I*I National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Dttawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.8804) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage Nous avons
tout fait pour assurer une qualilé supérieure de reproduc
tion.

Sii manque des pages, veuillez communiquer avec
luniversiteé qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser
désirer, surtout si les pages originales ont été dactylogra
phiées a I'aide d'un rubari usé ou si l'université nous a fan
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme esl

soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents

Canadi

A Semantical Framework for Practical
Program Flow Analysis

Paul Rouleau

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

March 1988

© Paul Rouleau, 1988

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
4 la Bibliothéque nationale
du Canada de microfilmer
cette thédse et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;

ni la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou

autrement reproduits sans son
autorisation écrite.

ISBN 0-315-49118-3

ABSTRACT
A Semantical Framework for _Pnctical
Program Flow Analysis
Paul Rouleau

We argue that Cousot’s lattices for data flow analysis should be identified
with Scott domains. Then we use a domain isomorphic to its own function space
to write in a neat denotational style data flow analysis programs that handle un-
restricted high order functions. A sample flow analysis of LISP is provided. We
also develop Cousot’s abstract semantics into categories that formally define con-
sistency of distinct semantics and make the consistency relation transitive. Unlike
usual styles of denotational semantics, data flow analysis requires us to interpret
the top and bottom elements of the lattice as significant information. A naive im-
plementation of the resulting semantics will not terminate its execution for a large
number of useful programs because the bottom element occurs as an infinite loop.
We avoid the difficulty with the help of an homomorphic image of the relevant Scott
domain. Under some conditions imposed on the image domain, we can use the least
fixed point theorem to find an image of the nonterminating semantics that termi-
nates for every syntactically correct program, including explicitly written infinite
loops. We show the conditions imposed on the image domain are reasonable for data
flow analysis purposes, providing sample data flow analysis of both dynamically and
lexically scoped lambda-calculus.

TABLE OF CONTENTS

TABLE OF MATHEMATICAL SYMBOLSc0cn.ts vii
Chapter

1 INTRODUCTIONccimiiiiiiitiiiiiirinennenanns 1

2 DATA FLOW FRAMEWORKS AND SCOTT DOMAINS 6

2.1 Scott Domainscoviiiiiiiiiiiiiiiieen 7

2.1.1 The Lattice Theoretic Structure of Domains 13

2.2 Approximable Mappings and Approximable Functions 21

2.2.1 The Category of Approximable Mappings 25

2.3 Constructing Domainscoiieievinnnnn 32

23.1 SimpleDomainso, 32

2.3.2 Constructing Complex Domains 35

233The BHFunctorcvvvvvvnnnnn. 39

2.3.4 Cartesian Products 44

2.3.5 Digjoint Unions 45

236 Function Spacesccivuuvvennnn. 50

2.3.7 Recursive Domains 54

2.4 Syntax, Semantics and Abstractions 57

2.4.1 Appraximation for Data Flow Analysis 61

2.4.2 The Categories of Abstract Semantics 65

2.4.3 A Hierarchy of Categories 74

iv

Chapter Page

3 SAMPLE DATA FLOW ANALYSIS IN LISP

3.1 Normal Semantics of LISP

ooooooooooooooooooooooooo

3.2 The Domain of Sets of Expressions

ooooooooooooooooooo

3.3 The Computation of LISP Data Flow Information
3.3.1 The Analysis of the Information Systems
3.3.2 Equivalence of Semantics

3.4 Approximate Data Flow Analysis of LISP

oooooooooooooo

4 THE TERMINATION PROBLEM
4.1 The Termination Properties of Tarski’s Least Fixed Point .. .
4.2 The Semantics of Dynamically Scoped Lambda-Calculus ...
4.2.1 The Tree Traversal Semantics
4.2.2 The Termination Properties of Dynamically Scoped

Lambda-Calculus
4.3 The Computation of Tarski Fixed Points

5 ABSTRACT SEMANTICS OF LEXICALLY SCOPED
LAMBDA-CALCULUScoiiiiiiiiiiiiiiiann

5.1 The Normal Semantics of Lambda-Calculus

v

Chapter Page
5.5 Environements Viewed as Trees 166

568 Approximate Treescciiiiiioen 171

5.7 Folding Infinite Treesot 179

5.8 Termination of Lexically Scoped Lambda~Calculus 187

6 CONCLUSION 0ttt ittt iiiieenennnnn 190
BIBLIOGRAPHY i iiiiiiiiiiiiiiiieannnnnnn 192

vi

TABLE OF MATHEMATICAL SYMBOLS

Boldface numbers denote the definition or the semantics where the symbol
is defined in the text. The abreviation “p.” precedes the page number where an
unnumbered definition is found . Many standard symbols are present in this table

without formal definitions in the text.

Typographical Conventicns

Boldface usually denote a domain used to define a semantics. Typewriter
face are used to denote a syntactic variable, terminal or sentential form in a semantic
equation. Whenever we need to enclose these syntactic elements within parentheses,
we use [double square brackets] as a form of quoting. These brackets are not
different from normal parentheses otherwise. The symbol JJ is used to mark the

end of proofs and of long semantics.

Symbol Description

A logical “and”
\" logical “or”
= logical implication

vii

zUy

Us
{z1...24}
{z]...}

(z; . ..z,,)

logical equivalence

universal quantifier

existential quantifier

equality of z and y

negation of equality of z and y
arithmetic z is less than or equal to y
arithmetic z is less than y

arithmetic z is greater than or equal to y
arithmetic z is greater than y

z is an element of y

z is not an element of y

the set z is included in or equal to y
the set z is not included in or equal to y
the set z is strictly included in y

the set z is not strictly included in y
the empty set

the union of z and y

the union of all sets belonging to S
the set whose elements are z;...2,
the set of all z such that ...

the tuple containing z; ...z,

viii

zCy lattice theoretic z is less than or equal to y(3.1, p.13)

zZy lattice theoretic z is not less than or equal to y (3.1, p. 13)
zUy the lattice theoretic join of z and y (3.1, 3.4)

LS the lattice theoretic join of all elements of S (3.4)

zNy the lattice theoretic meet of z and y (3.4)

T the top element of a lattice (p.20)

1 the bottom element of a lattice (p.20)

Cp,Up,Np, LD, Tp
all lattice theoretic operators may be indexed by lattice name (p.23)
A the trivial proposition of an information system (2.3)
F the entailment relation on an information system (3.2)
A= (D4,04,Co0ny,t4)
components of information systems may be indexed by information
system names
(Da.1, Aa.1,Cong 1,Fs.1)
components of information systems may be indexed by an
abreviation of the induced domain name (p.96-97)
Cl(z) the closure of z under entailment (2.5)
|4} the domain induced by the information system A (2.3)
AxD A is the information system underlying the domain D (p.95)
L auxiliary functions for the abstraction from semantics 3.1 to

ix

semantics 3.8 (3.9)

f inverse of | (3.9)

ONéE the one element information system (2.19)
BIT the two element information system (2.20)
BIT the domain |81 T| (p.83)

0 the bottom element of BIT (p.33)

1 the top element of BIT (p.33)

FLAT(S) the flat domain constructed from set S (2.21)
{nil} abreviation for FLAT({nil})

V P(D) the set of very proper elements of domain D (3.3)

{...} set emulated with domain Ex — BIT (3.6)
zWy abreviation for (f¢t(z), snd(z) U {"y}) (3.8)
zly same as £ & y but on different types of arguments (3.13)

BH(A) the black-hole functor applied on A (2.35)

AxB the cartesian product of A and B (3.13)

(z,9) the pair of z and y (2.15, 2.16)

fet(z) the first element of the pair z (2.16)

and(z) the second element of the pair z (2.16)

A+B the disjoint union of A and B (2.29)

1ft(z) seleting z as the first component of a disjoint union (2.30)

rht(z) seleting z as the second component of a disjoint union (2.30)

X

inl(z)

inr(z)

A— B
f(z)

A—B
fog
(a,¢) o (b,d)
(=)
Az.f

K()

I()

I

is

fiz

Y

fie, fiz"

injecting z as the first component of a disjoint union (2.30)
injecting z as the second component of the disjoint union (2.30)
production delimiter for context free grammars

the space of approximable mappings from A to B (3.7)
application of the function induced by the approximable
mapping f (3.9)

the function space from domain A to domain B (2.33)

the composition of f and g (3.11)

the composition of abstractions (32.43)

iterating function f on z a number ¢ of times (2.35)

the abstraction of variable z from expression f

the constant map (2.12)

the identity map (2.10)

the interpretation function of Cousot frameworks (2.1, 2.41)
the identity abstraction from semantics S to itself (2.44)
Tarski’s least fixed point operator (2.35)

Curry’s least fixed point operator (p.119)

computational versions of fiz (4.5, 4.11)

if z then y else 2

efv := 3]

the conditional combinator (p.83)

assigning the value z to variable v in environment v (p.59)

xi

-

Is.1, By functions and domains indexed by semantics number (p.78)
Unecurry(-) the uncurrying combinator (p.105)

LISP() the LISP syntax functor (p.105)

Lamb(-) the lambda—calculus syntax functor (p.122)

CHAPTER 1
INTRODUCTION

We will investigate interprocedural data flow analysis. Data flow analysis
means the process of analysing the propagation of information within a computer
program in order to get information about its behaviour. One traditionel applica-
tion of such analysis is in compiler design. For example, an 2rithmetic expression
such as z/z can be replaced by the compiler with the constant value 1 provided the
variable z never takes the value zero. Data flow analysis must be used to verify that
no expression that may have the value zero can propagate to become the value of
variable z. Then we decide to optimize or not to optimize the program according
to the result of the verification.

One especially delicate kind of data flow analysis we will consider in this
work is inierprocedural data flow analysis. This kind of analysis occurs when we
have to handle the propagation of information across the various procedures and
functions through the mechanisms of parameter passing, global variables and values
returned by functions. The problem becomes extremely difficult in the presence of
recursion and functions or procedures thai propagate other functions and proce-
dures through the above mechanisms before calling them. Such difficulties occur

1

with programming languages like LISP.

Data Scw analysis is further complicated by the requirements of termination
and efficiency. This may sound trivial because any practical algorithm must termi-
nate within a reasonable time period. However, one widely used approach, adopted
in this work, is to view data flow analysis as giving a program an abstract semantics
different from the usual semantics. Put this way, efficiency and termination mean
that any program will execute quickly when interpreted according to the semantics.

Unfortunately, interprocedural analysis tends to become a nonterminating
process because abstract semantics representing data flow reflects and sometimes
amplifies the operational properties of the analysed program, including nontermina-
tion. This means the analysis of a nonterminating program is not likely to terminate
itself unless the analysing algorithm is carefully designed. This idea is central to
the work in chapters 4 and 5.

The standard solution to this problem is approximation. Getting back to
the z/z example, we do not always need the exact set of possible values for z. Any
superset of this set of possible values would do, because whenever zero does not
belong to such a superset, we know z cannot be zero and optimisation is possible.
However we run the risk of zero creeping into the superset, but not belonging to
the exact set. This would prevent a valid optimisation, but would not endanger
the correctness of the analysis because only valid optimisations are still performed.

Provided the superset is easier to compute than the exact set, we sacrifice the ability

3
to perform all valid optimisations to gain the ability to perform some of them within
a reasonable time period. The art of data flow analysis is to find a good compromise
between speed and completeness.

The present work started from a practical problem: the stack allocation
problem. In functional languages such as LISP, the storage for variables should be
allocated in memory. Two allocation methods can be considered: allocating the
storage in a stack or in a heap. If stack allocation is used, memory management is
performed quickly, but this method can be used only if memory is to be deallocated
in the reverse of the allocation order. If the memory is deallocated in any other
order, a stack can’t handle it. If the memory is allocated in a heap, it could be
deallocated in any order, but memory management will inpose a high overhead
on program execution. The problem was to find a way to use a mixed method,
allocating memory in the stack when the last in first out requirement could be met
and in a heap otherwise. This provides the speed of stack allocation, when possible,
together with the generality of heap allocation, when required. Data flow analysis
is required to determine the order of memory deallocation in order to figure out
which variables to allocate in a stack and which variables to allocate in a heap.

Several analysis algorithms were considered. We wanted to prove that they
correctly compute the order of desllocation and terminate. We quickly discovered
we needed a formal framework to support such proofs. Finding such a framework
proved to be a very difficult task. Every candidate seemed to bring us closer to

4
good formalism, but also revealed new difficulties we had not previously considered
relevant. To solve the foundational problems, we had to strip data flow analysis
from the practical considerations about the stack allocation problem to look at the
foundations of data flow analysis per se. We slowly turned our research away from
practical considerations and started working on general considerations about how
to write correct data flow analysis.

This work contains no reference to stack allocation except in this report on
the origin of our interest on the topic. Our intention now is to demonstrate how
interprocedural data flow analysis should be formalized and how we can insure the
algorithms teminate.

Chapter 2 will present the traditional framework for data flow analysis prob-
lems first described in Cousot (Cousot and Cousot 1978). Formal definitions will
be given. We also introduce the idea that Cousot’s lattices should be equated with
Scott’s domains. We intend to show that these lattices are relevant when comes the
time to analyze high order functional programs, so much of this chapter is devoted
to a presentation of the lattice structure of Scott’s domains and its relationship with
Cousot’s framework for data flow analysis.

Chapter 3 is devoted to an example of data flow analysis done along the lines
of Chapter 2. We show the analysis of high order functions can indeed be done as
we claimed and provide examples of the basic definitions.

Chapter 4 is devoted to the termination problem. It will be shown that the

5
standard techniques for approximation used in data flow analysis greatly increase
the severity of nontermination problems in the presence of high-order functions,
and even introduce nonterminating loops in the approximation where terminating
loops were used in the original program. Fortunately, explicit use of some lattice
theoretic properties of Scott’s domains can be used to force termination at places
where normal order reduction would not. The key idea is that a non terminating
function f over a domain D may have a terminating image f’ over an homomorphic
domain D’. It is perfectly acceptable to substitute f’ for f in an actual compiler
because the homomorphism allows all relevant information about the value of f to
be retrieved. It is shown this is sufficient to enforce termination of the analysis of
any dynamically scoped LISP program.

Chapter 5 is devoted to the analysis of lexically scoped lambda calculus
and lexically scoped LISP programs in general. The techniques in chapter 4 are
not sufficient to handle its semantics because of non termination problems, unless
some clever approximations are introduced to fix this. We describe the required
approximation and explain how and why they work. Similar approximations can
be written for other high level languages.

Chapter 6 is the conclusion, wrapping up the key results and the future work
to be done.

CHAPTER 2
DATA FLOW FRAMEWORKS AND SCOTT DOMAINS

The usual formalization of data flow analysis was first introduced by Cousol
and Cousot (1978). The original definition is as follow:

Definition 2.1 Data Flow Frameworks

A data flow framework is a tuple (P, D, F,I) where P is a set of “program
points”, D is a lattice with partial order C and join operation L, F is the space
of all functions D — D that are distributive over U and [is an interpretation
function P — D defined by a set of equations I(z;) = ¢(I(zy)...I(zn)), where

z; € P, 1 <1< n, and where t represents a term involving only functions in F.

Cousot’s idea is to express the semantics of a program as the solution of
a set of equations. The set P of program points are usually taken as the set of
vertices of the control flow graph of the program. The lattice D is usually a lattice
of environments N — V, each mapping variables occurring in the program to
some element in a domain V of data flow values relevant to the particular problem
under consideration. It follows from these assumptions the function I: P — D

must be defined according to the flow of data along the edges of the control flow
6

7
graph induced by the language semantics. Cousot has shown this function turns
out to be a set of equations of the required form. The function space F is chosen
to restrict the set of acceptable equations to insure the solution always exists.

We shall not give an example of the use of this framework until chapter 3.
Impatient readers may go to Cousot’s original paper where the issues involved are
discussed in greater detail. We will only remark that Scott’s style of denotational
semantics for programming languages often fits into Cousot’s frameworks. The idea
is not new since Cousot and Cousot themselves used such a semantics as an example

for their work.

2.1 Scott Domains

In this chapter, we will be concerned about the structure of the allowable lat-
tices. In particular we will claim Scott’s domains should be identified with Cousot’s
lattices and his distributive function space F should be replaced by the category of
approximable functions on Scott’s domains. This idea is intuitively easy to justify.
If data flow analysis is to be implemented on a computer, any data type involved
can be considered to be a domain for the denotational semantics of the language
used to write the data flow analysis program. Therefore there is no loss of generality
in identifying Scott’s domains with Cousot’s lattices. Cousot’s space F: D — D of
distributive functions is introduced to force fixed points to exist. Such fixed points
ensure the existence of the function I that solve the equations induced by the data
flow problem. We suggest using the category of appraximable maps instead of F

8
because it also has that property and in addition, it supports arbitrarily high order
functions, whereas Cousot’s original definition does not. Such high order functions
are very useful in interprocedural data flow analysis. This was already noticed by
Sharir (1981). He extended Cousot's framework to use not only the distributive
function space F but to also take advantage of the fact F is a lattice to introduce a
space /. F — F of second order distributive functions. This allowed him to han-
dle interprocedural data flow analysis with the exception of functional arguments.
We will show that in the presence of arbitrarily high order functions we can handle
any kind of interprocedural data flow analysis, including functional arguments that
resist Sharir’s methods.

Let’s look more closely at Scott’s domains. They are defined in different ways
in different papers {Scott 1976, 1981, 1982; Stoy 1977). It seems to be a common
attitude among computer scientists to ignore the details of the construction of a
domain. The reason is given by Stoy (1977): “So our purpose is to demonstrate
that a domain can be constructed which satisfies the formal requirements, to give us
confidence that our theory is not vacuous. ... once we have demonstrated that our
requirements are satisfiable we can safely return to thinking of our value domains
in any more intuitively natural way we please.” This is why Scott’s work is both
famous and little known. Computer scientists want to be confident their work has
proper formal ground and providing such formal ground is exactly what Scott’s
theory of domains does. However the methods used are difficult to understand and

9
remote from everyday programming experience so most people prefer to us: the
results without looking at the details of the constructions.

At least one author, Dana Scott himself doesn’t share this view. He really
believes that not only his theorems but also the underlying theory of domains is
significant to computer science. This is one of the reasons that motivated him
to write so many different versions of his theory of domains (Scott 1976, 1981,
1982). He was looking for a presentation that looks intuitively natural to computer
scientists in the hope the foundations of his work would be more widely understood
and used. Scott’s personal view on the problem is found in (Scott 1982).

It should be clear that for data flow analysis purpose, the details of the
construction of a domain are relevant. This can be seen immediately from the
obeervation that Cousot’s framework requires us to be aware of the lattice structure
of our domains. However if we select the version of Scott's theory of domains
founded on information systems (Scott 1982), we will find that Scott’s partial order
over his domains are very significant in data flow analysis terms. We will devote
an important part of the present chapter to that question. We will summarize
some important steps of Scott’s theory of domains. Most results will be cited
without proof unless they are original. The reader may look up the references
for more information. The key point here is not to develop the theory but to
look at the details of its application to data flow analysis. The first step is to
clearly establish what are the lattices involved, what they mean in terms of data

10
fiow analysis and what are the partial orders, join and meet operations, bottom
and top elements in any of these lattices. One of the keys to Scott’s methods for
domain construction is the use of the category theory to be able to talk about
general properties of domains without having knowledge of their structures. As far
as data flow analysis is concerned, this practice is useful but insufficient. When we
face a specific problem, we cannot solve it unless we know the exact structure of the
relevant lattice. Therefore we will not only discuss the constructions involved in the
abstract but we will also tell how to perform the reverse operation of concretizing

the categorical ideas into more explicit lattice theory.

Definition 2.2 Information Systems
An information system is a tuple {D,A,Con,}) where D is a set, the set of
data objects or propositions; A is a distinguished member of D, the least informative
member of D; Con is a set of finite subsets of D, the set of consistent sets; and -
is a binary relation between members of Con and members of D, the entailment
relation for objects. An information system must also satisfy the following axioms:
Vu,vC Dand VX € D
i) u€Con whenever u Cv and v€ Con
ii) {X}e€Con
iii) wU{X} €Con ifu€ Con and u - X.
Vu,v€Con andVX € D
iv) uk A

11
v Xif X €eu

vi) fVY €y, vFY andutb X then v+ X

Scott recommends interpreting the elements of D as propositions that can
be true about the elements of its domains. As a sort of corollary, an element of
the domain is characterized by the set of propositions that are true about it. If we
assume no two elements satisfy the same set of true propositions, (a very reasonable
assumption for otherwise we probably do not use an information system that suits
our data flow problem) we can go further and identify every element z with the
subset of D containing all true propositions about that element z. In this context
the set Con should be interpreted as the set of finite consistent sets of propositions.
More precisely, if the set u of propositions is in Con, then there is an element z inour
domain that satisfies at least all the propositions in u. The proposition A € D is the
trivial proposition that is satisfied by every element of the domain. The entailment
relation represents the logical dependencies between propositions. When a set of
propositions u entails a proposition X, this is interpreted as saying that X can be
deduced in some way from u. As a result, for every element e that satisfies all
propositions in u, that element ¢ will also satisfy the entailed proposition X. Given
this interpretation of information systems, the axioms should sound intuitively true
to the reader. Note also that the identification of domain elements with the set of
propositions that are true abont them leads to the following definition.

12
Definition 2.3 Domains and Elements of the Domains
Let A = (D,A,Con,}) be an information system. The domain generated
by A is denoted |A| and is defined as follow:

|A| = {z| every finite subset of z is in Con and Fu Cz A ut X thcn X € z)

With this definition of domains, domain elementhood is identical to set the-
oretical elementhood.

This definition means only consistent information is true about an element
of 3 domain and the set of true propositions about an element is closed under
deduction. We assume the information system is so designed that we can identify
elements with closed sets of propositions. When the time comes to design the set
D of proposition for an information system, it is intuitively mandatory that every
element must be characterized by a unique closed set of propositions. Otherwise
there would be elements without any way to distinguish them. We require the
converse to be true: every closed set of proposition must denote an element. This
allows some closed sets to apply to more than one “real® element of the domain.
The world “real® here means the elements we originally intended to include in
the domain when we designed the set D of allowable propositions. Definition 2.3
implicitly introduces a new class of elements, the class of partial elements. They
correspond to those closed sets that do not identify with a unique “real® element.

13
They are called partial because they are incompletely defined with respect to our
original intention. We don’t have enough information to tell which “real® element
we are talking about.

This identification of elements with sets of true propositions is interesting
from the point of view of data flow analysis. In this context the interesting property
of abstract semantics is not the particular approximation we are computing but the
information conveyed by that approximation. For instance in the case of the (z/z)
optimization problem what we want to know is if some particular value can or cannot
be taken by a variable. The sets used in the abstract semantics are of no interest in
themselves. They are interesting because they represent the set of propositions that
such variables can take such and such values in some execution of the program, and
these propositions are the correct formal ground to make the decision of optimizing
the program or not. This is one more justification to the proposed identification of
Cousot’s lattices and Scott’s domains.

3.1.1 The Lattice Structure of Domains

Every domain |A| induced by an information system A = (D,A, Con,}) is
partially ordered under set inclusion because it is a collection of sets; namely the
collection of all consistent subsets of D that are closed under entailment. This is the
lattice structure of the domains. We can immediately infer the correct interpretation
of the partial ordering: z C y if and only if all propositions that are true about 2

are also true about y, or equivalently z C y if all information contained in z is also

14
contained in y. This interpretation agrees perfectly with the intended purpose of
data flow analysis. For example, we may be looking for a quick way to compute
some element y that contains all the information in z, ignoring the fact that y may
contain information that does not apply to z. This amounts to computing a value
y such that z C y as a valid approximation to z. Some other problems may have
the opposite requirement. We may want to compute a value y that contains only
information that applies to z disregarding the fact that some information applying
to z does not apply to y. In this case we are computing a value y such that yC z
as a valid approximation to z.

The first notion of approximation is used when we want to be safe on the
true side, that is if a proposition is true, our approximation must give the correct
answer. On the other hand, we do not mind concluding that a proposition is true
when it is not. This is expressed by the relation ~ C g, all propositions true about
z are also true about y. For instance, the (z/z) optimization problem requires this
kind of approximation. We want to be able to detect every place where z can be
equal to zero in order to know where the optimisation is invalid. We do not mind
if our approximation tells us some variables can take the value zero when it is not
the case for a non optimized program is still a correct program.

The second kind of approximation is used when we are in the reverse situa-
tion. We want to be able to say only true things about an element but do not mind
if not all information about that element is available. It is often useful in data flow

16
analysis. This kind of approximation is also crucial in the theory of domains. We
will look at the details after a few definitions.

Definition 2.4 Lattice Theoretic Meet and Join

Let 2,y € |A|, zUy denotes the least element of |A| such that z C Uy and
9 C 21Uy when such an element exists. This means C is the Iattice theoretic join
on |A|. Similarly z 1y denotes the greatest elemeut of | A| such that zNy C z and
zNy C y; that is, N is the lattice theoretic meet on |A|. Note that unlike zL1y, zNy
always exiz» in | A|, see (Scott 1982) for the details. These operators will generalise
as usual over sets of elements instead of pairs, for instance one can write | |{...} to

denote the join of all elements in a set.

Definition 2.6 Finite and Infinite Elements, Closure of a Set

If A= (D,A,Con,t) is an information system, and ¥ € Con, we define the
closure

Ciw) = {X |« F X}

We can prove (Scott 1982) that Vu € Con, Cl(u) € |A]. All such elements are called
the finite elements of | /). Elements that are not of the form Cl(x) for some Bnite
u are called infinite elements of |A|.

Proposition 3.6 (Scott 1981, 1982)

16
Let A= (D,A,Con,l) an information system. The following kold for all z
in |A|.

z=L|{Cl(u)|ueG¢mAul;z}

The reader should not confuse finite elements and finite sets of propositions.
An element is finite in the sense there is a finite set of propositions that entails
all other propositions that belong to that element. Of course there could be an
infinite namber of such entailed propositions and a finite element may well tarn out
to be an infinite set. When we talk about finite elements we do not mean the finite
cardinality of the element. We mean the element can be generated from a finite
consistent set of propositions with the help of the closure operator Cl.

Now let’s look back at Scott’s definition of approximation. An element y is
a valid approximation of z if and only if y C 2. This means if a consistent set u is
included in an element z, then Cl(u) C z and therefore Cl(u) can be called a finite
approximation of 2. Proposition 2.6 says every element 2, finite or infinite, is the
join of all its finite approximation. This idea leads us to an interesting theory of
computation. We can equate the finite elements with the elements that have a finite
computer representation. This involves no loss of generality because we can organise
the set of propositions in our information system to define our elements in terms of
their computer representation. Finite data structures caa be described with finitely

17
many statements and conversely a finite number of statements caa be stored in a
finite amount of space. The question is how do we carry out computation on an
infinite element if it has no finite computer representation? The answer is that we
seldom need to know an infinite amount of information about an element. A large
enough finite approximation will usually do. The normal procedure is to enumerate
an increasing sequence u; of finite approximations of z such that | |u; = z. Sooner
or later we will find a large enough u; for our purpose. Let’s look at an example.
Assume we want an information system that defines the set of all functions
N — N where N is the set of natural numbers. The information system A =
(D,A,Con,l) can be defined as:

D = {Int} U{Val(z,y) | z,y € N}
where Int is the proposition “the value of the function will be an
integer” and Val(z, y) is the proposition “when the function is applied
to z it gives the value y".

A= Int

Con = {u C D| u is finite and Val(z,y), Val(z,2) eu=>y =z}

X <= X=IntvXecyu

The information we are interested in knowing about a function is the trivial
proposition Int that states it gives an integer value and the more useful statement
Val(z,y) that tells us what the function value is when given the argument z. A

18
total element f of the domain |A| is the set of propositions that tells us the value of
J(z) for each integer z (as well as the proposition Inf). If not enough propositions
are provided, the function is only partially defined. The set Con is defined to
ensure that an element assigns a unique value to each defined argument so that
the elements of the domain will indeed be functions. The entailment relation is the
minimal reflexive relation that will infer A from any proposition since we cannot
infer the value of the function at one point from its values at other points. The
relation f C g on |A| means that g is defined at more points than f, and whenever
both are defined, they have the same value. The finite elements are exactly those
sets of propositions including Int that define a function at finitely many points and
leave it undefined everywhere else. In this example a finite element turns out to
be a finite set. This happens because the entailment relation I is very minimal; as
we have said, it is not true in the general case. The question we want to answer is
what is the computational significance of the finite elements.

Let’s consider the factorial function. In the domain | A this is the set recur-
sively defined as:

Fact = {Int} u {Val(0,1)} U {Val(z +1,(z + 1)y} | Val(z,y) € Fact}

The reader can check that this is an infinite element. In Pascal-like lan-
guages, this function will be coded:

y=1

19
Fori:=1tozdoy:=yxft;

We can view this as a program to find a proposition Val(z,y) € Fect that
gives the value of factorial for the argument 2. By definition { Val(0, 1)} € Fact. The
program represents this knowledge by assigning 1 to y in the first line and skipping
the body of the For loop if z happens to be 0. If we iterate the loop knowing that
if Val(i,y) € Fact, then we gain the knowledge that Val(i + 1,(s + 1)y) € Fact
on the next iteration. At any point in time we know only finitely many values
of the factorial function and the element represented by this knowledge is a finite
element that partially defines Fact. The more we iterate the loop, the more defined
is our approximation but we never reach the point where the sum of all computed
information constitutes an infinite element. We simply exit the loop when the finite
approximation computed so far is large enough to tell us what is the value of the
factorial for some particular value of z.

This example illustrates how an infinite element is represented by an increas-
ing infinite sequence of finite elements for computational purposes. Proposition 2.6
says that every infinite element can be represented in this way. This idea that infi-
nite elements are always represented by such sequences (or more generally speaking
directed sets [Scott 1976, 1981]) of finite elements for computational purposes lies
at the foundation of Scott’s theory of domains. This concludes our discussion on
the significance of the partial ordering C over domains.

We did introduce in definition 2.4 the lattice theoretic meet and join over

20
domains. The element 2z Ny is simply the set of all propositions that belongs to
both z and y. That intersection is itse an element and therefore the meet over
a domain is exactly the set theoretic intersection. The meet z N y always exists
because there is a least element in the domain, namely the set L = CI({A}) of
all trivialy entailed propositions. Intuitively z My is the largest partial object that
approximates both z and y.

The join z Uy over a domain is not the same as the set theoretical union of
propositions. For instance there may be a proposition X ¢ zUy and a set u C zUy
such that neither u C z nor ¥ C y but such that u - X. In that case the set
theoretical union z Uy is not closed under entailment and cannot be an element.
When we join the two elements z and y, new deductions are possible when we
combine propositions about z with propositions about y. The closure Cl(z U y) is
closed under entailment and is the join over the domain of z and y provided that
set is consistent. If zU y has an inconsistent subset, the domain theoretic join does
not exist for z and y. When this join exists, it is always the least element zLiy that
can be approximated by both z and y.

To complete the analysis of the significance of the lattice structure we still
need to discuss the meaning of the bottom and the top elements when they exist.
We have already mentioned that ClI({A}) is L and is the set of all trivially true
propositions in the information system. The top element T does not always exist.

When it exists it is the set | |[{z | z € Con} because every consistent set must

21
generate an element that is less than or equal to T. It turns out that T contains
all propositions that are not trivialy false for every element of the information
system. These elements have some additional significance. We shall not discuss
them right now because we lack some useful results that illuminate their role in
Cousot’s framework. We will return to the topic in due time, when those results
are available.

This completes for the moment our discussion of the significance of the lattice
theoretic structure of the domains. Before leaving the topic the reader should be
aware that approximations are used in two different ways. In data flow analysis we
use approximations because we do not need to find the exact set of propositions that
characterizes an element. In Scott’s theory of partial objects, we use approximations
because infinite elements cannot be exactly computed but any finite amount of
information we may ever want about them can be generated by infinite increasing
sequences of finite approximations. In Scott’s theory of partial objects we say that
“z approximates y” iff z C y. In Cousot’s framework for data flow analysis we say
that “z approximates y” iff either z C y or y C z depending of which is relevant to
the problem under consideration. We immediately see that in some cases, Cousot’s
approximation matches Scott’s and in other cases it doesn’t. These two uses of the

same relation C are intertwined but distinct and must not be confused.

2.2 Approximable Mappings and Approximable Functions
We are now ready to start discussing the significance of the category of

22
approximable mappings over domains in the context of data flow analysis.

Definition 2.7 Appraximable Mappings

Let A= (D,A,Con,l-) and B = (D', A',Con’,) be two information sys-
tems. An approximable mapping f: A — B is a binary relation between Con and
Con' such that

jese

ii) 'y, o fv and vV o always imply u' [¢

iii) u f v, and u f ¢/ always imply vU¢' € Con’ and u f vU ¢!
In ii) u' v means VX € v, o'l X and similarly, v ' v/ means VY € ¢/,
vHY

The approximable mapping I determines a function f:|A] — |B| as follow:
f(2)=| {iveCon' | 3u,u £ v}
or equivalently

fz)={YeD'|uCzuf{Y}}

An approximable mapping f: A — B is defined as a binary relation between
the consistent sets of A and the consistent sets of B. Intuitively f should describe a
function from JA| to |B|, this binary relation relates for every z the consistent sets
of propositions that are true about z to the consistent sets of propositions that are

23
true about f(z). Obviously the empty set of propositions is always true about both
z and f(z). This expressed by condition i). Condition ii) states that we can use
the fact that u f v to deduce things that are true about f(z) from things that are
true about z. In other words, the binary relation f is a deduction relation between
propositions in A that characterize z and propositions in B that characterige the
value f(z) at every point z where f(z) is defined. The role of condition iii) is to
guarantee we are indeed working with a well defined function in the sense that the
set of propositions that characterizes the value of the function is always a consistent

set. The next proposition formally justifies the notation f(z) introduced in 2.7.

Proposition 2.8 Formal Properties of Approximable Mappings (Scott 1982)
Let f,9: A — B be appraximable mapping where A and B are as in 2.7,

then

i) if z € |A| then f(z) € |B|

i) f=9 <= Vz, [(z)=9¢(2)

iii) fCg <= Vz€|A|, f(z)Co()

iv) 2Cja) 5 = f(z) Gy f(y)

v) Yu€Con, ve€Con', u(flv <= Cl(v) Cypj f(Cl(u))

In 2.8 we introduce the notation C)4) to mean the partial order defined over
|A|. Remember this relation happens to be identical to set inclusion. Subscripts
are introduced only for clarity.

24

There is one more identity that connects the notion of approximable map-

pings and Scott’s theory of partial objects. Remember that definition 2.7 states
that

f(z) =L|{v €Con' |3u, uf v}

I z happens to be an element, then by 2.8.i f(z) is also an element and
therefore f(z) is closed under entailment. We can immediately infer from this the

following proposition:

Proposition 2.9
Let f:A — B be an approximable mapping and z be an element in |A|,

then

/) =| [(Clv) |3uC 2, ufv)}

Remember that proposition 2.6 states z = | J{Cl(v) | u C z}, this was in-
terpreted as the statement that z can be represented by the set of all its finite
approximations. What 2.8 means is that given such a representation of z, we can
compute a similar representation of f(z) and, therefore, the function f allows us to
explicitly compute the finite approximations of f(z) from the finite approximations

of z. For every u such that Cl(u) is an approximation of z, the binary relation f

25
associates a set of values v such that Cl(v) is an approximation of f(z). Approx-
imable mappings are the correct definition of what a computable function is in light
of Scott’s theory of partial objects. Scott (1976, 1981) elaborates on that claim,
connecting his theory of domains to the more standard theory of partial recursive
functions and recursive enumerability. We will skip these questions because they

are not relevant to data flow analysis.

2.2.1 The Category of Approximable Mapping

The following properties are relevant to data flow analysis and bring in the

categorical structure of Scott’s function space.

Definition 2.10 The Identity Function (Scott 1982)
Let A= (D,A,Con,}) be an information system. Then the following for-
mula defines an approximable mapping I: A — A.
i) Vu,ueCon, u(ljv < ulv
For all z € |A|, this mapping bas the property:
i) I(z) =z

Definition 2.11 Composition of Functions (Scott 1982)

Let A,B = (D,A,Con,t) and C be information systems. Let f: A — B
and g: B — C be two approximable mappings. Then we can define an approxima-
tion mapping go f: A — C as follow:

jJu(gof)w <= FIve€Con, (ufv)A(vgw)

For all z € |A|, this mapping has the property:
i) (g0 f)(z) = g(f(=))

These two propositions show that information systems with domains as ob-
jects and approximable mappings as arrows satisfy the usual axioms for category
theory (MacLane 1971). Therefore approximable mappings work as smoothly and
naturally as a function space as any one could hope.

There is an important class of approximable mappings, the constant maps:

Definition 2.12 Constant Maps (Scott 1982)
Let A, B,C, D be information systems, let b € | B|, there is a unique approx-
imable mapping K(b): A — B such that:
i) Vze|A|, K(b)(z) =0
i) V:B—C, [oK(b)=K(f(b)
iii) Yg: D — A, K(b)og= K(b)
That mapping is induced by the binary relation over consistent sets of propo-
sitions:

iv)uK(b)v < vCb

These constant maps define the usual constant functions from |A] to |B).
Other useful functions like join and meet require multiple arguments. These can be
brought into the category with the help of the product of information systems:

27
Definition 2.13 The Product of Information Systems (Scott 1982)

Let A= (Da,04,Cony,t4) and B = {Dp,Ap,Conp,) be information
systems. We define A X B = (Daxp,AaxB,Conaxs,Faxp) to be the product
system as follow:

i) Daxp ={(X,88) | X € Da}u{{A4,Y)) | Y € D}
i} Asxp =(Da,Ap)
iii) w € Conaxp <= u is a finite subset of Doxp and {X € D, | {X,AB) €

u} € Cony and {Y € Dp | (A4,Y) €u} € Conp

iv)) ubaxp (X,88) <> {X€Ds|{X,Ap)€u} s X
iv’) uFaxp (Ba,Y) < {Y €Dy |(As,Y)EU}pY

Because elements are identified with sets of statements about them, we ask
what kind of statements are relevant when we talk about a pair of objects. One
obvious answer is that such statements must talk about at least either the first
or the second component of the pair. This is exactly what our definition does.
An allowable statement is either of the form (X,Ap) where X talks about the
first component and Ap says trivial things about the second component or it is of
the form (A4,Y) where Y talks about the second component while A4 says only
trivial things about the first. We could have allowed compound statements of the
form (X,Y) but these would have been functionally equivalent with the consistent
set {{X,AB),(A4,Y)}. There is no point in introducing such redundancy in our
system. This justifies our definition of Dsyp in 2.18. The pair (A4, Ap) is clearly

28
the least informative pair of statements we could say about a pair of elements,
8o this is defined to be A xp. A set of pairs of propositions is consistent if and
only if all propositions about the first component of the pair are consistent and all
propositions about the second component are also consistent. This is exactly how
Conxp is defined. The entailment relation 4y p is likewise defined in a point
wise fashion. For instance u Faxp (X, A) iff X is entailed from propositions in u
about the first component of the pair. Similarly ¥ Faxp (A4,Y) iff Y is entailed
from the propositions in u about the second component of the pair. We can now

see how D,y p indeed behaves like a cartesian product of information systems.

Proposition 2.14 Pairing and Projection, Function Notation (Scott 1982)

If A and B are information systems, then so is A X B and there are two
approximable mappings fst: A x B — A and snd:A x B — B such that for
every approximable mappings f:C — A and g:C — B, there is one and only
one approximable mapping (f,9):C — A X B such that fstc {f,g) = f and

sndo(f,g) =g.

The mapping fst and snd are the usual projections that selects the first
and second component of the pair respectively. The function (x,#) is the usual
pairing operator. This proposition may be hard to understand for many people
because, according to categorical usage, the notation talks about functions rather
than about domain elements. Therefore we will translate the above result in more

readable terms:;

Definition 2.16 Pairing, Normal Notation (Scott 1982)

The ordered pair of two elements z and y belonging to the domains |A| and
|B| respectively is defined as:

(z,4) = (K(2), K(@))(CI({A))

for some suitably chosen A belonging to some conveniently fixed information

system. The notation f(z, y) will stand for f((z,y)) for every function f: Ax B —
C.

Note we have overloaded the (z,y) notatios. In 2.14 it was applied to func-
tions of type A — C and B — C respectively. In 2.15 it is applied to elements in
A and B in the left hand side and it is applied on functions similarly to 2.14 on
the right hand side. From now on the notation (z,y) will mean the pair of z and y

unless explicitly stated.

Proposition 2.16 Properties of Projections and Pairings (Scott 1982)
For every z € |A| and y € | B|, we can show:
i) (z,y)€|AxB|={(X,Ap) | X€x}u{(A4,Y)}|Y €y}
i) fot(z,y) =z
ili) snd(z,y) =y
iv) z=(fst(z),end(2)), VzE|Ax B|

Using the notation of 2.14:
v) {Lig)t) ={f(1),9(t)), Wte|C|

This should convince the reader our pairing and selection operators do indeed
work as expected. We can generalize these to n-tuples the standard way using
the notation (z;...z,) to form an n-tuple and the notation u; to select the sth
component of the n—-tuple u. We will not give the details of the definitions. Readers
willing to know more on the topic are referred to any standard text book on set
theory or category theory.

With the help of product domain, we can now state the following:

Proposition 2.17 Meet and Join (Scott 1976, 1981)
Let A be an information system. There is an approximable mapping M: A x
A — A such that Vz,y € |A|, M(z,y) =zNy. If in addition Vz,y3(z Uy) € |A],
then there is an approximable mapping J: A x A —+ A such that J(z,y) =zUy.
Functions M and J are induced by the following binary relations over con-
sistent sets of propositions:
i) uMv <> (fat(u) Nand(u)) v
ii) uJ v <> (fst(u)Usnd(v)) Fv

Let’s summarize the categories we use or may need in the future.

Proposition 32.18 Useful Categories

31
There are three categories involving information systems, domains, approx-
imable mappings and relations depending on what we chose for the objects and the

arrows of the categories:

i) Information systems as objects and approximable mappings over consistent
sets as arrows.
ii) Domains as objects and approximable functions over elements as arrows.

iij) Domains as objects and relations over elements arrows.

Category ii) is a proper subcategory of category iii).

The reader should not confuse categories i) and ii). Every information system
induces a domain and every approximable mapping over consistent sets induces an
approximable function over the domain elements. If we assume as is implicit in
Scott’s work (Scott 1982) that conversely every domain is induced by an information
system and every appraximable function is induced by an approximable mapping,
then the two categories are isomorphic and the properties of one transports to the
other. This is why they are so easily confused. We need both of them, category
i) is used when we look at the meaning of the elements, category ii) is relevant
when we look at computable functions over elements, and we continually work with
both categories, implicitly transporting every result we find about one category to
the other on the ground they are isomorphic. The risk of confusion is great but if
the reader takes a little care, context will usually sort things out. Category iii) is

32
introduced for later use, mainly to be able to formalize Cousot’s notion of abstract
semantics on categorical grounds. We shall return to this later.

2.3 Constructing Domains

This completes our discussion of what the functions allowed in Scott’s cate-
gory of approximable mappings are. Up to now, we have introduced the concept of
Cousot’s data flow framework (P, D, F,I). We have discussed what the lattices D
and the function space F' in the abstract are, that is we discussed in general terms
what the elements of D and F' are and how they are structured. However, data
flow analyst needs more. He wants to know exactly what his lattice is, not only the
general properties. The next step is to show some examples of simple useful lattices
and some methods to build the more complex lattices from the more simple ones.
For every suck simple lattice or construction method, we will stress the relevant
partial order, the meet and join operator and the special elements 1 and T , so
that the reader will be aware of the details of the structures involved.

2.3.1 Simple Domains

We will first discuss some simple useful domains.

Definition 2.19 The One-Point Information System

The information system O N€ = (D, A,Con,t) is defined as follow: D =
{A}; Con = {0,{A}} and the entailment relation is trivialy defined by the state-
ments (A} A and@ - A.

]

The domain |O N €| has exactly one element, namely {A}, that happens to

be trivialy the top and the bottom element. The partial order and the meet and
join operations over |ON | are likewise trivial. This domain is seldlom useful by
itself in data flow analysis. However it can be used in conjunction with disjoint

unions to introduce a new distinct element in an existing domain.

Definition 2.20 The Two-point Information System

The information system BIT = (D,A,Con,}) is defined as follow: D =
{A, T} whereT is some proposition distinct form A; Con = {8, {A},{T},{A,T}};
andutF X &< X=A v Teu.

The domain |81 T| has two elements, 0 = {A} and 1 = {A, T}. The partial
order is the reflexive closure of 0 C 1. The bottom element is 0 and the top element
is 1. This information system is often used in data flow analysis to represent the
existence or the nonexistence of some evidence about a fact. The element O means
there is no evidence and 1 means we have some evidence that a proposition is true.
Obwiously 1 is more informative that O because if we have no evidence that the
proposition is true, as far as we know, it can be either false or true. Once evidence
has been provided we know the proposition is true and not false. The more common
kind of data flow analysis uses bit vectors. We want to collect information about
the truth of a single predicate P when applied to a large range of data objects of
type X. We compute a a suitably chosen function f: X — BIT. When f(z) is

M

1, we know the data flow analysis has uncovered some evidence that P(z) is true.

I f(z) is O there is no such evidence. For some data flow problems it may be
possible to nfer from that lack of evidence that the statement P(z) is false, but
this is not always the case. It is up to the data flow analyst to figure out the correct
interpretation of evidence or lack of evidence for his particular problem on a case

by case basis.

Definition 2.21 Miscellaneous Flat Information Systems

Let S be a set, The information system F LAT(S) = (D, A, Con,) is defined
as follow: D = {A} U S; the proposition A is chosen not to belong to S; the set
Con={0,{A}} U {{z} |z€S} U {{A)z} |z€ S}andu F X <= X =
AvXeu.

The domain |F LAT(S)| contains one bottom element {A} plus one element
{A,z} for every element z € S. There is no top element in |[FLAT(S)|. The
statement z C y is always false unless z = {A} or z = y. The meet 2N y of two
elements is always {A} unless z = y in which case the idempotence law applies.
The join of two element zLIy never exists unless 2 C y or y C 2, in which case zUy
is the larger value. These flat domains corresponds to non structured domains like
characters, integers, Pascal-like enumerated types and Boolean. The elements of
these domains can only be fully specified or fully unspecified. They cannot have a

nontrivial partial specification. Therefore if an element is left unspecified we have

35
the value L, otherwise we have some fully defined element. Such flat domains are

often generated by iteration of disjoint union over the one point domain in the

literature.

2.3.2 Constructing Complex Domains

This completes the list of the more common simple domains. Building com-
plex domains is done with the help of a category-theorical device called a functor.
Usually a functor maps from one category to another. We will restrict ourself to

functors that maps from one category to itself. This makes our definitions more

restrictive than the usual ones.

Definition 2.22 Functors (MacLane 1971)

A covariant functor T is a map that associates every object A to the object
T(A) and associates to every arrow f:A —+ B the arrow T(f):T(A) — T(B).
The map T is such that if I: A — A the identity arrow over A, then the arrow
T(I): T(A) —= T(A) is the identity arrow over T(A) and for every two arrows [, g,
the equation T(f o g) = T(f) o T(g) holds.

A contravariant functor T is a map that associates to every object A the
object T'(A) and that associates to every arrow f: A —+ B the arrow T'(f): T(B) —
T(A). The map T is such that if I: A — A the identity arrow over A, then the
arrow T(I): T(A) — T'(A) is the identity arrow over T'(A) and for every two arrows
f,9, the equation T'(f o g) = T(g) o T(f) bolds.

Definition 2.23 Bifunctors (MacLane 1971)

A bifunctor is a functor in two variables, that is a map T that associates
to every pair A, B of objects a new object T'(A, B). In addition the bifunctor T
is covariant in both variables if it associates to every pair of arrows f:A — C
and g: B — D an arrow T(f,9): T(A,B) — T(C, D) in such a way that the
identity arrows I,:A — A and Ip:B — B are mapped to the identity arrow
T(Ia,Ip):T(A, B) — T(A,B) and if all composable pairs {f,g) and (k,h) of
arrows satisfy the equation T(f o g,k o h) = T(f,k) o T(g,).

The bifunctor T is covariant in its first variable and contravariant in its
second variable if it associates to every pair of arrows f: A — C and ¢:D — B
the new arrow T'(f,9): T(A, B) — T(C, D). Notice the contravariant arrow g has
its direction reversed from B — D to D — B when compared with the covariant
definition. The bifunctor T must in addition map the identity arrows I4:A — A
and Ib: B — B to the identity arrow T(Is,I4):T(A, B) — T(A, B) and must
satisfy the equation T'(f og,hok) = T(f,k) o T'(g, h) for all composable pairs {f, g)
and (k, h) of arrows. Notice that the composition of the contravariant arrows h and
k is the reverse of the composition of the covariant arrows in the left hand side of

the equation.

There are similar definitions for bifunctors contravariant in the first variable

and covariant in the second variable and bifunctors that are contravariant in both

variables. They are left to the reader.

37

If we remember that domains and appraximable mappings are a category, we
will agree that a functor can be used as a function that returns a domain value when
given a domain argument. In this way it can be used to build complex domains out
of more simple ones. Functors are also much more that that. They also transport the
approximable functions to the newly constructed domains in a structure preserving
way. In that sense the algebraic properties of the lattice theoretic operators are
transported from the simple domains to the compound domains. Every time we
introduce a new functor to build a new domain, we will also define what the bottom
and top elements of the constructed domains will be by transporting the relevant
constant maps with the help of the same functor. The meet and join operations will
be similarly transported into the new domain. The partial order relation itself can
be so transported. However the fact that C is not an approximable mapping requires
either the functor to belong to ihe category of relations over domains or the partial
order to be defined as the equivalence between z Lly = z and y C z. This ability to
keep track of the structures of the domains we constructs is of high interest in data
flow analysis. Not only do we make our formalism sit on sound formal grounds,
creating complex lattices with very highly abstract domain constructions, we are
also able to go from the abstract definitions down to the lower level of details that
are relevant to the particular implementation problems we may want to consider.

There is one pitfall to avoid when using functors in the way we describe.

A functor F embeds the structure of a domain A into the domain F(A). This

38
means a part of F(A) has the same structure as A but there may be portions of
F(A) that are structured differently. For instance if F is a functor such that for
every element y € F(A), there is an element z € A such that the constant map
K(y) = F(K(z)) then everything works fine because every element of F(4) is the
image of an element of A. The algebraic properties of A are transported to every
element of F(A) because of the identity F(f o g) = F(f) o F(g). It is this property
of functors that allow us to infer the lattice theoretic property of F(A) from the
corresponding properties of A. On the other hand if there is a y € F(A) such that
Vz € A, K(y) # F(K(z)); then there is no identity that will use the algebraic
properties of A to tell us how y fits in F(A). The functor method allow us to
infer the lattice theoretic properties of only a subdomain of F(A). When a functor
introduces new elements in the compound domain, we have to check what their
lattice theoretic behavior is by other means.

The above method works fine with functions in one variable like constant
maps. We also have to deal with functions in two variables like meet and join. The
meet function is especially important since we plan to deal with the partial ordering
C with the functor method by using the equivalent relation £ Ny = z. Fortunately
we can apply the next theorem to reduce functions in two variables to functions in
one variables.

Proposition 3.3¢ (MacLane 1971)

39

For every approximable function f:A X B — C, there is a unique pair of

approximable functions f': A — B — C and f": B — A — C such that we

haveVz€ A, ye B, f(z,y) = ['(z)(y) = [*(y)(z). Conversely if for everyz € A

and y € B there are functions f:A— B— C and f": B — A — C such that

¥z € A,y € B, f'(z)(y) = f"(y)(z), then there is a unique approximable function
J: Ax B— C such that

Vz€ A,y € B, [(z,9) = f'(2)(y) = ["(y)(2).

This completes our discussion of functors as a mean to construct complex

domains. It is now time to look at some useful functors.

2.3.3 The BH Functor

We have said several times that the join of two elements in a domain does not
always exist. This is most unfortunate because joining is a very frequent operation
in data flow analysis. Our first functor will transform every domain into a complete

lattice.

Definition 2.36 The BH Functor
Let A=(D,A,Con,t) be an information system. The information system
BH(A)=(D’,A',Con',VH) is defined as follow:

iy =D
i) A=A

iii) Con' = {u| v is finite and u C D}

iv) uHX <= u Xvug Con

The functor BH also maps every appraximable mapping f: A — B to the
mapping BH(f): BH(A) — BH(B) defined as follow:

v) w BH(f) v < citheru € ConA(u f v)orekes ¢ Con and v T
Cl(H{v' |3 e€Cm, «'Cyu (v[)})

This functor BH just plugs a top element on any lattice that has mo top.
The set D of propositions and the least informative member A of that set are left
unchanged by the functor. We introduce an element about which all propositions in
D are going to be true, even normally contradictory ones. This element will be the
top of the lattice. Every finite set of propositions will belong to Con' because for
every such set, there is at least one element, namely T', that will satisfy all of them.
Sets that are inconsistent in A entail every proposition in BH(A) because only the
top element will satisfy all of them. Any other proposition will be also true about
T, therefore every proposition is logically derived from such an inconsistent set.
Entailment is not changed for sets of propositions that are consistent in A because
the set of elements that satisfies them is not changed except for the additional top
element. Therefore the set of propositions that should be logically derived from a
consistent set is not changed.

As long as we deal in BH(A) with sets of propositions that are consistent in
A, entailment in BH(A) will be identical to entailment in A. Therefore as long as we

41
use non-top elements of | BH(A)|, that domain is structurally identical to |A|. We

may ask what the significance of T’ is. Let’s compare it with L', the bottom element
of | BH(A)|. There are no propositions that are true about L’ that are not true
about every other element. Therefore L' makes no significant information available.
If we can bring more information about an element approximated as 1/, we stop
talking about 1’ because significant information was brought in. On the other
hand, every proposition is true about T’, even if some are mutually contradictory.
Therefore all propositions are equally insignificant when we talk about T’. Like
1’, the element T’ makes no significant information available. Unlike L', bringing
more information about T’ does not bring more significant information about an
element because we already know that everything is trivially true. The element
T! is a “black-hole of insignificance”, an insigniticant object that will void any
supplemental information we may ever bring about it.

Some readers may ask why we may want to introduce inconsistency in such
an explicit way and use it as if it were a valid object. This has to do with the
very approximate nature of algorithms involved in data flow analysis. There are
situations where available information gets irrevocably screwed up; for instance, we
may be joining two non joinable elements because they occur as two inconsistent
approximations of some consistent elements. Remember we talk about Cousot’s
notion of approximation here, not Scott’s. When the case arises, the black-hole T’

best describes the result of our computation, our algorithm is not good enough to

42
discover significant information.

Now let’s look at how the functor transports the lattice theoretic structure.
Remark that if the domain A already has a top element, then every finite set of
propositions would be consistent (Scott 1982). It is easy to check in this case that
BH(A) = A and for every function f: A — B, the function BH(f): BH(A) —
BH(B) is set theoretically identical to f. The functor BH does not change domains
that already have a top element. The interesting case is when A does not have a
top. It is immediate from the definition of BH that BH(f)(z) = f(z) when z € | A].
In other word BH doesn’t change the behavior of a function when we do not use
the additional top element. The next theorem will clarify the last remaining case,
where A doesn’t have a top element and we want to compute BH(f)(T").

Theorem 2.26
If|A| is a domain and f: A— B an appraximable mapping over information
systems A and B; if T is the top element of | A| then the following identity is true:

BH(f)(T) =| |{BH(/)(2) | = € |BH(A)}

Proof:
Theorem 2.9 states that

(o) BH(J)(T) =| [{Cl(v) |3 C T, » BH(/) v}

Theorem 2.9 also states that

LItBH(/)(2) | z € |BH(A)]} =| [{g(=) | = € |BH(A)}

where ole) =|_{ON(o) | 3T =, & BH(f) o)

It turns out that the conjunction of u C z and z € |[BH(A)| for some z is

equivalent to 4 C T for nothing prevents that z may be equal to T. We can write:
® | [{(BH()(=) |ze|BH(A)} =] [(Cl(v) |IvE T, w BH(f) v}

The right-hand sids of (a) is identical to the right-hand side of (b), proving
the theorem.l

We can now verify that 2H behaves naturally. We can show from 2.26
that BH maps constant functions to constant functions, more exactly: Vz,y € A,
BH(K(z))(y) = K(z)(y). We can similarly show that for every z, BH(IY(z))(T) =
z where I is the curried version of the meet of elements. Similarly we always have
BH(n"(z))(T) = z where N” is the curried version of M with parameters reversed.
We can invoke proposition 2.24 to construct the binary function BH(N) that will
behave as expected, in particular the partial ordering z C y is indeed equivalent
to £ BH(N) y = z. The join operation does not exisi as an approximable relation
in A unless |A| has a top element; therefore we leave that operator out of the
present discussion. These remarks suffice to show the functor BH preserves the

44
lattice theoretic properties of the domains to which it is applied. This completes

our discussion of the relation between the structures of A and BH(A).

2.3.4 Cartesian Products
We have already introduced a bifunctor, namely the cartesian product. Let’s

look more closely at it.

Definition 2.27 The Cartesian Product Functor

The cartesian product A x B of information systems A and B is a bifunctor
where A x B is defined as in 2.13 and for every pair of appraximable mappings
J:A — C and g: B — D the product mapping f x AX B — Cx D is
defined as (u,v)(f x g)(z,y) <> (u f z)A(v gy). This definition implies
(f x 9)(=,9) = {f(2), 9(y))-

The identity K (u) x K(v) = K((u, v)) shows that every element {u, v) is the
image of a pair of elements u and v. Therefore the lattice theoretic structure of

AX B can be totally inferred from the structures of A and B by the functor method.

Proposition 2.28
Let A and B be domains.
i) Laxp =(Lla,L1p)
ii) Taxp = (T4, T) whenever both T, and Tp exist.

i) {8,9) Maxs (z:9) = (u M4 2,08)

45

iv) (v,v)Usxp (z,y) = (uU, z,vUp y) whenever join is defined on both A and
B.

v) {4,v) Caxp (7,9) < uCaz AvCpy.

Subscripts on lattice-theoretic operators refer to its corresponding lattice.
This convention will be used in the rest of the thesis.
Putting 2.28 in English, the lattice theoretic operators are applied point wise

on pairs in |A x B|.

2.3.5 Disjoint Unions

Another useful functor is the disjoint union of information systems.

Definition 2.29 The Disjoint Union (or Separated Sum) of Information Sys-
tems (Scott 1982)

Let A = (Da,Aa,Cona,tba) and B = (Dp,Ap,Conp,t-p) be two infor-
mation systems. If * is a proposition neither in Ds nor in Dp then the disjoint
union A+ B = (Da4+p,Aa+8,ConayB,basB) of A and B is defined as follow:

i) Dasp ={(X,*}| X € Da} U {(+,Y) | Y € Dp} U {{+,+}}
ii) Apyp = (3,3
iii) Conpep ={{u,0) |u€Cons} U {(§,v) |vE€Conp}
iv’)) ukayp (X,5) <= u€Conyp, Alft(u) #0 A Ift(u) Fo X
iv") ukaep (3,Y) < u€Conp A rhi(u) #0 A rhi(u)Fp Y
iv*’) utayp (8,) always holds.

where the functions I ft and rht are defined as follow:

Ift(u) = {X € Dy | (X,%) € u}

rht(u) = {Y € Dg | (+,Y) € u}

For two approximable mappings f:A —+ C and g: B — D, the disjoint
union [+ g: A+ B — C + D of the mapping is defined as follow:

u(f+g)v < ecitheruc A, veC and u f v,
oru€B,veDandugvy,

or v = (%)

For the sake of readability, most of the time we omit explicitly writing the
injections of the components into the disjoint unions.

We use the information system A + B when we want to talk about elements
that belong to either the domain |A| or the domain |B| but not both. We have to
introduce a proposition # that means that either A4 or Ap is true, or any other
similarly trivial proposition that is true about all elements in A and all elements
in B but is not already in D4 or Dp. The proposition * will be used a the new
least informative proposition because A4 and Ap implicitly convey the information
that we are talking about an element in |A| or | B| respectively. Therefore both A,
and Ap conveys significant information about the elements of |A + B], namely
they identify the component of the sum where the elements belong. Ideally the

47
propositions in D44 p should be the sum of the propositions in D4 and in Dp
plus the newly introduced #. This does not build a proper separated sum because
in the construction of sums like A + A the sets D4 and Dp are identical and
the sum is no longer separated. We fix the problem with a coding trick: every
proposition about an element in |A + B| will be represented by an ordered pair of
propositions where at least one component must be ». The order where the = and the
significant proposition appear is used to separate the component of the sum. The
least significant proposition is represented by (s, s). The set Con, is constructed to
insure that a consistent set of propositions in A+ B provides consistent information
about an element of at most one component of the sum. The entailment relation
I o+B preserves the separation between the relationst-4 and g in both components
of the sum.

The sum of two functions naturally follows from the above considerations.
The pair of functions f: A — C and g: B — D is summed into a function f +
g: A+ 8 — C+ D such that if z is an element that belongs either to the A or the
B component, then (f + g)(z) will be the element corresponding in C + D to f(z)
or g(y) respectively.

Proposition 2.30 Constructors and Selectors for Disjoint Unions (Scott 1976)
Let A and B be domains. There exists four approximable fanctions Ift: A +
B— A rht: A+ B— B, inl: A— A+ B and inr: B — A + B such that:
i) Uft(inl(z)) =2, Vz€A

48
i) ml(lft(z)) =2z, Vz€eA+B, z#la4n
iii) rht(inr(z)) =2, VzeB
iv) inr(rhi(z)) =2, Vi€ A+B,z# Layn
v) For every f: A— C aud g: B— C; there is a unique function h: A+ B —
C such that
v) hoinl= f
v’) hotnr=g
v”’) h(LayB) = dc
vi) For every f: A — C and g: B—+ D we have
vi') (f +g)(inl(z)) = inl(f(z)), Vz€A
vi?) ([+g)(inr(y)) = inr(gly)), VyEB

vi”’) (f +g)(La+B) = Lc+p

Inferring the lattice structure of A + B using the functor method is not
straightforward as it was for A x B. The function f + g where f and g are constant
maps is not a constant map. For example K(L4) + K(Lg) will return either
inl(L,4), inr(Lp) or L4 p depending on its argument. Similarly, K(T4)+K(T5)
will return either inl(T,), inr(TpB) or La4+p. If we work out functions in two
arguments with the help of proposition 2.24, we will find out that functions like
N:(A+ B) x (A + B) — A+ B expects to have both arguments either in the A

component or in the B component of the sum, otherwise the result will be 1 4, 5.

49
Disjoint unions keep the lattice structure of both components separated, adding

only a common bottom element.

Proposition 2.31 The Partial Order Structure of Disjoint Unions
Let A and B be domains, then the following is true:
i) La4+B = Cl({*,*)) where « is the special proposition defined in 2.29.
ii) Thereis no T 44 p.
iii) The meet operation satisfies all of the following:
iii’) inl(z) Naypinl(y) =inl(zNay) whenz,y€ A
iii”) inr(z) Naqp inr(y) = inr(zNpy) whenz,y€ B.
iii”’) 2Na4+B y= La+s when z and y are not both in A or both in B.
iv There is no join operation in A+ B.
v) The C 44 p satisfies all of the following:
V) inl(z) Cayp inl(y) ifzCay whenz,y€ A.
v”) inr(z) Cayp inr(y) ifzCpy whenz,y€B.
v”’) L(A+ B) Ca4p y is always true.
v”?) 2 Cx4p y is false in every other case.
vi) If both A and B supports a join operation, there is a quasi-join operation,
also denoted by Us+ B, that satisfies:
vi’) inl(z) Uasp inl(y) = inl(zUay) when z,y € A.
vi®) inr(z) Uasp inr(y) = inr(zUpy) when z,y € B.

vi*’) 2Us4+B Y = L4+ when neither both z,y € A nor both z,y € B.

50
This quasi-join bebave like a join provided we stay in the same component
of the sum. It is the function N, 4+ Np constructed by the functor.

We can find in (Stoy 1977) and in (Sco 1976) another version of disjoint
union that has a top element and a join operation. It is similar to the disjoint
union given in 2.29 except we introduce an aditional T element in a way similar to

what BH(A + B) would do. The details of the definitions are left to the reader’s

imagination.

2.3.6 Fanction Spaces

‘The next functor we investigate will construct function spaces.

Definition 2.332 The Function Space Information System (Scott 1982)

Let A= (D4,04,Cony,t-4) and B =(Dp,Ap,Conp,t-p) be information
systems. The function space A — B = (Dp—,p,Ap—.p,Conp_,p,Fa—.p) is
the information system defined as follow:

i) Da—p ={(u,v) |8 €Cons A v€Conp}
ii) Aa—p =(8,0)

Lot w = {{%0,%)...{%n,)}

iii) we Conp—p <> (J{wi|i < n} € Cong = J{ui|i < n} € Conp)

iv) wka—p (¢,v) &= {ulv' Faw}tp v

51
Also let f:C — A and g: B — D be appraximable mappings, then the
function f — g: (A — B) — (C — D) is defined as follow:

Let w = {{uo,%)...(un,vn)} €A — B
Let z = {{z0,y0} ... (Zm,ym)} €C — D

w(f-—g)z <> YiCm, 3Cn, z;fu; Avigy

The domain |[A — B| has as its elements the set of all approximable map-
pings from A to B. The propositions of A —+ B are the statements that u f v for
some element f € |A — B| and consistent sets of propositions u € A and v € B
respectively. These propositions are represented by pairs {u, v) of set of propositions
in A and B respectively, meaning that 4 f v for some f € |[A — B|. The least
informative pair is (@, ®) because @ f @ is trivialy true for every f. Consistent set
of pairs maps consistent sets of propositions to consistent set of propositions. En-
tailment is best understood when we remember that an approximable mapping can
be viewed as a way to deduce information about the result of a function given in-
formation about the argument. Entailment simply defines the required transitivity
property of such inference.

Refer back to definition 2.11. Given three functions f:C — A, g:B— D
and h: A — B, we have the following identity: (f — g)(h) = go ho f. This
gives the significance of the functor — when applied to mappings. The function
(f — g) composes its argument h: A — B with f and g to get a function of type

82
C — D. This result is significant enough to be given a reference number:

Proposition 2.33

Let the approximable mappings f:C — A, ¢: B — D and h:A — B.
The following identity hold:

(f — 9)(h)=gohof

We will look now at the lattice theoretic structure of function spaces. What
is the image of constant maps under the functor? By 2.12.ii and 2.33 we have
(K(z) — K(y)) = K(K(y)). In English, we can state equivalently that the
image of constant maps is a function that send every approximable mappings in
A — B to the constant map K(y): C — D. In other words the functor method
does not determine the structure of the whole function space. It gives only the
structure of the subspace of all constant maps. In addition, the fact that the value
of (K(z) — K(y)) does not depend on K(z) hints that the structure of C — D
depends only on the structure of D, it is independent of the structure of C. The
facts are summarized below:

Proposition 2.34 The Lattice Theoretic Structure of Function Spaces (Scott
1976, Stoy 1977)

53
Let A and B be information systems and f,g:A — B be appraximable
mappings, then
i) La—p(z)=1p VzeA

ii) Tao—p(z) exists iff Tp exists. In this case, To—.p(z) = Tp for every
TEA

iii) (fNa—p g)(z) = f(z) Npg(z) Vze€A

iv) The join over A — B exists provided it exists over B. In this case, (fUs—p
9)(z) = f(2) Us g(z) for every z € A.

V) JEa—Bg9 < [(z)Cnyg(z) Vz€A

These results are easily obtained for the subspace of all constant maps by the
functor method. If we want to generalize them to the whole function space, observe
that i) trough iv) can be obtained from v) by working out the lattice theoretic
definition of the relevant operator. We can find that v) is true in (Stoy 1977) and
in (Scott 1976).

Before we leave this topic, we mention a very important result regarding
function spaces:

Proposition 2.36 The Least Fixed Point Theorem (Scott 1976, 1981, 1982;
Stoy 1977)

Let A be an information system. There is a unique approximable mapping
fix.(A — A) — A such that:

54
i) f(fie(f) = f
ii) fix{f) C h(f) for every h such that f(h(f)) = h(f)
That operator fiz satisfies the very important equality:
i) filf) = [{£(L0)
where f9 = I the identity over A, and f**! = f o f*. It is shown in (Scott
1982) that this use of the join always gives an existing element in any information

system, even when join is only partially defined on A.

This completes our discussion of function spaces. This also completes our
discussion of the elementary functors available to the data flow analyst. The reader
should remember equation 2.35.iii. It will play a central role when we will consider
some termination problems. Now we will proceed to show how functors can be

composed together into equations to make other functors.

2.3.7 Recursive Domains

The last question about domain construction to discuss is the definition of
domains by means of the so—called domain equations. What we want to know is the
lattice theoretic structure of the solution of such equations. The author does not
know of a published formal discussion of that topic given in terms of information
systems. However there are many papers (Scott 1976, 1981; Stoy 1977) that discuss

the problem in terms of domains. The principal results are summarized below.

Definition 2.36 Retracts

85
An approximable function f: A — A is a retract over the domain A if and

only if it is idempotent under composition , that is it satisfies fo f = f.

Proposition 2.37 Retracts as Fixed Points
If the function h: (A — A) — (A — A) is an approximable function that

maps retracts to retracts, then the fixed point fiz(h) is also a retract.

Proposition 2.38 Domains Defined with Retracts
Let f: A — A be a retract over A. Theset {z|3ye A, z=f(y)} isa

domain.

Proposition 2.39 The Universal Domain

There is a domain V such that every countably based domain (i.e. domain
with countably many finite elements) is isomorphic to a subdomain of V. In ad-
dition, for every one of the functors F discussed above, there is an approximable
function that maps the retracts generating the domains A and B to the retract

generating the domain F(A, B) (or F(A) in the case of functors in one variable).

According to 2.38 retracts are a method of generating new domains from ex-
isting ones. Such subdomains are in fact subsets of existing domains and the lattice
theoretic structure of the new domain is inherited from the old ore as suggested by
the inclusion relation. Proposition 2.39 defines a domain V such that every other
domain D we could be interested into is a subdomain of V. In addition all the

56
familiar functors turn out to be approximable functions mapping retracts over V
to retracts over V. Therefore, we can use the fixed point operator of 2.35 to find
the solution of fixed point equations involving domains and functors. This operator
computes a new retract that will determine the required subdomain of V.

What are the lattice theoretic properties of the solutions of domain equa-
tions? We will not provide a general answer to the question. Remark that for every
functor we have introduced, there is a set of equations {or equivalences) that relates
the lattice theoretic operators on the domain arguments of the functor to the same
operators on its domain value. If we work out these relating equations according
to the domain equation we try to solve, we would get a set of recursive equations
whose solutions are the lattice theoretic operators on the recursive domain. Let’s
look at an example.

Define T'= B+ (T x T) where B is some well defined domain. The elements
of dormain T are the binary trees having elements of B 28 leaves. If we work out
the lattice theoretic properties of disjoint union and cartesian products according
to that equation we get:

a) Lr is a newly generated element not belonging to B nor to T' x T.

b) Tr does not exist.

¢)2Cry < z=1lrorz=unlu), y =inllv)), uCp v € Bor
z=inr(u), y=inr(v), uCrxrveT xT.

In addition u Crxr v€ TXT <= 3a,b,c,d€T, u=(s,b)andv= (e d)

57
andaCrcand dCr d.

d) The meet Ny is defined as:
inl(z)Or inl(y) = inl(zNpy), =,y€B.
inr(z) Nr inr(y) = inr(2Nrxry), 2,y€T+T.
zMy y= L in all other cases
where My i8 defined as
(a,d) Nrx1 {c,d) = {a N b,¢ Nr d)
e) There is no join defined over T but there is a quasi join defines as follow:
inl(z) Ur inl(y) = inl(zUp y)
inr(z) Ur inr(y) = inr(z Urxr 9)
z Uz y = L7 in all other cases
where U x 1 i8 defined as
(a,b) Urgr (¢, d) = (a Ur b, c Ur d)
Notice how Ny, Ur and Cr are defined recursively in term of themselves.

Such definitions can be similarly obtained from any domain equation.

This completes our discussion of how to build lattices acceptable for data

flow analysis.

2.4 Syntax, Semantics and Abstractions
We have not yet discussed two elements of the tuple (P, D, F, I) that con-

stitutes a Cousot’s framework for data flow analysis: the lattice of program points

58

P and the interpretation function /. Scott (1976) has already remarked that the
context—free grammar of a language may be used to define the language as a do-
main. For example, the abstract syntax of lambda-calculus: (omitting delimiters
like A and parentheses)

Ex — Var

Ex — Var Ex

Ex — Ex Ex

can be transformed into the domain equation:
Ex = Var + (Var x Ex) + (Ex x Ex)

that recursively defines the domain Ex in terms of the domain Var of all
variables. In general if we associate to every terminal symbol in a context-free
grammar a well defined domain and to every non terminal a recursively defined
domain, we can transform the grammar into a set of domain equations by replacing
concatenation of symbols by cartesian products of the corresponding domains in
every production and alternation of productions by the disjoint unions of the right-
hand sides. In that sense every grammar defines a domain. We can without loss of
generality assume that the lattice P of program points is such a domain.

Now what can we say about the interpretation function I? Suppose that D
is some semantic domain of interest, suppose we have two functions, an injection
inj: (D — D) — D and a projection pro:D — (D — D) such that the

composition snj o pro is the identity over D — D, we can write the semantics:

59

I has type Ex — (Var — D) — D

1iv}(e) = elv]

I[av. ex](e) = inj(Az.I[ex)(e[v := 2]))

I{exi (ex2)](e) = pro(I[ex1](e) (Ilex2](e}))

We use the convention that when we write semantics equations, domains are
written in boldface and syntactic elements are written in typewriter foats. If
a syntactic element must be enclosed withtin brackets, we use | double square
brackets] as a form of quoting. These brackets are not otherwise different from
. normal ones. The notation e[v := z] meanse[v := z][w] is z when w = x and e|w]
otherwise.

We readily see that we have a functor P(D) that maps the domain D to the
domain Ex — (Var — D) — D such that for every D having the required
inj and pro functions, there is a function I: P(D) — D that defines a properly
typed semantics for lambda-calculus. If D is defined by the equation D=D — D
and both the snj and pro functions are the identities over D, we have the standard
semantics of lambda—calculus. if D is chosen to satisfy D = A 4 (D — D) where
A is a domain of atomic values that are not functions, for instance integers and
lists, and if the function inj is inr and the function pro is rht, we have a semantics
of lambda-calculus with atoms. This intuitive notion of semantics is formalized in

a categorical way as follow:

Definition 2.40 T-algebras (MacLane 1971)

60
Let T be a functor. A T'-algebra is a domain D with an approximable
function I:T(D) — D.

In the above lambda-calculus semantics, T(D) = Ex x (Var — D).

Definition 2.41 Cousot’s Framework for Data Flow Analysis Revisited
A Cousot data flow analysis framework is a tuple (P, D, I) such that P is
a functor in the category of domains with approximable functions, D is a domain

in that category and I is an approximable function such that D and I form a
P-algebra.

We can immediately see that when we make the proper identifications of
Cousot’e lattices with Scott’s domains and Cousot’s distributive functions with
Scott's approximable functions, the notion of a Cousot framework identifies with
the notion of T-algebra. This result is perfectly correct because T-algebras are the
categorical formalization of the notion of semantics and the purpose of Cousot’s
frameworks is to define what kind of semantics are relevant to data flow analysis.
What definition 2.41 says is that any semantics defined in the category of domains
with approximable functions is acceptable for data flow analysis purposes. From
now on, the following terms will be considered synonymous: Cousot’s framework for
data flow analysis, semantics of programming languages, T-algebras in the category

of domains with approximable functions. When we use the (P, D, I} notation to

61
define a Cousot framework, the P stands for the functor T of the T-algebra and the

I is the approximable function of definition 2.40. This is the meaning of definition
241.

24.1 Approximations for Data Flow Analysis

At this point the reader may ask what is the distinction between denotational
semantics and data flow analysis. The answer s that data flow analysis involves
more than just defining what a language means. We want to relate the standard
denotational semantics to an abstract semantics that will give approximate infor-
mation about the standard language meaning.

Let’s start with an example. It has nothing to do with the usual problems of
data flow analysis but it will illustrate the basic concepts of abatraction. Assume we
have a language, call it INT that deals with integers. We need an integer domain
that is organized as a flat lattice. All integers cannot be compared. We have
in addition a bottom and a top element. However our computer cannot handle
integers larger than, say, 16 bits long. The maximum integer allowed is 65535. Any
implementation of INT on that computer doeen’t fulfill the semantics because not
all integers are correctly handled. We want to know what semantics is actually
implemented.

We need an other domain, let’s call it 16-bit, also organized as a flat lattice,
that contains a bottom element, a top element and all integers from 0 to 65535. We
define an abstraction function that maps integers to 16-bits as follow: L is mapped

62
to L, T is mapped to T, integers from 0 to 65535 are mapped to the corresponding
16-bits number, and larger integers are all mapped to top. Here we use the top
element of 16-bits as an overflow indicator. It means computer limitations have
screwed up the computation. All arithmetic operations must be defined in 16-bits
consistently with that interpretation. Expressions such as 2 x 60000 yield the result
T because of the overflow. Other expressions such as 65536 — 1 also yield the
result T because in 16-bits this is equivalent to T — 1. On the other hand, 16-bits
operators will give accurate results as long as we stay in the allowable range.

We need a formal definition of “correct results” when we talk about 16-bits
integers rather than integers. We define a concretization function c: 16-bite —
integers that is a sort of inverse of abstraction. The bottom element is mapped
to L, T is mapped to T and the 16-bits numbers 0 to 65535 are mapped to the
corresponding integers. There is no way to concretize a 16-bits value to an inte-
ger larger than 65535. We say a 16-bits calculation is accurate if and only if the
concretization of its result is larger, in a lattice thecretical sensz, that the corre-
sponding integer calculation. Flatness of the lattice of integers insures that if the
integer computation is well defined, i.e. does not yield the result L , then value of
the corresponding 16-bits computation will concretige either to T or to the inte-
ger value. This particular example has a stricter requirement for correctness than
needed in general. We want that all integer computations giving the bottom value
also give 1L when done in 16-bits. We will see later in this work other examples

63
where preserving bottom values across abstractions is not desirable. For the sake

of generality, we do not include constraints on how to handle L in our requirements
on the "correctness” of an abstraction.

We have to put together three things to have an abstract semantics: an
abstraction relation, a concretization function and some requirements on the “cor-

rectness” of the abstract result. This is formalized below.

Definition 2.42 Abstract Semantics, Appraximate Semantics and Representa-
tions
Let S = (P,D,]) and S' = (P',D’,I') be two semantics. An abstraction
from S to S’ is a pair {a,c) where a is a relation on D x D' called the abstraction
relation and ¢: Y — D is a fanction called the concretization function. Notice the
word “abstraction” has two uses in this definition. An abstraction is an increasing
approximation when the pair {a,c) is such that all three of the following conditions
hold:
i) c(z)az (every z € D' is the abstraction of its concretisation.)
i) if z a y then z C c(y) (every z is less than the concretization of its
abstraction.)
iii) There is a relation r on D x D such that z r y implies that zC y and r is

such that the following diagram commutes in the category of domains with
relations:

r
P(D) 24

lP(a) c
I r
P(D) ——D---=D

A decreasing abstraction from S to S’ is defined by reversing the partial
order in clauses ii) and iii) above. A representation from S to S’ is defined taking
equality instead of a partial order in ii) and iii) above. Obviously a representation
is both a decreasing and an increasing appraximation and the relation r introduced
in clause iii) is the identity over D.

We will say that S’ is an increasing approximation, decreasing approximation
or represemtation of S to mean that there is a pair (a,c) that is an increasing

appraximation, decreasing approximation or representation respectively.

The difficulty with relating two semantics such as S and S’ in 2.42 is that
there is no ordering that relates the elements of D snd IV, therefore we cannot
state that an element of D’ approximates an element of D in a direct way. The
definition of abetractions as stated in 2.42 solves that problem. It works as follows.

We assume that the interpretation function I is too hard to compute to be
practical when evaluating a program in P(D). We chose instead to evaluate the
easier function I’ to evaluate an abstract version of the program in the domain
P(D’). The purpose of the abstraction relation a is to define a set of valid abstract

65
values in I’ for the corresponding values in D. Thanks to the functor notation, the

relation P(a) extends this abstraction concept to the domains P([’) and P(D) in
the obviously natural way. The relation a must be a relation and not a function
because a deterministic abstraction operation may be context dependent and the
context dependencies do not appear in this definition. Once I' is applied to a
suitably chosen value in P(D’) and evaluation has completed we have a result in
the domain I’. We want to know what this does correspond to when we talk about
elements of D. The concretization fanction ¢ provide the translation from elements
in D’ to elements in D. The relation r is the distortion the successive operations of
abstraction and concretization may introduce in the final value when we compare
with the more direct evaluation with the help of function I. If there is no distortion,
ie. r is the identity, S’ is a representation of S. If the distortion introduce more
information, S’ is an increasing approximation of S and‘converaely if the distortion
loose information, S’ is a decreasing approximation of S.

We should stress that if (a,c) is a representation, then clauses 2.42.i and
2.42.ii aseert that ¢ is the inverse relation of ¢. This implies that ¢ builds an
homomorphism from S’ to S in the categorical sense. This is consistent with the
interpretation of representation as “distortion free” abstract evaluation.

24.2 The Categories of Abstract Semantics
We would like to compose abetractions, that is if S = (P,D,]), §' =
(P!, D,I') and S" = (P", D", I") are semantics, then if S’ is an abstraction of

66
S and S” is an abstraction of ', we want to conclude transitively that S” is an

abstraction of S. We want to show that abstractions are the arrows of a category.

Definition 2.43 Composition of Abstractions
LetS=(P,D,I),S' ={P',D',I') and S" = (P", D", I") be semantics. Let
(a,c) be an approximation from S to S' and {a',¢’) be an approximation from S'
to S”. The composition of abstractions (a',¢’) o (a, ¢) is the abstraction (a”,c”)
defined as follow:
i) a"=a'oa

ii) " =¢cod

This definition is summarised in the diagrams below:

I"
P*(D") + D"
P ’
(a’) p y Ld
P(D") e - d
Fle) I r ‘ k f

P(D) ——D--~—D==-=D

Here relation k is defined as ¢(z) k ¢(y) <> z ' y. Remember that a
functor such as P always obeys the identity P(a) o P(a') = P(a o a’). Notice that
we still do not know whether the compositions of representations or appraximations
are representations or a approximations respectively.

Theorem 2.44

‘The Identity Abstraction

67

Let S = (P,D,I) be a semantics, then the abstraction sg = (¢',1) where

¢ is the identity relation over P(D) and i is the identity relation over D is an

abstraction from S to S. In addition for every semantic S' = (P',[’, I"), if (a, c)

is an abstraction from S to S’ we bave i o {a,c) = {a,c) and (a,c) ois = (a,c).

This is immediate from the diagrams:

P'(D')
WP(i')
P'(D)
hﬂ
P(D)

Il

II

I

r

——D---—=D-===D

The preceding diagram establishes ig: o (g,c) = (a,c).

establishes that (g, c) o is = {a,¢).

P(D)
|Pta
P(D)
P(i)

Il

r

+D=——aD

Il

{
r

— D'

c

|

|

PD) —D---—D-~~=D

This completes the proof of 2.44.]

The next diagram

Theorem 2.45
The composition of abstraction is associative.

Proof: Immediate from the diagram:

™
P"I(DI”) — D"I
P(a") I” r" C"
P"(D") D'— - D"
1
Pla' d ¢
“ N
P'(D') +D-—— <D —-=-= D
1
P c ¢
g I r ‘ k | k"

P(D) —D- —-=D--==D—v==D

we have the identities

({a",&") o {a",¢) o {8,¢) = (a", ™)
(a",e") o ({a',¢') 0 {8,c) = (¢", ™)

where g™ =a" o d'0a
M=cocod
We readily see this is indeed the associativity of composition of abtractions. |

The above results shows there is a category with semantics (or data flow
frameworks or T-algebras, all these are synonyms) as objects and abstractions as

69

arrows. Therefore we can neatly compose abstractions and obtain abstractions as a

result in the most natural way we can expect. Thisis fine for general abstractions.
What about increasing or decreasing approximations? And what about representa-
tions? Do they form a subcategory of the category of abstractions? If it is the case
this means we can compose either representations or approximations of the same
kind in an equally natural way to get either new representations or appraximations

of that same kind respectively. We shall add some results about this.

Theorem 2.46

The identity abstraction is is a representation and both an increasing and

decreasieg approximation.

Proof:

Every representation is also both an increasing and decreasing approxima-
tion. Therefore it is sufficient to prove that is is a representation. But §g = {¢’, §)
where i i8 an identity for every semantics 5. This satisfies exactly the definition of

a representation.l

Theorem 2.47

The composition of representations is a representation.

Proof:
™

P D") -+ D"

P(a’) , p |c'

(D) ~—tf =~ - = D

P(a) lc lc

I ¢ {
PD) —D--—-—=D—~=-=D

Consider the above diagram, we have to show that a’ o a and c o ¢ satisfy
clauses 2.42.i through 2.42.iii with equality in place of partial order. Assuming
a” = goa’ we have:

i) By hypothesis we have ¢(z) a z and ¢'(y) o’ y, then we have ¢(¢’(y)) a” y.
ii) By bypothesis we have both z 6 y = z = ¢(y) and y o' z = a = ¢/(2).

Then we have z a¥ z => z = ¢(¢'(2)).

iii) There is a relation r on D x D such that £ r y implies that s =y and r is
such that the following diagram commutes in the category of domains with

relations. It turns out that this r is equal to .

m
P(D") +D"

Plaod') coc

I r=t
P(D) ——D-~---=D

This completes the proof of the theorem. [}

71
This shows that representations form a proper subcategory of abstractions,
sharing the same identities and closed under the same associative composition op-

eration. The same is unfortunately not true about approximations of either kind.

However if we further restrict the kind of approximations we want to consider, we

can find some useful categories.

Definition 2.48 Monotonic Functions

Let A and B two domains. Let f be a relation between elements of A and

B. The relation f is monotonic if and only if for every z,y € A such that zC , y,

f(=) Cs f(y).

Theorem 2.49

The composition of monotonic relations is monotonic.

Proof:
Let f and g be monotonic functions. Let z, y such that z C y. Then

f(z) € f(y) by monotonicity of f and g(f(z)) C g(f(y)) by monotonicity of .

Therefore g o f is monotoaic. |}

Definition 2.50 Monotonic Abstractions

An abstraction (a,c) from S to 3’ is monotonic if and only if the function ¢

is monotonic.

72
Theorem 2.61 The Category of Monotonic Abstractions
The class of semantics with monotonic abstractions over them form a sub-

category of the category of semantics with general abstractions.

Proof:

The identity relation can easily verified to be monotonic, therefore the iden-
tity abstraction over S; ig = (¢',1) is monotonic by definition. All we have show
is the composition of monotonic abstractions (a,c) o (b,d) = {a o b,d o ¢} is moao-
tonic. But the composition d ¢ ¢ of monotonic relations ¢ and d is monotonic.
Therefore {a, ¢) o (b, d) is a monotonic abstruction by definition of monotonicity of
abstractions.l

Here we have introduced a new category, namely the category of monotonic
abstractions, that have apparently nothing to do with our purpose of building two
categories of increasing and decreasing approximations. Please be patient, this is

only an intermediate step before the results below.

Theorem 2.62 The Categories of Increasing and Decreasing Monotonic Ap-
proximations

The composition of monotonic increasing approximations is a monotonic
increasing approximation. Similarly the composition of monotonic decreasing ap-

proximations is a monotonic decreasing approximation.

3

Proof:
Pr(L") - + D"
P(a’) r y \c’
P'(D") D —— =D

1P(a) I . Ic R ‘c
PD)y ——D---—=D-~--=2D

Let (a’,¢') and {(a,c) the abstractions we want to compose as in the above
diagram. The composition is (a”,c") defined as follows:
i) a"=d'oa

ii) *=coc

We already know that the composition of monotonic abstractions is mono-
tonic. All we have to show is in presence of monotonicity the composition of in-
creasing or decreasing approximations is an increasing or decreasing approximation
respectively. Let’s discuss the increasing case first. We want to show (a", ") satis-
fies all clauses 2.42.i through 2.42.iii.

i) ¢(z) a z and ¢/(y) o' y, therefore ¢’(c(z)) o' ¢(z) and this imply ¢’(c(z)) a” z
definition of composition of reiations a and o'.

ii) £ a y implies z C ¢(y) and y ¢' 2 implies y C ¢’(2). It follows from mono-
tonicity of c that z a” z implies that z C ¢(c'(y’)).

T4
iii) Refer to the diagram above for the definitions of r, ¥/ and k. Assume z r y

implies z C y and « ¢ v implies ¥ C v. We want to show that z(kc r)y
implies that z C y. Notice that ¢(z) k ¢(y) => 2 r’ y. But this implies 2C y
because of the hypothesis on . Monotonicity of ¢ implies that ¢(z) C ¢(y).
This together with the hypothesis on r implies that if z y ¢(z) then z C ¢(2).
Therefore if z(k o r)c(y) then z C ¢(2) as expected.

The decreasing case is handled by reversing uniformly the partial order ev-
erywhere in the proof. |j

Corrolary 2.63
All inceasing approximations (a, ¢) where c is an appraximable function are
monotonic and can be composed freely to give increasing appraximations. The same

is true for decreasing approximations {a, ¢} where c is an appraximable function.

Proof:

It was shown in 2.8.iv that approximable functions are monotonic. The rest

follows from 2.52.)

2.4.3 A Hierarchy of Categories

We now have a plethora of categories, each of them having semantics as
objects and various kinds of abstractions as arrows. Each of these categories has its

7%
own use and the reader must be aware of the distinctions involved to avoid confusion.
The next diagram shows them all together with the inclusion relationshipe that holds

among them. The more inclusive categories being on top.

Figure 32.54 A Hierarchy of Categories

abstractions
monolonic
abstractions
representations
monolonic monolonic
increasing decreasing
approzimations approzimations
monolonsc
represeniatsons

We are now a long way from Cousot’s original definiticns. Before we leave
this chapter let's recapitulate the essential steps we had taken. We started with the
four components of a data flow analysis framework: a set of program points P, a
lattice of semantic values D, a distributive function space F' and an interpretation
function J. We expanded the definition of each of these components to make them

7
fit in the more formal framework of Scott’s theory of domains. Category theory
took a gradually increasing importance. The allowable lattices were identified with
Scott's domains and were found to be the objects of several categories. One of these
categories, namely the category of approximable functions was recognized as the
only acceptable function space F. We found we can replace the set of program points
with another categorical notion, the notion of a fanctor P. And the interpretation
function 7 is required to be a P-algebra over the semantic lattice D. Throughout all
this analysis, we took a careful look at the details of the lattice theoretic structure
of the allowable domains, avoiding the pitfall, frequently fallen into when using
category theory, of forgetting the exact nature of the objects we are working with.
We concluded that data flow analysis frameworks are exactly the same thing as
semantics for programming languages. We continue looking at relations that holds
between such semantics and that are relevant to data flow analysis. Several other
categories were found, formalizing several useful notions such as representations of
a semantic domain terms of an other and increasing or decreasing appraximations.
Al these results form a coherent and very formal theory of programming languages
semantics. We will now proceed in the next chapters to show how useful this theory
is, how complete the current tool box of theorems is, and, as we shall see, what is

missing to be able to use the full power of the framework.

CHAPTER 3
SAMPLE DATA FLOW ANALYSIS IN LISP

This chapter is devoted to an example of a data flow problem. With the
help of that problem, we will show how the formalism developed in chapter 2 can
be used to perform data flow analysis.

We are interested in performing forward data flow analysis for a subeet of
lexically scoped LISP. Forward data flow analysis is a form of semantics where
the value of an expression Exp is the set of all other expressions in the program
whose value propagates to become the value of Exp. Forward data flow analysis is
frequently used in compiler design for code optimization purposes (Aho and Ullman
1977). We chose a subset of LISP as the target language because it features high
order functions. Lexically scoped LISP impiements lambda—calculus. Since the
denotational semantics of programming languages is written using lambda—calculus
(Stoy 1977) it is reasonable to believe that if our approach to data flow analysis
applies in this case, it is very likely to apply in most other cases as well. Data
flow analysis of high order functions proved to be a very formidable task. We will
show in the next chapter that a too naive implementation of the resulting semantics
may lead to nontermination. Since two chapters of this thesis are devoted to the

7

78

exposition of means for avoiding nontermination, a sample data flow analysis of

LISP will prepare the reader for this portion of our work.

3.1 The Normal Semantics of LISP

We introduce our subset of LISP in semantics 3.1. Detailed explanations of
the semantics will be given immediatelly after. We will introduce several versions of
semantics for LISP in this work. Several versions of domains and functions having
similar purposes but different definitions bear the same names from one semantics
to another. We use the semantics number to -«) track of the various versions

involved. For instance, Vals ; means the domain Val as defined in semantics 3.1.

Semantics 3.1 A Subset of LISP
Syntax:

—+ constant

— var

—+ (lambda var Exp)
(Exp1 Exp2)
— (letrec (var Exp) Expl)

—+ (if Exp1 Exp2 Exp3)

§ 885§ E
l

Domains

Lisp_constants = the domain of valid Lisp constants

Val, ; = Lisp_constants + Boolean + (Valg ; — Valg 4)

This is the domain of valid LISP values.

Ex = The domain of syntactically correct LISP expressions

Var = The domain of LISP variables. This is a subdomain of Ex

Es 1= Var — Valy ;

This is the domain of environments. Every variable is assigned a value

within an environment.

Functionality
I3.1:Ex —+ Es.1 — Vals
I3,y is the function mapping a LISP expression in Ex to its value in

Valg ; within the context of an eavironment in Eg ;.

Note:
In the following equations, injection into and selection from disjoint unions

are omitted to improve readability. Context will be sufficient to make the meaning

clear.

Semantics
Exp — constant
Is.1[constant](e) = value of constant in Lisp_constants or Boolean
Exp — var
Iy.s[var](e) = e]var]
Exp — (lambda var Exp)
Is,1[(lambda var Exp)](e) = Az.Is.1[Exp{(e[var := z])
Exp — (Expl Exp2)
Is 1| (Exp1 Exp2)](e) = Is.1[Exp1](e)(/5.1 [Exp2](e))
Exp ~— (letrec (var Exp) Expl)
Is.[(letrec (var Exp2) Expl)](e) = Is.[Expi](e|[var := v])
Where v = Y(Az.Is 1 [Exp](e[var := z]))
Exp — (if Expl Exp2 Exp3)
I3.4[(if Exp1 Exp2 Exp3)](e) = if Is.1[Exp1](e) then I5 ;[Exp2](e)

else 13,1[Exp3](e)
End of semantics 3.1 I

This subset contains most important LISP constructs. Their semantics is the
usual lexical scoping semantics. For this reason our subset is nothing but lambda-
calculus with some syntactic sugar. We have omitted from the semantics side-effects
or side-effect oriented constructs such as Prog, Setq, Catck and Throw. The

formal treatment of these constructs is fairly complex and will introduce a large

81

number of difficulties that would obscure the illustration of how our data fiow ori-
ented categories are working. They would also obscure our planned demonstration
of how nontermination occurs in a naive implementation. Therefore it is better to
leave side-effects out of the example.

For the benefit of readers unfamiliar with the techniques of semantics writ-
ing, we undertake the detailed explanation of the equations of semantics 3.1, Those
readers that do not need such an explanation can skip over the next few paragraphs
and immediately go reading how we proceed to perform forward data flow analysis
for this subset. For the convenience of readers that want to read our explanation,
every equation in semantics 3.1 will be repeaied before its corresponding commen-
tary.

Exp — constant

I 1[constant](e} = value of constant in Lisp_constants or Boolean

The meaning of a constant expression is the corresponding constant value in
the semantic domain.

Exp — var

I 1[var](e) = e(var)

The meaning of a variable is the value the variable takes in the environment
of evaluation.

Exp — (lambda var Exp)

Iy j(Jlambda var Exp))(e) = Az.Is 1 [Exp](e[var := z])

82

The value of a l]ambda—expression is a function that expects an argument
parameter z. Given that parameter, we evaluate the value of the function as the
value of the expression Exp in the context of an environment e[var := z] where
the variable var is given the value of the function argument z.

Exp — (Expt Exp2)

I3[(Exp1 Exp2)](e) = Is.a[Expt](e) (/5.1 [Exp2](e))

We evaluate the function part Expi, this should turn out to be the value
of some lambda-expression f, i.e. ‘ai. should belong to the Valsy — Vals
component of the disjoint union defining the domain Vals ;. Remember we had
omitted the operation of selection from the disjoint union to improve readability of
the equations. This value is then called with the value of the argument part Exp2
as an actual parameter. The reader should compare this with the semantics of
lambda to convince himself that abstraction and application are working together
properly.

Exp — (letrec (var Exp) Expl)
Is.a[(letrec (var Exp2) Expi))(e) = Is.i[Expi)(e[var := v])
Where v = Y{(Az.I3.1 [Exp](e[var := z]))

A letrec expressior binds the variable var to a value v solving the equation
v = Iy |Exp](efvar](v)). The solution of this equation is computed with the help
of Curry’s fixed point combinator Y. Once v is computed, we evaluate the body of

the letrec expression Exp1 in the context of an environment where var is bound to

its value v.
Exp — (if Expl Exp2 Exp3)

I3[Gif Expt Exp2 Exp3)](e) = if I,y [Exj1)(e) then I3 [Exp2)(e)

else 5.1 [Exps](e)

We assume the expression Exp1 returns a value in the Boolean component of
the domain Vals.y. The Boolean domains is a flat domain of two proper elements
called true and false. There is a combinator called if (see [Stoy 1977} for example)
in l]ambda-calculus such that (if a b ¢) will evaluate to b when a is true, it will
evaluate to ¢ when a is false and it will evaluate to Lyg], , When a is the bottom
element of the Boolean domain. We are using this if combinator here.

This completes the explanation of the semantics.

3.2 The Domain of Sets of Expressions

Forward data flow analysis amounts to finding for an expression Exp the set
of all other expressions in the program whose nonabstracted value propagates to
become the value of Exp during the execution of the program. We are iiot at all
interested in the usual values contained in the domain Vals ;. The very first step
in building the new semantics is the definition of the proper semantic domain.

We are interested in sets of expressions. This corresponds io the domain
Ex —+ BIT where Ex is the domain of LISP expressions as defined in semantics
3.1 and BIT is the two—element domain |B3IT| as defined in definition 2.20. If

[belongs to Ex — BIT, then we say that z is an element of f if and only if

84
f(z) = 1. This kind of convention apparently effectively emulates the behavior
of sets. Unfortunately there is a problem. Not all sets of elements of Ex have
a representation in Ex — BIT under this convention. For example proposition
2.8.iv states that if 2 Cpy y then f(z) CgT f(¥) for every f:Ex — BIT.
As a result any sets containing z but not y do not have any valid represeutations
in Ex — BIT. This is not a problem for our purposes. The next series of
definitions and propositions shows that all sets that are interesting for data flow
analysis purposes are indeed representable with Ex — BIT; therefore the domain
Ex -— BIT is indeed a correct semantic domain for forward data flow analysis of

Lisp.

Definition 3.2 Proper Elements of a Domain
Let D be a domain. The class of the propcr elements of D is the class
{zeD|z#1lp A z2# Tp}.

Definition 3.3 Very Proper Elements of a Set of Domains

Let D, ...D,, be some domains such that for some i, 1 < ¢ < n, every
D, in D;...D, are recursively defined in terms of D, ... D, with the help of
cartesian products and disjoint unions. The classes VP(Dy)...VP(D,) of very
proper elements of D; ... Dy, are the smallest classes of elements of D; ... Dy such

that

i) For every k, 1 <k < n, V P(D;) is the class of proper elements of Dy.

85
ii) (z,y) € VP(Dy xD,) <> z€VP(D,)Ay€ VP(D,).
jii) € VP(Dy + Dy) —> z€VP(Dy)VzeVPD,)

In this definition we assume the recursive definitions involve a single cartesian
product or disjoint union instead of complex expressions composing these functors.
This involves no loss of generality because if a cartesian product or disjoint union
applies to a more complex expression, the subexpression can be eliminated as fol-
lows:

1— We introduce a new definition binding a name Dy, to the subexpression.
2— Then we can substitute that name for the subexpression in the original def-
inition of Dy ... D,,.

3— We add D+ to our set of domains to get a new set of domains Dy ... Dp 4.

Definition 3.4 Flats and Very Properly Flat Domains

A domain D is a flat domain if and only if its proper elements cannot be
pair wise compared using D’s lattice theoretic partial order. The domain D is
very properly flat iff its very proper elements cannot be pair wise compared in this

fashion.

Proposition 3.5

Let D, ...Dp be domains, let D, ...Dp, be the domains that are recursively

defined in terms of the others using a single cartesian product or a single disjoint

86
union. Complex expressions using these operators are not allowed. If D, ...D;,

sse flat, then Dy ... D, are very properly flat.

Proof:
We use an induction on the structure of the classes V P(Dj).
Basis:
Every flat domain is very properly flat. Domains D to D;_, are very
properly flat by definition 3.3.i
Induction:
Let (u,v) and (z,y) be very proper elements of D, x D,. By induction
hypothesis u and z do not compare in D, and v and y do not compare in
D,. Therefore by proposition 2.28.v {u,v) do not compare with (z,y) in
D, x D,.
Similarly, assume inl(u), inl(z), inr(v) and inr(y) are very proper elements
in Dy + D,. By induction hypothesis 4 do not compare with 2 in D, and v
do not compare with y in D;. By proposition 2.31.v neither u Cp . p, =
norvEp .p, ¥-
We can invoke 3.3.ii and 3.3.iii to complete the induction. Therefore no two
elements of the very proper classes V P(D;)...V P(Ds) compare. |}
Let’s give some more intuitive sense to these definitions. The domains
D; ... D, correspond to the syntax of a programming language. The domains
D;...D, are the nonterminals of the grammar and the domains D,...D;_.; are

87
the terminals. The method used to establish a correspondence beiween grammars
and domain equations was discussed in chapter 2. The domains of terminals are
flat domains. Two distinct lexical elements of a program cannot be compared in
terms of informational contents. They have different meanings, that’s all. Improper
elements of the domains of terminals such as top and bottom don’t occur in pro-
grams. Programmers use only well defined lexical elements, that is proper elements
of the domains. Therefore every sentential form in the program turns out to be
very properly defined, they corresponds to very proper elements of the syntactic
domains. Proposition 3.5 stipulates that no two distinct subexpressions in the pro-
gram can be compared in terms of informational content. They are distinct, that’s
all. In simpler terms, this means the domain Ex of LISP expressions doesn’t have
any partial order imposed on it provided we consider only those elements of Ex that
can actually occur in a program. Therefore we can expect the domain Ex — BIT
to accurately represents sets of expressions since the constraints imposed by the
partial ordering of Ex on Ex — BIT do not affect its very proper elements. This
formalized below.

Definition 3.6 Set Theoretical Notation for Ex — BIT
i) Let z € Ex, the singleton {'z} is defined as follow: {'z}(v) =1ifz C u,
{'z}(u) = O otherwise.

u) {'21 . ..2,,} = {'11} L {'22.. . :l.',,}

88
We use the typographical convention that set notation for elements of Ex —
BIT are written with a prime symbol after the left brace.

Proposition 3.7 Set Theoretical Properties of Ex — BIT
Let f:Ex — BIT, let vpe(f) = {z € VP(Ex) | f(z) = 1}, that is vpe(f)
builds the set of very proper elements of Ex that are member of f when [is

interpreted as a set. The following formulas are true.
i) Vo, ...2, € VPEX) vpe({'zy...2n}) ={21...20}

ii) vpe(f U g) = vpe(f) U vpe(g)

Proof:

i) We use an induction on n.

Basis: vpe({’z}) = {z} because by 3.5 there are no very proper y in Ex
distinct from z such that z C y. Therefore by definition 3.6, z is the only

very proper element of {'z}.
Induction: Immediate from case 3.7.ii proven below and 3.6.ii.

ii) Immediate from 2.34.iv and the definition of join over BIT.]

What 3.7 states is that we can form sets of very proper elements of Ex in

Ex —+ BIT by enumerating the elements. We can also make the union of those

89
sets by the join over Ex — BIT. We will continue to use the notation LI to mean

that “union”. This is all we need to perform forward data flow analysis.

3.3 The Computation of LISP Data Flow Information

Now we return to the original problem, namely the writing of an abstract

semantics carrying forward data flow analysis of Lisp.

Semantics 3.8 A Representation of the Semantics of Lexically Scoped Lisp
Domains

Lisp_constants = the domain of valid Lisp constants
Ex = The domain of syntactically correct LISP expressions
Var = The domain of LISP variables. This is a subdomain of Ex

Vals s = BH(Lisp_constant + Boolean + (Valss — Vals 5)) x
(Ex — BIT)
The new domain of values. This domain is a cartesian product whose
first component is similar to domain Vals ; and whose second compo-
nent is a set of expressions whose values have propagated ¢o become

the current Lisp value.

Ea_. = Var — Valg.g

90
This is the domain of environments. Every variable is assigned a value

within an environment.

Functionality
I38:Ex — Es.s8 — Vals ¢
I3 g is the function mapping a LISP expression in Ex to its value in

Valg ¢ within the context of an environment in Eg g.

Convention
Again we omit injection into and selection from a disjoint union to improve
readability. We also omit the conversion functions between domains BH(D) and

domain D.

Definition
w: (Vals g X Ex) — Vals s
zyy = (fat(z), snd(z) U {'y})
The function Y& accepts a value ¢ € Valg ¢ and an expression y in Ex
and build a new value in Vals s that includes y among the expressions

that propagates to that value.

Semantics

Exp — constant

91
I; g[constant]{e) = (value of constant, constant)
Exp — var
I3 s[var](e) = e[var] w var
Exp — (lambda var Exp)
Iy [(lambda var Exp)](e) =
(Az.I3 s|Exp](e[var := z}), (lambda var Exp))
Exp — (Expl Exp2)
I3.s] (Exp1 Exp2)](e) = vy (Exp1 Exp2)
Where v = fat{Is.s[Exp1](e)) s [Exp2])
Exp — (letrec (var Exp) Expil)
I3 s|(letrec (var Exp2) Expi)](e) = uw (letrec (var Exp2) Expi)
Where v = Y(Az.I3 s|Exp](e[var := z @ Exp]))
and u = [3 g[Expi}(e{var := vl Exp))
Exp — (if Expl Exp2 Exp3)
I3g] (if Expl Exp2 Exp3)](c) = vw (if Expl Exp2 Exp3)
Where v = if fat(lss[Expi](e) then I3 s[Exp2](e)

else I3.3[Exp3)(e)
End of semantics 3.8}

This semantics requires some explanation. The domain equation is:

Valg s = BH(Lisp.constant + Boolean + (Valy s — Valy 3)) x (Ex — BIT)

Let’s compare this with the domain equation in semantics 3.1

Valg ; = Lisp_constant + Boolean + (Vals ; —+ Vals 1)

These equations are almost identical in structure. In fact the domain Valg o
should be interpreted as a representation of Vals.1 where every value is labeled
with the set of all expressions it has propagated from. This is expressed by the
fact Vals s is a cartesian product whose first component is similar in structure
to the definition of Vals 3 (except for the BH functor that adds a top to it) and
whose second component is Ex — BIT. As a result, a value in Valg g is the
conjunction of all information in the corresponding value in Valg 3 with the history
of intermediate expressions involved in its computation. This semantics is intended
to relate data flow information with the normal semantics. This is done with the
help of the function .

#: (Valg s X Ex) — Valg g

28y = (fat(z), snd(z) U {"y})

We see that & accepts a value z € Valg g and an expression y and adds y
to the data flow information already included in z without affecting its non data
flow oriented informational content. Given this background, the semantics can be

understood by relating each clause in the definition of I3 s with the corresponding

clause in the definition of Iy ;.

Exp — constant
I3 s|constant](e) = (value of constant, constant)
Iy i|constant](e) = value of constant in Lisp_constants or Boolean
Here we simply initialize the data flow information with the expression gen-

erating the constant value.

Exp —+ var
Is s]var}(c) = e]var] ¥ var
I, [var](e) = efvar]
We fetch the value from the current environment but the variable expression

must be added to the data flow information.

Exp — (lambda var Exp)
I3 s|(lambda var Exp)](e) =
(Az.Is s [Exp]{e[var := z]), (lambda var Exp))
Is[(lambda var Exp)](e) = Az.Is,[Exp](e[var := z])
We have to initialize the data flow information with the abstraction expres-

sion.

Exp — (Expl Exp2)
Is.s|(Expl Exp2))(e) = v (Expl Exp2)
Where v = fst(I3 s[Exp1](e)){Js.s [Exp2] (c))

I3.1[(Exp1 Exp2)](e) = I5.1[Exp1](e) (/5.1 [Exp2](e))
Here there are two difficulties to watch. First the data flow information
must be discarded prior to performing the application in order to get the actual

function value. Second the application expression must be added to the data flow

information in the result.

Exp — (letrec (var Exp) Expl)
Iz g|(letrec (var Exp2) Expi)](e) = ut (letrec (var Exp2) Expi)
Where v = Y(Az.I3 s[Exp)(e[var := zW Exp]))
and u = [y g[Exp1](e{var := v Expi])
I3 [(letrec (var Exp2) Expi)](e) = Is..[Exp1](e[var := v])
Where v = Y(Az.I5 1 [Exp](e[var := z]))
Here we make sure that the expression Exp is recorded in the data flow
information for the value of var and the letrec expression is recorded in the data

flow information for its value.

Exp — (if Expl Exp2 Exp3)
Is | (if Expl Exp2 Exp3)](e) = vW (if Expl Exp2 Exp3)
Where v = if fot(l3s[Exp1](e) then I; g[Exp2](e)
else I3 s [Exp3](c)
I3.4] (if Expi Exp2 Exp3)](e) = if Is..[Expi](e) then I3, [Exp2)(e)
else I, [Exp3](e)

95

Here we have to drop the data flow information from the value of Exp1 to
isolate the Boolean component. Once this is done, the selection of the correct
alternative can be done as usual and data flow information is added to the resulting

value.

3.3.1 The Analysis of the Information Systems

It should seem obvious that the semantics 3.1 and 3.8 are equivalent in some
sense. In fact, 3.8 must be a representation of 3.1 in the sense of definition 2.42.
To establish that claim, we are required to show how these semantics do fit in a
Cousot’s framework in the sense of definition 2.41. This is not an easy task. We will
examine the information systems underlying Vals.1 and Vals s in great detail, more
particularly the definitions of the propositions used to define the elements of the
domains. Only knowledge of the information systems gives us enough details about
the intimate structure of the domains to allow us to write definition 3.9 and the
following theorems that are the real meat of the construction of the representation
relations.

Here we give the reader a warning. If he feels satisfied with the pair wise
comparison of the semantics clauses, he should go immediately to the paragraph
after the proof of 3.10. Looking over the structure of domains is tedious and boring.

We want to uses definitions 2.29 and 2.32 to work out the information sys-
tems underlying the domains involved, especially the sets of propositions D,. The

notation D pa D means that D is the information system underlying domain D.

The information systems underlying semantics 3.1 are:

Vals,; = Lisp.constant + Boolean + (Vals.; — Vals.1)

{Dg.1, Ds.1,Cong 1,Fs.1) 04 Valg 3
(DLp,Arp,Cony.p,FLp) ba Lisp_constant + Boolean

(D3.1=3.1,3.143.1,Consz 1431, F3.1~3.1) > Vals 1 — Vals)

For some proposition * not in Drp nor in D3 1.3, the set D3 of propo-

sitions is defined as: (using definition 2.29)

(1) D3 ={(X,*)| X € Dg} U {{x,)X € D31z} U {{*,%}}
Simultaneously, D3 ;3.1 is defined as: (using 2.32)

(2) D3.131 = {{u,v) | u €Consy A v€Cons,}

We readily see that the information systems (Ds.;,As.;1,Cons.q,t3,4) and

(D3.1=3.1, N3.1~3.1,Cons 1 ~3.1,F3.13.1) are recursively defined in terms of each

other as Vals 3 and Vals 3y — Valg 3 are.

Lets compare this with the information system for domain Vals 3.

Vals s = BH(Lisp_constant + Boolean +(Vals s — Vals 3)) x (Ex — BIT)

97
(DLp,ALB,Conpp,FLp) pa Lisp_constant + Boolean

(D3.3,A3,8,Congs,t3.8) ba Vala g
(Dg—~p,AE~B,Cong_p,Fg—p) 4 Ex — BIT
(D3.8-+3.8, £3.8-+3.8, Conz.g3.8,3.8—3.8) > Vals g — Valss
(Dpu,Apy,Conpy,Fpu) va BH(Lisp_constant + Boolean+

(Vals,a —t Vle,s))

For some proposition *' not in Dyp nor in D3 g — Dj g, we can combine definitions

2.25 and 2.29 to ohtain:

8 Dea={(X,¥)| X €D} U {{+',X) | X € Dag~ass} U {{+',¥}}
Here we use 2.13 to obtain the definition of Dj s:

(4) D3s = {{X,Ap~p) | X€ Dpu} U {pairOpu X | X € Dg-p}
Here we use 2.32 to obtain the definition of D3 g3 5:

(5) D3.3-+3.5= {{u,v) |u€ Conzs A vEConzs}

This shows how the sets of propositions from the various information systems
are defined. We can work out the definitions of the various A, Con sets and |
relations but we will not. We only w: "t to define the abstraction and concretization
functions between semantics 3.1 and 3.8 and it turns out that we need to know what

the propositions were.

o8
Definition 3.9

Relations |} and | are defined recursively in terms of each other as:
Relation | is a relation from D3 g to D3 defined as follow:
i) {{#,#),8) | (x,3) Vs€Dp—p

ii) {(a, «'),8) | (a,x) Ve€ Dp~pVa€ Dip

iii) ((+',2),8) | (*,y) V8€Dg_pV¥2€ Djg3s
where y is defined as:
y={{(a,0) | Huv,v) €2z, ulaAvibd}

iv) X 1 Y only as implied by i) through iii) above.

Relation |} is defined over sets of propositions in Dss and Dy, respectively
as follow:
let SCDyg andT=Cl{z€ D3y |y€ES A y|z})
SYT < VyeS3zeDss(y]z)
and all finite subset of T are in Conj.;.
Relation 1} is defined between sets of propositions in D3 g and Dj, respec-

tively as the inverse of |.

XY < Y X

Let’s discuss the meaning of relations |, § and f}. We have said that the do-

main Valg g is the conjunction of the information contained in the domain Valyg ;

99
with the information in Ex — BIT. This is only an intuitively appealing approx-

imation of the reality. Let’s look back again at the definitions:

Val ; = BH (Lisp_constant + Boolean + (Vals.s — Vals g)) x (Ex — BIT)

Vals 1 = Lisp_constant + Boolean + (Vals 1 — Vals ;)

Let’s ignore for a moment the complications introduced by the presence of
the functor BH in the definition of Valsg. If we compute the projection fst(z)
do we get an element of Valg ; — Vals1? Not quite. If fat(z) happens to be
in the Lisp_constant or in the Boolean component of the disjoint union, it’s not
bad. But if fst(z) happens to be in Valg g — Valg g, this is not at all the same
as having an element of Valgy; — Vals ;. Data flow information is present in
fst(z)(y) as well as in z and in y. The domain Valg g is more than the conjunc-
tion of Vals ; with Ex — BIT. It also recursively preserves the conjunction of
informational content across functional abstractions and applications. This implies
Valg ; and the first component of Valg s don’t have the same type. Our problem
i8 to show that the first component of Vals s includes the informational content of
Val despite this change in type.

Relation | deals with propositionsin the information system. The statement
X | Y means that if we forget data flow propagation information enclosed in X,
then X has the same meaning as Y. Refer to the relevant definitions of chapter

2 when reading definition 3.9. Clause 3.9.i forgets data flow information when we

100
talk about the least informative proposition of the disjoint union. Clause 3.9.ii
forgets this information when we talk about propositions that describes elements of
Lisp_constant + Boolean. Clause 3.9.iii forgets data flow information when we
discuss the elements of Valg g — Vals g and Vals.,; — Valg ; respectively. If
the reader feels he do not understand 3.9.iii right now, he should read the next two
paragraphs and then go back to that tricky clause.

Relation || generalizes | over sets of propositions. By extension, | is a
relation defined over elements of the domains Vala.g and Vals ;. It states, like },
that v {} uif and only if v has the same meaning as u provided we forget about data
flow analysis information enclosed in v. Relation { is a notational convenience for
the inverse of {}. We elaborate on the meaning of § and f} when applied to elements
in theorem 3.10

Let's give more explanations on clause 3.9.iii. Its intention is to state that
a function g: Valgg — Valg g will relate to a function f:Valg; — Valy; if
and only if g(v) § f(u) for all properly typed u and v such that v § u. Why
is it so? Our problem is we cannot have equality to hold between elements of
different domains. This is not meaningful. We have to be happy with a relation
that mimics the extensionality law. The principle of extensionality states that
g=f < Vu, g(u) = f(u). We can’t have such a law to hold when g and f
have different types. We write instead {g,8) § f <> g(v) | f(u) for all vand u

such that v | u. Relation | becomes a sort of “equality across types”. We relate

101
propositions in Dj s and D3 ; with | in such a way this pseudo extensionality will
be true. Beware, not every proposition in D3 s has a corresponding proposition in
D3, according to this definition. The BH functor introduces a top element in the
disjoint union. This allows some functions to exists in Vals s — Vals s that have

no equivalent in Vals.y — Valg ;.

Theorem 3.10
Let 2 = BH(Lisp _constant + Boolean + (Vals g — Valg 3))
All of the following are true
i) Forany z, if there is a y € Vals y such that z § y, then y is unique.
i) {(Lg,8) § Lyal, , for every s € Ex — BIT.
iii) {z,8) § = for every z € Lisp_constant + Boolean and every s € Ex —
BIT
iv) Assume g, s and f are elements of Valy g — Valys, Ex — BIT and
Vals.1 respectively. Then (g,8) | [if and only if g(v) § f(u) for every u and v

such that v | u. Here v and v can be any sets and application is taken in the sense

of definition 2.7.

Proof:

i) Uniqueness of y immediately follows from the definition of {§ becauseifz |} y

then y = Cl(s) for exactly one s.

ii) (Lg,8) = {{(+,*'),0) | s Fe_.p a} by definitions of Ds s and iz

i

102

(17,8} 4 {(*,*)} By definition of |
(Lz.8) § Lvalg , By definition of Ly, ;.

(2,8) = {{{o,#'), Be~5) | z FLe a} U {{(¢',#),8) | & t5-p b} Dy
definition 5.i

(z,8) § {a]|zFLp a} U {{¥,+')} by definition of |

{z,8) § = by definition of element z in Vals,;

Assume that (g, 8) || f. Then by clause iii) of 3.9 we have

g={..(zun)..} S=Cl{..(X\Y)...})

where z; | X; and y; | Y; forall ¢

Definition 2.7 implies that

olv) =y | 3= Cv, (z,:) €9}

Definition 3.9 together with the identity CI({J{Cl(z) | z € §} = Cl({J{z |

z € §}) implies that if Y is such that g(v) § Y, we have the identities:
Y= CI(U{K | {2, yi) € g for some z C v})

Y= C'I(U{Yg | {X:,Y:) € f, = | X; for some z, C v})

Definition 2.32.iv implies that if X sy Z and (Z,2') €Y, and 2’ 3, Y/,
then (X,Y") will also be in Y. The set Y is also the least set satisfying this

condition and including the set {Y; | (X;, Y:) € f, z; § Xi, for some z; C v}.

103
It alsoimplies that Y F313.; (X,Y") in no other cases. The same definition
2.32 iv) implies likewise that if X Fs y Z and {Z,2') € fand Z' Fy; Y? then
(X,Y") isalsoin f. ThereforeY isincluded in f. On the other hand assume
that z, C v, X C X, z; § X; and (X,Y’) € f. The fact that g |} f implies
that (X,Y’) must be in Y because f must be the least set satisfying the
same closure property from the same initial data. This allows us to rewrite

the last formula as:
Y=Cl(JIV' [(2Y) e, ZCO(J{Xlz: 4 X, =zCv})})

Since the hypothesis v § 4 and definition 3.9 implies that u = CI({J{Z |z §

Z A z Cv}), we can further rewrite the formula as:
Y = CI(U{Y‘ [{(Z,Y")e fAZC u})
Definition 2.7 allow us to write
Y = Ci(f(u)

and the definition of element implies that f(u) is equal to its closure. There-
fore, Y = f(u) as required.
End of proof of 3.10.
We want to stress the similarity between the law of extensionality and 3.10.iv.
Even readers that had skipped over theorem 3.10 and its preliminaries should look

at this.

104
Law of Extensionality:

Vu,v, (u=v)=>(gu)=f(u)) <= (9=

Clause 3.10.iv:

Vv, (v u)) = (g(v) § f(u)) <= ({9.8) })f

We introduce a relation v § u whose meaning is “v has the same informational con-
tent as u once data flow information is ignored”. We want to state that elements of
Valg ¢ have the same informational content as elements of Valg ; once data flow
information has been stripped out. We have to overcome difference of types. For in-
stance, let (g, 8) € Valy g and f € Valg ;. If g happens to be in the Lisp_constant
or Boolean components, we can just discard the data flow information and state
that {g,8) | f < g = f. However when g happens to be in Valg g — Vals g
and f is in Vals; — Vals 3, it is no longer possible to use equality of f and ¢
for this purpose since g do not even belong to the same domain as f. We did the
next best thing: we rewrote the extensionality law taking into account the change

in types. The result is a kind of “equality relation” across unequal domains.

3.3.2 Equivalence of Semantics
The reader should now be aware that relation | actually strips out data flow
information to retrieve the value in Valy ; from any of its representation in Valg g.

Remember we have to show that semantics 3.8 is a representation of 3.1 in the

105
sense of 2.42. Relation |} will be our concretization function. The abstraction will
be its reverse. Proving we have a representation means information is handled in
harmony in both semantics; that is, these relations are preserved across abstractions
and applications.

There is a functor LISP such that, given a domain Val, LISP will build
a domain LISP(Val) = (Ex x (Var — Val)} where Ex is the domain of
Lisp programs and Var is the domain of Lisp variables. Let Uncurry(l)(z,y) =
I(z)(y) be the definition of the combinator Uncurry. In semantics 3.1, the triple
(LISP,Valg y,Uncurry(ls.1)) is a Cousot’s framework since Vals 1 together with
Uncurry(l,;) form a LIS P-algebra in the sense of 2.40. Similarly the triple
(LISP,Vals g, Uncurry(l3.s)) from semantics 3.8 also forms a Cousot framework.
According to the definition of representations, we want to find a pair (a,c) so that

the following categorical diagram commutes:

Uncurry(ls.
LISP(Valsg) rrytfas) —Vals s
a ¢
Uncurry(ls.1) ¢
LISP(Vals ;) + Vals; - -—-—Vals,

The relation { must be the identity over Vals ;. A way to build the required

relations a and c is given by the following theorem:

Theorem 3.11

106
The pair (f,) is a representation from (LISP, Valg y, Uncurry(ls,)) to
(LIS P, Valy g, Uncurry(ls s)).

Proof:

Looking at the definition of representations, the definition of the relation a
and at the definition of the LISP functor, this theorem can be equivalently phrased
as:

Assuming that e: Var — Valg ; and ¢: Var — Vala g are such that
¢[var] | e[var] for all var in Var, then for every expression Exp in Ex, we have
Is.sExpl(€) § T[Expl).

This restatement of the theorem is obtained when we phrase into English
the meaning of the categorical diagram defining representations.

We can show that I3 s[Exp](e’) § I[Exp](e) by induction on the complexity

of the syntax of the Lisp expression.

Exp — constant

This case follows from 3.10.iii

Exp — var
This case follows from the hypotheses ¢’[var] § e]var] for all var.

Exp — (lambda var Exp)

We have the pair of equations:

107
I3.1](lambda var Exp)](e) = Az.I3 s [Exp)(e[var := z])
Iy 3| (lambda var Exp)](e’) =
(Az.I3 s[Exp)(¢'[var := z]), (lambda var Exp))
This induction hypothesis is for all e and € such that ¢'[var] | e[var] is
true for every variable var, the relation I sJExp}(¢') § Is.1[Exp)(e) is true.

If we assume that z |} y, then the induction hypothesis implies that:

Is s[Exp)(¢'[var := z]) § Is..[Exp](e[var := y])

Looking at the right hand side of the definition of Is, and I5g, we can
perform the reverse of beta reduction to conclude the following relation is

true for all z, y such that z |} y.

I3 s[(lambda var Exp)](¢')(z) | /s1[(lambda var Exp)](e)(y)

The rest follows from 3.10.iv.

Exp — (Expl Exp2)

We have the pair of equations:

Is.1[(Expt Exp2)(e) = Is.1[Exp1)(e) (/5.1 [Exp2](e))
Is.a[(Exp1 Exp2)](€') = v (Expl Exp2)
wherev = fst(I5 s[Exp1)(€'))(Zs.s[Exp2](€’))

By induction hypothesis we have both

108
I3 s[Expi)(¢'} § Ls.1[Exp1}(e) and
Is s]Exp3(€') § Is.1[Exp2](e)
This together with 3.10.iv leads directly to the desired result.

Exp — (letrec (var Exp) Exp1)
This case can be ignored since this syntax can be replaced by another one

not using letrec. To achieve this we use the explicit definition of the fixed

point combinator.

Exp — (if Expt Exp2 Exp3)

The induction hypothesis assumes that all of Is g[Exp1}(¢’) § I3.1[Exp1](e),

I slExp2)(¢') § Is.1[Exp2)(e) and Is s[Exp3](e') § Is.1[Exp3](e) are true.

This case follows from theorem 3.10.iii applied to the value of Exp1 and the

definition of if .

End of theorem 3.11. |}

The reader will have noticed how formidable a task it is to show that one se-
mantics is an abstraction or a representation of another according to definition 2.42.
He will have also noticed how obvious the result would seem when comparing both
definitions from a purely syntactical point of view. We should be able to use some
theorem or notation that would make quick and easy the proofs of apparently trivial
things. Unfortunately the author is not aware of the required results. Also more

time would be required to investigate further such fundamental problems without

109
going beyond the scope of the present work and putting its completion in jeopardy.
From now on we will stop writing these tedious proofs and rely on the apparent
syntactic similarities in the assumption that we are indeed writing abstractions or
representations. This may make our work “unsafe” from a purely formal point of
view and it will appear incomplete. On the other hand, we conjecture syntactical
similarities as strong as those we encountered are strong indications that we are go-
ing in the right direction and our expectations about formalism can be relaxed for
a while, until we develop better tools to meet an acceptable level of mathematical
rigor. Very few data flow analysts take the trouble to show that their wurk is in-
deed a Cousot like approximation with the help of more proofs than such syntactic
similarities. A similar attitude exists among those authors who write “continuation
passing style semantic” (see {Stoy 1977 for instance). The extra continuation pa-
rameter this style of semantics adds makes the resulting function differ in type from
the normal semantics. However, they are nevertheless regarded as equivalent with
neither proof nor a formal statement of what such equivalence should mean. This is
especially flagrant when we consider programs that compute high order functions.
Programs such as factorial or append that compute nonfunction results don’t cause
problems since they happen to return the same value in both semantics. For these
reasons, despite the fact we have pinpointed the formal difficulty, we feel justified

in leaving it unsolved until future research brings an acceptable solution.

3.4 Approximate Data Flow Analysis of LISP

110

Although semantics 3.8 effectively computes data flow information, it is in-
adequate for purposes of compiler writing because it has as much informational
contents as semantics 3.1. We do not want to execute the program when we com-
pile it. It is very reasonable to assume that I/O constructs will be included in the
language. This implies that some of the information required for execution is not
even available at compile time. What we need is a semantics that forgets the usual

meaning of Lisp programs and concentrates solely on data flow analysie.

Semantics 3.12 Data Flow Oriented Abstract Semantics of Lexically Scoped

Lisp
Domains
Var = The domain of Lisp variables
Ex = The domain of Lisp expressions
Val,,u = (vala,n — Val,_u) X (Ex — BIT)
The new domain of values
Es.13 = Var — Vals ;3
the domain of environments.
Functionality

I3.12: Ex — Eg.13 — Vals.12

I3 12]Exp](e) will give the value of the expression Exp in the environment e.

111

Convention

Again we omit injection into and selection from a disjoint union to improve

readability.

Definition
¥:(Vals.13 x Ex) — Vals 12
2ty = (fat(z), end(z)u {'y})
The function |4 accepts a value z € Valg 15 and an expression y € Ex and
build a new value in Vals 12 that includes y among the expressions that

propagates to that value.

Equations
Exp — constant

fns2fconstant](e) = (LValy y3-Valy 1 CORSLEDT)
Exp — var

hfvar](e) = e[rar] |y var
Exp — (lambda var Exp)

I3.13](lambda var Exp)](e) =

(Az.I3.12[Exp](e[var := z]), (lambda var Exp))

Exp — (Expl Exp2)

Is.1a] (Expl Exp2))(e) =v) (Expl Exp2)

where v = fst(I5.12[Exp1](e)(/s.12[ExE2](¢))

112
Exp — (letrec (var Exp) Expl)
Iy s3] (letrec (var Exp2) Exp1)]{e) =u | (letrec (var Exp2) Expl)
where u = I3 12[Expi]{¢[var := v {4 Exp])
and v = Y(Az.I3 s3[Exp](e[var := z |4 Exp]]))
Exp — (if Expl Exp2 Exp3)
Is gl Gf Expt Exp2 Exp3)](e) = v | (if Expt Exp2 Exp3)
where v = I.12[Exp2](e) U Is.12[ExpS](e)
End of semantics 3.12. |}

This semantics is best understood when compared to semantics 3.8. Let’s

take a look at the domain equations.

Valg 13 = (Vals.13 — Vals.1a) x (Ex — BIT)
Valg ¢ = BH(Lisp.constant + Boolean + (Valg s —+ Valg s)) x (Ex — BIT)

We immediately see that in Vals ;3 we have omitted the Lisp_constant and
the Boolean components from the disjoint union. This is because we discard any
information relevant only to the normal semantics to keep only data flow information
in Ex — BIT. We keep the component Valg.13 —+ Valg 13 because we want
high order data flow information to evaluate how applications and abstractions
propagate data and no. just the flat information in Ex — BIT.

113
3.12 :(Vals. 13 X Ex) — Valg 13
zlgy = (fel(z), snd(z) u{'y})

3.8 W (Val.,. X Ex) ~— Valg o

3.8 zwWy = (fst(z), and(z) L {'y})

The auxiliary function @ introduced in 3.8 is replaced by its equivalent 4.
The latter is identical to & but for its type. Both adds data flow information y to
the Ex — BIT component of 2z without affecting its other .omponent.

From now on we will start to compare each clause in the definition of f3.12
with the corresponding clause in the definition of I38. We will show how the
information relevant to the normal semantics is discarded without loss of data flow

information.

Exp — constant
Isx2fconstant](e) = (Lyal, ,, Valy 4+ CORSLARL)
Is.s|constant](e) = (value of constant, constant)
A constant does not correspond to any information in Vals 13 — Vals.12,

80 Is.12 registers the least possible amount of information in that domain.

Exp — var
Is.a]var](e) = e[var] | var

Isgfvar)(e) = efvar] @ var

114

The treatment of a variable does not depend on the semantic domain.

Exp — (lambda var Exp)
I3 12[(lambda var Exp)](e) =

(Az.I3.12[Exp](efvar := z]), lambda var Exp))
I3 sj(lambda var Exp)](e) =

(Az.I3.5[Exp](e[var := z]), (lambda var Exp))

Abstractions are handled the same way in both domains.

Exp — (Expl Exp2)
I3.12[(Exp1 Exp2)}(e) = v Y} (Expl Exp2)
wherev = fat(l3.12[Exp1](e) ([3.12{Exp2](e))
I3 g[(Exp1l Exp2)])(e) =v W (Exp1 Exp2)
Where v = fst(/3.s{Exp1](e)) (/3.8 [Exp2] (¢))

Applications are handled the same way in both domains.

Exp — (letrec (var Exp) Expl)
I3 yz[(letrec (var Exp2) Expi)](e)=u |4 (letrec (var Exp2) Exp1)
where u = I3 12[Expt](e[var := v | Exp))
and v = Y(Az.l3.12[Exp](e[var := z | Exp]))
I3 g|(letrec (var Exp2) Expi))(e) =u @ (letrec (var Exp2) Expl)
Where v = Y(Az.]3 g[Exp](e[var := z @ Exp|))

116
and u = [3 g[Expi](e[var := v ¥ Exp)])

Recursion is the same in both domains.

Exp — (if Expl Exp2 Exp3)
I5.1al(If Exp1 Exp2 Exp3)](e) = v | (if Expt Exp2 Exp3)
where v = I3 12[Exp2](e) U I5.12[Exp8] (e}
Is o] (if Exp1 Exp2 Exp8)](e) =v & (if Exp1 Exp2 Exp3)
Where v = If fat(I3.s[Expi](e) then I3 sfExp2](e) else I3 s[Exp3)(e)
Conditionals are handled differently. Information of boolean type is lost in
Is.12. There is no way to select any branch of the alternative. The only way to
avoid losing any data flow information is to join the results of the evaluation of both

branches.

Semantics 3.12 appears to be to the one we seek. Close inspection of the
clauses shows that semantics 3.12 gathers at least as much information as 3.8. This
is the intuitively correct condition for using 3.12 as an approximation of 3.8. It
would require tedious formalism like theorems 3.10 and 3.11 io define the detailed
abetraction and concretization relations. We conjecture that 3.12 is an approxi-
mation of 3.1, that the approximations involved are monotonic, and therefore that

theorem 2.51 enables us to compose them. More research is required on this point.

CHAPTER 4
THE TERMINATION PROBLEM

It should be obvious from the preceding chapters that abstract semantics are
coarse homomorphic images of the related normal semantics. This enables abstract
semantics to mock the operational and denotational properties of the program and
therefore allows a compiler to get information about normal program behavior. The
question arises whether undesirable properties of a program such as nontermination
fall in its abstract semantics together with the desirable ones.

So we now ask when an abstract semantics terminates. This is a different
question from when a normal semantics terminates for the following reason. Under
a normal semantics it is the programmer’s responsibility to ensure the code he writes
terminates. If the code doesn’t, this is the programmer’s error and he is the one who
will have to correct it. Under an abstract semantics, the situation is different. Data
flow analysis is a compilation phase transparent to the programmer. If we want the
compiler to be convenient to use, that phase should terminate for every program
anybody could ever write, even in presence of the most awkward conditions. The
programmer using the compiler is not aware of the existence of data flow analysis
and can obviously not correct a condition he does not know exists. Therefore an

116

117
abstract semantics is useful in data flow analysis only if we can prove that every
program anybody could write will terminate when interpreted according to that
semantics.

The sample data flow semantics in figure 3.12 shows how hard to obtain this
last requirement is. One obvious way to enforce termination is to select approxima-
tions that will result in a provably terminating semantics. Unfortunately there are
useful approximations that fundamentally introduce nontermination. For example

consider the lambda—-expression computing the factorial function:
fact(z) = if sa_zero(z) then 1 else z x fact(z — 1)

Suppose we translate this definition into a LISP program, assuming we ex-
pand our LISP to include integers and an expiicit join operator. According to 3.12

the above expression is semantically equivalent to the following:

Jact(z) = 1U(z x fact(z - 1))

This is a straightforward use of the semantics rule for if expressions given
in figure 3.12. Notice how the recursion occurs unconditionally because the essence
of the approximation is to remove every decision and replace it by the join of both
alternatives. As a side—effect, we are no longer able to give any loop a termina-
tion condition, so a straightforward implementation of the semantics will lead to

obviously nonterminating programs.

118
We cannot blame the semantics for this awkward property, because the ap-

proximation we chose is a very reasonable one. If we look for a coarser but termi-
nating semantics, we find we can use top as an approximation of such ill-recursive
expressions. This would be assuming that every subexpression of a program could
propagate out of any recursion. The result is a correct but not very satisfactory so-
lution to the problem because it amounts to performing no data flow analysis within
recursive functions. It is very hard to imagine how an approximation coarser than
the one in figure 3.12 but less drastic than top could introduce termination. Recall
the transformation process from which we derived that semantics. Termination con-
ditions were removed because we wanted the abstract semantics to be independent
(in the sense just described) from the computations implied by the normal seman-
tics. The reader can check this by comparing the semantics for if expressions in
figure 3.8 and 3.12. This independence requirement implies the abstract semantics
must have no explicit knowledge of the normal values taken by subexpressions in
the program. From a compiler user point of view this means a data flow analyzer
must be transparent, i.e. must behave correctly independently of actual run-time
execution behavior. Termination conditions are removed because we cannot decide
at compile time whether a loop will terminate according to run-time data. The
information required to do so is not available. We only know that either the pro-
gram stops, or it continues and we have to play safe, considering both alternatives

at once. Approximations written according to this principle must depend on both

119
alternatives at the same time. This implies they are very likely to generate an infi-
nite loop, any branch of the conditional involving a recursive call being considered

as providing relevant information at every iteration.

4.1 The Termination Properties of Tarski Least Fixed Point

Trying to find a better abstract semantics is not likely to yield termination.
We have to look for a tool that comes from outside the formalism used to define
the semantics. We propose to take advantage of some properties that are provable
from information systems, but are unprovable within lambda—calculus itself. In
particular the least fixed point theorem (proposition 2.35) will prove extremely

powerful:

Proposition 2.35 (restated) The Least Fixed Point Theorem

Curry’s fixed point combipator Y = Af(Az.f(zz))(Az.f(zz)) is identical to
Tarski's least fixed point operator fiz, defined as follow:

fiz(h ={ ()

=0

The least fixed point theorem states that Y and fiz are equal from a de-
notational point of view. Operationally they are very different. We all know the
behavior of Y. On the other hand, fiz works as a Pascal while loop:

120
g:= U1,

while z # (f(z) Uz) do z:= (f(z) U z);

This illustrates how fiz will compute the fixed point of a function f. We
start with L stored in variable z. The function f is then repeatedly applied until
the value converges. The requested fixed point is left in variable z. Of course,
this may be an infinite loop. For instance if Y(/f) is a nonfinitary element of the
domain, it can be the join of an infinite increasing sequence without being itself a
member of the sequence. However, there are other situations where it will terminate
adequately. For instance, consider the fixed point of I, the identity function. If we
compute with the help of Curry’s Y, we get (Az.zz)()Az.22), and then most lambda-
calculus evaluators will get into an infinite loop. On the other band if we run the
above Pascal program we get the following steps:

1) z:=1
2) test: L=I(L)ul?
3) yes, terminate the loop, leaving 1 in variable z.

Although this is impressive, some readers will raise two objections. The first
one is we assume we have an explicit use of L, an explicit use of the lattice theoretical
join and a decidable universal equality over the lattice. All these features do not
mix well with computable functions. In particular, the combination of having an
explicit bottom together with a decidable equality implies we are able to solve the

halting problem. The second objection is that it is not clear how we handle the

121
form of nontermination that occurs with fiz.

Let’s take care of the first objection. We do not need the full power of all
features required to code fiz. Assume the function ¢: B — A is an homomorphism
from domain B to domain A. Assume there is an element 0 € B, different from .Lp
such that ¢(0) = L4. Assume also there are computable functione eq: B x B —
Boolean and join: B x B — B such that:

eg(z,y) =true = c(z) =c(y)

join(z,y) =2 = e(z)=c(z)ue(y)

We can then code a function fiz’ that behaves as fiz as follow:

fiz(f) = 9(£,0)

wherec g = Af)z. if eq(z, join(z, f(z))) then z else g(f, join(z, f(z))

Notice eg need not correctly represent universal equality in every case. We
only require that if eg(z,y) is positive, then ¢(z) must be equal to ¢(y) without
imposing any constraints on what happens when eg(z,y) is false. As a result, if
Jiz! terminates, then we had computed the representation in B — B of the fixed
point of 2 function in A — A. Our plan is if we have to perform data flow analysis
using lattice A, we do not implement A in our algorithm. We find a suitable
representation B for A where the abstractions of interesting functions in A happens
to terminate in B. The art of data flow analysis lies in the correct selection of B,

122
0, eg and join. The above discussion is formalized into the next theorem, having

at the same time a small optimization introduced into the code for fiz’.

Theorem 4.1

Let A and B be domains. Let (a,c) be an abstraction from A to B, that is

(a, ¢) makes the following graph commute:

Ip
Lamb(B) +B
]Lamb(a) ¢
I4 r
Lamb(A) ———A---—=A

Lamb is the functor inducing lambda-calculus syntax. The function I, gives
its semantics within domain A and Ip gives the semantics within domain B. Let 0
be an element of B such that 0 # Lg and ¢(0) = 1,. Let eq: B x B — Boolean
be such as eq(z,y) = true => ¢(z) = ¢(y). Let also fiz’ be defined as:

Jiz'([) = g(/,0) wherec g = Af)z. if eq(z, [(z)) then z else g(j, /(<))

We state that if fiz'(f) terminates, then all three conditions hold:
i) if {a,c) is a representation, then c(fiz’(f)) = fiz(c(/))
ii) if {a,c) is an increasing approximation, then fiz(c(f)) C ¢(fiz'(f))

iii) if (a,c) is an increasing approximation, then ¢(fiz'(f)) C fiz(c(f))

123
Clause i) is the way to transform exactly a nonterminating program into a
terminating one using fiz. Clauses ii) and iii) are used to create terminating ap-

proximations of programs, an option that is often convenient in data flow analysis.

Proof:

We shall first prove a few lemmas:

Lemma 4.2

For every integer i, we have:

FL)E FH(L)

This is shown by induction on .
Basis:
1 C f(1) always true by definition of L.
Induction:
assume f*—}(.L) C f¥(L), by hypothesis f is generated from an approximable

mapping and therefore is monotonic, (proposition 2.8 iv). Then we have

S E AU
FLEFHL)

This completes the induction and the proof of lemma 4.2

124
This lemma shows a very important fact about the behavior of fiz. The
sequence of values built from iteration of f over bottom is monotonicaly nonde-

creasing. Please keep this fact in mind for we will use it several times hereafter.

Corollary 4.3

LIFW i <) = P()

This follow from 4.2 by the law z = z Uy whenever y C z.

Lemma 4.4
Assume that fi(1) = fit1(L) then fiz(f) = fi(1).

Proof:
By induction on k, we show that for every k > 0 we have:
F(L) = fH¥(L)

k =0: trivial since j+ 0=
k> 0: Assume fi(L) = f/+k—1(1) then fF+k(L) = f7+1(1) = f/(1). It follow
from idempotency of join that:

fisth) = | [y = JFW 1i<)

125

and corollary 4.3 implies that

fislf) = JUF (L} =)

=0
Now we return to the proof of 4.1. Remark that fiz’(f) can only terminate
if convergence is obtained <.:er finitely many iterations of f, that is if the following

proposition holds:

eq(f+1(0), f(0)) = true for some j

by defiition of eg, this implies:

(a) (NY*0) = (Y (0)

on the other hand we have by definitions of 5 and fiz’: fiz’(f) = f#(0). if we apply

¢ on both sides, we get:

(b) elfiz'(/)) = (S (0)

Now we consider conclusions 4.1.i through 4.1.iii one after the other, starting

with conclusion 4.1.i.

4.1i we assume {a,c) is a representation. This allows us to write from (b):

e(fiz'(£) = (c(f)) (0)
eo{fiz’(f)) = (c{f))(La) by definition of 0
e(fiz(f)) = fizle(f)) by (a) and 4.4

126
4.1ii we assume that (a,c) is an increasing abstraction. This allows us to write

from (b):

o(fiz' () T (c(f)) (c(0))
e(fiz'(f)) C (e(f))(La) by definition of 0

o(fiz'(f) € fiz(c(f)) by (a) and 44

4.Liii We assume that (a,c) is a decreasing approximation. We proceed as in ii)
with 3 substituted for C in the proof.

End of proof of 4.1. |}

If we observe that 2=y <= z C yAy C z, we can find another useful
computable representation of fiz. We need a computable function It: B x B —
Boolean such that {¢(z, y) = true always imply ¢(z) C ¢(y). Function eqin 4.1 can
be defined as the conjunction of It(z,y) and lt(y, z). However, lemma 4.2 implies
one of the partial order is always true in the cases we are interested and need not

be checked, this allows us to write:

Theorem 4.5

Let A and B ard (a,c) satisfy the hypotheses of 4.1.

Let 0 be an element of B such that 0 # Lg and ¢(0) = 14. Letlt: Bx B —
Boolean be such as lt(z, y) = true = ¢(z) C c(y). Let also fiz' be defined as:

127

Jid (f) = 9(f,0) wherec g = AfAz. if It(f(z), z) then z else g(j, f(z))

We state that if f: B —+ B is such that f*+1(0) C f*(0) and such that fiz’(f)
terminates, then all three conditions hold:

i) if (a, c) is a representation, then ¢(fiz'(f)) = fiz(c(f))

ii) if {a, c} is an increasing approximation, then fiz(c(f)) C c(fiz'(f))

i) if (@, ¢) is an increasing approximation, then c¢(fiz'(f)) C fiz(c(f))

This is a restatement of 4.1 substituting It(f(z),z) for eq(z, f(z)) as the

terminating condition of fiz’.

Proof: Very similar to the proof of 4.1. Note that fiz’(f) can only terminate if
convergence is obtained after finitely many iterations of f, that is if the following

proposition holds for some j:
It(£7+1(0), £7(0)) = true for some j.

This implies ¢(f?+*(0)) C ¢(f#(0)) by definition of It. On the other band, the
bypothesis that It(£(0), fi+2(0)) implies that ¢(f7(0)) C ¢(f7+1(0)). We can now
state that

©) e(f7+1(0)) = c(£7(0)

128
on the other hand we have by definition of j:

(@ fig(f) = F£(0)

equation (c) is identical to (a) and equation (d) is identical to (b), therefore
conclusions 4.5.i through 4.5.iii sre shown as the corresponding conclusions of 4.1.
End of proof of 4.5.

The inconvenient of 4.5 over 4.1 is we need to have ¢ monotonic and f to
satisfy f/(0) C f/+1(0) to be able to useit. Fortunately these restictions are
reasonable. The principal advantage of 4.5 is we can more easily determine when

fiz' will terminate with the help of the following definition:

Definition 46 The Ascending Chain Condition

The domain A satisfies the ascending chair condition if any monotonicaly
nondecreasing chain of elements {a;} in A converges after some integer value n,
that is ap, = 65, whenever m < n. Assume also there is a domain B and a function
It: B x B — Boolean that satisfy the bypotheses of 4.5. We will say that I
preserves the ascending chain condition with respect to a clase of functions C if and

only if for every function f: B — B in class C the following proposition holds:

Vi, It(f*(0), /" (0))

129

The significance of this condition follows from lemma 4.2 where we show

that the iteration of f on bottom involved in fixed pointing builds a nondecreasing
sequence of values. If the domain of this sequence satisfies the ascending chain
condition, sooner or later we will have performed enough iterations to be able to
apply lemma 4.4 and terminate the search for a fixed point. This will be true
for every f since every sequence converges. If in addition dcmain B and function
it preserve the ascending chain condition, then theorem 4.5 will apply to prove
termination of every fixed point expression. Of course not all useful semantics will
be proven to terminate in this way. Part of the art of data flow analysis is to
select domains A and B and function {¢ in such a way that the class C of functions
generated by the semantics preserves the ascending chain condition in order to have

the proper termination properties.

4.2 The Semantics of Dynamically Scoped Lambda—Calculus

Many useful domains satisfies the ascending chain condition. Every flat
domain such as BIT, integers and boolean, and every domain with finitely many
elements satisfies this condition. This is also true of cartesian products and disjoint
unions of domains satisfying the ae-:.ding chain condition. Together, theorem
4.5 and definition 4.6 form a very powerful tool to force termination of semantics.
We still have to verify how useful this power is. The best way is to provide an
example. We plan to show that dynamically scoped lambda-calculus semantics
always terminates if fixed points are implemented as in 4.5. This is a significant

130

example because there are many dynamically scoped languages on the market.

Semantics 4.7 Dynamically Scoped Lambda-Calculus
Domains
Var : The syntactic domain of variables
Ex : The syntactic domain of expressions
Valgy : The domain of values
Valg7=Eq7 — Vali7 — Valgr
E4.7 : The domain of environments
E(7 = Var — Valg 7
Functionality

Is7.Ex — Eq 7 — Valgry

Semantics
Exp — var

I 7]var}(e) = efvar]
Exp — Avar.Expl

I 7Pvar .2](e) = AdAz. I 7jt)(d[var := z])
Exp —+ Exp1(Exp2)

Li7[g(9))(e) = Lo.7lg)(e)(e) (Ls.2[£)(e))
End of semantics 4.7.]

131

This requires some explanation. The characteristic of dynamically scoped
languages is their mechanism for handlieg free variables. This is expressed by the
domain equation Valyy = E¢ 3 — Valgy — Val y. Functional values do not
bind their free variables when they are declared, free variables are bound to the
environment of the caller when the function using them is called. For this reason
functional values require as an extra implicit parameter: the environment that will

provide the call-time free variable binding. This is expressed by the equation pair:

L4 q[Avar.1)(e) = Adrz. Iy 1[t)(d[var = 1))
Lualg(0)(e) = Lurlgl(e) () a7 It)(e))

The value of an abstraction requires two parameters: the first parameter is
the environment d that provides the values of free variables, and the second param-
eter is the actual value z for the formal parameter var bound by the abstraction.
The rule for application has to pass the environment ¢ twice to evaluate the ifunction
component. The first time ¢ is passed to get is required to evaluate the semantic
value of g, then ¢ is passed again to bind the free variables that may occur in the
abstraction that happens to be the value of g.

4.2.1 The Tree Traversal Semantics
The interesting aspect of this semantics is the fanction I, 7 itself is defined
with an equation system we want to fixed point. It follows from this observation that

the termination properties of lambda-expressions depend on which fixed point op-

132

erator we chose, Y or fiz. i we chose Y, we have the usual termination properties
of applicative or normal order evaluation strategies. We should ask what happens if
we use fiz instead. The answer is not trivial. Some preliminary results require us
to rewrite the interpretation function I4 7 as a tree traversal function. The tree will

be a data structure representing the “computation”, that is the operations required

to evaluate a program.

Semantics 4.8 Evaluation as Tree Traversal
Domains
T : the domain of computation trees
T=(LxLef) + (LXTxTxT)
L : the domain of labels of computation trees
L=FKs —L—T
Ex : the domain of lambda-expressions
Var : the domain of names of variables
E.s : the domain of environments
E(s=Var— L
Functionality
Tree : the interpretation function of lambda-expressions

Tree.: Ex — Eig — T

Semantics

133
Exp — var
Tree|var](e) = (e[var], Leaf)
Exp — Avar.Expl
TreefAvar .£)(e) = (AdAz.(Trecft](d[var := z))), Leaf)
Exp — Expl(Exp2)
Tree[g(1)](e) =(fet(z), 2,9, 2)
Where z = Tree[g](¢)
y = Treelt)(e)
2= fat(z)(e)(fet(y))

End of semantics 4.8.

This requires some explanations. The label of the trees should be under-
stood as the “real” values of the lambda-expressions. Therefore domain L should
be understood as a representation of Valg y as defined in semantics 4.7. The trees
are the conjunction of the value of an expression and the computational process of
evaluation as implemented in most dynamically scoped LISP compilers, the evalua-
tion process being similar to the traversal of that tree in postfix order. Let’s explain
this idea in more detail. If we are at a leaf node, the expression value is considered
known and the label of the leaf is the value. For instance when the expression is
an abstraction, we assume we know its value and a compiler will consider it to be

the entry point of the code that implements it. The tree is a leaf node labeled

134
with the value. Similarly, if the expression is a variable, its value is known from

the environment and the single leaf tree is inmediately constructed. On the other
hand if we evaluate an application g(f), then we require a more elaborate evaluation
process. The tree has three branches: one to evaluate f, one to evaluate g and one
to evaluate the body of the value of f when g is passed to it as a parameter. The
label of that third child is the “real value” of the application and is taken as the
label of the whole tree. The tree walking strategy is therefore to evaluate f first,
then to evaluate g and at last to pass the value of g to the value of f as a parameter.

The claim that semantics 4.8 is a representation of 4.7 is left unproven. As
observed in chapter 3, such a proof is enormous and tedious and would lead us
too far from dat~ flow analysis. Most readers should nevertheless agree with the
statement on the basis of a pair wise comparison of the equations involved. The

following categorical diagram shows what kind of representation we have in mind:

Azde. Treelx)(e
Lamb(L)) —
a ¢
Iyq
Lamb(Val.,,y) aVnI..'T

In this diagram, Tree and L are as defined in 4.8 and I, 7 and Val, y are as
defined ir. 4.7. The functor Lamb map the domain D to the domain Ex x (Var —
D). Some uncurrying operations are left implicit in the diagram. Relations a and

¢ are the abstractions and concretizations as suggested in semantics 4.7 and 4.8.

135
4.2.2 The Termination Properties of Dynamically Scoped Lambda-
Calculus
The reader should observe that the label generated by the abstraction rule
does not depend on the environment parameter nor on anything other than the
abstraction body. No other semantic rule will spontaneously produce labels different
from the ones generated in this way. They only propagate labels already present in
the semantics. This establishes a one-to~one correspondence between abstractions
and labels occurring as values. Therefore, within the context of a given program,
the set of all elements of L that are actually used in the evaluation is a finite set
gsince there are only finitely many abstractions. If we completc that set with a
top and bottom element, we obtain a finite domain D such that the value of the

program must be an element of D. This is formalized in the theorem below:

Theorem 4.9

Let P be a program and ¢ an environment, let D be the domain constructed
from the set {fst(Tree[a](e)) | a is a lambda-abstraction, a occurs in P} by adding
1 and T, and let N be the domain of all variables that actually occur in P. Then
for all subexpressions £ occurring in P, if d is an environment such that d(v) € D,

then fat(veeft](d)) belongs to D.

Proof:

We use induction on the syntax of £.

136
Basis:
Case a: 1 is the variable var.
We have te equality Trecjvar}(d) = {d[v], Leaf) and d|v] has type D by
hypothesis on d.

Case b: 1 is the abstraction Avar.g.

This implies that Avar.g occurs in P and fei(TreejAvar.g}(d)) € D by
definition of D.

Induction : £ is the application g(h)

By the syntactic induction hypothesis both labels of Treefg]{d) and of
Treefh](d) are in D.

We need to prove the third child fst(Tvee[g](d))(d)fst(Tree|n}(d)) has a
label in D. There are three cases depending on the value of fat(Treefg](d)).

Case 1—fst(Tree[g)(d)) = L.
Recall L = Az.L by 2.34.iand L = (L, 1) by 2.28.i. Therefore the label of
the third child will be L, a value that belongs to D.

Case 2—/at(Tree[g)(d)) = T.
Recall T=)z.T by 2.34.iiand T = (T, T) by 2.28.ii. Therefore the label of
the third child will be T, a value that belongs to D.

137
Case 3—fst(Treefg](d)) = Achz.Treefu](c[v := z]) for some expression u and
variable v.

Let k = fat(Trec|b}(d)). Recall the rule of beta substitution. It implies that
Treefu](d[v := kj) is the third child of Treefg(h)](d). It is a tree generated from
a subexpression occurring in program P and an environment of type N — D. We
want to show its label is in D. We have to consider whether the tree is finite or
infinite. If it is finite, the proof will take the form of an induction on the length
of the starting from the root of the tree and descending along the third child down
to the leaf. If the tree is infinite, a special treatment is given. This gives us three

subcases:

Case 3.i—Basis of the induction. We are at a leaf.

Immediate from an argument identical to the one given for the basis (cases

aand b) of the induction on expression syntax above.

Case 3.ii—Induction step. We are at a parent node, the path is finite.
The induction hypothesis is the label of the third child must be in D. The
definition of T¥eeimplies the label of the parent is the label of that third child. This

completes the induction on the length of the right-most path in the tree.

Case 3.iii—Special treatment. We are at a parent node, the path is infinite.

Descending one node down the tree along that path corresponds to parameter

138
passing. Therefore descending one node down corresponds to performing some left-

most beta contraction in the lexically scoped raetalanguage that is used to define
the Tree function. Repeated beta contraction is defined as finding the fixed point
of some function defined over the domain of lambda-expression. If we work out the

increasing sequence of trees that compute the required Tarski fixed point we get:

(0) 1
(llsfl,ah-)
(1) l
4
(lhfl) ay, |‘)
(2) (h,f2,02, i>
1
(lhflaal) i')
(lllle a2, i)
('l’jl'oali’-)

1

139

In the zbove sequence every f; is the tree for the evaluation of a function

part, every a; is the tree for the evaluation of an argument part. For every pair f;,

ay, the beta contraction of “f;(a;)” results in the application “fi41(a,41)”. The

sequence of trees is indeed the infinite sequence of beta contractions we are looking

for. In every tree, we have by definition of the function Tree the relation l = fst(1)

and by proposition 2.28.i ; = L. This is an element of D as required. If ¢ is the

limit tree resulting of the join of all those trees, proposition 2.28.iv together with

idempotence of join shows fst(t) = l; = L. This completes the proof of the case of
the infinite tree.]

Corollary 4.10
Theorem 4.9 will stay true if we substitute the function I4 7 for Tree in its

statement.

Proof:

Follows from the above theorem by homomorphism of the semantics. |j

In other words, the fact there are only finitely many labels used in the tree
traversal semantics for a given program implies there are finitely many functional
values used in the normal semantics for the same program. Refer now to semantics
4.7. We can show that using fiz as the fixed point operator in the definition of

14 7 will enforce termination of I, 7 for every program. This follow from the type

140
Ex — E¢7 — Valgy of I, 7. The domain E4 7 is Var — Val, 5. Within a

given program context, we can substitute the domain N of variables that effectively
occur in the program for the domain Var and the domain D as defined in 4.9 and
4.10 for Valy 7. Therefore E4 v become N — D, a finite domain since there are
only finitely many functions from a finite domain to another. Similarly domain
Ex can be considered a finite domain if we consider only expressions that actually
occur in the program. The type of the semantic function /47 can be considered
to be Ex — E(7 — D, a finite domain. Since all finite domains satisfy the
ascending chain condition, the use of fiz in the computation of ;7 will insure
termination.

Let’s make one remark on this astonishing result. In semantics 4.7 we do not
introduce integers, lists or any other data type than lambda-definable dynamically
scoped functions. Will the introduction of such data types affect the termination
properties? Obviously yes. We had shown that the domain Valg y defined by the

equations:
Valg7 = E¢y — Valgy — Valg 7

E¢7 = Var — Valg v
can be replaced by a finite domain because in the context of any given program we
use only a finite portion of it. Of course the finite portion in question changes from
program to program so we need the full domain to define the general semantics, but
as far as we are concerned with a specific program, we can always find a terminating

implementation for it. If we introduce an additional data type in the semantics the

141

equations become:
V=Dt+(E—+v-—PV)

E=Var— YV
where Dt stands for the new data type. Theorems 4.9 and 4.10 become proofs so
that we use only a finite portion of E — V — V within a given program context
but say nothing abont what portion of Dt is used. If Dt happens to be infinite,
we are no longer able to claim that we are using a finite portion of V and our
termination result no longer holds. This shows that data types added to dynami-
cally scoped lambda-calculus are not just syntactic sugar but really introduce new
features to the language; they cannot be emulated with already available functions.
On the other hand, data flow analysts will be pleased to notice they don’t need to
introduce an infinite data type to the language. They are usually concerned with
sets of variables and expressions occurring in the program. Those domains are finite

and for this reason do not disturb the termination properties of the language.

4.3 The Computation of Tarski Least Fixed Points

Now we look at some implementation guidelines for fiz. We already know
Jiz constructs an ascending chain. Each element of the chain has type Ex —
Eq.7 — Valg 7 because this is the type of Iy.7. Remember the whole chain con-
verges to I4 7 and all elements in the chain have the same typeas Is.7. Such elements
can be represented by a table of entries, each entry containing three fields.

1— The first field is a representation of a subexpression in the program, say a

142

pointer to a node in the parse tree.

2— The second field is an environment. In practice, a pointer to a table data
structure associating a value to each variable may be used.

3— The third field is a representation of an element of Valg 7, usually the address

of the entry point to a routine.

Such table represents an object in Ex — E47 — Valg _;; because it
contains a friple {c,¢,v) such that ¢ represents an object in Ex, e represents an
object in E.7, and v is in Valy 7. This represents the required mapping because
we will not allow the same pair e, ¢ to be duplicated in two distinct entries (e, ¢, v)
and (e, ¢, v') in the table.

The fixed point evaluation would proceed as follows:

a) We create an initial table To mapping every pair (e, c) of environment and
subexpression pair to the value L.

b) If we rewrite the definition of I, 7 to make the fixed point operator explicit,
we will obtain an iteration function that computes a new table T; from table
To. This iteration function will construct the next element in the ascending
chain.

c) We repeat application of the iteration function to obtain tables T3, T; etc.
until the relation Ty, 4; = T,, becomes true for some n. When this relation is

true, T(n) is a table representing Iy 7.

143

Unfortunately the plan we had just outlined is not applicable in practice.
Tables implementing objects in Ex — E¢7y — Val¢y are much too large. i
n is the number of variables in the program, m the number of subexpressions and
k the number of abstractions, the size of Val¢y is k + 2, because there are k
abstractions plus T and L in the actually used subset of Valy ;. The size of
E«7 = N — Valg 7 is (k + 2)" and the number of triples {c,e,v) in a table
representing an element of Ex — E4 7 — Valg 7 is the number of possible pairs
in (ExxEq.7): (m x (k+2)"). Therefore the number of entries in a table tends to
grow exponentially in the number of variables occurring in the program. We will
devote the rest of this chapter to the search of a more acceptable solution.

This procedure for fiz uses a complete representation of a function, that
is, there must be an entry (z, f(z)) in the table for every argument z. If we use
the terminology of Scott’s domains, the operator fiz operates explicitly on all the
information required to describe an element in the domain. We are not usirg a
partial element that describes only a portion of it. On the other hand, Y does not
have such a requirement. For example if we recursively evaluate fact(2) where fact
is the factorial function, we get fact(2) = 2 x fact(1), fact(1) =1 x fact(0) and
fact(0) = 1. That use of Y will identify that we only need to know fact(0) and
fact(1) in order to evaluate fact(3). For a given call f(z) the usual mechanisms
of recursion will identify the set of all values y such that the value f(z) depends

on f(y). Using the terminology of Scott, we only need to know a partial element

144
approximating f in order to know f(z) for a given z. We want an algorithm that
will compute a fixed point while keeping both the ability of ¥ to use only the

minimum required amount of information and the termination properties of fiz.

Theorem 4.11

Assume that domain A is finite and domain V satisfies the ascending chain

condition. Let §:(A — V) — (A — V) be defined as:
J=AAzg(f(m3))...(f(hnz))(2)

meaning that the function f = fiz(j) will contain n recursive calls of the
form f(h2)... f(hnZ).
Let function fiz" be defined as the following Pascal-like program:

Function fiz"(t: A — (V + {not_found}),
J:(A—V)— (A —Y), zA)2V,
Begin
If t(z) # not_found then return {(z)
else
Begin
temp? ;= ly,
Repeat
templ .= lemp2;
temp2 = j(fiz"(t[z := temp2])(j))(2);
until temp2 = templ;
return temp2;
end;
end.

145
Then for every z we have:
i) If the evaluation of z,) ...z, t(z) and g(z)...(zn)(z) terminate, then
the evaluation of fiz"(t)(5)(z) also terminate.
ii) If t is such that we have either t(z) C fiz(5)(z) or ¢(z) = not.found then
fiz"(8)(5) (=) E Siz(5)(=)-
iii) If t is such that we have either t(z) = fiz(5)(z) or t(z) = not.found then
[iz" () (5)(z) = fiz(j)(z)-
iv) [iz"(Az.not_found)(j) = [iz(j).

These statements require some explanations before we attempt proving them.
Function j is the iteration function used to define some fixed point f = fiz(j). The
function fiz” gives a method for evaluating fiz(5) when j is of the specified form.
It accepts a parameter { that is a table similar to the one usually used when fiz is
the fixed point operator except that we allow the option of having no entry (z, ¢(z))
in the table for a given 2. The element not_found represents this possibility.

Function fiz"” calls itself recursively in the fashion of Y. If there is no entry
in the table for z, then fiz” calls itself recursively as Y would do except that
an entry for z is created in the table, estimating f(z) as L. This is done in a
loop. When the call returns, we match the resulting value with the value stored
in the table to see if we had reached the fixed point. If this occurs, we are done.
Otherwise, the new value is stored in the table, superseding any entry already there,

and the recursive call is tried again. This is similar to the behavior of fiz because

146
if deeper in the call chain we discover a value is already stored for z in the table,
we return that value as a basis for computing the next approximation. This builds
an increasing sequence, starting at bottom and going up until convergence.

Because the recursive calls are generated as in Y, all the entries in the table
are relevant for the computation, keeping the table small. On the other hand if we
detect that Y is going into a loop because the value of f(z) depends on itself, we
revert to the behavior of fiz to insure termination. We keep the best of the two
worlds.

A clever reader will remark that more optimizations can be done to that
program. When we detect the value returned is independent from the values stored
in the table, for example when the termination condition of a loop is met, then the
second iteration of the repeat loop will bring the same value as the first one. We
can flag the returned value as final to avoid useless iterations of the repeat fir-like
loop. Similarly if we store a final value in the table, or if we reach a fixed point and
store its value, we can mark it as final in the table to avoid useless recomputations.
Those optimizations are unessential to the proof of the theorem, leading us too far
away from foundational work. We simply give a hint in that direction, leaving the

exact formulation of the resulting program to the reader.

Proof of theorem 4.11
We will restate all clauses 4.11.i trough 4.11.iv and write their proof imme-

diately after their statement.

147
4.11.i— If the evaluation of 2, z; ... Z,,, t(z) and g(z;) . ..(2,)(z) terminates, then
the evaluation of fiz”(¢)(5)(z) also terminates.

We want to evaluate fiz"(t)(5)(z) for some ¢. If a recursive call to fiz"
occurs, then ¢(z) must be not.found because recursive calls only occur in that
branch of the if statement. But the recursive call is made using the table tjz :=
temp2] and temp? is different from not_found. Therefore the height of the tree of
nested recursive calls is bounded by the number of elements in the set S(t) = {z |
t(z) = not.found} because at each call that number is reduced by one. The set
S(t) must be finite for this is a subset of domain A that is finite. This allows us
to make an induction on the height of the tree of nested recursive calls, excluding

infinite trees.

Basis: there are no recursive calls.

This can occur only if ¢{z) # nol.found, for otherwise we take the “reapeat
loop” branch of the if statement and that loop comtains a recursive call that is
going to be executed at least once. We have fiz"(t)(5)(z) = t(z). The evaluation

of ¢(z) terminates by hypothesis on {(z).

Induction: There is at least one recursive call.

We must have ¢(z) = not_found because otherwise we take the branch of

148
the if statement that contains no recursive call. The termination condition of the

repeat loop implies we have the equality:
fiz" (#)(5)(z) = z = j(fiz"(t[z := 2])(j))(2)

where z is the value contained in temp2 after the last iteration of the loop.

This z is the limit of the sequence z,, defined as follow:

=1
2mi1 = 5(Jie"(llz = zm])(j))(2)

The induction hypothesis assumes that each individual recursive calls in the
evaluation of the sequence 2y, terminates. The length of that sequence is finite
because an argument similar to the proof of 4.2 shows this is an increasing sequence
and domain V satisfies the ascending chain condition. This is enough to ensure

termination and to complete the proof of 4.11.i.

4.1Lii— If t is such that we have either £(z) C fiz(5)(z) or {(z) = not_found then
fiz"(0)(5)(2) E fiz(j)(z).

We use an induction on the height of the tree of recursive calls as in 4.11.i.

Basis: there are no recursive calls.

Again we can assume that ¢(z) # not_found and fiz"{t)(5)(z) = t(z). The
hypothesis imposed on ¢ implies trivially fiz"(¢)(y)(z) C fiz{j)(z).

149

Induction: there is at least one recursive call.

We must have {(z) = not_found, the termination condition of the repeat

loop implies we have the equality:
fi"(t)(5)(z) =z = j(fir" (t[z = 2])(j))(=)

where 2 is the value contained in temp2 after the last iteration of the loop.

This z is the limit of the sequence z,, defined as follow:

2o=1

zmir = j(fiz"(tz = 2m])(7))(2)

We use an induction on the number m of jterations of the repeat loop.
Basis: m=0.

We have zp = L C fiz(y)(z) trivialy.
Induction: we consider 2y 41.

Let 8 = t[r := zp). The induction on m assumes that z,, C fiz(5)(z).

This implies we have:

(*) 8(z) C fiz(j){z) Vv o(x)=not_found

150
because of the hypothesis imposed on ¢. The definition of zm.y is rewritten
as Zm41 = J(fiz"(s)(5))(z). We expand the definition of j:

(#+) 2m+1 = g(fiz" (2)(j)(h12)) ... (fiz"(8)(5)(hn))(z)

By (#) above, we have either 8(z) C fiz(§)(z) or #(z) = not_found. The induction

on the height of the tree of recursive calls assumes that:
(+24) Vi, [fiz"(s)(j)(hiz) C fiz(j)(hiz)

because fiz"(s)(s)(hiz) is a call to fiz” recursively generated from fiz"(t)(5)(z).
Using monotonicity of lambda—definable functions we can conclude from relations
(s+) and (* * *) the inequality:
zma1 E gfi2(5) (b)) ... (fi2"(j) (hn 2))(2)
Folding back the definition of 5, we get:
zm+1 € §(fiz(5))(2) = fiz(j)(z)

This completes the induction on m and implies for all m, 2(m) C fiz(5)(z). If
we use an argument similar to the proof of 4.2, we can show the sequence z(m) is
monotonicaly increasing. Therefore it must converge after some finite number of

iterations because the domain V satisfies the ascending chain condition. This gives

the result:
Jiz" () (j)(z) = zm T fiz(j)(2)

completing the proof of 4.11.ii.

151

4.11iii— If ¢ is such that either ¢(z) = fiz(5)(z) or t(z) = not.found then
[iz"(t)(5)(z) = fiz(j)(2).

There are two cases
Case 1—t(z) # not_found.

Then fiz”(t)(;5)(z) = t{2z) = fiz(5)(z) by the hypothesis on imposed on ¢.
Case 2—1(z) = not_found.

The termination condition of the repeat loop implies we have the equality

(¥) [iz"(0)(5)(2) = 2(z) = j(Jiz"(t]z = 2(2)])(s))(2)

where 2 can be thought as a combinator depending on § and {. We omit to write
the dependencies on ¢ and j as z(t)(j)(z) to avoid unduly complicated syntax. We

also have z(z) # not_found, therefore we have:

fiz"(t[z = 2(2)))(§)(z) =tz = 2(z|(z) = 2(2)
This implies by transitivity of equality:
() fig"(tlz = 2(2)])(5)(z) =j(fiz"(t]z = 2(2)])(s))(z)
Let’s define the diagonal set of pairs D(j)(t) as follows:

D)) = {{z, 9} | y = fiz"(t]z := 2(z)])()(z)}

152
The set D(t)(y) is called the diagonal set because it diagonalizes the function
AyAz.fiz"(t[z = z(2)|(y)(y). Taking D as a function, (+) and (++) will imply

the relation:
D(t)(j)(z) = §(D(t)(7)) (=) = fiz"(t)(5)(z)

that is D(t)(j) = fiz"(t)(;j) is a fixed point of j. Considering the hypothesis of

4.11.iii implies the hypothesis of 4.11.1i, we can write:

Jiz"(8)(j)(z) E fiz(j)(z)

On the other hand, fiz is the least fixed point operator, therefore the inequality

can be reversed. This shows

fiz"(8)(5)(z) = fiz(5)(z)
and this completes the proof of 4.11.iii.
4.11Liv— fiz"(Az.not_found)(j) = fiz(j).

This follows immediately from 4.11.iii, taking Az.not_found as ¢.
End of proof of 4.11§

CHAPTER 5
ABSTRACT SEMANTICS Of LEXICALLY SCOPED LAMBDA-CALCULUS

This chapter is devoted to the problem of enforcing termination of lexically
scoped lambda—calculus. iIn the preceding chapter we did show how to enforce
termination in the dynamically scoped case. Unfortunately it is not possible to carry
the same result in a straightforward way to the lexically scoped case. This would
amount saying that every partial recursive function would terminate. Termination
occurs in the dynamic case because we can prove for any program only a finite
portion of its semantic domain is actually used. The proof 1s based on the existence
of a one-to—une correspondence between the functions that are used in the program
execution and the abstractions actually occurring in the program text.

Such one-to-one correspondence doesn’t exist in the lexical case because the
same abstraction may denote many functions depending on the environment where
the free variables are bound. If in the program execution the same abstraction is
evaluated infinitely many times with infinitely many different bindings for its free
variables, it may return infinitely many different values. The case will occur with
a function f that recursively calls f(z + 1) when called with a Church numeral

z as an argument. This involves the Church successor function AzAyAz.y(zyz).
133

154

The successor z + 1 is an abstraction AyAz.y(zyz) that has infinitely many values
depending on the Church numeral value of the free variable z. We cannot enforce

termination in the lexical case with the method used in the dynamic case.

6.1 The Normal Semantics of Lambda-Calculus

We should restate at this point we are looking for a semantics suitable for
data flow analysis. For that purpose we do not need an exact representation of
lambda-calculus. It is sufficient to write a terminating approximation of its se-
mantics. However, the usual semantics does not immediately support an obvious
approximation. The one we have in mind uses side-effect like constructs. We will
have to bring a representation of that semantics that is close to the furctional defini-
tion of the run-time <ystem of an actual compiler and build the approximation from
it. This forces us to write this chapter as a series of semantics. Each semanfics in
the series is a representation of the previous one but is closer to a compiler run-time

system. Eventually we will be ready to write the terminating approximation.

Semantics 5.1 The Normal Semantics of Lambda-Calculus
Domains

Var : The domains of variables

Ex : The domain of expressions

E=Var —V

the drmain of snvironments

155
V=V—YVY

the domain of values

Functionality
ILEx—E—YV

Semantics
Exp — var

Ix)(e) = elx]
Exp -~ Avar.Expi

If) x.e1)(e) = Av.I]el)(e[x := 1))
Exp — Exp1(Exp2)

Ife1(e2)](e) = Met)(e)(Ie2])
End of semantics 5.1.}

The meaning of this semantics is obvious, especially if the reader has looked
at our explanation of the semantics of the corresponding LISP constructs in chapter

3.

5.2 Closures
Our first transformation will be the introduction of closures. In an actual
run-time system, a functional value is represented by a pair, called a closure, con-

sisting of a two pointers, one to an environment and one to the entry point of

156
a routine. This gives the domain equation Cl = E X (E — V). When the

time comes to call a c’osure f € Cl, we first reconstitute the corresponding func-
tional value in V, passing the environment to the code with the help of function

Bind(f) = snd(f)(fst(f)). This yields the following semantics.

Semantics 5.2 A Semantics with Explicit Closures

Domains

Var : The domains of variables
Ex : The domain of expressions
E =Var — Cl

the domain of environments
V=Cl—UCl

the domain of values
Ci=Ex(E—YV)

the domain of closures

Functionality
Bind:Cl — V

Bind(f) = snd(f)([st(f))
ILEx—E —Cl

Semantics

157
Exp —+ var
Iixl(e) = efx]
Exp — Avar.Expl
1D x.e1](e) = (¢, Aehv.Iet](elx = o)
Exp — Exp1(Exp2)
Ie1(e2)](c) = Bind(le1)(e))(fe2](e))

End of semantics 5.2.

Let’s convince ourself that 5.2 is indeed a representation of 5.1. Here we

compare pair wise the clauses for each syntactic constructs.

5.1— Ifx}(e) = efx]
5.2— Ifx](e) = e[x]

51— I[xx.et)(e) = Av.I[el)(e[x = v])
5.2— I x.et](e) = (e, Aev.I[e1](e[x := v]))

51— Ife1(e2}](e) = Ife1)(e) (Ile2)(e)
5.2— I[e1(e2))(e) = Bind(I[e1](e))(I[e2](¢))

The key difference is in the rule for abstraction where semantics 5.2 abstracts

out the environment ¢ and adjoins it as separate pair component. This difference in

158

representation is compensated in the rule for application where the Bind function

replaces things as they should work.

5.3 Call Frames

Let’s introduce undelying ides of the next semantics. In an actual compiler,
when a function is called, we create a small data structure called a “call frame” (or
“activation record”) that maps the formal parameters to the actual values they take
within that particular call. The domain F of call frames is given by the equation
F = Var — (Cl + {not_found}). A variable is mapped to its value or it is not
found in the frame. The list of all relevant call frames is the representation of some
environment. This gives the equation E = nil +(F x E). The value of some variable
is found by scanning the list of frames until the proper frame is found. This is done
with the function Apply defined as:

Apply.E — Var — Cl

Apply(nil)(z) = L)

Apply((e, r})(z) = if e(z) # not_found then e(z) else Apply(r)(z)
Note how Apply(f) maps an environment in list form to the same environment in
functional form. This is expressed by the type of Appily:E — Var — Cl. The

creation of a new environment with e[x := v] is redefined as:

e[x := v] = ((Au. if y =z then v else not_found),e)

159

In other words, we simply build a frame for [z := v] and push it on top of e. We

are now ready to write semantics 5.3.

Semantics 5.3 A Semantics with Explicit Call Frames
Domains
Var : The domains of variables
Ex : The domain of expressions
F = Var — (Cl + {not.found})
the domain of frames
E = {nil} + (F x E)
the domain of environments
V=Cl—Cl
the domain of values
Cl=Ex(E—YV)

the domain of closures

Functionality
Bind:Cl — V
Bind(f) = snd(f)(f5t(f))
Apply: E — Var — Cl
Apply(nil)(z) = L)
Apply((e, r))(z) = if ¢(z) # not_found then e(z) else Apply(r)(z)

160
ex := v] = ((Au. if u =z then v else not_found), ¢)

ILEx —E —Cl

Semantics

Exp — var

Ifx}(e) = Apply(e)ix]
Exp — Avar.Expl

I[Ax . e1)(e) = (e, Aedv.Iet]{e[x := v]))
Exp — Expi(Exp2)

Ile1(e2)](¢) = Bind(I[e1)(e))(I]e2](e))
End of semantics 5.3. |}

The key to this semantics is the definition of Apply and e[x := v]. Ifit is clear
to the reader that Apply(e)[x] indeed retrieves the value of z in the environment
e and that the equality Apply(e[x = v]) = Au. if u = x then v else Apply(e)(u)
holds, then the correctness of the semantics follow from a pair wise comparison of

the corresponding semantic rules.

5.2— Ifx)(e) = ef]
5.3— I[x)(e) = Apply(e)[x}

5.2— I|X x.e1)(e) = (e, AeAv.I[el](e[x := ¢}))
5.3— IfA x.el](e) = (e, AeAv.I[et](e[x := v])}

161
5.2— Ife1(e2)](e) = Bind(Ife1](e))(I]e2](e))
5.3— Ife1(e2)](¢) = Bind(Ife1](e)) (/[e2](e))

b.4 Lexical Scopes and Return Addresses
The sernantics is now much closer to the form required to support a terminat-
ing approximation. We are still lacking some information that is usually associated
with call frames. One useful piece of information is the lexical scope where the
variables are defined. This is in one-to-one correspondence with the abstraction
expression that is called. The other piece of information is the return address, infor-
mation that is in one-to—one correspondence with the application expression where
the call occurred. A frame labeled with this information is defined by the domain
equation F = (Var — (Cl + {not_found})) x (Ex x Ex). The first component
of domain F is a frame as was defined in 5.3. The second component is a pair
(Ex x Ex) where the first expression is an abstraction expression representing the
lexical scope and the second expression is an application representing the return
address. A complete environment is a list of frames as in 5.3. Of course, function
Apply has to be redefined to ignore the second component of each frame:
E={nsl}+(F x E)
Apply. E — Var — Cl
Applylnil)(z) = L)
Apply({(e, 1), "))(z) = if e(z) # not_found then e(z)

162
else Apply(r)(z)
Similarly, new parameters (a,5) have to be introduced in e[x := v] to handle the

extra information:
elx = v}/{s.b) = ({/.{a.b)).€)
Where [= Au. if u = z then v else nol_found
Another change occurs to the semantics as well. The lexical scope is available
when the abstraction is evaluated but the return address is not until an actual call is
made. This changes the closure into a triple Cl = (Ex(Exx(Ex — Ex — E —
V7)) that contains an environment, a lexical scope and a function that accepts a

label for a call frame and an environment to return a value. The Bind function is

affected as follows:
send(z) = fat(and(z))
trd(r) = snd(snd(z))
(z.y.2) = (z.{y.2.))

Bind:Ex — Cl —V
Bind(ez)(z) = (trd(z))(scnd(z))[(Jez)(fat(z);)
The function identified as ird(z) expects both expressions required to compose a
label and an environment to return a value in V. Bind(ez)(z) simply extracts all

the required information and obtains the value in V from the closure as should be

expected. This yields the semantics:

Semantics 5.4 A Semantics with Labeled Call Frames
Domains
Var : The domains of variables

Ex : The domain of expressiops

RetAdd = Ex

The domain of return addresses

LexScope = Ex

The domain of lexical scopes

F = (Var — (Cl + {not_found})} x (LexScope x RetAdd)

the domain of frames

E = {nil} + (F x E)

the domain of environments

V=Cl—Cl]

the domain of values

Cl = (E x (Ex x (LexScope — RetAdd — E — V)))

the domain of closures

Functionality

acnd(z) = fst(snd(z))
trd(z) = end(end(z))

(z,9,2) = (z,{,2))

Bind:Ex — Cl— YV
Bind(ez)(z) = (trd(z))(scnd(z))(ez)(fst(z))

Apply:E — Var — Cl
Apply(nil)(z) = Ly
Apply(((e, 1), r))(z) = if e(z) # not_found then ¢(z)
else Apply(r)(z)

elx := v)/{a,b} = ({/,{a,b)),€)
Where f = Mu. if v =z ihen v else not_found

IlEx —E —Cl

Semantics
Exp — var
I[x](e) = Apply(e)fix]
Exp —+ Avar.Expl
Ifrx.e1)(e) = (e, [Mx. e1], AarbAerv.I[e1](e[x := v]/{a,b)))
Exp — Exp1(Exp2)

164

165
I[e1(e2)](e) = Bind[e2)(I[e1](e)) (Ile2)(e))

End of semantics 5.4.]

It is not at all trivial that the addition of irrelevant information doesn’t
affect the correctness of the semantics. This operation has a drastic effect on the
type of the values involved. It may also affect termination of the program when
the computation of the additional information enters an infinite loop. The main
difference between 5.3 and 5.4 is the fact we have to gather additional information
to handle environments properly. This is best expressed in a pair wise comparison

of the equations.

5.3— Ifx}(e) = Apply(e)[x]

5.4— Ilx}(e) = Apply(e)fx]

5.3— Ile_oll(e) = (8, ACAU.IIGI'(B[X - V]))
5.4— I x.e1)(e) = (e, [Xx.e1], AarbAedv.I[e1)(e[x = v]/(a,b}))

5.3— Ile1(e2)](e) = Bind (I[e1](e)) (/[e2)(e))
5.4— Ife1(ad)](e) = Bind[e2](I[e1](e)) (I[e2](e))

53— Bind (z)= snd(z)(fst(z))
5.4— Bind(ez)(z) = (trd(z))(scnd(z))(ez)(fst(z))

166
Look at the rule for abstraction. The last component of the closure requires

two more parameters in 5.4 than in 5.3. The parameter a is the lexical scope and
is enclosed as the second component of the closure. The parameter d is the call
return address and is supplied to the Bind function when the application is made.
Bind had to be redefined to handle the extra information in order to preserve the

meaning. We hope at this point the reader will agree that our representation is

correct. We shall now continue with the next transformation.

5.5 Environments Viewed as Trees

We should observe that within an actual compiler, call frames form a tree

rather than a list structure. This is exemplifiad in the diagram below.

(£1,([Mx. e1], [e2(23)]))

! | |

{12, ([Xy . 4], [e6 (eB)])) (/3,(P)z. o7], [e8 (e0)]))

The frame f1 results from a call of the value of the abstraction Ax. el result-
ing from evaluation of the application e2(#3). Within the scope of Ax. e1 there are
two other abstractions that are instantiated: Ay.e4 and Az.e7. These abstractions
are called from the applications ¢5(e6) and 8 (e9) respectively. This yields to the
creation of the corresponding frames f2 and f3. The resulting environments share

167

the frame 1, causing the occurrence of a tree structure where the act of pushing

a new frame on the environment corresponds to the act of spawning a new child
node at the bottom of the tree. In this example, f2 and f3 are spawned from f1.
Any environment occurring in the evaluation of an expression can be viewed as a
branch of the tree starting from the root and including all son rodes down to some
descendent thai was the last frame included in the environment.

We plan to use this organization of frames into a treelike structure to for-
mulate the approximation that will ensure termination of the semantics. Within
a branch, a frame can be viewed as a function of its path name consisting of the
list of all labels occurring from the root node down to the frame. For example,
the path name for f1 is {Ax.e1,e2(e3)) and the path name from f2 is the list
(Ax.e1,e2(e3)), (Ay.ed4,e5(e6)). From a given environment this path name is
guaranteed unique for every frame because the lengths of the paths to each frame
are all different. This allows a last transformation of the exact semantics before we
forrnulate our approximate semantics. We want to make the environment appear
as a function from path names to frames. The domain equations are:

L = (Ex x Ex)

L is the domain of labels for frames

P = {nil} + (L x P)

P is the domain of path names

F = Var — {Cl + {not_found})

168

F is the domain of frames
E=P—F)xP
E is the domain of environments
Now an environment is considered as a pair (e,p) where ¢ is a function
mapping path names to frames and p is the path name of the topmost frame in
the environment. The path names to other frames in the same environment are
identical to the prefixes of p. This allows to define Apply as:
Apply:E — Var — Cl
Apply((e, nil))(z) = Loy
Apply({e. (L. -))(z) = if e({l, r))(z) # nol-found
then ¢({l, r))(z)
else Apply((e, r)}(=)
The update of an environment is defined as:
elx := v]/(a,8) = (fat(e)[p = f],p)
Where [= Au. if u =z then v else nol_found
and p = ({a, b), snd(e))
This means we find the frame f that assigns v to z, we compute the path p
to the frame f and we make f the tobmost frame of the environment. We can now

define the semantics as:

Semantics 8.5 A Semantics with Environments as Function of Path Names

Domains

Var : The domains of variables

Ex : The domain of expressions

RetAdd = Ex

The domain of return addresses

LexScope = Ex

The domain of lexical scopes

F = (Var — (Cl + {not_found}))

the domain of frames

L = (LexScope x RetAdd)

the domain of labels frames

P={nl}+(LxP)

the domain of path names

E=(P—F)xP

the domain of environments

V =Cl— CI

the domain of valiles

Cl = (E x (Ex x (LexScope — RetAdd — E — V}))

169

170

the domain of closures

Functionality
scnd(z) = fat(snd(z))
trd(z) = snd(snd(z))

(2,9,2) = (2, {y, 2))

Bind:Ex — Cl — V
Bind(ez)(z) = (trd(z))(scnd(z))(ez)(fot(z))

Apply:E — Var — Cl
Apply({e, nil))(z) = Ly
Apply((e, (I, r))){z) = if e({l, r))(z) # nol_found
then e((l,r))(z)
else Apply({e, r))(z)

elx = v]/{a,b) = (fatle)lp = f],p)
Where f = Au. if v = z then v else nol_found
and p = {(a,), snd(e))

ILEx —E —Cl

Semantics

Exp — var

171
Ix)(c) = Appiyle}(z)
Exp — Avar.Expl
IPx. e1)(e) = {e, [Ax. e1], AaAbAerv.I[et](e[x := v]/{a,]))}
Exp — Expi(Exp2)
Ie1(e2)](e) = Bind[e2](I[e1)(e)) (/[e2](e))
End of semantics 5.5.§

The reader should observe the semantic equations in 5.5 are in exact syntactic
identity with the corresponding equations in 5.4. The only differences lie in the
domain equations and in the definition of Apply and environment updates as we

had discussed them before the introduction of 5.5.

5.6 Approximate Trees

We had already shown that a call frame is uniquely identified by its path
name within a given environment. This is not true acroes environments. For exam-
ple, recursion may cause the same abstraction to be called several times causing the

occurrence of several frames sharing the same path names as in the diagram below.

(F1,([» x.e1],[e2(ed)]))

l | I

(72, y.e4],[e5(e6)])) (f3,(I) y.e4] [eb(eB)]))

172
The function Ay.e4 is called recursively from Ax.e1. Two frames f2 and f3

are generated from two distinct recursive calls. They share the same path name in
the tree of frames despite the fact they occur in distinct environments. This suggests
the modifications to 5.5 we will introduce in semantics 5.6. The first approximation
we have in mind is to join all those frames sharing the same path name into a
single one. Now, at any moment, at most one frame will exist for every path name
in the compiler run-time system. Therefore, parameter passing is no longer the
assignment of a value to a variable into the frame but the addition of the new value
to the sum (join) of all values this parameter has taken in previous calls of the same
function. This is so because we do not want a frame to lose information about one
environment because that same frame is reused for a new call.

The handling of environments becomes more complex than the domain equa-
tion E = (P — F) x P suggests. The component of type G = (P — F) now
represents the tree like data structure that contains all environments in the ru:.-time
gystem. Every call may modify that treelike structure because actual parameters
are added to existing information rather than assigned to a variable. The type of the
semantic function [is changed from Ex — E — Cl to Ex — E — (Cl x G)
to provide some permanence to the impact of parameter passing on frames. The
evaluation of every expression will return not only a closure in Cl but also a modi-
fied tree of frames that will be part of the environmen! supplied to the evaluation

of the next expression. Similarly, the domain V = Cl — CIl is modified to

173
VY = (Cl x G) — (Cl x G) to reflect the changes occurring to the tree of frames
when a function is called. This introduces the notion of a global tree of frames that
is side-affected as the evaluation progress. The value of an expression depends not
only of the syntax of the expression but also on the current state of that tree. This
is the meaning of the pair Cl x G that occurs in many domains. The Cl component
stands for the abstraction that is the value of the expression and the G component
stands for the current state of the tree.
Given some trees, environments are uniquely specified by their path name,
80 we can replace the environmen. component of closures by the corresponding path
name, changing the type of closures from {E x (Ex x (LexScope — RetAdd —
E — V))) to the corresponding type (P x (Ex x (LexScope — RetAdd —
E — V})). The path name component can in turn be transformed into an envi-
ronment if it is paired with the current tree of frame when the closure is bound into
a function to be called. This is consistent with the already discussed notion of tree
of frames as a global data structure that is side-effected as the program execution
progresses. This reflects exactly how a compiler run-time system should work.

We are now ready to write the new semantics.

Semantics 5.6 A Semantics with Environments Uniquely Determined by Path

Names
Domains

Var : The domains of variables

174

Ex : The domain of expressions

F= (Var N (Cl + {nOt-f‘mnd}))

the domain of frames

L = (Ex x Ex)

the domain of labels for frames

P={nil}+ (L x P)

the domain of path names

G=P—T

the domain of trees of frames

E=GxP

the domain of environments

v=(éle)—(Gle)

the domain of values

Cl= (P x (Ex x (LexScope — RetAdd — E — V)))

the domain of closures

Functionality

175
scnd(z) = feot(snd(z))
trd(z) = snd(end(z))

(z’ yl z) = (z’ ”)z

Bind:Ex — (Cl1 X G) — V

Bind(ez)(z, g) = (trd(z))(acnd(z))(ez)((g, fot(z)))

Apply:E — Var — (C1 x G)
Apply((e, nil))(z) = (L, ¢)
Apply(le, (I, 7)))(z) = If e(< I, r >)(z) # not_found
then (e({l,r))(z), ¢)
else Apply((e, r))(z)

elx := vl/{a,b) = (fot(e)lp := Ju fat(e)(p)], p)
Where f = Au. if u = z then fst(v) else not_found
and p = ((a, b), snd(e))

I:Ex —E — (ClxG)

Semantics
Exp —+ var

Iix)({g,p)) = Apply((9, PIx]
Exp — Avar.Expl

Irx.e1])((g, 7)) = (v, 9)

176
Where u = (p, [Ax. e1], AaAbAedv.I[et](e[x := v]/(a,b)))

Exp — Exp1(Exp2)
Ie1(e2))({g, p)) = Bind[e2](u)(I]e2)((snd(u), p)))

Where u = Ife1)((g, p))
End of semantics 5.6.'

We will compare the semantic equations of 5.6 and 5.6 pair wise, in order to

illustrate how these semantics relate to each other.

5.5— Ifx)(e) = Applyle](2)
5.6— Ix)({g, p)) = Apply({g,p))Ix]

In both semantics, environments have the form (g, p) where g is a tree of
frames and p is a path name. Except for the different definitions of Apply, both
definitions are identical. So let’s look now at the definitions of Apply.

5.5— Apply:E — Var — Cl
Apply((e,nil)){z) = L)
Apply((e, (I, N)(z) = H e({l,))(z) # not-found
then ¢(< I,r >)(2)
else Apply((e, r))(z)
5.6— Apply:E — Var — (Cl x G)
Apply({e, nil))(z) = (L, ¢)

177
Apply({e, {1, r)))(z) = ¥ e(< {,r >)(z) # not_found
then (¢((l,7))(2), ¢)
else Apply((e,r))(z)

The only difference is in the type of the returned value. In 5.6 we append
to the returned closure the current state of the tree of frames. The rest of the

definition is unaffected.

5.5— I[Ax.e1](e) = (e, [Ax.e1], Aarblerv.I[e1)(e[x := v]/(a,b)))

5.6— I[rx.e1)({g,p)) = (u,9)
Where u = (p, [Ax. e1], AaAbAerv.[[e1](e[x := v]/(a,)))

In 5.6, u denotes a closure that corresponds exactly to the closure created in
5.5 except that only the path name of the environment is included. This closure u

is paired with the tree of frames g.

5.5— Ife1(e2)}(e) = Bind[e2](I]e1](e)) (I[e2](¢))
56— Io1(e]((g,3)) = Bind[e2}(fe2]((s.2)) (Zle2] (snd(v),)

Again semantics 5.5 is almost identical to 5.6 except we have to pipeline the
side effects that may occur to the tree of frames across successive calls to I. The

function Bind has been defined to allow such pipelining to the occurrence of I that

178
is involved in the abstraction that is the value of e1. We refer to the semantics of

Bind for details.

5.5— Cl = (E x (Ex x (LexScope — RetAdd — E — V)))
Bind(ez)(z) = (trd(z))(scnd(z))(ez)(fat(z)
5.6— Cl= (P x (Ex x (LexScope — RetAdd — E — V)))
Bind:Ex — (CIxG) — V

Bind(ez)(z, g) = (trd(z))(acnd(2))(ez)(g, fot(z)})

Remember that in 5.6 a closure doesn’t include an environment but only a
path name. The closure is usually supplied with the current tree of frame that can
be paired with the included path name to obtain the wanted environment. This

1 forces the evaluation of the body of an abstraction with the current state of the tree
of frames, allowing propagation of side—effects involved in yaramoter passing. The
\

side effect is visible in the definition of environment update.

5.5— elx := v]/(a,b) = {at(e)lp := fl.p)
Where f = Au. if u =z then v cise not_found
and p = ({a, b), and(e))
5.6— elx := v]/{a,8) = {fat(e)[p := SU [fat(e)(p)], p)
Where f = Mu. if u =z then fst(v) else not_found
and p = ({a,), and(e))

179

The temporary variable f represents in both semantics » newly built frame
resulting from the call of a function. In 6.6 v has type (Clx G) and the G component
must be dropped from the frame f with the help of the fst function. When the
value of the variable will be retrieved with the Apply function, the current state of
the tree of frames will be paired with the closure. The path name to the frame f is
computed exactly in the same way in both semantics but the global tree of frames
is not modified the same way. In 5.5 f supersedes any existing frame with the same
path name but in 5.6 we join f with those frames, implementing the approximation

we had in mind: every branch of the iree has distinct path names.

6.7 Folding Infinite Trees

We are now very close to a terminating semantics. Let's look at the type of

closures.

Cl = (P x (Ex x (LexScope — RetAdd — E — V)))

The domain Ex is finite. We can show with an argument similar to the
one used in the case of dynamic scoping that the elements of LexScope —
RetAdd — E — V are in one- to-one correspondence with the abstractions
that actually occur in the program. Therefore Cl would be a finite type for practi-
cal purposes provided P is a finite type. Unfortunately this is not the case, as the

equations show:

180

L = (LexScope x RetAdd)
P={nil}+ (L xP)

Elements of P are lists of labels of arbitrary long length. We can ask the
question wether we can impose a bound on the length of these lists, turning the
domain of closures into a practically finite domain. The answer is yes. The domain
Ex is practically bounded in the context of a program to the expression: that
actually occur in that program. The first component of a label is the abstraction
that was instactiated to build a frame and the second component is the application
that generated the call. If the frame gets longer than a certain bound, say the
number of pairs of expressions that occur in the program, then the same expression
is calling itself recursively from the same point of call because the same label will
occur twice in the path name. We propose to introduce a new approximation that
will identify all those frames resulting from the call of the same abstraction at the
same application. This allows us to avoid path names that repeat the same label.
The approximation will be defined with the help of two functions.

Parent.L — P —P-—P

Parent(l){nil)(p) = p
Parent()({g.7))(p) = Hf ¢=1 then (g,r) else Parent(l)(r)(p)

Fold:P — P

Fold({q,p)) = Parent(g){p)((g,p))

181

The function Parent(l)({g, r))(p) finds a portion of the path name (g, p) that
begins with the root and ends with the label /. If no such portion exists then the
value p is returned. The function Fold is used to avoid those path names (g, p)
where the label g occurs twice. We assume that no label occurs twice in p. We look
if ¢ has a parent in p and return (g, p) if none is found. The result is the path name
of a frame that has label ¢ and whose path name complies with the requirements
of the intended approximation.

These functions are indeed doing their job but they have one harmful side-
effect. If path names are truncated with the help of Fold, they no longer represent
the sequence of frames to be searched when a variable is evaluated in a given en-
vironment. The order of search no longer match the parenthood relationship in
the tree of frames. This forces the introduction of a new domain S of search lists

specifying the search order, and of a new function Push to introduce a new frame

in the search list.
S={nil}+ (P x8)

Filter:P — S — S
Filter(p)(nii) = nil

Filter(p)((g, 8)) = if p = q then Filter(p)(s) else (g, Filter(p)(s))

Push:P —< 8 — 8
Push(p)(2) = (p, Filter(p)(s))

182

Domain S is the domain of lists of path names to be searched when a variable

is evaluated. We do not want those lists to grow infinite. The easiest way to avoid
it is to not search the same frame twice. If a path name p is pushed on top of a
search list, we remove it from the rest of the list. This correct because if a variable
is not found in a frame when it is searched for the first time, it will not be found
the second time. Search lists are finite because from a practical point of view, the
domain of path names is finite. This change forces us to define environments as
E = G x S because search lists now truly represent the frames to be searched. The
path name to the current frame occurs on top of the list. In closures, search lists

must be included in place of path names, giving the new domain equation:
Cl = (S x (Ex x (LexScope — RetAdd —+ E — V)))

We can now write the semantice.

Semantics 5.7 A Semantics Using Only Finite Domains

Domains

Var : The domains of variables

Ex : The domain of expressions

RetAdd = Ex

the domain of return address

LexScope = Ex

the domain of lexical scopes

F = (Var — (Cl + {not_found}))
the domain of frames

L = (LexScope x RetAdd)
the domain of labels for frames

P = {nil} + (L x P)

the domain of path names

S ={nil} + (P x8)
the domain of search lists

G=P—F

the domain of trees of frames

E=GxS

the domain of environments

V=(ClxG)— (ClxG)

the domairn of values

Cl = (S x (Ex x (LexScope — RetAdd — E — V)))

183

the domain of closures

Functionality

scnd(z) = fot(end(z))
trd(z) = snd(snd(z))

(,9,2) = (z,{y, 2))

Bind:Ex — (CIXG) — V

Bind(ez)(z, g) = (trd(z))(acnd(z))(ez)((g, fot(2)))

Apply:E — Var — (Cl x G)
Apply({e, nil))(z) = (L),)
Apply({e, (p,7)))(z) = if e(p)(z) # not_found
then (e(p)(2), ¢)
else Apply((e, r))(z)

efx := v]/(a,b) = (fat(e)ip = fU fst(e)(p)), 5)
Where f = Au. if u = z then fst(v) else not_found
and p = Fold({(s,b), fat(snd(e)))
and 8 = Push(p, snd(c))

FEx —E — (Clx G)

184

185

Semantics
hp — YAY

Ix)({g, p)) = Apply({g,9))Ix]
Exp — Avar.Expl

Ix.e1)((g, 8)) = (u,9) Where
u = (s, [Xx. 1], AaAbAehv.Ifet](elx := v]/{a,)))
Exp — Exp1(Exp2)
Ie1(e2)]((g, p)) = Bind]e2](u)(Ife2}((2nd(u), p)))
Where u = I{e1]((g, p))

End of semantics 5.7.}

The semantic equations are unchanged in that semantics. The only differ-
ences occur in the auxiliary functions handling environments. let’s compare them

pair wise.

56— P={nil}+(LxP)
E=GxP
Cl = (P x (Ex x (LexScope — RetAdd — E — V)))

57— P={nil}+ (L x P)
S={nil}+ (P x8)
E=G xS

186
Cl = (S x (Ex x (LexScope — RetAdd — E -— V)))

The domain of path names is not changed, however search lists are used in
the definition of environments and closures in place of path names. We still use the

paths to find the values of variables in environement but those paths have to be
stacked in seach lists.

5.6— Apply:E — Var — (Cl x G)
Apply((e, nil))(z) = (L, ¢)
Apply({e, (I, r)))(z) = if e(< I,r >)(2) # not_found
then (e((f,1))(2), ¢)
else Apply((e, r))(z)

5.7— Apply:E — Var — (Cl x G)
Apply((e, nil))(z) = (L,)
Apply({e, {p,n)))(z) = if e(p)(z) # not_found
then (e(p)(z), ¢)
else Apply((e, 1)) (z)

The function Apply is modified to search through a search list instead of a
series of beginning portions of the current path name. In 5.6, we try the path name
(1, (i3, . ..)), then the path name (l3,...) and 80 on so forth each time pulling out a
frame and generating a new path name from the rest of the list. This search order

187
is no longer correct in 5.7. We keep the correct search order in the search list; the
current path name te be searched being on top of the list. It is not the list itself as
in 5.6.

56— elx := v]/{(a,8) = (fat(e)lp := S U fat(e)(p)], p)
Where f = Au. if u =z then fst(v) else not_found
and p = ((a, b), and(e))

5.1— efx := v]/{a,b) = (fot(e)[p = S [at(e){p)])
Where f = Au. if u = z then fst(v) else not_found
and p = Fold({(a,), fot(and(e)))
and 8 = Push(p, sndle))

In 5.7 the path name p is folded before use. Also we have to compute

separately the new search list s and include it in the resulting environment.

6.8 Termination of Lexically Scoped Lambda—Calculus
Now let’s examine the termination properties of 5.7. We claim that every

domain involved in that semantics is finite for all practical purposes. Just look at

the domains.

Var : The domains of variables

Ex : The domain of expressions

-

Only a finite portion of these domains actually occurs in a program.

L = (LexScope x RetAdd)

The cartesian product of finite domains is finite.

P = {nil} + (L x P)
S = {nil} + (P x8)
These domains are effectively finite because we restrict ourselves to a specific

finite subset of all lists in those domains.

(LexScope — RetAdd — E — V)

That domain occurs in the definition of closures. We use only a finite portion
of it, generated by the abstractions that actually occurs in the program. The
abstraction used for environment updates efx := v]/(a, b) may also force us to use
the join of values generated by abstractions. More precisely, the finite subset of
LexScope — RetAdd — E — V we are using is the set Sub defined by the

equations:

Subl = {trd(I[Ax. e1}(€)) | Ax.e1occurs in the program}
Sub= {U{z | z € 8} | s C Subl}

The set Sub is finite because Subl is finite and therefore has a finite number
of subsets. The set Subl is provably finite because there is only a finite number of

189
expressions Ax.e1 in the program and trd(/{Ax.e1](e)) is independent of the envi-
ronment e. The fact we had not proven that there are finitely mauny environments

does no harm here.

Cl= (S x (Ex x (LexScope — RetAdd — E — V)))

All of S, Ex and LexScope — RetAdd — E — V are finite, therefore
Cl is finite.

F = (Var — (Cl 4 {not_found}))

G=P—F

E=GxS

V=(ClxG)— (ClxG)

The disjoint union, the cartesian product and the function space of finite
domains is finite. This exhausts the list domains involved in 5.7.

Last but not least, the type of I is Ex — E — (C1 x G). This is a
finite domain, it satisfies the ascending chain conditions. Therefore the methods of

chapter 4 may be used to find a terminating implementation of semantics 5.7.

CHAPTER 6
CONCLUSION

The thesis is over. It is now time to examine how much was achieved and
what still needs to be done. Most of chapter 5 is conjecture. As is pointed out
in chapter 3, the methods for proving that representations and approximations are
indeed representations and approximations are much too tedious to be presently
useful. The chain from semantics 5.1 to semantics 5.7 is plausible but its correct-
ness is not proven. We claim there exisis a one-to-one correspondence between
the abstractions occurring in the program and the effectively used elements of type
LexScope — RetAdd — E — (Cl x G) that occur in 5.7. This correspon-
dence is similar to what is proven in 4.9. This claim too is left unproven. We could
have used an induction similar to the proof of 4.9, but this approach would require
a transformation of 5.7 into a treelike representation of the semantics (as in 4.8)
and the correctness of that transformation oo would have to be left unproven. The
first step to be achieved in future work is the development of a method that allow
easy demonstrations of when a semantics is the representation or the abstraction of
another. The use of represcntations has such a great importance in all our work that
we cannot claim to have a completely formal framework for the writing of semantics

190

101
until this is done. However, computer scientists are so used to providing representa-
tions without clarifying what the mappings are in a denotational sense that we are
confident that our work is still significant in the same way that Strachey’s research
was significant before Scott's showed it was formally correct.

Other future work is the development of an actual data flow analyzer that
uses fiz as a fixed point operator. We know in theory this should work but we do
not know how to implement fiz in order to get good enough performance to make
the analyzer useful. Our work is concerned only with theoretical foundations of the
method.

This completes the identification of future work. What was 2chieved is not
negligible. The identification of Cousot’s lattices with Scott’s domains was proved
to be productive. We were able to formulate a semantics for forward data flow
analysis of LISP. We were also able to clarify the meaning of the bottom element
of a Scott domain, showing that lack of information is sometimes meaningful per
se. We have shown that the bottom element is not always synonymous with non
termination. If we use a representation of the usual semantics, then it is perfectly
possible to find a terminating image for a function that was nonterminating in the
original semantics. This may lead to powerful unusuval methods of evaluation for
arbitrarily high order functional programs, but it forces the implementer to be aware

of the lattice structure of the denoiational domains.

BIBLIOGRAPHY

Aho, A. V. and Ullman, J. D. 1977. Principles of Compiler Construction. Reading,
Mass.: Addison-Wesley.

Cousot, P. and Cousot, R. 1978. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximations of Fix-
points. Proc. of the 5th POPL conference. 238-252.

MacLane, S. 1971. Categories for the Working Mathematician. New York: Springer
Verlag.

Scott, D. S. 1976. Data Types as Lattices. SIAM Journal of Computing. & 522-581.

. 1881. Lecture on a Mathematical Theory of Computation. In Theo-
retical Foundations of Programming Methodology. ed. Broy, M. and Schmidt,
G. 145-292 Dordrecht, Boston and London: D. Reidel Publishing co. reprint
Oxford University PRG Monograph no. 19.

. 1982. Domains for denotational semantics. In Automata, Language
and Programming. Nineth Colloquium. Aarhus, Denmark. July 1982. ed.
Nielsen, M. and Schmidt, E. 577-613 Lecture Notes in Computer Science,
ed. Goos, G. and Hartmanis, J. Vol. 140 Berlin, Heidelberg and New York:
Springer-Verlag.

Sharir, M. 1981. Data Flow Analysis of Applicative Programs. In Automata, Lan-

guages and Programming. Eighth Colloquium. Acre. July 1981. ed. Even S.
and Kariv O. 98-113. Lecture Notes in Computer Science, ed. Goos, G. and
Hartmanis, J. Vol. 115 Berlin, Heidelberg and New York: Springer-Verlag.

Stoy, J. E. 1977. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. Cambridge Mass. and London: The M.LT.

192

