¢ .
P [
. I J Natonal Lirary ' Bibliothéque nationale - .
j of Canada du Canada gé
\ Catladian Theses Service Service des théses canadiennes .) i
\ . y

) Ottawa, Canada
K1A ON4

-

NOTICE

The quality of this rhicroform is heavily dependent upon the
quality of the original thesis submitted for microfiliming. ,
Every effort hasbeen made to ensure the highest quality of
reproduction possible.

If péges are missing, contact the university which granted
the degree.)

Some pages may' have indistinct print especial!g if the
original pages were typed with a poar typewriter ribbon or
if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, pub-
lished tests, etc.) are not filmed.

ad

Reproduction'infull or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

NL-339 {r. 88/04) N

* l'université qui a conféré le grade.

\

AVIS

La gualité d&%ette microforme dépend grandement de la
quahté de la these soumise au microfilmage. Nous avens
tout fait pour assurer une qualité supérieure de reproduc- «
tion. ‘ P

- [

Sil manque des pages, veuillez communiquer avéc
Ny

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aided'un ruban use ou si luniversité nous a fait
parvenir une photocopie de qualité inférieure. .
Les documents qui font déja I'objet d'un droit d'auteur
(articles de revue, tests publiés, etc.) ne sont pas
microfilmes.

La reprdduction, méme partielle, de cette.microforme est
soumise a la Loi canadienne sur le.droit d'autéur, SRC
1970, ¢..C-30.".

T

..,‘ . ']

—t
LY

' . .
- A Study of System Design Techniques

iq.VLS;

, Ramachar N. Prasad

]

A Thesis
in
. P The Department

of

Computer Science

oY

Presented in Partial Fulfillment.of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Moritréal, Québec, Canada

=

. June 1988

-

A_»

3

»

~ Permission has been granted
to the National Librdry of

. Canada to nicrofglnl this

thesis and to 1lend or sell

cdpies of the film.

. The author (copyright owner)
has reserved other
publication rights, and
neither the thesis. nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té& accordée
A la Bibliothéque nationale
du Canada de microfilmer
cette thése €t de préter" ou
de vendre ‘des exemplaires du
film. -

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication}

ni la thése ni de 1longs
extraits de celle-ci ne
doivent &tre d4mprimés ou

autrement reproduits sans son
autorisation écrite.

s

ISBN 0-315-44841-5 '

2
A

ABSTRACT . °
X

A Study of System Design Techniques in VLSI -

Ramachar N. Prasad

&

A3

Some classes of architectures and system design

‘épprqaches are well suited for VLSI due to its physical\

properties and high level of integration. In this thesis

°

two design.examples,’each using a different design approach
favoured by VLSI, are presented. The first desjgn
considered ist a synchronous design of a stack. The stack
design is discussed using the systolid design approaéh with
emphas{s oh many issues of prapticai importance. The second
deéign considered is in th; domain og sélf tihed systems;
Using the newly developed request serializaiion algorithmq a
distributed synthesis prpcedu;g for 'self' timed general:
arbitérs is discuséed. System properties such as deadlock
and fairness are'proven for the self timed deéign apéroach,
Also, a techﬁique to "extend the ‘réquest senia}ization
algorithm to support expandability of a general arbiter is
discussed. Fiﬁally, -a syncﬁronbus deadlock free algorith;
suitablé for general'arbitei syntﬁesis is discussgd‘ and. is
compa?ed witp ,fhe(request.serialization algorithm for its

L
o “~
performance. :

Y

- iii -

L]

Ly
2 oeg L wmd

* CONTENTS .
) .
List of f%gqres) - vii
List of tables - | ' .. ix
. | [?‘
Chapter 1. Introduction . A L 1
: 1.1 Complexity management 2
1.2 VLSY properties _ - , 4
1.3 Systém design approach for VLSI. 7
- 1.4 Thesis scope ~ ' 9
Chapter 2. Systdiic stack “ 11
2.1 Introduction . ; | .11
+ 2.2 Four slow st5ck T ' 14
2.3 One slow stack ‘ 16
2.4 _Hierarcr\icél stack design 20
2.4.1 Behavioral level 21
* 2.4.2 Architectural level ' 22 -
0 2.4.3 Logib design level : 24
i 2.4.3.1 Storage slice design 26
" 2,4.3.2 Interface slice design ' 29
2ué.3.3 Stackzst%te K]) " 35
.2.4.4 Circuit desién level . ‘ . 35 .
2.4.5‘£ayout design level - 5 | QIH
Chapter 3.'Sys€olic stack analysis s 48
3.1 Logic simulétion . ~48
3.2 Circuit siﬁulation : 50
3.3 Pérformance analysis o o 52

- iv - . . "

1 . ’ L. % .

! , -

f

é.?.l.ngimﬁm frequency - 52 .
- . e e
.3.3.2 Minimum frequency . _ 59
3.3.3 Po&er consumption ' 63
3.3.4 Lay?ut‘expandability) . 66 .
3.4.5 Packaging density _) | 68 -
Chapter 4. Self t}meéjérbiter . 7 ‘
4.1 Introduction . * 71
4.2 Arbiter classification S 73

4.3 Arbiter design - ' 74
4.3.1 Design hierarchy ~
4.3.1.1 Architecture désign
4.3.1.2 Logic and gircuit design
4,4 Arbiter fairness

.4.5 Arbiter expandability

L 89

F'y
4.5.1 Notatiohs . 91
4.6 Appliéations 94

4.6.2'Petri net synthesis 96
Chapter 5. Synchronous and asynchronousides'g& - 100 ' ;
- A case study . l
.501 Introduétioﬁ 100 ‘
5.2 §ynchroﬁoué general arbiter degdign ' 101
5.3 Arbrter>fairness | 110 .

AN

asynchronous_ 110
. ,

5.4 Comparison of synchronous an

&

design . .
‘Chapter. 6. Conclusions 112,
6.1 Further research

113

t) . N . ’ il ‘ . ‘ . .
e ' ‘s
References ! . 116
. v P e - .) " « 4 c .
- Appendix I . P 120
» . e J . .
‘ . Appendix II . \ . 123
, Appendix III .- . 132
! * B - .
$
: / . .
- L4
. L]
d .
| e
A v/
/ [y e
/ . »
N 1] . “ s
' {
, . - R . ' &
: Cod T " Ry
& *
. 3 : P <
M 3 . Y "
. . "
L £ -
& . A}
. ’ ? '
. . 3 ‘
I - to. E .
¢ Y)
S / e
Q ‘1-
! + -
L] : Y . . '
'I -
. - » .
X ‘
, . - - . 'ﬁ.:,'.v
° v .
LY '
. . Y . , ; o
‘. ® . AN
' - s - Vvl - . &

Fiéure 2.1
' 2.2
2% 3

2.4

b
L

2.10
2.11
2.12
2,13
2.14

2.15

2.17
2.18

3

3.1

. l
3.2 Datapath block diagram foiggtack full module

3.4

2.16

W, |

w . |

LIST OF FIGURES .

Guibas stack organizat}on 3

Guibas rewrite-rales

Guibas stack operation

One slow stack organization :
» oo

One slow stack operation

One slow 'stack block diagram

Storage slice state diagram - Datapath

Sébfége slice state diagram - Flag bit
Storage slice block diagram ’
Interface slice datapath

Interface slice-state diagram
Inteéface slice block Qiaéfam
LatEhes for master-slave flip-flop .
One slow Stack timing

One(slow stack floor plén

One slow stéck layout |

One' slow stack power disﬂributio&
One slow stack clock distribution

‘ 1
Storage slice datapath block diagram

|

3.3 Critical path circuit for high period

Critical pathi circuit for low period

. .

3.5 Model of a domino circuit

- - - 3.6
| 3.7

Capacitor discharge paths

Equivalent’ resistance circuit

- vii -

. & s Thea
R
o

" t ‘ : - “ “N\ | '
v ; , -
i;) ' 3.8 n:trénsistor‘chain . . '65
- 4.1 Arbi&er block diagram k ' 72
4.2 General conflict graph = KOA 80
.. - 4.3 Edge request serialization for colsur A 80
) 4.4 Example confliEt grapﬁ | ‘ 82
4.5 Seif'timgd general arbiter glqpk,diagram " 82
. 4.6 Local arbiter . Bq
4.7(a) Unlabelled extended conflict graph 90 -
4.7Lb) Labelled extended conflict éraph . 90
4.8 Conflict graph for reader-writer problem 97
4.9 Example petri net ' 97
B '4.10 Conflict graph for petri net ' 97
‘ 5.1 Arbitration graph with dead%fck 102
r , 5.2 Directed, ‘acyclic conflict g}aph\ : 106
5.3 Cpn?lict graph for synchrénous arbiter 108
* 5.4 Synchronous general arbiter 108
15.5 Synchronous local arbit;r . 108
5.6 Conflict graph with unequal delay ' | 109
\
, ;
” ‘ &

Lo

“~ f - viii -

¢

Table
Table
Table
Table

Table

4

*
v

+ LIST OF TABLES

3.1 DC analysis results *°

3.2 Transient analysis results

3.3 Power requirements

3.4 Systolié~§tack comparison’

3.5 Stack architecture comparison

“r

..'ix —

51
58

65 -

69

CHAPTER 1

INTRODUCTION '
VLSI is a medium)_which allows a large number of
switching devices to be integrated on to a single silicon

wafer. This sheer . size _coupled .with a wvariety of the

~ ® .

physical properties . of the silicon medium pose many
challengés to VLSI system designer. The principal concerns
of a VLSI designer are complexity management[30,34f'and

architectural ramifications due to properties of the’ VLSI

- ————

<

,ﬁedium. Accorging to Moore, VLSI complexity is a combined
effect of the tééhnology grpwth rate and the development of
system design techniques. Statistically stated[10], while

Afor the.past one decade the integration 1level has doubled
every 1-2 years, the investment on désign techniques has
doubled every three years, thus leading to increased system
design cost and complexity. The architectural ramifications
in VLSI are due to the physical ‘properties' such as
communication delay; switching speed and device scaling.
'Thus, with the advancement in téchnology for a given
problem, a VLSI designer is posed with the challenge to
arrive at ‘a design solution suitable for VLSI wiéﬁout
‘excessive cost and performance penalties. To obtain an
optimal séiutioﬁ it is essential to understand = the

¢

properties of the VLSI medium ‘as well as the different

problem solving methods applicable for VLSI. In the:

©

<

" . . A e R - .’
! [} ~ . ’ .

°

folloying ‘sections a -briéf ‘discussion ‘of the’coﬁpléxity .

wanagement techniques, properties of the VLSI medium and

.design techniques suitable for VLSI are discussed. ‘ ;

<

*

1.1 Complexity management

°

N ' . i
’ L
Complexity 1is ©a part of any large system, hardware .or

software. In many aspecfs complexity managémept’in‘VLSI is,
similar to that of software, thus ﬂﬁany of the software.

complexity management results are applicable to VLSI also.

However, consideragtions such.- ‘as piacement and }outing
distinguish VLSI systems from software systems. The two .

-~ Pl

complexity management schemes .used in VLSI are partitioging

and hierarchical abstracti®n. In practice a particular
) ® 6 . i o
design may use one or both of the approaches during the ‘

design process. _ * .

' .

.

N L]

Pa;titioning is the technique/off subdividing a large

problem into smaller ones of manageable sizes. Wh;le,‘thefe
is no, unique way of partitiodfﬂg 'a gi;eh system into
sub-systems’, often functional decomposition or flow based

decomposition is used. Functional defomposition is a divide

¥

and congifr' technique, wherein the systern is decomposed

using anctionality‘of the modules. An advantage of such an

o

approach is the possible gqberélity of the modules.’ Iniﬁhifh

thesis functional decomposition is'used 4during the design .
L B . - - .

process in chapter 2.

4

4

-

D]
- -~
- .

Tﬁe' flow based technique is an alternatlve method of

~

decomp051t10n Wwhere a circuit is, decomposed using the flow

of data or ‘control. In this method, decomposition is

achleved b{’con51det1ng a system as transforming anuts to
.k

the 'GESlted form of outputs. This conceptualization leads

-

to a natural ‘decomposition of the system into input circuit,

N 4 ’ *
" output® cjrcuit, and transformation circuit. This approach

. N [ad i . v 4
will not lead to economical hardware in general, but is
T - . (4
hseful in applications which emphasize communication between

blocks-such as circuit implementation of petri net[29].

" ‘While using the above approach, speciffc emphasis shoyld be
»

~

given. to 1issues such as &ynchronization, buffering of

intermediate raesults, and flow control®

-

AN
* 1)

An alternative approach to complexity management is the

hierarchical - abstractlon approach The ¥ concept of

-

Y

abstraction, - by hldlng all the internal details’, allows one
to focus on a‘few essential pleces of ,information at a
deolgn ghase. For exadple, logic gate abstraction hides all
the -different transistor implementations of the |gate.
'Registew}transfer level abstractionris used to represent the

data operations while hiding all the timing details,
I . .

Instructian sé& processor description i% used to hide all
¢ , T

detaiis except the: set of primitive operations. -Using the

¢

concept of abstraction, system complexity is made manageable

LN

" “) - .
by separating the.system issues into different layers of a

hierarchy. - This approach is ./ called ’“hierarchjcal
: ,

) -

| 3. /

L

aC

abstraction.

-

A

. 1.2 VLSI properties

VLSI is not -just i?medium which allows "a.high degree of
integration, . but also has 'some significant physical
properties which strongly ipfluence the sdystem- design

-
approaches. These properties are often called the VLSI
[. . - Lo .

e

constraints. In order to derive maximum benefit from VLSI,
: it is essential to balance,6advantages and limitations of the

VLSI medium. The limitations imposed by the VLSI medium can
~ .
be grouped under the following categories:

Ps

(1) Regularity ‘ ' \
“ (ii) Planarity , _ Y

(iii) Scaling

0 - .

A

Reduction in fabrication and design cost .can - be

»

obtained by keeping the 'number 'of- different types of -

P
components in the system to _a minimum., This imposes a

’ - constraint of regularity on the ‘archigecture and éesign.
_Regurarity in é system can be achieved by gs{hg ;ttuctuneq

like library cells, PLA,-ROMs at the circuit level or by

v using repeaied structurestwhile building systems. Systems

-

displaying the latter " property .are called homogeneous
-~ .

systems. ‘ . : \

’ . .o~ /
o . Planarity 1is-a constraint déaling with pih limitation,

~

s

@
| -4 -

- ‘ N ! .
P : ,
I/Q band width and silico%l utilization problems. The
%

planarity K constraints can be classified under the following
2 ’ éategories[36]: "y
. (i) Perimeter problém
(ii) Graph smashing problem
*The perimeter. problem refers to issues related to
input-output.' ‘Iﬁgj number of wires leading off a chip is
proportioral to perimeter of the chip. Also, the amount of

’

- '~ - data input-output at any time instant is proportional to the

number .of input-output outlets. Consequently, a__large

difference 1in processing rate and datd availability rate

~

) could lead to under utilization of silicon as discussed in
~ ‘ ‘\ .

(8y. | -

' L

N

Graph sﬁashing problem is an abstraction of the layout
. problqm in“VLSI, Consider a circuit abstracted ai a gréph
.with nodes representing gates(modules) and - edges
representing their inFerconnecting wires.« A planér
embedding éf such, a graph could occupy a wide silicon area
C due to minimum spacing requirement Between wires and
resgrictioqs on’ the number ' of wires crossing gach other,
‘ This makes wires the dominant component in a iayqut, thus
K; reducing the chip afea qsed by active compgnents. Tgis

' (Y

problem becomes more acute if. we; consider complex systems or

when graph vertices represent processing elements and each

-
.

™~ | edge represent a collection of interconnection wires. As a

result of .the above, VLSI ' favours' architectures which

€
o

exhibit regular and local communication.

Revice scaling is performed in VLSI -with the primary .
objective of increasing component density. But, scaling
down of feature size not only increases component density
but also affects physical characteristics and parameters
that describe switching devices, wires. The most importané
effect of scaling on a VLSI desiéﬁ is its effect on timing
aspect of the design. Due to scaling, the delay -along a
line*increases quadratically and the switching sﬁeed reduces
in linear prqporgion to the scaling ﬁggtor. One way of
reéresenting the comprghensive _gffect of scaling 1is by
considering length of the wire that can be driven in a unit
time(one. transit time). Consider the following exémple[33]
for a 5 micron techndlogy,_transib time of 0.25 nsec and a
scaling' factor of 10. The follow{ng table giveé'the length
of the wire, before and”after scaling, that can be dr}ven in

one transit time.

_Egchnoloéy Polysilicon . Diffusion Metal
. 5 micron 0.3) 0.5 - 17 mm

0.5 micron 0.01 ©~0.02 0.5 mm

VLSI favours architectures which do not exhibit global
transmission of signals or lengthy interconnection as. they :

introduce time delay and require large drivers.

&

A
FAYSEEET)

~ ~

_N“‘“ Y.) ' /‘l‘

1.3 System design apbroach for VLSI

An ideal gesign approach to VLSI system'is to apply
complexity manégement techniques for a desirable -design
approach. In general, system architectures which exhibit
locality and regularity in communicétion and aﬂ high degree

of concurrency in operation are preferred’ for VLSI

implementation.. Two design techniques which exhibit some or -

-

. most of these characteristics that are used in this thesis

are discussed below. -

Systolic networks{16] are highly suitable for VLSI
design~ due to their property of homogeneity, hniformity,
locélity and the hﬁgh performance due to ‘concurrency . in

system operation. Details ' of sysfolic qgtwork design
.)

‘methods can be found in Kungfl?]; A systolic network can be

implemented using synchronous or asynchronous design
technique. In this thesis we examine synchronous
%mplementat%pn ~of systolic network. Asynchronous
implementation of systolic“ networks is wused in . fault

tolerant applications as discussed in [17]. However, the

absence of a genefal procedure to transform any given
. o 4 I's .)

algorithm to systolic algorithm or to design: systolj

nétwork:for all problem classes makes them special purpose

architectures.

t

\s

o

¢

applicability in VLSI. With properties such as immunity to

communication delay, the asynchronous design technique finds
application even when strict 1locality and regularity in

communication cannot be maintained in a system. Also, the

-

absence of cloc5 in an ‘asynchronois systems provides a .

degree of freedom during placement of modules and thus
layout design. Asynchronouél systems provide high
performance by exploitinq fine grain concurrency and bj
operating at average speed. In this thesis we consider self

timed synthesis of asynchronous systems,

Selg timed systems, a type of asynchronous systems, can
be defined recursively as either a self timed Flemeﬂt or a
legal interconnection of self 'timed systems. This
organizatiqﬁ principle is a natural definition of modula;
design and thus assists in complexity management also. Self
timed Ssystems are designed using _the concept of
equipotential region and self timed dlqnafling[?l].
Equipotential regions are areas of a chip where the
communication deiay can be neglected. But, communication
delay for signals crossing equipotential regions ;re not
negiiqible and thus self timed signalling is used during

such communication. The two types of self timed signalling

that can be used during the design of-a self timed systems

-are four cycle afd two cycle signalling. The ~ baalc

properties of these signalling methods can be characterized

4

as non-communication interference and non-computation

. .
»

/

/—. . o '
; .

interfe%ence. Though either. of the self timed signalling
protocdls can be used in a design, four cycle signalling is
beét suited for short distance communication, due to its

return to zero property while two cycle zsignalling can be
used -also" %or long qistanceipommupication. Details of the
s%%f timed design methodology can.be found ip Mead[21] and
Chapiro[3].

1.4 Thesis scope

In this thesis the application of synchronous .systolic
network and self timed sigtem design approaches are examined
through examples of stack and general érbiteg respectively.
While the systolic stack design provides, a compleﬁe
hierarchical exposi;ion FO‘ the VLSI design process, the .
arbiter Bbﬁig% ‘addresses salient levels in the design
hierarehy. ° Finally, to analyze the effect of asynchronous
ahd‘syn?hronous design approaches on desigﬁ complexity and
- 'pefforméﬁce, a case study of synchronous implementation of

general arbiter is discussed. .

l

4

The thesis is structured as follows. Hierarchical

‘design of one slow systolic stack is presented in chapter

two. Chapter three deals with verification and analysis of

one slow systolic stack. A self timed design technique for

_general arbiters is presented - in chapter four and /
/

‘applications of su¢h an arbiter is also examined in that
. -,

N . . Ve)
; ~ . . v /
. T e 9 - .

\ : N
chapter. A case /study- of .synchronous and asynchronous

design is discugsed in chapter Eive. Conclyéion and tobips'
for further esearch',are considered in chapter sf;.
Material pertaining 'to logic simulation, circuiﬁ simulation
and circuit/diagrams are‘presentéd in the three appendicéﬁ.

/

Y

-10'..'

o Chapter 2

SYSTOLIC STACK

v 2.1 Introduction
o

The stack is a fundamental data structure used in
computer haréware and software. "In thiskchaptei we discuss
synchronous, systglic implementétion of “stack which 'i;
suitable for VLSI. The advantage éf using a systolic
implemeqtation for stack becomes évident when various
different implementatidns of staqﬁ are examined. Some of
th% known implemetations of stéck ;;gz
(1) ArrayZRAM) with a top of stack pqinter
(ii) Universal shift fegister

(iii) Ripple structure

Array implementation, mostly used in software, is -not

suitable for VLSI for the following reasons:

(i) Size” of the top of stack pointer register varies witﬁ'

sizé of the stack - o |
(ii) Both the‘dalé and control signals need bfoa@casting,
thus reéﬁi??ng in drivef stages -whose cépacity depenﬁs on

¢ - size of ;he stack. * |
An architecture suitable for VLSI implementation should
eliminate broadc%sting“of signals while maintaining'constént

time operation. The universal shift register and ripple

. . I . A ‘L
architecture exhibit some of these desired properties.

I IR AR T o "

T ©
3

- Ll !

- 11 -~

4

While the universal shift register implementation eliminates
global broadcasting of data signals, it still téquires
broadcast of control signals such as push andl pop. The
ripple implementation eliminates all global broadcasting of
s}gnals at the cost of operational speed. The operational

speed of ripple implementation'ié linearly proportional to

'nqmber of elements in the stack.]

R

a

The systolic architecture for stack combines features
of 'ripple)and universal shift register implementation“to
provide an/impiementation with characteristics such as no
gl?bal I:Jroadcast:ing,~ constant time operations along with
added advantage of elegant handling of boundedness. Unlike
many other ;ystoli; networks, dataflow in a systolic stack
cannot be specified a prgpri, thus categorizing tﬁém as
control flow nefwork. One of the problem facing designers
of such control flow networks is the non-existence of an
established design procedure. AThe' avajilable design
techniques such as fixed-point approach of Chen(5] or
Moldavan's transformation(technique[ZZ] are applicable oniy
to the design of dataflow nethrks. Thus, the design
techn{éue of control flow networks has remained ad hoé to a
large exteyt. In this chapter, the design of a fast
systolic - stack is discussed. This design has been

successfully impiemented' using the CMOS-1B procesnsn of

Canadian Microelectronic Corporation. Before presenting the

design, we discuss the syh;olic stack alqorithm ysed in the

| - ' - 12 -

N T

[. /2

Insert .
' B

»

e

T = 10T

0] = W]

v
(b) Rule 2°

-

Figure 2.2 Guibas rewrite rules

o :

a

-13-—

"

¥
P

A

2 >
Py

design.
2.2 Four slow stack .

Guibas(14] proposed the fi;st eystolxc aléprithm for
stack implementatign and the algorithm deed in this thesls
is a time improved .wversion of Guibas algorithm. Before
presenting the improyed algorithm, .Guibas algorithm is
presented first. The Guibasgzggack is a linear array of
cells with each cell of the staek being in either occupied
or :emgty state. The external operators such as push, “pop
are applied to eelI 0 and cell 1 respecéively' as shown |{in
figure '2.}. All other «cells of the stack respohd to
iﬁterna} commands, which are generated as a resultf of

-

rewrite rules of the stack.. The two :fwrite rules of the
Guibas stack are lndxcated in Elgure 2. é: The working of
Guibas stack is illustrated .in figure 2.3. A stu?y of
Guibas stack indieaFes that.a minimum of three idle ’cycles:
called skie' cycles. are required between any.twd/operatora
to ensure proper operation of the stack. The skip cyclea
are used by the stack to redistribute Lts entrles so that
éhe stack ‘is ready_for next push or pop operation. Thus, as
a resu;t of the three sgip cycles(but, for the steck
overflow orlunﬂerflow condition) it is always‘ ensured that

9

cell 0 is empty(ready for a push operation) and cell 1 is

-

occupied(ready for a. pop operation). "As Guibas Rtack,

requirés three‘skdp cycles between any two bpcgpterl. it is

- 14 -

LT
N o

3
B e I T | O [. [
C3Jl | | [CO

3| {3 [T | (3] (T
: Cal (T3 o | .

-] 3 1 | . ‘
— | ' | (3
-;:;g’ 'EI?ZT sfﬁ? sfﬁr. Puég. é;;;’

N |
] () [C]]

0

L]
] e -
L (C1] [C
|] . '
| ([1 (C| |C3
6‘# "
sk i? skﬂ?‘ pop _skip skip skip
Figure 2.3 Guibas stack operation
' Storage slice
o
Insert
Interface slice
Delete

Figure 2.4 One slow stackvorganization

- 15 -

also called a four slow stack.

. -
e . 2 . \

2.3 One slow stack , ' |
) ‘ Qg(g_/"@‘

2

Guibas also~ ptesented a méthod for . improving

operétional speed of the sﬁaék by considéring _state

information of non-neighbouring cells. However, it is

- difficult to extend this technique to g%tain a one slow

stack - a stack which allows a push or pop opetation every

cycle. In this chapter, a one slow algor1thm USing a local
compactlon technique is presented. The local compactlon of
stack entries is based bon the concept of buffering In
computers the concepé of buffering is used to match
difference in speed betdeen two commﬁnicating sections of a
system. Under this interpretation, the speed difference in
the stack occurs between the in&erface cell of the stack and
the host(external environmentf. While host can Yssue an

operator (push or pop) every cycle, the Iinterface cells

require three idle cycles between commands to be' able ‘to

LY

accépt a new command and -data.- This mLsmatch 1n speed of a

four slow stack can be elliminated by eatabliahing a ﬁuf!or.

of capacity three, at 'th

\
I
t

)hostointertace.
J

e v

The organization of the one slow stack is showh in

figure 2.4. This stack is a linear array of slices, where -

each slice comprises of three stack elements. Each siice

. g8
communicates with its lefg ot right neighbour slice only,

e

"thus - prowviding a regular and simple . interconnection

= * structure. The slices in the stack are labelled from.~0 to

(n-1) and based on their functionality slice-O-is referred,

. to as\tge ;nterface sllce and the slices from 1" tc (ﬁ 1) are
g refenged to as\stq;age slices. The host interfaces to the

stack through the interface slice. The external operatédrs
. ~)
such as. push, pop are seen only by the interface slice. The

1

data transfer between the interface slice and the host is

one element ét a time, while between slices data .ds

transferred fully in parallel, three elements at a time.
. Al

Thus, 7a packet of three data elements are created and . -

destroyed. in the interface slice, giving a distinct

3 ' N -

- "functionality to the inteXface slice.

- oW »
-7 ' There are many d%fferences and similarities between the

)
Guibas stack and the one slow stack. The similarities being

that all the storagd slices, like the cell¥ of Guibas stack,

. i - g
o execute the two rewrite rules of Guibas. Consequently the
. - redistribution of . data, in s;orage SllCES follow the same

pattern ‘as in, the Gulbas stack. Slmllar to Guibas stack’ the

I 3

‘one slow stack also assumes a permanently occupled slice at

[

* the end of the stack to prevent stack entries from moving

.out of bounds. (e .

One slow stack differs from: the Guibas stack in two

aspects, namely, state definition of slice and data transfer

characterxst1cs,7 A storage. sllce 1s in occupled state when
¢ F -

~ ” ! S
. i
0

L

L « R YIS '

2

3\ 2 L3 1 2

5 4 6 | 5

Initial state . Insert(6)
N

3 2 3 |5 2

6 5 6 5

8- | 7 9| 8

Insert(8) Insert(9)

\ Figure 2,5 One slow stack opération

¢

~

(i) Insert operations

Al

- 18 -

.
,
kX

!

o |
3. 1
6 4
7 \
Insert(7)
¥
3 1
6 4 §
9 7
10
/
Insert(10) -

-

3| 2 1 3 2 1
¢ 3 |'2 1 '
6| 5| 4 6| 5| 4 6 [5 | 4
< 9 | 8 7
‘ 10 9 | 8 7 8 7
Initial s¢gte Delete{). .’ Delete()
3 2 1
k y4
‘ 3 | 2 1
! [y 3 L oo 2 1 e
\
6 5 4
7 "6] 5| 4 5 | 4
Delete() v Delete() Delete()

(ii) Delete Operations

. \) N\
Figure 2.5 One slow Stack operation(Cont.)

19

F,J

\ : ' | t \
all the three cells in the slice contain data. A storage

-

-slice is in an empty state if ‘none of the cells in the sllce

contain data. However, it should 'be noted that a storage
slicé .can either' be in, an empty or occdpiéd staﬁe only.
Unlike thg storage slicey, the interface slice of the one
siow stack can be < in one"of,.ghe fgur states: empty,
one-empty, tﬁo-empty; océupiedj These states of the
interface. slice, afe defined based on the occupancy of the
cell's in the interface slice. Thus data in the interface
slice varies smoothly as coméaged to storage slice. Unlike .
Guibas stack theminteréace _sline of - the one slow stack

H

supports two types of data transfer - a parallelgthree

element at a time) data transfer with slice l-and a ,seridl.:"

data transfer (one element.at a time) with the host.

‘,’ ’,
M
. . 2
[e « .
-1

“

Operation of the one slow stack is 1nd1cated in flgure‘
2.5. When a push operation is performed, r with sllce 0 not

in occupied state, contents of slice 0 are shifted one place

Eo the right; .Sipilérly a pop operation shifts contents 6f

slice 0 one place to the left. However, dnen slice 0 is in’
accupiea state a push ope;atinn will move, in parallel,
contents of slice 0 to slice 1 and the new element is:pushed
into slice 0. An analogous situation tb the above\fot a pop
operation occurs when slice 0 is fn'two emptyastate. In
such a stéte, a pop operation results in popping of eléhent&

from slice 0 and moving contents of slice 1 to slice 0, in

parallel. Thxs distinctive operation of the. interface slice

., . 0

T A WRER Y e
PR S

°

is made -possible by assoéiating a separéte set of rewrite
rules to slice 0. it should also be noted that' unlike
Guibas Stack;‘under one condition; both slice 0 and sliéé 1
wf{f/;erform simultaneous parallel transfer of data to its

immediate right neighbour as indicated in figure 2.5.

:2».4 Hierarchical stack design
The design hierarchy of the systolic stack considered

in this chapter 1is divided into following levels. of
abstraction.) , I
(i) Behavioral level .
(ii) Architectural level , ‘ .
(iii) Logic des;gn level - | |
(iv) Circﬁit design level "
-(v) Layout level

i

'214.1 éz;avioral level ' .
» . (

The - behavioral 1level of the hierirchy'is a plack‘box
specification ‘layer dealing’ Qith tracZS of . interface
.'signalg. . Behavioral iayer,"by defining only thé e}ternal
obsetvagle béﬁavioﬁr of‘a systgﬁ«Ieaves thg' flexisility oé
arcpitectura;‘ and implementatdion Qgriétiohs to lower la§er§
in the‘abstrqction. 'Thé‘behavioral~_sbecification ubed"in
this section cogprisesnpf two pargs aamely, the syntatic and
semantics. S}ntatic part of the specificéﬁioh describes’

- 21 -

—

names of the access operators and type associated with input

and output data. The semantic specification, expressed as a
set of . assertions, gives .all possible traces of the access

operators and the value of data that can be derived. The

. behavioral specification céhprising of the above two parts, .

adopted from[19), for the one slow stack :is given below:

’

NAME : 1-Slow Synchronous n—st;ck
Syntax : Push : integer(input data)
' . Pop
" top: integer(data read-out)

skip

Semantics

(push™)e>0 < m < n

1

< n-—spush™.pop = push™ 1

A

n—push™.top = push™

< n-yvalue(push™.top) = ag °

A

n spushM™.skip =.push®

2.4.2 Architectural level

1 ¢

4

The architectural level of abstraction describes the
architecture of the one slow systolic stack wusing the

Register 'Transfer Langhage(RTL). RTL ig used to describe

the flow of data and control iﬁ the ' stack. An - RTL -

description for the one slow stack discussed in section 2.3

is given below in a program form,

- 22 -

R

Procedure cycle
:slice 2 to slice(n-1) operation
For each i in {2,3,....,n-1} par do

if £iAfi-1afi41 then

Ri+1 = Ry . *
fij+1 = true: f; = false:
if £iAf;-1afj-2 then _
.Ri'-l = Rj
fi-1 = true: f; = false: ‘

pégend

:slice 1 and slice‘o ope;ation

if push(a) then case state0 of
1: Ry = a.Rg: sta£e0 = 2 /* a.Rg is 'a' added to Rg */
2: R0.=1a.R0: stateg = 3: £y =.True .

3: Ry = Rgt' Ry = a: £3 =ftrue: £p = False: statep =1

if pop then case statep of

l1: Rp = Ry:£, = False: fp = Trues stateg = 3
2: Rp = L(Rpg): stateg = 1 /* L(Rg) is Rg shifted left */
3: Rp = L(Rg): stateg = 2: f07= False ' o

-t

if skigtﬁhen,null action

‘e

ehdcycle
R

-

In the above program fi indicates state of slice i and Rj

indictates data present in slice i.* The above representation

is adopted from Li{19]. However, alternative representation

like linked module abstraction of Stefik(37] can also be

[

!HK used to represent an architecture. : .

B . ’ '
A . .
- S, e . , \
L. =230 .

4 .

< ek

2.4.3 Logic design level’

-

*

N N
The 1logic: design 1level of abstraction decomposes the
one slow systolic'stack into modules and each of these
modules are described to the detail of its underlying

boolean ' function.- . The one-slow? systolic stack is

L4

partitioned into modules using the functional decomposition

AN

technigue. The functional modules thus obtained are listed
belcw: "’ ,

" (1) Data cell for each storage slice

(2) Rewrite control logic for storage slice . -

(3) Data cell for interface slice :
(4) Rewrite confrol logic for interface slice
(5) Flag bit logic for storage slice
(6) Flag bit logic for interface slice
(7) Stack full module

' (8) Stack empty module
(é) Interﬁace module -
During logic design a flag bit is used for each storage

i

siice to indicate the empty or occupied state of the .slice

and three flag bits are used to 1indicate state of the

. interface slice. Function of the modules (1) to (6) are

self explanatory.- Additional functtonality like module (7)
and (8} is introduced at the logic design level to maintain
boundedness o% the stack. The interface module is used for

the purposes of electrical interface and synchropization of

it

—‘ ‘ -2" | _

<

]
.) ain aoejsaju -
a8 muuuuw..m.: 1neos u. M — =" nuuv’
_ G .v J 3 I—...V..—Ir i _
| a \ | _ hRLLU N Y,
_o 1122 N 1190 1192 1oajuoa |! 6aa I { .
o o '
. e waee eae Prana be1s e— ysye,
_ 1l N
L K K _m
e d o T ¥ — —
. - : dod [«
—— =l — = = — ———q _ lerataa
| . | | ueiem
joco MMMN M“MW M_wu 1037000 |] mm..Wu > _
| jep 8311m31 LA P L. —
— L ol
| . o _ _r ysnd - & _
h \ kel 3313suy
N 1 I.I.lnlul...ll.lll_lvﬂ_! _ — |
—— ——— 1l “wyer |
_—I ¥ I T 5 J. _ |
. v i)
| 1122 1192 !
° 1132 jOrued boax . X012 %
_o ° eyep elep ejep 3111m23] ber3 ” | Hyeotd
i - bl JaAnyap _
_ _
.!...lllnlull.ul.lnlll.lllr.f. _
asyys abeaogyg ° o ° ° _ uy-jasay
3138231 .
o (-] (-] (-] o —. —
) ° o o ° ° e —
-~ Kydwa yowas
° 'y o ° ° N .
ajels
' — > woe3s >
: 1IN yowys
Jaayap

J

14

Figure 2.6 One slow stack block diagram

s

.

LY

t

’ 4
v
-

input signals. Figuré 2.6 givesséhe block diagram of- the |

one .slow systolic stack indicating the functional modules.

Logic design for' each of the functional module is described

r

» \ / .
below. While logic design can be derived from the

architectural spécificaﬁion g% section 2.4.2, for improved
clarity a detailed descriptioq%of the design is given beléw.
It should be noted that -ékip is not an expiict external
operétér at the lbgic dgsign"level. However, the skip
operator is derived from the absence of external} operators

like push and pop.

~~2.4.3.1 Storage slice design”
Each storage slice éomprises of three data cells, "a
flag bit indicating the state of the slice and control logic
implementing the rewrite rules of the storage slice.

Control Logic

The rewrite rules used in the storage slices are . the

: ’ggmg‘ as Gudbas Trewrite rules(section 2.2). Based on

semantics of the rewrite rulef, rewrite rule 1 is

implemented as a push signal and tewrite rule 2 s

implemented as a pop signal in the, control logic. With the

positive logic convention, the two control signals, for
slice i, can be represented as

“ pushj = fi-l-fi-?iil
< - 26 - ‘ . Y

o

%
- A

Figure 2.7

skip -

popi/dj. popi+1/di+1

Storage slice state diagram - Datapath

pushj._)/popj+]

= 27 -

°

L d

~ shown in'figure 2.8. Using the state diagram, the logic for

.+ Flag logic -

popi = £i-2.F3-1.€; '

F : . . o
Data cells

The state diagraﬁ representing data flow under the
e

influence of the different control signals is shown in

figure 2.7. During the design of storage slice it should be

kept in mind that a storage slice transfers, in parallel,

all the three data elements during a push or pop operation.

AN

From the state éié%ram, the logic for datapath of slice i

[4
can be'described as -

If pushj-; then Dj' = Dj-1
If popj+1 then Dj' = Dji+1 .
If neither then Dj' = Dj

Hence,

Dij' = pushj-1.Dj-} + popi+1-Disyl + pushj-).popi+1.Dj
Where, D;' is the value assigned to Dj after a clock pulse.
The feedback path in ' the datapath Aecessitates use of an
edge triggereq or master-s%gvé‘t&pe of data register. In
this versian of the design a master-slave flfb—floplls used

due to its implementation simplicity.

o~

&
Y

" :
ftate diagram for the flag bit of storage slice i is

the flaé bit can be described as

“

(N ‘ .= 28 -~

|

Lo
e

- If pushj-) tH\Q'fiﬂ = '1' {occupied)

If popj+1 then £3' = '1'
If pushj or popj then £;' ='0" (empty)
If none of the above then £1' = £

-

Hence,

£5' = pushj-) + popj+1 *+ £j.pushj.pop;
To enable staék initialization § reset type master-slave
flié*flop is used for the flag register. Block diagram of a
storage slice comprising of the above three modules is shown

°

in figure 2.9.

2.4.3.2 Interface slice design

o

\

Unlike Guibas stack, the design of interfacé slice in
the ‘one-slow stack differg from that of the storage slices
due to the wuse of separate set of rewrite rules and state
convention. The host commands like ingeit_ and delete a;e
assumed to be' synchronous . signals during interface slice
design. The interface slice comprises of control 1ldgic

implementing the rewrite rules, data cells and logic for

stoqing state of the, interface slice(?lag logic).

Control logic " ¢ L </

Ll

The rewrite rules of the ‘interface slice is

implemented- as the set of follgwing signais: ;
(1) Shift left ° \

- 29 -

5 ’ s
D - ‘ J _
- weibetlp xd01q 3d1[s abeiols g°z 8inbrg
’ . _. 1ysnd Y <L
-fysn . . - o
o \/ _n_\
, 4 , ,1-1g b
¢ tdod 4 e
< 2 I . -
-— . , Y
—|J'l|||l||llII-I..;..II|||.I||.1I.|'.I|II|| -1t — —
z-13° m N . ’ e 2
. .
101 3u0d , .
1-13 2311ma1 -
.
T+13 _ K ¢ x ‘ x 2 -
- r - 3 12351003 EEP xng
_ . ,
’ : 4 s L
| C . .
° {033u0D)
., _ . baa , . -
o * be « -
1 _ .- 13 beyy
— ‘
o _ ﬁ
e o — — e 4 L o e e e e e —— . A b WL
N : (KR}
. ar..‘l. © - - F.-H
N 1
, Wsnd < -a
. Y ,
s 1+ldod Lr .
. . N

"

. ~ . ;'\
(2) 8hift right :
(3) pushg) ,
A .
(4)_popp - ; ,
Al -~

Logic for the above set of signals is described below:-
. * ¢

If insert and not sgack—full'theﬂ shift rigHE(SR)
If deiete ;qg not stack-empty then shift’ left(SL)%
-:If in two émpty s€3tq‘and‘deléte‘then popg
. If in occupied statg' and insert and ngt-etack full-then

pushg .)
o .

R

Hence,

SR = pusﬁ.gf

SL = pop.'se . i _ ’ |
" pushg = push.fp.sE o o | ¢
popg = pOp.e3 \
’ Wher;, push-and po&\ére the ‘host commands - insert Iand

delete respectively. To preserve integrity o the data

* present in the stack, boundedness of the stack is taken inte

A " :
considerationy during design of the control signals for tgs

interface slice. - s .

.) < ' ‘ . . .e (
Data cell ’ 3 ‘

s ‘ o
As the data occupancy of"the interface slice varies

~

L4 : >
logic is also different from that of the storage’ slices.

' The logic for the’datapath can be described as
.) . , ®
If SR then Dgk' = Dok-1 . - . ; -

‘!_ - 31 - A N

'smoothf§ as compafed to the'storége slices, the datapath 7'

o

. r
y)] .
i, . o)
, ’
) i >
- yiedeiep 3d1[s adejiajul QI°Z sanbrg .
. odod
v >
) - IS
® v . ‘
b)) 00g bg—r——
- < Cﬂ»‘dg
3a3s1baa | - 133stbaa 133st1baa <
J xXNKW . > . < XOR A‘ I H K—J:
. elyep Y0q L ejep ejep «)
‘) 4
N ‘. L -
r z0 11 l0g) 1
y €og tla] y c%] o 4
- ’ - ; .
e .
< .

- 32

If SL then Dgy'. = Dok+1 |

If popg then Sok;“# D1k

If none of the\above then Dgk' = Dg
Hence,

Dok ' = SR.Dok-1 + SL.bOk+1 + popo.D}k + SR.SL.P6pg-Dok
Where K can take a value from 1 to 3 and K = 0 indicates the
host data inﬁut and k = 4 indicates a dummy data. Figure
2,10 gives the datapath 'block diagram of the‘interface
glice. 4 : . |

Flag logic

-~

Unlike storage slices, the interface slice uses three

1

flag bits, one for each datacell, to represent the state,

1

The state diagram for the interface slice is shown in_figure’

2.11. Logic for the flag bits has been designed using the
state machine design techniqueﬁ and the functions thus

obtained are:

ez' = push.8.81.Sf + pop.ej + push.pop.e
e1' = push.ey.sf + pop.f; #‘push.ﬁBﬁ,él
. T] —_—
fg' = push(ej.sf+sf) + pop.se.ey + push.pop.fy .

Where, ej indicates two empty state, el,ihdicqtes one empty

state and £ indicates occupied state of the interface

slice. Figure 2.12 gives block diagréﬁ of the interface

1

slice.

ta

R

.- 33 - .

St

Figure 2.11 Interface slice state diagram

POpPQ
/\ Dy

. D hn - f
- 0 / N i ; JL APUB 0 /L 0
data-out . ' -
||
< ' Data cells flag l
and logic
| ~ Routing Logic l
data-in | A |
. l . * PoPO oy ' insert
sl rewrite delete
: " logic Stack full
| 8r Stack ompty

' . I

——————-c—'-.-—p———n-——-l

Figure 2.12 Interface slice bloék‘diagrém

5

R
gBEL T

+

2.4.3.3 Stack state’ ’

Tyo‘ interfacg signals(ougpdt signals{, namely
stack = empty "and stégk full are.genefatpd Fo indicate state
. of the stack, The presence - of these signals are
intentignaliy leftout, in the architectural‘and behavioral
layer to. keep the specification: simplé. Based on the
' oﬁeratipn of the one slow stack:we can conclude that
(1) prplication of Guibas rewrite rule 1 ensures that ,slice
i and slice 2 are both oFcﬁpied, simultaneously, - only when
all ‘che storage 'slices in the stack are in the occupied
staLe(stack is ful%). | R ’
(2) Guibas rewrite rule 2 ensures that slice 1 is empty only
when all the other storage sliceés in the stack ére also in
thewempty state. . & ' .\
Stack empty ‘and stack full logiq~uée,advance state detection .
techniques to indicate 'state of the stack. 'Logic foflthe

"

stack full and stack empty.signals is given ‘below

se' = pop.f1j.e3 + €3.se,push

sf' = push.fl.fz(e1+go:§3§)'
bpe second component in the above functions indicate the
ability of the stack to reméin in the same state after
reaching the stack full or stack empty state.

o

2.4.4 Circuit design level

The aim of circuit design layer is to select the type

- 35 - L L

“ *
CLK \ VDD
, o ,
input ' [. output A
M]
CLK .
CLK '
Cl& input output
S >
(CLK | :
‘Normal latch
' B
- . -
z
Reset . ' Reset output
CLK ' I N CLK
) output , \
input }____+ fnput -’
‘ CLK CLK I CLK 1
- CLK
CLR
" Set latch ' Reset latch
2

Figure 2,13 Latches for master-slave tlip;f}op

»n

ol

- 36 -

,
4ol

<

PR L

]x‘:{r‘, e o~

SRuae

B,
!

of CMOS -logic structure, select the clocking scheme and

define driving capabilities of the different stages.

v

The selection criteria for logic structure is based on
considerations such as simplicity of the logic structure,
area, speed and speciél applications 1like tristate gates.

CMOS provides a number 1logic structure[38], and in this

- design both the static and dynamic logic. structures are

used. Complementary logic is the static 1ogic'used in the
design while both the domino and clocked logic used ‘in the
implementation are dynamic logic structures. Though
complementary 1ogic is simple to design, it occupies a large
area and hence its use is_kept to a minimﬁm. 'The clocked
logic structﬁre is primarilyj used to implement tristate
logic as §E1ogked logic does not provide any area, time
advantage over complementary 1o§ic. In this design tristate
gates are used ih‘the design of master-slave flip-flops and
latches as shown in figure 2.13. Domino logic Bn the other

hand provides advantages like smaller area, higher

operational speed and glitch free operation. Thus, domino

_"logic is used extensively in the one slow stack design. The

two fundamental problems of the domino logic - oniy
un-inverted stagés and charge shariﬁg problem are solved as
follQﬁs. Whenever inverted outpuz is required from the
domino block a static inverter stage 1is ,used. Any
possibility of charge sharing in a domino block 1is avoided

by ensuring that none of the inputs to the domino block

2

- 37 -

« ’
! -M ‘
System
‘ clock .
l []
. domino evaluate
. . | master latch on
domino precharge
, slave latch on | o
\ e . Interface module on ‘ |
’ -
| S |
&
A .
t : P —————
)
) -System .)
] ' clock ! e
. | ~ '
. - ' | .). ‘
,"" . I oy - *
. he— | '
3 —
0 nsec - . 0 nsed : ,
' ’ | 4-ninisum
data-in) | ”
ingert’ e—— -
delete o
regset-in ., I , : . , '
_ﬂ) .] . . o
. dataout : 19 nsec K
o ' " Figure 2.14 One slov 'stack timing
-w-n’ . ’ L b 4 . 3 ‘1

7
A

T

I

change during its evaluation .period. . .

~ The second aspect of circuit design is the selection of
clocking scheme. There are many clocking schemes, like
single phase, two phase, -four phase etc., possible in a VLSI

design. = The one slow stack implegentation makes use of

of

" single phase clocking as dynamic structures like domino °

logic ~ can be designed efficiently using' single phase
clocking and the single metal’ layer restriction of the
CMOS-1B process will . not be severe during‘ clock

distribuLion._ N \

Final aspect of circuit design is to énsure sufficient
driving capability of the: various modules in the system.
Trgnsistof geometry required in the complementary logic is
derived based on the series*paréllel connection rule(38] and
expected load. Transistor sizes of the domino "circuit is
derived based on precharge and evalﬁation time requirement.
That is, the é-trahsistor in a domiho circuit is designed to
prqvide the required precharge time and the n-transistors in

a domino block are designed for the required evaluation

- time.

/

Appendix- I gives the detailed circuit diagram for some

of the modules of the stack. For brevity remaining circuit

diagrams_ are left out. The timing diagram for the one slo&

stack implementation is shown in figure 2.14.

- 39 -

. . o . ,
) . °
N 14
¢ ~
~ \“."e
' i
!
\ .
’ : j’ -
A
i .
) i3
— -
vDD Y T - CND .
;Stocraqe SHC!\ ,
o 3
.) .
] - S——
< -
H L clk a
) L]
| ¥l & .
' T T 1 (| s
push |t Interface slice =
! '] .
1 B
SE fo e .2 E‘ F—% ‘
pop .
- channel *?'!=-
¢ 1 < © » ’
R l SF CLK | data
REST '
L .H—-—d. — -‘ * -
clock data
out
] Pl \
. P
[
pu
' \
’ . »
Fagure 2:15 One "siov stack ‘loor plan o
’ i
- 3
¥
t
° u

K

. .w.,:;,%

'

- 2.4.5 Layout design level

Layout design in VLSI comprises of definition of the
masks to form swit&hihg devices, placement 6f devices and
interconnection of the devices in the required pattern.
Advantage of a modular design technique becomes evident at
layout level as it reduces lafout complexity by allowing
repeaﬁed usage of modules? ‘bften circuit degign, placement
and routing are done using automated tools and standard cell
library. However, the one slow systolic stack is a‘full
custom deéign with manual - placement and routing. Figure
, 2.1§‘gives the floor plan of one slow systolic stack and the
layout generated using the graphic-editor KIC is shown ! %;
figure 2.16.

‘ . “ ’ «L .

‘ The layout design for a systolic system is
'comparatively-less complex as ;he log}éal locality implied
in ' the algorithm can be used to reduce its complexity.
Also, the logical locality reduceé routing area overhead and

4

thus the communication delay in the layout. In general, two
prinqipal tasks carried ‘out during a ,fayout dqgign are
pIaceﬁént and routing. The goal of‘? placement,J during
layout,’is to arfive at a suitable positioning of modules.iﬁ
the overall fldor plan of the chip so that interconnection

wire length and area can be minimized. As the underlying

L) .
CMosS process(CMOS-1B)’ provides only’ two layers of

- o\

-~ —=
vie
“

L}

T I ey

SIZ=.czc<

- ..
—mr .) v — ———— W—. P>
.

I.'.I‘I

i

= L =T
1

e I —r e —
‘.Eg
X

1]
m

2.16 One slow stack layout

......

H

bt e ettt o v ¢ ot aen m———— B4

Qe

interconnection wires, efficient gjgnal rouéing is not a
trivial task, especially considering the existence of
sensitive signals 1like clock and power. The clock

distribution and power fouting used in the one slow design

is discussed below. o :

Power routing takes top priéfity over signal routing
due to the following reasons:
(1) Power has to reach;all(the active devices on the chip.
(2) Power routing should be done so as to minimize
crossunder§ as the contact cuts in them will 1limit current
.handling capability of power rails.
(3) Power routing structure should be so ag to minimize
voltage drop along power rail, as reduction in supply
voltage affects noise immunity and hencé satisfactory
operation of the system. ‘ '
An ideai power routing scheme often requires more than one
low resistance .interconnection ;éyer(like metai). sAlso,
there is' no known near optimél power rou?ing scheme using ' a
limited number of iqtefé;hhectipn layers. Considering the

above limitations an 'interdigited'({13] routing techn}ﬁue,

as shown in figure 2.17, is wused in the one slow stack

] .

design to minimize voltage drop along power rails.

L e 3
Clock signals, in the same way as power buses, cannot
-be routed using polysilicon, as it introduces large delay
and skéw.~ Fisher[Qi has suggested clock distribution scheme

8}

- 43 - .

s

¢

k]

e

g% =3

wd

. ,
[} 4 R
-~
-
. ba
]
VDD GND || .
(] ‘ - -
— i
. : J p
- e ——————
o ==
o]
< e <}
< €
. < 5
L
2
4 . t
J
'™
~~ 1/0 Pags
L —
: . r
.g. °
. Ground
.
4
VDD
- y
]
Figure 2.17 One slov stack power distribution
. , .
-] -

ST a

SRR AR RO AVA R AT GOy

RV 1T ST A AT s £ ~ S YA TR RS T e
3 el ¥

. . . _ L X -
. s . .
.

s L]

with minimal and bounded skew properﬁy for one dimensional

~——

arrays. The clock distribution scheme used in one slow
stack ~is shown in figure 2.18. _This scheme is similar, ta

/
. Fishers approach but for‘ the buffer stages. The buffer

*

stages are wused in the clock dlstrlbutlon network to

c M

mijnimize delay in the network. Also, this approach allows

. us of smaller clock driver stages. The capacity of Zhe
clo drivers uéed in the design can be derived baeedzon the
delay folding scheme of [31]. A notable advantage of the

(f aBove clock distribution scheme is its easy eipanéability.

‘ The c¢lock distribution scheme used in the one slow layout

- has one crossunder for every slice at the slice clock driver

C input as shown-in figure 2.15. =
‘ “ .) . ~
* o The data signals of the stack are routed using

polysilicon in small “subnets of 1length less than:.500

- micrometer. The rewrite control signals, which reach all
14 o
"the data cells in a slice, are grouped into a single qhannel,
] * . ' \/ ' ' . * N \
and are routed between slices as shown in figure 2.15.

’

-

N Expandability, though, not an explicig}y stated
. . . , s .
/ objective, is an important property of systolic network.

‘The one slow design presented in this chapter achieves;'inr)

‘;n elegant manner, the above objectlve. Expandabllle/,_a\

4

'tie logic design lé}gr is achleved by using modular des1gn

\

-

technique, while:at the layout level suitable placement of
\ ’.
b "modules ensures expandability. The one slow stack of flgure'

{) v . . v

Pl
“

tribution

16

m 32A130 201D

~
lock 4

| AVAR VAR VARV

1pA11p 20118 13A11p 3D11S . i *

4

Figure 2.18 One slow stack c

Y Y Y

o

32118 0g ad11S oL

)

&

2.15 is expandable both by the number of bits in a word and
number of slices. The - number of bits in a word can be
increased by appending the required number of data:

blocks(three data ceils) to each slice. The number of

{

slices in a stack can be increased by stacking the desired

PR

number of slices on the present structure.

8

&

CHAPTER 3
SYSTOLIC STACK ANALYSIS

The enormous cost, significant design effort, a?d poor
adaptability; for modifications mean that a de;igner must %
rigorously vérify and if possible'p?ove the various aspects A
of‘ a design before fabricating it as a chip. '5 complete
verificatién of one slow systolic design would involve

’

proving the correctness of systolic stack algorithm, proving

the correétness of architectural sbecifiéétion against

abstract Sspecification, veriéying the 1logic desién for

correct. functional =6§eration and verif}ing the Eircuil

design for broper Ooltage:levels, glitch free operat;on’etcu

Such an exhaustive proof and verification of the stw "

- beyond tﬁe scope of thﬁs thesis. Also,'the correctness of‘fi
syétolic algorithm is dicussed in Guibas[14] and the proof .
for the archiéectural specification is discgésed in Li[19]).
In this chaptéx we discuss verification of the logic¢ design,
circuit design ard analysis of the-design for‘various sysfem _
parameters. The two design verifications are carried out xﬂ
using logic and circuit simufators respeciively. ’

3.1 Logic simulation

»
-

A one slow systolic stack compriging of an inﬁefface'

slice and pnéfﬁtorage 4lices is simulated using the logic

sim::étpr RNL. RNL is a switch level simulator and uses a
capaciﬁor—switch model of a transistor for simulation. The-
logic simulator ' results do not sﬁow a.pronounced effect of
the transistor geometry variation qof will it ‘give an
accufate estimate of switching speed. Thus,- logic1
~simulation usiné RNL is not suitable for determining circuit
timingu parameters. The logic simulation is primarily aimed
at ’;;rifyingu the transfstorized implementation of the
different modules(system) against their functional

-~

specification.

An extensive fimulation of “the nine element .stack
involves testing the stacks fuﬁctionalitthith 39 strings,
where each string is of length 9 and represents one éﬁssi?le
combination of push, pop and ékip signal. Such an extensive
sidplégion is time consuming and often difficult to execute,
Ho&e&ef, taking into consideration the fact that 'the
svstolic stack algorithm and‘érchitecﬁure are prbyen} the
one slow.stack is simulated fo; a few but significant string
of opeﬁaéors at the logic simulation level. Source code fof

RNL simulation is given in Appendix I. .For brevity, the

simulation results are not enclosed. As the source code

inéicates,'apért'from proper data transfer Qithin the-stack,
the oﬁe siow stack is tested for its”ability to presetve its
* ihtegrity in a g}éck full or stack empty state. ‘Tﬁe
hierarchical structu;é of the logic modules and iterativé

structure of the simulation\soﬁgygge allows easy'simulation .

N 1y

\ ' __49_" 'fl

er_nﬂ, TR e
T he
-aN .
X
A

’

of stack of any desired size. : o @
3.2 Circuit simulation

The ajm of circuit simulation is to analyse yhe dynamic
behaviour of a transitor «circuit. The circuit simulator
used in this Aesign is SPICE- 2G.6 and the‘ simulation is
performed using the level 2 transistor model. There are two
type of simulation performed on a ciréuit, namely:

(1) DC analysis '
(2) Transiept anﬁﬁ;sis
DC analysis is performed to determine the noise maréin and
threshold voltaée of a circuit. The trangient analysis b}
considering v;rious capécitoré of the circuit proQides
information on Tise time , fall time and propogatiopldelay
of a-circuit, In the one s}ow‘ systolic design the DC
analysis is .performed only for the modﬁles designed usiné’
complgmentary logic. -Appendix I1 prqffzzg Qample results of
the DC analysis .and tabie 3.1 gives a summary[;f the DC
analysis {esults.
"On the contraéj, transient analysis is‘carr}ed out fof.
all the different datapaths in a functional mddulé. Sample
resul&é_of thé transient analysis is given in Appendix III
and it coerSponds to .the simulation of the longest path of *

LN

that module. Detailed circuit analysl% is also carried-out

for critical path in the system and significance of guch an’

. . , r_,/
.

o 1]

- §0 ~

A

Circuit Voh Vih Vol .| Vil NMh NM1
Rewrite control'| 4.7V | 3V 0.23V | 1.8V | 1.7v | 1.6V
for slice 0 :

Rewrite control | 4.8V | 2.4V | 0.4v | 1.4v | 2.4v | 1v

for storage

slice

clock drivers) ,

Driv 1 4.8V 3v 0.23V 1.8V 1.8V 1.58V

Dri&iﬁ\Q 4.7V v 0.25Vv 2V 1.7V 1.75V
Table 3.1 DC analysis results

Where, .

Vol = Oatput voltage low

Voh.= Output voltage high e

Vil = Input voltage low

Vih = Input. voltage high ~

NMh = Noise margin high '

NMl = Noise margin low

- 51 -

analysis is discussed in section 3.3.1.

3.3 Performance Analysis
& : S ‘

a3

A

-« . While simulation is to” verify proper funétidnal
operation ef thetgircuit, additional analysis if redﬁiied to
define external operational and electrical characteristics
of the system. 1In tpis chapter gerformange parameté;s such

as maximum frequency /of operation, minimum frequency of

operation, power consymptfion are analysed for the one slow
design. The layout is also analysed for its quality by
examining the issues such as expandability of the layout and

component density of the layout.

3.3.1 Maximum frequency

‘The maximim frequency of operation is calculated based-
.on the propogation delay along the critical qatapéth in the '
system. Critical path‘ in a <*Tircuit is the '1onges§
combinatorial path in the circuit. As dne slow design uses
single phase clocklég;\homino logic, critical paéh of the
ef:iystem can be divﬁQed into two sections - critical path for
*high period ;nd crit;;al path for low’ "period of clock.
Duriﬁg critical path analysis'a master-s};ve flib-flpp is
-trea;ed as two distinct latches, one opegati;g in the, high
peripd and the other in the low period. Critical path for a
particular clock period 'is defined as the longest path, in
"

- . =52 -

.o

er

1 * «
. ? . . - . ’
weiberp yooiq yiedejep 3d1(s abeiolis T°¢g ainbryg
o~ yojeq
. . . aaeys
\ ° humu
+ ' (A \
. . #l % " 21601 AlA u>ied
’ _ : T 1tldog | Ik s
Jaysi1baa ejeq <
. : -1,
A\ L.
15115 ouviwod
ua3ed T . < . © yobkn
JIISPH] . aaels
) BRIEERALE A..IiloA“ o601 [
i . 1-Tysn
N ysnd | -
.) LF |
C .
| IAA yosien
. . N oARlS
L / . iu) . 4
. /n . - . f1ly
: i
. , .] | _ . .
ysiel ysieq uyoie],)
) OARIS aaelg aaels .
'p i-tp . T+
‘ ’ F]
- . . , .
R
5,
,_
i i . - .,_ ‘. - A .

-

Slave,
Latch

€l

Stave
Latch

.

Slave
Latch

{wf *

push

Slave
Latch

-

Figure 3,2

fi-1 fia)
Slave ' Slave
Latch Latch
- Stack full
Domino circuit -
» 14
— ’ A%

A

- 54 -

A

»

G

Master
Latch

— 4

To

-

Slave

ROt e

.\' . ‘ 1 T
. ~ o

-
t

the‘:sysgem, between two successive edges of the same type.
Th; datapath analysls indicates that storage slice has the
qfitical path .for the high period while‘the stack-full
module has Ehe critical path for the low period. Figure 3.1\
and Figure 3.2, éiVe the block diagram for‘ a storage
slice(data cell) and the stack-full quule indicating the

‘components in the various datapaths. Detailed circuit for

the critical paths are given in figure 3.3 and figure 3.4.

The minmimum clock high period is given by)
)
High period = Max(datapa;hl,.a..,datapathn,precharge/k\\x

-

period)

,Table 3.2 givés the high period for the various modules in

the system. The minuimum high period for the system is

) 3

given by the maximum value of the high periods.
The miﬁimum clock low gzriod is given by ")

Low period = Evaluation time + latch delay
Table 3.2 givés the evaluation %ime‘and low period for the
various modules in the system. The mini@pm low perioq is
given by the maximum value of the low gériodsﬂ Thus, £from
tEF table - s)

High periodd= 21.5'nsec ' '

Low period = 24 nsec
Hence, ‘ i .

Maximum frequency = 22 M hz S

Duty cycle = 47 %) !
It may be noted that maximum frequency is independent of the
stack sizé,' which is an advantage Tresulting from the

r " ’ +

poriad ybry 10} 31n211d y3jed [ed131ad ¢g'g 2anbug

\ ’ . ‘8-0
. {192 €yed - ¢ - s ~ N
’l -
_ . _ a . UERL g TUIE
I RN /7 . ull. - S |
S e [W —
(N . |
{ | t
] - —)
g | , ']
' 1 {ud1w) 321neN S
-1 s L. — ——— o an— ll— gup ‘
- u— -] 1ely -
. T o 1-tysng 19594 - i
I T , ‘ o
. 7 T .
. ip .
123s1baa . =
. ejeq
\ - H_ & H_

aaa s

R EEETy kL e
PR T A
TR T B .
o .
.
T
"

clock

"
=

+

\

=
1

¥

Figure 3.4 Critical path circuit for low period

- 587 -

1

Module name | High Period Low Period | Evaluation
’ in nsec in nsec time in nsec

Data’ cell for 21.5 17 ‘ 9
storage slice '
Data cell for, 18 18 - 11.5
interface slice
Flag bit -e2 10.5 ' 21.5 10.5
Flag bit-el - 10.5 ° 205 .10
Flag bit-FO0 " 14 23.5’\ 14.3
Flag bit for 20] 19 : -8
storage slices’ ! ‘
Stack full , 10.5 24 147

oo ‘ 3
Stack empty 23 : 11 --
- Table 3.2 Transient analysis results

' «

- 58 -“ ' 4 . ‘

' -
«
systolic structure. *
3.3.2 Minimum frequency N . ‘
N Minimum' frequency of operation.should be estimated for

" systems designed using dynamic circuits. This analysis is
. .essential to prevent any malfunctioning of the system due to
loss\ff charge on ,the charge storing capacitors of the

dynamic circuit. The one slow daﬁign uses two typsa;gf
' »

« dynamic circuits namely, clocked inverter and domino

. \circuit.‘ Though clocked inverter aréﬂ‘used in the latch
design, the feedback path in the latch Wgkes them static.
Thus the minimum-frequency of operation is dgterﬁﬁnea By the
domino cirguit - only. The domino <circuity for minimum
frequency calculaéion can be modelled as/“shown ;n'figure
3.5. - ‘ - ey
Where C is giﬁéﬁ by

’
C=Cqg+ Cp

N
\ Cq = gate capacitance of the domino inverter
Cp = total parasitic capacitance
ép = €3+ Cy »
Cq = total drain capacitadnce
NG C "
Cy = total junction capacitance - "
For the interface slice data cell .

i CP,=.fca + Cj)p-trans + (Cq + Cy)n~trans.

wﬁére, B

Cq = Cjsw * perfheter P
¢

:)) - 59 -

aws

: b i 4 ‘ ‘ . ‘ “ ! X !
Fi‘gure 3.5 Model of a domino cilcuit

~

1. "

Cj =Cjo * Area
Substituting the numeriéal values for the above parameters
we get k)
é = 0.41 pf
The value of Cg and Cj used in the atove calculations are
the values corresponding to the worst case model of the
domino circuit A a'domino cifcuit having maximum nﬁmber of
branches in the n-transistor block.\ The circuit sidered
for the minimumlfrequencb analysis is shown in figure 3.6.
) In this circuit during ' the evaluation period only one
n-tgansistorl is éonsidered toibe off in.each of the path tb
ground. -The dotted lines'in the.figure 3.6 indicates = the -
various disch rge.ggths for the capqciﬁor C. The cabacitor
discharge tiﬁe consﬁantmis determined based on the following

b . ¢
assumptions

]
|

(1) The ON resistance 2f a transistor is mgny orders of

magnitude less than the OFF resistance. The estimated value

of the t;ansistor OFF resistance is 1010.

Ay .

—1

of 1016gand ;
. <

“ “xape. Thus resulting in gate current of the order ‘of pico

(2) The \resistivity of Sioy 1is of the ord

Pesistance of 1012 and

more- ; . . -

. ® 9

amphere or less and a gate-source

Neglecting the transistog on-resistance ° an equivalent:

-

resistor capacitor representation of the domino circuit ‘can

- be derived ‘as shown if figure 3.7. The effective,resistgnce

Id

of the discharge path calculated for the ﬁarallél resiikér

» combination is 2+*10%. Assuming

to

an exponential discharge
- ¢
(:
.s. o ! o ‘ ' - 61] -

3 . o

clk —4

' o
. . . !] '

| I | SR |

O | T { ‘
-4 off —|- off ——{
- he t -

o

L}
L] '

fe e

’

ON - n transistor

clk—-l on

o T

Figure 3.6

RoE
Roff o E-f]

3
J
0

=

-

-
]

Capacitor discharge paths

Figure 3.7 Equivalent resistance circuit _

23

characteristics for the capacitor, the dischatge time
constant can be obtained using the formula
V = Vg.e~t/rc

where, ‘ o
v = finai voitage

= Vih =3V
Vo = Initial voltage
| = vdd = 5v , ’ . 4

load capapitancé y

(@]
1l

T
1}

discharge path resistance

R = discharge path resistance
= Reff

Thus we have,

t = -RC 1ln Vijp/Vdd
: /

~Subs£ituting the values we get ‘ia%/
t = 0.41 msec.
Totai period.= Hiéh.period + Low period
- '= 25.nsec.+ 0.41 msec‘
= 0.41 msec | N -

Minimum frequency = l/total period o, ' .

= 2.4 K hz. ' |

s - —

3.3.3 Power~cohsgmption K\\‘

- .. The circuit elements in CMOS are made up of both n-type
4nd p-type transistors. These circuits do ' not provide
direct path to ground and hencgltheir'power consumption is

-~ *

\ B - 63 -

]

quite small. The total power consumed by é CMOS circuit can
be grouped under two categories -'Static power and~ Dynamic -
. power. Static)power in cMos* systems is due to leakage
_ curfent, that is current'dué to substrate conduction. This
current 1is quite small (less than a nano a&perg), thus
resulting in negligible static power. Dynamic éower ig the
power cbnsumed by a -gi;cuié due to switching - capacitor
charging and djscharging. The aveéage dynamic power
consumed by a CMOS circuit is given by ‘
P = C1.vdd2.F

Where, C; 1is total load capééiéance and F is the switching
frequency. The above equation for Qynamic power is modified
to, handle\ cirecuits with ‘nltransisFoF chaiﬁs,‘as shown in
figure 3.8. The equation is derived based on the following
concept. When the puildown transistor in the n-transistor
chain is off, remaining transistors in the chain can be
considered és pass transistors. Using this concept, the
voltage at each of the capacitor nodes can be determined.
The total dynamic powe}chnsumed by such a circuit is given

1

by

P = FlCG.V12 + C1.Va2 ++ Cp¥p?] + Cg.Vdd2.F
= PlCg.vdd? + Cy(Vdd-Ven)2 + + Cp(Vdd-nvgp)?) o+

/

vaq2
Cgond OF)

-

& ; 2 2
= F[y Cj (Vdd-iVgp)©] + Cq.Vdd“.F
tz0 .
Where, Cg is the total gate capacitance and C; is the total

capacitance.at node i, Also, Cj is given by .

Cij = Cags .+ C5

_64; _ .

1
o

Figure 3.8 n-transistor
chain-.

Module name

Dynamic power
in mW

Data cell for

.storage slice

Data Eell for
slice 0

Flag bit - el
Flag bit - e2
Flag bit - £ 0

Flag bit forl
storage slice

Rewrite logic
slice 0

Rewrite.logic
storage slice

Stack'full

Stack empty

Interface module

0.6
0.65

0.68
.+ 0.69

0.7

0.7

0.37
0.24

0.73

0.79
{

0.84

Table 3.3 Power requirements

= 65 -

\“J

r

L.

A

Cqs is the drain/source bapacitance and Cj is the junction
capacitance. The dynamic power analysis for a system is
Eafried out .by decomposing the system intb " circuits
6per;ting at different frequencies. The total capacitance

-
for each frequency 1is calculated and. power for each

: »

frequency component is est@mated using the above eﬁpaéion.
Table 3.3 giQeé the dynamic power cdﬁsumed by each of the
fun;tional médﬁles when_ the syst m is operated at its
maximum frequency. The totalspower gﬂsumgd- by a 9 word by
1 bit stack is lé mW. However theactual power céﬁéumed by
such a system will be much less if;Qe take into account the
input data change rate. |

~

3.3.4 Layout expandability

In a synchronous system- layout expandability or maximum
layout area depends on the routing delay, clock skew and

power routing problem.

Rohting delay in the one slow systolic stack can be due

to the polysilicon‘or metal used in the routing. The poly

‘routing in one slow %tack is done in smali}subnets of 500 um

and less, which corresponds to a delay of 0.08 nsec. For . a

system to operate without severe performance degradation it

should possess the twire much less than tgate

characteristics. Considering tgaEe as 5 nsec in the CMOS-1B

process,. it is seen that the polysilicon wused in signal

- 66 -°

I

A stack can be expanded to a maximum of 27 biﬁi.

1

routing does not introduce any system dégradéfion. Ks the
polysilicon routing length does not. depend on the stack
size, the one slow stack can bé’bxpanded to any desired size
without any peéformance degradation. However, the length 6f
the rewrite -cqptrol\ sigqgls ‘'which afe routeé in metal
increases Qith the number of bits in a stack element. Using
the information that the lengfh of rewrite control signal is
700 pm per bit and the RC model for delay it is found that

without degradation in berformance, each elément of the

‘Using circuit. analysis of the clock distribution
network it —is detetmined that there "is a clock skew of
1 nsec between clpék ~and its complement in a slice.
Ho&ever, as the one slo& stack‘dbes not allow simdltaneous
data transfer between two élices iE‘is immune to interslice

&

clock skew problems. Thus clock skew does not impose any

.

restriction on the one sfow stack size or %gpandability?
. "
[4

Finally the effect of‘power routing on stack size can
be determined Ey' examining the voltage drop along power
rails. Considering the power requifement per data “cell(0.6
mW), the length of a data‘cell(708 pm) and allowable power
line voltage drop without severly affecting noise immunity

‘ - ~

of the system, we determine 'that one slow stack can be

Avpanded to a maximum of 28 bits per element.

- 67 -~

.

! v
In conclusion, the one sléw layout discussé& in chapter
2 can be expanded to a maximum of 27 bits per element.
However,‘if the number of slices is too large the single
ﬁower inlet pad used in the design could bfcome a power
limiting factor due to current density 1imitatioh§ of the

routing metal layer.
3.3.5‘Packaging density

Packaging density provides an estimate of the area
occupied by the active components in a design, thus givihg
information on silicon utilization and apropriateness of the
design for VLSI. The one slow design occupies an area of
1700 ﬁm X 1800 pm and has approximately 625 transistors,
giving an approximate area of 70 pm2 per’transistpr. Also,
after a detailed calculation of the area occupieg by warious
components of the .circuit it 1is fogpd éh;t ’power réuting
~occupies §.6% of the silicon area, interconnection wires
occupies 18% of the silicon area and the remaining 75.4% 1is
occupied by the active components in the system{, Thus’
giving a_‘very high. silicdﬁ utilizatioh which is in
accordance to the systolic network charaéteristics.

Finally, to complete the analysis two known systdlic
algorithms for stack are compared for their area and time
performance. Table 3.4 summarises thé comparison results.

The area, time and fanout requirements of the various known

- 68 - ’ ¢

- ":vf‘v'—w?fjgs?]

Architecture ' Area - Time

(T

Four slow N(m+1) ' 4 unit
| One slow (N/3)(3m+1) 1 unit
Téble 3.4 Systolic stack comparison é&
- v ' d,)) -
Architecture Area Time Fanout- -
Array . | N+logN Time for Proportional

increment and to size
access time -

0

Shift register | N(m+1)* 1 unit - Proportional
‘ " to size -
_Ripple N(m+1) Proportional | ®Bounded _
, to number of
elements
Four slow N(m+1) 4 unit , . Bounded
‘
One slow N/3(3m+1) | 1 unit " | Bounded

:

[Y 1

Table 3.5 Stack ‘architecture comparison

number ‘of words

+ N = i
m = number of bits per word
. - . I(’ ‘ .
N . (769\— . ‘

. ' "

3

’ stack implementations are also compiled énd table 3%5
summarises the results. 1In terms of the the actual gaﬁe
complexity \?f the implementations, neglecting the host
interface design, the four and one slow design have the
similar éransistov counts at the functiona} module level.
However, at the system level, the » percentage area
improvement of one slow’design over four‘slow design is the
" maximum, 39%, when each stack element is l-bit wide. This
area improvement decreases.. with the inctease in the word

v

length of the stack elements.

CHAPTER 4 , .
SELF TIMED ARBITER
#.1 Introduction | :

Atbiters are used in digital system to resolve conflict
which arise whenever more than one autonomous gnit request
access to a shared resource simultaneously, or with in a
short period of time from one another. In general, requests
for the shared resource may be issued at any time and any

number of requests may be outstanding at a given time.

Functionally, arbiters ensure integrity of the shared'object

by allowingl only mutually exclusive accesss to the shared,

"object. The order in which . access to the shared resource is

permitted by the arbiter 'is based on one of the following

allocation schemes - fixed priority, rotating priority,

dynamic priority scheme. Thus an arbiter receives a set of

n, .requests§ rl‘rz,.;.rn and. returns = acknowledge
a1,@2s...4ap (acknowledge aj i<1<n, correspondlng to request
ri) back to the request1ng source, .such that :ﬁe mutual
exclusion requirement among the acknowledges is not
violated. Stated formally, for the arbiﬁer of fig ,4.1' we

have .

fl(rl'rZ,...."rn)

1 . o=

f2(rlr’r2].oon1rn)) s a

a]

a2

_71-

~

L

2 az

o o
(-] _ N . o
o " | ., aRpreErR” .| o
o hd o
o oW *
o . [~] ‘. [3
, ,
Figure 4.1 Arbiter block diagram
. ‘ { ’ .
.'u . 1.1
)) - Vo
L]
] . -
T) N
. : [}
) s
) . . -
. b ! 5 -

L
°

¥ , . a "’fn(fl,!.'z,-...,rn) ° X \

N\ 4

.
. where ayhaj = 0 for all .1 j such that ri\and rj-are 1n)
B —
7 L] . ~ . J

*conflict. L™ {

1

.
£y

Yy . .
‘4;2’Arb1fer classification " o (:;

The arbitration structure in a system can be modelled
, ! H

1‘,," « ¥ . / R . . s
v as . a %buﬁllqt graphzl A conflict graph is an undirected

! .
'g%aph‘c = (V+E) representrﬁg thes conflict(mutual exclusion

y requiremént) betweep two requestlng sources. The vertices

a

-

V = {n 251...w,n} of the conflict grdph represent the’

T request sqarqes rr?rz,u..,rn. and the E%ge‘(i,j) represent’
 conflict -between ri and rj. Hence,”/an edge (i,j)€ E implies

that the acknowledge al¢and aJ are mutually exclu51ve.
‘lr
l"

&

.
- ~
1

r . s -

+l .t e 1 ¢ :
‘Arbiters, = .can .- be classified. based - on their
Y - . Y o . - '
«implémentat‘ion techniqpeg&,arb’itrat,i,on“\eme', or .structure
} N .

of Jthé underlyrng ccnflict' graph ' ag :prESented . in this’

chabper. Based.q% the confllq; structure, “there ar€ - twWo
:)1&’_ *type.ncf arbiters namely ‘1‘0ut of‘& and general arblters.
. , f 9 » ~

'+ The confllct graph of a l-out of- N arblte‘r is a complete

’L graph Thus fa;lrout of-Nearbiter’ acknowledges‘only one oﬁp

the'many ing ‘sources at any¢ gfveﬁ. time, Stated'

‘formally, in a 1l-out oq- arblter almaj = 0 for at} is;jo 1In

contrast, the confllct graph for a general arblter is not -a

.. . complete graph., Hence, for a glven set of active requests,
’ 0 « A v 4 > ’ . - P

C - ‘o ' ' ' ! . . M
AN * } ’ .

[' N N 3 . :

i s - . T 73 = P A
A, ' ’ ’ ¢ : Tv—

- }
the general arbiter acknowlédgeé:1§; maximum. subset og
requests which are mutually exclusive. '

7

v

‘ The l-out of-N éype of arbite:s»find appl%cationsnin
compﬁger system - at the PMS(Processor—memory—switéh)[35]\
level and the gene?al arbiters find application at the VLQI
level. The general ar%itrétion structure can be found: in
the ciass‘oﬁ self-timed systems such as petri ﬁeg, dfta flow
-systems, and path expré;sion'based systggs. éod;‘ ofj these
applicationg are discusséd in sectjon 4.6.

- o L 0 B *)
4.3 Arbiter design .

. - | ,

. Seitz[32]~' and Fldﬁmet[28] have propoéed design

' te;;ﬁﬁdue for 1-out-of-N é:biters: But, éxteﬁdability of
ese tethniques to the general arbiter qesigh’is not known.

yIn th‘is"‘chaptt'a'r'we present a self timed desig? technique for
the synthesis-‘of " deneral arbiters. Thoﬁgh only general

- arbiter design is discussed here, the design approach 18
: equally applicébfe to Qyntpesis of i;gut oé;N arbiters; as
they are a restricted'class of general arbiters. The design

-

] * R
presented in this chapter uses a distributed architecture

a

\.aﬁd is sgitable for VLSI as they exhibit éharacteristics

o B . ‘ . . ;
such . as modularity, homogeneity and locality, in
(“. v . . . - s ? 3 R .
a communication. , . : “
. ' : ‘ L
\ ' ‘ : s
¢ A . 4 ’ ;\l
4 s . o i P

[} " ‘ J
4.3.1 Design hierarchy .

'The design hierarchy digdussed in chapter '~ 2: i;
appliéggle .to asynchronous esign also. In particular to
khe arbiter desﬁgn, the issues corresponding to the
behavioral 'specification are beyond the sdgope of this
thesis. Inte}eséed readers are referred tfo Bl k[2] for a
detailed discussion of trace spedifidatij; for asynchronous

arbiters. 1In this thesis we discués, in detail issues

pertaining to the architectural design of self timed general

. L
arbiters.

l

4.3.1.1 Architecture design

[} N ~

“ The distributed architecture of a general arbiter can

.Be described as follows. For each edge(i,%g.of the conflict

gfaph a l-out of-2 arbiter A(i,j) is associated. The local
5 .

arbite’ A(i,j) 1is used to resolve copflict between the

" requests rj and rj and all the local arbiters resolve

v
conflict independent of -one another. The acknowlédge aj,

corresponding to the request rj is sgenerated by éomﬁining

L

all the 1local acknowledges corresponding to the edaes

' - ‘ . A ‘ L
incident on the vertex i. A fundamental problem in the

, above approach is the possibility of deadlock due to the

N\

’ r .
autonomous and distributed decision made ,by the 1local

L} L]

' a_ Ut : . . N
arbitérs'. In an- asynchronous environment, where siqnal

transition can occur at any instant of time and\a signal
. - K

»>

~ LY

*

-

‘ .

L =75 - e, ‘ : , -
. N +

: . . o

\

.takes arbitrary but finite time to travel from one point to

another. In such an environment a solution to ellmlnate
deadlock caused by the dlstrlbuted dec151on requ1res careful

consideration of issues such as synchronlzatlon. Solutions

using/priority scheme for each edge, though sufficient in an
’ ‘ %

synchronous environment as shown ‘in chapter 5, do not 1lead

{ - .
to ,d&cceptable solution during asynchronous implementation.

Thus, in this section we present a deadlock free 3solution

for asynch;bnous synéhesis' of general arbiter using‘the '

concept of edge request serialization. This solution is a
generalization of the . solution-to the dining phiiosophers

prqoblem{15].

The concept of edge request serialization can be
g , .
t o \
descriggd as follows. 1In a conflict graph G, each veﬁ(ex i
(request source) will send ‘the request to one of the

incident edges at a time. After receiving an acknowledge

. from . the 1local arbiter of that 'edge, the ‘'request is

forwarded -~ to 'thé next ‘ih;ident edge. This process is
repeéted until all the ‘edges'.incideﬁt on vertex i are
accounted for. _Iﬁ the edge fequest serialization techpiqug,“
any conflict at a lbcél arbiter due to éimultaneous requests

n. be resolved a?bitrarily. The global acknowledge aj,

gorresbondiﬁg fo~re".it ri lgi<n, is generated only after

'receiving the 1local . acknowledge from the 1local arbiter

corresponding to the last efge in the ‘ségializatioh order.

[}
In this chapter, a unique label i{ used to represent the

b
¥

..76_

&5

J

3

\

13

serialization order of the edges for a given vertex. These
labels are placed on the edges next to a-vertex and an edge

with the highest label represents "the 1last edge in _the

.)
serialization order for that vertex.\ However it needs to be
noted that an a;bitfary ordering of ¢t edge request can
lead to deadlock. Before presenting ‘an algorithm for

deadlock free serialization of edge requests, we first

establish the criterion for such a request serialization.

L]
™

: ‘Consfger a conflict graph ih which the edges incident
\at évery vertex have been serialized. 1In a pycle Qf shch a
graph, every vertex 1is incident at two edges with two
distinct serialization numbers. Between these two edges,

the one with a higher serialization number is called a

_H-edge, and the other(with lower serialization number) is

" called a L-edge. A cycle in such a conflict graph is called.

a serialization cycle 1if, while traversing 1it, all the
vertices i%, it are entéred along the H-edges(L-edges) and
left along the L-edges(H-edges). Any conflict graph which
cﬁmprises of such a serialization cycle is prone to deadlock
problém. . For exaﬂ%le, consider a serialiéafion~' cycle
éqnsisqing, of°’vertices 1,2,...,k, and 1let the, requests
ry,r2,...,Ig corresponding to these vertices be. all raised

simultaneoﬁsly. Each vertex in the cyclé access the arbiter

amount of time, then each vertex in th

acknowledge from*the local arbiter on

- 77 -

CXgis\;ill wait for
t -edge, thus’

.’1;?

resulting in cyclic dependency aand deadlock. Thus, a
deadlock free operation can be ensured by avoiding any such
serialization cycles in the conflict graph.

\

Theorem 4.1 °)

Absence of a serialization cycle in the conflict graph

, >
guaran7eas deadlock free operationg

! e

Proof: Assume the conflict gréph has deadlock. Then there-

is a set of vertices{ {1,2,...,k} whiéh' are in cyclic i
dependency. Consequéﬁtly, eééh verteX has receiyed
acknowledge ™ from uthé local arbiter'correSpéhﬁing to one of
its edges and is waiting for acknowledge from the local
arbiter corresponding to the other edge. Label theéé gdgés
as -L-edge and H-edge respgctively. Such a lébelling of .all
the verticeézin the set will result in a serialization cycle"

and hence the theorem.

Thus any algorithm used for edge request serialization

of a given. cébnflict graph should ensure that no,
. »':) .

serialization cycle is formed. One such algorithm is given

o * N ,

the

t

below. This. algorithm also attempts to improve

performance by’ allowing as many global acknowledges as

[}

possible to be generated at a given time.” In the algorithm

below, the concept of colouring is used to indicate all

the
vgrhiceé‘ ~that can be serialized during a ﬁarticular : <\\

°
a

N
..78_

FEAN

o

trag

-

i;eration of the algorithm. Conceptually, Qorking -of the
edge ‘requést serializétion algorithm can oe déscribed as
followo. During the\sérialization labe}lino of vertex i, .
the a}gorithm énsures that for each edge(i,j) incident on'i,
the‘serialization number assignod at the i-énd is always not
greater than that assigned at-the j-end. . Notice that the
s rialdzation nunber at. the j-end is always equal’ to the
cyrrent degree of _j. Qw;f ‘such n relarron cannot be

guarantéed for all the edges incident on i, then i .is not

considered\\ii—_iscandidate for labelling during the ‘current

.
.

iteration. , o , . o -
‘ ! - ' « s e,

LIRS . . ‘)

Algorlthm edge request serlallzatlon, N o,

for i =1 to n do
set’ vertex i not visited
select a colour
while a vertex is yet to be coloured dé begln
select a not visited vertex i with the least degree
if deg(i) # 0
thep begin
testcolour(i,colour)
if colour v . .
then begin e Coe
assign ‘the current colour to vertex 1 ‘-
count =1 - '
{7each adjacent vertex j do begin
mark i-end of edge(i,j) with count
mark j-end of edge(i;j) w1th deg(j)
count = count + 1 .
mark j as visited
delete edge(i, j)

"o end L '
D delete vertex i | e
end . .
else begin
reset all visited marks to not v151ted
select next’' colour
‘ end . . . ‘
end | ' A
" else assign the. current colour to.vertex i
AN end{while} L.
end{algorithm} - ‘ : :) ’ .

- 79 - S

‘ A
L]
¥4
-
]
’ : . ’.
Figure 4.2 Gefieral conflict graph
Av - a3 3 A 2A3 1A
4 2 2
2 LY 3
8
)
o ()
.) .
s
1 4 1.
DA
2
N\ '
. 4
. 2 1
O
3
- Y

t

Figure 4.3 Edge request se
{,' .

rialization for colour A

. e rrmg e
RN Py o8
Pl ool)

¥,

Procedure. testcolour(i,colour) '
arrange in the array A the neighbours of i in the
ascending order of their degrees .
colour = true -
j =1 .
while j g deg(i) and colour do
"Cif deg(aljl) >
then j =3 +
else colour
end {procedure}

[[o W 2
<

false

Théorem 4.2 _ oLk

2
]

Algorithm edge request serialization does. not gen;rate
any serfalization cycle. |
Proof: The proof is by contradict%on. LeE(il,i%,...,ik,il)
be a serialization cycle.'.Without loss of generéiity assume
that this cycle is generated when vertex iy is beiﬁg
coloured. and edge(ik,i;) is being labeled by the algorithm.
This serialization cycle impligsythat with respect to vertex
igx, the edge (ik-1, i) is a H-edge® and edge(ig,i;) is an
'L-edge. ' However, when vertex iy is coloured, the
edge(ig-1,ik) is assigned an L labgl and.the edge(ik,ij) is
. later rassigne? a H 1$be1 leading to a contradiction.

Similar contradiction arises if the cycle is formed when

'edge(fk_l,ik) is being labelled. ’ ’

4 .
The working of the edge serialization algorithm fior the
' - 1

éonflict graph of figure 4.2. is shown 'in. figure 4.3.
. , . - .

- 81 -

‘ EEN
¢ i
\ L
4
. { ’ b
Figure 4.4 Example conflict graph
r) . - — | ————3=a)
v B . ' } . J —*az. 0
T oAy | - A(1,3) .
. a3 .
r ~
- ' A(2,3) " A(2,4) '
<
r i .
. 3 - oy :
! 14
s . ' . Yo
. Y R A(3,4) J
s *a‘ ,
‘r4‘ : - ‘& : v e)
. Figure 4.5 Self timed general arbiter block diagram B,
] - . . \
, (
‘ N
) ~ .
) ¥ «' ["\"\
s . . . a
. ‘ C -
' H - ‘ 1 = . z L
[h Q‘ ' N
.) T

N .

4

: 3igure 4.3 illustrates the operation of the algorithm for

initial colour A.

H

. 4.3.1.2 Logic and Circuit design
e e

//

P -~
/ . o ¥
I ¢ ' - .
Désign of the 'distributed asynchronous arbiter for the

conflﬁct graph of figure 4.4 is shown in figure 4.5. The

akove design is a self timed design using. four -cycle
gfotn

ocol. As“shown, the distributed design is obtained by

iﬁterconnecting the 1-6ut of-2 arbiters in "the desired

serialization order. There are many12,28,32] proven désigns
ayﬂilable fof l-out of-2 asynchronous arbiter. The design
‘used in this thesis i? due to Black[2] and it compgises pf
Seitz's mutual-exclusion elemént aq§ delay element%,as shown
in figure 4.6. A,sfudy of the above arbiter's operation

indicate that a request rj and its corresponding acknowledge
., N “

‘aj follow a four cycle signalling protocol.

4

As a result of using a proven l-qut of-2 arbiter'module“
and four cyc{g 'communicatién protoéol in the desién of
general‘arbitergp the design concerns, at the logic level of
the hiéra;chy are not considered in this thesis. Ho&éver,
in general,~design issues at 'this level vary with the design

under. consideration.. For example, consider the issue of

self timed communication between two modules. If a siﬁgle

v
-

set of protocol signals are wused when a ‘large number of

<

signals need to be communicated, between modules, the

v
& > :
S 1

—83... . ' t.

bl

h
|
- D
c JAN 3 aj
MUTEX
d A > a

ARBITER A(i,j)

¢

cC

\/
) % |
- ‘ l Vce

'InMOS Mutex

N -

4
4

Figure 4.6 Locéi arbiter

L]
L}
S AR A
, 0
4 -
. 1
- « .
LY
s
L
'y «
f
L ¥
B
- 7
K
. . N

§)
variation; in delay along the different signal linés'will
create data synchronization problems. There is more than
one solution to achieve self timed data transfer between
modules in such a situation. These /;afﬁtions differ

'depending on the inter-relationship between the signal
lines. When the signal lines are fully indebendent of each
other and are unary signals, self timed communication can bé

~achieved by using built in protocol- teéhnique, and this
approach requires 2N signal lines. Howewver, if the siénal
lines form a“data bus then by making use ;f the mutual

1éfgzﬁsion property between the 'l' and '0' 1level on a
dataline it is possible to desién a self timed communication
mechanism using 3N signal lines. Alternatively, if it is
known a pribri that all the signal 1lines are mutually
exclusive, fhen self timed communication between the two
moduléé can be achieved us%ng just N+1 signal 1lines.
Similarly, at~ the ‘logic design level a self timed syst§m
designer should give special attention to - one-to-many

" communication. On the contrary, if a locéily synchronous’
éﬁd glogg!ly asyﬁéhronous design techniéue is adopted, then
the designer would be faced with the problem of ensuring
metaétable free operations[f?] in tﬁe'local modules at the
logic design level. 1In general, .at the logic design leve},
whenever indivi@ual'modules are. no£ locally syhchronous;
issues .like hazards, race and state assignment need to be

specifically addressed as discussed in Mqlnar[bBl .and

" chul7].

[

. |}
Ca

. -

Design concerns at the circuit‘ aBd layodt level " are
hostly similar' to th&se encountered dnring ;he'desig of
synchrionous systems, with the exception %©f clock rela ed *
ptoblems. As/a;;y of these iséaes are discuésed, in7det il,
h‘ chaptér’ 2, they are not considered here; ,again.’)‘ Hg;ever,
asynchronous cifguitcdesigner‘shouid gxercise Eqution while

w'usihg dynamic Togic structufe; as the absence of cloék~ énd

. , 2 -
unpredictable delay in operations could 1lead to loss of

infgrmation"in such structures.’

>
-

4.4 Arbiter fairness
K
The fairness structure of an arbiter,\governs the

i \ waiting éime of the irequesting sources, ‘In general an

1)
unfair arbiter is undesirable a%s it can paralyze:secgfpns of

L

a system by forcing some of the requesting.soﬁrces“tq.wait

 indefinitely. The issue of fairness in asynchroﬁgﬁs
\ . . : . .
arbiters'has received much attention recently and a éetailed

9

exposition'of the different notions of fairness can be found

Y LY * .
in Black(2]. In this section we .discuss two notions of

¥
-

fairness, namely strict fairness-and weak fairness which are

4

relevant’ to general arbiﬁgrs.

A, f-out of-2 arbiter is said

-

to-be- stridfly fair if it.;éiiérnateg between the two

A . requesting sources- while *servicing. That is, i} th.the

- —

requests rj and rj are raised simulténeous%y ats the ,arbite?

* . e
3

Aki,j) “and the arbiter agknowledges rj, then it will not

acknowledge rj again(for its, next requﬁft) before

.
;
R

* PR EM',

] , h

- \ ~
acknof#ledging ri. However, if the arbiter receives only one
.- s s ‘

'request at a time, the requests will be serviced in the

a4

-order of their arrival. If.strict‘alternate servicing of -

requests cannot always be maintained, then such an arbiter
B . .4

is said %to be weakly fair, Thus a weakly fair arbiter °

A(i,j) may serwice one of e request sources man times + &
q many

before servicing the other even though both ithe requests are

active simultaneously. However, a weakly fair arbiter will

eventually service both the active requests.

*

These notions of fairneés can be extended to general
arbiters s follows. Suppose, all the requests are active
simultaneo?sly ané let‘:acknowLedge aj, corresponding to'
request.ri be granted. If the global acknowledgé aj for the
lnext request.'of ri 1is not granted until all the pending
requests,@hiép must bé acknowledged exélusively with respect
to rj are globally acknowledged, then suéh a general arbiter
.is called a strictly fair general arbité}. Thus, a strictly

fair general arbiter ensures a strict ordering between/ rj
‘ ' g |

and all the redﬁests conflicting with it. However ifusucﬁ a

*

strict ordering, betwee? r; and all the reqlests conflicting

with it, cannot be enforced then such (Tgeneral arbiter 1is.

cal&ed a weakly fair'’'general-arbiter. hus in a weak%y fair

general arbiter even though conflicting reqguests are raised

' simultaneously, one or more of these requestshma& have to

wait for the acknowleddéfand during this haiting period some’

of its conflicting requePt spurces may be serviced more than
\

. -87-"°

-

3

-

‘-
)

atcier i e i
¢ ’

<) '

The local arbiter of‘figure-4f6 is strictly £fair by
construction. The dei;y slemenf préségt on each link of the
acknowledge signal introduces a delay D, egual to the
arbiter resolution time, between the time an acknowledge
becomes false and tﬁe time its corresponding request becomes

true again, thus ensuring strict fairness.

The general arbiter designed using strictly fair local

arbiters and the edge request serialization algorithm is not

strictly, fair. These arbiters are weakly fair. The absence

[

of strict fairness in such general arbiters can Dbe

attributed to the concept of edg;‘request serialization As

a consequence of request serialization even though request

v v

r; is active it is not seen by all the local arbiters which
are present on the edges incident on vertex i. Thus at “any
given time there may be‘ onet or more local arbiters,
corresponding to request.rj, to which. the réquest has not

yet reached. As a result of the above senario, the self

timed general arbiter of this chapter cannot ' enforce an

%

ordering among the conflicting request sources and hence:"“\\

L4 o

not strictly fair. However, as'the request will eventuall
reach local arbiters on all the incident edges, the global
acknowledge will eventually be tgenerated and thus th
qgeneral arbiters of this chapter are weakly fair. | '

. v

¢

- B8 =~

° 4

oo -

4.5 Arbiter expandabiity C

¢ C--) '
Expandability is an important property of a-modular

design. 1Inethis Section we show how a self timed general

» !

arbiter designed using the edge request serialization

élgdnithm can be expanded yitb minimal .effort:‘ A éeneral
arbiter can be expanded by ;éding addigional.goﬁflfct intg
the eéistiﬁg structure or by adding.}additional rgﬁueét
sources and tﬁeir correZponding conflict into the st;:uctu;;-'e;._vz
The above two cades correspond ‘to adding of edges.;ahd
adding’ of verticeé respectively. Solution to the above two.

types of expansion are discussed below.

4

b 7
°

Consider a conflict g;aﬁh G.with its edges labelled, as
shown in figure 4.4, using the edge request serialization
algorithﬁ of section 4.3.1.1. The two typeé of extension to

[] .
the graph G are shown ih figure 4.7(a). One appreach for

obtaining a deadlock free implementation of the extended

conflict graph G; or Gj is té relable the graph from -the

scratch using the’ edge request serialization algorithm.

3

But, such an approach is undesirable as it leads to redesign

of the '‘arbiter from the scratch. 1In this section we‘bresen;(

an alternate solution which not only retains the existing
serialization but also provides a technique for serializing
the newly added edges of the graph. This extension to the

procedure of section 4.3.1.1 mot only results in a simpler

hardware ‘implementation but also retains the deadldck free -

-
' r]
+

- 89 -

.
Qo

Figure 4.7(a)

Gy

0

1

Unlabelled extended conflict graph

Lt

Figure 4.7(b) Labelled extended conflict graph

- 90 ~

o~

L

-

property of the original graph, as will be éhown below.

——

t - o

Before discussing the proof for th& deadlock free
property of the serialization procedure, we first introduce

the notations that are used in the proof.
4.5.1 Notations °

{i,3} : Indicates i-end of the edge(i,j)

3

{j,i} : Indicates j-end of the edge(i,j)

Ar,-yg : Vertex A is entered with a L-edge and departed' with
H-edge S o . ‘
Ag-1;, : Vertex A is entered with a H-edge and departed with

L-edge " '- : i .

Ay : The serialization number for the entry and departing
edge for vertex A is immaterial)
Thus, a serialization cycle comprising of vertices
(1,2,3,4,5,1) .implies (1H—Lr2H—Lr3H—Lr4H—Lr5H-Lr1ﬁ-L)c
The serialization.procedure for adding edges to a given
éonfl}ct graph can be described -as follows. Consider the
graph G;, which is obtained after adding the edge(i,j)'to t@e
conflict grabh G. The newly added edge 1is assigned a
label(serialization numberi as follows.
Mark i-end of -edge(i,j) with deg(i)
“Mark j-end of edge(i,j) with deg(j)
Application qf'the’above procedure to graph Gj i§ shown in

3

- 91 ~

P

T

- 5 .

' ; . , D
figure 4.7(b). It can be shown.that the above labelling
procedufé'will not introdﬁce deadlock into thé graph Gi1'.:

o

As the graph G is deadlock free we prove deadlock free

‘property of G3' by showing that the edge(i,ﬁj- cannot be a

‘.part of ahy serialization cycle. This proof can be

described as follows. a

3

3

Let us assume that the graph G;' has deadlock and hence
there: is a serialization chcle including thé edge(i,j).
Without loss of gengrality let us assume :that verticés
(},....,i,j,....k,i)~ form the serialization cyclé. Using
the pﬁtaﬁion of section 4.5.1, such -a ‘sgriaiization, cycle
implies (1H-Lr-J--lfﬁ-Ler-Lv----ka:LleLL)- However, as
the labelling pgocedure assigns deg(i) to {i,j} and deg(j)
'to {5,i} a traversal of the cycle (1,....,i,j,....k,1) can
.only result in :(ﬂx,....,iL;H,jH-Lr....kx,lg), this - a
cbﬁtradiction' at vertex | i. . Hence the abovF edge
serialization method will not {ntréduce a deadlock into ,the
conflict gr;ph. ’ .,

f
L3

&

When moré than one edge needs to. be added Eo:the
conflict graph, it is done so by adding one‘edge-at a time.
After éddition of e;ch edge \éhe above serialization
procedufe is applied to the newlyﬂ added '’ edge. This
procedure is repeated until all the edges are added. The
absence of deadlock in éuch a case directly follows from the

proof described above.

Vo . \) *

&3 '
: f///)‘ /
. .)
‘ |)
Consider the conflict graph.Gh which is obtained aftet
Fxtending the graph G by adding rﬁéuesﬁ source rj and its
associated incident eédges. The /serialization procedure for
the newly added e@deshis described by ‘the algorithm given
Ibelow:’
;Algorithm for serializing r quests at vertex i
Algorithm serialize
count = 1 ' / . ‘
" For each vertex j adjagent to i do .
mark i-end of the.e ge(i,j)éwifh count
ﬁ?rk j-end of the fedge(i,j) with deg(j)
count = count +
end {fog}

end {end of algorithm} .

Applicétion of /the above algorithm to graph G2 is shown 16

figure 4.7(b). /As the original conflict graph G.is deadlock
free, the extended conflict graph g2" is ‘shown to be

deadlock fre¢ by proving that ,the{ newly added vertex .i

cannot be A part of any serializati?n cycle. This proof is

‘ t
discussed /below.

Let us assume that the graph G,' has deadlock, which

¢ . N \ , LY .
'implies that G2' has a serialization cycle involving vertex

i. /Without loss of generality let us assume’ that vertices'

.
1

(,.....(i,j,k,L;...m;}) form the‘.sérializatiOn cycle,. .

sing the notation of secgion‘4.5.1, such a serialization

’
t

/
/ At

{

- 93 -

LI

.‘/ ."‘

[!
& . [

& .

cyc}e implies (iH—Lr‘--JriH-LIjH—erH-L(uﬁ-°erL11H-L$°
However, as the serialization algorithm for the newly added °
vertex i assigns deg(i) to {i,j} and deg(ﬁ{ to {k,j}, a
traversal of (the cycle (l,¢¢v0,i,j/kse0..m,1) can only

result ih (IX"'k_:_'i-H’jX"kH-L'""'mX'lx)' thus ‘a

contradiction at vertex i, Hence, the above extension to

the *edge request serialization algorithm do not introaucg//

deadlock into the conflict graph.
Y -

% "

t

When a conflict graph is to be extended by. more than

" one- réquest source, it is done so by extending the conflict

graph ofe request source at a‘time., After each extension, \

‘the newly added vertex and its incident edges are serialized

using the above algorithm. This procedure ig repeéted until
. .
all the request sources are added td the conflict graph:
a

L

It should be noted that the hardware moéificatipné

Eequired to the existing design is §imple and minimal for

Co ,)
both type of extensions discusseq above.

4.6‘Applications . ‘ //

"% In this section two applications which directly make

usé of the general arbiter synthesis procedure are

rd

discussed. R - Cy -

4.6.1 Asynchronous system control{i:/§§ﬁfhesis .

i

As a general ‘approach, loosely coupled systems are

preferred in | VLSI. In a lodsely coupled system with
| L

!

autonomously operating components synchronization mechanism

-

is required to control ‘access to shared resource such as

\

communication channel. 1In such applicatiOQ§'?n asynchronous

system conéroller, also called synchronizer, 1is wused . to
) v o
ensure proper operation of the system. Such controllers can

be designed using the path expression synthesis procedure of
Anantharaman{l] or Li[20]. Anantharaman's approach is a
self timed design.approach and -is based on the }egular

expressipn synthesis procedure of Foster[ll]. As Giscusqed

'

below and in [1] an important and integral part of path
o K

expression synthesis is the synthésis of its underlying

conflict graph. Functionally, conflict graph of a path

expressidn ensures . that two mutually conflictiné events of

. e

the system are not enabled simultaneously.

v
et

’ l
As an example, consider the synthesis of 'a controller
. i .
for gig reaqer—writer problem with two reader module and a

| ‘ , N
writer module. Specification of the problem does not allow
1 ’ >)
a reader ﬁnd 3 writer to be active simultaneously. However,
¢ &

mofe than one reader can ‘be active simultaneously. The
above ' problem can be represbnfed(using path expression as
shown below and. the conflict graph structure for the same is

'

shown in figure 4.8.

-

:Reader~-writer controller \

Path R; + VS‘\; ‘ | \

Path Ry + W;' ’
8

-

;End of définition
The conflict gfaph of neader—wéiter problem is a general
graph. Thus, synthesis of the controller for reader-writer
problem requifes synthesis of its underiyihg conflict graph.
The conflict graph synthesis procedure u;ed by Anantharaman
is a centralized design approach and suffers from the
f£ollowing disadvéntages: \ ‘

(i) Issues such as fairfess and ideadlock in the arbiter

k)

design is resolved by qdjusting threshold voltage and active
resistance of the circuit../ Such an apprgach is highly
suégepfible to fabrication defects and designer has very

little control over proper operdtion of the circuit,

N

.(ii) The design procedure is not modular, thus expandability .
] \ N
requires extensive redesign of the circuit.

A

)

The above, disadvantages can be eliminated using the
{

distributed design approaéh of this chapter.

Thus, using

general arbiter design approach of this chapter not only -

reliable, but also modular implementgtﬂbn of controliler

LA » >

‘eircuit can be oBEai ed.

4.6.2 Petri net synthesis

A,

Petri nets can be used to model cémputers, comLutations

/

O =
o]
o,
()

R) O

' A

Figure 4.9

2 ' P3
T3

Example petri net

. T3

LT4

a”n

2

¢ i

and to study their performance. Patil and Denis[26] have
shown how petri nét can ‘bg used " in the modelling and
synthesis of digital system. Patil's approach to petri net
syn;hesigl is one of &functio?al emulation of petri net in
hardwafé. Such an apprpach can also- be uséd in applications
such as r4,6,24]7 However \it should ?etpotgd that this
apprqaéh to system designing’ Is not very efficient in

-

general.
J
Patil's work on petri net synthesis[25] has addressed
many issues bertaining to asynchronous implementation of
petri nets. Oné~i§sue that neJ%E additional consideration
is the arbitrabion problem which occurs during the synthegis
of 'petri nets which have sha;ed pléces. This can be

) described with an example as follows. Consider a petri pet
with four. shared places connected as shown in {igure 4.9.
According to the firing rules\ of the petri net a token in @
shared place can be cénsumed by only one of the conflicting

) transitions. Thus a shared place represents an .arbitration
» ad

point in a petri net. With respect to figure 4.9 there are

four arbitration points corresponding to the four shared

places in the net.. The arbitration structure of such a
. 9

petri net can be represénted using a arbitration graph, as
shown ‘in figure 4.10. Each vertex in the arbitration graph
corresponds to a transition and the edges corresponds to

J'shared places. The arbitration graph of figure 4.10 is not

a complete graph. §yﬁthesis of 'such a petri net requires

, @
*
.

_98...

PEEEEENR

—_— .

e ., synthesis- of underlying conflict graph. Thus the genefal
. ' .

arbiter synthesis procedure of this chapter can alsé used

3

during the synthesis of petri nets. '-In addition, the

<

¢ o) distributed architecture of the general arbiter is ‘suitable \

-

for petri net synthesis as petri nets by nature are modular, .

) distributed and asyafhronousl . o« . <
¢ |
* N i
q,
o .
LY
~ L
t
. . 3
“ ~
. " .
~ = ’ ' ~ s
. (13
—
« bl - \
‘ ¢
-] .
. 8. *
A
> ' .]
. £ B a
- ” EE]
s) ?
5 ~ . -
¢ .
< ~ 4 LY ~ (=
" ' s . .
5 - '
) . - P
. .])
_ 5 \ P
* A . R .
© o s v
. 1
® , .]
o , - . .
a A} A s
’ L] Y < : “

. . CHAPTER' 5

- o

- "» SYNCHRONOUS AND "ASYNGHRONOUS DESIGN

! q - A CASE STUDY

S.l Introduction

4 - - -~

b M . AR ri

- ~Y .
. This chapter presents & case study of syn bhous and
asynchronous design of general arbiters. Synchronous and
asynchronous design tech;iques are two rivalling design

. . A 4
techniques using twd different methods to communicate

“ ' \
N . information between parts of the system. Use of a
. particular design technique for a giveq‘problem could depend

4

on a variety of considerations like operaéﬁng environment,
-

performance, ease of design and suitability for VLSI, etc..

Unfortunately, there is no ~universal rule’ of thumb or

criterion which could be used as a guideline for selecting a
. . 3 [

particular design approach. 1In this chépter we present ' a

syncﬁrdnous design of general arbiters and compare it wiqm

the self timed implementation of chapter 4. The:self timed

!

generéi arbiter desigh ‘presented in chapter 4 is based on

.) edge request serialization alforithm. As it is pbssible to

) .. - . o
operate an asynchronous design in synchronous environment,
LN

". the design approach of chapter 5 «can "also be wused for

: . synehronous design of general arbiters. But, often better
- .

algorithms can be designed by making use of the properties

-
« . -

of the synchronous: systems such - as sjimplicity. in

-

J . K . - 100 T -~ 8
_— .

Y

5.2 Syhchronous general arbiter design

. follows.

©a(i,j) arbitrates between the conflicting

N .

synchronization and a priori knowledge of dela;% and signal

transitions. In this chapter a high performance algorithm'

,

for synchronous, distributed implementation of general

arbitefs 1is presented. During the desjign of synchronous

distributed general arbiters the following conditions "are

assumed to be wvalid.

L

" (1) Requests sent to the arbiter are synchronized with clock

and the acknowledges - from the' arbiter are rec%ived

synchronous to the clock. !
That

(2) Global transmission of request signal is allowed+

is, the request signal will reach all parts of the atbiter

without any tim®k penalty(delayiﬁ
(3) There is a minimum one clock delay between R%.and the
corre;panqing at. Similérly there is a minimum of one cXock
dgzay between A} and thée next R?T.

-

(4) Request and acknowledge are level signals.

+

The synchronous distributed arbiter is constructed as |
For each edge(i,j) of the given conflict grgph a

l-out of-2 1local arbiter A(i,j) is Essociated.a The arbiter

requests rj 4nd

rje. " If both }i afd r4 are raised simulEaneouély, then.only

one of.the reqpésts is locally . acknowledged. -The global

acknogledge aj, corresponding to the request rj, .is .

generated 'by performing a logical—AND of all fhe «

L]
w - w |

- 101 -

- g ‘ ~

-

v

re

P

. @)
acknowledges received from the local arbiters corresponding

to the edges incident at the vertex i. An advantage of such
a distributed architecture is its performance.' Irtespective

of. the number of requests rj, 1 < j < n, conflieting with a

particular request ri; the distributed approach guarantees a
best case resolution time equal to thg local arbiter
resolution -time. . However, the abéve approach can lead to
éeadlock due to the distributed decisions made at the local
arbitgrs.' For example, 1in an arbitration gFaph, shown in
figure 5.1, with’ three fequests, any , two of them
conflicting, consider the request rj,ra, and r3 are raised
simultaneously when none of the acknowledges ai; az, and a3y
are active. Now, if A(1l,2) acknowledges r3, &A(2,3)

atknowledges rp and A(l,3) acknowledges r3, the net result

\

is a deadlock due to cyclic dependency. ~

: \ .
The solution presented in this chapter guarantees

deadlock free operation by assigning prioritifs to the
requests. Consequently, if local arbiter A(i,j) maintains a
‘ l

priority rj > r4, then the local acknowledge is always sent

to rj whenever both rj and rj are active simultaneously.

’TH% criteria for assigning priorities to requests is

established by the following theorem.

Y
s .

| ~,

~

Theorem 5.1 <
If priorities: gssigned to thé~reqdést are transitive
consistent (that is, rj; > rit\rj > rg D ry > Tk foEJany

- ’

3
[N

- ' - 103 -
.)

7

k1

i,j.,k) the global arbitration as formed is deadlock free.

Proof : A deadlock could arise only if dependency cycle
exists, which corfesponds to a éequence of agknowledges in
the form of.al,}az,.a3, «vse¢ @k, a1. Such a sequence could
arise only 1if lrl‘ > r3 > L0002 ;n > rj whi¢h is a
contradiction. |
In a conflict graph if rj and ryj are two requesks in
confl%ct and rj has a higher priority over r4, then the edge
connectingw i.and j can be treated as a directed edge <i,j;.
Thus a deadlock free solution to general arBite; is obtained
by aégign;ng priorities to the requests such that the
\resulting directed cpnflicf graph is acyclic.
' The arbitration op?ration in such a directed acyclic
‘conflict graph G can be desifibed as followsf— Suppose that
all thé reqﬁé&ts are raised simultaneously and none of the
aCKnowiedges . are active. Q}eatly, all . those
requesté(verticgs) which do pot have ény incominé edge in G
can be first acknowledged. Censtruct G' by deleting all the

vertices corresponding to the serviced requests in G. Now

all tHose requests which do not have any incoming edge in G'

. ‘can be ackhoqledéed., Extending this argument, it can be

.seen -that order in which requests are serviced is gccording

“ /
<t0 the length.of the longest directed path {; G. The

¥

waiting . time for a request source in a prioritized conflict

<

graph can be mggsured iﬁ terms of latency. The latency of a
directed conflidt graph is edual to the number of vertices
in the longest path. It 1is intuitive that 1longer the
latency, more serializationl is required’ among requests,
assuming all of them to be active. Thus, to maximize the
rate at which a requ;st can be acknowledged, the priority
assighment to requests is establ;shed with the objective ©Of
minimizing the latency. Unfortunately, . finding such a

prioritv assignment is an NP-complete problem, as shown in

[18].

L

N

Even though finding the mipidum latency for a given
conflict graph is NP-complete, a Aear-minimum latency can be
determined using the following heuri§tic. This heuristic
attempts to maximize the number of vertices which are
allowed to generate acknowledge simultaneously (vertjces of

the same colouf) during each iteration.

Heuristic to assign priorities to requests;

i=1i+1 .

assign priorities to all ﬁéq adjacent vertices with the
smallest degree in G'

While there exists a' set S of vértices in G' with éhé

" next smallest degree such that no vertex in § is

sadjacent in G' to a vertex with p}iorityfi do

v

?

L ~ - 105 - -

2
@

L}®

.
9
A
?
1 2
®
Ay
30
[8
1
Q
:
.
,
1
A
.
‘

It " '
7,

J,' .

assign priority i to all vertices in S
delefe all the"verticies with priority i and the edges
incident at them\from G' to obtain the new G'
until G' is empty ‘
Using,the above heuristic, the latency of the cooflict graph
of . figure 4.2 can be determined as 4, as shown in figure

5.2' '

The synchronous general arbiter design for the conflict
graph of figure 5.3 . is shown in figure 5.4. The local

arbiters used in the design is shown in figure 5.5.

s
‘ ’ ‘)

The distributed architecture discussed above cannot be’

used in an asynchronous environment, as variations in’delays
can lead to deadlock. For example, consider the arbiter. of

figure-S 6 with priority order r; > ra > r3. Let the delays

from the request sources to the local arbiters be dlfferent.‘

Let delay- 1 > dg}é& s, and delay(l-s) > arbiter resolutxon
time. With the above operating conditions, if al} the
requests are . raised simultaneously, and none of the
aoknowleddes are active, then the local arbiters will

acknowledge as follows. A(l,3) will acknowledge r3, A(2,3)

will acknowledge rz; and A(l,Z) will acknowledge r;, thus

resulting in cyclic~dependency and deadlock. It should be
noted that in the above casé even though the réques&s are

raisedf simultaneously at their respective sources the delay

- 107 -

£y

r2

r3

T4

Figure 5.3 Conflict graph for synchronous arbiter

e

" D—-wn
| N |
A(1,2) A(1,3) '
. B
g P A9 *
__ * “’/
A(2,14) a(2,3)
::} > a3
“A(3,4) . ‘ X
i
. ay
Figure 5.4 Synchronous general arbiter
ri '
A(i.])
Lj

~

‘Figure 5.5 Syﬁchronous local arbiter

- 108 -~

4

A(1,2)

- 109 -

g
R

b4

R

. @

-

. .in the communication medium leads to different affival times

at the<locai arbiters gnd this leads to deadlock.

[}

* 5.3 Arbiter fairness

#

° !
¢ ' .
In this section we discuss one of the. important

" properties .of an arbitration structures, the fairness. - The

-

local arbiters used in the synchronous design are
%F the

prioritized arbiters by construction. .But, under

synchronous opgrating' conditions-as listed in section 5.1,

they behave as strictly fair arbiters.” Such_ a strict-
R T, \
fairness of the local arbiters is due to relative timing of

request and acknowledge signals, as discussed in section

\

3

5.1, and‘the property that once an acknowledge is gra;ted it

is withdrawn only after the cofrespondihg request is

s

withdrawn. _The synchronous- distributed architecture
constructed using such local arbiters}i; strictly fair.v The
qohcept of .strid®. fairness used in the synchronous general
afbiter is tﬁe same as‘discussed in section-4.4. The strié;
fairness= of the general arbiters is dde‘ to giobal

transmission of * requests. to all the local arbiters

J

. { R .
corresponding to the Iingident edges and the styictly fair,
property of local arbiter.
v

5.4 Comparison of synchronous and asynchronous design

As the synchronization requirements for the synchronous

' - 110 - .

[

and asynchionous implementation of general érbiters vastly
dlffer, the communication time delay model based comparison

technlque of Franklln[12] cannot be used. Thus we use

o~

traditional asymptotic model to compare the two

T ed

«#fplementations. Considering the 1local arbiter delay as

LK T v
6ﬁi£A delay,’ the\\ngorithm . for synchronous distributed

) implementat(;n has a best case performance of O(l) and a

A

worst casé performance of O(L), where L is the latency of
the® conflict graph. In contrast, the compléxity of requesé
serialization algorithm is O(N) in the best case, where N is
thé.degree'of a vertex, and it is difficult to establish the

werst case complexity due to asynchronism a%§ weak fairness
% . .

of the arbiter. Thus, synchronous impfementation has a

betterltimé complexity than asynchronous implementation.

*

Also, the complexity of local arbiter. used in synchronous

design is 1less than those of asynchronbus design. In

conclusion, ,gg compared to asynchronous 1mp1ementatlon, the

synchronous implementation of general arblter has a better
- "v‘[
area, time performance.

- lll - -~

At

2%

CHAPTER 6
CONCLUSIONS

The need for a VLSI design approadh with balanced
emphasis on abstract and practical issues is often advocated
in research publications. *In tﬂis thesis a case study,
throhgh systolic stack, using sdch a design approach is
presented. Tgis study exhibits the advantage of using known
conceptual concepts such as buffering in a systdiic network

) design environment to achieve performance improvement. Qike
other engineering designs, a VLSI design is complete only
when-all the practical issues are analysed; Th;s often
-neglected, but important goal is emphasized in this thesis
'by examining a variety of issues like maximum and minimum”
frequengy of operation, power consumption, layéut design
issues like power and clock distribution etc.. In addition,
the one slow sx;tolic stack of this thesié is a modular
‘design as shown bfgexpandability of the stack and has °‘a

'y , . 3
better area, time performance than Guibas stack.

- ‘ . | . ‘ < |
Another contribution of this thesis is in the domain of

/
"asynchronous system _ design. Through an algorithmic

apﬁroach, a synthesis procedure for self timed arbiters is

presenféd fn chapter 3. As shown, in this thesis,, sdch an -.
algoriﬁﬁmic approach provides advantages such as elegant

hanling of deadlock and fairness. The ‘edge ' request
- : .

s

e - 112 -

,&,‘,,.A..“
RO
500 %

i

serialization - algorithm discussed in this. thesis is a

éeneral algorithm and can be ‘used for thé synthesié of
l-out of-N arbiters gor general arbiters with wequal ease.

The request serialization approach to synchronization in an

< ™~ 1

asynchronous systém, discussed in chapter 4, may have a

* wider~ applicability and generdlity than' the specific

application ptésented in this thesis. .
. b ” -~

Finally, we "have provided an additional dimension to

" the 'debate on comparison methods for asynchronous and

synchronous -desigi* techniques through the -case study of

general arbiter. This cas%1§tudy not only emphasizes the

-~
role of synchronization mechanisms in system pérformance but

also projects the limitations of the published ' comparisan

techniques. .

(o a .
6.1 Further research vy ' v |

[3

While several ‘practical and -conceptual issues are

3

addressed in this thesis, the thesis also provides scépe for
extensions and related further research. In this section a
few problems perEinént to the material presented in this

thesis are discussed.

- 5 - s

\ u | &
Hierarchical abstraéiiqp and desigﬁ.a%lows-fIéxibility
in design by hiding the 'é;féergnt .architectural and
implementation vériaﬁions. ﬁhile .pursuiné such . a

Y

¥

~

hierarchical design appfoach, the designer is entrusted tﬁé
. responsibility to examine and experiment with different
désign options and select the option best suited. for the
' given application. The approach where a designer makes all
the design selection has advantages’ as well “as \

- disadvantages. Most importantly a designer is often limited

by hig knowledge and understanding of the different design

choices, thus giving room for human erro;s and possibly
inefficient designs. With the advancements in silicon
compilation techniques it is no lohger essentpial to depend
» solely*on design engineers. Thus, one' avenue for furth%r'
research is to design a knowledge based silicon complier.

Such a tool not only automates the design process but also

eliminates inadvertent human errors. The development
process of such. a knowledge based silicon compiler it would
. \

\ also lead to associated research issues 1like suitable,
F3

representational language for wvarious levels in the
. k- . .
hierarchy, representation of performance parameters required. «

during the design seletcion process .,ect..

- 5 ~

.~ 'Q[
-

The self-timed algorithm presented in section 4.3.1.1
' w
is an O(N) algorithm, whete N is the degree of a vertex.

- Considering the availability of O{log. N) ,structureé for
i T . asynchronous _‘1fout of-N acbiters and effect = of
_synchron;zation téchnique on aéynchr&nous algorithm, further
research ‘is required to £find heéficient ‘synchronization
techniques and asynchronous algorithms for design _of high
. ¢ - ; l '
-,

o ' ' - 114 - {

per formance arbiters.

-
At practical level two issues, namely power

distribution and logic structures, require further
considerations. Power distribufibn affects reliable system
operations by affecting noise immdnity of switching devices.
Thus efficient power routing techniques which minimize
véltage drog along the distribution lines are necessary to

implement d%%igns ‘which are expandable at the layout level

also. Research efforts in this aspect should concentrate on

developing routing techniques which make wuse of limited

number of layers for routing.
9 .

. . . ¥ . .
“Dynamic .logic structures are not suitable for

'<\asynch%onous design due to the possibility of charge loss

and resulting malfunctioning of the circuit, Also, static

structures like complementary logic are area, time

S
>

ineffidiént, especially when the number of inputs are large.

" Thus to obtain efficient design of asynchronous -systems

additional devéiopﬁental efforts are 9ecgssaiy to find area,
¢ - L

time efficient lpgic strudtgres.

-

-

o

REFERENCES

a : N
(1) Anantharaman, T.S., E.M. Clarke, ~ M.J..Foster °~ and
B. Misra - "Compiliné path expression; into VLSI'circuit;,
Technical report:CMU—Cgiéslloz, Cgrnegie—Mellon university,
Pittsburg, 1984. ' '
(2) Black, D.L. - "On the existance ﬁéf delay insensitive
fair arbiters : Trace theory ;nd its .limitations”,
Distributed Computing, Vol. 1, 1986, pp. 205-225:
(3) Chapiro,. D.M. - "Globally, asynchronous ané locally
sénchronous systems", Ph.D. thesis, Stanford unibersity,
"1'9'84.
(4) Chaudourd, C. and J.P. Elloy - "A real-time monitor and
its represenfation by petri net", Microprocessing andﬁ_mém,'
Microprogramming, No. 7, 1981, pp.%@ﬁl-z48i f
(5) Chen, M.C. - “Space - time algorithm: Semantics and
methoaology", Ph.&.,3 thesis, Californoa Insgitqté . of
technology, 5090-TR-83, 1983.
(C) Chocron, D. and E. Cherney - "A petri net based
iqduasErial“ sequencer", proceedings 1IEEE \internationa}
conference and exhibition on induatrial control ang
ihst}umentationc 1980, pp. 18-22. r
(7) Chu, T.A - "Synthesis of selfnpimgd VLSI circuits from
graph specificatibns",“VLSI memo No. 87-410, MIT, 1987.
(8) Déﬁuyck,;D.M:, L. Snyder and J.D.;Unruh < "pProcessor
displscemént - an area-time trade-off method for vLsIi",
" Proceedings of the MIT conf. on‘advanced research on VLSI,

I

y ‘
- 116 - . ‘ >

1982.71 PP. l82_187' ' . ‘l

(9) Fisher, A.L. and H.T. Kung - “Synch:onizafidn of large

VLSI processor arrays", IEEE transcations on computers,

g

‘Vol. C-34, No. 8, 1985, pp. 734-740.

'(10)vFolberth, 0.G. - "Miniaturization of digital Ssi vVLSI -~
ob§£asleﬁand limits".

7(11) Fostor, M.J. - "Spetialized silicon compiler for
language recognition", FE’B. * thesis, Dept. of Computer
ac1ence, Carnegie- Mellon Unlvei§1ty, Pittsburg, 1984. ‘
(12) Franklin, M.A. and DtF. Wann - "Asynchronous and
clocked staructurés for VﬂéI based intercoqﬂection‘notwork",
Nlnth computer archltecture symposlum, 1982, pp. 50-59.
(13) Glazer, L.A., and D.W. Dobberphul - "The de31gn "and
‘analysis of VLSI circuits", Addi§on7Wes}ey{ 1985.

-

(14).Guibaé, L,J. and F.M. Liamg - "Systofic stdacks, Queues

' ~~, and counters", 1982,confgfance on advanced reéearch in VLSI,

y u—

MIT, pp. 155-164. . T ‘

o

(15) Hoare, C.A.R. - "Communicating sequential processes",

Prentice-Hall inte;nabional; 1985.

-t

(16). Kung, H.T. - "Why Syséolié qychitectures?", IEEE

_ Computer, January, 1982, pp. 37-46.

(17) Kung, S.Y. - "VLSI array processofs",’ Prentice Hail,

S

1988.
(18) Li, H.F., R. Jayakumar,. and R.N. Prasad - "General
arbiters .for VLSI : Desiges and complexities”, Submitted for

publication to IEEE transactions on.COmputers. T2

"

(19) Li, H.F., D.K. Probst and R.N. Prasad - "Traversing the

o + -

C- 117 -
Y

-

5

11985, pp. 67-86.

¢

v-realizatiop of digital éystemg", COMPCON. 72, pp. 223-226.

o —

Sy .
_VLSI design hierarchy for a new, fast systolic' stack", IEE

proceedings, Vol. 135, Pt. E, No. 1, 1988, pp. 25-40.

. (20) Li, WwW. and P.E. Léuer‘- "A VLSI implemenéation of

* COSY", Tech. rep. ASM/121, * Computing Laborato;y, The *

University of Newcastle upon:tyne, 1984.

(21) Mead, C and L. tonway - "introduct%on to VLSI systems",
Aadison—Wesley, 1980. ')

(223 oldo;an, D.I. and J.A.B. Fortes - "fargitioning and
mépping of algorithm into fixed size sistolic arrays", IEEE
transgctions on coﬁ;utgrs,:}QBSy C-35, pp. 1-12. -

(23) Molnar, C.E., T.P. Fang and F.U. Rosenberger

- "Synthesis of delay insepsitive modules", proceedings of -

U

1985 chapel hill conf. on very large gcale integration,

S

(24) Murata, T., N. Komoda; nk.ﬂMasumotb and K. Haruné'— A
petri net baséd controller for fiexible and maintainable
sequéncé control and its application in factory automation”,
IEEE transaction on industriai electronics, Vol. 33, No. 1,

1986, pp: 1-8.

"~ .(25) Patil, S.S. - "Circuit implementation of’ petri net",

«

Computer strucCtures group memo 73, Project MAC, MIT, 1972.

. S : :
(26) Patil, S.S., and J.B. Denis - "The descriptien and

‘

»

(27} Pechoucek, M. - "Anamalous response times of input

synchronizers", 1EEE transactions on Computers, Vol. C-25,

a

No. 2, 1976. .

¢
‘

(28) Plummer, W.W. =~ "Asynchronous + arbiters"”, IEEE

¥

-.118 - . .

-

‘Hill, 1982.

~ / ; ’ | .

fransactions on computers,. C-21, No. 1, 1972, pp. 37-42.

o Lo
(29) Prasad, R.N. - "VLSI implementation of petri nets",

Course report for ENCS 657, -Department of computer science,

Concordia University, 1986.

B

(30) Rem, M. - "The VLSI: challenge‘: Complexity bridling",
VLSI 81, proceedings of international conf. on VLSI,

Acaq§;;c press, 1981, pp. 65-73.

(31) Sanjay Dhar, M.A. Franklin and D.F. Wann - "Reduction

-

" of clock delays in VLSI struétures", pp. 778-783, 1984.

(32) Seitz, C.L. - "Ideas about arbiters", Lambda, First

‘quarter, 1980, pp. 10-114.

(33) Seitz, C.L. - "Self timed VLSI systems", Caltech con€f.

on VLI 1979, pp. 345-355. .

(34) Sequin, C.H. - "Managing . VLSI ~ complexity - An
overview", Proceedings IEEE, Vol. 7i, 1983, pp. 149-166.

(35) Siewiorek, D.P., C.G;, Bell and A. Newell - "éomputer

'structufes : Strucéure,’ Principles , and examples", McGraw

' ¥

-~ o [
. .

(36) Snyder, L - “Supercomputers and VLSI : The efféct of

"large scale integration on computer architecture", Advances

in computers, Vol. 23, pp. 1-33.

' (37) stefik, M., D.G. Bobrow and A. Bell - "The partitioning

of concerns in digital system design®, 1982 conference on
advanced research in VLSI, MIT, pp. 43-52.
(38) Waste, N. and K. Esharghian « "Principles of CMOS VLSI -

desigh - A systéd‘perspective{ Addison-Wesley, 1985..

14

- 119 -

(1]
-
x

¢ . R . F 61 . Data

it

0 o
qutﬂhqp‘uqh ?ﬂt .

" elk
4r

N

L

Interface slice data cell

VoD

; | | zlt Lt > Register |

m'dt;; L ;

Di ' Data

e Register

SﬁPrage slice data cell

4]

3 S -121 -

Dj

-y

clk

>

Flag
Kagister

%

APPENDIX-II

> DR, =
. - . N .
' . ~ ’
- - - .
.
\ - \f P 0
F
.
4 .
~ " . %
- - - -
- ‘.
" -
-
- ' @
. -
- - »
]

2

w
X

k)
'
¢

)
LA
-

. -
'8 ¥ - N
- . . ~ ~ - t
o ’ - . - > .
5 . v »
r. o < * -
v s R) < -
. AARRDERRWENNL R ARERRAFALERAAEARRERRRAF AR R LS £t bt e S dhak e aAAt4»&14*#**.‘3&oxﬂﬂx.x*m***!n.tm*!ﬁ***uttl**!l#ta“
- : - * L]
. . .] b F1xa
. , R - (g ®»13i1)
- . . Jdod 4
o ~ . » Tysnd 3
. . .) - (Z »13h2) -
S . . » yoend y
e : < , . . * A9A4 Yy
P ‘(muo)y
£ 1 - . . - uaa
e . - N
- : . . (Do) P ol
R . . (quiejep), 1)
.) (BuQ) . 1
N ((ureyep) , y) :
- U § | qQesdsa) <o
- - -
. . (U3 360 unjiap) -, o
4 . : y ¢ ~4
f ($). =)
‘ (L, 1 !
N (€Y. Sy .
- . (), Yy
, . (YD "uUnjep)
TP &°dod
I yododd y
) . ‘ Y323 Y
’ : « . CCI"E°§°P 1°Z°E£°P T°1-£°b -
s . H9Y ARY BUIAAU [CLTZTP TEZP [TETECP YUl 4O SUl |AGU [T LCp TeZeTp E°T'P ey qey _auitasu goprg p .
. } . TCT0°P 1°1°0°P Q) yey suljnau godod gedod gedod gedod Qqe] QR4 BUj IndU -
. . ! _ - S opegsned ..:::.. Prysmd geygsnd gep gey auyaasu - :
» w £°3 2°4 1°3 0°3 1® 20 qey qeq aujinau 1Ing s Rqdws -m uds (nuejep uleiep 17 et uwey ,), dsodoea- jop) ;
1 . u CLLNP T3 Fpdwa™s 18 a5 dod yuod %.&:; codod godod goddod yeaysmd grysnd Irysnd geysend .
~ £°F°P 1°Z°FE 1718 e) n.a't LAV LR S A (I Sl vl & "B G54 Sl "I 4 §6 4 U
] FRECOP I7C70P 1T1°U°H 173 ST 01 073 (9 24 pnuejuep ureyep 1), beggya) '
. . ﬁ.-dﬂ”‘v: Ld _.v)mm-o.—) .
- (o2 lfoud, Yyuaonjsu-peray -
. . - (ul misnn, peoy)
: N~ . CuLopisnn, paol)
’
R . - . t ot
- ttt:t:ttt*kx*a#t#xx:*x‘*c»xﬁ***naxy4xx*#xx4+m44a»ﬁ;k:m«xxxi»A*A»a**¢~*wwx*m##*****m*##**ﬂ#*w:#tn \\
0 - ‘ .
4 WO - £
s . §
. .t»mxc:ttxstxtttutixtt**tcccae1:«....u¢*kkaxAx4A*wnw*‘A¢xx**t«a:*xwmm. .mxux<¢...ux*m*#ﬂm#x*##txnx:u**n
. . I
N B]

e
L - B - s

e S i

4 : N ! A - A
3 3 .r ~ , d !
- ¢ -] \ “ /: ~
_ <
. .) . .
: ’ ~ . ' (W1 -31D N0 @ Auyid)
. (e ANo F4RAUEDI)
) v - . (-¥12 H13 Ul e AuIyLd)
R : : . e (e 10301y ’
. 17050 4D Q7S qnioy3im yogey $. ‘ (-%17 %12 N0 ut) yoriey OLU-.IW
. : .) <
- . (%12 =-%1I N0 & AUyl .
. # (4IS3J € NC I0uUr)
y 4 . o7 ’ - (=312 %123 Ul 8. AUyl
. . ’ . (e (30l -
T o%Hd Wiin yine | § {~%12 %12 N0 U1) YIRISJI 0OJ4IEN)
.) . . i e e o 2t e o e e e e o e e o m e o § m
.) -
-~y o : «
' . . (12 -H12 Ino @ Yydje1yss)
’) - | L (=412 W12 e ur yneyssy
- (v 10201)
. “ do ey saeio-asqeew jo adhiy qag ¢ (=412 %12 N0 Ul FISWYSS 04IeW)
T - Y e e e e e e e -t
. o !
- (YD —¥41I N3 @ ALY 3I) w0
. . o " . . (3504 8 N0 puUeud) ~N
) (=312 Y1 w P oAUEY] DY) al
, : . f (2 1e301) ,
fiqe11003 Hoes Y yoqey ¢ ¢ (-417 Y12 N0 Wi Yymnmejysd osrrw)
: e o e e o o —m o o o e o P |
Lo . N (
, (412 =312 N0 € YNne|sd)
H . (-412 ¥13 e ur ymeiss .
. T~) . . (® 1r301)
- . , . do14-d114 #AP1% 4e3sen 3o sdfig qaasy o (-417 %1 N0 UL) JJSWISL 0IIHW)
. . e e e o e e 2 e e o e e o e o e < 4
| . i R4 SUD I W i uddeyl
.) - e e e 2 e e ettt e e e e nbee = = §
(Yuad® 11n37 s qnoeqep g Jdoda yando s fiyushipae g as) 34 Admsyo :.mf.t.o..xh 177 17 #poigg
A FpdwaTs yanddd ysrel po s 1y s a5 dod dodd ga 1o 39 360 g5 1 dods ysada 3 spou)
. : L]
. . « 8
. EHBECEC U NS CECLCE4 EC R 6% o0 %i&r'&t,'.h.tot'ft.v-ﬁtvhwa-h,n«a-.a?q.«uOQOQQAvJéAcAAJ‘AAAAK&A,AL@’&*#AL.G‘\.&Q&AAo‘n
. . .
. 7003 1IMN0S INY : - “ _
- - < - . ‘
)) €1 UL GG A A T Ll D CT €€t 8t 1% 0k G208 b6 bhv s s bba 468086 hd s "Aot..\‘A.\Ab\o(.&.d.o.-...A‘..(A-..f)?b’. ‘. - -...m)
.)] : .

. A (qd pub 134 sueuqn)
s ~(d gd 15 surajay
(yqd gqd dod=o SUN.gYe)Y
i (9Au1 Thqd ysndad sucuas)
‘ (5qd gd 1-3 sueuqs)
) - (qaut gyl dods sueays)
o . (Za1 qd gz suruqn)
(T 2yl 360 51011 A)
- mﬂ}:_ 199 ysnds suruqs))

]

¥ S Sk b
[

%

LRI Y

n
.

. a VR - anur wog mibon$

D U,
i . - -) (IAUL T3 junAul D)
) ° . (U ppa 1 sueayd)
;) - (d puf 109 sucuga)
= . : i . . . 9o 2o suedqis)
, . P (521 9093 dodad sucaa)
= - (A 9 yundaao SR 4}ie)
5 (vl 3 13 sueaqs)
] . . . (Par Gl dote sueaqn) :
: |2 (8 2l 2t 1o sunda)
. s . C ol gt e sueayn - t
. i R \ /\AH... Crb oy susnugs) Y.
< CTaue el Yot queagn) N
[~
!

v - - - - s
n

G - i wog 6o gt

a '] . . . P
-

. (170 173 G amaun o) -

. (O RO R W EVITE I

o G130 Toa g daatan)y
1oyt gl poed vl gl s o 4L 1 12) @t ped et PAUL At pAau 10 0))

& 412 17 12d)0- 2qe s ouarew

(oot ol Gyl wupt 9 oad D% [B PALTE SO R

(P8

MBoy Beyy pg-adiyy

s i N =

)
4
H
H
H)
¢

. nw_\\\ Ahoyl 518 ndyno gndu 24y ¢ 31Boy g-adiyy

" osm Te

AR AR TR AR L LRy R Y P L LR P P TP ERELCUS CRAESELACL EF bR AR
(.

3) (412 =412 o 2 yryey)

" . C-412 M2 € ur Yysey)
. i . (2 |12>1u})
, - FAGIA WO G FNOYRILA .,.:_..T..u:d BAR] Godhg ooy 4 (=412 %12 N0 Ul) jysw odInw)
- > [

»
f

. -
L Y

- o . ~ o .
maw., _/ - o - ' ! Y - K
- s v . \ .
) I - ’ . v :
LN 7 .n. € ¢ B ’ ~ .
+ ~ . -
3 \ -
. 1 : . > 4
. - G .
+ .
T b SN .
’ _ - 61 JJ4DALLD
L4 M © ..ﬂkﬂc &IU & e v
: " . Y . N ~413 M1D ST LIRS S YIEnd)
© - : : t (1D —H1D 1INgTS W YIpeLsd)
- (e W 3J3auld)
e ppa -1 sueayd)
¢ .) ' . i pub 413 SUCAYI)
- ‘ ’ . . (4 b Yunde uBLlA) .
” . " ’ & - cqAR Y (Lt o+ sunay ¥y - .
’ - 8") () e (£ 1 4)°3 BUEdT)
N - . . 3 g 2 ol Supdyey -
s . s e - . o (e 1 [+ [uvaiay
« I ‘ a . (v oy b D e g e
: o . ‘ - . (412 41 INIAS 0IInw) P
: - . ;) . (rulfi s inyg 4§ Y :_.w..,_,.
[G r‘ . B L T PEEINEEE L e A . - 4 '
’ : o vualow (J-31e s jo pud 4 T) ’ - N
. - (-412 YLD 103 10 ggsmyna) H
a, } . i FEE IR IR AR CRRY ALY S]]
- : C-413 13 2w 13 Jaswacy)
- o - € \ . e e bm e e e ms e oam = e A = e b o -
’ 714 L.«.wt.avg Ny g ¢
} - . . U . A 1
. < . .) (EAU] R JABALI DY
:) ¢ (eaul ppa |l sueaed)
. (el puf 1 suaay-s)
) - - (9t ed 103 sunaya)
- ° . K ‘ o (3ed 9ed dodses queagiey
’ .) (eaul Gind ysmlad sue s
: o - (vt ed Za queayiy
. ’ (o] god Aqwafilds Suecuqs)
0 " ' _ (a1 ged dods suegyie
: . i . (ynd e yinda sucuyay .
: o - (eaul yed g aueays) .
* i . e (1ed yad [> sunuyo)
- : . (eaut 1ed 3697 sueaqo)
e e e e — SOOI U {
s %3 - ndur uoy 316048
’ ‘ n e e e e e e e U .
} _ (qaut 1y 349AuL D)
. o - (Qaur ppa 10 su»ruaqd)
~ : . K .) : o
[A)“ I3 e - -
.) . i .
-ﬂ . !
. . P) . .
Y -) ° * B K b .

(A9) 35 QdHAUL)

(Z Y 450 ppAa §93 Susagd)

5 (. ¥ 492 ppa yunds sueayed)y
. ((Z ¥ 352) (2 % ysnda)y 53 umop]ihnd)
’ Mv«g.za ounen)

e TIPS Y AU
b f\y..ﬁ 03 b0)4

. - T T e e e e e e e i b s it e i eaem e 8

. (1oysnda 1 eysnd qusau

(& % 1°4sndy ppa (2 1 4)°32 sued 1)

“ - - . ’ (C ¥ 1°4snd ppa =3 suefid)

B (2 % yysnd ppa ysnda .sueliyd)
. P (2T)82 (& 7 1°34) (& 9 ysnds)y 1 -ysndd umapf 1nd)

¢ Oousnd’

- : . e e e R

S ALY A $
Ceee el T S S

(t°dods y-dod quanuia)
“) . (Z % 1°odd ppa /g5 sucuqd)
b (& % 1=doddd ppa dods cueugd)

CC &% a2 (& v dodzy 1 -doda unopyind)

e

e e i

\ . - (8 1 4y dod — dod panyog woy’ sihot
[

. »~ CTTTTT T .-:-nuu:mﬂ;;x-!:lf. |!-.i|m

.) v . . (vS 992 JdanUL)

. . . (-417 12 5s hpdua™s yajepysd)
(412 -419 At e yaqeysa)
‘ . (Rwsfiius & qusaur)
N .. ’ TH D pRA yendad supwaqdy’
, . " T2 8 D ppA as Suvd)y

. A.: B J pia TR0 sueaqd)

A - - .W?\ 3 _n.fex_..—L.w I 29 sueuqd)

) . R . : fq x3~gi VAT)4 suRddy
. : (¢ 8 fpwafipas 3 ...c....y LUT T Y

o CE 9o dandady (8 9 a5y (o 9 za9) Fmafilas unop)nf
r - (e ¥ & 8y CE 1 6730 (2 9 Hods) hjmahias umop]ind)
. («* 2 » 1230y))

. , - _~ C 117 1) himiygs 040wy

. - “ T s e el Ll T SO Y

. R _r:?.r m....u:x 4Ie3G w0y _307
- - / - s me s e e - ~

(ydoday ouneey

.

l

-

[o]
N
—

. ~ . - r. . .
.,) . . R ¢ , . . ° - . -
v - : .
4 (4 ppa 1D Swueayd)
5 R o~ ~ . . (3 pub 3131 sursa)
% - i - oo) (4 ¢ (1 + -)cdodr cuvay..
5 ' \ (® 3 (T 1) 30d suraya)y
: . -) . (e 2 (11 -)*ysnd surayi)
X ’ . s 2 (q 3 1oysami) Sueaa)
! - { X) . (P q 1°) SuPaj=)
g) \ . (W 3 q e o))
A . . C 4172 %}D)]-53P3S 0adem)
. . L U |
) - w . , : : , t
) AY . . % ‘ 1i1q hety [-a211s w0y diha) m
- T . '
NG _ 5 S T g Y
-) :]
' - U 04 §-a311G 40p ko - ¢
. . \ ~ . . “
W > y — . vato-o~v«...-.t..o‘-oOAOOA«OAA.A&‘AA‘AO&A‘n‘AbAlOlJO‘OO!-Ou
. ' . Y ¢ - (
- : . , : N (=134 133 Foqeop 2 4°1°u jyimy
g , . A . (T30 71 g 01U Jaienuns 5y
. s - ° (F*v*1* pupa Y41 J:».va-v_
. . (- 1~w pufe Y11 wuray.ay
, « e N . (Ieqercy g rm Foyq1°p Sued)e)
-~ (o6 oy uey 17dnd) queag.)
. (Log=1°x Foyq- 1D 19 surayse)
' ¢ i (Foq= 17 T Y*1°%¢ 2SI SUed})
¥ . (L7413 Foqorem [yt [¢)°p wusaje)
. . i \\l‘\ . AVt Py 1odod curayay
o . (oo Lo m Loy 4 ¢)°1°p surapa)
: (Vg 120 U411 1% “uedpe)
R (0o Voo w {o(7 4§) t1°p ura}a)
2 . (o1 e Py 1oq 4% Sue.s)s)
¢ - ‘ . (W W yh x o) g e iy
*) . C 103 174 1 Huejep vasew)
) - <oys andno andul 3o aegeifieg eqep gog nihon)t
¢ ‘ . . S ’ D T ~ 4
o~ . (
.) (1> 1% }asAuLd)
A (% 15%D ppa =5 sutra el
. N - e Gy e pRea sl s Sueaydd)
) c ' (T Y =93y (% sbukay 190 unopg iy
; . . i B {
] A1 A a2y nho e
. . - - -- -, - - - - -8
t . -)

TQn
o~
-t

. l‘ .A

. (1°% 1°32 349AU1D)
(=413 13 174 1°6 gysmysa)

- (13 1°6 quaAur)

- (1= ppa Y19 sueajd)
(1°® publ 4123 sueuys) -

. . (13 1°2 1+dodd sueuyn)

* . (1°3 1°9 1°ysndd suedya)

. (179 1€ {*3 supeuays)

(1°3 1°8 (71 t -)*"ysnd suau}a)

(1°B 1°e (7 1 +)~dod sueays)

. ‘ (H @ > 4y e jeday)

. (- 117 H1I)Hu-:e}s 0aIerw)

]

W 0} 1 3a11s w0y 31q Reypy — 14 unyg 24604

———— e .- D, o wam e e o i i e i e e [— |
\ {

(1 ysndd s ~ysnd qQusaut)

CCT Y -3 173 ¢V T +)°43 1°ysnds pusud)

(1 °dodd ~dod jusaur)y

. (€ 1 =) 343 (F 1 -)"3D 14 1°40udD pueisd) -

: ’ ¢(ydodysrel ounéw)y

e oo e et e e e e e e e e e e e e e m H

W oo} § 3911 4oy 1tRoy spndg o5 tanag Ay — 1oy pue 1ysng wogz nihoy ¢
—_ T e T T e PSRRI |

' . (

G134 193 Teoy=top (e ysy-f ys6m)

S rytrce Feygey b Jusaus o)

(Uy 10 ppa Y17 sueyyd)

CFegsiey pub gy suraya)

Chmgmama Ty (7 1 oy qumd s aurdg.aeg

CV=q2acup I oyqeurs (1 4)=dud) SO L L)

Cloqeume (= yqor up 1y i-p S 4q.ey

- CVeqsrs (=91} ¢ v p)y=stod <ueaqa)
. CEoymuse 4 goem0 [y~ (1 L #) "M suedys)
CVqsaeg Fofring (1 1 ~)*ysnd supuya)

N C o=z Toy=iyg 1Y (] |)P Suea).s)

‘ (B 34 » up 2 g # Led0])

(123 173 NN eep oune)
WOy} sse W03 —- Q1130 eep any hont

.]
TTTTTRT mm e e B >
’ . - (14 1°3D FamAUL DY)
. Y ¢ C-410 412 173 B j4seyed)
L (U 3 3A3AULD)
. .) .

“
e

130

- . ttel
P Rl) %#&vﬂv.m

. - -8 . - - ¢ o R A
3) * A
.) , . <
: - . (1Y -1 u agey~y
s R Qo s sgs.auy g Gey g !t £ o aiﬂnﬂ
- . ; y (12 1% -13 1Eep)
! - . A R t [foqeadra)y .
. . ¥ 14 yesdes)
N W oug [~<11% a0y (13wyrg ¢ e T O | Js.!?o..»-
) u. W - -)) - N - ¢)
(12 -1 1-#en) _
’ . - A3y a0g g ey g - [1) yemial) '
. - . ' s ¥ {1 rembea!?
. . . . p
T . . N . . . {adodygnrnt)
‘ . u oy [edryi :) speufirs sqvanay $. yo§o a!.f.u.v.s“
- I
’ . Gl pIuI P u o) | gy
. {
.« . - - ; - ° COgtnd)
v : ' CYPy ’
Gpeters o) fd S am et s quelyng queday 8 celentagy, -
B | . apnpum flg yieyg o C LY LY iR o
. . carnpom feydmes_yoreqy o C 1?2 12 hymiegysy -4
Fa0Ls Iedpng Andug Juyp iy Fegy 8 (12 -1 =12 0 =¥
. . 9 1 b yemte s '
[N .) e :
- ’ (1) - 12 1D aryep)
. ’ k T Yeemdad)
- . 1 Y yewmioa)
’ S0 JO dagunu = § Susgwnu | 1#eep = 4 fusgenu sy s 0 ¢ 0 ¢ yeadaa)
oo 4
o UOIL 31U jap a1 1g Indang-Indug’t
t
. . . . €CC 01 1) -13 343au1)) L
; (qanla yoanded JanaUl)
1eufiis Ayg 30 JuawaHwod Ay} s3Il Swen (eubils @ puiysy Lo, g ! (Jods doilad jasaud)
(P592 Yisrd AL D)
y¥»ey dw.Cm.—mQ/ H N (~12 17 ANOPQEP T 1°0°P Yiirlsa)
. y1pey (todysqayaq C-13 {3 daoda Jod y3jeys.a)
Yorpel (ysmi)jaasuy 4 » (-11,17 ysnvde ysnd yrye|sd)
. yr»meg.uregeq ¢ (12 12 [°0°0°p WiIejep yrje|sq)
. . . . ' $
. ‘ . ’ UOTJIUL g sl Npow @Iejaeju] ¢
. U S
. . ') R
. %0430 ~A0Qe8 &4} buisn w33shis ayy 40 uorjiurgag ¢
r s a
’ , > g ’ e

APPENDIX-1lI

.
v
[
’
¢
T
- '
”
.
Ld
. +

~-9132 - .

i
i

[T IR
» L. EEE TP

Wi

. - .

sannunn0l/31/706 wxnunnun GPICE 20.6 3/715/03 wanaunnn0siBEIA0NNNNE
CLOCK DRIVERE . '

1
wwun . INPUT LISTING \ TERPERATURE = 27.000 DEG'C

ﬁ“i.ﬂ.!ll!ill!ﬂ'.II!I.Q!ID".'.Iﬁl!'!llI'I.‘ﬂlIU_I.I.'l...ﬂ...ﬂ.!I.II..!.
o

N -

,SUBCKT DRIVEK 1 2 3

M1 2 1 33 PADD. W=45U LwSU AD3U0F AG=300P PHs130U FD~130U
A2 2 1 00 NMOD W=2UU L=SU AD=180P AB=1BUP PS80V Po-nQu
+ENDS DRIVER : .

+SUBCKT JORIVER2 1 2 3

Ml 2 1 3 3 PHOD We140U L=5U AD=D0OP AS=HOUF I'S=350U PD=350U
M2 2 1 0 0 NNOD Wa6UU L=5U AD#38UP AS23BUP PY»150U .PDs150U
.ENDS DRIVER2

.SUBCKT DRIVER3 1 22 3

#1 2 133 FROD W-110U LaSls AD=A3OP AS=4630P PB=2LUU POsI50U
M2 2 1 0 0 NNOD Wm4SU LeSU AD=J10P AS=310P P8=130U PD=130U
.ENDS DRIVEK3

.BUBCKT CLKLD 1 2 3

A1 21 33 FAOD M-30U L=SU AD=D3I0OP AS=230P PE=100U PL=100U
M2 2 1 0 0 NMOD W=10U L»SU AD=SUP AS=130UP PS=40U PDa30U

CENQE, CLKLD .

.SUBCKT CLK6 1 3 . e

X1 1 2 % CLKLD . .

X2 1 3 5 CLKLD °
X3 1 4 5 CLKLD :

X4 1 6 5 CLKLD f .

XY 1 7% CLKLD ¢

X6 1 8 5 CLKLD _ .

ENDS CLKé : ‘)\ ‘
.SUBCKT PCL 1 2 3 - g
AL 2 1 3 3°FAOD WeILU LeSU AD=1LSF Ab=15SP F§=70P PDe70P |
M2 2 1 0 0 NROD M={UU L=5U ADGOP AS=130P PB=4UU PD=3UU !
ENDS PCL .
BUBCKT PCL6 1 § |
Xt 125 PCL ;
X2 1 35 PLL . ‘ P
X3 ¢ 45pCL DO ' ;
X4 1 65 PCL

XS 17 5 peL

X618 % PCL ' -

JENDS PCLE B

+MODLL PROD PAOS LEVEL=2 VI0=-0.9 KPe9,75U GAANA=D.634 PHI=0.612 LAMNBDA=J, ot-z ‘ .
+ RD=2.0 REw2,0)

+ CRDS2,UF-14 CBE=2.0E-34 16<1.0E-14 FBaU.? COBO=2.44E-10 CODOe2,44E~10

+ CUBO=2,0E~12 RSHv75.0

+°CJm1 . 54E-4 MJ=0.5 CISWnA,I7E-10 MJISH=0.5 JBe4, 19€- ~10 T0X=W.SE-0 NBUB=1.98E415
+ TPG®1.0 XJu9,UE-7 -
+ LD=6,0E-7 UOw240.0 UCRITmé.44E+4 UEXP=U. 139 vaax-7.: E44 XUCwO. 4

-MODEL NMOD NMOS LEVEL=2 VI0v0.9 KP=3 . 0SE~S OAMMA=L.372 PHI~0.493 LANBDA=1,.0E~2 N

kD»2,0 K§=22,.0 '
CRD=2.0k~-14 CRE«2.0E-314 16=1,0E~14 FH=0.7 CUB0»2.U4E-10 CUDO=2,084E-10

CGBO~2.0E-12 KSHu15.0 CualS.44E-4

AJ=0.5 CJBW=1.09E-Y MJIGH=U.S J6»1.37E-5 TOXeB.SE-8 NEBUB=P,.92£+4135 7?0'1.0

XJ=1.0E-6 LD~7.0E-7

UO=?750.0 UCRIT=1.23E+5 UEXPsD.022 VAAX=4.92E+8 XOQCe=0.4

’

> e

WD S 00CS

VIN 1 0 IC

X1 4 11 5 DRIVER
X2 1 3 U DRIVER2 . . . SR
X7 1 4 5 DRIVER3 : /

«OFTIONS VUNIOL=ZE-3 RELTOLeSE-3 ABETOL=%E-3

.OPTIONS NOMOD

.OC VIN 0 5 0.2

LPLOT DC V(11)

LLOT D% W(EY | . ,

«PLOT DT V(4) . : .
.END .

"UI/31/86 Bewne » WPICE 20,6 3/15/83 aes ' #u004154140 .
tLecK onfvans . * PR
onee OC TRANFER CURVES TEMPERATURE = n.n,n oEs C
L4 9 -
‘
(0] i
fa -2.0004¢00 . 6. o 2.0004400 B 4.000d400 4.0004-
e e L L aje mgie m -
0. 8400 8,003¢000 s [Ver D218V . .
2.0004~01 S.0014400 . . .
4.0004-0f B.800d%DD . . .
6.000d-01 5.0004400
0.0004-01 4.9994400 . . .
1.00U4000 4.989d°0U
1, 200900 4,9654000 . . .
1.4004¢00 4,9234°00
1.6004900 4.8500000 . yr . g0 e - . .
1.0004¢00 4.7424¢D0 .
2.0004000 4.619de00
2.200d¢00 43754000
2.400d+00 3.9304400 . . q .
2,400d400 8.3%4a4-01 .y o 3. . v . . .
2.8004+00 3.201d-01 . &= . N . .
3.000440U0 2,2034-01 : * . . .
3.2004¢00 1.391d-01 . . ' . . .
3,4004°00 $,0594-02 . d . . .
3.400d¢00 A,345d-02 . . o .
1.000ds0U 1.724d-02 . . .
4,0004¢00 4,3024-03 : : . . .
4.200400 -4 414d-0%
4.4008¢00 =1.073d-05 . . e .
4.600¢+00 -3,9814-05 . . .
4.8004900 ~3.6754-06
$.0004400 ~3.4134-03
e
vin v(3) !
~2,0004400 0. w00 2.0004400 . 4.0004400 4.0004:
e e
€400 5.023de00 ’4 .
2.0009-01 5.0019+00 . v Vet B3y . . R L L .
40004-U1 5.0004¢00
4.000d-01 $.000d¢00 , . .
9.000d-01 4.99vde00 . . . , . .
1.0004¢00 4,9914000
1,2004¢00 4.9704¢00
1,4D09400 4.933d¢00
*1,6004400 4.8A14U0
1.80008+00 :4.0014400 Vit AV - . . .
2.0004400 4.483¢¢00 & i v - .
2.2004¢00 4.504deD0
2.400d¢00 4.1044400
2,4004¢400 7.034¢-01 . .] M .
2.M00d400 4.5729-D1 . ;.1 3V , . ’ .
3.0004¢00 2.7%4d-D1 - - . . .
3.200d400 1,.660d-01 . . f ~
3,4004500 9.6089-02 4 . . .
3,6004¢00 4.960d-02
L8004¢00 2.0544-D2 . . ., .
4,0004¢00 4.044d-03 . . .
4;2004000 -4.8M1d-U5 . . .
4,400d100 -1.510d-05
4,6004¢00 -3,5744-03 . . .
4,0004400 <$.1474-06 . - . . .
8.0004400 -1.70%4-03
- ® e " e e o= o™ D I I e T N I I S R I S A I - -
. .
vIn ve4) - .
~2.000d+00 0. o0,) 2.0004400 4.,0004400 © 6.000d
e e e s et caecam mpethoee el e e e, e e e e ... d
6. #00 5.023deD0 . ’ . . P
2.0004-04 §.0034+00 . o Vot oriasv : A LY :
4,0004-03 5.000de00 . . " N
6.0004-01 B.0004¢00 - . . -
8.0004-01 4,999q000 . . :) . .
1.0004+00 4,990d400 - . N .
1.2004¢00 4.9684500 . . . v .
1.4004400 4,927p00 . . N .
400dI00 4,020d400 . av v . . .
1.800d000 4,702de00 . Vp T . / . : :
2.0004000 4,452¢400 — v . T
2.2004000 4,4504+00
2.4004¢00 4.069de0C . N :
3.4004400 =2,0404-01 . 5 2BV . . ., ® .
2.0004400 ~7,0954-03 o~ — . g :
«0004%00 ~4.7499-01 . . .
3.200400 -5.483d-08 . . ’ . .
3.400d4%00 - 8.4204-04 . . . ‘ . :
3.,4004¢00 ~6,3004-02
3.0004500 7,842¢-03 . . .
4.0004400 3.0044-03 . . . N
A, 2004000 4.5404-06 . . . M
4.400d000 -2.4414-08
4.400400 =7.1014-07 ' . . .
A.0004¢00 ~2,7444-06 . . . :
$.0004:00 ~3.9014-06 . - . . . 3
L R I T T N

c-re e e e e na.

DATACELL FOR BLOCK 1 TO N

0

[L o2

INPUT LISTINO " TENPERATURE = 27.000 DEO C

GENRRNRNTENERNENRGASRARNBERANRGRGRANERIAAINGEGRERANAGARLGRANANES

L}

’
» -

.BUBCKT INVERTER 1 2 3
¥1 2 13 3 PHOD We30U Le=SU AD=223P ASe223P PR=100U PD=100V
M2 27 0 0 NMOD We10U L=5U AD=130P AS=130P PE=&O0U PD=4OU
+ENDS INVERTER :
«SUBCKT LOADA 4 5 ‘ :
X4 4 6 5 LOAD ‘
X3 4 7 5 LOAD
X6 4 8 3 LOAD °
X7 4 9 3 LOAD
.ENDS LOAD4 ,
LGUBCKT CNAND3 1 2 3°4 5

Mi 4 1 9 9 PMOD WsR0U L=3U AD=130P AS=i30F PBm73U PD=73V
M2 4 2 9 3 PMOD H=20U L=5U AD=130P AS=130F PB=»735U PD=75U
M3 4 3 5 % PMOD We20U L=3U AD=1SOP ASw=130P P8=73U PD=73U
M4 4 1 & O NMOD We30U L=3U AD=230P AS=73P PB=4SU PD=100U
HS & 2 7 O NMOD W=30U L=SU AD=78P AS=73P PB=b3U PDws3U
M& 7 3 0 O NMOD H=30U LeSU AD=73P AE=230P PE=100U PD=é3V
.ENDS CNANDI ' > :

+BUBCKT LOAD 1 2 3

Ml 21 33 PMOD WeiOU L=SU AB=40P AD=50P PE=35U PD=I3U
M2 2 1 00 NMOD W=10U LuSU AGmAOP AD=4OP PE=35U PD=3SV
.ENDS LOAD
.BUBCKT LNAND § 2 3 .
Mi 2 1 3 3 PMDD We20U L=5SU AS=180P AD=180P PS=B0U PD=BOV
M2 2 1 0 O NMOD W=30U L=3U AE~230P AD=230P PE=~100U PD=100V
+ENDS LLNAND
.BUBCKT LNAND2 1 2
X1 1 3'2 LNAND
X3 1 5 2 LNAND
+ENDS LNANDZ
LBUBCKT CLKINV 1 2 3 4 5
Ml 6 1 8 5 PMOD Wa30U LeSU AB»230P AD=73P PD=ASU PE=100U
M2 2 4 6 3 PMOD Wm30U L=3U AB=73P AD=230P PD=100U PE=&S3U
M3 2 3 7 0 NMOD Ws10U L=SU AD=125P AS=25P PD=460U PBs25U
M4 7 1 0 O NMOD W=10U L=3U AD=23P AB=125P PD=2IV PE=AOY
END8 CLKINV .
.BUBCKT LATCH 1 2 34 3 -

Xt 1 63 4 3 CLKINV

X2 6 2 9 INVERTER

X3 2 44 39 CLKINV

.ENDB LATCH

.BUBCKT CNDR 1 2 3 4 P

Ml & 1 4 4 PMOD W=43U L=3U AD=IB0OP AB=230P PB-l?W PD=3 0V
M2 3 2 6 4 PMOD W=43U L=3U AD=330P AS=230P PB-!?OU PD=120V
M3 3 1 0 O NMOD We20U LwSU AD=130F AS=BOP PS=30U PDe=BOU

M& 3 2 0 0 NMOD Wu20U LeSU AD=30P AS=1BOP P§=BOU PD=30U
.ENDS CNOR

‘. BUBCKT REBTLATCH 1 2 3 4 ¢

*

X3 1734 6 CLRINV

X2 7 0246 CNOR

1

X3 2 7 43 6 CLRINY
«END8 RETLATCH
+SUBCKT DATAI 7 @ @ 10 11 12 1D 14 1% 99

ML 2 7 99 99 PMOD WeiBU Le3U AD=]133PF AB=153F PEe70U POnTOU -

M2 3 8 20 NMOD WelOU LeSU AD=30P AB=23P PR=23U PO»30U

M2 2 9 6 0 NMOD W=iOU LaSU AD=23P ABe30P P8=J0U PD=23V

M4 1 10 3 O NMOD W=10U L=SU AD=30F AS=23f PE=23U PD=J0OV

M3 3 11 6 0 NMOD WeiOU LeSU AD=25P AS=30P PEeIOU PD=23V

Mé 1 12 4 O°NMOD WeiOU L=SU AD=SOP AS=23P PEw23U *DelOV

M7 &4 13 S O NMOD UsiOU L=3U AD=QSP AS=23F PEa3BU PD=23V

M8 3 14 6 O NMOD W=10U LeSU AD=25P AB=30P PRe PD=25V

M? & 7 0 0 NMOD Wa10U Ls3U AD=30PF AG={3J0P PE=sOU PD=2

MiO 13 1799 99 PMOD We3OU L~ AD=2I0F ASe2I0F PB=i PD=100V "
\Hé:‘oas :Tolo NMOD W=3OU Lo AD=130P AB=IJOP P840V PD=ROV ot
. DATA

N
e
. A
.) < \
.
N

- 135 -

[

e e

o

+MODEL PMOD PMOS LEVEL=2 VT0=-0.9 KPw9, 75U GAMMASO, 434 PHI=0. 612 LAMBDA=J. 0E-2
+ RD*2.0 RE=2.0 T

+ CBDw2, OE~-14 CBS=2, OE-14 18=1.0E-14 PP=0.7 COSU=2. 44E-10 COROe2. 44E-10

+ COND™2.0K-12 REH=73. 0

+ CUn1,94E~4 MJ=0.5 CJBH=4,ITE~10 MJBW=O0. S JB=4. 19E-10 TOX=E. SE-0 NGUB=1.986+19
+ TPO®1.0 XJe¥y.0E-7 .

+ LD=4.0E~7 UO=240.0 UCRIT=5, 44E+4 UEXP=O. 139 VMAX=7,3JE44 XQCa0. 4

- MODEL NMOD NMOS LEVEL®2 VTO=0, 9 KP=3, 03E-5 CAMMAm], 392 PH1=0, 693 LAMBDA=1,0E-2
+ RD=2.0 R8=2,0

+ CPD=2,0E-14 CBS=2, OE-14 I8=1,0E-14 PI=0.7 COBO=2. BAE-10 CODO=2,84E-10

+ COBO=2, OE-12 RBH»13.0 CJU=3.44E-4

4+ MJ=0.3 CJBW=1,09E-9 MJSU=0.3 JUB=1.37E-3 TOX=8.3E~-E NEUBa®.92E+13 TPO=1.0

+ XJ=1,0E-6 LD=7.0E-~7 2e

+ UOmT730.0 UCRITe1, 23E+3 UVEAP=D,. 022 VMAX=A. 92E+3 XGC=0. 4

VDD 99 O DC S '

VCL1 16 O PULBE 0 3 O O O ION 4ON
VCLA 17 O PULSE 3 0 O 2.3N 2. 3N 20N 40N

Vit 11 0 DC O

Vi3 130 DC 0 '
VIS 150 DC &

V10 10 0 DC ©

vas 24 0 DC 3

vas 28 0 DC O :
vVi® 19 0 DC 9 ,
X01 17 23 4 5 47 8 9 99 DATAI

X1 10 2 16 17 99 LATCH . - . '
X2 11 12 16 17 99 RSTLATCH
X3 13 14 16 17 99 RETLATCH
X4 15 18 16 17 99 RETLATCH
X3 19 Q0 16 17 99 RB8TLATCH

X6 14 21 99 INVERTER
X7 12 121 99 INVERTER -
X8 121 20 14 7 99 CNAND3
INVERTER .
8 99 CNAND3
INVERTER
? 99 LATCH-
99 LATCH
16 99 LATCH '
X113 30 31 16 17 99 LATCH
X20 2 99 LOADA
x21
x22 14 99
X23 18 99
X24 20 99 N,
X235 21 40 $9\LNAND .
x26 9\LLNAND

xa27

I=3 V(12)=3 V(14)ad V(18)=3 V(20)=3 V(4)m3 Visla3 V(30)I=3 V(I1)nS

« OPT IONES ' \

.:tg; ;: B (=10, 3) V(9)(~5,12)
«PL AN V(3) (=6,24) V(3)(~12,18) V(9)(-18,12) V(17)(0,30) V(-
«OPTIONS VUNTOL=35E-3 RELTOL=SE-3 ABDBTOL=3E-~3 ' oA &

/ ,] .

§) et ————— 89

1 3004000

[)

R I A A L A I T R I I I A I I R I A I I W I B AP A

(8} ————rrmmawrerices =i, 004001

=1, 6004901

o2, $004+00

te s

vl

7

ce e s e v esecss e resnceneona

e T

.
-
.
.
.
» .
- .
.
b :
i .
p [
.
.
.
.
.
N ~ .
.
. .
.
.
.
———
.
.
.
.

ke
cemeovmssesrsracsansesbe ou

PP N N TN T IR S S)

as st ot snstersedr TR Es s

-..-.oo.-.-......-...o-.-..-.....'-.....-..-..-.-..<-..-o.-..-

ceesecsmnes e sseses e

ceesesesssetssecensrrssschorsrrscasrrocotetn

...-.....-.....-..-.on-.-.---.on....--oo.--o-tnnar tEe0res s s cesP B IrRso0vEREsR S

.
.
.
.
.
.
.

2y

13 V¥

e e as saca v s sse s ses ROl

- 137 -

cesssomasosscssmacsnes

cosvscssnsenensssssccsesas

'-..'.v-o.-..-a--.-.-.....-..--...-.-..-.oo.-n-...-.-a ceeceansesemtoaruossmanse
- s

?Qgg

FLAG BIT FOR 1 TO N

5

' 14
sane INPUYT LIBTING ﬂg TEMPERATURE =

24

FRGRRTRRRACEREFRRAVNARA RV N AGERN AR RSRRARNRAARCARNAFRSABRRPARNNRBREDPRRRNEN
. .

.BUBCKT INVERTER 1 2 3 :

M1 2 1 3 3 PMOD We30U L=3U AD=230P AS=230P PS=100U PD=100U

M2 21 0 0 NMOD W=jOU LeSU AD=130P AS=130F PE=60U PD=sOV

. ENDS INVERTER

+BUBTKT CNAND3 1 23 4 3

M1 4 1 3 9 PMOD We20U L=3U AD=190P AS=130P PE=73U PD=73U

M2 4 2355 PMOD We20U L=3U AD=130P ASw130P PS=73U PD=73V

M3 4 3 59 PMOD W=20U L=3U AD=150P AS=130P PS=73U PD=75V

M4 4 1 6 O NMOD W=3OU L=SU AD=230P AB=73P PS=»43VU PD=100V

M3 6 2 7 0 NMOD W=30U L=3U AD=73P AR=75P PS=3U PD=43U

M& 7 3 0 O NMOD W=30U L=3U AD=73P

. ENDS CNAND3
«BUBCKT LOADG 4 5
X8 4 & 9 LOAD

Q=N

=230P P8»100U PDw6IV

X3 4 7 9 LOAD
X6 4 8 5 LOAD
X7 4 9 3 LOAD ‘a
X8 4 10 9 LOAD ’
X9 4 11 3 LOAD
<« ENDS LOADé

.SUBCKT LDAD 1 2 3 .
ML 21 33 PMOD WefOU L=3U AS=60P AD=6OP PS=33U PD=33U
M2 2 1 00 NMOD WeiOU Lm3U AS=60P AD=6O0P PS=33U PDe35U
.ENDS LOAD
.BUBCKT LNAND 1 2 3
M1 2 1 2 3 PMOD We20U L=SU AS=180P AD=180P P8=80U PD=BOU
M2 2 1 0 O NMOD We30U LmSU AS®230P AD=230P PS=100U PD=100U
.ENDS LNAND
. BUBCAT LNAND2 1 2
X1 1 3 2 LNAND
X3 1 5 2 LNAND _
.ENDS LNAND2 - :
LBUBCKT CNOR § 2 3 4 }
M1 6 1 4 4 PHOD WeaBU L=3U AD=230P AS=230P PB=120U PDw=120V
M2 3 2 6 4 PMOD WedSU L=SU AD=230F AS=230P PS=120U PD=120U
M3 3 1 O O NMOD Wm20U L=SU AD=150P AS=BOP PS=30U PD=BOU
M4 3 2 0 O NMOD We20U L=3U AD=30P AB=180P PS=B0U PD=30U
.ENDS CNOR .
.BUBCKT CLKINV 1 2 3 4 5
M1 6 1 3 3 PMOD We30U L=SU AS=230P AD=7SP PD=6SU PE100U
M2 2 4 6 3 PMOD We3OU L=SU AS«73P AD=230P PDw=100U PS=43U
M3 2 3 7 O NMOD WAOU L=3U AD=130P AS=23P PD=40U PS=2%U .
. M& 7 1.0 O NMOD We=10U LwSU AD=25P AS=130P PDw=25U PS=60U
.ENDS CLKINV
.BUBCKT LATCH 1 2 34 5
X1 163485 CLKINV .

X226 29 INVERTER s
X3 2 6 433 CLKINV
+ENDS LATCH

«BUBCKT RBTLATCH 1 2 3 4 6
X1 1 7 3 4 6 CLKINV
X27Q026 CNOR
X3 27 436 CLRKINY
« ENDS RSTLATCH
.BUBCKT B8TATUB! 1t 6 7 8 9 10 5 99
/M1 111 99 99 PMOD,W=13U L=SU AD=135P AS=1335P PB=70U PD=70U

M2.1 640 NMOD Ww1OU L=SU AD=73F AS=73P PS=43U PD=43U
M3 1 7 40 NMOD H=10U L=SU AD=73P AB=73P PS»43U PD=43U
ne3 820 NMOD W=iOU L=3U AD=73P AS=23P PS=20VU PD=40V
293¢ NMOD WeiQU Le3U ' AD=2SP AG=23P PS=28U PD=2SU
M6 3 1040 NMOD WelOU L=3U AD=25P AB=73P PS=40U PD=25V
M7 4 12 00 NMOD W=10U L=3U AD=23P AS«130P PS=40P PD=2U,
MB 9 1 99 99 PMOD W=30U L=3U AS=22Y9P AD=223P PE={0QU PD=100U

M9 3 1 00 NMOD WmiOU L=SU AS=130P AD=130f P8=40U PD=&0V
»ENDS BTATUSI

27.000 DEC C

)‘

r - '
. MODEL. PMOD ProB LEVEL=2 VT0%-0,9 KP=9,75U GAMMARD. 634 pm-o.ua LANBDA=], OX-2
+ RD=2,0 RB=2,0
+ CBD=2, 0E-14 CBGw2.0E-14 1§e1.0E-14 PR=0.7 COBORZ. 44E-10 CODO=2, 44E-10
+ COPD=2, OE-12 RBH=?3,0
+ CJml, J4E=4 MU0, 5 CUBW=4, ITE-10 MJGH=0. S JB=4, 19E-10 TOXwS, SE~8 NGUR=1. 98E+1D
+ TPO=1,0 XJu9, OE=7 . ‘ ~.
+ LDug, 0E~7 UO=240.0 UCRITwé, 44E+4 UEXP=O0. 139 VMAX=7, 3IE+4 XOC=0.4

. MODEL NMOD NMOE L:v:u: VT0=0,9 KP=3,05E~3 OAMMA=1. 392 PHI=O. 693 LAMBDA=1,08-2
+ RD=2,0 RE"2,0

+ CBD=2, 0E~14 cns-a.oe-u 18%1.0E-14 PB=0. 7 CGS0=2. B4E-J0 CODO=2.84E-10

+ CCBDw2,0E-12 RBH=13.0 CJU=3, 44E-4

+ NJ=0.9 CJSW=1,09E-9 MJUBW=0,3 JB=1,37E-3 TOX=E, 3E-8 NEUR=9. 92E+13 TPO=1.0

+ XJ=1.0£-6 LD=7.0E-7

+ UD=730.0 UCRIT=1,23E+5 UEXP=0.022 VMAX=4. 92E+3 XQCmO, 4

vDD 99 0 DC 9

VCL1 16 O PULBE O 5 0 O O 30N 60N

VCL2 J7 0 PULSE 3 0 0 2.3N 2,9N J0N-60N .
Vit 11 0 DC O

viz 12 0 DC O

vi% 13 O0°DC 8

vi9 19 0 DC 8 .

X1 17 2 3 4 3 6 7 99 STATUS! (

X40 22 4 14 S 99 CNANDI

X41 4 21 42 & 99 CNAND3 ! ! g
X42 20 42 99 INVERTER

X2 11 & 16 17 99 RETLATCH:

X3 13 14 16 17 99 RSTLATCH ¢

X4 19 18 16 17 99 RSTLATCH '
X3 19 20 16 17 99 RSTLATCH
X6 14 -21 99 INVERTER .

X7 18 22 99 INVERTER

X731 4 121 99 INVERTER #

X8 121 20 14 71 99 CNAND3 .

X9 71 3 99 > INVERTER .

X11 18 121 21 8 99 CNAND3

X12 8 2 99 INVERTER . ’

Xi4 7 7717 16 99 REBILATCH .
%19 77 78 16 17 99 RETLATCH

X113 4 99 LNANDZ -
X16 14 99 LNANDR

X17 1B 99 LNANDZR »

%38 20 99. LNAND2

X19? 21 99 LNAND2

X20 22 99 LNAND2

X21 121 99 LNAND2

« X22 71 99 LDADé - '

X23 3 99 LOADS Y arw

X24 8 99 LOADS .

X2%5 2 99 LDADS

X26 9 99 LOAD6

X27 & 99 LOAD6

+PLOT TRAN V(17)€0,30) V(2)(~6,24) V(I (-12, 18) V(7)(=18:12) V(77)(-24, 6)
. TRAN 0. 3N 60N i

LI V(NGO V(14)=0 v(18Y=0 V(20)w0 V(77)=0 V(7)=0 V(78)=0

.OPTIONS NOMOD VNTOL=SE-4 RELTOL«SE-3 ABSTOL=SE-9
«PRINT TRAN V(2) V(3) V(4) V(S) V&) V(7)) V(77) VI@) (I3
«END

A 4

e vairn
te)

& ec00

- - mbesew o

P
£ Yommrrtrnon =4, 0004608

0) emem——— =, D00 O

P E X I

{8 Jommemtremmn—— =, §00¢ ¢0 1

- e mebtene -

(0} cwmtvim e s «L, 4004401

’ '
73004200

1, 9004900

=4, 3004200

=1, 0904901

-1, 0804001

2. S0BI+91

L I A

9. 000490

cech o v oo

3 000408

P I A

3. 0304408

P e R

=%, 0004400

.z

5. 3904401

L R

1. 4904401

1. 0004401

ae e - weana

4, 300¢+00

L R R

=1. 300¢+00

[N 100 5. 0004400 . - .

$.0004+10 A,0004400 . ' . .

1.0004-09 3. 0004400 . \

3 . . .

. . .

. . .

. . . .

. . .

e : :

) 3 . B

ab . .

d . . .

. . '

. : R

. N . .

(. .

\ N N

b . .

. . '

* . - .

y . 1 : .

. b . .

. - 1]

« . : :

. . .

. . .

o . . .

. . .

. . . .

- - 3

. d -)

. ~T ! . .

. . ,

. . ‘

. . '

. . .

. . .

PR . '

.\f . . .

'Y - 2

. \ : < :

. . . .

. . b . N

. . .

. . b . o .

. s p - .

. . b - ® .

. . . v

' . . '

. . 4 . .

. . . .

. . . .

. . .

. . b . e ———

. . . L.

. . , . .

. : . : .

. . . N

N . 1 b - .

. . N

. . } . .

' . 1 . .

. B ,. . .

. . 1 . .

. . b . .

. . . e

. .

. : { : .

. M » - *

. N . 4 . .
: :] : '

. . b . L

. . . .

. 3 L] * .

. . . .

' . . .

. M . .

. . . .

. . « .

. . L - . »

. . . .

|

