sequence P, (0) remalns bounded. Due
to the Bolzano-Welerstrass theorem [48), any bounded sequence has at least one

llmit polnt and, therefore, the bounded (and mchotonlc) sequence P, (O) has a
&

Timit polnt, say P’ (0). Comblning (5.23a) and (5.23b), we obtaln,

Q (z)

B, .(0)=P . | .

, Tl =15, (0)§ P, (0) + (1-P, (0)fe ~* &
In the limit, we have, .
Pty = P°* Q (z) '

©) (0)§ P’ (0) + (1-P * (0))e * %D
or, . h , . '

Q.(z) -
« =1 ’
% P’ (0) + (1-P " (0))e* 42 .

which establlshgs‘the' convergence of the recursive procedure.

Therefore, In order to find a ‘polnt on the rate-distortlon functlon for <any

s <0, we start with some P 4(0) > 0 .and lteratively use (5.23a) and (5.23b) untll -

¢, (0) 1s less than some predetermined threshold ¢. Then, substituting the value of
N

. Pn (0) of the last iteratlon Into (5.18), we can find X(z) and, finally, using (5.17a)

S

5.2 Two Equiprobable Classes and Sym'metric. Features +

.‘ 1 - '

~ Here, we conslder two—class pattern recoghltloh problem with equal a priorl

probabllities, l.e., P (X =0)}= P(X=1)= % Furthermore, we assume that the
. « i

<

(5.24) -
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feature vector z s the Input z seen through k-Independent binary symmetric
Q:ha{mels (BSC's) with crossover probabilltles ¢,, ..., ¢;. This means that the
feature vector gz can, be exﬁresseq as the blnary k-\t}dple (21«0 ) whsre
z;j, J€{1,....,k } 1s the output o\l‘\a binary symmetric channel with crossover pro-
L@ babllity 9;. Each of the blnary SQKneu:lc channels, say for exainple the Jth one,

. AN N .
can be described In terms of the dlagram of Figure 5.1. The output of this BSC

~

. . 1-9; o

z =0 -

T4

=1
- z=1 %
AS . ‘
. - Figure 5.1: A Binary Symmetric Channel.
I ' ’ .
s different =~ from its input with probabli\ty 95, ‘ l.e.,
. , ) .

, P(z;=1]|2=0) = P(2;=0| 2=1)=yg,,. - and, consequently,

P(z;=1 |z=1)= P(z;=0 | 2 =0)=1 - g; . Since the BSC's are copsldered to

be’'independent, the conditional probability of z glven z can be written ss,

~ — . 4

) ; ,
Qz|zs=0)= [[q; ™ (1-g;)" , - (5.252)
) ' j=1 v - ‘
“"“aﬂdp ’ v -
' . b H 1-2,™~ *
—— - Q@lz=1)= II¢;” (=¢;)™, - (5.25b)
’ j=1 -
with @ (z) glven by, - .
- 1 1' . : DI
Q(z) = ;Q(.Z.lo)-b/;Q,('zl 1). (5.26)
< {
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The distortlon measure p(z,% ) of (5.10) can be written as,
. ) .
’ (@@l
1
, =0,
) 2@
p(zf) = 1 “ . - (5.27)
* : Q(l 0) . 2=1’
\ 2Q(z)
& ;- ¢ -

and,

I _ mmlQ@|n,Q@|o) .
#(z) = min[p(z,0) , p(z,1)] = 20@ : (5.?8)

Therefore, Dy 1s found to be, . ‘

Dy = 2xpmmi@aln, Q@lol. - (G29)
‘iz ‘ . .

Also,from (5.12)-we have, e .

-1
Dmax"':?"

Let Z be the complement of the feature vector z, le., '_z'_" Is a vector whose

. components are the complements of those of z. From (5.25) we have,

L

QEZ|0)=@Q(z]|1), " ¥4 (5.30a)
and, . ,
Q . . ’ ‘ - \ ’
~ - Rzln=¢ez|0). _ (5.30Db)
and therefore, '
Q@ ="Q@ . ‘ S (5.31)
Substituting p =-i— Into (5.14), we have, ' ‘\‘\\ B
L~ . -



R

5‘;:.):‘:_.:'::'\ Fhorew s et

l and,

"

L, -
‘where,

Not.e that,

.- 108 -

0, if Qz|0)>Q((z]1),
ﬁ(1.0)={ s
= Ui, o e@lo<QEly,
L (@] .. ' QE|0>QE),
ﬁ(g,l)={ .

0, it Qz]0)<Q(z]1),

. Qa|1-Qlo)
T TR

g ©ain- e@loy

and also, .

and,

Therefore,

.and, -

2Q @

_(Qal9-ealy -
T 0w Rl

|

eel0) > ealn <> el > ealo),

ezln>Qelo => Q@0 > Q&Y.

? 5o =@

p:1) =p(2,0) .

(5.32a)

(5.32b)

" (5.33)

(5.34)

(5.35a)

(5.35b)

(5.;363.)

(5.36b)

\ - ' .
"*The symmetry existing In this case permits us to find an expliclt expression
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for the rate-distortlon function In terms of the_ parameter 's. In fact, because of

- .

-

the symmetry and the fact that p =-;—, we conclude that P 0)=PQa)= -;— for /

-all values of s > -oo. To verlfy this concluslon, substitute P (0) = P (1) = ?12-

Into the left hand slde of (5.21a) and (5.21b) and denote the’summations by c (0)

and ¢ (1), “

_ ' _ Q ()
| ¢ (0) 221'} gk ,\ (5.37a)

and,

M . RO (5.37D)

b —
A (W=

&

v
-~

. 9
Now, 1t Is easy to demonstrate that ¢ (0) = ¢ (1) == 1. First, adding (5.37a) and ~

: ' (5.37b) we obtaln,
%

cO)+c()=25Q@ =2. ‘ (5.38)
. -

Then notice that complemenplng each z maps the set of k-tuples Into itself, a

‘ change of varlable z — Z In elther (5.37a) or (5.37b) 15 merely equlvalent to
N :

ek

chapnglng the order of summatlion and does not change the value of summations.

Performing thls change of varlabié In (5.37a), we obtaln,

¢ (0) = 2); , . (5.39)
.z 14+ ¢ :
,, -
and using (5.31) and (5.34), we have, . -
» Q (z)
¢ (0) = 2)) T
. .- Z’} 1+ et .
Qz)e ¥R - )
= 2 =c(1). . o (5.40)
' 2,3 1+ et -
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Combining (5.38) and (5.40), we obtaln ¢ (0) = c¢(1)==1, Therefore,

P@O)=PQ)= -3- Is the the solutlon to the optimilzatlon problem for all values

L]

of 5.

}

Now, to find the explicit form of the rate-distortion function R (D), first we

substitute Il:?(o) =P)= -;12- Into /(5.18) to find A(2) as,

-1
Az) = 2 [efﬁ(w’ +e ”"(L‘)] , ' (5.41)

-

and then substltuting \(z) Into (5.17a) and (5.17b), we find the expresslons for D Ve

and R . Substltuting (5:41) Into (5.17a), we have,

\

Q (2) 3(z.,0)¢ *#20

C20) | ¢ ofat) 4 o @ (2)F(zA)e AT
z e’ﬁ(&o) + csﬁ(z_,l)

b=3% /(5.42) -
. , ,

But, using the same argument as the one leading to (5.40), we obtal

-

Q@ p(g.1)é P — Q2@ 5E1)e PEV /

z ePa0) 4 gsAzl) 7 e*HZO) 4 g3pE1)

3 / *

— 3,2 2)i(z.0)e ¥ )
T T eeRr0) 4 gekay)/]
/ .

and therefore, ' /

’

// .
D — 252 @) 7(z.0)c PLY (5.43) -~ /
Z e 8P(.0) + eaﬁ(z,l) ' o

SN |
Substituting 5(2,0) and 5(z,1) from (5.32) Into (5.43), we have, ; X

/

. Q@iE)e @ | '
D = . 5.44
o - (5.44)
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1 // * ‘
. where, / -
Zy={z] @zlo<Q&|n}. (545) .
To find the expression for R , we substitute (5.41) Into (5.17b), ‘
- 2
: " . R =s8D + z)lo , 5.46
| o BQ@los— s (5.46)
- or, . . . ’
- ) N 2 . .
R = sD + 23'Q (pllog——————— . (5.47)
" e |

So, the rate-distortion functlon R (D) can be evaluated uslng (5.44) and
(5.47) for each value of s. To find R (D), we need to shift R (D) by D .,in» since,
/- R_(D) =R (D - D)

We conclude thls chapter with a followlng example to clarlfy the ideas dis-

cussed so far.

o

5.3 A Typical Example

)

We conslder the example discussed by Gray and Chou[8].. We assume a

memoryless source X with P (X=0) = P (X =1) = -;—, as seen through three

£

Independent blnary symmetric channels with crossover probabllities 1l , -i—, and

. —;—- In the next chapter, we conslder the more general case where the source is a
- [ 4

blnary symmetrle Markov source rather than a memoryless source. Finding the
exact R (D) curve for the case of a blnary symmetrlc Markov source is an

L

extremely difficult task. In fact, the i'a.te-dlstort,)on function for thls soyrce Is not,
¢ | .
- / ‘ ' . . -
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1

known even without extra Interference, except for small values of D [49]. How-
eveér, the rate-distortion found for the memoryless source Can serve as an upper
bound for the more complex case of'the source with meni%;@:Furt.hermore, usling
the Blahut’s algorithm, discussed In the previous cha[;ter, 'tlghner bounas can be;
found. In the next chapter, we will use the Blahut's algorlthm to find such

bounds.

The feature vector z takes 8 values from 000 to 111. Table 5.1 shows the

values of the probabilities @(z | z) , @ (z),-the distortlon measure p(z,%), and

-

also p(z).
z 000 001 010 | 011 100 | 101 110 | 111 -
‘ 24 B 8 2. |. 12 3 4 1
eelo) | = | = | = | == |=|= | =
80 80 80. 60 80 80 680 60
1 3 3 12 3 E 6 27
Q|1 | — -— — — | = — — —
60 60 60 80 60 60 |, 60 60
4

i 25 10 11 14 14 11 10 25

Q@ -
120 120 120 120 | 120 120 120 120
1 4 3 12 2 8 " 24
o) | £ | = | SV ZZ [ (L ZE
25 10 11 '+ 14 I4 11 0 25
, 24 6 - 8 2 12 3 1 1
p(z,1) — — — — | = -— — —
25 10 11 | 14 14 11 10 25
., 1 4 3 2 2 3 4 1
IR Bl e Bl Mol sl B ool s
25 10 11 | 14 14 11 10 25

Table 5.1: Values of the probabllitles @ (z | £) and Q (z),

distortlon measure p(z,2), and p(z).

\

and l‘rbm Table 5.1, we.find,

We have D .. =

Nl)—l\

D@=2Mmm=%
Z



We can find iz.1) -\—= p(z,.x) - ﬁ(_z), with the values of 5(z,%) tabulated In Table

e

5.2. - 1 - SR
|
- [z |o000]|o01 |o10 |o11 | 100|101 | 110 | 111
\
. * 10 5 2 33 '
Pz 14 11 10 25
- 3 D) 5 10 P
1 L2 o | =1o0 o | o
Az1) é? 100 | 11 (e .

Table 5.2: Values of the translated distortion measure 5(z,% ).

Now, we can find the parametric expression for R (D) by substituting these

values of p(z,2) lnto‘(5.43) and (5.46), .

1[23a+2ﬂ 57_‘_100]?

— 1 5.48)
80 | 14+« 1+ﬁ.+1+7\ 140 (5.48),

l

and,

- - 1 2 T2 2 R -
R = sD 4+ '— |25l0 10log—— + 11lo 1416 , 5.49
+ 80 [ g1—+:cv + g1+ﬁ ,g1+'y * g1+a] ( ).

- .
23 2 5_ 10
8 —8 — 8 —_—3

where a=e ?® , f=¢ ' ,y=e ! , and o=e¢ M

Since R (D )=R (D'-D,,)=R (D —-;-), the paramgfric expression for R(D)

s found to be,

1 | 28ax | 20 5~ 100, 1
D = — + =, 5.50
= |1Ha T 148 T 1T T4 +\es ‘ (5.50)
and, ' ' a~ ‘ _ )
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411l ——'+1410 5.51 2
+;9 T “T1s ¢ )//

A 1 1. 2
R = s (D -=)+-—]25l0 10lo
( 6 )+ 60 [ & 14+ + ) ¢

The rate-distortlon function R (D) as deflned by (5.50) and (5.51) Is shown In

H

Flgure 52 v

5.4 Discussion

As stated earlier, a rate-distortion rﬁnctlon of the type given In Ftgure 5.2

/

provides us with the relatlonshlp between the minlmum average lnfo/rmatlon con-

veyed to. ﬁhe decoder In order to be able to classify the patterns w t.l} an average

.

probabllity of error not exceeding a certaln value D . Since In the derlvation of
\ ' :
"R (D),-we have not made any assumption on the structure of the encoder and

7

decoder, the encoder Is allowed to extraf:t, any functlon of the components of the
feature vector and dellv;'lt, to the decoder. Now, use of a speciflc patternArecog- -
nitlon scheme whlich has certaln structure s equlvalent to Imposing a:constralnt
on the cholce of the features used by the epcoc;er and decoder and, therefore, we
should expect that the glven pattern reco on scheme would perform worse
“than that given by the R (D) curve. For example, If we ‘use a decislon tree for
pattern recognition, we have limited the choice of features for the encoder-
decoder palr to certaln permutations of the orlginal features; thus, It comes of no
surprise If the relatlon 5etween the average length of the t,’ree and the minlmum
average distortion be Bounded away from the rate-dlistortion curve, even In the
case of correlated patterns. In fact, for each polnt on the R (D) curve, D
represents the minlmum average proba“[;lllby of error attalnable when the feature

vectors have gone through a feature compresslon process which allows only R

bits per feature vector.. Since the.mlnlmum: probabllity of error s achleved
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through maximum like§hood or Bayeslan methods, we conclude that the polnts
on tile rate-distortion curve correspond to the average Bayesian probabllity of

error for a certaln amount of fea@ure compression. Now, if we use any scheme
' . ' ‘ 1 »
other than maximum likellhood, 1t translatés ltself, In terms of the formulation
,/;gwe have followed so far, Nto usinig a fidelity criterlon other than the one dictated
5'%1. ™ -

. . =%B¥/ (5.10). Therefore, the rate-distortion should be modifiled accordingly, employ-
N {.'_f‘i‘/ N .

Ing the relationship betwee'r_l the new fidellty criterlon and that of (5.10).

One alternative to Bayes d‘éclslon. for example, Is near;est nelghbor pattern
recognitlon. The use of a nearest nelghpor scheme Is equlval_ent to using another:
distortion measure, for example, Euclldean distance (Hamml‘ng distance In the
case of binary features), Instead of the distortlon measure of (5.10). Covgr and -

"Hart[24] have shown that D < D' < 2D (1-D), wher¢ D' and D are tlhe
average probabllity of error for the neare?i neighbor and the Bayes decislon,
respectlvely, THerefore, the' curve In Flgure 5.2 can be be viewed as a lower
bound for the rate-distortion for the nearesb—nelght;or ;attérn recognition scheme,
le., R (D' )= R (D). Similarly, an upper bound cap be found for R(D’' ) by
drawing the curvé defined "by the polnts (R,D*) where D * = 2D (1-D ), le.,
Ry(D' )= R[2D (1-D)).

The fact that the polnts on the rate-dlistortlon function correspond io the

maxlmurh llkellhood declsion rule leads to the loglcé’l and 1ntultlvely clear argu-
Kment that since the most economlical and Informative f_eature 1s the decislon funec-
tlon ltself, 1t Is Ineflective to divide the pattern recognltion problem Into two
separate phases, 1.e, the search for a set of good features and tlllen the construg-
tlon of the declslon fun(;tlon based on these features; thererdre. the declslon
should be sought as a functlon of the original measurem'ehts and, If some reduc- .

tlon In the volume or some generallzatlon of the initlal data turns out to be
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possible, thls posslblllty‘ willl unavoldably manifest Itself durlng the construction

-

of the simplest computational algorithm for the declslon ftincl;lon[14]. As polnted
in Chapter 2, In parametric pattern classlﬁca},lon,‘ this argument leads to the‘
methodology adopted by Datta and Morgera[18], Moréera[sol, and Soleyman! and
Morgera[51], In tackling the problexy of feature selectlon In Gauéslg.n pattern
recoénltlon, where Instead of deallng with distance measures which are only

Indlrectly related to the probablllty of error, the polnt of departure in selecting

the-features has been the expression for the probabllity of error tself.

Another polnt which Is worth noting Is the fact that the polntsgn the rate-
‘ distortion curve can usualiy be achleved for large enough slze of pattern set, n;.
& therefore, 1t 1s advantageous to- conslder the patterns In block Instead of conslder-
Ing each pattern separately.. While, as we wlll show In the next chapter, this Is
true In the case of correlated patterns, where one c‘an make use of the correlation
by delaying the decision, It Is also true In the case of Independent pat;terns, how-
ever, the galn in the latter case Is less appreclable—. The use of _ng_;g or mtg,'
_ recognition also épables us to use fractional rates,. for example, déclslon trees of
average length less Lﬁan n, when a decislon tree 1s uséd, or-template sets of élze

less than 2", when template matching Is used. We feel that these observatlons

will prove important in future pattern recogaition system developments.

~

b , . . \
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- " "CHAPTER 6

o

v

i Application of the Model : Correlated Patterns

)

Up to this polnt, we have consldered the cases for which patterns have been

“

uncorrelated, l.e., we have assumed that the probabllity, that the present pﬁ.tern

belongs to a certaln class does not depend on the classes to which the previous,

patterns belonged. In terms of the communlications system model consldered so

far, 1t means that we have assumed the source X to be memoryless, l.e.,

~ P (2, | Zyoys Tyops ) = P(z,). (6.1)

Py

However, this Is not always true and usually consecutive patterns are corre-’

[y

lated or, at least, 1t Is more general to treat them as such. For example, 1t Is con-
. N ) .
celvable that two consecutlve patterns are more llkely to belong to the same class

than to two different classes. This Implles a certaln inertla In the state of nature,

1 .
_that Is, 1t tends to 'stay In the Salf} state (generating patterns belonging to the

same pattern class) rather than moving to another state. The above mentioned
. Ce - .
situation glves a set of, say- n, consecutlve patterns a certaln structure which

fthay be used !n derlving a more economical description of the pattern set.
\

6.1 Binary Symmetric Markov Source
» 1 4
It Is a common practice to approximate sources with memory with Markov

>~

sources. In fact, any well-behaved statlonary source can, at least approximately,

.

>
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be represented by a Markov source[l5). For an Lth order Markov source, we

-

have,
- L)

P(zq | Ty_1s Tpogr o) = P(2n | Ta_gs Tnogr - @p_p) - (6.2)

This means that the state of the system at any time Instant n, only depends on
Its state In L previous time Instants. The slmplest Markov source Is the 1st order

Markov source for which we have,

-

P, | Ty g Tpogr o) = Pz, | 2,0) - (6.3)

In this chapter, we conslder the same example as the one tréated at the end
of the previous chapter, but with the source#belng a first order blnary symmetric
Markov source. By computing the rate-distortlon function for this example, for

several d\menélons(number of patterns treated together), we will show that con-

sldering the pabterns In block results‘h; a lower average probablllty of grror for
the same description cost(rate). Furthermore, we will calculate L‘he rat,e;dlstortlon
rupctlon ror; tfle same blnary ‘symmebrlé Markov source, but wlth Interference
channels pé{flng dlﬂert;nt crossover probabliitles and show that the more rellable

~

the features, the less profound Is the e}ect of memory‘. -

A binary symmetric Markov source can be speclfied in terms of lts transition
-, .

probabllity ¢. Each output of the source s different from the previous output
with probablﬁby g,le., Pr(z, # z,_,) = ¢. The source ‘can be described using

14
the following recurslve expresslion,

X, =X,,,®Y, ", . (6.4)

where Y, are 1...d. blnary random varlables assuming values 1 and O with proba-

. - ~ .
bliitles ¢ and 1-¢, respectively. Gray[49] has shown that for-a small range of

1

L
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values of D, the rate-distortiop for the source {X,, } colncides with that of {Y, }

1e., : ‘,f
, Ry(P)=Ry(D)=H,(q)-H,(D), D<D,, _ (85
where ‘
H,@) =-zlog(z) (1-2 Jogt-2), - .  (68)
and,‘. )

H

where m—-mln(q,l q.) For large values or~D the rate—dlstortlon functlon for

.thls source 1S unknown. However, good upper bounds to RX (D) can be found by
numerlcally computing R, (D) for moderat,e values of n using Blahuts algo—
5

and’

7Z1v[52], a lower bound can be computed and, therefore, the rate-distortion of the

blnary symmetric, Markov source can, at least numerlcally, be qulte tightly

L

Berger(53] which are tight for certaln ranges of values of D. However, as was
polnted out, the e;cact value of the rate-distortlon functlon\?or the values of

D > D, .remains unknown.and Is one of the challenging problems of Informatlon

LS
-
—

theory.

- -

6.2 Performance of the Classifier versus the Number of Patterns

The above dlscusslon concemlng the extreme difficulty of finding the rate-

distortlon* ToTTTIon for the binary symmetric Markov source itself discourages an
5 “ ok .

<

i

‘ . ! ' om 2 . : s
, D --—-—[1— 1-(—— J 8.7
=V ED (01)

'*bo’tmded. Furthermore, expliclt lower and upper bounds have been found _by -

v



o

- 116.-

LY

effort-to derive the analytical form of R (D) for the more complex case where an

extra ﬁﬁerferehce Is added at the source. Therefore, in the sequel, we try to com-

’ ®

pute the rate-distortion function R, (D) for certaln values of n, using Blahut's

algorithm. Fort,unaté‘ly, the curves tend to converge for values of n >4 ana there-
fore, R ,(D ) glves a reasonably tlght upper bound to R (D). This should suffice

tp‘ serve our purpose, which 1s to conceptually Justify the ‘valldlty of the argu-

- ment that consldering several patterns at a time 1s more efliclent than consldering

)

each pattern separately.

- Plgure 6.1 shows R, (D) for a binary symmetric Markov source with transi-

?

1 A .
tlon probabllity, q"=-; as seen through three BSC's with crossover probabllities

-

N

© 11 1, ' .
-3—, E and 5’ for the values of n=1,2,3,4. Note that for each value of n, the

v
M}
'

' : . A ;
source vector X == (T y,..., I,') takes 2" values. The samie Is true for the reproduc-

lflg vectors & = (£ ,..., £, ). However, t,hq.'ouf,pui of the BSC's, l.e., 2 takes 23n

. values, slince, corresponding to each source letter z, we have 2% values for the

6utput, of the BSC's.

From,‘Flgure 6.1, we notice 'that for a glven rate, the distortion decreases -

with n. This observation supports the ldea that ‘the performance of the pattern

) regognmon system 1s improved by treating the patierns In batch Instead of con-

4

> sldering them separately. This 1dea 1s closely allled with the fdeas of compound

' declslon theory[54]. This ldea also leads to'the ldea of using global features

LS

instead of strictly local features. This may prove useful, for example, In image

<

classificatlon where one can beneflt from using fcmurcs} defined over an lmage

-

< v
window rather a plxel. Examples of such features are average gray level or

differeat "busyness™ measures|55]. o]

- ’ L4
,
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6.3 The Effect of the Quality of Features : . "

1

Next, Inr order to Investlgate the effect of the quality of observations on the
* performance of the pattern recognition system, we calculate the rate-distortion

. function for. the same blnary symmetric Markov source with three different sets

of BSC's. Flgure 6.2 shows R, (D) for n=1,2,3 for the ‘tz)nary ‘Markov source
P u‘

with transition probability ¢ =% as seen through three sets of BSC's with cross-

. over probabilities (0.10, 0.11, 0.12), (0.20, 0.22,'0._24), and (0.30, 0.33, 0.36). Apart
from the obvlous conclusion that the average probability of error for a glven rate

‘ Is hlg\her( for more deg.raded features (higher crossover probabllii;les), we notice
that the amount of degradation in the average probabllity of error versus the rate
Is more appreclable, for less degraded patterns. This observation lmplle_s that‘ the -
cofnplexlty of the pattern recognition system should be proportional to the good-
ness of measured features. In other words, it 1s a waste to use a complex system
(high rate) for very poor observations. We al;o notice that t\he vertical spacing of
the rate-dlstortion c‘urves for different values of n Is more notlceable for more
degraded feature sets. This shows that the effect of memory Is more notlceable )
for "bad” features than for "good" features and, In turn, implles. that heurlstic
declslon ;'ules based on the observation of long sequences of feature vectors are

more eflectlve when the features are quite degraded.

<. . To clarify the above ldea, we conslder the followlng example. Enumerating

tl}le outputs of the Interference channel, we notlce that-the number of one’s In a

set of feature vectors glves a good estimate of the class dependence of thé pat-
terns present at the Input of the channel. In partlculaf, I we conslder the feature

vectors separately, 1t Is easily seen that those feature vectors, l.e., blnéry 3-tuples,

with more one's than zero's have a hlgher g posterlor] probablllf,y of belonging to

L A
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the second class and, therefore,"l In this case a questlon of tI{e form "Is X (the
number of one's) greater than| one ?” ‘Is sufficlent for classifylng the patterns
based on the maximum likellhood decision rule. This class!ﬁ.c‘atlon strategy
corresponds to the rate of one bl per pattern, slnce one ;ilchotomy iIs required to
be answered for classlficatlon of each pattern. Now, suppose that we base our
declslon on the observation of two consecutive feature vectors, l.e., six plts of the
interference channel output. Because of the Maf‘kovlan rel_at,lonsmp between the-
patterns, It is mofe likely that two consecutive patterns belong to the same pat-
tern class than to two different classes. So, we may use the following s—lmple
classification rule. If the number of one's In slx bits 1s more than three we declde

that both patterns belong to the second class (class 1), otherwise we assume that

" both patterns belong to class 0. Since, In thls ad hoc scheme, only one question,

le., ;'Is the number of ones greater than three?” 1s requlired to classify two con-
secutlve patterns, the rate Is only 0.5. Simple calculatlo.n shows that the average
probabllity ‘of'error using thls scheme 1s 0.133 for L?lg case of BSC's with cross-
over probabllities (0.10 , 0.11 , 0.12) and 0.278 fox: t:he case of (0.30 , 0.33, 0.39. .
Since the-minimum possible average probablliity of error s 0.033 and 0.238 for
the first and $econd case, respectlvely, we.observe that _using this ad hoc
classificatlon method results In far less degradation in probabllity of error in the
case of "bad"” features than In the case of "good” features, |

6.4 Vector Pattern Recognition
‘ !

-

|
In section 6.2, computing the rate-distortion function for a typlcal source for

different dimenslons, we showed that Improvement in the classifier performance Is

possible through'increasing the number of patterns considered at a-time. Also, as
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mentioned In cha.pter 5, treating patterns in block enables us to use fractional
rates. These observatlons parallel those suggesting the use of vector quantization
in source-codlng problems, e.g., In speech and lm_age processing. Therefore, 1t 1s
gnatural to think of vector pattern recognitlon, as an alternatlve to conventional
pattérnfby-pattern classification. Here, lnsteadk of making a declslon £ after
observing a partlcular pa‘t,tervn z, a compound declslon (£,, ..., £, ) Is made based
on the ‘obse}'vatlon of n consecutlve patterns g, ..., in ). For /example, a condens-
ing algorithm, such as the one discussed In chapter 3 can be used to derlve com-
pound templates based on a tralning set conslsting of a sufflclently large set of
nk -dimenslonal vectors each ‘ formed by coi;catfenatlng n consecutlve k-
dimenslonal feature vectors. Then each of nk—d)menslonal templates are labeled

with one of M" possible comblinations of M classes. In declslon phase, each new

compound pattern is assigned the label of the compound template closest to It.

In order to make thls ldea clear and also show the effectlveness of vector
recognition, we wori< out a slmple example. We consldey the example of Sectlon
3.2, l.e., two-class problem .wlth class = condltional denslties
p(zlz;) =N ,Z;) 11,2 where s,=01,1,1, nT and
po=(-1, -1,-1, —l)T and ¥, and X, are 4 X4 covarlance matrlces of first order
Markov with correlation coemélents p1=0.3 and p,==0.7, respectively. However,

here, we assume that the classes to which the patterns belong form a blnary Mar-

kov sequence with a transition probabllity of -‘11—; that 1s, the probabillty that two

. 1
consecutive patterns belong to two different 9lasses 1s —4—- We take n =2, l.e., we

make declslons based on the observation of two nelghboring patterns. Using the
condensing algorithm of chapter 3 and a sample set conslsting of 20000, 8-

dimenslonal compound feature \;ectors, we deslgned the flve templates shown In

-~

.
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Table 6.1 together with their correspondlngxcompound, class labels. The probabll-
1ty of classification error using theses templates was found to be 7.52%. Compar-

Ing this value with the probablllt,y_ of errér found for flve templates In the case of |

single patterns (5th row of Table 3.1), a noticeable decrease In the probability of

error Is observed, while the complexity of the search is almost the same.

Template 4 Class

(0.974 , 1.032 , 1.115, 1.071 , -1.602 ,--1.701 , =*f #54 , -1.598) (1,2
Wer »

.

(1.558 , 1.028 , 0.517 , 0.6(7 ,1.714 , 1.807 , 1.191 , 0.624) 1,1

: i / - '
(-1.547 , -1.374 , -1:103 , -0'821 , -0.844 , -0.920 ,~1.057 , -1.141) | (2, 2)

(-0.319 , -0.385 , -0.523 , -0.631 , -1.605 , -1.673 , -1.717 , -1.642) | (2, 2)

(-1.313 ,-1.252 , «1.010 , -0.912 , 0.828 , 1.199 , 1.542 , 1.537) (2,1)
. ‘ .

Table 6.1: Templates for the two-dimenslonal vector recognizer.

i

Wmle the above example demonstrates the advantage of vector recognition
over simple pattern-by-pattern classlflcation, some problems remaln which should
be taken Into conslderatlon. The number of possible declslons M™ increases

exponentlally with n. Therefore, consldering a large number of patterns at a time

1

x
makes the search process demanding In terms of the number of operations
requlrechiso. In order to design a rellable classifler for higher dlmensions, we

require a very large tralning set. The first problem can be solved for moderate

» vajues of n by uslng fast search algorithms such as those presented In Chapter 3.

Also, 1t Is posslble to use a tree structure, simllar to tree-searched vector quantl-
zatlon(3], where at each node of the tree only one decislon Is made based on the

proximity of the glven compound pattern to one of the two reference templates
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assoclated with that node. To solve the second problem, it 1s possible to first
design a set of templates based on an Initlal sample set which Is not extremely
large and later modify the templates according to thelr perforrhan-ce Oon new pat-

terns, for exAmple, using the stochastic approximation method[56}-[57].
S

—

// “  For large n, 1t 1s possible to reduce Jhe nqmber of templates by assignlng

-4 - . -
templates only to those declslon sequences which have more effect on the proba-

bllity of error, and, therefore, discarding some of M" sequences. Selection otj
sequences may be baged elther on the propertles of good codes for the glven

source with memory which models the state of nature or ¢an be done through the

computation of the rate-distortion function for this source.

~

£

6.5 Discussion

4

.

In thvls‘ chapter, first, we applled the rate-distortion theoretlc model to a spe-

clal case of con:elated patterns where the state of nature was modeled as a binary
symmetrlc Markov source. Based on the computatlon of the rate-\dlstortlon func-i
tion for different number of patterns, it was observed that 1t 1s possible to reduce
the probablllty.or classification error by classlfylng several patterns concur}ently.
Based on thls observatlon the ldea of vect&')r pattern recognition, l.e, treating the
r patterns In block instead of separately, was Introduced and Its effectlveness was
demonstrated using a typlcal example. Also, by computing the rate-dlstortion
function for a glveh source, but with dlﬂerept degrees of Interference, 1t was
shown that the gavln achleved by increaslng the number of patterns depends on

the quality of the features, l.e., the less rellable the features, the greater the role

played by the memory.
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Figure 8.1 : R, (D), n=1,2,34 for a binary Markov source with transition
probability 1/4 seen through three binary symmetric channels
; with crossovgr prqbabjlitles 1/3, 1/4, and 1/5. -
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CHAPTER 7

Conclusions and Directions for Further Research

As mentloned earller, a maln goal of thils woric was to discuss some of the
Intricacles of rate-distortion theory .wlt,hln the mework of pattern recognmqn.
We set out to plan thls work after coming to the reallzation that ‘the pattern
recognition problem can be viewed In terms of a communlgatlgns channel model
simllar to that employed for deflving the raLe—dlstortion function. In this context, .
the notlon of discrimlpant functions and the ldea of feature selectlon and extrac-
tlon accordlhg to various interclass distance measures fall into place.. This 1s not
to say that these problems are -all solved If a rate-distortion vfew of thie pattern
recognltloln process 1s taken; on the contrary, as polnted out, few problems are
solved and many stlll remaln out of rea.ch. A good examp]e of the latter l\s the
computation of the rate-dlstortflon functlon for sources, or patterns, possessfng
correiaﬁl\on. This represents one of the open problems of information theory: the
solution to whlcp Is cruclal to the development and !mplementation ol’o practlcal
"Vector Recognlzers™, or pattern recognltlon systems designed according to the
principles of rate-distortlon theory. Just as vector quantlzation, based on rate-
distortion theory, has led to Innumerable advaxices and discusslons within the

speech processing research community In the last decade, we hope that the notion

of vector recognition will spur thought and discussion within the pattern recognl-

tlon research community. We dare to go further and suggest that rate-dlsto:;tlon

t,h’e/cyr coupled with advances for correlated sources may we]l explaln and
8
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quantify recognltion performance Improvement for solated versus strings of sym-
bols In character and object recognltion problems. If this is so, and only time and
4

hard work will Xell, the framework of rate-distortlon theory may Indeed impact

the way In whigh we view problems In computer vision and artificlal Intelllgence.

-1

71 Dijrections for Further Research . ]

There are several directlons, related to-thls work, which can be the subject
of further exploration in the future. Séme of the most important ones are as fol-

lows:

1- Api)lylng the proposed communlcatlion system model with different distor-
tlon ‘measures ‘1o order to compare the sultabllity.of different dlstance measures
for nearest nelghbor search. This can also lead to nonparametric feature selection

criteria for a glven dlstance measure.

A

2- Further examlnation of tree structures In order to reduce the complexity

of vector recognition.

3- Use of stochastic approximation methods In the- design of temblates for

K

_vector recognition systems.

4- Study of the combinatorlal propertles of sequences sultable for coding

- sources with memory.

- .
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