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ABSTRACT

A STUDY ON
ASSOCIATIVE MEMORY CLASSIFIER
AND ITS APPLICATION IN
CHARACTER RECOGNITION

Ming Zhang. Ph. D.

Concordia University, 1992

A novel nearal network classifier, called associative memory classifier, is devel-
oped in this thesis modeled upon associative memory network. It is studied for its
application potential in the recognition problem of large number categorices, such as

that of Chinese characters.

The major findings of this work are in three aspects. First of all, it is found that a
feed forward associative memory network can become a suitable pattern classifier by
an appropriate selection of its output vectors, called inner codes. The classification
ability of an associative memory classifier is determined ultimately by the distinc-
tiveness of its input patterns, but a set of properly selected inner codes may help the

classifier to approach the limit of its capability.

In the next place, secking for better inner coding schemes should be in connection

with ecach specific case on the basis of input patterns’ characteristics. Attempts
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to resohve this problem by enumeration will lead to a non-poly nomial complety
which is computationally infeasible. On the other hand, real life data are usually
mathematically undesctibable.  Hence, a practical way to find such schemes is to
work out an optimization strategy first under some ideal conditions, then apply it to

the real data with remedial measures.

Thirdly. when an associative memory network is used as a pattern classifien, if the
feature patterns are transformed into a form more suitable to it, the performance of
the entire system can be improved significantly. Also, due to the parallel computation
mode of neural networks, data reduction is not a problem any longer. Therefore in
addition to stable feature detection. the other objective in feature extraction here has
been changed to the improvement of feature patterns suitability to the currently nsed

neural classifier.

All these findings are verified by computer simulation with sets of comumon and
similar multi-font Chinese characters. Our experiments are conducted presently using
more than two hundred and fifty categories for a single-level classifier. To test the
robustness of the system and make it meet the needs of practical use, similarities
are introduced into the testing data by characters which look alike and printed in

different fonts.
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Chapter 1

Introduction—Chinese Character
Recognition and Neural Networks in

Character Recognition

Human brain, the biological model of artificial neural netwoirks (briefly nenral net

works), manifests an excellent performance in pattern recognition, espedially for the
problems involving a large number of classes, ¢.g. characters of Chinese and some
other oriental languages. This has generated a great interest in the application of
neural networks to pattern classification. This thesis explores a neural netwaork elas
sifier suitable for solving the recognition problem involving a large number categories,
with its application in Chinese character recognition. In this connection, it is indis
pensable, first of all. to give a brief summary about both the problem and the major
steps of Chinese character recognition. as well as to review the general situation on

the application of neural networks to character recognition.



1.1 The Chinese Character Recognition Problem

Chinese character 1ecognition is a very important area in the field of pattern recog-
nition  The luge number of Chinese characters. the great variety of their shapes and
the complexity of their structures, as well as the diversity of ways in which they can
he diflerentiated fiom one another, make it a typical recognition problem involving a
large number of categories, and therefore very attractive and challenging. Computer
recognition of Chinese characters is considered to be a very hard problem and re-
garded as one of the ultimate goals of character recognition research [1]. In addition,
the facts that they have thousands of years of history and are used by about one
fonith of the world’s population today. suggest that their automatic recognition has

a great potential in commercial application.

The carly studies of Chinese character recognition dated back to the 1960's [2].
Sinee then. a specific research topic in pattern recognition has emerged gradually with
the appearance of hundreds of papers written on it and also some practical systems
in the market. All these could be traced through a series of survey articles and books
published during the last three decades [3]-{10]. A more recent and comprehensive
review of the advancement of the different aspects of Chinese language computing is
provided by [11] in which Chinese character recognition is considered as an efficient
computer input technology.  Besides. to enlarge the scope from Chinese character
recognition to the entire tield of character recognition, a global overview is provided
in [1]. for it does wot only review che research work in the recognition of different

character sets which include a specific section dedicated to that of Chinese characters.



but also covers extensively the topics from methodologies in character recognition.
to the application of character recognition techonology, and the practical optical

character recognition (OCR) system.

[n recent years. another area of information science, namely, artificial neural net-
works. has gained an astonishing interest of many researchers. Not only many new
models of neural networks, but also their application in many different areas includ
ing pattern recognition, are being studied [12]. Numerous investigations have already
been reported on the recognition of numerals and letters using neural networks, and

inspiringly. that of Chinese characiers has started as well.

1.2 Major Phases in Chinese Character Recognition

Generally speaking, the process of Chinese character recognition is a combination
of techniques used in image processing and pattern recognition. Some preprocessing,
steps should be done to prepare the character data for recognition. These include
thresholding which is needed to obtain the binary representation of the patterns,
some measures to remove noise in the original character images, skeletonization, size
normalization. efc.. to facilitate the extraction of features. However, from the recog
nition point of view. the process of Chinese character recognition has merely two

major phases, namely. feature extraction and character dlassification.



1.2.1 Feature Extraction

Feature extraction plays an important role in Chinese character recognition since it
is one of the decisive factors in the success of the whole process. According to the
way in which they are extracted, features can be divided into two types, i.e. global

and local ones [9].

Global features are usually obtained from some other new domains into which
various mathematical transformations map the character images. Although their
principle is rather simple, global feature approaches need large storage and long com-
putational titne especially under the sequential computation mode. Typically, some
orthogonal transformations such as Fourier [13], Walsh [14], and Hotelling [15], [16]

transforms have heen chosen for this purpose.

Local features are selected based on the geometrical and topological properties of
the characters. Except for their sensitivity to noise, these approaches are powerful
techniques especially for handwritten Chinese characters. Some of the most often
used local feature extraction methods are: stroke distribution {17], [18], stroke anal-
vsis [19] [21]). peripheral feature detection [22], background feature and feature point

distribution [23]. [24]. efe.

There also exist some other feature extraction methods, for instance, the Hough
transform technique [25]. with which a transformation of character matrix is made
from the spatial domain into the parametric domain to detect strokes; it combines the

advantages of both global and local feature approaches. making it not only insensitive



to the variance of character images. but also not time consuming and complex m

computation.

1.2.2 Pattern Classification

For efficiency. a recognition system for a large variety of patterns such as that for
Chinese or some other oriental characters is usually organized as a hierarchical clas
sifier. This could be done in one of two ways presently. The first is a two stage
approach which is designed to reduce the size of the candidate set for classification in
the second stage [2]. The rest is a multi-level classifier such as a decision tree which
uses a different subset of features in cach of its layers [26], [27]. Incidentally, a com
prehensive discussion on decision tree classifier is made in [28], which also institutes

a comparison between decision trees and neural networks.

In the hierarchical classifiers, different kinds of features are often used in the
different layers. This occurs most probably in the former case. Another aspeet which
is worth mentioning is the way the hierarchical classifiers are organized. As indicated
in [7], there are two ways to do this. First, the hierarchy is feature-dependent, that is
to say, a series of feature subsets are predefined. They are used sequentially to reduce
the candidate set further and further, until finally one candidate emerges. The second
way which appeals more to our intuitive logic has a “superclass”-dependent. hierarehy.
Candidate groupings or “superclasses”™ are predefined and stored ina structure that
could be viewed as a tree. A subset of the features is used to determine the branel,

of the tree followed at any levels. Eventually the procedure branches 1o a leaf that
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contains only a single character class. This tree-growing algorithm, however, must be
devised to determine the features to be used and to define the candidate classes at

cach stage of the hierarchy.

1.3 Neural Networks in the Recognition of Numerals and

Roman Letters

Neural networks offer several advantages over traditional recognition techniques, most
notably are their exceedingly fast computation ability due to massive parallelism and
great degree of tolerance to distortions provided by learning mechanism. These arouse
an interest in the study of their application in the field of pattern classification, and
many such investigations have been made in the recognition of numerals and Roman

letters, especially in the last five years.

1.3.1 Selection of the Neural Network Model

The potential of many different neural network models in the application of pattern
recognition was explored soon after neural network became a hot topic in research
[12], [29]. [30]. includiag single layer perceptron, associative memory, Hopfield net,
multi-layer perceptron, Adaptive Resonance Theory (ART), self-organizing feature
map, Learning Vector Quantizer (LVQ). Boltzmann machine efc. There are also
some neural network models, such as Fukushima's neocognitron, which have been

established solely for this purpose.
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Some comparison work on the performances among several neural network para-
digms has been conducted which may help in the selection of appropiiate models for
a specific application. One early work of this sort applied to handwritten numeral
recognition is made in [31]. The models involved are linear ~toassociative system,
threshold logic network. back propagation model, Hoplield network and Boltzmann
machine. The first three networks are feed forward classifiers which more or less re
semble to a classical perceptron while the last two define a cl=ss of content addressable
memory systems. The order of these models represents a graduated progression of
their complexity. and their performance declines with it. This is becanse, claimed by
the authors, when a model increases in complexity, it becomes much more diflicult to
control and also impossible to be tested exhaustively under all possible configurations

and parameter settings.

In the meantime, Bisset ¢! al. conduct another comparative study on the recogni
tion behaviour of different neural networks about a set of machine-printed numerals
[32]. The models under consideration include probabilistic logic node, back propa
gation model, and ART network. The experimental results indicate that the back
propagation model provides a much better recognition performance than the other
two models. Also, the authors have proposed some standards for the comparative
work of this sort to be carried out, such as: recognition rate, processing speed, the
number of training cycles and. the number of training patterns needed to obtain an
acceptable level of recognition performance. It is argned that this kind of compara

tive study undertaken with respect to a real-world problem has the value of foonsing,
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attention on the sort of design factors which are likely to be of primary relevance in

the implementation of a practical system.

1.3.2 Back Propagation Model

Precisely, the so-called back propagation model should be named as multi-layer per-
ceptron trained by back propagation learning algorithm. In the application of neural
networks, the back propagation model is the one most commonly used in character
recognition [3:3]-[55]. Originally proposed by Rumelhart et al. [56], it is actually a
powerful learning algorithm which can deal with multi-layer neural network prob-
lems. The importance of the back propagation model is shown by Lippmann [29]
who argues that such a network with merely two hidden layers is sufficient to form
arbitrarily complex decision regions and therefore to separate populations of patterns

even though their distributions might be intermeshed spatially in pattern space.

Application in the Recognition of Numerals and Letters of the English

Alphabet

The recognition of handwritten numerals has already been studied extensively under
different neural network models, especially that of back propagation. It is chosen as
one of the benchmarks for the research in the application of neural networks to realistic
problems for its clearly defined commercial importance and the level of difficulty that

makes it challenging. and yet not so large as to be completely intractable {33].

As an application oriented example, handwritten zipcode recognition by charac-



ter classification systems based on back propagation network is discussed in 3] [11]
Krzyzak et al. [31]. [35] propose a modified back propagation learning algorithim by
changing its error function. The non-convergence problem in the original back prop
agation algorithm is climinated and the process of training is two times faster. The
method of feature extraction in this system, however, still remains in its traditional

way with the use of Fourier descriptors and other topological features.

On the other hand. the authors of [37]-[11] demoustrate in the development of
their work the ability of back propagation networks to deal with a large amount of
low-level representation of data through the construction of a network that can be
fed with images directly without an explicit feature extraction stage. This capability
is achieved through a bi-pyramidal architecture of the network and the constraints
on the weights designed with the consideration of some geomettic knowledge about.
shape recognition. In fact, here the function of local shape like feature detection
has been incorporated into the network. Meanwhile, some hardware requirements
for the implementation of such neural network systems are discussed, a neural net
chip designed to its help is described [42]-[44], and the effort on this continues [57].
Finally, in both of the above two systems, recognition rates of about 90%, have heen

reached.

A similar study has been carried out by Yamada and his colleagues on a set of
handwritten numerals [15]. In order to solve the same problem addressed in [34] and
[35]. they propose another scheme to improve back propagation algorithim, that is,

to evade the standstill in learning by controlling the slant parameter of the sigimoid
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function. ‘I hree neural networks are used in their test. They are globally connected
network and locally connected network with grey character image input and a network
which classifies characters based on their contour features. Experiments show that the
improved algorithm can raise the learning speed by three times, and the recognition
rates of 98.3%., 98.8%, and 99.1% have been obLtained respectively. Besides, it is also
found that the locally connected network can extract global features more flexibly
than a globally connected network, and in order to self-organize the feature extraction
process, it is necessary to construct an innate structure, like local connections, into a

neural network.

Apart from those networks described above, Burr has also conducted a number
of experiments to assess the performance of back propagation networks in speech
and handwriting recognition of digits and alphabetic characters [46], [47]. Nearly the
same level of accuracy has been achieved in his neural systems with nearest neighbour
classifiers. This result is also supported by the work of Weideman et al. [48]. They
conclude from their experiments that except its computational attractiveness, the
back propagation model is analogous to the nearest neighbour classifier. However,
for some complex and difficult problems, it is indeed more efficient in both storage
and operation requirements than some conventional classifiers. Another such com-
parison of classical and neural classification methods is made in [49]. Here, both the
polynomial classifier and the multi-layer perceptron with back propagation learning
algorithm are under discussion. In addition to almost the same results as has just

been presented, the similarity and difference in these two approaches, particularly
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their mathematical essence, are specified in detail.

The back propagation model is also the most commonly used neural network type
in constructing classifiers for the recognition of the English alphabet [50)- [54]. The
system proposed in [50] has no explicit feature extraction phases. Instead, it has one
more step in preprocessing, called coarse coding, which is believed to be analogous to
optical blurring, corresponding to certain neurophysiological mechanisms such as the
retinotopic maps present in the early stages of the human visual system. This may
lead to an increase in robustness of the system and its extensibility to the recognition
of any form of character image without the need for explicit awareness of the features
distinguishing them. On the other hand, traditional feature extraction methods have
been implemented in both [51] and [52]. Six features derived from the geometrical
moments of the image are used in the foriner which are invariant to translation, rota-
tion and scaling. The latter, however, utilizes the Walsh coeflicients of the intensity
distribution function of the character image. The neural system constructed thereby
is free from slight variations in character orientation and has been tested with multi-
font alphabets. The recognition rates of 98% or above are reported in both of these
two classifiers. Feature extraction is carried out in [53] by an invariance network
which is insensitive to translation and rotation. The basic idea is to organize into
the network through layers of neurons all forins of possible translation according to
image resolution and those of rotation under present consideration. Obviously, this
scheme is too costly since a tremendons amount of neurons is needed in sneh o net

work for practical use. Last of all, in [34], a quantized learning rule with unipolar
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binary weights which is useful in a three-layered opto-electronic neural hardware is
reported, and the recognition of twenty six letters of the English alphabet by this

neural processor has also been demonstrated.

On the Construction of Back Propagation Classifier

In addition to the above mentioned experiments themselves, some aspects about the
structure or the learning process of back propagation model are also addressed which

are of theoretical significance.

Perhaps the most important conclusion comes from Lippmann’s analysis which
demonstrates that no more than three layers (except the input layer) are required
in a multi-layer feed forward network because this has already been able to generate
arbitrarily complex decision regions {29]. Also, a good insight into the determination
of the number of neurons used in each of the two hidden layers is given which shows

that they are all related to the complexity of the decision regions of the problem.

Burr offers two other observations in his experiment which are worth mentioning
for extending our knowledge about the effect of a back propagation network’s structure
on its learning process and the recognition performance [47]. First of all, it is found
that the number of learning iterations necessary for convergence decreases with an
increase of hidden units since additional neurons provide extra degrees of freedom
in the form of decision planes. Secondly, the recognition rate increases with the
number of hidden units up to a point. no further improvement occurs and even a

slight decrease in accuracy can be observed above this point. This is due to the



excessive representational power provided by extra hidden neurons which can model
artifacts of the limited statistical sample and reduce the accuracy. A similar result
has also been produced by Khotanzad et al. [51]. Moreover, the relationship among,
the number of hidden nodes. the number of separable regions, and the dimensionality
of input spaces is elaborated theoretically in [58], which can be utilized as a guideline

in the structural design of a feed forward network.

Le Cun and his colleagues have considered in their work the influence of the
network’s architecture on its generalization ability [37]-[41}. They believe that a
good generalization can only be obtained by designing a network architecture that
contains a certain amount of a prior: knowledge about the problem, and a fully
connected network with enough discriminative power for the task would have far too
many parameters to be able to generalize correctly. In their network, based on some
geometric knowledge of handwritten numerals, the principles of restricted connection
for local feature detection and weight sharing for the tolerance of slight displacement,
are introduced. It is also pointed out that the learning time of such a network is
relatively short because of these constraints imposed in addition to the redundant

nature of the data in training set.

The time-consuming nature is one of its two built-in defects of the back propa-
gation model. The other one is the probable convergence of the training process to
local minima rather than the desired global ones. A few general measures have heen
mentioned to solve this issue [29], such as allowing extra hidden units, lowering the

gain term used to adapt weights, and making many training runs starting with differ
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ent sets of random weights. Moreover, in dealing with their problems at hand, both
groups of Krzyzak and Yamada have proposed their specific ways to settle the local
minimum issue. What is interesting is that, in both cases, an increase in learning

speed is reported as well.

The learning speed issue is also addressed in [59], which is worth mentioning in
spite of the fact that the network is designed to recognize only a few similar Chinese
(sometimes called Kanji in Japanese) characters. Mori et al. present in this work a
new concept of learning environment. They argue that no learning procedure, like
that of human beings, exists in isolation in the real world. The learning performance
of a network, ¢.g. its speed elc., is highly influenced by some environmental factors
such as the order, number, and repetition of training samples. Two rules are proposed
to deal with these factors in a learning procedure. The first rule requires the checking
of recognition performance during learning, and focus the training on categories that
are not, well recognized. Then, on a more fine-grained level, the error for each sample
is measured, and the greater this error is, the more often that sample is presented.
But, to prevent over-training on only a small portion of the samples, the second rule
is introduced. It will increase the number of training samples when it is observed
that the network’s total error rate falls below a certain value. They believe that these
rules will lead to more balanced sharing of the network’s resources in recognition over

categories, and therefore in the improvement of the efficiency of its learning process.
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Application in Korean Character Recognition

The back propagation model has also been used for the recognition of printed Ko
rean characters [55]. Due to the large number of patterns in this character set, the
recognition system is hierarchically organized with two sorts of functional oriented
networks, each of which is a multi-layer perceptron. At the outset, all the charac
ters to be recognized arc subject to a type classification network which divides them
roughly into six types according to their overall structure. Then, the corresponding
one of the six recognition networks will classify them further into character codes in
line with the contents of all their different parts. The recognition rate is above 98Y%
for 990 most frequently used Korean characters when the noise included learning is
applicd. However, although formed roughly in square like Chinese characters, the
Korean characters are recognized here based on their phonetic nature. A Korean
character is formed by combining two to four symbols drawn from 11 consonants and
10 vowels. Structurally it can be divided into one of the six groups according to the
shape of the vowel included and the existence of some consonants. This forins the
basis of the architectural design of the whole system. Therefore, the classification of
Korean characters here is quite similar to the identification of FEnglish words based

on the recognition first of each of its componental fetters.

1.3.3 Neocognitron

Neocognitron is a neural network model invented by Fuknshima solely for the vi

sual pattern recognition [60] [63]. It is a hierarchical network consisting of several
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layers of neurons. aud capable of recognizing deformation invariant visual patterns.

Neocognitron has several advantages:

1. It has a large power of generalization, presentation of only a few typical examples
of deformed patterns (or features), rather than all of them which might appear

in the future, is enough for the learning;

2. After learning, it can recognize input patterns robustly, with little effect from

deformation, changes in size, or shifts in position; and therefore,

3. In contrast to most conventional pattern recognition systems. it does not require

any preprocessing.

Application in Alphanumeric Character Recognition

Fukushima ¢¢ at. have used neocognitron in handwritten alphanumeric character
recognition {64], {65]. The network has four stages, each of which has one layer
of feature extracting cells and a layer of cells to allow for position errors. These layers
of cells are divided further into many cell planes, the cells among each of which come
to extract one and the same feature at different locations. This system is trained by
supervised learning. Typical samples of deformed patterns should be chosen carefully,
and the training is performed step by step from the lowest stage to the highest one.
The network is designed to recognize 35 alphanumeric patterns, namely, 26 uppercase
alphabetic characters and 10 Arabic numerals, where the alphabetic character O and

the numeral 0 are treated as the same pattern. The results of computer simulation
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show that the neocognitron is able to recognize the input pattern correctly without
being affected by deformation. change in size, shifts in position, or contamination by

noise.

The implementation of neocognitron on a parallel computer has also been dis-
cussed {66]. [67]. Under a full consideration of the structure of neocognitron network,
the loosely coupled parallel computer with hypercubic connection is selected. A
recognition system for handwritten numerals by the neocognitron [62] is realized on a
parallel computer, called NCUBE, and the recognition speed of cight characters per

second is reached.

Furthermore, Fukushima proposes a selective attention model. The part of this
network which fulfils the recognition function is in fact a neocognitron, and its ability
has been extended aiming at the recognition and segmentation of connected charac-
ters in cursive handwriting [68], [69]. When a composite stimulus consisting of two
patterns or more is presented, the model focuses its attention selectively to one of
them. segments it from the rest, and recoguizes it. After that, the network switches
its attention to recognize another pattern. The model can also restore imperfect pat-
terns. A successful performance on the recognition and segmentation of characters
has been observed in computer simulation. although the data in the input string are
different in shape from the training samples. This is of considerable significance prac
tically. for even the same character is written differently when it appears in different

words. in order to be connected smoothly with the characters in front and behind,



On the Scale Design of the Network

A neocognitron usually consists of more layers and more neurons in each layer than

any other neural network models in common use. Therefore, the factors which affect

the size of the network is of great concern. Fukushima and his group have studied

this problem [65], and their major conclusions are summarized as follows:

3.

. The sizes of spatial spread of connections between neural cells of two adjacent

layers are determined by the complexity of the patterns to be tackled. If the

complexity of the patterns is high, these sizes have to be small.

The optimal sizes of these spatial spread of connections are also affected by the
degree of deformation which the neocognitron has to tolerate, especially in the
lower stages. These sizes can be large if the probable deformation is small, but

they must be small when large deformations are expected.

The number of cell planes in each stage of the network is determined by the
number of pattern categories to be recognized. More specifically, it is equal
to the number of different features to be extracted in each stage, and this is

determined by the training pattern set.

. The total number of stages of the network is determined by the complexity

of patterns to be recognized. Complex patterns will result in more stages in
the network because of the small sizes of the spatial spread of connections.
Therefore. a larger number of stages are necessary to integrate information

from all parts of the input pattern at the final stage of the network.
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Similarity and Difference between Neocognitron and Le Cun’s Network

The main idea in the design of the network’s architecture is similar in neocognitron
and Le Cun’s network. Both utilize the scheme of partial connection to extract local
features, and weight sharing for detecting the same feature at different locations. Also,
both have an alternative arrangement of layers for feature extraction and positional

error toleration.

The major difference between these two systems, however, lies in their training
procedures. In a network developed under back propagation model, like that of Le
Cun’s group, training is implemented by propagating an output error signal all the
way back through the network layer-wise and modifying the weight values accordingly.
Back propagation is a supervised learning algorithm. Neocognitron, on the other
hand, can be trained by either supervised or unsupervised learning, and the supervised
training process in (65] is also different from the back propagation algorithin in three
aspects.  First of all, only part of the neurons in this network has variable input
weight, the values of which need to be assigned through training. Aud instead of
small random values, they are all initialized to zero. Secondly, training is performed
in a forward direction. the same as a signal might go during its recognition. Thirdly,
training is conducted in a non-iterative mode, that is, the training of a certain layer

shall never start until those of all its preceding stages are finished.,

Fukushima ¢f all also made an interesting comparison of the training time between
their network and that of Le Cun ¢f al. The outcome is 13 minutes on a SUN

SPARCstation versus 3 days also on a SUN workstation. Nonetheless. the training
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process of neocognitron needs a training set of patterns that are selected artificially.
This is a skillful work, and the network’s ability to recognize deformed characters

depends ultimately on it.

Finally, the implementation of these two networks has reached similar recognition
speed on handwritten numerals: 10 to 12 classifications per second by Le Cun’s
network with the help of a specially developed Digital Signal Processor board, and
8 characters per second by a neocognitron network realized on a parallel computer

NCUBE.

1.3.4 Other Neural Network Models

Although back propagation network is presently the most popular neural model ap-
plied to character recognition, some other neural networks have been investigated for

this purpose as well.

For instance, Wilson ¢¢ al. developed an ART based method of feature extraction
and classification [70], although later they too turned to the back propagation model
[71]. This network has reached an accuray of above 99% on machine-printed digits

and 80% on unconstrained hand-printed ones.

Also, Shimada’s group proposes a new self-organizing method SOMA, abbrevi-
ated from Self-Organization to Modules by Activity propagation, to train multi-layer
network [72). SOMA is claimed to be a learning algorithm faster than back propa-
gation due to the modularization of localized activation mechanism on hidden layers.
A three layer network trained by SOMA is employed to recognize handwritten digits,
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and a correction rate of 96% is achieved for testing data.

A pattern matching neural network is also addressed which matches an input
to multiple candidates of the stored templates in parallel and finds out the best
matching template, whose features are arranged in the same order as those of the
input, regardless of positional differences between corresponding features [73]. The
recognition rates are 98.2% for the learning set and 88.2% for the testing set when

this network is empolyed to classify a group of handwritten numerals.

Besides, Alkon et al. have designed a neural network based on some neurobio
logical observations {74], [75]. It is called DYnamically STable Associative Learning
(DYSTAL) network. Each output neuron in DYSTAL is connected, via patches, to a
set of conditioned stimulus (CS) input elements and one of the unconditioned stinmlus
(UCS) input elements. These patches to model local learning are created or modified
during the training by the associative presentation of the CS and UCS pattern. 1n
testing, however, only the CS input patterns are provided. DYSTAL has alicady been
applied in handwritten zipcode recognition [76], [77]. Either the bit-mapped digits or
the features obtained through principal component analysis are used as C8 patterns.

In both cases, the best recognition rates recorded are in the range above 96%,.

In addition to the above, associative memory networks are also considered.  As
described in [78], a special associative memory is proposed which has binary weights
of its synapses. This makes it very suitable for hardware implementation using digi
tal VLSI technology. and extremely fast in both storage and recollection phases even

when simulated on sequential computers. An evaluation of the recognition ability of




associative memory model is made in [79]. In order to increase the system’s robust-
ness against the additive noise and shifting error, some techniques like defocusing
preprocessing and the recursive use of the associative memory are discussed. The
effectiveness of all these measures taken in these two networks is demonstrated ex-

perimentally in the recognition of letters of the English alphabet.

Further information about other neural network models suitable for pattern recog-

nition can be found in the reviews of both [29] and [30].

1.4 Neural Networks in Chinese Character Recognition

Much rescarch has already been conducted in the recognition of numerals and letters
of the English alphabet using neural networks in the past five years. Some results

look promising particularly in handwritten character recognition.

So far, however, the application of neural network approach in Chinese character
rccognition seems still at its beginning. At first, it is mentioned only for the pur-
pose of illustrating the properties possessed by the newly proposed neural models.
Under these circumstances, merely a very small number of computer generated low-
resolution characters have been involved, as can be seen in [80] and [81]. The ideas
are interesting and also instructive, yet nothing considered here is practical. Encour-
agingly, the reports of research work on Chinese character recognition under different

neural network paradigms start to appear recently with real-life data in use.



1.4.1 Back Propagation Model

Although back propagation model has been very successful in handwritten digit recog,

nition. whether it is applicable to Chinese character recognition remains to be seen,
since there is no guarantee that the network can be trained in a reasonable finite
amount of time. This is a critical issue because the training process of this model in
a classification problem with a large variety of pattern classes may be too long to be

of practical use.

Knowing the current capability of back propagation network, Mori ¢f al. arc trying,
to construct a large scale neural network for 3,000 handwritten Chinese character
recognition by assembling many smaller back propagation networks, cach of which
is responsible for recognizing a small number of similar characters [59], [82]. The
whole system is constructed with three kinds of functional units, that is, the SubNet
which is an ordinary three layered back propagation network used to recognize a small
set of characters, the SuperNet that is also a three layer feed forward network but
larger than the SubNets and makes its decision by integrating the output from all the
SubNets. and a network called OtherFilter, devised to improve the integration ability
of the SuperNet. In this system, each SubNet is designed to recognize 9 characters,
and a SuperNet can integrate the output of 30 SubNets. Therefore, totally 270
characters are involved in this group as part of the whole systern. If 11 such groups
of networks are integrated again by the same mechanism, the system will be capable
of dealing with characters up to 3,000. Part of the systern being able to recognize 270

Chinese characters has been constructed for comnputer simulation. ‘The recognition
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rate is above 93% for training samples, but drops to 74% when testing patterns
are applied. Obviously, although this small scale network assembling approach can
effectively reduce the number of characters faced by each single back propagation

network, the function of integration issues a new challenge to the entire system.

Attempts to recognize similar Chinese characters with a back propagation netwerk
have also been made by others on both printed and handwritten characters. Kimura,
for one, proposes a new back propagation learning algorithm based on the principle of
minimizing not only the error but also the output variation to create consistent output
for varied input patterns [83]. He tests his network with four similar characters, and it
outperforins either the ordinary back propagation network or such a network trained
with noisy patterns. Yen's group, on the other hand, apply a back propagation
network to the recognition of thirty similar printed Chinese characters [84]. They
design a noisy data relearning process, through which the robustness of the network
is augmented, and the recognition rates above 95% have been reached for patterns

with noise levels up to 20%.

The back propagation model is also used to recognize handwritten radicals of
Chinese characters [85]. A modified logarithmic coordinate transform algorithm is
employed to extract features invariant to both scaling and translation from the two
dimensional radical image. Up to 96 radicals are involved in the experiments. Under

some specified writing restrictions, the recognition rate of 80% has been achieved.

In all the above back propagation networks, the output layers have the same

number of neurons as the number of classes they are currently handling. This is not
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the case in the network of [86], the inputs and outputs of which are all binary vectors
that represent the sequence of strokes of a hand-printed Chinese character and the
corresponding Mandarin phonetic transcripts of the same character. In a network
built to recognize 30 characters, only 14 output neurons are needed, and all the input

characters have been classified correctly.

1.4.2 Single Layer Perceptron

In consideration of the complexity in both the amount and the variability of Chinese
characters, and therefore the computational load required by a classifier made of back
propagation network, Jeng's group employs a single layer perceptron instead [87] [89).
The features are extracted by retrieving boundaries of normalized character image and
then quantizing these pixels to four possible orientations. The simulation is conducted
on 100 hand-printed and 500 printed Chinese characters, and the latter contains six

fonts. The recognition rates reported are above 98% and 99% respectively.

Although the number of printed characters recorded in this work is relatively Large,
the perspective of this netowrk to be a pattern classifier is still not convineing at. this

monient for the reasons cited:

o In the first place, the features extracted in this system are local ones which are
more relevant to the character’s structure rather than the style of its stroke.
Therefore, the font irrelevance of the system relies on the feature extraction
process instead of the neural network classifier. On the other hand, the effects
of some geometric distortions which are often enc ountered in printed character
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recognition like translation or rotation are neglected.

o Also, as indicated in [90], for a single layer network comprising a bank of Ada-
lines, its statistical capacity approaches its deterministic capacity, which equals
the number of inputs of each Adaline, as the number of Adalines becomes large.
Although both the inputs and the outputs of the neurons on the output layer
of the present network are not binary as those of an Adaline, it also needs to

ia: ge the dimensionality of its input vector, and therefore its capacity, to im-
prove its perforinance. This requires more features which will be obtained by
raising the resolution of cellular partition on character image, and eventually
increase the sensitivity of this feature extraction process to the above-mentioned

geometrical distortions.

e [inally. in addition to its capacity, the generalization ability of a neural network
is a very important issue, for it implies directly to the classifier’s capability in
dealing with the input patterns in distorted forms. Widrow et al. made the

following comment on this:

A network’s capacity is of little utility unless it is accompanied by use-
ful generalizations to patterns not presented during training. In fact,
if generalization is not needed, we can simply store the associations

in a look-up table, and will have little need for a neural network.

Unfortunately, the experiment performed in the work of Jeng's group can not

verify the generalization ability of their neural network classifier. The testing
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data used are characters of five fonts different from the training ones only in size.
Since the character image should be normalized first in the feature extraction
process. and the latter has been designed to reduce the effect of varying stroke
widths, it can be expected that any such differences in this kind of testing data

have already been eliminated before they are presented to the classifier.

1.4.3 Neocognition

Fukushima’s Neocognitron enhanced with a retraining process and an inhibitory cal-
ibration is considered in [91]. This is a multi-laver network as well which recognizes
Chinese characters based on their subpatterns, called primitives, of different levels
of complexity. This network is noise tolerant, shift invariant and has a property of
modularity which means it can be expanded to recognize more characters by simply
adding and training some extra primitives needed to constitute new characters. The
process of recognizing 20 Chinese characters is illustrated with greater detail. Nev-
ertheless, due to the limitation of simulation time and memory space, character sets

with more than 50 clements are not allowed by the present system.

Also, Fukushima’s group applies the selective attention model built on neocogni
tron to Chinese character recognition [69]. The radicals of which the Chinese charac-
ters are composed are emiployed as individual patterns during the training phase. An
auxiliary circuit is added to the network to detect the pattern’s center of gravity, since
the information on not only the shape of a radical but also its position. left hand side.

right hand side or. upper or lower parts. is required. A preliminary simulation work
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is conducted with only eight radicals, and sixteen character samples which contain

nine different characters are shown to be recognized successfully.

The strokes of the characters used in the above two systems are all one pixel
wide. But the selective attention model has already shown the ability to recognize

characters varied in a way of handwritten nature.

1.4.4 Associative Memory Network

Yao designed a system of content addressable associative memory based on Hopfield
model, which is supposed to perform the task of Chinese character recognition {92],
[93). He deseribed as well the circuit of the network assumed to do the job in place
of a digital computer. Unfortunately, no results on any recognition experiments are

reported in his papers.

1.4.5 Other Networks

The DYSTAL Network DYSTAL has been used to classify not only handwritten
digits (See Section 1.3.4) but also handwritten Chinese characters [76], [77]. The
features utilized are obtained through principal component analysis [94]. 40 different
characters are involved in a preliminary experiment which yields nearly 90% correct

classification.

The Combination of Networks Because it is infeasible to solve the problem

of Chinese character recognition with one large scale neural network of any single

o
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model, Iwata ¢t al. propose a four laver network, called CombNET, which is in fact
a combination of networks of existing models [95]. CombNET is in a comb structure.
It has a vector quantizing network to form its first laver as the stem, and then the
same number of three layer back propagation networks as that of the neurons in the
vector quantizing network to be its branches. Its classification strategy is that of
the two stage approach discussed in Section 1.2.2. The vector gquantizing network
partitions the whole character set into many subgroups, characters in cach of which
will be subsequently classified by a corresponding back propagation network. The
network has been used to recognize 2965 printed Chinese characters with a reported
recognition rate of 99.5%. However, both the formation of the input patterns and
the difference between the training and testing data are not described explicitly, As
a result, this network’s applicability still rervains open due to the concerns similn to

those addressed in the second part of this section.

1.5 Neural Networks in Feature Extraction

Neural networks are mostly used as classifiers in pattern recognition at present. Yet
Graf and Jackel et al. [96], [97] have designed a neural net chip especially for feature
extraction and even character skeletonization, and it has already been used in a digit
recognition system [98]. [99]. The idea is rather instructive in spite of its template
matching nature. which is intrinsically a computationally intensive operation of many
components. low-accuracy. vector dot products, suitable for implementation with

parallel analog chips.
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Besides, Zhv and her colleagnes have developed a multi-layer neural network which
consists of two parts  one for feature detection and the other for pattern classification
[100]. {101] 1t is designed to follow the functions of the retina and the neuron cells in
the brain of a living body separately. Although its classification part is just a back
propagation network, the design of its first few layers for feature detection is really
specific. 1t uses different sorts of neurons such as on-center cell, off-center cell etc.
to deteet some local features like end point, cross point, and so on. In a computer
siimulation on handwiitten numeral and capital Roman alphabet recognition, it has
reached a recognition rate above 90%. This network, however, is not the only one
that can carry out feature extraction. As a matter of fact, both Le Cun’s network

and Fukushima's ncocognitron have this property as well.

Also, Rubner and Schulten propose a network which can perform principal compo-
nent analysis [102]. This is a two-laver network with lateral connections in the output
laver. Hyman of al. apply this network to extract the principal components from a
handwritten Chinese character image as the features for its further classification [94].
In a principal component analysis network built for 956 handwritten Chinese char-
acters, training continues until the first 160 principal components converge. This
accounts for .~ than 5% of that of the original image pattern in terms of vector’s
dimensionality. which is 1032 (63 x 61). And a simulation on the classification of 40

characters with features extracted thereof reached nearly 90% successful recognition.



1.6 Objectives and Organization of this Thesis

There is no need to be surprised that up to date the research on appheation of nearal
networks to recognize Chinese characters is still at its beginning. The theory of arti-
ficial neural networks itself is far from well-established and complete at present, since
our brain, t'ie biological model of artificial neural networks, is extremely complicated
and ov: knowledge about it is still fairly limited. However, it has offered some so
lutions to so many pattern recognition problems such as that of Chinese characters
so well that there is no doubt that neural networks which are attempted to simulate
the behavior of human bram, will ultimately play an important role in solving such

problems artificially.

In this thesis. a novel neural network classifier will be explored based on the model
of associative memory network. It is developed with an application background in
the recognition problems of large number categories, such as Chinese characters. In
Chapter 2, the applicability of associative memory network as a pattern classifier is
discussed first. After revelation of the intrinsic similarity between associative map
ping and the pattern recognition process, the basic problem in the construction of
associative memory clasoifier, i.e. to find the suitable output vectors, or inner codes,
associated with the set of given input patterns to be recognized in accordance with
their characteristics. is addressed. This process will be known as inner coding. T wo
types of measurements, the average correlation coefficient and the probahility dis
tribution of input pattern’s components. are established on the statistical basis 1o

describe these characteristics. The selection of output vectors is disenssed by an ex
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ample of a set of real-life multi-font Chinese characters, and Hadamard vectors are
chosen for a series of their desired features which result in a success in the construction

of such a neural network classifier.

Chapter 3 will discuss the inner coding of associative memory classifier in more
detail. Its purpose is to search for better inner coding schemes for the sake of improve-
ments in the network’s classification performance. Some theoretical aspects of this
problem are addressed first, such as the evaluation of associative recollection process
and the criterion to judge optimal inner coding schemes, their existence, and the com-
plexity of optimal coding scheme seeking through enumeration, etc. Next to these is
proposed an inner coding scheme secking strategy applicable to practical situations.
The efficacy of this strategy is demonstrated by a further discussion on the recogni-
tion of the same set of Chinese characters used in the former chapter when Hadamard
vectors have been selected as inner codes in an associative memory classifier. An op-
timal coding strategy will be proved under some ideal conditions, a remedial measure
will be taken to apply this strategy to real-life data, and improvements in network’s

behaviour will be observed in computer simulation.

Technically, another major part in a pattern recognition system, in addition to
pattern classifier, is the feature extractor. The success of the entire system depends on
not only the effectiveness of cach of them, but also their operation in concert. There-
fore, the corresponding feature extraction method when associative memory network
is used as pattern classifier will be discussed in Chapter 4. Addressed firstly there is

a change in the fundamental objectives of feature extractor utilized in coorperation



with a neural classifier. A feature extraction method is proposed thercafter which
can detect features suitable for an associative memory classifier. Such features are
also invariant to some common geometrical distortions, which is desirable in printed
character recognition. Details of this technique are studied. Its efficacy in the im
provement of the feature vector's suitability to our neural classifier and further, the
effectiveness of the entire system, including its robustness tosted by a set of data with
alike characters as the intentionally introduced similarities in it, are manifested with

experimental results.

The above studies are our preliminary work on the application of associative mem-
ory network as a pattern classifier to solve the recognition problems of large number

categories. Some of these materials have already appeared in our publications before

[103]-[109).

Finally in Chapter 5 is the conclusions of this thesis.
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Chapter 2

The Applicability of Associative Memory

as Pattern Classifier

2.1 Introduction

Neural networks have alrcady been used widely in alphanumeric recognition, espe-
cially in handling handwritten characters. So far, the most successful models applied
scem {o be the back propagation algorithm, like Le Cun’s network [37]-[41], and
Fukushima's neocognitron [64], [65]. These two models have also been tried for Chi-
nese character recognition [59]. [69], [82]-[86], [91]. However, the number of categories
of Chimese characters is of orders of magnitude larger than that of alphanumeric ones,
not to mention their variability and complexity in structure. At present, the conver-
gence and the speed of the training process may cripple a back propagation network
when the classes grow. Similarly, the scale of the network and the skillful or even

tricky training pattern design which is critical to the network’s final performance can



limit the increase of patterns to be recognized by the neocognitron.

Besides, in addition to their fast computational nature, the major motive to use
neural networks as pattern classifiers stems from their resistance to noise and other
distortions in the recognition process. Therefore, when the incoming patterns shall
inevitably be subject to deformations before its recognition, which are usually the
cases of actuality, neural networks are particularly useful. However, if the forms of
pattern data are really stable, then neural networks are unuecessary, some traditional
classification methods. such as template matching ete., may be already good enough

to solve the problein.

In this chapter, the applicability of another neural network model as pattern
classifier will be investigated. The model is associative memory network, and an
associative memory classifier is developed for its potential to tackle the recognition
problems containing a large number of categories, such as that of Chinese characters.
Of course, the data to be dealt with include those that are contaminated heavily.
In the next section, a comparison of associative mapping and pattern recognition
process is made, followed by a brief description of associative memory networks in
Section 2.3. Sections 2.4 and 2.5 discuss thoroughly the construction of an associative
memory classifier, taking the recognition of a set of multi-font Chinese characters as
an example. The effectiveness of this novel neural network classifier is verified in

Section 2.6 by computer simulation.



2.2 Pattern Recognition Property of Associative Memory

A memory usually involves a storage mechanism which utilizes a storage medium and
some operations on it, called memory functions. In an associative memory, many
pattern pairs, cach having a stimulus and a response pattern, are stored associatively
in advance. Then, when an input stimulus signal is applied to the memory system
where it is pre-stored, the pattern which has been memorized associatively with the
input will be generated automatically. This is the so-called associative recall process,
see Figure 2.1(a). Obvionsly, this associative retrieval process can be taken as a
signal transfer operation in a physical media, whereby an input pattern, also called
the key or, the associative cue. dle., is directly transformed into a corresponding

output pattern, the recollection.

On the other hand, in a gencral sense, a visual pattern recognition process, such
as the recognition of characters, is nothing but a technique to associate a symbolic
identity with the image of an object, and this category identity can also be coded,
see Figure 2.1(b). Therefore, it is evident that the pattern classification process can
be regarded as a special case of associative recollection by simply assigning the input
signal to the memory as pattern vectors to be recognized and its output the category
codes. or more generally, any form of inner codes in an information system, so that
the machine knows what the coming pattern is, what it means efc. As a matter of fact.
the idea of associative recall itself is partly inspired by the ability of human beings
in the recognition of handwriting and speech with major variations, distortions, and

CVELL ONSSION S,
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pattern

associative
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pattern
classifier output >
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Figure 2.1: The information transform of an associative memory (a), and a patiern

classifier (b).

All in all, in a logical sense, pattern classification may be taken as an associative

mapping from the pattern space to a corresponding one of category. By taking all the

intrinsic mechanism on the transform of information as a black box, the similarity

hetween a pattern classifier and an associative memory is quite obvious. And that

explains as well why the associative memory model is selected in our exploration of

novel neural network pattern classifiers.

Incidentally, associative memory model has the following two additional chirac

teristics which are both particularly desirable for a pattern recognition system:

1. It stores information in a distributed, robust manner. Local damages to the

internal structure of the memory network might cause declined accuracy in

overall responses, but not a total loss in certain respects of the storage.
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2. It can regenerate the correct response pattern even though the input stimulus
pattern is distorted or incomplete. That is to say, the limited amcunts of
distortions or omissions in an input pattern may cause little or no deformation
in the associated output pattern, and increasing amounts of distortions in the
stimulus will cause correspondingly larger deformations in the response with no

abrupt breakdown of recollection.

2.3 Associative Memory Network

2.3.1 Network Structure

In the structural perspective, the fundamental form of the associative memory is a
one layer neural network (except the input layer), the one which also serves as the
network’s output layer, sce Figure 2.2. The signal to each node of the input layer is
the corresponding component of input vector, and those from the output layer form
the output pattern of associative recall. Every pair of nodes from different layers is
connected under a certain weight. This is where the power of associative memory
network lies. The associative memory network in [110] and [111] is discussed just

under this structure

There are also other specific forms of associative memory. The most important one
is the Hopfield net, which for the first time introduces the nonlinear feedback dynamics
into associative memory network [112], [113]. The architecture of the Hopfield net

is illustrated schematically in Figure 2.3. It has only one layer of neurons. all are



output
layer

input
layer

Figure 2.2: The fundamental configuration of associative memory network.

connected laterally to all others. After the network is stimulated by an input, the
signals within the network will evolve gradually in the nonlinear feedback manner.

Finally, they will settle on a fixed pattern, and that is the systemn’s output.

In addition, Kosko goes a step further by extending this dynamic mechanism
to a two layered network, called bidirectional associative memory, for paired data
associations [114], [115], the schematic diagram of which is shown in Figure 2.4, ‘There
are two different connections, and therefore two different weights, between every pai

of neurons from each of the two layers separately.

39



2.3: The Hopfield network.
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2.3.2 Mathematical Description

Irom the mathematical point of view. all the weights on the connection paths of
associative memory networks can be represented together in matrix form.

Suppose {(T. Ji)lk = 1.2,---,s} is a set of associated pattern pairs, where ry -
(This Thay s Thin)s Tk = (Yk1rYhas "+ Yhy) ate row vectors in - and n-dimensional

spaces X and Y respectively. For each of these pattern pairs, a matrix Aly is obtained

through the outer product of Iy and ¥:

T —
My = T4
Tgy \
Tho
= (Yais kgt Uky) (2.1)
\J‘km)
Ty Thallks 0 Tl
Trollky  ThalWlhy -0 LThediy,
Thm¥k1 TkmYke *° Tk iy

where 1 represents a column vector, the transpose of Fy. Sumiming these matrices

up, gives:

A= S M = ST
k=1

k=1



3 3
ZL:: Tk1Yk; Zk:x Tr1Yky Zk:] Tk1Ykn

§ 3 R
k=1 Tho¥ki  g=1 Tka¥ka k=1 Tk2Vkn

s s s
Zk:] TimYky Zk:] TemYka Zk:l ThmYkn

and this is the associative memory where s pattern pairs are stored.

The information recollection with the associative cue I can be attained by its

multiplication with meimnory M:

&

- - '_’T" - o - =T =
M =T T Yt = TETLYk + kL) Yt (23)

If the input vectors £y, &y, - -+, 75 are orthonormal, namely:

Bl =1

il
o

. Vi#k (2.4)

#dT

then Eq.(2.3) gives:

which is a perfect recall.

If. however, &y 7y, - - -, T, are not orthogonal, as in general cases, the second term
on the right-hand side of Eq.(2.3) is a noise term which introduces crosstalk to con-
taminate the desired retrieval pattern, even though the key applied is of the exact

fortn of a pre-stored pattern.

This is the most basic form of associative memory. it is actually a linear memory.
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To make the memory system more robust to noise, such as crosstalk, and more
importantly. those generated when a distorted input signal is applied. nonlincarity
has been introduced into associative mapping by letting recalled output & be some

nonlinear transformation I of the product FM:

7= F(FAD (2.6)

The simplest form of I is a threshold function, for instance:

1. if TAI'>0
Y = (2.7)
-1, if FAI' <

under bipolar coding. where y, is the 7th component of the recollected vector g, and
M* is the ith column of memory matrix M. In this thesis; unless specified otherwise,

the nonlincar transformation will always take the form of this function hereafter.

Nonlinear transformation, in the fir * Hlace, can lead to a perfect recollection
initialized by &4 for a set of orthogonal input patterns which need not be normalized.

Since in this case:
= o= ] -
TeM = T4 7 gy
and obviously:
FLF,: > ()
but may not equal to 1 as required in Eq.(2.4), therefore:
y= (5 M)= 1y (2 %)
alore importantly. according to Eq.(2.3), the output of an associative retrieval

process activated by input 7 is a combination of stored patterns gy (b = 1.2,--+ )
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i space Y. each multiplied by a factor 77, If 7 is close enough to a pre-stored

pattern Fy, then it s reasonable to expect that each 777 (I = 1,2,---,s, | # k)
is mueh smaller than FF]. Therefore, the sign of £M* will not be changed in the
suramation by the corresponding component of the second term on the right-hand
side of Iq.(2.3) quite often, that is, a correct value of y, will be obtained most probably
after the nonhinear transformation, and so is §. In this way, the whole memory systém

is made less sensitive to noise caused by crosstalk and dis .cted input signals.

When spaces X and Y are identical, the network is regarded as an autoassociative
network. In this case, if the mapping result ¥ of an input vector 7 is not so satisfied,
that is, if it is not near enough to a certain pre-stored pattern Ty, it can be fed
back into M again and again, and ideally, a perfect recall would be achieved finally.
hosho extends the idea of nonlinear feedback to the heteroassociative memory where
associated pairs (. 5) are from two different spaces X and Y, especially the case when
their dimensionalities are unequal. Suppose § = F(ZM), and the feedback trial is
continued by generating 7 from 7 simply through M7, the transpose of memory
matrix Al 'l‘h('l('ful‘(‘,

= FgMTh)
and then,
g = F(@M)
= FrMT)
and so forth, until the final result. a stable pair (F;.g}). is reached in the following

manunetr:
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i = F(F¥M)

and Ty = Fie M)

2.4 Construction of Associative Memory Classifier

2.4.1 Basic Problem in the Construction of a Pattern Classifier from

Associative Memory

One of the first application of the associative memory network is information recovery.
Kohonen furnishes an example of this by illustrating a system to memornize some
human facial pictures {111]. These pictures can be recollected with the retrieval
keys either superimposed with white noise or mashed. The latter case is in fact the
recollection of the wlhole pattern basew on partial information. Lvidently, under this
circumstance. both patterns in each associated stimulus-response data pair are well

defined beforechand.

Now it has been known that a pattern classification process can be realized through
associative mapping and, the stimulus and response signal of cach associated data
pair are the pattern to be recognized and its corresponding category. A pattern Lo
be recog: zed, whether it is the original signal representing an object itself or any
of its features specifically extracted, usually takes the form of vectors. and s well
defined in advance. Such patterns will be called input patterns or input vedtors ol
hereafter. Ou the other hand. the category to which a pattein belongs is itself nothing

but a logical identity. In order to apply the associative memory network as a pattern
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classifier, this logical symbol needs to bear a concrete form in terms of signal pattern,
that is to say, a specific code or vector pattern should be assigned to it. This is
actually a coding process of these calegory symbols. These category codes are merely
for the internal use of an information system. Consequently, they will be referred
to as inner codes or, in the network perspective, output patterns or output vectors.

Correspondingly, this process will be called inner coding.

In brief, when an associative memory is to be utilized as a pattern classifier,
urdike the case of its other application such as information recovery, the form of
its ontput patterns is not pre-defined, and therefore open for our selection. In the
view of identificetion, this output pattern coding is arbitrary, subject to no specific
requirements, since there exists no effect of a particular form of the inner codes
on their logical meanings. However, inner codes are the response patterns to be
associated with their corresponding stimuli. Since an associative memory functions
on the basis of connection weights of its neurons, and these weights are composed of
every stimulus-response pair it memorizes, inner codes selection may have an influence
on its hehaviour of information retrieval.  For this reason, it should be addressed
specifically and dealt with carefully. As a matte. Hf fact, inner coding turns out to be
the fundamental problem in the construction of a pattern classifier from associative

memory network, called associative memory classifier, as it can be seen later on.
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2.4.2 Inpact of Inner Coding on the Performance of Associative Memory

Classifier

The input patterns play a principal role in the weight formation of an assoqative
memory. Even with the same set of inner codes, a system of different input patterns
may behave differently. On the other hand, some specific groups of wmput patterns
may allow the variance of inner codes within a certain range to achieve the same
classification effect. However, the input patterns of an associative memory <lassifier
are usually well defined in advance. Therefore, the only room left. for the flexibility
of its weight formation is that in the selection of the corresponding, output veectors,
or inner codes. To get the general picture about the impact of inner coding on the
performance of an associative memory network, a discussion over some special cases

of these patterns is really helpful.

Assume {Frlk = 1.2,-+-, s} is aset of w-dimensional inpnt patterns, and then
associated inner codes {7, ih. -+, §,} are n-dimensional.  Also, both of them in an

associated pair are binary patterns coded bipolarly, i.c. cach component of hoth 'y

and i will be either 1 or =1. Therefore:

L)
— Lo
Ly o= (J'Al-Tkz-"'J'Lm)
‘T‘-": )
2 2 2 ‘
= Sy T T (29)
= m




The memory network to store them s M:

3
M =3 T
k=1

If all these input vectors are identical, that is:

=g =4,
Then:
Fﬁ',’:fﬂ’.{: :fk:?z:m 3 k‘—‘l,..., 'S
And:
3 1
M o= FY
=1
3 s
= Zi“k.i",T‘zT, = ) _mi k=1,2,--.,s
=1 I=1

S

= m fo;
I=1

Henee, the retrieval result g of associative cue T is:

s

o= PEM = FmY @) =FOCa) . k=12
=1

=1

Therefore:

a
g

:...:y

w

-
1= V.

wzy,
L3

w

This means that if the input patterns are identical, then no matter what kind of inner

codes is employved, they are still indistinguishable. This result is reached irrelevant

to any particular shape gis may take.

It is on this basis that the following claim is reached:



Observation 1 Inner coding may not be able to tmprove the distinctiveness of the

original input paticrns.
Now let {¥).Fy. -+, %} be aset of orthogonal vectors. Then according to g (2.8):

§i = F(BM) = it

Thercfore, the identification of Ts will depend on the inner codes selected. For
instance, if the vectors in the output pattern set are all pairwise different, then these
input patterns are definitely distinguishable, and this distinctiveness of input patterns
can be kept under any different sets of output vectors as long as they possess such
a property. But if any two of these output patterns are identical, then the two

corresponding input patterns can never be differentiated from cach other any more.
This implies another claim as below:

Observation 2 For a ccrtain group of input patierns, differvent sel of wmner codes

may causc different recognition bchaviour of an associalive wmcmory classificr.

The above are some extreme cases. Now, let us check the impact of inner coding,

in anoth.r instance.

Presume {F |k = 1.2,-+ -, s} is a set of m-dimensional patterns that possess the

property:
- =T __ , . p
Lyr; = Lridyy + Troliy + oo+ Lpy Ty,
!
= = . (2 H“
VA

Vokd= 1.2 o A k£
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Since the length of vector Ty is:

||.l‘-,‘k||=fk.’l?l‘=77l , k=1,2,"',$
Therefore:
I A
2

= AN,V kI=1,20 5 A k£

This means that {7}, %5.-++,&,} is a set of vectors the projection of each to any other

one is a vector in the same direction as the latter but only half of the length.

In a hyperspace with its dunensionality no less than s (s £ m), this can be a set
of vectors represented by the s edges of an s-dimensional hyper regular tetrahedron
drawn out of one and the same vertex. Such a case which can be accommodated in a
three dimensional space is shown in Figure 2.5. Under this circumstance, there can
be at most three such vectors, for instance, O*A, O_b, and OC. Vectors OA’ and OB’

are the projections of OC on OA and OB respectively.

Now suppose s is the multiple of both 2 and 3, and this set of patterns forms an
associative memory M with a set of associative output patterns {#,7, - 75} Also

notice that according to Eq.(2.3) each component of the n-dimensional ZxAM has:

S
(BM), = DM = DT,
=1
= OlLys + D Tkl i, (2.11)
1#k

1
= myx, +5m >
= Ik



Figure 2.5: A sct of input vectors represented by the edges of a regular tetrahedion

sharing the same vertex.



Consequently, the 7ith component (2 = 1,2.-- -, s) of the recollected pattern is:

1
F(EMY) = Flmye, + 5m > _un)
2 1%

\ 1
Flyn + 52 w,) (2.12)
< ik

Wi,

i

It can be seen then that in this case different inner coding schemes will lead to
different associative retrieval results with the ith component of the output pattern as

an example.

For instance, il y,s (I = 1,2,--+,5) are coded in a way that half of them are 1,

while the other half are —1, then clearly:

1 1
;)—Zyltz—iyk, ,  k=1,2,- s (2.13)
< £k

regardless of the sign of yy,. Therefore, according to Eq.(2.12):

. | 1
Yr, = 1‘(yk.+§Z.’/1,)

1#k
. 1
= Fly, — 5us)
1
= 19(;”‘\:) k= 112,”'38 (2.14)

= Yk

Namely, this component of all the output patterns can be recollected correctly.

However, if inner coding has been conducted so that only one third of output

patterns” ith component share the same value, say 1, while the others —1. then:

I «— 1.1 2
ot 52 u = T4 5lEs =D 14 (59 (1)
~1-¢k - \¢
Lo
= '—(—i(\\—s) . \7[ ykl =1



1 1,1 2
yk:+§§kyl. = —1+§[(58)'1 HES-I)'(--I)] (2.15)
1 3
= "5(‘“*'3) Vo, =1

Since s > 6. both s +3 and s — 3 are positive. Hence, no matter what kind of sign

the current yi, has. Eq.(2.15) indicates:

X 1
o= Flon+ 5 m)=-1 , k=12, (2.16)
< 14k

That is to say. only two thirds of these ith components can be recollected properly.

Based on the above discussions, the impact of pattern forms (both input and
output), and therefore of inner coding on the performance of associative memory

classifier can be summarized briefly as below:

Conclusion 1 The rccoguihion performance of an associative momorvy clossificr relies
ultimately on the distinctiveness of its impul patterns. Inner coding can wflucnee s
functioning. and an appropriale sclection of inner codes may vesull in reaching or
approaching, but not overstepping, the limu of an associative memory’s classificalion

ability.

2.4.3 Measurements of Pattern Vectors’ Fitness to Associative Meinory

Classifier

Once an associative meinory has been confignred. its classification performance will
be determined by the data in use. r.c. the inputs and their assodiated outputs of this

associative menory classifier. A set of output vectors with desirable properties can
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help the associative memory classifier to function properly and reach its discriminating
ability, which is determined intrinsically by the suitability of input vectors to this
neural network, as far as possible. Therefore, certain characteristics of an associative
memory classifier’s input vectors, which may be in the original form of patterns to
he recognized or their extracted feature vectors, play the decisive role in the success
of this recognition system. and the set of output vectors can only be selected as

apptoptiate accordingly.

To inspect the fitness of a set of input vectors to associative memory classifier,
some effective measurements should be established. In Section 2.3.2, Eq.(2.2) shows
that the information storing raises no requirements on the characteristics of input and
output patterns. But these do affect the network’s classification behaviour according

to Iq.(2.3).

Apparently, the first termon the right-hand side of Eq.(2.3) contains the expected
recollection result. The second one, however, is the noise introduced by crosstalk with
the other assoctated pattern pairs stored in this one and the same memory A . Since
the disturbance caused by each 7 (I # k), when §i is to be retrieved, is factored by

. F] L the carrelation of input vectors is of great significance.

Definition 1 The corrddation cocfficient of any two m-dimensional bipolar vectors

Iyoand Ty oas:

| o, 20,20,
m

=

%
m



Obviously,
il = 0. if .FL‘ e £y (21\\‘)
and

ik =1 (2.1

Definition 2 Supposc {1k = 1.2,- -+, 8} s a sct of binary vectors coded bipolarly.

Then the average corrdation cocfficient of the whole set of vectors is:

]
pE T i k= L2 s (220)
s(s = )“k<l

In line with the above definitions, the average correlation coetlicient of a set of
vectors will vary within the range fiom 0 to 1. The smaller this number is, the more
probable the vectors of this group are orthogonal to oue another. Clearly, it would he
advantageous if a group of pattern vectors are in such a form that all the correlation
coeflicients iy will approach 0 as close as possible, due to the fact that during the

associative retrieval the crosstalk introduced are proportional to these factors:
- =T —_ 99
rr = xwmpy (2.21)

Therefore, j. the average correlation coeflicient over the entire set of bipolar veetors,
is a meaninglul measuwrement on the orthogonality of these vectors ina statistical

SCIINEC,

In the application with 1cal-life data, the absence of a limitation on the trend for
pris to approach 0 seems impossible, for the extreme case in which all the gy s are

0 simply implies that such a set of vectors is mutually orthogonal. Thus, in dealing

[\ |
ot



with a practical problem. the existence of crosstalk is inevitable. Nonetheless, their
effeet can be reduced by counterbalancing them through the proper selection of a set
of associated output vectors. That is to say, with a group of inner codes gis chosen
specifically, the value of the second term in Eq.(2.3) will be self-depressed so that it

is siall enough not to override that of its first term:

| Z fkflTﬁf < lfkfkrim
I#k

in spite of the fact that:
E i - 0
At this moment. the nonlinear transformation function F will be effective in attaining

the proper recollection resnlts.

For instance, il F s (ko= 1.2,---,s A k # l) arc a constant ¢, then according
to Eq.(2.3), the sign of 7y A will coincide with that of &} §ix which indicates that a
correct recollection with any one of the key ks will be reached when s is even and
the output vectors are specifically coded so that all of them are pairwise different and
cach of their n components has exactly half the chance to be 1 and —1 respectively

to satisfy:

0
; ) 0
i=0= (2.22)
=1
\ 0
and therefore:
Ui = — Uk (2.23)
I£h



In that case:

M = FA TZ‘.—“: + FA
I1#£k
= my, + ('Z U
I#A

Since ¢ < m = &7} . therefore for the sign function

sgnfi M =

= my + (=5

= (m— o)k

( (1 = c)ux,

(1 = c)yn,y

\ (110 =),

(

sgu( M),

sgn(ry M),

\ sgn(r M),

sgn(m — )y,

sgn(m — ¢)yx,

\ sgn(m — )y, /

= sgny)

sgn there exists:

SN

SENYLy

SENYLL, }

In other words. this example suggests that the coneentration of their values can he o

desired feature of 7,7 s.

For the reason above. another stochastie characteristic of input vedors

n

5
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probability distribution of their components. is of particular concern.

Definition 3 A<onne {Filk = 1.2.---.s} 15 a set of pre-defined binary vectors.

Thew the probabudity destrdiation of thewr ath component as:

Pe, =1} = —i—
' t=1.20--mn (2.26)
Ple,= 1) = bzt

where N, _y and N, -y are the nunber of times when xy,s are equal to 1 and —1

respectiedly, and woas the dimensonality of Iy

Hereo o, Tunetions as a random variable. And in this way, each input pattern can be

viewed as an observation of a random vector.

The significance of input vectors’ componental probability distribution can be secn
as follows. Suppose {Fi|h = 1,2.---,s} is a set of bipolar input patterns acquired
as a simple rtandom sample of a random vector f_. namely. these Tis are independent
and identically disttibuted. Also assume that every component of {qis a Bernoulli
random variable & with one and the same probabiiity distribution. but functions

independently:

Pic=1)

i

P

]

P{E=-1} = 1-p (2.27)

VN

where pois a constant - Henee each component in an &3 has the distribution of this

hind, but pisarrelevant to these components:

Plec, =1y =p=p=P=1} . 1=1.2.---.m



In any specitic problem with a given set of data, p,s can be estimated by the compo
nental probability distribution defined in Definition 3.
Notice that:
BRIl =g+ 4 ot - 28)
AT = TR haTio Thm Ll (- =

and rg,. ry, (2 = 1.2.--- .m2) are independent, therefore:

P{eyon. =1} = Flag, = Lo, =11+ Pl = Lo, = - 1)
= Ploy, = 1}P{a =1} + Plag, = =1} Py, 1}
= p'4(1-~-p)
Plogey, = =1} = Plog, = Lay =1V + Plag, = =Ly, ~ 1} (2 20)
= Plog, =P = =1} 4+ Plag, = -1}l 1)

= 2p(1 —p)
So, the expected value of xy,ry, is:

Eleyan} = 1"+ (0 =p)? )+ (=1)- [2p(1 = p)]

= (2p-1) (2:30)

On the other hand. if &1 and &} are now taken as the specific observations, then
Tr,a,s can be regarded as a series of observations of a random variable oy, the
distribution of which has already been described by Fq.(2.29). ‘Therefore, the value

of .T‘A.F{ can be estimated i the following manner when e is sufliciently larpe

.F;,F,l = il (251



and by applving Eq.(2.30). there stands:
@l =m(2p - 1)? (2.32)

which is a constant independent of both k and [

Thus it can be seen that if the componental probability distributions of a set of
input vectors {#Fy]k = 1,2,---,s} are identical, then all the #:77s, the factors to
introduce crosstalk, tend to be one and the same constant in the statistical sense
which may suggest a better self-restraining effect of crosstalk in the associative recall

DIOCeSS,

2.4.4 Associative Memory Classifier—No Dynamic Mechanism Be Adopted

When a dyvnamic mechanism is introduced into associative memory, the process of its
information retrieval, either autoassociatively or heteroassociatively, is implemented
by continuously feeding the retrieval results of the present iteration back into the
memory again and again, until a stable state is reached. Hopfield and Kosko have
shown, using Liapunov function. or the energy function of the memory systern, that
any changes of the associated patterns fed into the memory would cause an energy
reduction of the whole system. And since its energy is bounded, a stable state at
the locol minimum of memory s energy function would be reached finally [112]-[115].
Yet, there s no guarantee that such a retrieval procedure will converge to a final state

which is nearest to the initial input pattern.

In the associative recall process for an information recovery problem. both patterns
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of an  .ociative pair. most probably distorted. should be provided, and through a
series of retrieval feedbacks, the originally stored pair of patterus are supposed to be
obtained ultimately. In pattern classification, however, this may not be the case. In
the first instance, from the concept point of view, the space of pattern and that of

class are diflerent, namely. it is a heteroassociative problem in principle.

Secondly. at the time when an input pattern comes, there is no assumption which
class it should belong to, not even an estimation of that. That is to say, there should
be no initial pattern of class vector available before retrieval, it can only be obtained
from the input vector through the memory. One may find, in dealing with some
practical problems. that the real-life input data are usually not quite suitable for
associative memory network. Consequently, the class vectors obtained therefrom are
seriously distorted even in the first iteration, and a fairly large amount of change in
energy has been brought about. This heavily prevents the recollection process from
converging to the local minimum caused by the associated pair the input pattern of
which is most similar to the associative cue. On the contrary, as the iteration goes
on, the pattern changes its form gradually with the system tending to another stable
state of energy lower. Therefore, the class veetor recalled in the first eycle s the most

precise one.

Hence, no dynamic mechanism is adopted in our associative memory classifier
(also abbreviated to AMC heneeforth). The associative memory veed i this thes
for the purpose of pattern classification is the feed forward network illustiated i

Figure 2.2,

6




2.5 Inner Codes Sclection—An Example on a Set of Multi-

+

font Chinese Characters

2.5.1 Pattern Data in Use

On constructing an AMC to recognize a set of given patterns, it means to set down
all the weight dues for each of the network’s neurons. At this moment, the input
pattern vectors have usually been defined already and are not subject to change any
more. The only room left for movement is the selection of inner codes, so that this
AMC" can reach a better classification performance, which is the basic problem in

AMCs construction.

As it has been discussed in the previous section, the choice of inner codes should
be based on the characteristics of the input vectors. Therefore, to illustrate some
general considerations in inner coding, a certain set of data is needed as an example.
In our case, a set of multi-font Chinese characters is employed since the development
of associative memory network as pattern classifier is for the potential application to
resolve the recognition problem of large number categories, such as that of Chinese

characters.

Speatfically. the data set being used contains 85 Chinese characters in three dif-
ferent fonts, namely, Song, Kai. aud boldface. Hence, there are 85 x 3 = 255 different
character images in total. Each character image has 56 x 56 pixels coded bipolarly
for the time being, That is to say, the value of a pixel is 1 if the pixel falls on char-

acter. and —1 if on background. Finally. the input vector for each character image

62



is constituted by simply lining the rows or columns of this image matix up. The
input patterns formed as such will also be referred to as original character vectors

alterwards.

Obviously, the input vector made up as such might not contain a group of proper
features which represent the original pattern in the view of its recognition. Neverthe
less, our present attention is concentrated on the construction of AMC by selecting
output vectors in accordance with the characteristics of their input ones, and we are
designated to establish the system which can tackle practical problems. Therefore
this set of input vectors is still appropriate for our present discussion, since their
formation does not destroy the fundamental nature of real life data. That s, gener
ally speaking. unlike that of the machine-generated data, their features can not be
depicted explicitly in an analytical manner. This in fact also explains the 1eason for
the measurements of the input vectors to be established in previous section on the

statistical basis.

2.5.2 Measuring Results on the Pattern Data’s Suitability to AMC

The two measurements set up in Section 2.4.3 on the inspection of a certain group
of data’s suitability to AMC, w.c. the average correlation coefficient of this gronp
of vectors aud their components’ probability distribution, are apphed on the set of
input patterns of multi-font Chinese characters. The average correlation cocflicients
of these input vectors which have all the 56 x 56 components are displayed i the first

column of Table 2.1 un the basis of cach font of 85 Chinese chiaracters ane the entire
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set of 255 characters as well. Also, the cornponents’ distributions on their probability
p, = P{r, = 1} areillustrated in Figures 2.6 on the same basis, where x, represents the
ith component of the input vector £. The abscissas p, are a component’s probability
= P{r, = 1}, and the ordinates N(p,) represent the number of such components.
It is worth mentioning that N(0)s, the numbers of components ever-valued as —1
which correspond to the pixels always lying on the background, are not depicted
here, Instead, they are listed in the fourth column of Table 2.1. This is merely for

the sake of a better display when the differences between N (0) and all the rest N(p;)s

(p # 0) are so large.

Since the average correlation coefficient of a group of vectors may vary only be-
tween 0 and 1, and it is expected to approach 0 so as to be fit for an AMC, the
feature of this set of input vectors is much less desirable for the us measured here
are all around or above 0.5. Besides, Figure 2.6 shows a much worse situation in the
concentration of their components’ distribution. As a result, it can be concluded that

this set of data is not quite suitable for an associative memory classifier.

2.5.3 Removal of Components with Certainty from Input Vectors

The last column of Table 2.1 shows that in the set of input patterns made up in
Section 2.5.1, more than one third of the components (56 x 56 x % = 1045) are always
Iving on the background. These ever-minus-one-valued components, the probability
distribution of which is p, = P{r, = 1} = 0. and the ever-one-valued components.

w hich stand for the pixeis always Iving on the character and will have the distribution
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1 I 111 IV

Song 0.5651 | 0.3003 | 0.2648 | 1187

Kai 0.6251 | 0.3471 | 0.2780 | 1335

Boldface || 0.4641 | 0.1626 | 0.3015 | 1140

Entire Set {| 0.5115 | 0.2604 | 0.2511 | 107

Table 2.1: Some statistics of the character sample spaces.
[. The correlation coefficients of original character vectors in each sample space (o,

those of each font and the entire set of data).

I1. The correlation coeflicients of original character vectors after the removal of all
the always-background components in each sample space.

I11. The amounts of reduction between values in column [ and H of the same sample
space.

IV. The numbers of the alwavs-background pixels in character images of each sample

space.
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Figute 2.6: Components” distributions on their probability p, = P{r, = 1} of the
original character vectors. listed on the hasis of each font. e, Song (a), Kai (b)), and

boldface {c¢) respectively. and the entire data set (d)
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p.o = Plr, = 1} = 1 although actually there is none in our present case, are referred to
under a general designation as components with certainty. Obviously, the probability
distiibutions of these components have deteriorated. The coinponents with certainty

are addressed particulaly here for their unusual effect in associative recail.

Assume {F ]k = 1,2,--+,s} is a set of m-dimensional input vectors memorized
in Al through the corresponding group of output vectors {fi}. Then during the

associative retrieval with hey Fy:

AM = BFLR DO g
I£k
= 7"37k+Z'Fk‘FT§l ’ k= 152""33 (233)
I£h
Sinee [Ty 7l < mfor all [# k. let:
~ =T
Go=Y =Ly (2.34)
ik M

. I 777
the ith component of which is o, = Y ==Ly, therefore:

Iy M = myy -+ mé (2.35)

Definition 4 The signal-to-noise ratio of the ith component of Ty M 1is:

My _ Yk
ma, Sk

SNR(F M), = (2.36)

Henee, the following understanding on the impact of components with certainty

to associative recollection can be reached:

Theorem 1 Suppose {Fi|hk = 1.2.---.s} 1s a set of input vectors, cach of which
s oblamed by augmenting the corresponding Ty, with m additional components with

6x



certainty. and the associative memory formed by these s parrs of By and yy s M.
Then. we have:

lim SNR(Z M), = 0 (2.37)

m—-on

Proof:

Without loss of generality, it can be presumed that these components with cer

tainty are all minus-one-valued, and concatenated to the end of Fi, that is:

j—?k = (‘Tk]ﬁ"'aa'knn'"ls"'«"l)

Hence:

~1

2

U -
Ly Ly = (J‘A.—l,"',—l)

Now that in the information recollection stage:

L] 3
- -+ T . < ol
WMo= DY Eg o= ) S0

1%

3

= Z.Fk.?;l]ﬂ+z7_lg_lﬁ (2.5
=1 =1

= T - ] - < o
= it D BF g >
1#4 (=1
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Let the summation of all the output vectors be ¢

&=Y4 (2.39)
{=1
SU:
T M = my, + mg + mS (2.40)

According to the above definition, for the ith component of I A:

myk,

SNR(F M), = S —

Yk,
- v (141
Sk, + (m/m)g, )

Since the value of m s fixed, the theorem is tenable.

A comparison hetween Eq.(2.36) and Eq.(2.41) indicates clearly that the intro-
duection of components with certainty are absolutely useless in differentiating different
patterns other than causing more crosstalk. This can also be seen from Eq.(2.40).
With m getting larger and larger, the effect of crosstalk becomes more and more
severe, until finally the recollection results will all be dominated by the summation of
the whole set of output vectors regardless of the applied associative cues. In a word,
any component of this sort carries no information concerning the input vector’s iden-
tification. Going a step further, it is reasonable to believe that actually the amounts
of information taken along by the components other than these are also different, and

the most discriminative ones should be those with p, = 1.

For this reason. all the components with certainty which in fact come solely from
the pinels Iving along the four edges of the character image are eliminated from the
cortesponding input pattern, and the input vectors formed hercof will be used in
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our future studies. The average correlation coeflicients of each group of character
patterns thus generated are shown in column 11 of Tabel 2.1, In all these cases, there
are reductions in the corresponding average correlation coetlicients and the amonnts
of these reductions are listed in column 111 The largest decrease in that of boldface
characters implies that the correlation of their input patterns is aflected more by these
pixels since their strokes are thicker. Characters of font Kai gain more improvement
than those of font Song because the sizes of the former are smaller, and therefore
more such pixels are eliminated. When these three fonts are put togother, there are
less always-background pixels to be removed. However, the correlation of all the 205
characters is still smaller than those when only 85 characters of font Song o1 Kai are

considered.

Incidentally. it is worth mentioning as well that no specifie preprocessing measures
have ever been taken in our curient data, especilly that of normalization. The
original character size of font Kai is the smallest, which means its characters are
composed of less pixels. while the character strokes of font holdface are the thickest
among the three. For this reason. the statistical results of the former font is expected
to be the worst while that of the latter the best. These have already heen mamfested

in both Table 2.1 and Iigure 2.6.

2.5.4 Selection of Inner Codes

It has been indicated that a pattern classification process mav bhe viewed as an oo

sociative mapping ftom the pattern space to the category one bvidenthy o these are



two different sorts of signals, and simply for this reason, the mapping is not tahen a-
an autoassociative one i concept. However, this logical ditference does not prevent
a pattern and its category signal bear a common vector meaningful in each of then

own data space. And this will lead to an autoassociative mapping in practice,

Generally speaking. in the selection of inner codes, any schemes could be utilized
in regard to information memorizing. The most intuitive way, for instance, is to
use an input vector itsell as its output pattern as well. However, whether a specific
choice is an appropriate one will, in the final analysis, be conditioned by the classi
fication potential of the system. Now, is there any possibility for an AMC to be an
autoassociative network?

Back to our discussion in Section 2.4.3. Fq.{2.32) shows that o/ 0 when

1

5+ This means that, in this case. there tends to be no crosstalk being imtroduced

p=
Hence. the input patterns themselves can be taken as their associated ontput data,
which turns the AMC into an autoassociative network, as well as any other iuner
coding schemes that may keep the distinctiveness of the original inputs. Actually,
under this circumstance. there will be p = 1 for the components of output veetors,
That is to say, cach same component in gy (= 1,2,---, ) will have half the chance to
be positive (1) and the rest negative (=1). Therefore, statistically, thereis a tendency
for the crosstalk of Jis (1 =1,2.---,s | # k), if there is any. to be counterbalanced

from one another. as can be seen from Eq.(2.3).

Unfortunately. the results of onr statistics in Figure 2.6 manifest the biases of

components distribution to the lower p, = P{r, = 1} side, instead of concentration
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near p,o= 000 Namelv, they take the value =1 more likely which corresponds to a
preponderance phenomenon of background pixels in our character images. In short,
the above condition is not satisfied here. And for this reason, the input vectors are
not suitable to be the inner codes of themselves in the present problem. Thus it
can be seen that. i solving a real-life problem, the possibility to use autoassociative

memory may be ruled out for the practical rather than logical reasons.

Then what kind of vector is suitable for associating with the input vectors of
this group of Chinese character images? As it has been mentioned in Section 2.4.2, if
input vectors are perpendicular to one another, then a perfect recall could be reached.
Although thisis impossible in our present case, a group of orthogonal vectors could be
chosen as inner codes, since a recalled vector obtained through associative recollection
and distorted most probably is nothing but one in the space spanned by all the
associated inner code vectors, The farther these base vectors fall away, the less it is
possible for them to interfere with one another in the retrieval process, and the best

way to achieve that goal is simply having these vectors orthogonal to one another.

In our problem at hand. the row vectors in Hadamard transformation matrix,
called Hadamard vectors. are chosen. Hadamard transformation matrices can be
generated ina simple recursive way [116], the amount of vectors available then is

always in a number of the power of 2. Such a matrix with its dimensionality being 8
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is as follows:

115 =

I -1 -1 I =1 1 I -1

L

Obviously, vectors obtained as such are orthonogal, and all their cortesponding, com
ponents except the first one have exactly half the chance being both positive and
negative. As a result, the performance of the whole memory is expected to be bette
when all of these vectors are used for association. This also explains why 85 Chinese
characters of three fonts are involved in our data set when 2% = 256 Hadamard vedtors

arc under consideration.

2.6 Simulation on AMC for Character Recognition

85 real-life Chinese characters were collected in three different, fonts. These dharacters
are illustrated in Appendix A. They are employed in the previous section as a set of
data obtained to discuss the inner coding problem. This group of characters is simply
the first 85 in our data base of the most commonly used 3114 printed characters

each in three different fonts. and Hadamard vectors have been chosen as the set of
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output vectors for theri, Obvicusly, the applicability of associative memory as pattern

lasstfier is decided ultimately by its recognition performance.

2.6.1 Simulation Network and Its Recognition Criteria

The establishment of the associative memory classifier is the process described in
Fa.(2.2) of Section 2.3.2. with the associated pairs composed of 83 x 3 = 255 input
vedtors formed pixel by pixel from the non-always-background part of the character

images, and 255 Hadamard veetors with dimensionality of 256.

In the recognition phase, classification is made based on the output vector recalled
thiongh the memory. Due to the disturbance of the contamination on the inputs to
AMC and the crosstalk during the associative retrieval. the recollected outcomes are
also contaminated rather than the pure Hadamard vector themselves. Actually, any
one of the recollected vector is a linear combination of these bases. So it needs to be
projected thereafter to all the Hadamard vectors to estimate its closenesses with each

of then.

Definition 5 Suppose i 1s the recalled vector, its similarity value Sy with an output

vector, .g. a Hadamard veetor in the present case, yy is:

n
s=1F ng}”* D v (2.42)

&

where y, and yi, are the ith components of vectors § and y, respectively, @ is the
crclusive -nor operation, and n s the dimensionality of output vectors grs (which

cquals 256 currently).
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Also. we define the largest similarity value of a set of S¢ as follows,

Definition 6 The largest sundarity value (1SV) of a set of Sp (b 120 -2 08) s
S, which satisfies:

S > Sk VE#L k=125

Then the recognition can be conducted based on the following eriteria

Criterion 1 Classification Rulc:
An input pattern is classified as characler k, if for the sct of senularity valucs acquired

in the above way, there is:

S8 . VI#Eklew A Ww={l2.. 255

where 255 is the number of currently used output vectors.

That is to say. the input pattern is classified as character &) if the retrieved vedtor y

has the solely largest similarity value S; with Hadamard vector g .

Criterion 2 Rejection Rule:

An mput pattern is rejected, if for the set of sumilarily values,

Sk >8 . VIi#k key, leV

A CU, =2 W={1,2,255)

that is. the munber of elements in set v s more than one.



This means that an inpnt pattern is rejected whenever its recalled vector nas LSV

with more than one output vecetor.

Criterion 3 Correctuess Rule:
An auput patlern s sad to be recognized correctly if it is the pattern of character k in
a cortan foul, cocu though being distorted in @ way or another, and has been classificd

as this charactcr of the same fond.

The above three creteria are in fact unnecessarily strict in the view of character
recognition for under a practical situation of this kind our interest is only concentrated
on the proper identification of a character itself, its printing style is rarely concerned.
Nonetheless, these recognition eriteria contradict with this common knowledge in the
following, two cases which may well occur in multi-font character recognition. First of
all, our Correctness Rule will treat a character pattern which has been classified into
one ol its other fonts as misclassification. Next, even if the largest similarity value
ol the recollection outcome is shared among the output vectors associated with the
inputs of one and the same character in different fonts include the right character
image, such a result is still going to be rejected. Both of these, however, should be

acceptable in terms of character recognition.

Then why are these criteria adopted? For the time being. we are in the stage of
exploring the possibility of employing associative memory network as pattern classifier
rather than developing a real AMC for a specific application. It is hoped that this

novel neutal classitier could be built on a robust basis. and the multi-font data is used
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to introduce intentionally some similanity among character images. Besides, this new
sort of pattern classifier is aimed at solving recognition problems involving a large
number of categories. that is. instead of several or a few dozens, it is expected to
deal with hundreds or even thousands of categories. Although this has already heen
fairly large. the categories of Chinese characters are counted in tens of thousands.
However, a problem of such a magnitude is usually not attempted to be tackled with
a classifier of a single stage. The AMC being developed currently may be used in the
future as parts of a whole network to resolve it. This, again, oflers another 1eason to

apply tough criteria on the network being studied at the present time.

2.6.2 Testing Data Groups

Six groups of data are used in testing the recollection performance of this associative
memory classifier. each contains all the 255 characters. The first group is the original
data used in the memory establishment. In group two to four, there are ten, twenty,
and forty percent of random noise pixels in the non-always-background area of cha

acter images respectively. Those pixels influenced by noise are changed into thei
opposite states, that is, a ‘character’ pixel will become a ‘background’ one leaving a
‘hole’ on the stroke it lies. and wice versa. A four pixel wide horizontal ‘hackgronnd’
stripe covers the middle part of every character image in data groun five, while in the
last group a ‘character’ stripe of similar nature is applied. These brute force distor

tions are designed merely for the test of AMCs adaptability to noise with consistency

a* d regularity. Some character images of these data groups are shown in Figure 2.7.
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Figure 2.7: Some character images of the testing data groups 1 (a), II (b), III (c), IV
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2.6.3 Results and Analyses

The results of classification in cach case are displayed in Table 220 The numbess
of misclassification (above) and rejection (below) are listed first on the basis of cach
font. and then ad led up to show the whole picture of the entire data group, together
with the corresponding recognition. rejection, and error rates of the latter, Table 2.2
demonstrates the effectiveness of applying associative memory to recognize this set
of data made from the multi-font Chinese character images. Although these original
character vectors are not quite suitable for associative retrieval as has been diseussed
in the previous section. high recognition rates all above 98Y% are still achieved, even
in the presence of severe random noise (up to 20% in our experiment). In the testing
data group four to six. when input patterns are exceedingly distorted, the recognition

results, with their rates all above 93%, are still encouraging.

Since the classification is achieved based on LSVs, they show the performance
of the memory system in more detail. This is because at the stage of information
retrieval, the larger the LSV is, the closer the recalled vector gets to a specifie in-
ner code. The exact form of an inner code vector is recollected iff LSV achieves its
maximum. the dimensionality of the Hadamard vectors used, and if this is true for
an average LSV, it means that such a group of patterns can be retrieved without
any distortion. In this sense. LSV can be regarded as an indication of the confi-
dence of this classification proccss. and therefore, it is a major measurerment on the

performance of an associative memory classifier.

Tabie 2.3 presents the maximal, minimal. and average values of LSV among each
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) Testing Data Group

I I 111 v \Y% VI

Song 0 3 1 1 2 4

0 0 0 2 0 1

Kai I ] 2 6 3 5

0 | 0 5 2 5

Boldface ] 0 1 2 1 1

0 0 0 1 0 0

Lutire Set 2 4 4 9 6 10

0 1 0 8 2 6
Recognition Rate || 99.22% | 98.04% | 98.43% | 93.33% | 96.86% | 93.73%
Rejection Rate 0.0% 039% | 6.0% | 3.14% | 0.78% | 2.35%
Error Rate 0.78% | 1.57% | 1.57% | 3.53% | 2.35% | 3.92%

Table 2.2: The numbers of misclassification and rejection in different testing data
groups, listed in line with each font and the entire data set, together with the corre-

sponding recognition, rejection, and error rates of the latter.
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kind of font and the whole data set on the basis of every testing data group. Tt is very
interesting to notice that the maximal LSV of the whole data samples come from
those of font boldface. and the minima from those of font Kat in all the sin testing data
groups. Besides, the average values of the former font are always the largest while
those of the latter font the smallest, and also always the averages over all three fonts
are larger than the averages of font Song. These mean that in associative recollection,
the results of boldface characters are the best, and the result- of Song characters are
better than those of Kai's. This conclusion coincides with the data analysis made
in the previous section. However, it should be noted that the above discussion is
based on an average point of view, it is just a description of the general tendency, and
therefore something unusual may happen occasionally such as the misclassification of

a boldface character in the first data group.

The approach of pattern classification using associative memory has intrinsically
a strong random noise resistance nature, hecause each of the correct recollection is
achicved only after the survival of heavy interference of crosstalk by virtue of their
self-restraining ability acquired through appropriate inner coding and the nonlinear
transformation mechanism of the network. In such severe cases of our experiment, as
ten or twenty percent of random dots are in existence, Table 2.3 shows the average
LSVs do not change much, and correspondingly rather slight deteriorations in recog
nition rate have been observed (see Tabel 2.2). Moreover, even when forty percent,
random noise pixels made character images indiscriminate to the human visual sys

tem. they still can be classified by the associative memory network with a fairly high
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Testing Data Group

I Il IT1 IV Vv VI

maximum 196 194 195 181 189 193
Song minimnm 153 152 154 152 149 152

average 175.07 | 174.64 | 174.54 | 167.26 | 168.27 | 172.09

maximum 193 187 184 177 178 181

Kai minimum 149 148 148 147 148 151

average | 169.46 | 169.12 | 169.13 | 161.54 | 163.45 | 165.07

maximum 204 205 202 189 197 203
Boldface | minimum 163 162 164 153 149 161

average || 187.74 | 187.65 | 186.47 | 175.27 | 181.32 | 183.48

maximuin 201 205 202 189 197 203

I'ntire Set | minimum 149 148 148 147 148 151

average |177.42 177.13 |1 176.71 | 168.02 | 171.01 | 173.55

Table 2.3: The statistical data of largest similarity value (LSV') during the informa-
tion retrieval process of different testing data groups. The results are listed on the

basis of cach font and the entire sample set. The range of LSV varies from 0 to 256.



recognition rate.

Due to the fact that the input vectors currently used are formed pivel by piael
from the original character images. data groups five and six niay possess some othet
special meanings. In the view of associative memory, the contect mformation rettieval
from such forms ot data tepresent the memory’s ability of recollection on the hasis
of partial information. which is one of the associated retrieval apabilities inherently
possessed by human beings. In the present case of charact @ recognition, such dis
tortions manifest the potential of the system to be free from errors cansed by breaks
of a stroke due to the wearing of type. or connection among, strohes cansed by heavy

ink cte. in real printing.

In the design of a practical pattern classifier, some remedial measures may he
taken when a rejection occurs.  Comparatively speaking, misclassification is more
troublesome since the system itself can by no means identify it. In the above expen
ments. except those misclassifications caused by the Correctness Rule, the rest comes
mainly from three sources respectively. First of all, about 60%. of these misclassifica
tions in testing data groups one to five are caused by confusions among the following

characters:

TAREANTTF

which are obviously similar to one another to some extent in their inage structures
(both of character and backgroundj. Next, most other errors in these testing data

groups are due to severe distortion of the input patterns in the wavs of groups fom
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and five Thidls the confusions with character “ — " if not those among the above
seven chatacters, account for the major errors occurred in the last group. This sheds
some light that the associative memory noay have the ability to extract some sim-
ilanities among the input pattern vectors. In the present case, since the original
character vectors are constituted on the pixel basis of the character images, some
structural resemblances have been detected. This happened in the presence of many
other character patterns quite different from these. Therefore. the categories of those
misclassified or even rejected characters can be merged, and further classification

mechanism can be introduced to deal with such smaller sets of data.

2.7 Discussion

Our investigation in this chapter has discovered the applicability of associative mem-
ory as a pattern classifier. Pattern classification. in the logical sense, can be regarded
as associative mapping. However. in dealing with a practical problem, an associative
memory classitier will function properly only after a careful consideration has been
given to the selection of vutput vectors, or inner codes. which are associated with the
patterns ta be recognized  Also, the choice of these inner codes should be based on

some intrinsic characteristies of their associated input pattern data.

FFor the same set of input patterns, the performances of AMCs formed with dif-
ferent sets of inner codes may be quite distinet.  For instance. with the group of
nulti-font Chinese character data currently in use. a failure will occur if the network

1> made to be an autoassociative one. Nevertheless. our experiment shows that if

T
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Hadamard vectors are chosen as the inner codes. a rather good recognition behaviour
can be observed. This miay bring forth a series of other questions 11 ditferent i

ner coding schemes may lead to different recognition performance of an ANMC, then
does there exist any one optimal? And if so, how can a better scheme, or even an
optimal one. be obtained? The next chapter will be devoted to answer some of these

questions.
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Chapter 3

Inner Coding Schemes in Associative

Memory Classifier

3.1 Introduction

It has been found in the previous chapter that an associative memory can be used as
a pattern classifier to recognize fairly large categories of patterns. Nevertheless, for
an associative memory to function properly, a serious consideration on the selection
of inner codes associated with the patterns to be recognized is a necessity. Different
sets of inner codes may result in totally different classsification performances. This
. . . t. . 3 .
captures our interest in seeking better, or even optimal, inner coding schemes. To do
s0, it 1s necessary to set up an efficient tool to evaluate the recollected outcomes of

an associative memory. This will be our major objective described in Section 3.2.

Before any attempt is made in finding the optimal coding schemes, their existence

should be guaranteed first. This will be proved in Section 3.3 based on the limited



number of possible coding schemes with output vectors of finite dimensionality. Al
though it is very powerful in theoretical studies. this same himited nature will also rule
out the possibility of utilizing enumeration as a practical way to find the optimum,

for this may turn out to be a non-polynomial problem.

In Chapter 2, Hadamard vectors have been chosen as a set of favourable inner
codes in light of the analyses on the characteristics of the input data. But, simply
selerting a set of output vectors as a whole does not fully accomplish the task of inner
coding, since it stiii remains open at this moment on which output vector should be
used to associate with a particular input pattern. In our previous experiment, this
was done merely according to the natural orders of data storing in both the input
pattern and Hadamard vector sets without awareness of such a problem explicitly.
However, this helps to suggest a practical way to carry out inner coding in a two step
manner. The first is the selection of a set of vectors which take desired forms or have
some specified features. The second is the association of each input pattern with a
specific vector of the inner code set. This second step will be called a pairing process,
and the way to associate each output vector with an input pattern referred to as a

pairing scheme.

An optimal pairing scheme will be addressed in Section 3.4 under some ideal
conditions when Hadamard vectors are chosen to he the inner codes. The strategy
to apply it to practical data for the better pairing schemes will also be discussed,
Its effectiveness will be demonstrated in Section 3.5 with the same set of real-life

character data as has been employed in the previous chapter.
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3.2 Evaluation of Associative Recollection Performance

3.2.1 Root Mean Square Error of the Associative Recollection Process

Different sets of inner codes may result in different recognition behaviour of an asso-
aative memory classifier. Therefore, attaining a better system performance through
wise inner coding is of great interest. However, before any systematic studies on this
are to be conducted, an analytical way to estimate the errors during the associative
recollection has to be set up first as an effective measurement of an AMC’s behaviour.
To this end, more details about the information retrieval process of associative mem-

ory should be looked into.

Suppose {(Fi.gi)|hk = 1.2,---,s} are a group of associated pattern pairs, where
P = (e hee Lo )s Tk = (Yk1s¥a2s > Ukn ) are bipolar row vectors in m- and
n-dimensional spaces respectively, i.e. all their components may take the value of
cither 1 or = 1. Then the associative memory M, where all these s pattern pairs are

stored. is:

M=) Tl (3.1)

Iu the process of information recollection, the recalled output ¢ is some nonlinear
transformation I of the product of the associative cue ¥ and the memory matrix M,

also called retrieval or recollection product:

F(FM) (3.2)

<=y
I

where in this thesis F takes the form of function depicted in Eq.(2.7) unless specified
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otherwise.

Assume, at present, the input pattern & = ;. therefore the retrieval product Fi M
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Cin G2 - Cis

C21 C22 '+ Czs

(3.4)

Cs1 Cs2 ~°+ Cgs

where

3

cn = ThdT , k1=12---,s (3.5)

is the inner product of pattern & and 7, and hence called the correlation number of
these two patterns. Therefore, C is relerred to as the system parameter matrix since
cach of its element is the correlation number of a corresponding pair of input patterns

memorized in this associative memory network. Evidently, C is symmetric for:

Cil =TT = X T} = Clk
Also let:
- A - -
Y1 Yiui Yz ° Yin
) Y2 Y21 Y22 - Yon
b= = (3.6)
Ys Ys1 Ys2 - Yan
<1 <11 212 <in
4 . -
, <2 %1 <22t Em
Z = = (3.7)
i <s ] i <31 Js2 *t Zsn ]

here Yois called a code matrix. and Z the retrieval or recollection product matrix.
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Hence. Eq.(3.3) can be written as below:

ty

v = ChY (3.8)

where Ci is the kth row of matrix . And the above defined matrices have the
following relation:

7=CY (3.9)
The importance of describing the information retrieval process on the entire vector

set base by means of matrices can become clear in the discussions later on.

Now, apply nonlinear transformation F' on i, or the row vectors of Z. This

attains:

i

3/k = (y;tlwyz{’,}"‘.’?liyl)

= F(3) . k=12 (3.10)

1, if zy>0
Yh = [=1,2,---,n (3.11)

-1, if zu<O

Therefore, the associative recollection error of the memory system can be esti

mated as follows:

Definition 7 Presume {Tilhk =1,2,---,s} 15 a scl anput patterns stoved in meanory
M by associating with inner codes {Fi} separately, and gi (b = 1,2,---,5) 15l

recollected veetor under the application of key Ty, that s:

g = F@AM) . k=125
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Then the voot mcan square (RMS) error of associative recollection under the inspect-

iy data sel {7} s:

—

- o 1< - a2’
errmsy({ix}, {Tx}) = ;Z | (7% — Fe) | (3.12)
k=1

In Fq.(3.12), 71 is the expected response, or the original form of the inner code,
and g is the actual response of the network. The smaller the value of ¢ is, the better
the inner coding scheme the memory system has. Therefore, Eq.(3.12) can serve as a

judgement of different inner coding schemes.

3.2.2 Optimum Criterion

Fq.(3.12) is an intuitive way and also a very useful tool to evaluate the appropriateness
of a certain set of inner codes for an associative memory designed to recognize a
specific group of patterns. It has several interesting aspects which deserve to address

before the eriterion for optimal inner code set can be laid down.

First and foremost. according to Eq.(3.12), € is a function of not only the inner
code set {ii} but also the inspecting data set {Z;}. Therefore, in order to institute
comparisons among different coding schemes, a standand set of inspecting data should
be set up, based on which the associative recollection error of each inner coding scheme
is calculated. In Definition 7. the pattern vectors memorized in AMC is employed
as an example. This is absolutely not a necessity. For instance, if the AMC will be
working under an environment in which the input patterns may frequently suffer from

some sorts of distortions, then introducing these distortions into the inspecting data
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during the selection of the AMC’s inner codes will be more preferable.

Next, ¢ is calculated on the distances between all pairs of vectors 7 and .
When gfk = yi. € reaches its minimum 0. However, here associative memory is used
for classification purpose. A correct identification can be achieved when 3}“} is closer
to % than any other inner codes. instead of just being #.. This can also be seen
from the simulation results presented in the last chapter. By checking the recognition
rate and different LSV values of every testing data group, it scems almost certain
when each LSV reaches its average value of the whole group, a correct classitication
is attained. In all these cases, it is merely 170 or so out of 256. Besides, it is found in
our experiments that if the average LSV starts to decline from the points around this,
the recognition rate will drop rather rapidly. Now, notice that the similarity value and
the difference or distance between the recollected vector and inner codes are actually
the complementary computation, and so are recognition rate and recollection error

in a sense, the following conclusion is made:

Conclusion 2 The associative recollection error varies monotonically with the dis-
tances between each pair of the expected responses and the actually retricved veelors,
and @ proper nonlinear relation may reflect more accuralcly s meamng in the clas-

sification sensc.

Of course, the specific form of this nonlinear function may be application dependent.

Thirdly, if in a practical situation some patterns appear more often than others,

it is realistic then to factor the distance of cach vector pair with the appearance
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frequency value of the corresponding pattern instead of just taking the average as in
the RMS error. In fact. what is considered in the latter is simply the case of uniform

appearance frequency.

Finally, to make this estimation on the AMC'’s performance meaningful, the trivial
cases should be excluded. These are the circumstances when some or even all the

vectors in an inner code set are identical.

Based on the aboave discussions, the RMS error of associative recollection can be

generalized:

Definition 8 Supposc Al is an associative memory classifier built upon an inner
codc sct {iilk = 1,2,-+,s} which does not contain identical vectors. Also let {Z))
be the set of inspeeting data with all the memorized patterns 7y (k= 1,2,---,38) being
represented, and

~

7= F(fM) , k=125 (3.13)

Then the gencral form of the associative recollection error of M inspected by {:i:k} is:

e} A7) = fUmed {ll 7 — 7 1)) (3.14)

where gy is the appearance frequency of input pattern Ty, || ¥k — 7k || the absolute
distance bctween fi, the inner code associated with Ty, and yi, the vector recollected

by associative cue Iy, and f an appropriate form of function.

Obviously, no matter what form f may take. it is the requirement of intuitiveness

that there always exists:

n
v
o

(3.13)



and:
S Al G =@ 1)) = mine (3.16)

These, of course, are satisfied by Eq.(3.12). Ilncidentally, it should be pointed out
as well that in this thesis, for simplicity and generality, no specific assumptions will
be made about the application of classifications afterwards. As a result, the input
patterns will be chosen to be the data for inspection, and also the uniform appearance

frequency assumed.

Now that the measurement of the associative recollection error of an AMC system
is well-defined. it is straightforward to set up the criterion for the determination of

an optimal inner code set:

Criterion 4 A set of inner codes {ii} is said to be optomum (under the imspecting
data sct {:1"1}), if:

e({7c}. {F}) = mine (3.17)

3.3 Optimal Inner Coding Scheme

3.3.1 Existence of Optimal Inner Coding Schemes

In spite of the establishment of the optimum criterion for inner coding schemes, the
existence of such a scheme or schemes need to be assured first before their secking is

started. This question can be answered by the following theorem.
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Theorem 2 [n an associative memory classifier, if the oulput patterns are coded in
the form of binary (or bipolar) vectors of limited dimensionalily, then there always

crists an oplimal wmner coding scheme in the sense of Criterion J.

Proof:

Presume M is the AMC designed to recognize a set of s patterns {Zx}, each ele-
ment of which is associated with a binary (or bipolar) vector g of fixed dimensionality
n. Therefore, according to Eq.(3.6), this set of s row vectors can be represented by
an s x n binary (or bipolar) code matrix Y. A specific coding scheme is reached each

time the ¥ is evaluated.

Fvidently, the total possibility of different Y is up to 2°*". Therefore, the possible

inner coding schemes here is limited.

Now for cach set of these inner codes, its associative recollection error can be
estimated under one and the same group of inspecting data. And also, the total
number of these es obtained therefrom is limited. By simply applying a sorting
algorithm, the minimum among these limited es is attainable. Therefore, according

to C'riterion . its corresponding matrix Y or Ys is just the set of optimal inner codes.

Finally. it is stressed that as long as n is large enough so that:

s< (3.18)

a set of pairwise different output vectors {fi} (k = 1,2,---,s) will be available.

That completes the proof of this theorem.

<
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3.3.2 Complexity of Seeking the Optimal Inner Coding Scheme

As 2 matter of fact, the existence of optimal inner coding schemes is proved by the
enumeration of all of their possibilities. No matter how noany such schemes may be,
its number is limited. For this reason, enumeration is effective in wehieving such a
theoretical conclusion. However, under any practical circumstances when a particular
scheme needs to be worked out, enumeration is not a feasible way any more, for
the complexity of this process will be O(27*") = 2" which is computationally

impractical.

It might be argued that the 2**7 schemes actually contain an enormous amount
of trivial cases. To exclude these, the enumeration can be conducted in the following,
manner. The possible choice for the first vector out of the total s inner codes s 2,
that for the second one is 2" — 1, i.e. every vector except what has been assigned (o
be the previous one is to be selected, and so on and so forth, until the last one which
may have 2"— s -+ 1 possibilities. Consequently. the total mumber of schemes in this

case is:

P 1) (2= 5+ 1)
— 23)(11 _ [1 +2 4o (S"‘ 1)]2(9-—1})(7: + "'+(-—l}".l(h _ l)'zn (‘l‘,)

Clearly, the reduction is not in the order of magnitude perspective. Therefore, this

brings about no improvement in terms of the procedure’s comnplexity.,

Enumeration in reality does not provide any enlighteniment on how to find a

better or even optimal coding scheme. Qur experience in the previons chapter shows
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that nsually a particular set of vectors is selected for some specific characteristics
11 possesses i its entirety. But strictly speaking. inner coding means assigning an
mner code to each of the input patterns. In this sense, merely finding a set of vectors
suitable to be the inner codes can at most accomplish the work partly. It still needs
to indicate how to associate an input pattern with a particular vector in the inner
code set the process of which will be referred to as pairing. Whatever happens, this

actually provides a practical way in finding inner codes which tend to be appropriate.

Based on the above strategy, inner coding is fulfilled in two steps by first choosing
a sct of proper veetors and then pairing. The first stage will be accomplished once
and for all. Therefore. the complexity of the whole process depends on that of the
paiting procedure, Here, because the forms of all these inner codes have already been
fined. enumerating all its possibility becomes a permutation problem, the result of

which 1s s the factorial of s, However. since:

O(s!) = & (3.20)

so according to Fq.(3.18). the complexity of the coding process under this strategy

should still be estimated as:

s < (2 =2 (3.21)

Therefore, it can be concluded that:

Conclusion 3 [he complenty i seeking an optimal inner coding scheme through

cnumeration s 20" and thercfore it s a non-polynomial (NP) problem.
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3.4 Better Inner Coding Scheme Seeking in Real Applica-

tion

3.4.1 Inner Coding Scheme Seeking Strategy

During its information retrieval. the recollection product acquired from an AMC is a
summation of terms all composed of vectors from three sources, that is, the associative
cue. the input pattern. and its associated inner code (EFq.(3.3)). The last two forms

jointly the weights of the network’s neuron.

When the input patterns are to be applied to the network or, when the AMC is
to be inspected by its input patterns, the recollecting relation of the whole system
can be depicted by matrices in the manner of Fq.(3.9). Here, both the recollection
product matrix and code matrix are just the list of row vectors of retrieval products
and inner codes respectively. However, the system parameter matrix is constituted
by the correlation number of each pair of input patterns or, that of an input vedtor

and a vector from the inspecting data set.

The retrieval product matrix is the product of system parameter matnx and code
matrix. The function of the nonlinear transformation is only to allow its operand
being able to vary within a certain range instead of being a specific value,  Yet,
whether this can be achieved will depend on the retrieval result hefore its application.
Since the input pattern is pre-defined upon the construction of an AMC. and so is
the sy<tem parameter matrix. the only room left 1o us is the b aage of code matiix

through the selection of mner codes. This just coincides with what has been obtained
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in Conclusion 1 in the previous chapter from the observation of some special cases,
and explains as well why AMC is also a data-driven system after the layout of its

configuration.

In the light of the above discussion, either inner coding or, pairing if a set of vectors
has already been chiosen to be the inner codes, should be based on the characteristics
of the system parameter matrix, so that the final recollected vectors acquired by
applying nonlinear transform ou the retrieval product will reduce or even minimize
the associative recollection error. Here, pairing is actually a row vector reordering

process of the code matrix.

In optimal inner coding scheme seeking, enumeration is intuitive but computa-
tionally infeasible. Generally speaking, the effective way to tackle an NP problem of
this sort is to solve it on a case by case basis. Under present conditions, it is just
to find the optimal coding or pairing scheme in accordance with the features of a
given set of input patterns. Unfortunately, as has been pointed out in Section 2.5.1,
the features of real-life data usually can not be described explicitly in mathematical

expressions. Thus, what kind of strategy shall be taken?

So far, there still seems no systematic way in optimal inner coding scheme seeking
for the data obtained in real-life. However, it has been demonstrated in the last
chapter that a set of vectors with some desirable feature can be chosen as inner codes
based on some statistical results of these data. Therefore, it is realistic to use the
characteristics of the selected vectors to find out a better or optimal pairing strategy

based on some assumptions about the system'’s parameters, and use this as a guidance
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to achieve a better pairing scheme for the practical data.

In the previous chapter. Hadamard vectors are emploved as inner codes in an
AMC to recognize a group of multi-font Chinese characters. In the remaining part
of this chapter, we shall use this as an example to demonstrate the etliciency of this

pairing scheme improving strategy.

3.4.2 An Optimal Pairing Strategy When Hadamard Vectors Are Used

as Inner Codes

In consideration of the properties of the original character vector, Hadamard vectors
are chosen as associated output vectors in the AMC to recognize a group of multi font
Chinese characters presented in Chapter 2. Hadamard vectors are the row vectors of
a Hadamard transformation matrix. The latter has some specifie qualities which are

interesting to associative memory classifier.

First of all. it can be gencrated in a recursive way:

i, = [i (3.22)
11

112 =
1 -1
", 1

= (3.23)
i, -,
and in general:

H, H,

H,, = (3.21)
H, -H,

102



Consequently. their dimensionalities, and therefore the numbers of Hadamard vectors

available, are always the exponents of 2.

Secondly, the row veetors of these matrices are orthogonal to one another. Besides,
all their corresponding components except the first one have exactly half the chance

being both positive and negative.

Fven after Hadamard vectors have been selected as the set of inner codes, the
associative coding problem still remains unsolved yet, because it remains to be decided
which input pattern should be paired with which. Previously the input and output
vectors are paired simply according to the sequence of their natural appearance in
cach data set. Our next objective is to develop a pairing strategy which is optimal
under some ideal conditions, and also may lead to better system performance of an
AMC than that used formerly when applied to real-life data such as the set of original

character vectors.

Suppose the system storage s is the exponent of 2, and the set of s-dimensional
Hadamard vectors hy (K = 1,2..--,s) are used as inner codes of the network. Let

[ =

5. s0 the code matrix Y, and the system parameter matrix C, of the present

network are as follows:

}-;1 hi hig oo by
}72 hy ha has

Y, = = = H, (3.25)
i;s hsl hs2 h33
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Cll

C'ay

Cr2

CT)

Css

(3.26)

where both C, and Y| are square matrices now, and C,, (i,7 = 1,2) are all £ x { block

matrices:

1
(‘1'2 =

11 €2

€21 €22

i C2

C1 141

C2 t41

Ct t41

Cty1 1

Ct+21

=

51

Clt42

C2 142

Cr 142

Cig1 2

Ci42 2
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Cit

Cyt

Ciy

Cls

Cys

Cis

Coyyot

Cry21

Cst
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Ct41 t+1

Ce42 t+1

Cs t+1

-

Ct41 t42

Ct42 t42

Cs 142

Ct41 »

Ct42 s

CSS

and according to Eq.(3.24), ¥, in Eq.(3.25) can be repersented further below:

Y, =

H, = Ha
H, H,
H, —H,

(3.28)

Now assume that the system coefficient matrix C, also meets the following condi-

tions:

(l) (‘“>('A1f>0. A‘.l:—“l,?."

Co =
or I'=1,2,--.

(2) > eny

or kl=t+1,1+2,---

(3) e =cppr

or kLMIU=141t+2,--+,s

WK =1,2,

or kA =1,2,---,1

or LLI'=1,2,...

1

W U=t+ 1,642,408

W1 kdl=t+1,14+2,---,s

where | # k
where | # k
where k # [, k' # U

where k #, k' £ I

L=t 4+1,t42,--+,s8

kK =t+1,t+2,--,s



Conditions (1) and (3) mean:

or

and

or

and

Chl = C
Cyy = C3 .
Crl = C) .
Chl = Cy ﬁ
c1 >0y .

kol=1,2,--- 1

Adl=t4+ 1042,

{

k=121

(

=1,2,,1

Cy > Cy

| (=t 10420

where k # 1

s where bk #1

k=t 1,642 .8

]

where ¢, ¢z, c3, and ¢4 are all positive constants. Besides, condition (2) is actnally

always satisfied since cx = m, the dimensionality of input vectors and ¢y <

all A l=1.2.-.

C

m

Cy

1

m

C3

3

-,s and k # . Therefore:

-
(“ » s . (‘l
m cy
C ™m
dext
C3 Cy
m Cy
Cy ™
<4 txt
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(m— )l + ey 1y

("l - (':;)I'jg + I,

m, for

(3.29)

(3.30)



Cyp Cp -+ (O
Cy € 0 QO
(/']2 == = C2]t (3-31)

Cy C3 +++ Cp
Jixt

Cy Cq4 *°* C4

Cqy C4 - C4

Cy Cq4 - qu

txt
where X .
Ot .- 0
L= (3.33)
0 0 1
L dext
11 1
11 -+ 1
I = (3.34)
11 -1
L dixt

are the identical matrix and the so-called all-one-element matrix of size ¢ X t respec-
tively.

Henee:

(HI _C])Ef +(']11 C2]l
C, = (3.35)

cqly (m — c3)Ey + c3ly
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and according to Eq(3.9):

Z, = C,Y, = C,Hy

(m—-—c))E +al c 1y H,
csl, (m =)k + ey H,

-

ZnHy ZiH,

ZnHy Znll,

Apparently. Z,, (1, = 1,2) are all f x # matrices.

[(m = c1) Eq + (1 + c2) 1) 1, ((m — ) Eq +

i [(m—c)E 4+ (ca+ e[ He —[(m—ca)Er +

1,

-,
("l - "2)11] ,

(g — ('-|)’r] H,

(3.36)

Now consider function Fy;, the nonlinear transformation operated on matrices:

Y, = Ful(Z,)

= Fu(C,Y5)

or represented in the form of block matrices:
. Y ¥,
Y, =
N
2 Yo

Znll, Zy,H,
= I'n

Znlly Zanl,

and:

-

)‘;lenf\l(zulll) ) la./: ]a2

(3.37)

(3.3%)

(3.39)

Although the original nonlincar transformation defined in Eq.(3.10) is in the form

of vector. the operation itself. as can be seen from Eq.(3.11), is intrinsically applied
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on the cornponent basis. That is, it is actually defined on a numeral. The nonlinear
function Fxp in Eq.(3.37) expresses this one and the same transformation but operates
on a matrix of any size. Therefore, when Fas degenerates to the case of operating on
a single numeral, i.e. when M is a matrix of single element, it should be consistent
with the operation defined in Eqs.(3.10) and (3.11). The unit value there is 1, and zs
can be interpreted as its coefficients. Consequently, if the operands of this nonlinear
transformation are matrices, then the unit should be a matrix of certain size with the
absolute value of all its elements to be 1, and the coefficient matrices of the same size.
For instance, in I5¢s.(3.38) and (3.39), the unit matrix is H,, and coefficients Z;,s are
matrices of the same size.

Before a formal definition is framed for Fjy, the following concepts need to be

presented first:
Definition 9

1. A matrir Z is positive, if and only if all of its elements are positive;
2. A matrir Z is negative, if and only if all of its elemcnts are negative;
3. A matrir Z s non-positive, if and only if all of its elements are non-positive,

4. A matrir Z 1s non-negative, of and only if all of its elements are non-negative.
Hence, we have:

Definition 10 The nonlincar transformation function operated on matrices, Fay, for:

Y = Fy(ZH) (3.40)
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functions as follows:

H . if Z 18 positrre
Y =4 _q . i Z is negative (3.41)

Lnon-deﬁnf:d , otherwise

where H and Z are unit and coefficient matrices respectively.

Now, from Eq.(3.36):

Z“ = (77?—01)Et+((‘1+C2)11

Ziz = (m—a)k + (=)l

Zy = (m—c)b +(ca+ i)l (3.142)
Zyn = —[(7" ~c3)FEy+ (03 - “4)’1]

Since:

€1, Cg. C3, €4 > 0,¢; > ¢y, c3 > ¢y, and [, 15 positive

SO:
(c1 + )1y, (c1 = c2) 1y, and (34 ca)ly, (€3 — eq)ly are all positive
also:
m > ¢, m>cz, and F,; is non-negative
hence:
(m —c¢;)F, and (m —¢y)F, are non-negative
therefore:

Ziy. Za. and Zyy are positive, while Zyy is negative
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then. according 1o nonlinear function Fpy (Eqgs.(3.40) and (3.41)), the following is

attained from Eq.(3.38):

Yo = Fu(CY,) = Fu(Z,)

ZnH, ZH,

= Iy
Znll, ZynH,
11, H, (3.43)
H, -H,
= ]]21
= Y

That is to sav:

Theorem 3 If the wnput patterns of an associative memory classifier can be arranged
i an order so that its systcn parameter matrir satisfies the above-mentioned condi-
lions (1) to (3}, then the cracl form of Hadamard vectors will be recollected under

the application of input patterns to the network,

The key to the proof of the above theorem is to determine the nature of the
cocflicient matrices Zyy. Zy2. Z21. and Zy2 in Eq.(3.36), i.e. whether they are positive
or not. efe. With the help of condition (3), it is possible to express these coefficient
matrices in terms of Fy and [ (Eq.(3.42)), and thus easy to check for this feature.
However, the conchusion of this theorem will hold, as long as Zy,. Zy5. Z,; are kept

to be positive and £, negative. Now, from Egs.(3.26) and (3.28), the recollection

111



product matrix can be expressed as:

H

Zs (Vs):v = C.tll.’f

Cn Cl')] I, H,
Cn Cyp i, ~H,

(Cha + Ci)lly (Cry = Cy) 1,y

= (3.41)
i (Cay + Co)H (Cyy = C ) H,
— ZnH, Z),H,
) i Zully Zyll,
That is, gencrally, the cocflicient matrices have the following form:
Zu o= O+
Zip = Oy =0y
Iy = Oy + Cy (3.45)

N
~
Il

(' — 'y

Here. each element in these coefficient matrices are the summation or subtiaction
of corresponding elements in cither (') and "y, or Oy and 'y Clearly it can be
concluded that Zy,. Zy5. Za;. and —Z,, are all positive whenever condition (1) stands,
Besides, condition (2) is automatically satisfied due to the nature of AMC ‘Therefore,

the following is reached:

Corollary 4 As long as the aforcmentioned condiion (1) s sabisfred an the systom

parameter matrer, the conclusion of Theorcm 3 holds.
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Finallv. under the above cireumstances:

Yo=Y, = M,
(Fq.03.43)) hence,
e =T = h

T hat is.in these conditions. the associative recollection error € achieves its minimum
according to Fqs.(3.15) and (3.16). Therefore. based on Criterion 4, this inner coding

scheme is an optimal one.
We now summarise the above discussion as follows:
Theorem 5 Suppose {Fi |k = 1.2,---,8} 15 a set of input patterns, wherc s is an

crponcut of 20 Assume also that {hy} s a set of s Hadamard vectors generated

vecursicddy. If the mpul paticrn set can be sorted in an order:

11 €12 * C1s
Coy Cp2 +c Oy
(', =
K -
Csi Cs2  *°  Cgs
- =T =+ =7 - =T
.rkl.rh J‘h.l,u ‘Tkl"rh
- =1 » =T = =T
'1‘\‘2'11&1 .I‘kz.Tkz AR lkz:rk‘
2 = = =T = =T
L O AU R Y
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obtained thereof satisfies:

ey >y >0, =120t =t 20 s
(3 1)
or J=1.20th =442 s
where t = 5. then {}—I‘A”\‘ =1.2.---,8} isaset of optirnal mner codes unde r the pairing

scheme of:

Iy, +— h,

that 1s. to associate each Ty, with the corresponding h,.

3.4.3 1Tts Application in Real-life Data

Theorem 5 gives an optimal inner coding strategy when the system parameter matrix
of a set of input patterns meets the condition deseribed in Fa.(3.:46). This actually
provides an optimal pairing scheme when Hadamard vectors are utilized as inner
codes. Although this condition is simple when expressed in inequalities, it may not
be moderate in the view of a practical situation. For instance, it is unrealistic to
believe that the set of 255 multi-fout Chinese character images used formerly will be
made to satisfy this condition since the data is composed of 85 different characters,
cach in three different fonts. On the other hand, what Eq.(3.46) requires is that the
whole set of data will e grouped into two subsets, each containing about the same
nuruber of characters. and the input patterns formed thereof are very similar within
cach subset but at the same time quite different between thems so that the conrelation
number of any two patterns in C'yy and Cyy will be greater than that in Oy, and (7

of Eq.(3.26). Then how can this paiting strategy be applied to, practical problens”
l I L B) Pl ] I
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As a matter of fact, this pairing strategy stems from one of the major features of
Hadamard transformation matrices, that is, such a matrix of order s can be derived
from the Hadamard transformation matrix of order ¢t = £ in the manner of Eq.(3.24).
‘This makes it possible to express the retrieval product matrix Z, in block matrices
of Fq.(3.44) where the coefficient matrices are described in Eq.(3.45). However, this
results in the dichotomy of the original data. Although this seems not to conform
to our real situation, it is reasonable to believe that more likely this group of data
can be divided into many small subgroups, so that the character images among each
of which look more similar to one another than any characters of other groups. One
of the straightforward ways to carry out the division is to dichotomize the original
data group successively. This is just contrary to the recursive generation process of
Hadamard transformation matrix in terms of data size. Therefore when depicted
by system parameter matrix, the data grouped thereof comply easily with the code
matrix, or the Hadamard transformation matrix in the present case, in the order of

block matrices.

Now, let us have a further look at how this successive dichotomy may relax the
condition in Theorem 5. For the time being, suppose the system parameter matrix

in 12q.(3.26) has been divided into 16 block matrices of the same order:

r -

Dll DI'Z D13 D14
D‘Zl D22 -D23 D24

1)31 DBQ D33 D34

Dy Dy2 Dyy Dy



where each D, (i.j = 1.2,3.4) isa § x 7 matrix. As a result. from Eq.(3.26). there

t
2
are:
Dy,
Cy =
Dy,
Dyas
(‘12 -
| D
Dy,
(—'21 =
D,
Dy
C(p =
Dy,

Hence according to Lq.(3.45). Z;,. as an

Eq.(3.44), will be:

A v
Zl2 = (’ll_(’l‘l

D Dy

i Dy Dy

_ - Dy, — Dy,
i Dy — Dy

Dy,
Dy,
Dy
Dy,
Dy
(3.18)

Dy

Dy

Dyy

example of the coeflicient miatiices in

Dy Dy

])2'; 1)24

Dyy = Dyy (3.40)

Obviously. for Z;, to be positive, it is enough if all of its four block matrices are
12 [ )

positive. This requires all the elements in each block matrix of €'} to be greater than

those in the corresponding block matrix of €'y,

of Eq.(3.46) which states that each element in

. Therefore, instead of the requirement

(/1y should be greater than all those in

('12. there is no restriction any more on the elements of two block matrices positioned
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differently in €'}y and (/;5 respectively.

What does this mean to the practical data? In our current case, presume the 235
Chinese character images have been divided into two groups. Now, the dichotomies
are conducted once more to get four subgroups: subgroups one and two from the
first group, and subgroups three and four from the second group. Suppose there is a
character image originally in the second group and now being divided into subgroup
three which is more similar to some character images in the first group than some
others inits own group. Of course, there are many other characters in the first group
which look less like it. If the character images of this first group are dichotomized into
two subgroups so that the similarities between any two character images of the same
subgroup are always larger than those of any one of them with another character
image from other subgroups, then the first block matrix in Eq.(3.49), Dy; — D3, is
positive.  That is to say, it does not matter even if some elements of D13 may be
larger than those of I)y,, as long as those of D;; is the largest. Also, assume that
the character images in subgroup four are relatively less similar to any of those in
the first group, then Dy, — Diy may be positive. This same kind of analysis applies
to the remaining part of Zy,. and further to the other coeflicient matrices. Since
there are four data groups adopted presently other than the previous two, it is more
likely that this grouped similarity nature may hold. Finally, these data groups can

be dichotomized further according to the need.

In one word. in order to apply Theorem 5 to the real data, such as the set of 255

images of multi-font Chinese characters used formerly, for a better pairing scheme, the
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original data set needs to be dichotomized successively. For this reason, the following

data even-dividing algorithm has been devised:

Algorithm 1 Data Set Dichotomy Algorithm:

1.

to

For the set of data containing s patlern vectors, & = {F, ).+, T,}, calculate

the correlation number ¢y of each parr of two different vectors ¥y and Fy:
=5r7, ki1=1,2,- 5 k#1
Chp = Iy =120, S A #

Sclect a pair of pattern vectors Iy, and Iy, which share the largest corrdation

1

number, and this forms the initial data in the first subgroup ¢y, namely:

where:

Ciyty =€t s kFEM VIEZL, 1<k L <s, and k=12, |«

Selet the pattern vector Ty,, whose sum of correlation wwmbers with the Lo
k2
patterns chosen above is the smallest, and this is the first data e the second

subgroup ¢@,. namnely:

where:
Chy ko + Cl]k; S C‘.)l + il l“')aI: 1-,2w R (l"(l I"'h[ # lrl ) l"'la/ 7, ll

For all the rcmaming pattern veelors a the origmal dalu sct ©, vepeat the

Jollowing while |2 < 5 and || < 2

5, vt nedher of the Lo subgroups contams

half of the total pattern vectors yel:
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(a) Take a new pattern veclor T, and calculate its average correlation num-
bers e and ey with all the pattern vectors already in subgroups ¢, and ¢,

respectively:

_ 1

GG = 177 Ckl
|¢1| Vi Edy

_ 1 .

C2 = T ki
21 Vi€

where |¢y| and |¢,| represent the numbers of elements in sets ¢, and ¢,

separalely,

(b) Assign pattern vector Ty to the subgroup with the patterns of which it has

a larger average correlation number, that is:

( -
¢ — U {T}
< lf Cc; > C;
L ¢2 — &2
¢ —
or 4 lf ¢ < 6
‘ $2 — @2 U {T}

3. Put all the pattern vectors left into another subgroup:

b=0-¢1, i |#]=

or $y = ¢, if |¢2| =

o, o] o
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3.5 Simulation on the Performance of different Pairing Schemes

3.5.1 Testing Data and the Recognition Criteria

The applicability of associative memory network as pattern classifier has been man-
ifested preliminarily in the previous chapter with a set of 85 real collected Chinese
characters in three different fonts, namely, Song, Kai, and boldface. For the sake of
convenience in comparison, this same group of data is utilized here once again to test
the efficacy of different pairing schemes when Hadamard vectors have been chosen
as inner codes in the associative memory classifier. Therefore, totally 255 character
patterns are involved in the experiments below, and the same number of Hadamard

vectors with their dimensionalities being 256 are the class vectors to be associated

with them.

The same six groups of testing data, cach generated from all the 265 character
images as before, are used again. The first group is the original charater vectors
themselves, while in groups two to four, noise patterns are produced with ten, twenty,
and forty percent of randomly selected vector components reversing their initial states,
that is, their values are changed from 1 to =1, and wee versa. Finally, in groups five
and six, a horizontal white. or ‘background’, and black, or ‘character’ stripes are laid
over the central part of every character picture separately. These same testing data
groups are utilized here once more merely for the simplicity in comparison. Some

character images of these testing data have heen shown in Figure 2.7,

The set of recognition criteria stated in Section 2.6.1, which contains a classifi
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cation, a rejection, and a correctness rule, is employed here again. The AMCs to
be established will be different from one another, and from the previous one only in
the change of pairing partner of input and output pattern vectors, while the input
patterns will still be the formerly used set of original character vectors. Therefore,
the misclassification ruling to the recollection result of different fonts of the same
character and the rejection ruling to the outcome with different fonts of the same
character sharing the largest similarity value, although both are actually acceptable

in the perspective of multi-font character recognition, still hold.

3.5.2 Results and Analyses

Hadamard vectors have been chosen asinner codes in the last chapter, but in the AMC
there, pairing is conducted based on the natural order of every original character
vector and Hadamard vector in their own data sets respectively. The recognition

behaviour of this AMC has been displayed in both Tables 2.2 and 2.3.

Now, it is attempted to find some better pairing schemes by dichotomizing the
primitive set of original character vectors successively into many smaller subgroups.
Correspondingly, the Hadamard vector set will also be divided sequentially into many
subgroups of the same size. The input and output pattern subgroups are then as-
sociated in sequence. However, within each of these subgroup pairs, the pairing of
every individual input and output pattern is still in agreement with their appearance.
Therefore, for the entire data set, pairing among subgroups is determined. but that

of the data within every subgroup still remains to be in random unless each subgroup
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contains solely one element.

The classification results of the first testing data group, that is, the set of original
character vectors, by the AMCs built up when pairing is carried out only after the
input pattern set is divided first into 2, 4, 8, ..., through 64 subgroups separately
are illustrated in Table 3.1. The numbers of misclassification (above) and rejection
(below) are listed first in accordance with each font, then added together for the entire
data set. The recognition, rejection, and error rates of the latter are followed there-
after. For the sake of comparison purpose, the results in the case of non-dichotomy of
input data set, that is, the case of our simulation in Chapter 2, are also listed. This

occurs when the total number of subgroups is 1.

In addition. Table 3.2 gives the maximal, the minimal, and the average values of
LSV of each type of font and the entire data set in accordance with every pairing
scheme, since the classification is achieved on the basis of LSV. It has been pointed
out in Section 2.6.3 that LSV can be used as a confidence indication of an AMC’s
classification process. This becomes even clearer after the introduction of associative
recollection error € of an AMC system (Section 3.2). ¢ is measured based on the
distances between each output pattern and the vector recollected by the input pattern
it is associated with. Since the calculation of distance and similarity between two
vectors are just complementary operations, these LSVs, particularly the average one,
are the very useful approximants obtainable during a real classification process to
the theoretical estimation. As a matter of fact, especially in the development of

AMC, such statistical measurements as the average LSV of a set of data are under



Grouping Status (The No. of Subgroups}

1 2 4 8 16 32 64

Song 0 2 3 1 0 0 0

0 3 0 0 1 1 0

Kai 1 4 1 3 1 1 1

0 2 1 0 1 0 2

Boldface 1 0 0 1 1 0 0

0 2 0 0 0 0 0

Entire Set 2 6 4 5 2 1 1

0 7 1 0 2 1 2
Recognition Rate [| 99.22% | 94.90% | 98.04% | 98.04% | 98.43% | 99.22% | 98.82%
Rejection Rate 0.0% | 2.75% | 0.39% | 0.0% | 0.78% | 0.39% | 0.78%
Error Rate 0.78% | 2.35% | 1.57% | 1.96% | 0.78% | 0.39% | 0.39%

Table 3.1: The classification results of the original character patterns from the AMCs
where pairing is conducted after first dividing them into 1, 2, 4, ..., through 64

subgroups separately.



Grouping Status (The No. of Subgroups)

1 2 4 8 16 32 61

maximuin 196 201 208 206 208 201 201
Song minimum 153 151 148 153 154 155 147

average 175.07 | 176.36 | 181.04 [ 181.06 | 180.68 | 182.07 | 18L..10

maximum 193 187 194 188 190 I1R7 188
Kai minimum 149 148 147 149 152 151 149

average 169.46 | 167.42 | 172.18 | 173.09 | 171.61 | 172.52 | 171.06

maximum 204 210 206 211 207 211 215
Boldface | minimum 163 156 161 168 163 164 166

average 187.74 | 189.67 | 190.33 | 191.59 | 191.66 | 191.78 | 191.56

maximum 204 210 208 211 208 211 215
Entire Set | minimum 149 148 147 149 152 151 147

average 177.42 | 177.82 | 181.18 | 181.91 | 181.32 | 182.12 | 181.34

Table 3.2: The statistical data of LSV obtained during the information retrieval
process from the AMCs where pairing is conducted after first dividing the original

character patterns into 1, 2, 4, ..., through 64 subgroups separately.
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no eirsumstances less important than the deterministic ones like recognition rate etc.

The results in both Tables 3.1 and 3.2 reflect the general tendency that the AMCs’
petformances become betier when the input patterns are grouped smaller before
pairing. Besidesin Table 3.2, almost all the average LSV's in the pairing schemes with
dichotomous processing of the primitive data set are larger than their counterparts in
column 1, with the only exception which occurs to font Kai when the whole set of data
is merely halved. That is, the strategy discussed in the previous section does offer
better pairing schemes than that used in the last chapter. Nevertheless, this seems
not true with regard to the recognition rates shown in Table 3.1. On the contrary,
a decline is observed particularly when the sizes of subgroups are not small enough,

with the outcome in column 2 as a notabl: example. Why has this been the case?

First of all, the AMCs’ performances may degenerate slightly at least measured
determinatively due to the impairment of anti-noise effect of data randomness when
the data set dichotomy algorithm is applied abruptly. Just as the appearance of a
certain input pattern in the data set is totally random, so is that of every correlation
number ¢ = F47 in the system parameter matrix C. Therefore, according to
Eq.(2.3). the crosstalk caused by all the other input patterns tend to counterbalance
against one another during information retrieval when the system coding scheme is
totally based on the patterns appearance in the data set. However, this effect may be
weakened severely when the data set dichotomy algorithm is applied suddenly, since
the purpose of this algorithmn is nothing but to make the coefficient numbers appear

in a certain order.



Secondly. when not ouly the correct recognition but also the rejection and mis
classification are observed jointly. it is found that part of the improvement in AMCY
hehaviour is concealed by the multi-font nature of the data in use. Forinstance, in the
pairing schemes of 16. 32, and 64 divided subgroups, part of the rejection and more
importantly all the misclassification are caused by different fonts of the same char
acter. Nonetheless, in the previous experiment when pairing was conducted without

data set division, there was still misclassification among different characters.

In short. except some degeneration when the input pattern set is divided evenly
for the first few times, generally speaking., the AMCs” performance gets better as this
process goes on. This can also be seen from the results of our further experiments

described below.

The system performances of AMCs established by pairing after first grouping the
255 original character vectors into 16, 32, and 64 subsets separately are tested by
all six groups of testing data. The classification results are presented in Tables 3.3
to 3.5, and the corresponding LSVs in Tables 3.6 to 3.8. All the information is
shown in the same manners as before. Obviously, under such pairing schemes, the
AMCSs’ classification behaviour attains an improvement since all the recognition rates
of testing data groups two, three, four, and six in Tables 3.3 through 3.5 arc inereased,
and there is no decrease in testing data group five, compared with their counterparts
in Table 2.2. This can also be seen from Tables 3.6 through 3.8, where well over two
thirds of the maximal and minimal LSVs and all the average LSVs are larger than

their corresponding values in Table 2.3.

126



Testing Data Group

| I 111 v V VI

Song 0 0 0 4 1 3

1 0 0 1 1 3

ivai 1 1 1 H 3 3

1 1 0 1 1 1

Roldface 1 1 0 1 2 1

0 0 0 0 0 0

Entire Set 2 2 1 10 6 7

2 1 0 2 2 4
Recognition Rate || 98.43% | 98.82% | 99.61% | 95.29% | 96.86% | 95.69%
Rejection Rate 0.78% | 0.39% 0.0% | 0.78% | 0.78% | 1.57%
Frror Rate 0.78% | 0.78% | 0.39% | 3.92% | 2.35% | 2.75%

Fable 3.3: e classification results of all the six testing data groups from the AMC

where the original character vectors are divided into 16 subgroups before pairing.



Testing Data Group

I 11 111 Y V Vi

Song 0 0 0 1 2 _l

] 0 0 3 1 }

Kai 1 1 ! 4 2 2

0 2 1 2 ] 2

Boldface 0 0 0 0 | 0

0 0 0 1 ] 0

Entire Set 1 1 ] H ) J

1 2 1 6 3 D
Recognition Rate {| 99.22; | 98.82% | 99.22% | 95.69% | 96.86% | 96.86%,
Rejection Rate || 0.39% | 0.78% | 0.39% | 2.35% | 1.18% | 1.96%
Error Rate 0.39% | 0.39% | 0.39% | 1.96% | 1.96% | 1.18%

Table 3.4: The classification results of all the six testing data groups from the AMC

where the original character vectors are divided into 32 subgroups before paining,
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Testing Data Group

I II Hl v \Y VI

Song 0 0 0 2 0 1

0 0 0 1 0 0

Kai 1 3 2 4 2 7

2 0 0 1 2 2

Boldface 0 0 0 1 1 0

0 0 1 0 0 0

Entire Set ] 3 2 7 3 8

2 0 1 2 2 2
Recognition Rate || 98.82% | 98.82% | 98.82% | 96.47% | 98.04% | 96.08%
Rejection Rate | 0.78% | 0.0% | 0.39% | 0.78% | 0.78% | 0.78%
Frror Rate 0.39% | 1.18% | 0.78% | 2.75% | 1.18% | 3.14%

Table 3.5: The classification results of all the six testing data groups from the AMC

where the original character vectors are divided into 64 subgroups before pairing.
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Testing Data Group
I I1 11 Y V Vi
maximum || 208 211 2006 188 207 196
Song minimuin 154 151 155 146 150 151

average | 180.68 | 180.15 | 179.73 | 170.34 | 175.76 [ 17G.12

maximum 190 187 187 180 183 190
Kai minimum 152 153 156 148 [H2 152

average | 171.61 | 171.81 | 171.75 | 163.56 | 166.98 | 168.07

maximum 207 209 2006 191 2041 202
Boldface | minimum 163 161 164 154 157 162

average | 191.66 | 191.39 | 189.60 [ 177.06 | 185.13 | 186G.95

maximum 208 211 206 191 207 202

Entire Set | minimum 152 151 155 146 150 151

average | 181.32 | 181.12 [ 180.36 | 170.32 | 175.96 | 177.05

Table 3.6: The statistical data of LSV obtained during the information retrieval
processes of all the six testing data groups when the AMC is established by dividing,

the original character patterns into 16 subgroups before pairing.

130



Testing Data Group

I I 11 1Y \'% VI

maxinum 204 205 203 190 200 194

Song minimum 155 155 154 148 154 151

average | 182.07 | 180.65 | 179.86 | 170.24 | 17547 | 175.78

maximum 187 186 190 179 180 183

Kai minimum 151 152 152

149 149 151

average || 172,52 |1 172.06 | 172.18 | 163.58 | 166.22 | 167.49

maximum 211 209 208 191 204 206

Boldface | minimum 164 161 164 155 150 163

average || 191.78 [ 190.56 | 188.99 | 176.49 | 185.02 | 187.20

maximuin 211 209 208 191 204 206

Entire Set | minimum 151 152 152 148 149 151
average 182.12 1 181.09 | 180.34 | 170.10 | 175.57 | 176.82

Table 3.7: The statistical data of LSV obtained during the information retrieval

processes of all the six testing data groups when the AMC is established by dividing

the original character patterns into 32 subgroups before pairing.
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Testing Data Group

I I1 111 AY V Vi
maximum 204 2006 203 189 1949 195
Song minimum 147 150 157 151 147 119

average || 181.40 | 180.78 | 180.21 | 170.41 } 176.62 | 175.11

maximum 188 187 191 176 184 183
Kai minimum 149 155 152 149 147 152

average |l 171.06 | 170.99 | 171.33 | 163.41 [ 165.99 | 166.68

maximum 215 215 208 194 2()2 209
Roldface | minimum 166 165 161 157 153 162

average |f 191.56 | 191.82 | 189.58 | 175.93 | 184.86 | 188.2)

maximum 215 215 208 194 202 209

Entire Set | minitmum 147 150 1

[aby §
(S

149 147 149

average |l 181.34 | 181.20 | 180.37 | 169.92 | 175.82 | 176.78

Table 3.8: The statistical data of LSV obtained during the information retrieval
processes of all the six testing data groups when the AMC is established by dividing

the original character patterns into 64 subgroups bhefore pairing.
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Pairing | No. of Subgroups 16 32 64

Scheme | Size of Subgroups 16 8 4
Average Recognition Rate || 97.45% | 97.78% | 97.84%
Average Rejection Rate 0.72% | 1.18% | 0.59%
Average Error Rate 1.83% | 1.05% | 1.57%
Average of Average LSV 177.69 | 177.67 | 177.57

Table 3.9: The averages of the recognition, the rejection, and the error rate, and of the
average LSV of the entire data set over all six testing data groups in pairing schemes

of dividing the input pattern set first into 16, 32, and 64 subgroups respectively.

Besides, a comparison of recognition rates among Tables 3.3 to 3.5 suggests a
tendencey of classification error increase if the original data set has been overdivided.
Each input pattern subgroup in these three pairing schemes may have up to 16,
S, and 1 original character vectors respectively. The averages of their recognition,
rejection, and error rate, and of the average LSV of the whole data set over all six
testing data groups are shown in Table 3.9 in accordance with each of these pairing
schemes. Clearly, after the input pattern set has been divided into 16 subgroups,
there scems no improvement in terms of LSV if the data set dichotomy continues.
However, if all these data subgroups are halved at this moment, there is a 0.33%
increase in the average recognition rate. Also observed is an increase in the average
rejection rate. and a drop in average error rate. Nevertheless, if the data subgroups

are halved once more, there will be an increase in the average recognition rate of only
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0.06%. but at a cost of a 0.52% increase in misclassification. In addition, under the
testing data groups two and three, the cases in which recognition rates remain high
regardless of heavy contaminations suffered, all the misclassifications are caused by
the multi-font nature of the character data in pairing schemes of 16 and 32 divided
subgroups. However, some of those will be made among different characters if pairing

is conducted with further dichotomy on this set of data.

In a practical problem, it seems impossible for the system parameter matrix to
satisfy the condition of Theorem 5, not even the relaxed one discussed in Section 3.1.3
completely. For this reason, the noise elimination function of data randomness is
still necessary when the input patterns and inner codes are associated under these
pairing schemes. The larger the size of data subgroup is, the better this anti-noise
effect may be. On the other hand, it is also under the practical consideration that
the system is expected to perform better as the input pattern set is dichotomized
continuously. These two factors function jointly, and a proper size of data subset is
to be reached. In our present case, it seems that the optimal size is 8, i.e. when
the 255 original character vectors are divided evenly into 32 subgroups, under a
comprehensive consideration of both the statistical and the deterministic measuring

results.

3.6 Discussion

It has been known now that an associative memory network can be turned into a

pattern classifier provided that an appropriate selection of the output vectors, or
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inner codes, associated with all the patterns to be recognized is made. As a matter of
fact. this inner coding problem has become the central issue in the construction of an
associative memory classifier. Practically, it can be fulfilled in a two phase manner,
i.c. choosing first a proper set of vectors with the desired features as the inner codes,
and then working out a pairing scheme to associate each input pattern with a certain
output vector. In Chapter 2, Hadamard vectors have been used specifically as a set
of desired inner codes. And this chapter shows how a specially developed pairing

strategy may lead to the improvement of AMCs’ recognition performances.

So far, our discussion is based on the assumption that the form of input patterns
has been pre-defined and is not subject to change. This, of course, is true when
pattern classification is considered solely. However, in a real pattern recognition
svstem, usually there is a feature extraction process right before that. Whatever the
task 1t may have, ne mally it will result in a change in the data format of the input
veetors.  As has been discovered before, an AMC’s performance relies in the final
analysis on the characteristics of its input patterns. Therefore, is it possible for this
to be taken into account in feature extraction so that the finally generated feature
patterns are more suitable to such a kind of neural classifiers? This would be our

major focus in the next chapter.



Chapter 4

Feature Extraction in Cooperation with

Associative Memory Classifier

4.1 Introduction

Associative memory classifier is under development for its application in character
recognition being kept in the background. The process of character recognition, like
all the other pattern recognition problems, consists of two major stages, namely,
feature extraction and pattern classification. Feature extraction is a critical issue for
any recognition process since the final classification results depend to a large extent

on it.

Traditionally, there are two fundamental objectives in the feature extraction pro
cess. The first is the determiuation of certain attributes of the pattern elasses which
are invariant to as many kinds of distortions as possible. T he next is to reduee the

dimensionality of the feature vector by selecting the most effective or discriminatory



charactersucs of these patterns [117].

However, when neural network is used as a pattern classifier, a change occurs in
these basic tasks of feature extraction. Although the selection of stable features still
remains as one of its major objectives, data reduction is not a necessity any longer
since the parallelisim nature of neural network systems makes them fit for the process-
ing of large amounts of data. For instance, in the back propagation model, the neural
network most commonly used so far in character recognition, the time-consuming na-
ture is one of the built-in defects in its learning process. This is caused in essence by
the large number of presentations of the training data required for the convergence
of this process [29]. Also, in certain cases of its application, such as handwritten
zipeode recognition, the need for large scale training has made the situation even
worse [35), [11]. However, all these have nothing to do with the dimensionality of
the data. Different methods have been proposed to overcome this difficulty. They
are modifications of either the configuration of the network [41], or certain aspects in
the learning algorithm [35], or even the so-called learning environment in which the

order. number, and repetition of training samples are concerned [59).

Although a higher dimensionality of training pattern may require more time in
the simulation work conducted on a serial computer, this is merely a problem resulted
from the constraint of the simulation environment rather than an essential character-
istic of the neural network methods. Thus, a high dimensional feature vector can still
be regarded as appropriate as long as it contains enough information to differentiate

a pattern from all the others. Nevertheless, instead of its dimensionality. here the
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suitability of the feature pattern vectors for the neural network classifier should be
taken into account. This is because neural network becomes completely a data-driven
system after the formation of its configuration, consequently the recognition perfor-
mance of the neural classifier will be determined ultimately by the properties of these

feature vectors under this circumstance.

In our study on associative memory classifier in the previous two chapters, ex-
cellent recognition performance on a set of multi-font Chinese characters has been
achieved with strong resistance to random noise. However, since no specific feature
extraction process was considered, it was not suitable for the recognition of some
geometrically distorted characters. In this chapter, a feature extraction method ap
plicable to associative memory classifier is proposed. The features obtained therefrom
are free of translation and rotation, the two most common kinds of distortions which
occur in printed character recognition. In the text below, the feature extraction al
gorithms are described fitst in Section 4.2. Discussed then in Sections 4.3 and 4.4 are
some details in realizing the principle of geometrical deformation invariance and pur-
suit of the suitability of feature vectors to the neural network classifier. Finally, the
effectiveness of this feature extraction process is demonstrated in both Sections 4.5

and 4.6 by a series of experiments in different perspectives.

13%



4.2 Algorithms for Feature Extraction

4.2.1 Feature Extraction Algorithm FPFB

Assume a character image is represented by a two dimensional function f(r,y):

1, if the pixel at (z,y) is on the character
[lr,y) = (4.1)
0, if the pixel at (z,y) is on the background

where (r,y) are the discrete rectangular coordinates.

The distortions which occur most frequently in the recognition of printed charac-
ters are the translation and rotation of character images. Aiming at the extraction
of feature vectors which are invariant to these distortions and accommodated to the
AMC developed in our previous work, a feature extraction algorithm, called FPFB Al-
gorithm, has been designed. As described below, it is a process of Fourier transform
(a two dimensional one), followed by Polarization (the replacement of coordimate
systems from a rectangular one to a polar one), another Fourier transform (a one

dimensional one), and Binarization.

Algorithm 2 FPFB Algorithm:

1. Conduct a two dimensional Fourier transform on the original binary character
image f(r.y):

Fu.v) = Fey(f(z,y)) (4.2)

where Fppy denotes the two dimensional Fourier transform implemented on

coordinates v and y.:
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to

Replace the Cartesian coordinate system of the character’s Fourier speetrum

(u,v) by a polar one (p.8):

G(p.0) = |F(u(p.0).v(p.0))]

= |F(pcosf, psin 0)] (-1.3)

3. Conduct another one dimensional Fourier transform on this new spectrum (J(p, 0)

along the azis of polar angle 0:

H{p, ¢) = Fo(G(p,0)) (1.1)

4. Binarize each component of the fealure patterns obtained thercof based on the

values of the corresponding components of the whole group of patterns involved.

One of the functions of this algorithm, the geometrical deformation invariant
signal extraction, is fulfilled in its first three steps. Thir can be seen in the following

discussion.

According to step one, |F(u,v)|, the Fourier spectrum of f(r,y), is obtained
first. Fourier transfori: ' as many useful properties, one of which is that the shift in
the original image docs not affect its magnitude. Therefore, | F'(u,v)| is translation
invariant. Moreover, the rotation of the image is preserved in Fourier transforin. T'hat
is, if

Faa([(,0)) = F(p,0),
then
Frray [0 + ag)) = Flp.0 + oq).
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Here, both (4. a) and (p.8) are polar coordinates. This means rotational distortion. if
there 1s any. will be kept exactly the same in | F(u,v)| as in the original image f(zr,y)

without any additional deformations introduced through the Fourier transform.

Step two is a change of coordinate systems, by which |F(u,v)| becomes G(p,0).
In the imaee with discrete Carlesian coordinates |F'(u, v)|, each pixel represents the
image function value over a small area AuAv, while in G(p,0) of discrete polar
coordinates, the area element becomes pApA#0. Therefor |, |F(u,v)| and G(p,0) are

two functions althongh both are depicted in the form of a matrix.

Again. this change does not add any deformation to the original rotative distortion.
That is, if the original character image is rotated with an angle ag, and so is its
Fourier spectrum, then the image function obtair ~d in this step is G(p, 8 + ag). This
indicates that such a change in coordinate systems can transform the rotation into a
one dimensional translation along the axis of polar angle. Therefore, by implementing
another one dimensional Fourier transform on it in step three, |H(p. ¢)|, the new
character spectium obtained. is free from the translation of polar angle, that is, the
totation of the original character image. Consequently. |H(p, ¢)| is both translation

and 1otation imvariant.

4.2.2  Threshold Function Generation Algorithm

F'he otiginal character pattern f(r.y) is a binary image. Yet. its transformed spectra
after each stepy e [Fou o) Gip. ). and |H(p, d)|. are all continuous functions of

theit respective discrete coordinates.  In order to make the feature vector suitable
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for the AMC previously developed. the distortion invariant signal [Hp. )| will be
binarized to obtain a bipolar feature vector h(p,¢). Such an additional operation
in feature extraction will offer another advantage, 1.e. an increase in the ability of
the whole process to resist computational errors accumulated in the above series of

transformations.

The binarization is based on the transformed functions of the entire group of
data. Suppose {fi(x,y)lk = 1.2,---,s} is the group of characters under consider
ation. Then after the first three steps of operation, a group of distortion invarian
feature patterns {|H(p.®)| |k = 1.2.---,s} is available. The problem now is to
construct an appropriate threshold function T'(p.¢), so that the hinarization can he
conducted on this ground. Obviously, different threshold functions may result i dif
ferent patterns of feature vectors obtained from the binarization conducted thereof.
A proper selection of this functior will lead to the acquisition of a set of feature data
which can drive the currently used neural network classifier to act more effectively,

which happens to be the second objective of our feature extraction process.

According to the characteristics of AMC, the input patterns can he recopnized
more accurately if they are more likely to be orthogonal to one another. 'T'his can be
achieved heuristically under bipolar coding by choosing the threshold funetion i sueh
a way that. for cach pair of specific coordinates (p, @), T' will divide about half the
number of [H(p.o)|s into 1 and the rest =1, Another criterion in the constriuction
of the threshold function is the robustness of those |[Hi(p. @)l near the thieshold,

The larger the smallest difference between the two [, (p. ¢)|s on the two sides of the
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threshold, the bhetter,

Based on these two eriteria. an algorithm for the generation of threshold function

has been devised as follows:

Algorithm 3 Threshold Function Generalion Algorithm:

1. For a cevtain (p, ¢). divide the group of real-numbered features |He(p, ¢)| (k =

1,2,---.8) into two sets Sy and Sy so that, each element in S is greater than

“
any of thosc Sy, and the difference in the number of elemenls in these two

sets 1s as small as possible;
Q. Caleulale the means my and my within Sy and S, separately;

S, Compulte the quasi standard deviations oy and o4 within Sy and S, defined below:

or = VE(H(p.d) = m)? Y |[H(p,$)| € St A|H,(p,8) < my,

a0y =/

Hy(p.o) —my) Y |H,(p.d) € Sy N|H,(p,d)] > msy (4.5)

salisfying the condition oy > |Hi(p, ¢)| > o4, and the

4. Sequenee those |Hy(p.o)
threshold T'(p. o) s the average of two consecutive |H(p, ¢)|s which differ the

most;

. Repeat steps 1 to ] for every pair of coordinates.

>

An example of the whole feature extraction process applied to a printed Chinese
character is given by Figures 4.1 and 1.2, with the ori~*nal image f(r,y) shown in
Figure Li(a). s transformed spectra, | F(u. v)]. G(p.0). and |H(p.$)| are depicted
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(a) (b)
Figure 4.1: An example of extracting features from Chinese characters: the original

character image (a). and its extracted bipolar feature pattern (b).

in (a) through (c) of Figure 4.2, and Figure 4.2(d) illustrates the threshold function
T(p, &) obtained from the set of 85 common Chinese charactersin Appendix A, cach of
which is printed in three different fonts. The finally extracted binary feature pattern

h(p, ¢) is displayed in Figure 4.1(b).

4.3 Replacement of Discretized Coordinate Systems

Since it has been proven theoretically that the Fourier spectrum is free of transtation
in the original image, the key point in the FPFB algorithm’s geometrical deformation
removal mechanism is to turn rotation into a one dimensional translation, so that it
can be removed subsequently by a Fourier transform on that dimension. To achieve
this, a change of coordinate systems is needed, as in step two of the FPFB algorithm.
If the functions being dealt with are on continuous coordinates, this is simply the

replacement of their arguments in the following manner:

u = posf

ro= psinl (4.6)
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Figure 4.2: The intermediate stages when the feature extraction algorithm is appliced
to the character shown in Figure 4.1(a): its 1F(u,v)| (a), G(p,0) (1), [H (p, )| (), and
the T'(p, 0) obtained from the |[H(p.d)|s of the set of multi-font Chinese charie ters

used in the previous two chapters (d).
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as being referred to in Fq.(4.3). Unfortunately, this is not the case in digital im-
age processing. hence some subtleties in the transformation of discretized coordinate

systems need 1o be addressed.

4.3.1 Resolution of Signal Images

Il the coordinates are continuous, a one-to-one mapping can be established between
the Clartesian coordinates and the polar coordinates. This, however, is untenable
between the diserete coordinate systems. Presume the intervals between two consec-
utive discretized coordinate values in Cartesian coordinate system (u,v) and polar
coordinate system (p,0) are {Awu, Av) and (Ap, Af) respectively. Then their image
pixels are Aulde and pyApAfl, as shown by the shaded areas in Figure 4.3, where
mo= (k+ %)A/} (A =0.1,2,---). Evidently, due to their resolutions, the area of a
pixel in one coordinate system may correspond to part or the whole regions of more

than one pixel of the other coordinate system, and vice versa.

One of the intuitive way to solve this problem with a predetermined precision
requirement is to divide the image pixel into a group of smaller areas called subpix-
els. In this case. when Cartesian coordinates (u,v) are to be transformed into polar
coordinates (p. 0). image pixel Aulr will be divided into p? subpixels, so that each of
them s small enough to be mapped into a unique pixel p,ApA8 of polar coordinates,
and the errors caused thereof is negligible. Therefore, instead of the original pixel

with coordinates:

(o) = (1Au, jAv) (4.7)
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Figure 4.3: The discrete Cartesian coordinate system and polar coordinate system,
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these subpixels will be referred to in the change of coordinate systems with coordi-

nates:

. Au AN 1 .
(u, + 1,—, v, + jp—) = ((z + £)Au, (7 + £)Av (4.8
vt )=(( p) (J p) ) )

where ipﬁ]p =0,1,--- P 1.

4.3.2 Image Sampling under Discrete Polar Coordinate System

After a mapping rule has been established between the two coordinate systems, what
remains to be decided is the function value on each pixel prApA#f of the polar co-
ordinale system after the transformation. This is a bit more troublesome since it is

actually a problem related to the manner of image sampling under polar coordinates.

~

Suppose f(i.v) is a two dimensional function with continuous Cartesian coordi-

nates (i, 0). Then its equally spaced sampling can be conducted as follows:

fluivy) = flu,v) = f(idu, jAv) (4.9)
flunyv,) = AulAv //Awf'(a,ﬁ)dada (4.10)

which is a form of averaging over iinage pixels.

In both of the above cases, the area size of image pixels does not enter into the
picture of the sampling functions. This is because the usually adopted equally spaced
sampling happens to generate pixels with equal sizes in area under the Cartesian

coordinate system. However. in a discrete polar system, this is no longer the case.
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Now a pixel’s area. which is:

1

PEAPAD = (i + =)APAO k=0.1.2--- (1.11)

to|

is proportional to its distance from the origin. Therefore, during the discretization
of polar coordinates, the information of not only the original function value on each
pixel, but also its area size, should be expressed in the sampling function. One
intuitive way is to take their product. That is, the sampling of function f([;, 0) can

be conducted as:

1 .. .
0 ApAO( ————— 0,0) pdpdl
S(px, 0r) prlp (pkApM//pkApr(ﬂ ) pdpd0)

F(50Vodadl 419
//WM F(3,0)p dp di (4.12)

With this sampling principle in mind, we now look into the details of the transfor-
mation process of the coordinate systems. Assume f(u,,v,) and g(pg,0) are the
functions of the same image under Carlesian and polar coordinates respectively.
Since these two coordinate systems have already been discretized, the integration
in Eqgs.(4.10) and (4.12) is degraded into summation. Besides, tn accordance with
the sampling form of g(pk, 1), f(u.,v,) should also be treated as the product of the
function and area of the pixel at (u,,v,). This is feasible since first of all the pixels
here have the same area AuAw, and secondly, only the relative size of the pixels in
the polar coordinate system is of significance, as can be seen from Eq.(4.11). Henee,
the area of AuAv can be assigned as 1 for simplicity, and the function value of each
subpixel of the pixel at (u,.v,) becomes:

Au Av 1
= U T ) = T 1 'n 1=0717"‘- ~ 1 14.13
flu, +1, ; v, + 7, , ) pzf(u v,)) (I P ( )
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and also;

p=! p-l Av
f(UHvJ) = ZZfU,-f’lp v_7+.7p )
1p=032,=0 p p
Au Av
= p*f(u, +i,— » vJ+j,,—) (4.14)

Therefore, the transformed image function ¢(pe,8;) becomes:

glpr 0= D f(u',v) (4.15)

(u',v')eq

where

Q={(u, )| v = u, + z'p&, v’ =, +jp%,

P

Pk < VU + 07 < pryy, 6 < arctan % < 0,4}

4.4 Distinctiveness of the FPFB Extracted Feature Vectors

4.4.1 Binarization and the Vectors’ Distinctiveness

The binarization in the last step of FPFB algorithm may turn the format of the
extracted features into the one fit for the AMC network developed in our previous
studies, as well as increase the robustness of the whole process against accumulated
computational errors. This is because rather than the numerical value itself, such
a step together with the threshold function generation algorithm has made only the
feature signal’s relative magnitude compared with that of the threshold function on
cach site be of interest, which is acquired on the basis of the whole group of patterns

considered from a statistical point of view. That is, the threshold T(p, ¢) is obtained
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first througn a stocastic process based on all the

Hi(p.o)ls (A= 1.2,--+.5). Then
each [Hi(p, 0)| is compared with T'(p,¢) by a subtraction operation, and only the

sign but the value of the result is retained.

The format change of feature vectors as well as the removal of the accumulated
computational errors are achieved through binarization by discarding irrelevant de-
tails originally contained in feature vectors. Only the shape of each feature pattern
relative to all the rest among the same group is of importance. Different feature
patterns with different shapes should be binarized into different binary or bipolar
vectors, namely, the primitive distinctiveness among the extracted feature patterns
should be retained after binarization. Nonetheless, binarization is carried out on a
threshold function generated through statistics of the whole group of feature patterns.
If there exist two or more pattern signals which lic most frequently on the same side
of the threshold function, although the original shapes of these signals may be quite

different, their binarized vectors will be very similar.

In fact, compared with that of the threshold function, this situation may come
into being only when the energy of all these signals is obviously larger or smaller.
Assume the energy of all these signals is about the same, so is that of the threshold
function. As a result, if a certain component of feature signal is larger than the
threshold there, then there should he somewhere else that it is smaller. In this case,
any two feature vectors are not likely to be similar after binarization provided they
are primitively very different in shape. Therefore, to eliminate such a possibility, the

energy equivalent mechanism could be introduced into our feature extraction process.
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4.4.2 Signal’s Energy Equivalence Mechanism in Feature Extraction

To acquire the energy equivalent signal through the FPFB featrue extraction process,
a few modifications of Algorithm 2 is needed. The newly devised algorithm will be

called EEFPFB algorithm, in which “EE” stands for energy equivalent.

Algorithm 4 FEFPEDB Algorithin:

I. For a specific character image b(z,y) defined as in Eq.({.1) of Section 4.2.1,
count the number of its 1-valued pizels as k;

2. Seale the function b(x,y) by 2=, which gives a real-numbered function f(x,y):
vk

f(ay) = _\%b(,,y)

J. Conduct FPEB Algorithm with f(z,y) as its input, but in ils second step (See
Algorithm 2). make the replacement of coordinate systems with f(z,y)’s power

spectrum so that the newly acquired spectrum G(p, 0) satisfies:

G*p.0) = |F(u(p,8),v(p,0))

= |F'(p(‘030,psin0)|2 (4.16)

Based on this design. the signal energy equivalent nature of EEFPFB algorithm

can be revealed by the following proposition:

Theorem 6 Assume by(r.y) and by(xr.y) are two different character images with

Fyoand ky L-valued preds respectively. Then during the application of EEFPFB al-
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gorithm, |Hy(p.0)] and |Hy(p. o). thewr corresponding signals obtained through the
sertes of transformations right before binarization, are equivalent i their enerqy.
Proof:

The energy of the original character image by(r.y) is:

Yobiry) =141+ +1 =k

—

ky

So:

2
Y fry) = Z[—\/;—__]bl(.r.m]

- L

= |
This is also true for character image b,(r,y). Henee:

S fHxy)y =3 file,y) (1.17)

That is, the first two steps of EEFPFB algorithm is actually an energy equalization

process of character images.

Now according to Parseval’s theorem, the energy of signal is conservative in Fourier
transforms. Thercfore. after the transformations in steps one and three of FPEDB al
gorithm (Sce Section 4.2.1), the signals, taken character image by(ir,y) as an exainple,

satisfy the following relations separatively:

Zfﬂ(u,v”z

5_:!”1(/'-41)(2

S i, y)

Z (l":(/). 0)
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So. by kg (4.16):

it

> Gip,b)
= z |1",(u,v)|2
= > Jfiz.y)

ST (p.d))?

Sunilarly
S Hhip, @) =3 fi(z,y)

Therefore, according to Fqg.(4.17):

S (e, @) = 3 Va(p. 8)

" hat completes the proof of this theorem.

4.4.3 Applicability of EEFPFB Algorithm

Binarization is always fulfilled by discarding some detailed information. Therefore, it
is natural to concern about the possibility for the patterns to lose their distinctiveness
through binarization. Theoretically, the energy equivalent mechanism of pattern sig-
nals hes the capability to reduce such a possible loss due to the signal energy related
teasons. But in practice, whether it is worth being put into use depends on how these
enctpy related factors will affect the distinctiveness of vectors after binarization. Dif-
ferent sets of data may respond to this differently. However, whatever happens. the
ultimate purpose of our feature extraction algorithms is to make the feature patterns
suitable to the associative memory classifier in addition to the detection of certain
destred deformation invariant features.  In Section 2.4.3. two means for measuring
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the suitability of data’s fitness to AMC have been set up, one of which is the aver

age correlation coeflicient of the set of vectors. If a set of feature vectors generated
from a feature extraction algorithm is more suitable to AMC, then this algonithng is
more desirable. For this reason, these measurements may also be used to inspect the

performance of a feature extraction process.

The average correlation cocfficients of feature vectors extracted from the set of 205
milti-font Chinese characters utilized before by both EEFPHB and FPFB algotithn,
are displayed in Table 1.1, together with their absolute difference. Under cach of
these two algorithms, the threshold function is constructed from the whole set of 255
feature vectors. These average correlation coefficients are histed first in agrecment
with the three subgroups of vectors in regard to every charz-ter font, and then the
entire set of data. To sce how far the similatity of any two vectors in cach case
can reach, the maximal correlation coefficients are also tabulated. In Eq.(2 17), the
correlation coefficient is defined in the sense of absolute vatue. This is becanse for

any two m-dimensional bipolar vectors Iy and Iy, there exists:

70!

~1<

-1
Ut -

and only the absolute value reflects the degree of their sumilantyoats sign however, s
nothing but an ndication of their relative dirtections, 1.c. when any one of them s
projected to the other. whether it will on the same or the oppisite direction of the
rre . . 7! )
latter. Therefore. to show the range within which =L mav vary. here the maximal
correlation coeflicients are displayved separately in accordance with the onginal sign
. 7

of 4

M
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| - EEFPFB | FPFB || Absolute Difference
positive maximum 0.4090 0.3673 ———
Song negative maximum || —0.2175 | —0.2300 - — =
average 0 0821 0.0722 0.0099
positive maximum 0.2841 0.3652 -
Kai negative maximum || —0.1800 | —0.1717 -
average 0.0692 0.0718 0.0026
nositive maximum 0.5163 0.4651 - — -
Boldface | negative maximum || —0.2300 | —0.1488 —-——
average 0.2466 0.1193 0.1273
positive maximuin 0.5463 0.4651 -——
Futire Set | negative maximnm || —0.5757 | —0.2882 - - -
average 0.0981 0.0698 0.0283

Table L1 The average correlation coeflicients of the EEFPFB and FPFB extracted
feature vectors and their absolute difference together with the maxima obtained on
the basis of their original sign. listed in accordance with each font and the entire data

sct. ‘The binarization 1 conducted on the same threshold functions generated {rom

the entire data et




The statistics in Table 4.1 suggests that it is impossible for two or mote ditferent
patterns to share one and the same bipolar vector after binarization at least in the
current FPEFB-type algorithms. The maxima ever reached are around 0.5 under these
circumstances, and the averages over the entire data set are below 0 1. In addition,
this example even i-uplies that it is unnecessary to concern about the loss of pattern’s
distinctiveness due to the energy of their signals in a set of rveal-life data. 1t s
expected that the extracted feature vectors will be more distinet from one another
if the pattern signals used in the construction of threshold function are distributed
more randomly. Yet, the application f energy equalization introduces additional
regularity into these pattern signals. and under certain circumstances this may canse
problem. For example, in our present case, the whole set of original data contains
character images of three different fonts. The encigy of a character image depends
on the number of character pixels it has. Different fonts are shaped from the written
styles of a character’s strokes. Some are thick, others are thin, Characters in a font
of a thicker stroke will have more pixels and therefore higher energy. In our data, as
shown in Figure 2.7(a), characters in font boldface possess more pixels, while those in
the other two fonts scem similar in this respect. For this reason, energy equalization
has introduced extra similarity among characters of the same font, as can be seenin
Table 4.1. This effect is especially severe in font boldface, bind on the whole, miakes
the average correlation coefficient over the entire set of vectors extracted by FEEFPFB

a bit more larger than that by the FPFB algorithm

This decline in feature vectors” distinetiveness is checked speaally to see whethe
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it is really caused by gronped regularity in energy distribution of the primitive data.
‘The results are shown in Table 4.2, This time the threshold functions are generated
separately from each subset of characters of a single font. Now that the interference
of different fonts in energy distribution has been ruled out, there is almost no dif-
ference hetween the extraction results of EEFPFB and FPFB algorithm in terms of
average correlation coefficient in all the three fonts, as is indicated by their absolute
differences. Bosides, the varying range of f’%‘r- bounded by both positive and negative
maxinum on either of its two ends is shifted to be more symmetric with regard to
0 in cach of these fonts compared with their corresponding cases in Table 4.1, which
means the reduction of similarity among feature vectors extracted from the characters

of the same font.

Based on the above discussion, our studies about the feacure extraction process

below will mainly be focused on the application of FPFB algorithm.

4.8 Improvement in Pattern Vectors Fitness to AMC through

the FPEB Algorithm

In our previous studies on the development of AMC, a set of 85 Chinese characters
cach in three fonts are utilized for simulation purpose. So totally there are 255
different character images in use. The input patterns are formed by simply lining up
rows of pixels of the character images into one dimensional vectors. called original

chatacter vectors.
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EEFPFB | FPFB || Absolute Difference

positive maximum 0.3382 0.3195 - - -

Song negative maximum || —0.2778 | —0.2383 - -
average 0.0609 0.0596 0.0013

positive maximumn 0.2737 0.2924 —_——

Kai negative maximum || —0.2196 | —0.2133 -
average 0.0532 0.0527 0.0005

positive maximum 0.3007 0.3569 - = -

Boldface | negative maximum || —0.2737 | —0.2612 - =

average 0.0654 0.0659 0.0005

Table 4.2: The average correlation coeflicients of the EEI'PIFB and FPIB extracted
feature vectors and their absolute difference together with the maxima obtained on
the basis of their original sign, listed in accordance with each font. The hinarization

is ronducted on the different threshold functions generated from vector subsets of

cach kind of character font.
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Data Group Song Kai | Boldface || The Entire Set

Caonrelation Coeflicient

of the 0.3002 | 0.3472 | 0.1580 0.2570

Original Character Vectors

Correlation Coefficient

of the FPFB €.0722 | 0.0718 | 0.1193 0.0698

Ioxtracted Feature Vectors

Table 4.3: The average correlation coeflicients of the original character vectors and
the FPIB extracted feature vectors, listed in accordance with each font and the entire

data set.

To demonstrate the ability of the FPFB algorithm in improving the suitability
of the pattern vectors to AMC, both the input patterns made of original character
vectors and those obtained by applying the FPFB algorithm to this same group of
character data are examined with the measurements established in Section 2.4.3. The
average correlation coeflicients of these two groups of input vectors are tabulated in
Pable 4.3 for cach font of 85 Chinese characters and the entire set of 255 character
iages. Also, the components’ distributions on their probability p, = P{z, = 1} are
illustrated in Figures 1.1 for the FPFB extracted feature vectors. The abscissas p,
ate a component’s probability p, = P{x, = 1}, and the ordinates N(p,) represent
the number of such components. Those for the original character vectors have been

displayved in Figure 2 6.
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Figure L4: Components” distributions on their probability p, = P{z, = 1} of the
FPEB extracted feature vectors, listed on the basis of each font, i.e. Song (a). Kai

(b)Y and boldface (¢) respectively, and the entire data set (d).

163



According to its definition, the average correlation coeflicient p varies within the
range of 0 to 1. Since a set of pattern vectors is expected to be more orthogonal to one
another as far as possible, in the ideal case, g should approach 0. Therefore the effedt
of the binarization step together with the threshold function generation algorithm of

the FPFB feature extraction process is quite evident.

In a set of real-life data, the perfection in the identical componental probability
distribution assumption of Eq.(2.27) is untenable. Under this circumstance, it is
expected that all the p;s may concentrate on a certain value as far as they can to
approximate such a condition. In this sense, part (d) of Figures 2.6 and 4.4 shows
a significant improvement in the fitness of the input vectors to AMC through FPIB
transformation. This change in parts (a) (b) and (c) of these two figures which depict
the case of each font is not as obvious since the generation of threshold function is
conducted only on the entire data set. However, according to Eq.(2.32,, F7] = 0if
p= % Therefore when each single font is examined, the improvement after applying,

the FPFB algorithm can also be perceived for all the distributions of p,s in (a) through

(c) of Figures 4.4 tend to be shifted to around p, = 3.

4.6 Simulation on Character Recognition

It is common knowledge that the ultimate usefulness of a feature extraction process
depends on the performance f a pattern recognition system in which it has beey,
incorporated. In this section. the effectiveness of the FPFB algorithin will be tested

by the recognition of several sets of Chinese characters with a systcm composed of
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this feature extraction algorithm and an associative memory classifier.

‘The input patterns to the AMC are vectors extracted by FPFB from the charac-
ter images to be recognized, like that shown in Figure 4.1(b). Their corresponding
associated output patterns are still the set of Hadamard vectors. Once again, the set
of recognition criteria laid down in Section 2.6.1 on the largest similarity value (LSV)

of the recollected veetor and the Hadamard vectors is used.

In our experiments below, .wo groups of data will be involved.

4.6.1 On the set of Multi-font Chinese characters Used Formerly

The first group of data tested is the set of multi-font Chinese characters used in the
previous two chapters. Tt contains the first 85 characters in our data base of 3114
printed ones each in three different fonts, i.e. Song, Kai, and boldface. So a total of

255 different character images is involved.

The shift of original pattern by pixels does not cause any difference to its Fourier
spectrum unless the character is truncated due to translation. So the major concern
in our experiments is the system’s performance on rotative distortions. Nine groups of
data, which are rotated by 0°, 5°, 15°, 30°, 45°, 60°, 90°, 180°, and 270° respectively,
are utilized. Their recognition results are displayed in Table 4.4, in terms of the
numbers of misclassification (above) and rejection (below) occurred in each font and
the entire data set, together with the corresponding recognition, rejection, and error
tates of the latter. Also the average LSV's of different testing data groups over each
font and the entire set are listed in Table 4.5. Here, the pairing scheme adopted in
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the construction of AMC is based on the order of the natural appearance of the input

vectors.

To see the efficacy of the pairing strategy discussed in last chapter and in the end
find a better inner coding scheme, both the group of testing data without rotation,
i.c. rotated by 0°, and the group which has the lowest recognition rate in ‘Table L4,
namely the group of data rotated by 60° in the present case, will be tested under the
pairing schemes when the input data set has been divided first into 1 (the case of the
order of their natural appearance), 2, 4, through 64 subgroups respectively. These
results are shown in Table 4.6 to Table 4.9 in the same format as either Table 4.1
or Table 4.5. The best pairing scheme occuried to the latter group of testing data
in terms of recognition rate will be regarded as an estimation on how well the entire
system can perform, and therefore all the other groups of testing data will be examined
withit. Herespecifically, the best is the one when pairing takes place after the division
i the input pattern data first into 16 subgroups. The results of this experiment are

illustrated by both Table 4.10 and Table 4.11.

The recognition rates for all groups of testing data are above 96% in 'Table 4.4,
while in Table 4.10 all misclassifications have been eliminated, and the worst are the
cases where there is only one rejection. This convincingly demonstrates the effective
ness of the FPFI feature extraction algorithm against geometric distortions. For the
group of characters without deformation, a completely correct classification has been
achieved. Since no additional errors other than the rotation itself are introdueed when

characters are tilted upside down or fallen down side-ways, the outcomes for those
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Grouping Status ('l'l\(T_I\'_;;j nﬁf_ﬁl;-hgron»p.\n)

1 2 4 8 16 q 32 61

Song 0 0 0 0 | —()m T “()M ﬂ 0

0 0 0 0 ] 0 0

Kai 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Boldface 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Entire Set 0 0 0 0 ;) | *0“ 0

0 0 0 0 0 0 0

Recognition Rate {| 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%

Rejection Rate 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Error Rate 0.0% 0.0% G.0% 0.0% 0.0% 0.0% 0.0%

Table 4.6: The numbers of misclassification and rejection in the group of testing data
without rotation, listed in line with each font and the entire data set| together with
the corresponding recognition, rejection, and error rates of the latter for the set of
multi-font Chinese characters used before. The pairing is conducted after the input

data set has been divided first into 1.2, 4, ..., through 64 subgroups separately,
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Grouping Status (The No. of Subgroups)

1 2 4 8 16 32 64
Song 197.56 | 205.69 | 207.02 | 208.66 | 209 04 | 209.25 | 209.56
Kai 200.44 1 206.75 { 209.13 | 209.79 | 210.44 | 210.96 | 211.14
Boldface || 192.16 | 200.94 | 200.93 | 202.29 | 203.36 | 203.72 | 203.36
Fntire Set || 196.72 | 20446 | 205.70 | 206.91 | 207.61 | 207.98 | 208.02

Table 4.7- The average largest similarity value (LSV) obtained during the associative
recollection processes with the group of testing data without rotation for the recog-
nition of the set of multi-font Chinese characters used before. The results are listed
on the basis of ecach font and the entire data set. The average LSV's may vary from 0
to 256. And pairing is conducted after the input data set has been divided first into

I. 2,040 ... through 61 subgroups separately.
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Grouping Status (The No. of Subgioups)

1 2 4 8 lg_ —i'i:: L,_:(_i‘f___:
Song 0 0 0 0 0 ] 1 0 |
2 0 0 0 0 0 t)
Kai 0 2 0 0 0 1 0
| 0 1 0 0 0 0
Boldface 6 2 0 1 0 0 1
0 0 0 0 0 1 0
Entire Set 6 4 0 1 0 1 — —I ~
3 0 1 (0 () | 0
Recognition Rate || 96.47% | 98.43% 99.61% | 99.61% | 100.0% ;)().22‘%— 99.61%
Rejection Rate LI8% | 0.0% | 0.39% | 0.0% 0.0% | 0.39% | 0.0%
Error Rate 2.35% 1.57% 0.0% 0.39% 0.0%

0.39% | 0.39%

Table 4.8: The numbers of misclassification and rejection in the group of testing data

rotated by 60°, listed in line with ecach font and the entire data set, together with

the corresponding recognition, rejection, and error rates of the latter for the set of

multi-font Chinese characters used before. The pairing is conducted after the input

data sct has been divided first into 1. 2, 4, .. ., through 64 subgroups scparately.
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Grouping Status (The No. of Subgroups)

2 4 8 16 32 64

Song, 170.09 | 173.92 { 174.18 | 174.14 | 175.44 | 176.08 | 175.60

KNai 166.11 | 168.61 | 170.65 | 172.33 | 172.86 | 172.49 | 172.51

Boldface 11 166.49 | 170.59 | 171.35 | 171.58 | 171.67 | 171.74 | 171.76

Fontire Set | 167.56 | 171.05 | 172.06 | 172.68 | 173.32 | 173.44 | 173.29

Table 4.9: The average largest similarity value (LSV) obtained during the associative
recollection processes with the group of testing data rotated by 60° for the recognition
of the set of multi-font Chinese characters used before. The results are listed on the
basis of each font and the entire data set. The average LSV's may vary from 0 to
256. And pairing is conducted after the input data set has been divided first into 1,

2.4, ... through 61 subgroups separately.
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groups of data rotated by a multiple of 90° are the same as those for the unrotated
pattemns. If the character patterns are rotated with an angle other than these, due
to the discretization of the coordinates, some errors are introduced. This may canses
severe errors in the series of transformations, especially in the high frequency part,
and in the end leads to a possible rejection or misclassification, or at least a reduction
in the average LSV, the confidence indication of the classification process, as can he

secn in Tables 4.5 and 4.11.

The improvement in the suitability of the feature vectors extracted from the FPEFB
algorithm for the AMC can be seen clearly here through comparisons hetween the
results listed in Tables 3.1 and 4.6, and Tables 3.2 and 4.7 respectively. With the
FPFB extracted feature vectors as input patterns, not only all the character images
can be recognized correctly if there is no distortions occurred to them, but also the
average LSV's acquired during associative recollection are increased significantly. In
addition, tte increments in the average LSV before and after the implementation of
the pairing strategv developed in Chapter 3 are more than doubled.  All these are
resulted directly from such an improvement of these feature vectors compated with

the data used formerly.

4.6.2 On a Set of Multi-font Chinese Characters of Similar Character

Subsets

Associative memory classifier is developed originally in the hope of solving the recogni

tion problem of large number categories. The testing data set used in our experimment



+ +
71 71 7)
]
i £ 1 A E
AN 2\
FF F

Iigure 1.5: Some subsets of similar Chinese characters used in simulation.

has already reached the scale of hundreds of categories. However, recognition prob-
lems like that of Chinese characters may have pattern classes counted by thousands.
Yet instead of single layer ones, such problems are usually tackled with hierarchical
classifiers, as has been indicated in Section 1.2.2. Therefore, the AMCs of our present
scale may have a good chance to be utilized as parts of a multi-level classifier. Under

these circumstances, more likely they will face patterns of greater similarities.

To cope with such a situation, our currently developed character recognition sys-
tem is used to recognize another set of data composed of similar Chirese characters.

This set of data contains 34 subsets of characters which look very much alike. Some
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subsets of these characters are illustrated in Figure 4.5 (The entire set of data is shown
in Appendix B). The total number of different characters is 83, and cach character
has three fonts as Lefore. So there are still 255 character images involved totally, The
testing data are formed by introducing the same sorts of distortions as those for the
first set of data. Also. the experiments are conducted in the similar manner as that
with the previous set of data. But this time the worst case happens to the group
of data rotated by 30°, and the best pairing scheme is obtained by dividing first the
feature patterns of this set of characters into 8 subgroups. All the resalts for these

are displayed in Tables 4.12 through 4.19 in the saine format as Tables 4.4 to 4.11.

Again, when there is no distortion to the system inputs, all the patterns will be
recognized correctly. Besides, only very small amounts of degradation are observed
when comparisons are made between the corresponding data in Tables 4.4 and 1,12,
and Tables 4.5 and 4.13, especially in terms of average LSV. Such dilferences are
even slighter under the conditions of selected pairing schemes, as shown in Tables 4.11
and 4.19. Comprehensibly, the similarities among characters in this set of data may
cause these declines. However, the differences are so slight that it can be elaimed that
such a system is definitely stable with regard to the data to be processed. This, in

large part, is also due to the effectiveness of the FPFB feature extraction algorithin.
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Grouping Status (The No. of Subgroups)

1 2 4 8 16 32 64

| Song 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Kai 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Boldface 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Entire Set 0 0 0 0 0 0 0

0 0 0 VU 0 0 0
Recognition Rate || 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
Rejection Rate 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Error Rate 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0.0%

Table 4.11: The numbers of misclassification and rejection in the group of testing
data without rotation. listed in lie with each font and the entire data set, together
with the corresponding recognition, rejection, and error rates of the latter for a set of
multi-font Chinese characters of similar character subsets. The pairing is conducted
after the input data set has been divided first into 1, 2, 4, ..., through 64 subgroups

separately,



Grouping Status (The No. of Subgroups)

1 2 4 3 16 32 61

Song 194.81 | 20135 | 207.34 | 208.16 | 209.52 | 200.56 | 209.69

Kai 194.51 | 202.67 | 207.39 | 208.27 | 209.32 | 209.12 | 200.68

Boldface || 189.74 | 197.89 | 200.05 | 200.714 | 201.31 | 202.535 | 201.88

Entire Set || 193.03 | 201.61 | 201.93 | 205.73 | 206.71 | 207.08 | 207.09

Table 4.15: The average largest similarity value (L.SV) obtained during the asso
ciative recollection processes with the group of testing data without rotation for the
recognition of the set of multi-font Chinese characters of similar character subsets.
The results are listed on the basis of each font and the entire data set. The average
LSVs may vary from 0 to 256. And pairing is conducted after the input data set has

been divided first into 1, 2, 4, ..., through 64 subgroups separately.
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. Grouping Status (The No. of Subgroups)
1 ll 2 4 8 16 32 64
E Song 2 0 0 0 2 2 0
3 1 0 0 0 0 1
Kai 3 3 3 0 0 0 1
1 1 1 1 1 0 0
Boldface 0 0 1 0 1 0 0
0 0 0 0 0 0
Entire Set H 3 4 0 3 2 1
H 2 1 1 1 0 1
-
Recognition Rate || 96.08% | 98.04% | 98.04% | 99.61% | 98.43% | 99.22% | 99.22%
Rejection Rate 1.96% | 0.78% | 0.39% | 0.39% | 0.39% | 0.0% | 0.39%
Error Rate 1969 | 1.18% | 1.57% | 0.0% | 1.18% | 0.78% | 0.39%

Table 1.16: The numbers of misclassification and rejection in the group of testing data

rotated by 30°, listed in line with each font and the entire data set, together with

the corresponding recognition, rejection, and error rates of the latter for the set of

multi-font Chinese characters of similar character subsets. The pairing is conducted

after the input data set has been divided first into 1, 2, 4, .. .. through 64 subgroups

se parately.



Grouping Status (The No. of Subgroups)

1 2 1 8 16 32 6

Song 167.05 | 172.33 | 175.00 | 174.62 | 175.45 [ 175.76 | 175.95

Kai 164.76 { 169.84 | 173.87 | 173.00 | 174.55 | 174.33 | 174.21

Boldface || 165.59 | 169.58 | 170.82 [ 171.41 | 170.53 | 171.82 | 171.98

Entire Set || 165.80 | ]

-1
=
i) |
o' 53
—
-1
et
I~
(W]

173.00 | 17351 | 173.97 | 174.05

Table 4.17: The average largest similarity value (LSV) obtained during the asso
ciative recollection processes with the group of testing data rotated by 30° for the
recognition of the set of multi-font Chinese characters of similar character subsets.
The results are listed on the basis of each font and the entire data set. The average
LSVs may vary from 0 to 236. And pairing is conducted after the input data set has

been divided first into 1. 2, 4, ..., through 64 subgroups separately.
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Chapter 5

Conclusions

Artificial neural networks are biologically inspired. They are under development
mainly in an attempt to mimic the function of the human brain, their biological model,
in solving some intelligent problems, such as pattern recognition. Neural networks
have a series of advantages, the important one of which to pattern recognition is its
insensitiveness to variations in inputs. This ability to see through noise and distortion
is the most desired characteristic of a pattern classifier, and explains why it has gained

considerable interest in this area.

To date, the application of neural networks on character recognition has been
studied widely. mainly for their use as pattern classifiers. Many successes are re-
ported especially for the recognition of numerals and letters of the English alphabet.
Also, the investigation of their application in that of Chinese characters has already
started.  The networks tried involve the single layer perceptron, back propagation
model. neocognitron, DY'STAL network, and so on. However, the ability of some

models which are successful in recognizing alphameric characters, like back propaga-



tion model, neocognitron etc.. is confined by the number of pattern categories they are
dealing with currently. Also. the experiment of some other models with large amounts

of classes is still not convincing. particularly due to the testing data’s variability.

In this thesis, the usability of another neural network model as pattern classifier
has been investigated. The model is associative memory network, and it is studied for
the potential to solve the recognition problems involving a large number of categories,
such as that of Chinese characters. Associative memory network comes into our mind
for two reasons. One of them is the associative nature of human beings in information
retrieval. Besides, technically, there is a similarity between the processes of associative

mapping and pattern recognition.

When associative memory is used as a pattern classifier, the network will have
several aspects different from other instances of its application, like the one for infor-
mation recovery. Therefore, it is called associative memory classifier specifically. An
AMC performs pattern classification based on information memorization and recol-
lection. Its robustness against variations relies on the collective responding nature
of the entire network. Hence, classifying a large number of categories means there
are large amounts of memory items to be stored. Also, here the network is employed
for classification purposc. As long as the recollected information is evident enough to
make a right ruling, how serious it has been distorted really does not matter. Further-
more, unlike an information recovery network, the output vector in each associated
pattern pair is not defined in advance, and therefore subject to selection according to

the need.

187



The associative memory netwerk in use for pattern classification is a feed forward
system.  The basic problem in the construction of such an AMC is the selection
of appropriate output vectors to be associated with input patterns, which is called
an inner coding process, provided that the latter have been prescribed. Like other
neural networks, AMC is also a data-driven system after the determination of its
configuration. It has been found that although the weights of an AMC is composed
of both the input and output vectors, its information retrieval behaviour is ultimately
determined by the characteristics of its input patterns. However, the proper selection

of inner codes may lead to approaching its classification ability restricted thereof.

To deseribe the suitability of a set of input patterns to AMC so that the output
vectors can be selected accordingly, two measurements have been set up and used
repeatedly in our study. They are the average correlation coefficient of the set of
input patterns and the probability distribution of the components of these pattern
vectors. The discussion on the choice of inner codes is conducted with an example
of a set of real-life multi-font Chinese characters. Based on the characteristics of
this set of input data. Hadamard vectors which are the row vectors of Hadamard
transformation matrix are selected, and a fairly good classification performance has

been observed from the AMC constructed therefrom.

Different classification effects produced by different sets of inner codes attracted
our interest in scarch for better inner coding schemes. Theoretically, the existence
of an optimal scheme is guaranteed by the finitude in output vector’s dimensionality.

Nevertheless trying to acquire such a scheme through enumeration is computationally



infeasible for it turns out to be a non-polynomial problem. Normally, problems as
such are tackled on the basis of individual case. 7.¢. to find the solution for a given
set of input vectors based on its specific feature. Unfortunately for real-life data, it

is ususally impossible to express its features mathematically.

Inner coding can be accomiplished practically in a two stage manner. The first is
to select a set of vectors of some specific property, and the next to find a method for
associating each of these outputs with an input pattern. This second stage is named
as a pairing process. Therefore, a proposed solution to the aforementioned dilemma
is to develop an optimal pairing scheme based on the traits of the selected inner codes
and also certain assumptions of the input data, and then apply it to the practical
data with some remedial measures for a better pairing scheme. Such a strategy in
better inner coding scheme secking is tested by the recognition of the set of multi-
font Chinese characters with Hadamard vectors used as inner codes. The results of
our simulation reveal improvements in the classification performance of the AMCs

constructed from the pairing schemes thus obtained.

In spite of the importance of inner coding to AMC’s classification behaviour, a
more significant improvement is expected if a proper change can be made on its input
patterns. This idea comes from the following facts. First of all, it is the distinctive-
ness of input patterns that limits an AMC’s classification ability in the final analysis.
Next, there is usually a feature extraction process right before pattern classification in
a recognition system, where the form of patterns may change. Therefore, in addition

to invariant feature detection. the suitability of the finally obtained feature vector
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to AMC should be taken into account when the latter is used as a pattern classifier.
Under such circumstances, data reduction is not a question any longer because any
neural network system is good at dealing with large amounts of data due to its paral-
Jelism nature in computation. This effects a change in the basic tasks of the feature
extraction process. In this thesis, feature extraction algorithms have been designed
under these principles for printed character recognition, and such an adjustment in

its fundamental objectives has been justified by the simulation outcomes.

A patiern recognition system mainly contains two functional parts, i.e. feature
extraction and pattern classification. In this thesis, a novel neural network classifier
has been developed based on the model of associative memory, and the corresponding
feature extraction method has also been studied. This associative memory classifier
was originally designed to solve the recognition problem involving a large number
of categories.  Qur experiments have already been conducted on a scale of more
than two hundred classes. llowever, since the categories of Chinese characters are
counted by the thousands, and also in consideration of the fact that problems as
such are usually handled by multi-level classifiers, our network will have to deal with
patterns of greater similarity if it is used in such systems. For this reason, a set
of multi-font Chinese characters comprised of many similar character subgroups have
been introduced in computer simulations, and the results demonstrate the recognition
capability of our system in dealing with highly similar character patterns in a large

number of categories.

190



Appendix A

The Set of Common Chinese Characters

1in Use

) — & &= T A Fo
FRXELEIF AL
7 AT Mo~ Bl I W
2 3 B F R E
24 K 5 &£






Appendix B

The Set of Similar Chinese Characters in

Use

LR KKK
qA 0 5 7 £ £ &
A E A AN T F
+ o & F B H A
+ 5 & E K K F




¥ 5 F B2 ki
5 & 4f b2 B B P
PEg% It XX
AKE X £ XE
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