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ABSTRACT

A STUDY ON FRICTION-DAMPED-FRAMES

M.H. TAN

A detailed investigation for a single-degrce-of-freedom
friction-damped-braced~frame was carried out. A refined
derivation for the so called optimum slip load was obtained
based on quasi-static loadings. A simple computer routine was
written for the time-history analysis of the SDOF FDF. From
the new, refined equation and the time-history analyses it
was concluded that the relative stiffness a between the brace
and the columns did not have to exceed 10 for optimum cecnergy
dissipation. A detailed ;tudy was also carried out for multi-
storey single bay steel frames. From the time-history analyses
it appeared that there was no direct evidence to relate the
optimum slip load with the building weight. From the
deformations obtained from these frames, a response spectrum
was generated for the FDF for modal analysis. The response
spectrum was tested by using several examples and it was
concluded that the results obtained by using the response
spectrum were reasonable. Finally, a new force reduction
factor was introduced for the FDF systems., It was concluded
that the force reduction factor for the FDF systems was higher
than that for the MRF systems.
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1.0 INTRODUCTION

During severe earthquakes, even well-engineered
buildings have beea known to collapse or to sustain extensive
damages caused by the immense amount of kinetic energy fed
into them. The literature abounds with well-documented cases
of many destructive earthquakes. The recent one that
occurred in Mexico on September 1986 was reputed to have
destroyed over two hundred buildings and 30000 lives in
Mexico City (1), and in the more recent Armenia earthquake of
December 1988, in which thousands of lives and hundreds of
buildings were destroyed (2). Researchers and engineers are
still trying to find ways to predict the occurrence of
earthquakes, and ways to prevent the destruction of built
structures. In seismic 2zones, almost all building codes
stipulate that buildings and engineered structures must be
designed to resist lateral loads induced by earthquakes to
prevent collapse, permitting a certain degree of plastic
vielding or minor structural d.image, but it is also now
increasingly being recognized that not only the main
structural frame and its load carrying components must be
rrotected from damage, but also the secondary non-structural
elements such as sensitive electronic and mechanical
equipments, curtain walls and windows should be protected from
the amplified acceleration induced at the higher floor

levels (3).




1.1 Recent Developments in Aseismic Design of Building

Structures

The basic philosophy in aseismic design in most
building codes is to design buildings to withstand minor and
even moderate earthquakes without any structural damage. 1n
the event of a major earthquake, the building must stand,
albeit with some damages, to allow occupants t.o escape safely.
Engineers and scientists have strived to develop systems
and devices to prevent the destruction of built engineering
facilities. The Applied Technology Council conference 1in
1985, ACT-17 (4) presented the state of the art technology in
energy dissipation methods and devices in aseismic design for
buildings and civil engineering structures. One of the first
recorded patents on earthquake resistant design was awarded
to a certain British doctor in 1909 by the name
Calantarients. His design consists of a base isolation system
in which a building is separated from its foundation by a
layer of sand or talc. The first person who applied the
principle of base isolation was the famed American architect
Frank Lyold Wright who designed the Tokyo Imperial Hotel in
1923. He put the foundation piles of the building on a layer
of soft mud which was located close to the surface., The
building performed well during the devastated 1923 Tokyo
earthquake and received hardly any damage whereas buildings

nearby were totally destroyed (5).



Unfortunately not every building is located
above &« suitable layer of soft mud, therefore the search for
a better system continued. The so called first-soft story
concept. was put forward by Green in 1943. In this system,
the first floor of the building was deliberately made
flexible so that most of the vielding would occur at the
first floor 1level, and thereby the upper levels are protected
from seismic excitations. This system, however, was proved by
Chopra, Clough and Clough (6) to be unstable since large

deformations would occur at the first floor level columns,

Many other systems followed but few were developed and
put into use. Among the better known ones are the French
base isolation systems used in several facilities in France
and in South Africa. Rubber pads have been used as energy
absorbers in bridge structures by engineers for wibration
control. The first use of rubber pads in buildings seems to
have been initiated by a Hungarian engineer but +this was
thought to have the effect of bouncing the building at the
corners during an earthquake. The invention of
multi-layered steel-plated rubber plate and subsequently
the invention of lead filled multi-layered pad by Robinson
(7) in 1982 proved to be an effective method for reducing the
effects of earthquakes on buildings. Kelly (8) has tested

many reinforced rubber pad isolation systems and shown that



they are effective and economically feasible especially for
the renovation of existing buildings to meet the current
building code requirements. Mayes, Buckle (9) summarized the
use of rubber pad isolators in a recent article and gave
details of buildings and structures currently built in the
United States and other parts of the world. Stiemer and
Barwig (10) showed the results of experimental investigatlions
of various schemes of first-storey designs for steel
buildings with base 1isolation. Three basic elements are
required for any particular base isolation system, and these

are:

i. a flexible mounting so that the period of vibration
of the total system is sufficiently lengthened to
reduce the system response;

ii. a damper or energy dissipation device so that the
relative deflections between the building and ground
can be controlled to a practical design level;

iii. a means of providing rigidity under leow (service)
load levels such as wind and minor earthquakes.

Popov in 1979 (11) advanced the eccentric-braced frames
where he intentionally offset the diagonal bracing element
to cause yielding of the beams in the eveni of severe
ground shaking. But this system has the handicap of
having to replace the damaged beams, a costly reparation job.
Hanson, Bergman and Ashour (12) studied the effects of using
viscoelastic dampers on moment resisting frames as
supplemental damping devices. They showed that the

4



response of the structures was greatly reduced with these
devices., For the response spectrum analysis, typical
responsc specltra used are generated for critical damping
rat.lios up to 20%. With supplemental damping the fraction
of c¢ritical dawmping 1s no longer restrained to these low
values. Nine earthquake records were used and damping values
of up Lo 150 % critical were considered. A relationship
between displacement response and the fraction of critical
damping was established, and this was deemed useful in
estimating the maximum modal displacements for structures
with increased levels of damping. A critical damping ratio of
from one to five percent is normally assumed when performing
dynamic analysis of structural systems, but now it seems that
damping of more than five percent of critical damping ratio is

feasible with the use of supplemental dampers.

The newest system to enter the scene is known as the
Friction Pendulum system (F.P.S.}, developed by an engineering
firm in California (13). It consists of two steel plates in
which one has a concave surface and sliding is allowed on the
contact surface. The F.P.S. appears to look like a modified
system for a base isolation technique but using dry friction
between two surfaces instead of reinforced rubber pads. It
was experimentally tested and found to be effective in

reducing system response to some degree.



1.2 Friction-Damped-Frames

In 1982 Pall and Marsh (14) put forwvard the idea
of removing the excess energy fed into building frames
during earthquake loadings by using friction damper
devices. These simple devices have been tested and
shown to have a reliable hysteretic loop over many cycles.,
These devices dissipate energy by slipping at a pre-set
force level. These dampers can be installed in several ways
in the building structures. The new Friction Damped Frames
(F.D.F.) system has gained great attention in the ecarthquake

engineering community in recent years.

1.2.1 Description of the System

The friction devices are made of simple steel elements
with heavy duty brake lining pads attached to the slipping
surfaces. Clamping force is provided by a bolt tightened
against the braking pads to obtain the required force to
produce the design slip load of the device. The slip load of
the friction damper device is the force level in the brace
clamping element. Figure 1.1 shows a schematic picture of a
typical tension friction device, which forms part of the
diagonals braces of a building. Figure 1.2 shows a typical
hysteretic 1loop of the tension damper under cyclic load

testing. Test results carried out showed the stable



hysteretic loop of the device over repetitive loading. The

performance is stiable and non-degrading.

I{ a brace element is effective in both tension and
compression, the damper can dissipate the kinetic energy in
both tension and compression by installing a damper in each
element. Since the brace element 1s normally designed to work
only in tension, the damper would slip in tension but not in
the compression cycle {reverse cycle during cyclic loading).
To compensate for this, the four corner links acts as a
special mechanism to force slipping in the brace for both half
cveles of movements., Figure 1.3 shows the actual hysteretic

loop of a damper as installed in an diagonal brace of a
building frame, when both the tension and compression braces

take part in slipping.

1.2.2 Behaviour of Friction-Damped~Frames

Among the common systems for resisting lateral loads in
multistorey buildings are the moment resisting frames, frames
with shear walls, and braced frames. The friction-damped-frame
is a modification of the braced moment resisting frame in
that the cross-bracing members are furnished with friction
dampers. The locations of the dampers can be arranged to suit
any architectural requirements. Some of the possible

arrangements are shown in Figure 1.4 as proposed by the




inventors. These dampers are also applicable for retrofitting

existing structures to satisfy present day seismic criteria,.

Baktash (15) has shown, by computer simulation, the
superior performance of the friction damped frames when
compared with eccentric braced frames (EBF). Filiatrault and
Cherry (16) have carried out testing of a 1/3 scale stecel
frame with the devices installed at the cross-bracings of the
frame. They have described the superior performance of
friction damped frame during a severe earthquake where other
traditional structural svstems behaved unsatisfactorily. Pall
(17) has recently compared the F.D.F. to that of a shear wall
structure and concluded that the F.D.F. system was far
superior to that of the shear wall system. Kelly and Aiken
(18) have recently tested a nine storey steel frame
incorporating friction dampers and they reached similar
conclusions. Filiatrault and Cherry (19) have also recenlly
compared the performance of a FDF system and that of a base
isolation system, and they concluded that the FDF system
performed better <than the base isolation system for

earthquakes of different characteristics.

1.3 NBCC Procedure For Aseismic Design

The 1985 NBCC and its Supplements (20) present a



basic equation for the design of buildings for earthquake
loads. 1t specifies the minimum design base shear given by

the equation:

W= v ST KFW
where
V = the total base shear induced in the structure

during an earthquake
v = zonal velocity ratio for a particular site

K = a ratio which takes into account the type of
structures and its energy dissipation capability

S = seismic response factor which takes into account
the dynamic response of the building depending on
the fundamental period of the building

T = importance factor for the structure

F = s0il or foundation factor

W = total reactive weight of the building assumed to be
vibrating with the building

Two approaches are provided by the NBCC for the
distribution of the total base shear. In the quasi-static
method, the total lateral load is distributed according to an
approximate linear first modal shape, plus an additional
load at the roof level to account for any higher mode
contribution. The resulting total V so obtained is then

distributed over the height of the building by the following
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equation:

W h
F, = V [ ~2--L
X [):wi hi]
where
g = computed lateral shear assumed acting at that
floor level
Wx = total floor weight acting at that floor level
}ﬁ = height to that floor level

W. h. = total moment product of all the floor from the

ground

The NBCC code also stipulates that an additional lateral shear
force must be applied at the roof level to account for Lhe
contribution of higher modes for slender structures. In the
dynamic method, the code allows the use of more exact method
of determining the period of the frame and distribute Lhe
total lateral load V according to the results of a responsec

spectrum analysis.

The present K factors in the NBCC codes do not
acknowledge the energy dissipation capabilities of the FDF
system as it is still a new concept. For the moment resisting
frame a K factor of 0.7 is assigned because of the ability of
the rigid beam-column connection to undergo inelastic
rotation. A K factor of 0.8 to 1.0 is assigned to the braced
frames because it is deemed that the braced frames are less
ductile than the MRF due to the degrading stiffness of the

bracing elements during cyclic loadings. A K factor of less
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than 0.7 is to be expected for the FDF systems as its energy
dissipation capabilities is higher than that of the MRF and
braced frames, but this is still to be resolved by further

studies.

The NBCC has decided to make major changes to the
seismic design requirements of structures for the next edition
of the NBCC, The concept of the force reduction factor, or the
force modification factor, R, will be introduced in the next
edition of the NBCC. The new R factor will replace the K
factor assigned to the various structural systems. This will

be studied in more details in later chapter.

1.4 An "Interim" Procedure for the Design of

Friction~-Damped Frames

Even though the present NBCC provisions do not deal
specifically with the FDF system, it is anticipated that with
further developments and demonstration, the system will be
recognized as an effective earthquake resistant structural
system in future building code amendments. It appears that it
will be sometime before simplified design criteria are
developed and incorporated into NBCC revisions. For the
present moment, designers of FDF systems must carry out
complicated computer time-history analyses to determine the

realistic forces in the members and the optimum slip loads in
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the dampers. Nevertheless, the 1990 proposed revision for the
NBCC and its supplement (to be released) have introduced a
clause allowing the use of new earthquake resistant systems
such as the rubber pad isolators, eccentrically-braced-frame,
and the friction-damped-frames. The California legislature
have also introduced amendments to its clauses such that all
new buildings must be built using the new technology for

aseismic design.

1.4.1 General Methodology

Pall (17) in 1985 proposed a conservative design
procedure for the FDF that conforms to the current NBCC guide
line. He proposed that the building first be sized as a
moment resisting frame with K=0.70 to obtain the required
base shear. Then the shear is distributed as per the NBCC
guide lines. A 1linear analysis is then carried out to
determine the member forces. After obtaining the preliminary
member sizes, the same frame is then equipped with the
friction dampers to become the FDF. The rational for choosing
the K factor of 0.70 1is that during a major earthquake, all
the friction dampers will probably be slipping, and hence the
frame itself will behave essentially like a moment resisting
frame. This approach satisfies the code requirements, and is
conservative since it ignores the energy dissipated ( in the

dampers ) which would reduce the member forces to a level

12




Jower than that required by the factor K = 0.70,

Because of the non-linearity of the FDF system, an
inelastic nonlinear step by step integration over the time
domain is required for its analysis. Two popular computer
packages suitable for this analysis may be mentioned: the
program DRAIN-2D(21) and DRAIN-TABS (22) developed at the
University of California, Berkeley. The programs are for two
and three-dimensional systems respectively. Since DRAIN-2D is
extensively used in the present study, a brief description of

its basic working scheme is given below.
1.4.2 Non-Linear Time History Analysis

Most commercially available structural analysis
programs employ the direct stiffness method of analysis. This
is done by summing the appropriate stiffness of the members
and solving for the unknowns displacements given any set of
external forces. For dynamic analysis, the external forces
will include the damping and inertia effects. If the system
behaviour is nonlinear, it is usual that the stiffness matrix
is updated to account for the yielding of individual members

or components.

The general equation of motion for a SDOF system

subjected to an external forcing function at any time t is

13
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with reference to Fig. 1.5

M X(t) + C X(t) + R (t) = P(t)

where
M = the mass
C = syscem's viscous damping coefficient

R = the system restoring force
P = +the forcing function

X = system's acceleration

]
n

system's velocity

X = system’s displacement

As shown in the Figure 1.5, the displacement of the
system with respect to its fixed base is denoted as X(t).
The double dot denotes the second derivative with respect to
time, and a single dot denotes the first derivative. 1In the
case of a horizontal ground excitation, the above equation may

be written in the form as shown below

M X(t) + C X(t) + R(t) = - M ig(t)

where M, C, R(t) are the same as above. In this case, X(t)
denotes the displecement of the system relative to the ground
and Xg(t) is the displacement of the ground relative to a
fixed reference axis. By comparing the above two equations,
one can note that the equation of motion for a seismically

excited system is the same as that for an externally excited
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system 1if the load 1is

P(t) = - M ig(t)

However, the precise meaning of X(t) in each case must
be remembered. When the first equation is applied to a
seismically excited system, X(t) represents the displacement
of the system with respect to an accelerating base and the

total displacement is:
X(t) = x(t) + xg(t)

however, when the equation is applied to an externally loaded
system, X(t) also represents the total displacement of the
system since the base is fixed. This previous governing
equation of motion is normally solved by numerical
integration, as closed form solution exists only for a few
types of excitation. In this approach, the analysis over the
entire duration of excitation is divided into a series of
sequential analyses over smaller intervals of time. The

response is evaluated at the end of each time increment based
on the conditions existing at the beginning of the
increment and an assumed response mechanism during the time
increment. For multi-degree-freedom system, the governing

equation of motion is :

(M1(X)+[CI{X)+I[KI{X)=-[n]K

15



where

[ M ] = is the system mass matrix
[ C ] = is the system damping matrix
[ K] = assembled system stiffness matrix
XE = ground acceleration
{ i } = system’s velocity
{ X } = vector of lateral displacements of the system

relative to the ground

In the program DRAIN2D, the egqguation is solved atl each
incremental time step assuming a constant response
acceleration within each time step. At the end of each time
step, the force level in each member is assessed to see if
a member has vielded and if so, the member stiffness is
revised for the next time step. The input ground moticen is
assumed to vary linearly within each time step, i.e., linear
interpolation is used to obtain the required acceleration
between the input time interval. Several common structural
member types are available in the program: trusses, beam,
beam-column, panel, and degrading reinforced concrete beam

elements.

1.5 Difficulties To Be Resolved

In the design of FDF systems, a major concern is what
slip load to use in the dampers. This may be found by trial
and error using several realistic ground motions matching that

16



of the site conditions. This is an expensive and tedious
operation to perform and not suitable for practical routine

design work.

The concept of optimum slip load was introduced by
Pall and was defined as the slip force level of the dampers at
which the response of the system (building) is at +the
minimum. For very high slip load, there will be no
slipping, and for very low slip load, large slipping will
occur, but the energy dissipation is small, It followed
that there is an intermediate level at which the energy
dissipation per cycle is a maximum. The concept of an optimum
slip load for a frictional type (coulomb) of damping, is not
a new concept. In the report by Rubicka (23), it was
reported that several investigators were conducting
energy dissipation research with dry surface materials, and
it was found by the investigators that minimum response

would occur for optimum clamping pressure.

1.6 Objectives of Present Study

A simple method is obviously required for preliminary
analysis and design purposes. Non-linear response spectra for
non-linear MDOF have been proposed to replace the time
consuming time-history analysis., It appears that this might be

plausible for the FDF systems.But the selection of the optimum
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slip load must be resolved first. 1In chapter 2, a SDOF
detailed parametric investigation is carried out to correlate
the various variables affecting the dynamic resporse of the
FDF systems. In chapter 3 a detailed study is also carried
out to study the behaviours of the MDOF FDF systems under
severe earthquake excitations, and from these analyses, a
response spectrum is generated for the modal analysis of
FDF under seismic loading under optimized condition. In
chapter 4 the spectrum generated is tested for its accuracy by
comparing the resulis against those obtained from the time-
history analyses. In chapter 5, a new force reduction factor

R is introduced for the FDF systems.

1.6,1 Organization of the report

Chapter 1 introduces the friction dampers.

Chapter 2 deals with a parametric study of SDOF systems

Chapter 3 deals with the study of single bay
multi-storey steel frame, and a deformation

spectrum is generated.

Chapter 4 reports the testing of the deformation response
spectrum created in chapter 3.

Chapter 5 introduces the new force modification factor R
for the FDF systems

Chapter 6 gives conclusions and recommendations

18
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Figure 1.1 Typical tension friction damper (14)
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Figure 1.2 Typical hysteresis loop of a damper under
cyclic loading (14)
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Figure 1.3 Typical hysteretic loop of one diagonal
tension friction damper installed with the
diagonal brace elements (14)
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Figure 1.4 Some possible arrangements of friction damped
frames (14)
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Figure 1.5 SDOF system subjected to external loads
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2.0 SINGLE-DEGREE-OF~FREEDOM Friction-Damped Systems

Single-degree-of-freedom systems (SDOF) have been used
successfully by many investigators to study the dynamic
behaviour of non-linear systems. In this chapter, single
degree of freedom systems consisting of a single storey, one
bay friction damped frame is studied in details. In this way,
the various important parameters can be identified more
efficiently. The main parameters of interest are the slip load
of the friction devices, the stiffness ratio between the
braces and the columns, and the total reactive weight of the

building.

2.1 Optimum Slip Load : A Quasi-Static Approach

The value of the optimum slip load for the FDF system is
by far the most interesting and important parameter. For this
is the variable which can be used to tune the building to
reduce the dynamic response and to prevent a resonant response
of a building structure in the event of an earthquake. A
resonant response is said to occur when the dominant periods
of the incoming ground motions matches that of the natural
periods of vibration of the building, in which case large
deformations and stresses are induced in the building
structural members and collapse sometimes is unavoidable. In

1984 Baktash and Marsh (15) proposed a simple expression for
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the optimum slip load based on the plastic moment capacity of
the floor beam. Since this method serves as a basis for a
more refined analysis., it is presented below briefly for the
completeness of the section. A refined analysis to include
the brace flexibility is considered in the following section.
It must be pointed out that the approach method 1is
gquasi-static and is accurate for staltic monotonic loading,
but under random like excitations, the solution can only be

considered plausible at best.

2.1.1 Method Proposed by Baktash and Marsh

Consider the simple frame shown in Figure 2.1, where the
bracing is effective in both tension and compression. The
behaviour of this system is very close to that of a
cross-braced FDF (incorporating Pall’s friction device) where
the bracing itself is effective in tension only. Let D be
the horizontal deflection due to some lateral force V. It is

assumed that this deflection corresponds to the slipping in

the friction device. The work done against friction is then:

W=V D (2.1.1)

in which Vl is the horizontal component of the slip force in
the diagonal brace. The deflection of the moment resisting

frame is related to the portion of the horizontal shear
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carried by the frame action. If the stiffness of the frame
without the brace is K, then from Figure 2.2, one can write

that
V—Vl = KD (2.1.2)

or

V"VI

K

The energy dissipated by friction becomes

VitV =V )
Wf= (2-1-3)
K

This energy dissipation is maximized with respect to the

slipping force by

d W \Y ZVI
arre—————— [ — - s - 0 (2.1'4)
d \f K K
which gives
\'
Vl = — (20105)
2
and for the column shear,
Yy
Vo = —— (2.1.6)
2
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This represents a condition in which the shear farce is
shared equally between the columns and the diagonal. The

maximum moment of the beam due the base shear forces can be

found as:
Vi
M = V h = h
p ¢ 2
or
2 M
h
Since,
Vl = Ps cos B (2.1.7)

where B is the angle of the brace element measures from the
horizontal. The optimum slip force for the friction device is

then:

2 Mp
p, = — (2.1.8)

h cos B

In this manner, the optimum slip load for the storey is
elegantly determined given the plastic moment capacity of the

floor beam.
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2.1.2 A More Refined Approach

In the above approach, the lateral deflection D is
assumed to correspond with the amount of slipping in the
device, thus allowing for no elastic stretching of the brace.
This represents the case of infinitely rigid brace. For a
practical frame with typical braces for strong winds and
moderate earthquakes, the contribution of the stiffness of
the braces to the total lateral stiffness is substantial but
not infinite. It is clear that for a very flexible brace, the
device may not slip at all, and hence there is a need to know
the degree of rigidity required for the brace in order that

the friction device becomes effective.

Figure 2.3 shows a single bay frction-damped frame
system with the brace element effective in tension and
compression. For simplification of the mathematical model to
be in the derivation, the system is modeled in Fig. 2.4 as a
SDOF system composed of two parallel springs in which one,
representing the brace, is equipped with a coulomb-friction
damper and the other represents the frame itself. The

stiffness of the brace is K’ and is defined as :

K' = cos” B (2.1.9)

1]
o)
=
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a = ratio of K'/K

K = the lateral stiffness of the frame without the
bracing

A = cross—-sectional area of the bracing
E = Young'’s modulus
L = length of the brace

B = is angle of the brace element measures from the
horizontal (see Fig. 2.3)

The horizontal component of the friction force F¢ is related

to the slipping force Ps by the expression:

F} = Ps cos f (2.1.10)

which 1is derived on the basis of equivalent energy
dissipation. The model is loaded with a monotonically
increasing force V which causes a corresponding displacement
D. No slipping will occur as long as the force developed in
the brace is insufficient to overcome the friction force Ff,

i.e.,
K’ D=a KD < Ff
This condition is equivalent to the condition, for no

slipping:

28



1
V<Ff(1+——-)
a

When at the verge of slipping, let

<
n

the applied force

=
1]

the displacement prior to slipping

We can write

1
V=K(1+a)Do = KD0+Ff=Ff(1+——)

a
Now let the applied force be increased to its final value

V, the additional displacement is Ds, which corresponds to

slipping in the brace.

V=K(D°+ Ds) +Ff
Fy
V = K ( + Ds) + Ff
a K
1
V=Ff(1+———)+KDs (2.1.11)
a

The energy dissipated by friction is :
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or

Equation (2.1.11) becomes

1 Ef
V = Ff (1 4+ — )+ K —
a Ff
or
Ff 1
E,c = — [ V-F (1+ — )] (2.1.12)
f f
K a

This equation gives the energy loss as function of the
independent variables FP vV, K, and a. To maximize Ef with

respect to FP

d E 1 1
= [V-2F (1+—)1 = 0
d Ff K a
. \'
FOP o= (2.1.13)
2(1 + 1/a)
vz
Ef'“ = (2.1.14)

4 K (14 1/a)
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The total shear force in the frame columns is, in terms of the

optimum slip load

V- F = K(D +0D )

\ 1 + 2/a
= { ]
2 1 + 1/a
, 2
V-F=F" 1+ —) (2.1.15)
a

The results at optimum condition as shown in the
equations (2.1.13), (2.1.14), and (2.1.15) are for a
particular imposed force V, which in the case of earthquake
excitation varies cyclically depending on the system responses
which are functions of the slip load itself. In the previous
approach, Baktash and Marsh have chosen V to correspond to
the first yielding in beams. Ffm is found based on beanm

yielding as done by Baktash and Marsh:

M, =V, h
Fy

M =h — (14 2/a)

P 2
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2 M
opt _ P
Ff =

h (1 + 2/a )

Thus the maximum slip load is

P = (2.1.16)
h (1 + 2/a) cos f3

The right hand side of the preceding equation is, of
course, the same as that of Baktash and Marsh when the
parameter a 1is set to an infinite value. For a well-designed
FDF system, the moments in the beams should not reach Mp.

In the present approach, the relative stiffness of the
bracing is taken into account, whereby the effect of both
member properties and frame geometry can be assessed. In

practice, the brace stiffness is normally determined on the

basis of service conditions, i.e., for strong wind and
moderate seismic forces, and therefore it is likely to be
high.
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However, in the case of retrofitting existing buildings
for upgrading its structural safety against major earthquakes,
it may not be necessary to use heavy braces in conjunction
with the friction devices. An appropriate brace stiffness can

be chosen easily from equation (2.1.14) which is again shown

below in a rearranged form:

4 K Ef'“ 1

; (2.1.14)

v 1 +1/a
This equation is plotted in Figure 2.5 for a up 20,
Since the energy dissipated increases at a decreasing rate, as
a is increased, it is clear from this figure for a greater
than 10, the extra energy dissipated is not significant. For
a =1, the term 4 K E;“/Vzequals 0.5, which states that the
energy dissipated is 50 % of the maximum possible. For a = 10,
the rate is 91%., The validity of the argument will be examined
in the next section by performing a non-linear dynamic

analysis of the SDOF systems.
2.2 OPTIMUM SLIP LOAD : NON-LINEAR ANALYSIS

As stated in the previous sections, the equations derived
for the optimum slip load are based on a quasi-static
approach, and thus may have little meaning for systems under

random excitations. To use the Drain-2D computer program to
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model a SDOF system for a parametric study is feasible but
the process is tedious and cumbersome. Furthermore, its main
output it limited to the maximum deflection. It was decided
then to develop a special purpose computer program to carry
out the nonlinear analysis of the spring model shown in
Figure 2.4. The derivation is shown in details below leading

to the development of a simple computer routine.

2.2.1 The Governing Equation of Motion

The equation of motion as obtained in section 1.1 is

shown below:

's *
MX+CX+ KX

"
!
<<
s

For the system as shown in Figure 2.4, the equation of

motion for this system can be written as

MX+CX + KX+ Fd = -M Xs (2.2.1)
where
M = the mass of the system
C = the viscous damping coefficient
'K = the stiffness of the system
Fd = the dry friction damping force
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X = the relative displacement of the frame
X = system’s velocity
X = system’s acceleration

where dot means the first time derivative of the displacement,

and double dots means the second derivative. Xsis the ground

displacement. For no slipping, i.e., when

K’ {Xt = a K (X} < Fe

then the system stiffness is

It
=
+
=

VK

H
o

Fd

During slipping, i.e., when

K' 1X! = a K X| 2 F
K = K
X
Fd = F;
X

Closed form solutions to the equation of motion such as
that of eqn. 2.2.1 exist only for a few loading functions.
Since the right side of the governing equation of motion
(2.2.1) is likely to be a discontinuous function, a closed
form solution may not exist. Therefore step by step numerical
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integration is more convenient. The following describes

briefly the numerical scheme used for solving the equation.

2.2.2 Numerical Solution to the Equation of Motion

Figure 2.6 shows the bilinear load deformation curve for
the simplified model of the system. The equation of molion is
solved by assuming a linear responsc acceleration for the
system between each time step, as depicted in Figure 2.7. The
numerical scheme for the integration of the equation of
motion is developed in a fairly standard fashion as shown in

the following reference (24).

At any time tiyg the equation of motion is:

M Xy +C Xy t KXy + Fyyyyp= - M Xgi (2.2.2)
and at any time tﬁ
MX +CX + KX + Fd = - M Xg, (2.2.3)

Now subtracting equation 2.2.3 from 2.2.2 yields the

incremental form of the equation of motion

LX) (X L] .

A 4
- M(Xg;,;~Xg;) (2.2.4)
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The equation of motion in an incremental form is

M AX + C AX + K AX + Fdi,, - Fd; = - M AXg (2.2.5)

where AX represents the increment between the time ti and thl‘

By assuming a linear acceleration response between
each Lime step as shown in Fig., 2.7, the following relations
can be derived for the incremental acceleration:

. 6 AX 6 . e

AX = 2 - Xl - 3X (2.2.6)
At At

and for incremental velocity:
. AX At .
2

Substituting for Ay from egn. (2.2.6) yields:

. 3 AX . At .,
— X. (2.2.8)

At 2

o 6
X = — X - A (2.2.9)
: 3
ax = — AX - B, (2.2.10)
t
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where

6 . .
A= AX + 3 Xi (2.2.11)
At
. At .
Bn = SXi + Xi (2.2.12)
2
Substitution of equations 2.2.9 and 2.2.10 into 2.2.5

yvield, after rearranging and collecting terms

[ + + (K] AX = M At C Bn - [Fdhl - Fdi] - M AXg

From the equation shown above, solving for AX, one obtains,

6 M 3 C

At At
AX = (2.2.13)

e

or
P*
AX = , (2.2.14)
1K
where

P = is the modified effective incremental force of
the system

K = is the modified effective incremental stiffness
of the system
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With the above equations, the response at each time step
L, can be calculated, knowing the previous response values at
time t;. The incremental change in X is found first. With AX
known, the change in velocity and acceleration can be found
from equations (2.2.9) and (2.2.10) and the solutions at thl

are updated.

In order to minimize the accumulation of error, the
equation of motion, rather than equation 2.2.9, is used to

determine the acceleration at the next time step as follows:

., . . VK 1
M M
and
X = X + AX

i1

Thus an unbalanced force at the end of a time step is
converted into the next input ground acceleration. To further
reduce the accumulation of errors, the time step is taken as
small as possible. Generally a time step of 0,001 sec is used.
In some special cases this time step is halved. The choice of
time step is done by successive reduction until the responses
computed do not seem to change significantly. The program was
written using Fortran 77 on the mini-computer VAX 11/785
available at the CBS at the courtesy of SIRICON. Double
precision is used throughout for all variables used in the
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program. A listing of the source code is shown in the

Appendix,

2.2.3 Verification of the Routine

The routine was verified for its reliability before it
could be used with confidence. To do this, the Drain-2D
program was used to generate the solutions for some test
cases, A simple arbitrarily inelastic system is modeled
using the Drain-2D frame dynamic analysis. The El Centro data
is used as the ground excitations. The same model again is
used in the SDOF routine, and the results obtained in both
cases are compared. The time-history displacements obtained

for both case are plotted as shown by Figure 2.8.1.

For illustration purposes, the initial three seconds of
the results obtained are shown only for each case. As can
seen from the figure, the two lines are almost identical,
except that for the line from the Drain-2D output is seen to
zig-zag somewhat. This is due to the rounding off the values
to three decimal places internally by the output subroutine
. OUT1 by DRAIN-2D whereas that of the output for the SDOF
routine is plotted with a four decimal place values. Since
the output from the Drain-2D does not contain the velocity and
acceleration responses, it cannnot be compared with that of

the routine. Nevertheless, if the time history solution of
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the displacement from the SDOF routine is identical to that
of DRAIN-2D, then it can be said that the solutions from the
SDOF routine are correctly computed. The only problem of
concern is the over-shooting of the loads bevond the yield
force level. This is corrected but is not as elegantly done as
in the DRAIN-2D routine. This overshooting can be avoided as
much as possible by using a time step as small as possible

and by using double precision for all computations.

Figure 2.8.2 shows tvpical hysteretic load-deformation,
characteristic of a syvstem under the NBK earthquake
excitation, for illustration only. For this particular output
a flexible system with K=450 kN/m, mass=10.9 tons, and Ps =
20 kN is wused. The plot is obtained from a time-history
output and post processing for plotting on the IBM PC. A total
of about 3000 points are used for creating the plot. Kinks,
observed on the upper levels of the straight line, are due to
over shooting of the force level in the brace member. This is
due to the large time-step used in the computations for this
particular example. Figure 2.8.3 shows the typical plot for

the brace element, or the friction element.

2.3 Detailed Investigations

The simple routine described in the previous section

is used for the parametric study of nonlinear SDOF FDF
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systems. The program can be modified very simply to
accommodate changes in the parameters under investigation.
Three earthquake records will be used as Lhe ground motion
inputs. Two of which, the El Centro and the Olympia
earthquakes, were records of actual events, and the third, the
Newmark-Blume-Kapur record, was artificially gencrated. The
first seven seconds of the records of the El Centro is scaled
to the original peak intensity at 0.33s, and the thirty second
1952 Olympia record scaled to 0.35g. The 15 second artificial
Newmark-Blume-Kapur records was generated to match a typical
earthquake loading spectrum, having an increasing load with
time, then levelling off with a constant load, and then
finally unloading. This particular record is scaled to 0.30

g peak intensity.

The NBK record shown in Fig. 2.9.1 is used because of
its wide frequency content. This record is more severe than
that of El1 Centro., It was discovered, from analyses of several
FDF systems using the NBK records for the same system, to
match a maximum response calculated from using a 0.30 g NBK
data as ground motion input, about 0.50 g of the El Centro
record would be required. The 1940 El Centro record shown in
Fig. 2.10.1 was at one time believed to be the strongest to
be recorded on firm soils. At 0.33 g it was used extensively
for dynamic analysis of structures. Then the 1.25 g was

recorded at the San Fernando Dam which proved that higher
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acceleration was possible. The Olympia records shown in Fig.
2.11.1 is used also because of its special characteristics on
firm soils., Viscous damping ratio frequently used for dynamic
analysis of structures ranges from 1 to 5% critical. However
with mechanical supplemental damping devices, it is expected
that the equivalent damping ratio will exceed the normal 1

to 5 % maximum as usually assumed for the dynamic analysis.

Since the FDF systems will likely provide an equivalent
damping ratio in excess of 20 %, it 1is interesting to
examine the dynamic response with higher damping ratios. But
most response spectra generated were usually calculated with
a critical damping ratio of up to 20 % maximum. By using the
solution by Dempsey and Irvine (25), a series of elastic
response spectra were developed for critical damping ratios
ranges from 0 to 80 %. The integrations were carried out for
the NBK, El Centro and the Olympia data. It is noted that for
the NBK data, no existing response spectrum can be found for
this widely used record. The acceleration, velocity and
deformation spectra are created and plotted, but only the
acceleration spectra are shown here. Fig. 2.9.2 shows a plot
of the response acceleration of a SDOF system subjected to
the N.B.K. record with varying critical damping ratios. Fig.
2.10.2 is the same for the EL-Centro record, and Fig.2.11.2
is for the Olympia record. From these acceleration spectral

plots, it is evident that the maximum response is reduced
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rapidly with increasing damping ratio up to 20 %. Thereafter,
the reduction is less significant. This is true for atll

three earthquake records.

Four SDOF FDF systems were used in the parametric study.
Table 2.1 lists the properties of the systems considered.
Frame No. 1 represents a single bay with very heavy columns.
The mass of about 11 metric tons approximates that of a
tvpical roof load of one bay with some accumulated snow. Frame
No. 2 has less stiff columns but with the same mass. Frame
No. 3 represents a rather flexible frame with lesser mass of
about 7 tons. Frame No.4 is the same as No.3 excepl the mass
is 13 tons. This is done to obtain a higher natural period.
Table 2.1 also lists the natural periods of the frames
corresponding to a which represents the relative stiffness of
the bracing. Since most earthquakes on firm soils have high
energy contents in the higher frequency or low period range,
the systems chosen seem appropriate enough, since all systems

have low first periods of vibration.

The variables of interest in this study are the slip
loads and the relative stiffness a of the system. In the
analyses, the parameter a is varied from 0 to 12, since beyond
which there will be little change in the responses as proposed
in the previous section. For each a, the slip load Ps is

varied from 0.00 to 60.0 kN. For each Ps value, the response
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was computed and the maximum acceleration, velocity and
deformation were kept for post-processing. Zero viscous

damping was used for all analyses,

Atime step of 0.0005 second was used for the 15 second
duration NBK earthquake, and this required about 30000 total
time steps for the entire record to be computed for each Ps.
Therefore for each a value, an internal loop of 120 times
were made through the 30000 time step computations yielding
120 data points for plotting the curve of the response. For
the 7 second El Centro, a time step of 0.0025 was found to be
adequate. And for the 30 second Olympia record, a time-step

of 0.001 was wused.

The results obtained from the calculations by using the
SDOF routine for frame no. 1 are plotted in Figures 2.12.1 to
2.13.3, for frame no. 2 in Figures 2.14.1 to 2.15.3, for
frame no. 3 in Figures 2.16.1 to 2.17.3, and for frame No.4
in Figures. 2.18.1 to 2.19.3 for the NBK, El Centro and the
Olympia earthquake records respectively. Since only the
maximum response of the systems is required for this study,

no data from the time history will be presented.

2.3.1 Analysis of Frame # 1

The maximum acceleration response of the frame
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subjected to the three different earthquakes all have the
similar trend. First, as the slip load increases, the
response decreases rapidly to a low point and after which it
starts to increase slowly as the slip load increases. This
implies that there 1is a certain slip load at which the
spectral acceleration is minimum. This "so called" optimum
slip load for all three earthquake records seems to be
between 0.12 and 0.20 of the ratio of Ig/Weight for the all
the three earthquakes. It is observed that when a reaches 8
say, the further reduction in the response is rather small.
The corresponding deformation responses shown in Fig. 2.13.1
to 2.13.3 are seen to decrease rapidly as the slip load is
increases. When the low point is reached, it remains ratlher
insensitive after that. With the exception of the Olympia
response which seems to increase somewhat after the low point
is reached. The low point for the NBK and the El Centro seems
to be located in the same neighbourhood of say, 0.15 to 0.20
Pg/Weight. Whereas in the Qlympia response, the low point is
located at about 0.10 Ig/Weight. Again is observed that when

the a reaches 8, reduction in the response is not significant.

2.3.2 Analysis of Frame # 2

The acceleration response for frame no. 2 are plotted in
Figure 2.14.1 to Figure 2.14.3. They are almost identical to

that of frame no. 1, Again, it is seen that when a exceeds 8,
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the reduction in the dynamic response is not that much. The
low point. for the NBK and El Centro is located at bout 0.18
ﬂ/Weight. Except that the low point for the Olympia record
is shifted to the left to from 0.08 to 0.10 PS/Weight. For
the displacement response, the common low point is again
located at about 0,20 Eg/Weight. Again it is observed that

little increase in the reduction of the response is obtained.

2.3.3 Analysis of frame # 3

The acceleration response of frame No.3 are plotted in
Figures 2.16.1 to 2.16.3. They appear to be almost similar to
that of frame 1 and 2. After a low point is reached, the
acceleration response starts to increase again. For the this
frame the weight used is 7 tons (69 kN). For the N.B.K.
record, the low point is located at about O.201%/Weight. For
the EL. Centro record the low point is about 0.10 PS/Weight.
The deformation response are plotted in Figures 2.17.1 to
2.17.3. The 1low point for the N.B.K. and Olympia records is
located around 0,20 Ps/Weight. But for the El Centro, the low

point is at about 0.10 Fg/Weight.

2.3.4 Analysis of frame # 4

The acceleration response for frame No. 4 are plotted in
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Figures 2.18.1 to 2.18.3. The weight used was 128 kN. The low
point in this case for the N.B.K. is found to be about 0.10
Eg/Weight. For the El Centro data it is about 0.15 f;/Weight.
But for the Olympia, it appears to be around 0.08 FE/Weight.
The deformation response are plotted in Figure 2.19.1 to
2.19.3. Again the general trend is similar to those shown
previously, but in this case the low point for the NBK is
around 0,30 Eg/Weight, which that of EL Centro is about. 0.10
I%/Weight. For the Olympia the low point is about 0.20

Ps/Weight.

2.4 Summary

From the observations made on the results shown, the
slip load PS required for a minimum response for a frame is
difficult to pin-point. It appears that even for the same
frame but analyzed with different ground motions, the Psfor
a minimum response is different. But a range of values can be
said to be the optimum as the response does not seem to
change much. This was observed for all four frames analyzed.
It was also found that, from the derivation of the more
refined approach to obtain the optimum slip load, the relative
stiffness ratio, a does play an important part in the response
of the frame. When a exceeds 8 or 10, the incremental energy
dissipation is insignificant. The energy balance method will

probably give a better picture of the amount of energy
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dissipated, but this itself is a major task and will not be

dealt here.

The optimum slip load expression (egn. 2.1.16) is based
on a quasi-static approach. This slip load, as limited by beam
or column yielding, appears to be the best that one can do in
order to strengthen an existing buildings by retrofitting with
the friction device. However, the quasi-static "optimum slip
load" does not provide any information regarding the design of

a new structure against a specific earthquake intensity.
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Table 2.1

Systems used for SDOF

Analysis

Frame
no.

Spring
kKN/m

Mass

metric-tons

o)

(sec)

1

4491

10.9

(107 kN)

NOWODN & NO

Pt

0.310
0.179
0.139
0.117
0.103
0.093
0.086

3000

10.9

MO NO

—

0.379
0.219
0.169
0.143
0.126
0.114
0.105

2000

7.0

NOCODMIALEDNO

—

0.372
0.215
0.166
0.140
0.124
0.112
0.103

2000

13.0

(128 kN)

NOXXO R NO

P b

0.507
0.292
0.227
0.191
0.169
0.153
0.140
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Figure 2.1 Single Storey Braced Frame

Figure 2.2 Single storey Moment Resisting Frame
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Fig. 2.3 Actual SDOF system for the FDF
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Figure 2.4 Equivalent System
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Fig. 2.6 Typical bilinear behaviour
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3.0 SINGLE BAY MULTI-STOREY FRICTION DAMPED FRAMES {(FDF)

SDOF systems are often used for the generation of linear
and non-linear response spectra and in the study of the
influences of various parameters of earthquakes record
contents, such as the frequency contents and the energy
intensity indices. SDOF non-linear systems such as the
elasto-plastic, bilinear and the degrading stiffness systems
have also been used for such purposes as deliberated by Chopra
(27), such non-linear systems serve to model closely the
actual behaviour of a building structure. The literature is
well documented with material on the behaviour of these

systems under the various types of simulated ground motion.

Chopra and Cruz (28) studied the effects of ground motion
on single bay, multi-storey shear buildings, and proposed a
simplified design guide line based on these studies. Baktash
and Marsh also utilized single bay frames to study the
performance of friction damped frames against that of
eccentrically braced frames. A similar study was carried out
by Filiatrault and Cherry (18) who concluded that the FDF
system performed better than the base isolated frame. Bagget
and Martin (29) used a two DOF system with one artificially
generated earthquake time history data to generate non-linear
response spectra and to study the accuracy of non-linear

response spectrum analysis. Lin and Mahin (30) did a detailed

80



study of the various non-linear SDOF models and proposed a

simplified analysis.

In the previous chapter, SDOF systems were extensively
analyzed to identify the main parameters influencing the
performance of FDF. A multi-storey building (thus multi-
defree-of-freedom-svstem) equipped with the friction devices
does not actually behaviour 1like a SDOF system, dynamic
response from the higher modes might be more important than
just the response from first mode. In this chapter, series of
steel frames were sized and then subjected to ground motion
records. In this way, realistic stiffness and reactive mass of
typical buildings will be used to obtain the dynamic response.
The deformation results will be used in the next section to
develop the deformation spectra for a F.D.F. system under

optimum condition.

3.1 Description of Steel Frames Used

To study the behaviour of friction-damped frames under
severe earthquake excitations, a series of 150 steeil frames
were subjected to various ground motion records. The frames
are single bay steel frames from one to 25 stories high with
different beam-column stiffness ratios. Figure 3.1.1 shows the
typical frame used. The ratio of bay width to floor height is

kept around two. The steel frames were first sized to meet CSA
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Al16.1-M84 {31) and the 1985 NBCC standards as unbraced moment
resisting frames. The 1985 NBCC quasi- static method was used
for sizing the members. The frame should also be checked for
wind drift but in this case only seismic effects will be

examined.,

3.1.1 Typical Design of a Frame

A typical bay for a three storeyv level frame, as shown
in Figure 3.1.2 will be analyzed and sized according to the
CAN3 S16.1 Limit State Design for Steel Structures and
conforming to the NBCC and its supplements. Assuming that the
structure to be that of a building to be located in Montreal,
which is in seismic zone 2 according to the NBCC. Figure
3.1.2 also shows the typical calculated loads to be applied.
In an actual design process, overall structural stability and
configuration must be considered, but in this case since it is
only a demonstration design, no actual details of the building

will be given.

For the seismic loeds according to the NBCC quasi-static
approach, the reactive mass in this case will be the sum of
the total dead loads and plus 25% of the roof snow loads, or
any other live load that might be firmly attached to the
floor. The total mass obtained will be used to determine the

total base shear arising from the actions for the earthquake.
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For this particular frame the total weight is about 368 kN.

Ideally the period of the frame should be found by
solving the eigen value problem from the formulated stiffness
and the mass matrices of the frame. This is normally done by
using a standard dynamic analysis program, as an initial
guess, ah approximation rule will be used. Using the cquation
provided in the NBCC supplement, the first period of a three

storey building can be estimated as:

0.09 h

v D

<

0.09 x 10.95 / /¥ 6.0

0.4 sec.

or for moment resisting frame (MRF),

N
T, = :I;
= 3/10
= 0.3 sec.
The corresponding seismic response factor S for a
building located in Montreal where the acceleration and
velocity zones are equal, i.e., Za = Z, with a first natural

period of To = 0.4 second is about 0.44. Then the total base
shear to be applied to the building is computed to be:
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V=vSKTITIFW

0.1 x 0.44 x 0.7 x 1.0 x 1.0 x 368

= 11.3 kN
for S = 0.44
Kk = 0.7 (for a MRF)
I = 1.0
F=1.0

and this base shear is to be distributed according to the mass
ratio across the height of the building according to the

cequation as follows:

W h
F o= v X

' LW h

ﬂ to F, are then the lateral shear forces to be applied
to the frame at the floor levels, as shown in Fig. 3.1.2.
These forces together with the vertical gravity loads are
shown in Figure 3.1.2. In the figure also is shown the
structural model to be used for the plane frame analysis.
Typical plane frame programs are based on the direct
stiffness method of analysis, also known as the matrix
displacement methoa. 1n thiss technique, the global structural
stiffness is assembled according to some prescribed degree of
freedoms, the unknowns are a set of vectors consisting of the

displacements under some external forces. Trial section
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properties are then used as input data for the modelling of
the frame for structural analysis. This initial work was done
using a micro-computer based plane frame structural analysis
program. Much of the later work was done using the TABST77
program on the VAX 11/785 computer and the SUN microsystem

computer.

3.1.2 Analysis and Design of the Steel Frame

For the analysis and the sizing of beams and columns, all
possible load combinations should be used to obtain the
maximum force envelopes. In theory all possihle combinations
should be considered and the forces obtained from the
structural analyses should be scanned to obtain the maximum
force in all members. Most commercial packages for
structural analysis have options for load combinations

facility. So this itself does not present any problem.

This is done for this particular frame for demonstration
only. Not all results for all frames will be shown, but the
properties used will be listed for all frames. The maximum
design forces can be picked easily for sizing the beams and
columns from program output. For a beam column design, one
must check for strength and stability under the effects of
axial loads and end moments., The S16.1 standard for

structural steel design provides interaction equations for
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this purpose. For this frame the smallest wide flange,
W150X30 will be used as the columns. Because of the relative

light loads, this pass the strength and stability checks.

Next the beam sections used will be checked for bending
moment requirements. For all the beams, it is assumed that
the unsupported lateral length is set at 6 m 1long. Normally
floors beams are assumed to be braced at the top compression
flange due to the presence of the concrete deck firmly
at.tached to the beams. In this case a W410X54 wide flange size

is chosen to satisfy the strength requirements.

Beam deflections for all three floors due to live loads
are minimum. Therefore beam section chosen is deemed to be
adequate. Maximum storey drift occurred at the first floor
level and is about 10 /3650 and this gives about 1/365. This
is above the acceptable norm of about 1/400. But it will be
ignored as this is not a real building as such. The overall

storey drift is about 26.7/10950 = 1/410.

The MRF designed previously will now be quipped with
bracing elements for the attachment of the friction devices
on each floor. This will make the MRF into a BMRF and the
horizontal stiffness has now increased tremendously, according
to the NBCC equation for the first natural period, the first

period is still about 0.40 sec. The K factor, however has now
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changed to 1.0 since the modified structure is no longer a
MRF. The increased in K factor accounts for the fact that a
braced frame is less ductile and therefore less capable of
undergoing large plastic deformations. Rainer (32) explained
that the K factor only assigns relative performance of
different structural systems on the basis of observed or
expected Dbehaviour in earthquakes. For a BMRE, the
quasi-static lateral force requirements are obtained again

from the base shear equation.

V=0.1x0.44 x1.0 x 1.0 x 1.0 x 368 = 16.2 kN

Therefore the new set of lateral shears are

F1 = (16.2/11.3) 1.9 = 2.7 kN
F2 = (16.2/11.3) 3.8 = 5.4 kN
F3 = (16.2/11.3) 5.7 = 8.2 kN

These new forces are then applied to the modified framc
as shown in Figure 3.1.3. Only the tension elements are
assumed to be effective. Those shown as dashed lines in the
figure are the ineffective compression members. Assumed for
now a 45x45x6 angle for each brace with total cross sectional
area of about 1000 nm# will be used as the bracing elements
for the three levels. This yields a horizontal stiffness of

about 20786 kN/m for the bracing elements and the horizontal
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stiffness of the column of the unbraced MRF is about 1698

kN/m. This produces a o ratio of about 12.3.

The new maximum roof deflection computed for the new set
of forces is only 2.3 mm. Since these forces do not produce
any significant change in the member forces in the structure,
there is no need to modify the sections chosen. The final
frame with all the sections used is shown in Figure 3.1.4,
together with the locations of the friction devices. Also
shown in the figure are the three reactive masses due to the
dead loads and partial live load on the roof and the floor
levels of the structure. These are the masses which will be

used in the non~linear analysis of the friction-damped frame.

The actual periods of vibration of the frames are calcu-
lated using the TABS77 (33) program, and they are found to be
about. 1,2 and 0.21 s for the MRF and BMRF respectively. The
MRF period is different from that of the code value by a
large margin. This is to be expected since the calculated
value from the TABS77 program is that of a bare skeletal and
does not take the additional stiffness of all other secondary
elements such infilled panels, walls, siding, doors and
windows. But that of the BMRF appears more reasonable for a
three storey frame due to the large lateral stiffness

contribution of the brace element.
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All subsequent frames used were dealt with 1n a similar
manner before performing the non-linear analysis. All the
properties of about 150 frames used are licted in Appendian R
together with the masses. All frames were analyzed as MRF
first and then as friction-damped frames. The second analysis
was carried out to check the adequacy of the members and to
make sure that the slip load was not attained under normal
service state. Masses were varied for some of the frames to

obtain a variation in the period range.

The periods for the structures are calculated by using
the TABS77 program. The mass was varied for some of the frames
to cover the range of period for typical structures
encountered in the construction industry. The fundamental
period usually varies from 0.1 to 10 seconds. Shorter frames
will naturally have shorter periods, or higher frequency, and
tigher frames will have longer period and smaller frequency.
It is also a well~-known fact that most earthquakes have higher
energy contents in the higher frequency range. With the
exception of special so0il characteristics such as the
Mexican city old lake bed, which tends to induce a longer
period of vibration, most periods are <concentrated in the
lower period 2zone. Since it was difficult to design lower
frames to produce the required numbers of periods, lower
frames were manipulated by changing the mass or the column

stiffness.
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The sclection of design earthquake(s) involves many
disciplines and requires the collaborations among many of the
professionals. Although continual progress is being made,
there 1is still no consensus about what ground motion
characteristics or parameters are significant in exciting a
building, and how they can best be quantified for design
purposes, especially for structures that behave inelastically.
The various aspects of a ground motion affecting structural
response include intensity, frequency contents, duration, the
number, size, and sequence of acceleration pulses. 1In
addition, it is not certain what structural response
parameters should control the design, particularly in the
inelastic range. For example, displacement, storey-drift,
ductility, acceleration and other factors have been suggested.
Moreover, it is not certain how these ground motion and
structural parameters are related. Since this 1is near
impossible for the present study, it is necessary to utilize
numerous record data to carry out the analysis and there is
considerable uncertainty in the selection of the design

earthguake(s).

This being said, it is desirable that at least <three
earthquake records be used. However, as justified below, it
was finally decided to used only the N.B.K. record for the
rest of the study. The response obtained for a frame is shown

in Figure 3.1.5. As can be seen from the figure, if the
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parameter of interest is limited only to the upper level
deflection, or storey drift, one see that the response for the
three different earthquake records have the same tendency.
Other frames with different periods were also analyzed and

found to behave in a similar fashion.

Next, the intensity of the ground motion is varied to
increase the severity of the earthgquake. This is done by
scaling the record data by the appropriate constant. Figure
3.1.6 shows the effects of scaling the N.B.K. earthquake data
for another frame. As the severity of the peak acceleration
increases, the response is seen to move upwards. But in
general the tendency of the graph is the same for all
intensities., Figure 3.1.7 shows the effects when using another
earthquake record and again scaling the peak intensities. For
the same frame the same resultant effect is obtained if the
storey drift is parameter chosen for comparison purposes. The
purpose of varying the slip load 1level for each frame is to
determine the level of the so called optimum slip load of
the devices for that particular frame manually. As can be
seen from these curves, the low point of each curve does not
seem to vary much after the initial low plateau has been
reached. From these preliminary results obtain, it is decided
that in order to save computation time, only the 0,30g N.B.K.
artificially generated earthquake data will be wused in all

subsequent analyses. By this restriction, therefore the
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results obtained thereafter can be said to be applicable only
to characteristics of the N.B.K. site conditions. For
simplicity constant slip force is used for all floor levels
even though ideally as the shears are higher at the lower

levels, the slip load should also be higher there.

3.2 Modelling of Braces with Friction Device and

Analysis Technique

The dampers are modeled in the DRAIN-2D program by using
the truss elements with elasto-plastic vielding behaviour.
This reduces the total number of elements required and thus
reduces the computation costs. This model was originally used
by Pall (14) and Filiatrault and Cherry (16) who found that
the difference between the actual and more refined damper
model and the simplified version varies in the range of about
15% in the final results, and the solution converges when the
intensity of the ground motion increase. The yield forces of
the truss elements are based on cross sectional area which is
normally determined from the service load requirements. The
vield stresses for the truss elements for DRAIN-2D are then
computed as the slip load divided by the areas. A very small
vield stress is assumed for the compression force to avoid the
problem of dividing by zero by the program. Filiatrault and
Cherry (16) described in details the equivalent energy

dissipation mechanism by the truss elements. Figure 3.2 shows
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Lthe step-byv-step mechanism of the truss element and a friction

device under loading at various stages of a cycle.

The computer program DRAIN-2D is used to carry out tLhe
non-linear step-by-step analysis in the time domain. It makes
use of the constant acceleration scheme for time integration.
It has a series of subroutines for the common structural
elements for modelling typical building frames. For this work,
only the beam-columns, and the truss elements are used. As tLhe
full package of the original program is not required, a scaled
down version of the original source is used instead. The
un-required elements and its corresponding inputs and outputs
subroutines area removed. This reduces the program to about

one~third of the original size.

For each frame, determination of the optimum slip load
was done by increasing the slip load for the frame and an
execution carried out. Several more executions were carried
out until no further changes in the dynamic response was
observed or wuntil the response began to increase. Each
individual frame was subjected to the N.B.K. artificial ground
motion, which was chosen because of its wide range of
frequency contents. The time step used for the integration
over the time domain was determined by trial and error. A good
rule of thumb will be about To/10 to To/100. A suitable value

was obtained when the response with one time step did not
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differ significantly from the previous 1larger value.
Generally, the tLime step chosen was between 0.001 to 0.005

second.,

3.3 Analysis of Resulis

A Lotal of more than 150 frames were analyzed using the
DRAIN-2D computer program and each frame is subjected tec the
0.30 ¢ N.B.K. earthquake data. For each frame, the slip loads
is varied from 0.0 to 50.0 kN. From the results obtained, it
was found that for all the frames studied, the displacement
responses universally 11ave a similar trend: starting from zero
slip load (i.e. unbraced moment resisting frames), the
deflection responses decrease rapidly with increasing slip
load until a low plateau was reached. Thereafter, further
increase in the slip load does not change the response
significantly. Typical deflection responses with different
levels of slip loads are shown in Figures 3.3.1 to Figure
3.3.33. In Figure 3.3.1, 5 curves were plotted with each curve
representing the result of a frame. It’'s fundamental period of
vibration is indicated by the legend shown just below the
graph. For example, the square symbol ({0) with the numeric
number 0.346 next to it implies that the frame represented by
the square (0) has a period of 0.346 second. Accordingly, the
triangle (A) represents a frame with a period of 0.280 second,

the diamond (¢) represents a frame with a period of 0.541
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second, the cross {(x) has a period of 0.463, and the plus
symbol (+) is for a frame with a period of 0.147 sececond. The

same principle is applied for Figures 3.3.1 to 3.3.33.

3.3.1 General Trends

The optimum slip load, i.e.the f{orce in the friction
device at which the maximum deflection is smallest, increases
slightly as the intensity of the motion is increased. For the
frames studied, it was observed that the FDF remained elasti=
at all time when the slip load was near or at the optimum
value. The forces in the members and the floor deflections are
observed to decrease as the optimum value is approached. It
was also noted that the optimum slip load level was between
10 to 30% of the total weight of the structure. Assuming a
slip load at 20% of the structure weight appears to be a
reasonable starting point for preliminary design. This is

based on two observations of Fig. 3.3.1 to Fig. 3.3.33

(i) the frame responses are fairly insensitive to a
large change in the slip load near its optimum
value, and

(ii) a slip load higher than optimum involves lesser risk
than a lower value. It must be mentioned that member
forces are greatly reduced for all frames, at optimum
slip load or not.
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3.3.2 Effects of Earthquake Intensities on optimum slip
load

From the comprehensive study of the FDF under
simulated earthquake loadings, it appears that the optimum
slip load for any given structure is unlikely to be
correlated to the total mass of the building. The range
varies from 10 to 30 % of the total mass of the building. As
shown in Chapter 2, this value is difficult to pinpoint. It
seems to vary also with the different earthquake and also
for the same earthquake but different intensity, given the
same {rame and mass. Recalling from Chapter 2, the brace

stiffness also plays an important role.

3.4 Approximate Equivalent Damping Study

From all the frames analyzed in the previous section, it
is clear that with the increased capability in energy
dissipation provided by the dampers, the dynamic response of
the building frames are greatly reduced. It would be
interesting to determine the equivalent damping that a MRF
would have in order to approximate the performance of FDBF.
For this purpose, the maximum roof deflection will be used as

the parameter for comparison.

DRAIN-2D uses the Rayleigh'’s damping for the creation of
the damping matrix. Rayleigh's damping is assumed to be mass
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and stiffness dependent as shown below:

[C]=a[M]+b[K]+ba[K]

d

where

[ C 1 is the system’s damping matrix

[ M ] 1is the system’'s mass matrix

[ K] 1is the system’s updated current stiffness matriax
[ Ko ] 1is the system’s original stiffness matriax

a, b, b0 are damping coefficients

Assuming that the bcis equal to zero, that is to say
that the damping is not dependent on the original stiffness

matrix, the damping equation becomes:

[Cl1=a[M]+b[K]]

a [ M ] is known as the inertia damping matrix. The
corresponding damping force on each lumped mass is
proportional to its momentum. It represents the energy loss
associated with change in momentum. The [ C ] term is known
as the stiffness damping matrix. Their corresponding force is
proportional to the rate of change of the deformation forces

at the joints. It can be shown that :

cn

97



where

L
n

; damping ratio for the nth mode

nth mode frequency of vibration

b3
]

h

Accordingly the a and b coefficients can be calculated

as follows:

21
W= 2 n f = (3.4.1)
T
a b Wi
;i = 4 —_— (3.4.2)
W 2
1
a b wJ
Cj = + —_— (3.4.3)
2 w 2

Substituting equation (3.4.1) into the last two equations

vields:

a Ti bn
Ci = +

4 n T,

i

a Tj b w
CJ = +

4 n T

or in matrix form:
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( Ti 1y
a Cl
4 n T, =
b Ci
Tj n
4 n T
| / R

Obtaining a and b by Crammer’s rule, they are:

4w (6T - ¢, T; )
a = q" (3.1.4)

b = ] ! (3.4.5)

where
Ti = first period of vibration, sec.
T. = second period of vibration, sec.

Knowing the first two periods of vibration of the
building frames, the two damping coefficients can then be
calculated accordingly by using equations (3.4.4) and
(3.4.5)., For illustration, the seven storey frame no. D7-1
will be used as an example. The response of the frame can be
found in Fig. 3.3.23, where the optimum response is found to
be about 69 mm for the roof deflection. The periods

calculated from TABS77 are:

99



=
1l

1.9703 sec.

T 0.7267 sec.

i}

[35Y

Their corresponding damping coefficients in terms of the

damping ratios are

a= 12.5664 b = 0,1690 ¢(

With these expressions for the damping coefficients, the
damping ratio is increased successively and their a's and b's
calculated for the damping matrix. For each analysis on the
DRAIN-2D these values are changed until the response matches
that of the FDF systems. For this example, the damping ratio
required is about 50%. For most of the frames analyzed,
damping ratios range from 40 to 100 per cent critical. This
ratio is very sensitive to the value of the period used for
the determination of the damping coefficient. It is a rule of
thumb in the design industry that when determining the period
of vibration of a building, N/10 or some other simplified
formulae is used. For the seven storey frame, one might expect
that the finished building’s period of vibration might be in
the order of 0.7 to 0.5 sec for most buildings. With these in
mind their corresponding damping coefficients will be
different from those calculated above, meaning also the
equivalent damping found previously will be changed to a

lower values instead of the 50% calculated.
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3.5 RESPONSE SPECTRUM FOR THE FDF SYSTEMS

Dynamic analysis of buildings or any other built
engineering structures as multi-degree-of-freedom systems
(MDOF) is a complex procedure. The most accurate solution
scheme is to perform a three dimensional time-history analyvsis
of any structures with an unusual geometry, thus incorporating
any torsional moment that might been induced due to any
eccentricity. This can be done by employing current available
commercial finite element programs, or any other frame
programs, such as TABS77, or DRAIN-TABS, which are capable of
handling complicated behaviours during yielding of structural
members. The time~history analysis involves step-by-step
integration of the system equations of motions. Although the
method is generally applicable, this is a formidable task for
even the experienced design engineer, and there are high
computing cost involved. More over, the results from such
analyses must be carefully evaluated by experienced engineers
to obtain the probable forces that might be induced for the

actual site conditions.

MDOF systems are normally analyzed elastically by using
the response spectrum method, also known as the modal
analysis technique. The response-spectra-based modal analysis
is considered by many to be the most practical approach. In

this method, the MDOF system is viewed as a series of
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vibrating SDOF systems responding at their own frequency.
The maximum response of the MDOF system can be estimated by
superimposing the maximum response from each of the SDOF
syvstems. Several summing procedures are commonly used. The
normal summing procedure used is the root sum of square (RSS)
method and the sum of the absolute maximum of each of the
periods. Due Lo the use of elastic modes and modal
superposition, the method 1is theoretically limited to
linear~systems. However, because of the straight forward
nature of the modal analysis method, the
inelastic-spectra-based modal analysis 1is considered a

potential method for inelastic structural design.

3.5.1 Equation of Motion

For a vibrating body subjected to an external forcing
function, the governing equilibrium equation at any time t as

shown in section 1.4 is:

MX(t) + C X(t) + K X(t) = - M Xg(t)

As shown in the Figure 1.1, the displacement of the
system with respect to its fixed base is denoted as X(t). The
governing equation is normally solved by numerical
integration. For a SDOF system, the above equation can also

be evaluated by using the so called Duhamel integral, as
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shown below:

f ~-£ W, {t—-1)
Pn(t) e ' sin w (t-1) dt

The integration is performed over the entire time history
of the earthquake record. The maximum displacements so
obtained for each of the frequencies with the corresponding
critical damping ratio are known as the pseudo displacements
(Sd) for a generalized SDOF system. The pseudo velocity and

acceleration are then related in the following manner:

S\,:w Sj (3.5.1)

S = wt S, (3.5.2)

Because of these simple relationships, the three
parameters can be plotted in a special format known as the
tripatriate graph. A typical response spectra for the FEl
Centro earthquake is shown in Figure 3.4, From these spectira
generated for any given earthquake, one can easily compute
the responses of any given system by using the modal analysis
method. The method 1is well known and can be found in
most standard texts on structural dynamics, for example
Clough and Penzien (34). For low damping values of less than
20%, the displacement, velocity and acceleration responses
can be approximately related by the expressions as shown

above. The implementation of the response spectrum method
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for the analvsis of inelastic MDOF systems is not trivial.
while modal response of a linear elastic system can be
computed independently, modal response becomes coupled once
the structure becomes non-linear. It is uncertain how the
modes interact with each other. For the simple case of one
dominating mode, modal interaction may be ignored.
Furthermore, all the members of the structure vield
simultaneously, then the response of a MDOF system can be
approximated by the response of an elasto-plastic system.
Several methods have been used in implementing the response
spectrum method for inelastic system. The reliability of these
procedures have been investigated. It was found that the
approximate design rules for SDOF systems can, for all
practical purposes, be extended to two or three degree-of-

freedom system shear beam type structures (35).

For damping of more than 20%, the simple equations of
3.5.1 and 3.5.2 are no longer valid. The pseudo responses can
no longer be used to obtain the actual response of a complex
system. In this case the actual system response will be
required. As shown by Hanson et al (12), by wusing
supplemental mechanical dampers, system damping can go as

high as 150% of the critical values.
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3.5.2 Response Spectrum for the F.D.F. Systenm

The inelastic response spectrum for low damping values
is established by finding the response acceleration that
would give maximum deflection comparable to that obtained from
the non-linear step-by-step analysis. In this preliminary
study, the following particular limitations apply:

(i) the N.B.K. earthquake record scaled to 30% g was used
to obtain the maximum deflection from the non-linear

analysis of the friction damped braced frame
operating at its optimum slip load;

(ii) only the first mode was used in the determination
of the maximum deflection from the spectrum analysis.

In addition, the spectrum analysis mentioned in (ii) was
carried out for the unbraced moment resisting frame since its
stiffness represents that of the friction-damped braced frame
during the slipping in all the devices. This has the further
advantage of facilitating the use of the obtained response

spectrum for preliminary sizing of the frame members.

The maximum deflections obtained in the previous section
under the optimum slip load conditions were then used to
generate the spectral accelerations by wusing the TABS77
program. This is done by first assuming a certain value for
the response acceleration for the frame. A modal analysis is

then carried out. The maximum roof deflection obtained from
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the modal analysis is noted. Knowing the deflection (from the
DRATIN-2D non-linear analysis) for the same frame under optimum
slip load conditions, the first values of the response
acceleration used is then scaled accordingly to obtain the
correct value. The scaled response acceleration is then the
response acceleration that would yield the maximum roof
deflection for the MRF frame. This is done for each frame
analvzed in previous section 3.1. Each individual frame
vielded a data point on the response spectrum. Thus, the
spectrum was generated for all the frames analyzed in the
previous section. Figure 3.5 shows the plot of the final
results with the periods of the frames as the horizontal axis

and the acceleration as the vertical axis.

Given that the response acceleration spectrum is still
a scattered plot, an approximate 90 percentile line is drawn
s0 as to include most of the upper bound values. This is as
shown in the graph plotted again in Fig. 3.5. With the given
spectrum, an engineer only has to perform a relatively
straight forward and simple modal analysis to determine the
approximate deformation response of a FDF system at the
optimum slip 1load conditions. A detailed time-history
analysis will still have to be carried out at the final
design stage as a final check of the structure. Several
examples will be used to demonstrate the use of the Figure 3.5

and this is will be carried out in chapter 4.
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3.6 Summary

The results obtained from the analyses have shown that,
the friction devices have reduced the response of the building
frames immensely. For any frame, the response at optimum slip
load conditions is the minimum response. Dissipation of the
kinetic energy does not have to be optimum to reduce the
dynamic response, as shown by the low slip loads of all the
frames. The maximum dynamic deformation response of each frame
is plotted in terms of graphs for easy visualization. The
optimum slip load of a frame appears not to be related to Lhe
weight of the building. In actuality, different earthquakes
actually induced a different optimum slip load, even for the
same frame. Different peak intensities of the same earthquake
also tend to yield a different optimum slip load. From the
deformations obtained from these frames under optimum slip
load conditions for the 0.30g NBK earthquake, a simple
deformation response spectrum was developed for the modal
response analysis of the FDF systems. The accuracy of the

spectra will be discussed in the next chapter.
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Figure 3.3.3 Deflection response vs. slip load for 0.30 g
N. B. K. earthqguake record
(MRF To = 1.213, 1.438, 1.554, 1.695 1.830 sec)
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Figure 3.3.4 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.948, 2.006, 1.962, 1.974, 1.810 sec)
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Figure 3.3.5 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record

(MRF To = 0.362, 0.371, 0.399, 0.351, 0.210 sec)
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Figure 3.3.6 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.220, 0.225, 1.015, 0.859, 0.710 sec)
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Figure 3.3.7 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.577, 0.539, 0.499, 0.478, 0.461 sec)
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Figure 3.3.8 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.948, 2.006, 1.962, 1.974, 1.810 sec)
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Figure 3.3.9 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.612, 0.625, 0.635, 0.651, 0.661 sec)
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Figure 3.3.10 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.667, 0.673, 1.291, 0.737, 0.570 sec)
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Figure 3.3.11 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.641, 0.685, 0.706, 0.726, 0.738 secc)
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Figure 3.3.12 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.746, 0.758, 0.792, 0.821, 0.866 sec)
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Figure 3.3.13 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.775, 0.931, 0.891, 0.921, 0.960 sec)
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Figure 3.3.14 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 0.987, 1.079, 1.113, 1.132, 1.151 sec)
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Figure 3.3.15 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.169, 1.187, 1.200, 1.222, 1.248 sec)
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Figure 3.3.16 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.235, 1.261, 1.256, 1.273, 1.281 sec)
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Figure 3.3.17 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.289, 1.298, 1.314, 1.091, 0.997 sec)
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Figure 3.3.18 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.416, 1.191, 1.311, 1.320, 1.362 sec)
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Figure 3.3.19 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.344, 1.354, 1.364, 1.375, 1.386 sec)
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Figure 3.3.20 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.396, 1.406, 1.447, 1.458, 1.468 sec)
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Figure 3.3.23 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.576, 1.585, 1.595, 1.970, 2.127 sec)
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Figure 3.3.24 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 1.798, 16581, 1.557, 1.453, 2.239 sec)
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Figure 3.3.25 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 2.239, 2.557, 2.189, 2.379, 2.247 sec)
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Figure 3.3.26 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 3.334, 2.583, 3.200, 2.902, 2.332)
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Figure 3.3.27 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 2.332, 2.659, 2.913, 2.801, 2.751 sec)
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Figure 3.3.28 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 3.032, 3.078, 3.112, 3.146, 3.180 sec)
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Figure 3.3.29 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 4.007, 3.802, 3.625, 3.439, 3.570 sec)
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Figure 3.3.30 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF TO = 3-625, u¢133, u.289, uou39, 40585 SeC)
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Figure 3.3.31 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 5.258, 5.614, 6.001, 4.T74L, 4.575 sec)
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Figure 3.3.32 Deflection response vs. slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 4.976, 4.862, 5.043, 6.587, 6.812 sec)
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Figure 3.3.33 Deflection response vs., slip load for 0.30 g
N. B. K. earthquake record
(MRF To = 9.179, 10.032 sec)
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4,0 Simplified Analysis of Friction Damped Frames

In this chapter the response deformation spectrum
created for the FDF systems in the earlier chapter will be
utilized for the approximate analysis of the FDF systems at
the optimum conditions as illustrative examples. Several
example frames will be used to illustrate the modal response
analysis techniques and to test the accuracy and effectiveness
of the generated response spectrum. Published data found in
the literature will be used as inpul for these examples.
Forces induced on the building structures and the deformations
developed by the seismic forces will be matched against those
from the time-history analyses. Comparison of the results

obtained from these analyses will be highlighted.

The detailed formations and applications of the theory
of modal response analysis can be found in most standard texts
for structural dynamics (34). The modal response analysis is
also incorporated as one of the analysis options in the TABS77
computer program, it will be used as the toocl to verify the

response spectrum generated in the previous chapter.

For the spectrum-based modal analysis, one of the main
variables used in the theory of modal analysis 1is the
frequency of vibration for the elastic system. These can be
found by setting up the proper mass and stiffness matrices of
the system and solving them for their proper eigen values. A
brief outline of the theory is given in appendix B.
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4.1 Frame No. | (Workman's frame)

As the first illustration, consider the ten story
braced steel frame shown in Fig. 4.1.1. This is the Workman's
frame reported in the DRAIN-2D manual. The properties and
dimensions used are those obtained from the manual’'s example.
Imperial units are used here mainly because of convenience of
reference as this frame was widely studied by many

researchers.

The optimum siip load of the frame was obtained by a
series of analyses using the DRAIN-2D program based on minimum
roof level deflection response. N.B.K. earthquake was used as
the ground motion input. Again, the 0.30 g was used as the
scaling factor. Other pertinent data include : zero critical
damping; a reactive mass of 0.3419 kips—secz/inch per floor;
no static loads; and constant slip load for all floors. A

brace area of 3.38 in2 (2200 mm2

)is used and this corresponds
to the a values range from 6.5 to 1.0 for the frame. The
outcomes from the time-history are plotted in Fig. 4.1.2. The
optimum slip load for this frame for minimum roof deflection
response appears to be about 70 kips with a minimum roof
deflection of about 8 inches at the roof level. All devices
are observed to have slipped throughout the floors. It is
interesting to note that the estimated optimum slip load based

on equation 2.1.8 as suggested by Baktash is about 85 kips. An

average Mpwas used and was based on the average value of the
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floor beams. The approximate equivalent c¢ritical damping
ratio at the optimum slip load condition for the MRF is about
14%. The results obtained at the optimum slip load condition

were retained for comparison against the modal response

analysis.

To perform the modal response analysis, the frequencies
must be obtained first. These were obtained by using the same
properties and dimensions from the same frame used in the
time-history analysis. Knowing the periods of the MRF frame,
the corresponding approximate response accelerations are then
obtained from the response spectrum of Fig. 3.5. These are
shown below together with the periods. They are then used as
input (as the modal response accelerations) to the modal

analysis effected with the TABS77 program.

[N

T, (s) a (in/st)

1 3.769 19.7
2 1.270 39.4
3 0.702 51.2
4 0.469 86.6
5 0.339 121.1

The root sum of square summation method is used to
obtain the probable maximum response envelopes. Figures 4.1.3
and 4.1.4 show the envelopes for the floor deflections and the
maximum storey shear of the building respectively. As can be
seen from the figure, the maximum floor deflection envelopes
compare favourably except at the roof level. The maximum
deflection by modal analysis is about 20% less than that of
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time history analysis. The storey shears plotted are the total
column shear which excluded the forces in the braces. The
shear distribution envelopes shown in Fig. 4.1.4 are
relatively good from the tenth floor to the fourth floor. From
there onwards the time-history results depart from that of the
modal analysis. This is to be expected since the spectrum was
generated by matching maximum deflection only. As the spectrum
is generated with a reduced stiffness of a MRF, whereas that
of the FDF is much stiffer in the lateral direction before
yielding, therefore for the same deflection, the reduced
stiffness of the MRF obviously will produce smaller stresses
in its members., In the FDF case at 0.30g N.B.K., two floor
beams were seen to have developed plastic hinges. This is seen

in Fig. 5.1 and all the columns remained elastic.
4.2 Frame No. 2

Frame No. 2 is the one-third scale nine storey frame
recently tested at Berkeley for the FDF system (18). The
properties of the frame were obtained from the report by
Huckelbridge (34). Figure 4.2.1 shows the dimensions and
properties of the frame. Again, imperial units are used only
for convenience since the original data are in the same units.
No static loads are applied and constant slip loads are used
throughout. A mass of 0.01294 kips-st/in is assigned to
each floor. A brace area of 0.5 in2 (330 mmz) is used and this

corresponds to the a of 1.3 to 1.0 for the frame. Figure 4.2.2
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shows the plot of floor deflection envelopes versus the slip
loads. It appears that the optimum slip load is about 15 kips.
From equation 2.1.8, the estimated optimum slip load is about
13.1 kips. This values is close to the value obtained from the
time-history analyses. The equivalent critical damping ratio
for the MRF is about 16 %. The periods of vibrations for the
frame are calculated and their corresponding response

accelerations are:

T, (s) a (in/sz)

[=2

1 0.43314 102.3
2 0.14118 157.4
3 0.08064 161.4
4 0.05479 165.3
5 0.04039 169.2

These values are then used as inputs for the modal dynamic
analysis. Figures 4.2.3 and 4.2.4 show the deflection
envelopes and maximum base storey shear envelopes from the
results of the results of the test frame. In this example,
the displacement envelopes do not seem to match very well. The
time history result appears to be about 45 % more than that of
the modal analysis. It could be explained by the fact that
only the first mode of 0.5 second happens to be in the strong
energy contents of the ground motion data and the frame was
severely shaken by it. The response spectrum does not
adequately cover this period range of response. Again the time
history storey shear is about twice the magnitude of that

from the modal analysis. One can easily visualize this by
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plotting the higher damping ratio response spectrum from
Figure 2.9.2. A peak is observed in the 0.4 to 0.5 sec. range
with a response acceleration of about 5 m/sz. This seems to be
the right. number required to match the response for the
DRAIN-2D output. All members of the FDF remained elastic as

shown in Fig. 5.2.
4.3 Frame No. 3 (UBC Frame)

The third example is the three storey steel frame
tested at UBC by Cherry and Filiatrault. The actual prototype
of the model is the first three floors of the Workman's frame,
which is used as the frams No. 1. The model is shown in Figure
4.3.1 together with the dimensions and properties used. A

t is used and this gives the a values of

brace area of 36 mm
about 1.0 for the frame. The optimum slip load obtained by
Cherry and Filiatrault from the time history analysis is
about 7 kN for the 0.30g NBK ground motion record. In this
case, the estimated optimum slip load value is about 18.8 kN.
The equivalent critical damping ratio for the MRF is about 40
%. The following lists the periods of vibration and the their
corresponding response accelerations. A floor mass of 0.850
tons are assigned to the third and second floors, and 0.575

ton to the first floor, no static

loads are applied.
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i T; (s) a (m/sz)

1 0.39434 2.7
2 0.10802 4.3
3 0.05506 4.4

Figure 4.3.2 shows the maximum displacement versus the
slip load plot for this particular frame. From the plot it
appears that the optimum slip lcocad is about 7 kN as found by
Cherry and Filiatrault for a peak acceleration of 0.30 g.
From the modal analysis, the floor displacement envelope seems
to agree well with that of the time-history. The maximum roof
level displacements is off by about 20 %. The difference can
be best explained by the response acceleration so obtained
from the graph is that from the upper bound values. The
storey shears is still off by about 50%. From Fig. 5.3, no

plastic hinge was seen to have developed for FDF example no.3.

4.4 Frame No. 4 (Example 1 of DRAIN-2D)

The fourth example is the first example in the original
DRAIN-2D manual. It is a ten storey frame with typical
stiffness and masses and the properties and dimensions are as

shown in Figs. 4.4.1. A brace area of 8.0 in2

(5120 mm ) is
used and this gives the a values of 2.3 to 1.0 for the frame.
This corresponds to a yield force of about 352 kips. A quick
analysis with the TABS program for the BMRF showed that the

maximum load on the ground floor brace element is about 25U

kips. So this indicates that the brace element will function
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properly during service conditions.

The frame is then subjected to the NBK ground motion and
the floor deflection versus slip load curve is as shown in
Fig. 4.4.2. The curve decreases to a small plateau at about 70
kips and then moves upward again, and then decreases again. So
it. appears that the optimum slip load for this frame, given
the particular ground motion is about 70 kips. The equivalent
critical damping ratio for the MRF is about 20%. The periods
of vibrations of the frame and the response acceleration are

as follow:

T, (s) a (in/s)

[ N

1 2.6423 19.7
2 0.9314 47.2
3 0.5324 70.8
4 0.3663 161.4
5 0.2652 188.9

The corresponding floor deformation is plotted together
with that of the DRAIN-2D in Fig. 4.4.3. This time the maximum
displacement at the roof level is off by about 25% and the
storey shear is off by only about 22%. All the floor beams of
the first seven floors of the FDF were found to have developed
plastic hinges, and so have all the ground floor columns. The

locations of the yield hinges are shown in Fig. 5.4.

4.5 Frame No. 5

Example no. 5 is the six storey high, two bay test
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frame used by A. K. Jain for the study of reinforced concrete
frame with steel bracing elements (35). In this example, the
original material property was retained, also the stiffness
degrading model was used for the reinforced concrete beam
elements. A dead load of 27 kN/m is used for the frame.
Properties and dimensions used are shown in Figure 4.5.1. A
brace area of 3000 mm2 is used and this corresponds to the a
values of 2.3 to 1.3 for the frame. The first fundamental
period of the frame calculated by using TABS is about 1.30
sec for the MRF. A concrete compressive strength of 15 MPa
and for the steel a yield strength of 415 MPa are used for
computing the yield stresses for the members. Reinforcements
of rebars are as per the descriptions given in the test

review by the author.

The same frame is modeled on the DRAIN-2D program and
the optimum slip load condition is okbtained in the usual way.
This is shown in Fig. 4.5.2. The deflection at optimum slip
load is about 48 mm. The equivalent critical damping ratio for
the MRF at optimum slip load condition is about 15 %. The
first five modes of vibrations and their response

accelerations are:

T, (s) a (m/st)

[

1 1.3026 1.0
2 v.4177 2.3
3 0.2276 3.6
4 0.1488 4.4
5 0.1081 4.8
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These are used as the input acceleration spectrum for the
modal analysis on the TABS. Figure 4.5.3 shows the envelopes
of the maximum storey drifts from the DRAIN-2D and the TABS
outputs. The displacements envelopes for the two analyses
appear reasonable., This time the roof displacements are off by
about 9% only. As for the storey shear, the same phenomenon is
observed. A factor of about two is required for the TABS77
output to produce the same effects. For the FDF, only one
ground floor column reached yield condition as shown in Fig.

5.5,

4.6 Summary

From the results obtained for the test frames from the
this chapter, it is observed that the spectrum generated is
sufficiently accurate for the preliminary design of a FDF
system under optimum slip load conditions. The response
spectrum method was used for the analysis of several example
frames at their optimum slip load conditions. The results
obtained manifested that the maximum deflection response can
be evaluated quite reasonably. The column shear forces on the
other hand were not as good as the deflection results. The
modal response spectrum method of analysis is an approximate

method.

142



143

-+~ 2 B) 22
C
19 Bl 20
2
17 Bl 18
)
| ise—8& 16
£
£ 3
S 13 B1 14
w
@l 3
: 1
3 1" B 12
] C4
w
e 9 B2 10
Ch
7 B2 8
cs
5 B2 6
s
3 B3 4
cé
L
| 2407 L
T 6100mm
Figure 4.1.1 Frame No.

MASS = 0.3419 Kip-s?
in
PER FLOOR

B1 w18 X50
B2 W18 X60
B3 W18X77
C1 W14 X34
C2 W14 X53
C3 WILXT78
C4 W14 X103
C5 Wi14X 119
C6 W14X 184

1 Kip=4 448 kN
1" =254 mm

1



INCHES

40.0
Z 30.0

@)

5

O 20.0

™

4 10.0

ES 0.0 I 1T T 1T 1 1T 1 17T v 1T 11 1]
O 0 100 200 300
- Ps, kips

Figure H.1.2 De formation vs. slip load for frame no. 1

TIME-
8 - HISTORY

MODAL
ANALYSIS

STOREY NO.
w
I

LI R L DL LR ]

0 S 10
DEFORMATION, INCHES

Figure 4.1.3 Maximum storey deformation
for frame no. 1

144



TIME-HISTORY

STOREY NO.
U
1

g -

<
o
o
>
r—

1
O4tvrrtrrTr 1m0

TT]
0 50 100 150
STOREY SHEAR, kN.

Figure 4.1.4 Maximum storey shear
for frame no. 1

15




(915 mm )

8EQ 36"

L8

-

MASS=0.01294 Kip-s¥in PER FLOOR

37 6W8.5 38 39 6W 8.5 40
3 3K 35 3®
29 3K 3 32
25 28

26 27
24
2 27< 23
17 ' 0
1K 19 2
13 u.< 15 16
9 12
1°4< L Kipz4 448 kN
1 =25.4mm
5 < 8
— W13 —— «— (W13 ——>
N 78° o 60 | 78" N
* IS T~ K
1980 mm 1525mm 1980 mm

Figure 4.2.1 Frame No. 2

16



V3

tad

I

%%2”5 T

Z 2.0

O . /,,EJ

ES 7

LLJ1.5 ?

™ .

E§1.0 a

Le 0.5 : T T T 1 T T v I [ T 1T T7]
S 0 20 40 60
(0t

Ps, kips

Figure 4,2.2 Deformation vs. slip load for frame no. 2

TIME
“HISTORY

MODAL
ANALYSIS

0O 1 2
DEFORMATION, INCHES

Figure 4.2.3 Maximum storey deformation
for frame no. 2

1hk7



1
i TIME HISTORY

X 4 - !
O !
S 3- Y MODAL
: ANALYSIS
2 - 1
14
O | BRI l|| TT 11 ] T 1T 11 l
0 10 20 30

STOREY SHEAR,

Figure 4.2.4

kN.

Maximum storey shear

for frame no. 2

148



MASS

o7 SIEXe 8 1150 kg
N

< 6
' 5)<75§8 6 3400 kg
7o) Y 8
~
AR S 4 3400 kg
o 4 71S75X 8 FOR ALL
= COLUMN
1 17

1 2

L v

1 2050 mm |

Figure 4.3.1 Frame No. 3

149



mm.

- 100.0

z

(@)

— 750

O

L

T 50.0

L

(]

. 25.0

@)

8 0.0 [l1jl|‘ll1lllll|]lll11
0 3 5 8 10

Ps, kN

Figure 4.3.2 De formation vs. slip load for frame no. 3

3 (P )]

TIME- /
HISTORY

O n_|

= 2

aj MODAL

% ANALYSIS

- 1 -

wn

0
0.0 5.0 10.0
DEFORMATION, mm.

Figure 4.3.3 Maximum storey deformation
for frame no. 3

150



3 -3
_LTIME HISTORY

o i
pd 2
G MODAL
o
& /ANALYSIS
7 i

O ITIIIIIJIII!TII']

0 3 S 8
STOREY SHEAR, kN.

- Figure 4.3.4 Maximum storey shear
for frame no. 3

151



i
]

9 EQ 144 (3660mm)

180 (4572 mm)

18

MASS

W18-35 W14-26 W14 -26 28
- 4 = - 0.33
- ™ N
@ W21- 44 Ol W13 w18-35 |7 1 1903
<37 LS 9 L “z
z z z
do do do 0.4993
33 34 35 36
sl do Sle” do IS do 7 0.4993
=129 430 3| 32 §
= —- ol
=
do 3 do Wi18-35 0.4993
25 26 27 28
at‘g do o 18-40 = WI18-40 ? 0.4993
=2 <22 23| % 242
2 = z z
W21-49 W21-44 W21-44
17 18 19 70| 0:4993
(Vo] (Vo) -
_ W21-49 e do = do T 0.4993
ol [E 5[4 15§ 16 ;
> =
= W21-49 W21-44 W21-44 0.4993
9 10] 1 12 :
o v -
- - o
v W21-55 —l W24\ W21749 12 (5 4903
S| T Kip:4 44BKN Z z = Kip-s
2l 1 225 4mm —
_/ in
. - 5- _ll'..
1 e
i 360" fr 288" 4288 +
' 9144 mm 7315 mm 7315mm

Figure 4.4,1

152

Frame No. 4



78]

L)

I

O

< ]

Z 509

5 5.0 -

b— .

O .

Ej -

L _

O _

ES 0.0 T T T 7 T T 7T 7 7T 171

8 0 100 200 300

Ps, kips
Figure 4.4.2 Dezformation vs. slip load for frame no.

10+
9._
8._

ANALYSIS

AN

STOREY NO.
W
l

\

TIME-HISTORY

T T 1 T 177 Y

T
o 1 2 3 4 5
DEFORMATION, INCHES

Figure 4.4.3 Maximum storey deformation
for frame no. 4

153



10 —
9._. [
1
8-— “
) ! TIME
Q /7 “ HiSTORY
6 .
L 5
S 44 ]
= |
3’* 1
2 ‘l MODAL
1 - | ANALYSIS
O rif%—]‘llriilr

0 100 200 300
STOREY SHEAR, kN.

Figure 4.4.4 Maximum storey shear
for frame no. 4

15L



5EQ3.5

4.5m

19 20 300X6007 2|
~ 300x500° V
R
6 - 18
13 = 15
10 |
T 2
.,
= 9
4 = 6
_/ - 4
| 2 3
| 6.0 6.0

Figure 4.5

o1

155

Frame No. 5

MASS =33 tons

(metric)
PER
FLOOR



175
£
e\

Z 125
E:
Q 100
™
b 79
()]
L
8
S 25
0 rTlTlllI]llll[1lTl|lfll]fl [T T7TTT]
50 100 150 200 250 300 350 400
Ps, kN.
Figure 4.5.2 Deformation vs. slip load for {rame no. 5
6
TIME- [ |__mopAL
5 - HISTORY ANALYSIS
g
4
"
o
 2-
n
1
O T T T T T T T
0 50 100

DEFORMATION, mm.

Figure 4.5.3 Maximum storey deformation
for frame no. 5

156



STOREY NO.
w
1

ANALYSIS

O T TTTTT rTerT+“F1
0 100 200 300

STOREY SHEAR, kN

Figure 4.5.4 Maximum storey shear
for frame no. 5

157



5.0 FORCF REDUCTION FACTOR FOR THE FDF

The objective of the seismic provisions of the National
Building Code of Canada is to protect the occupants of
buildings from the destructive effects of earthquakes. This is
done by specifyving suitable design forces and special details
in structural requirements so that the probability of
building collapse or injuring people is low. Recalling from
section 1.3, the total base shear for a building is calculated

according to the equation provided by the NBCC as:

V=vSIFI KW

The total base shear is then distributed over the building
height as static lateral loads and member forces are then
obtain from the structural analysis. The design forces
specified in buildings codes are considerably smaller than the
levels corresponding to elastic structural response that
results from the given seismic actions. This is reflected in
a structural system coefficient, the K factor. Rainer (1987)
explained that the K factors used in the base shear equation
only reflect the performance of the type of structural system
used under seismic forces. They are merely a means for
assigning relative merit to different aseismic structural
systems on the basis of observed or expected behaviour during
earthquakes, their numerical values have no absolute rational
interpretation. The structural behaviour coefficient, K is
intended to account for the energy dissipation capacities of
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different types or structural system due to inelastic
deformation and damping. These factors can be related to the
inelastic behaviour of a building structure and the
corresponding lower forces produced during the dynamic
response. A factor of 0.7 s suggested for ductile
moment-resisting frames (MRF) svstems., The MRF systems are
deemed to be more ductile and therefore able to undergo large
plastic deflections, i.e. higher damping. Other structural
systems are given a K value higher than 0.7 as they are not as
ductile as the MRF. Since the FDF system is more capable of
energy dissipation than MRF a K coefficient of less Lhan 0.7

can be expected.

The K factors can be related to the system ductility of
the structure, since it is a reduction in the forces in the
inelastic stage. System ductility is difficult to define for
multi-degree-of~freedom systems, but it can be defined easily

for a single-degree-of-freedom vibrating system.

The base shear equation V computed from the semi-
empirical base shear equation from the NBCC assumes plastic
behaviour in the structure during a major earthquake. The
seismic force on the structure is reduced when compared to the
elastic response of the same building. It is unrealistic to
design structures to behave elastically during a major

earthquake. Only special structures such as nuclear reactors
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are normally designed to behave in the elastic range. By
observing the base shear equation, assuming other things being
equal, (i.e. zonal velocity ratio v is fixed for particular
site conditions, S is the seismic response factor depending
on the frequency of the building, which can be governed by
cither the acceleration or the velocity contents of the
carthquake, F is the foundation factor which is fixed for
particular foundation soil conditions, W 1is the total
reactive weight which is unchanged), we can see that only the
K factor remains to be manipulated for other systems, such
as the FDF, the eccentrically braced frames, and
base-isolator systems. Difficulties may arise when assigning
the traditional K factors for these innovative systems, as it

was developed 1in an empirical manner.

The seismic response factor S, which is depend on the
fundamental period of the building, is a function of the
stiffness of the structure. If the global structural stiffness
of the building is expected to remain unchanged during an
earthquake, then the response factor will remain unchanged.
But for a new system, such as the FDF and the base isolator
systems, the lateral stiffness of the building is expected to
change due to the yielding of certain pre-selected members
for energy dissipation. As a result, it is more convenient to
use the newly introduced force reduction factor R, for the

study of the effectiveness of the FDF systems in energy
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dissipation.

Rainer (1987) proposed this new force reduction factor,
R, for the modification of the seismic design requirements of
the 1985 NBCC. Comparing the new equation to the old

equation:

V = v SKTITFHW (old)

Vv = U { new)

it is seen that the S factor has now become S the new elastic
response spectrum factor. In the new equation the numerator
represents the base shear of the elastic response, and R is
a factor which accounts for the force reduction due to the
ductile behaviour of non-linear systems, or due to increcased
damping. A new factor U, called the calibration factor, is
introduced to maintain the design base shears at the same
level of protection for buildings with good to excellent
capability of resisting seismic loads consistent with the R
factor used. The new S for the case where the zonal
acceleration and the velocity ratios are equal, i.e. Z = Z

8 v?

is suggested to be:

_ 1.5
S = ~———e < 3.0
{7
instead of the old S = 0.22/{T. The factor of 3.0 is the
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| upper bound value due to the elastic amplification with a 5%
damping in the high frequency range. Equating the new and the

old base shear equations we get

v SI FW
v ST F KW =
R
s
S K =
R
0.22 1.5
—_— K = — K
T { T R
giving:
R = 6.8/K

This results in the following table translating the K

factor into R's

K-factor Derived R Derived R

(1985 NBCC) {a=1.5) (a=1.0)
0.7 9.71 6.47
0.8 8.50 5.66
1.0 6 .80 4,53
1.3 5.23 3.49
2.0 3.40 2.217
3.0 2.26 1.51

Where the first column is the original K factor for the
various common structural systems (a live load factor of 1.5
is used). Column 2 is the R factor for the load factor of 1.5
as applied to the existing live load due to earthquake. Thus
it can be seen that for the MRF with a K factor of 0.7, the

corresponding elastic forces is about six times higher.
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5.1 Examples for MRF

These newly derived R factors are of course based on
the assumed K factors previously assigned in the 1985 edition
of the NBCC. To compute the R factor from actual dynamic
analysis is possible but tedious, as numerous buildings must
be analyzed before an average R factor can be said to be
representative of the type of construction used. Nevertheless
it is still possible to carry out a limited experimentation to
examine the R factor for the MRF systems. For this analysis
the five examples studied previously in chapter 4 will be
utilized. Initially the total base shear of a non-linear MRF
is determined {(from the time-history dynamic analysis), then
a second analysis is executed for the same MRF but this time
the yield forces are increased to some arbitrarily high
magnitudes to prevent yielding, thus making the MRF an

elastic system through out the time~history analysis.
The R factor for the MRF system is then equal to the

total elastic base shear divided by the non-linear total base

shear, as shown by the simple equation:

Velastic

Rype =

Vinelastic

By this way one can compare the reduced forces induced
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in the non-linear MRF to the elastic one. To do this, a
sufficiently large number of time history earthquake records
must be utilized on many frames with different frequency
range in order to arrive at a credible figure. For this
elementary case study, however, only three earthquakes will be
used. The 0.30g NBK artificial earthquake, the 0.33g E1 Centro
carthquake, and the Olympia earthquake scaled to 0.33g will be
used. The previous five examples used in chapter four are
analyzed again through DRAIN-2D and the results are tabulated

in Table 5.1.

From the table, it can be noticed that the R factor
computed from the three earthquakes for frame 1 is about 2.5.
This is lowver than the expeted value of 4 for the MRF
according the 1990 NBCC. For frame 2 the calculated R factor
is about 2.4, this is again lower than 4 for a MRF, but since
this is an experimental frame and did not represent genuinely
a realistic building. For example no. 3 the R factor is 1.6.
Again, this frame is an experimental frame and therefore did
not truly duplicate an actual building frame. For example no.
4 the computed R factor is 5.8. For example no. 5 the
estimated R factor is about 2.5. An overall average R factor
of 3.0 is obtained for the five examples. It must bear in
mind that the derived R factor is based on the traditional K
factor which assumed a certain level of ductility factor. This

ductility is easily defined for that of a SPDOF system with
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clear yield level, but for a building frame and therefore a
MDOF system, it is not as clear. From the results obtained for
these test frames, it can be said that the R factors derived
by using the K factors are higher than the R values actually

computed by using the test frames,

5.2 Examples for FDF

With the new set of force reduction factors as defined
in the previous section, the subsequent section will seek Lo
specify a new R factor for the FDF systems instead of the
traditional K factor. The new R factor is simple to quantify
for new structural systems or new materials when compared to
the rather empirical nature of the current K factors. Since
the elastic base shears are promptly calculated by c¢ither the
modal response spectrum method, or by utilizing the
step-by-step integration of the equations of motions, tLhe
force reduction factor can be established by comparing the

results with non-linear dynamic analyses.

For the FDF system, the base shears would be computed
under the optimum slip load conditions. The elastic base
shears would be those computed by assuming that the FDF
systems remain elastic without yielding anywhere in the
building, in other words, the elastic base shear is that of

the elastic braced-moment-resisting-frame, or BMRF. In
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cquation form:

Viugs
v

Repp

FUF

For the following simple development of the force
reduction factor R for the FDF systems, a total of three
carthquake records are to be used to estimate the base shear
for the BMRF and its corresponding FDF. The average of the
three base shears computed will be used to determine the R
factor. The earthquakes records are the 0.30g NBK, the 0.33g
El Centro, and the 0.30g Olympia records. It is a well known
fact that the structures in the intermediate and long period
range, will induce higher forces by earthquake with high
velocity contents. In this study it is assumed for now that
the acceleration is the dominant case for the following

ecxercises.

The same data of example frames 1 to 5 are used except
that for the BMRF cases, in which all the yield stresses are
increased in order to avoid yielding in the members. Six
analyses are carried out for each frame, three elastic ones
and three non-linear ones for three different earthquakes.

The main results obtained are tabulated in Table 5.2.

Frame no. 1 is subjected to the three different

earthquakes as FDF's with the optimum slip load as established
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earlier in the previous chapter. At the optimum slip load
conditions, the total base shears computed for the ULhree
earthquakes are 182.7, 154.0 and 115.9 kN. for the 0.30g NBK,
0.33g E1 Cento and the 0.33g Olympia respectively. 1t may be
mentioned that the 0.30g NBK induced the highest base shear of
the three. The same frame is then revised with high yield
forces for all the structural members for the elastic
analysis. Of the three records used, again the NBK data is
seen to have induced the highest base shears in the elastic
BMRF cases. For the BMRF, the base shears arc 1089.4, 656.0
and 462.0. For the R factors, the 0.30g NBK produced a R of
6.0, the 0.33g El Centro produced an R of 4.3, and the 0.33g
Olyvmpia produced an R of 4.0. This is summarized as shown in
Table 5.2. For example in no. 1 an average R factor of 4.8
is obtained. This 4.8 factor is higher than the 3.5 factor in

the MRF tor 0.30g NBK.

For the example no. 2, the 0.30g NBK produced an R
factor of 2.7, the 0.33¢g E1 Centro an R of 3.9, and the 0.33¢g
Olympia an R of 3.8. This is probably due to the fact that
frame no. 2 is a 1/3 scale experimental model of a prototype
building, and itself is a very light frame as it was designed
initially to study the behaviour of uplift under the columns.
The dominant periods of vibrations of the frame are probably
outside the frequencies of the three earthquakes, as a

results the frame is not severely shaken by the ground
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effects. Nevertheless a average R of about 3.5 is obtained

for this frame.

For frame no. 3 the 0.30g NBK case gives a R factor of
6.7, the El Centro gives 4.1, and the Olympia record yields
a factor 2.7. The 2.7 factor is probably due to the low base
shear induced by the BMRF. The period of the frame 1is
probably outside the range of effective shaking of the

Olympia record. In this case, the average R is about 4.5,

Example no. 4 is a more realistic building frame since
the dimensions wused are representative of the typical
buildings. In this case the NBK case gives a factor of 6.3,
t.he El Centro gives 7.2, and the Olympia gives 13.4. The

overall average R factor is about 8.9.

Example no. 5 gives the factor of 6.2, 5.4, and 5.0
for the 0.30g NBK, 0.33g El Centro and the ~.33g Olympia
records respectively. An average of 5.2 is obtained for this
case. From the above five examples, it is obvious that the R
factor obtained for the FDF systems is at least 4.0. If the
results of examples 2 and 3 can be disregarded, since they
are experimental models of prototypes, the R factor then is
least 4.8. Comparing that with the R factor for the MRF
systems, which has a average factor of about 3.7. Thus the FDF

systems should have a higher R value than the MRF systems.
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By comparing the total base shears induced in t he
nonlinear MRF systems against that of the FDF svstems, for the
case of the 0.30g NBK, it is noted that the FDIF systems have
a slightly higher base shear than the MRF systems. This is to
be expected since the FDF systems have a higher initial
lateral resistance prior to the slipping of the dampers,
thus inducing higher forces. But it is observed tLhat the
maximum lateral deflection induced by the MRE is at least
twice that of the FDF. Which means the FDF has a better storey

drift control than the MRF.

Fig. 5.1 shows the locations of plastic hinges for both
the MRF and FDF for example no. 1. From the figure it is
observed that the MRF has more yielding than the FDF. Nine
floor beams have yielded in the MRF, whereas only two have
yielded in the FDF. Similarly, the MRF has eight plastic
hinges in the columns and none of the columns has yielded in
the FDF. Fig. 5.2 shows the same formations of plastic hinges
in the MRF and no yielding in the FDF for example no. 2. Fig.
5.3 also shows the yield locations for the MRF and no yielding
for the FDF. Fig. 5.4 shows extensive formation of plastic
hinges in the MRF and FDF. But the FDF is seen to be less
critical than the MRF. In Fig. 5.5 the MRF is seen to have
suffered great damage with yielding in beams and columns. In
the FDF only one hinge is found. In all, although the base

shear is slightly higher in the FDF than the MRF, the
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deflection in the FDF is lower, and with less yielding in the

structural members.

5.3 Effects of Peak Intensity

It is a well known fact that the same earthquake time-
history data but with a different peak accelerations will
induce a different dvnamic response in the same system. To
see the effects of different peak acceleration on the R
factors, the NBK data was scaled to 0.50g peak acceleration
for the frames and further analyses were performed. The

results are tabulated in Table 5.3.

For frame no. 1, the R factor has increased from 6.0 to
8.5. The elastic BMRF shear has increased by a factor
0.5/0.3=1.67. Because of the nonlinearity of the FDF system,
Lthe total base shear has gone up only by 17%. The R factor for
the example no. 2 in this cage has decreased slightly from 2.7
to 2.6, Because of the light weight of the frame, increasing
the peak acceleration has no effects on this frame. For
example no. 3 the R factor is also seen to have decreased
from 6.7 to 5.5. For example no. 4 the R factor has increased
from 6.3 to 9.4 , this is due to the large increase in the
elastic base shear. For frame no. 5 the R factor has

increased from 5.6 to 6.5.
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5.4 Summary

The force reduction factor R for the FDF frames for
the five frames calculated ranges from 3.5 to 8.9, with an
average of about 5.4. The R factor obtained for the MRF
system in this case study is about 3.0. This is lower than
those expected for the moment-resisting-frames, which is for
now being pegged at 4.0 under the latest revision to the NBCC
(37). From these examples, it can be concluded that the R
factor for the FDF system is higher than that of the MRFEF
system. By increasing the peak ground acceleration, the
elastic base shear has increased by a substanti1al amount, but
the FDF base shear is seen to increascd only marginally, as

reflected by the R factor computed.
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Table 5.1 Typical R factors for the MRF systems
0.30g 0.33¢ 0.33¢ R
NBK E1l Centro Olympia Average

IFrame no. 1 kips kips kips
Viel) 552.9 248.8 324.6
V(iinel) 157.1 140.8 157.6

i 3.5 1.8 2.1 2.5
Frame no. 2 kips kips kips
Viel) 80.7 61.7 93.1
V(iinel) 36.0 31.3 32.2

R 2.2 2.0 2.9 2.4
Frame no. 3 kN kN kN
Viel) 58.1 32.9 41.8
V(inel) 28.4 27.1 28.7

R 2.1 1.2 1.5 1.6
Frame no. 4 kips kips kips
Viel) 1841.0 1258.1 1755.1
V(inel) 290.0 287.6 258.7

R 6.3 4.4 6.8 5.8
Fr me no. 5 kN kN kN
Viel ) 2175.0 722.7 827.3
V(inel) 503.0 440.2 481.0

R 6.2 1.6 1.7 2.5
Average R 3.7 2.2 3.0 3.0

I kip = 4.448 kN
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Table 5.2 Typical R factors for the FDF systems
0.30g 0.33g 0.33g R
NBK El Centro Olyvmpia Average
Frame no. 1 kips kips kips
BMRF 1089.4 656.0 462.5
FDF 182.17 154.0 115.9
R 6.0 4.3 1.0 1.8
Frame no. 2 kips kips kips
BMRF 107.2 39.0 112.3
FDF 39.62 10.1 29.4
R 2.7 3.9 3.8 3.5
Frame no. 3 kN kN kN
BMRF 60.7 48.8 25.2
FDF 9.0 11.3 9.3
R 6.7 4.1 2.7 1.5
Frame no. 4 kips kips kips
BMRF 2096.0 2169.0 3782.0
FDF 331.0 301.0 280.0
R 6.3 7.2 13.4 8.9
Frame no. 5 kN kN kN
BMRF 2901.0 2506.0 2215.0
FDF 469.0 474.0 445.0
R 6.2 5.4 5.0 5.2
Average R 5.6 4.9 5.8 5.4
1 kip = 4.448 kN
173




Table 5.3 R factors for different intensity

0.30g NBK |0.50g NBK

Frame no. 1 kips kips
BMRF 1089.7 1821.0
FDF 182.7 214.9
R 6.0 8.5
Frame no. 2 kips kips
BMRF 107.2 100.5
FDF 39.6 38.5
R 2.7 2.6
Frame no. 3 kN kN
BMRF 60.7 80.4
FDF 9.0 14,5
R 6.7 5.5
Frame no. 4 kips kips
BMRF 2096.0 3487.0
FDF 331.0 372.0
R 6.3 9.4
Frame no. 5 kN kN

BMRF 2901.0 4227.0
FDF 469.0 645.3
R 6.2 6.6
Average R 5.6 6.5

kip = 4.448 kN
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6.0 CONCLUSIONS

From the studies carried out in the previous

chapters, several conclusions can be drawn:

ii.

iii.

The relative stiffness of the brace element to the
column lateral stiffness ( a ) does play an important
role in the amount of energy being dissipated. From
chapter 2 it was deduced and proved that a greater than
10 is not necessary, so long as the service requirements

are met.

The so called optimum slip load appears to have little
to do with reactive weight of the building, at least
not directly. This is based on the observations made
in chapter 3. The optimum slip load also seems to vary
with the type of earthquakes and the peak intensity
of the earthquake. It may be said that each earthquake

appeared to require a different optimum slip load.

A deformation spectrum is generated for the simplified
analysis of the FDF system by the modal method. This
spectrum is sufficiently accurate for predicting the
deformation of the FDF systems under the optimum slip
load conditions only. The maximum deflection computed
from the modal response analysis using the response

spectrum is sufficiently accurate.
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iv., An average R factor of about 5.4 was obtained for the FDF
systems based on five building frames. For tLhe MRF
system, an average R factor about 3.0 was obtained. This
is lower than the value anticipated. This proved that the
K factor for the FDF svstems is indeed lower than 0.7. In
other words Lhe R factor for the FDF systems should be

higher than those assigned to the MRF structural systems

6.1 RECOMMENDATIONS FOR FURTHER STUDIES

i. More realistic structural frames should be used for Lhe
derivation of the force reduction factor (R) for Lhe
FDF structural systems.

ii. Analytical solutions for the optimum slip loads for
SDOF systems could be derived for simple loading
functions. The results from these analyses should

produce very valuable information.
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APPENDIX A
PROGRAM LISTING OF SDOF ROUTINE

PROGRAM FRICTON
DOUBLE PRECISION X(30000),V(30000),2(30000),2A(30000),
TIME(30000),G(30000),T(30000),T1(30000),ACC(30000),
T15(30000),TIMES(30000),C1(30000),C2(30000),
R(30000),CHECK(20),G5(30000),25(30000),DELPO(30000),
C10(20),C20(20),XMAXK(300),VMAXK(300),ACCMAXK(300),
ALPHAK (300),PERIOD(300),PSK(300)
INTEGER COUNT,ICOM(30000),JCOM(40)
CHARACTERX*70 TITLE
REAL%x8 PP,TIM,DELT,DELP,SCALE,
PI,XMAX,VMAX, ACCMAX,KG,MASS,PS,K1,K2,ALPHA
KNEW, PNEW, AN, BN,DELA,DELV,THETA, FF, DAMP
OPEN(3,FILE='XMAXALP.DAT’,STATUS="NEW"®)
OPEN(4,FILE="VMAXALP.DAT’,STATUS='NEW’)
OPEN(5,FILE="AMAXALP.DAT’,STATUS='NEW’)
OPEN(6,FILE='VMAXPER.DAT',STATUS='NEW’)
OPEN(7,FILE="’AMAXPER.DAT’',STATUS='NEW’)
OPEN(8,FILE="'XMAXPER.DAT’,STATUS='NEW’)
OPEN(9,FILE="'XMAXPS.DAT’,STATUS="NEW')
OPEN(10,FILE="'VMAXPS.DAT',STATUS='NEW’)
OPEN(11,FILE="'AMAXPS.DAT’,STATUS='NEW’)
READ(1,90) TTITLE
FORMAT (A70)
WRITE(x,101) TITLE
WRITE(2,101) TITLE
FORMAT(’ ',A70)
READ(1,*) NOPAIRS
READ(1,%*) NSTEPS
READ(1,x*) DELT
READ(1,%) DELP
READ(1,%*) SCALE
READ(1,%) MASS
READ(1,%) DAMP
READ(1,%) PS
READ(1,x) K1
READ(1,%*) ALPHA
READ(1,%) JCOM(20)
READ(1,%*) JCOM(19)
READ(1,%*) JCOM(18)
READ(1,x%) JCOM(14)
WRITE(*,109)
NOPAIRS ,NSTEPS,DELT,DELP,SCALE,MASS,DAMP,PS,K1,
ALPHA,JCOM(20),JCOM(19),JCOM(18)
WRITE(2,109)
NOPAIRS ,NSTEPS,DELT,DELP,SCALE,MASS,DAMP,PS, K1,
ALPHA,JCOM(20),JCOM(19),JCOM(18)

FORMAT (

' NOPAIRS ="', 15,/,
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-

9001

c

206

200
300

c

140

C

150

149

++F++ o+t

'’ NSTEPS ="', 15,/,

' DELT ="', F10.4,/,

' DELP = ', F10.4,/,

' SCALE = ', F10.4,/,

' MASS ="', F10.4,/,

' DAMPING = ', F10.4,/,

' PS = ', F10.4,/,

' KA =, ¥10.4,/,

' ALPHAK(1) = ', F10.4,/,

' TIME-HIST OUTPOUT INT.
12X,12,/)

P1=3.141592654D-00

NPS = 120

NMASS = 200

NK1 = 200

NALPHA = 200
READ E.Q. DATA

COUNT = NOPAIRS

DO 9001 K=1, NOPAIRS ,1
READ(1,%) (T(K),ZA(K))

CONTINUE

PRINT INPUT EARTHQUAKE DATA

IF(JCOM(18).EQ.1) THEN
WRITE (2,206)
FORMAT(' ', ’ INPUT E.Q. DATA ')
DO 300 I=1,NOPAIRS,1
WRITE(2,200) T(I), ZA(I)
FORMAT(2F17.6)
CONTINUE
ENDIF

MULTIPLY E.Q. DATA BY SCALE FACTOR

DO 140 JJJ=1,NOPAIRS, 1
2(JJJ)=ZA(JJJ)*SCALE
CONTINUE

TO PRINT SCALED E.Q. DATA

IF(JCOM(17).EQ.1)THEN
DO 150 J=1,NOPAIRS ,1
WRITE(2,149) (T(J), 2(J) )
WRITE(*,149) (T(J), Z(Z) )
CONTINUE
ENDIF
FORMAT(2F17.6)

INTERPOLATE E.Q. DATA
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DO 160 I=1,COUNT,1
TIME(I) = T(I)
TIMES(I)= T(I)
160 CONTINUE
CALL INTER (NSTEPS,TIME,Z,DELT,T1,G)
INITIALIZE VARIABLES

DO 9950 KK=1,NPS,

1
X(1) = 0.0
V(1) = 0.0
ACC(1) = 0.0
XMAX = 0.0
VMAX = 0.0
ACCMAX = 0.0

ALPHAK(KK) = ALPHA

K2 = ALPHA * K1

KG = K1 + K2

PERIOD( KK ) = SQRT(MASS/KG)*2.0*PI
JCOM( 1 ) =0

PSK(KK) = PS

FF = PSK(KK)

JCOM(16) = O

DO 3000 I=2, NSTEPS,1
CALL RESP1I,X,V,ACC,DELT,MASS,DAMP,KG,DELV,DELX,G)

IF( ABS(C2(I-1)) .LT.FF.AND.JCOM(16).EQ.0 ) THEN
C1(I)=C1(I-1)+K1¥DELX
C2(I)=C2(I-1)+K2%DELX
R(I)= C1(I)+C2(I)

KG=K1+K2

ICOM(I)=0

N1=0

N2=0

N5=0

IF(ABS(C2(I)).GE.FF) THEN
CALL CORRECT (I,FF,DELPO,C2,C1)
GOTO 4001

ENDIF

GOTO 4090

-  — ——— ————— D P G v W e T T A W T S A i S — — . - - G

4001 IF(JCOM(10).EQ.O0) THEN
JCOM(10)=1
IF(C2(I).GT.0.0)THEN

JCOM(8)=1
GOTO 4010
ELSE
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JCOM(9)=1
GOTO 4020
ENDIF
ENDIF
IF(JCOM(8).EQ.1) GOTO 4010
IF(JCOM(9).EQ.1) GOTO 4020

o YIELD IN +VE DIRECTION FIRST-=—==——m————
4010 IF( ABS( C2(I) ).GE.FF.OR.JCOM(16).NE.O )THEN
JCOM(16) = 1
IF( V(I).GT.0.0 .AND. JCOM(15).EQ.0 ) THEN
KG=K1
ICOM(I)=1
N10=0
N1=0
C2(I) = FF
C1(I) = C1(I-1) + KI1*DELX
R(I) = C1(I) + c2(1)
GOTO 4090
ELSEIF ( V(I).LT.0.0 .OR. JCOM(40).EQ.0) THEN
KG=K1+K2
N2 = 0
NS = 0
JCOM(15)=1

ICOM(I) = 2
IF(N1.EQ.0) THEN
N1=1
CHECK(2)=X(I-1)
CHECK(3)=C2(I~-1)
CHECK(5)=ABS(2.0%FF)
ENDIF
C1(I) = C1(I-1) + K1*DELX
c2(1) C2(I-1) + K2xDELX
R(I) C1(I) + Cc2(I)
CHECK(4) = ABS( CHECK(3) - C2(1) )
IF( ABS(C2(I) ).LT.FF) THEN

N10= O
N = O
ENDIF
IF(C2(1).GE.FF) THEN
KG = K1
ICOM(I)=1
N10=0

IF(N5.EQ.0) THEN
CALL CORRECT (I,FF,DELPO,C1,C2)
N5=1
ENDIF
JCOM(15)=0
ELSEIF(C2(I).LT.-FF) THEN
IF(N10.EQ.0O) THEN
CALL CORRECT (I,FF,DELPO,C1,C2)
N10=1
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4020

ENDIF
ENDIF
GOTO 4090

ENDIF

KG=K1
C2(I) = -FF
C1(I) = C1(I-1) + K1*DELX
R(I) = C1(I) + C2(I)
ICOM(I) = 3
GOTO 4090

ENDIF

IF YIELD IN THE -VE DIRECTION -====—=—=—=--

IF( ABS( C2(I) ).GE.FF.OR.JCOM(16).NE.O )THEN

JCOM(16) =

1

IF( V(I).LT.0.0 .AND. JCOM(15).EQ.O0 ) THEN

KG=K1
ICOM(I)=-1
N10=0
N1=0
C2(I) = -FF
C1(I) = C1(I-1) + K1%DELX
R(I) = C1(I) + C2(1)
GOTO 4090
ELSEIF ( V(I).GT.0.0 .OR. JCOM(40).EQ.0) THEN
KG=K1+K2
N2 = O
NS = O
JCOM(15)=1

ICOM(I) = -2
IF(N1.EQ.O) THEN

N1=1

CHECK(2)=X(I-1)
CHECK(3)=C2(I-1)
CHECK(5)=ABS(2.0%FF)

ENDIF
Ci1(I) = C1(I-1) + K1*DELX
C2(I) = C2(I-1) + K2*xDELX
R(I) = C1(I) + C2(I)

CHECK(4) = ABS( CHECK(3) - C2(I) )

IF( ABS(C2(I) ).LT.FF) THEN

N10= O
NS = O
ENDIF
IF(C2(I).LT.-FF) THEN
KG = K1t
ICOM(I)=-1
N10=0

IF(N5.EQ.0) THEN
CALL CORRECT (I,FF,DELPO,C1,C2)
N5=1
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ENDIF
JCOM(15)=0
ELSEIF(C2(I).GT.FF) THEN
IF(N10.EQ.0) THEN
CALL CORRECT (I,FF,DELPO,C1,C2)
N10=1
ENDIF
KG=K1
c2(I1)
Ci1(I)

FF
C1(I-1) + K1xDELX

i"mnn

R(I) C1(I) + C2(1I)
ICOM(I) = -3
GOTO 4090
ENDIF
ENDIF
ENDIF
o ACCELERATION COMPUTED FROM THE E.O.M. -=---=----

4090 IF(ABS(C2(I)).LT.FF) DELPO(I) = 0.0
ACC(I)= ( -MASSXG(I)-R(I)-DAMPxV(I)+DELPO(I) )/MASS
Crmommm e CHECK FOR MAX VALUES-------
3501 IF( ABS(X(I)).GE.ABS(XMAX) ) THEN
XMAX = X(I)
TXMAX = T1(1)
ENDIF
IF( ABS(V(I)).GE.ABS(VMAX) ) THEN
VMAX = V(I)
TVMAX = T1(I)
ENDIF
IF( ABS(ACC(I)).GE.ABS(ACCMAX) ) THEN
ACCMAX = ACC(I)
TACCMAX = T1(I)

ENDIF
3000 CONTINUE
XMAXK (KK ) = ABS(XMAX)
VMAXK (KK) = ABS(VMAX)
ACCMAXK(KK) = ABS(ACCMAX)
PS = PS + 0.50
C ALPHA = ALPHA + 0.0t
9950 CONTINUE
Crmmmmm o TIME HISTORY OUTPUT----~~——=--—=m—————
IF(JCOM(20).EQ.1) THEN
WRITE(2,3999)
IF(JCOM(14).EQ.1) WRITE(*,3999)
ENDIF
3999FORMAT(’ ’,/,
+ 7 TIME(I) X(I) v(I) ACC(I) DELPO
+ c2(1) C1(I) R(I) YIELD ")

IF(JCOM(20).EQ.1) THEN
DO 3500 I=1,NSTEPS,JCOM(19)
WRITE(2,4000) T1(I),X(I),Vv(I),ACC(I),DELPO(I),
+ c2(I),C1(I),R(1),ICOM(I)

190




IF(JCOM(14).EQ.1)
WRITE(*,4000)T1(1),X(I),V(I),ACC(I),
+ . DELPO(I),C2(I),C1(I),R(I),ICOM(I)
IF(NNN.EQ.23) THEN
IF(JCOM(14).EQ.1) WRITE(*,3999)
WRITE(2,3999)

NNN=1
ENDIF
NNN=NNN+1
3500 CONTINUE
ENDIF

4000FORMAT(F9.5,F9.4,F8.3,1X,2(F8.3,1X),3(F9.2,1X),I12)
WRITE(2,4089)
4089 FORMAT ('’ ALPHAK(KK) PERIOD(KK) XMAXK (KK) VMAXK(KK)

+ ACCMAXK(KK)')
DO 9980 KK=1,NALPHA,1
WRITE(2,4070)ALPHAK(KK),PERIOD(KK),XMAXK(KK) ,VMAXK(KK),
+ ACCMAXK (KK)
IF(N20.GT.25) THEN
WRITE(2,4089)
N20=1
ENDIF
N20=N20+1
9980 CONTINUE
4070 FORMAT(5(F12.5,1X))
WRITE(3,101) TITLE
WRITE (3,4029)

4029 FORMAT ("’ ALPHA XMAX )
DO 5062 KK=1,NALPHA,1

5062 WRITE(3,5070) ALPHAK(KK),XMAXK(KK)
WRITE(4,101) TITLE .
WRITE (4,4039)

4039 FORMAT(’ ALPHA VMAX '’ )
DO 5065 KK=1,NALPHA,1
5065 WRITE(4,5070) ALPHAK(KK),VMAXK(KK)

WRITE(5,101) TITLE
WRITE (5,4049)

4049 FORMAT( ' ALPHAK ACCMAX ? )
DO 5075 KK=1,NALPHA, 1
5075 WRITE(4,5070) ALPHAK(KK),ACCMAXK(KK)

WRITE(6,101) TITLE
WRITE(6,4045)

4045 FORMAT ("’ PERIOD VMAX )
DO 5080 KK=1,NALPHA, 1
5080 WRITE(6,5070) PERIOD(KK),VMAXK(KK)

WRITE(7,101) TITLE
WRITE(6,4059)

4059 FORMAT (' PERIOD ACCMAX )
DO 5090 KK=1,NALPHA,1
5090 WRITE(7,5070) PERIOD(KK),ACCMAXK(KK)

WRITE(8,101) TITLE
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4069

5095

4079

5100

4088

5115

4099

5120
5070

DOUBLE
-+

-+
-+

TIM =

10
N=N+
GO TO 10

20

WRITE(8,4069)
FORMAT(’ PERIOD XMAX )
DO 5095 KK=1,NALPHA, 1

WRITE(8,5070) PERIOD(KK),XMAXK(KK)
WRITE(9,101) TITLE
WRITE(9,4079)
FORMAT(’ PS(KK) XMAX T )
DO 5100 KK=1,NPS,1

WRITE(9,5070) PSK(KK),XMAXK(KK)

WRITE(10,101) TITLE
WRITE(10,4088)
FORMAT ("’ PS(KK) VMAXK (KK ")
DO 5115 KK = 1,NP§,1

WRITE(10,5070) PSK(KK), VMAXK(KK)
WRITE(11,101) TITLE
WRITE(11,4099)
FORMAT ("’ PS(KK) ACCMAX (KK) ")
DO 5120 KK=1,NPS,1

WRITE(11,5070) PSK(KK), ACCMAXK(KK)
FORMAT(F13.5,4X,F13.5)
END
SUBROUTINE INTER (NSTEPSS5,TIMES,Z25,DELT5,T15,G5)
PRECISION 2Z(30000),TIME(30000),G(30000),T(30000),
T1(30000),T15(30000), TIMES(30000),G5(30000),25(30000)
REAL*8 PP,TIM,DELT,DELP,SCALE,
PI,XMAX,VMAX,ACCMAX,KG,MASS,K1,K2,
KNEW, PNEW, AN, BN, DELA,DELV, DAMP

N =1
0.0
T15(1)=
G5(1)=0
DO 30 MSTEP = 2, NSTEPSS
TIM = TIM + DELTS

IF(TIM.LE.TIMES(N+1)) GO TO 20
1

PP = (TIM -TIMES(N)) / (TIMES(N+1) - TIMES(N))

G5(MSTEP) = PP * Z5(N+1) + (1.0 — PP)*Z5(N)

30

T15(MSTEP)= TIM
CONTINUE
RETURN
END
SUBROUTINE RESP1(I,X,V,ACC,DELT,MASS,DAMP,KG,DELV,DELX,G)

DOUBLE PRECISION X(30000),V(30000),G(30000),ACC(30000)
REAL*8 PP,TIM,DELT,DELP,SCALE,
pi,XMAX,VMAX,ACCMAX,KG,MASS,K1,K2,

KNEW, PNEW, AN,BN,DELA,DELV,FF,DAMP

AN = 6.0%V(I-1)/DELT + 3.0%ACC(I-1)

BN = 3.0%V(I-1) + DELT*ACC(I-1)/2.0

PNEW = ~-MASS*( G(I) - G(I-1) ) + AN*MASS + DAMPxBN
KNEW = (6.00)%MASS/( DELT*%*2 )+3.000%DAMP/DELT + KG
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DELX = PNEW/KNEW

DELV = (3.00000)*DELX/DELT - BN
X(I) = X(I-1) + DELX

V(I) = v(I-1) + DELV

RETURN

END

SUBROUTINE CORRECT (I,FF,DELPO,C1,C2)

DOUBLE PRECISION C1(30000),C2(30000),DELPO(30000)
REALX*8 FF,FF1

IF(C2(I).GT.0.0) FF1=FF

IF(C2(I).LT.0.0) FFi=-FF

DELPO(I) = C2(I) - FF1

RETURN

END
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APPENDIX B

Properties of frames used
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APPENDIX C

To perform a dynamie response of o structuve, 1t s
normally required Lo determine the frequency of vibration of
the system. For this the baste equatrons of motron are
required. The basic equatiron of mothron of an awdamped, frec
vibrating system is:

(M)l {x}t + 0K 1T {X 1t = {01 (BH. 1)

The terms are the same as those defined 1o the previous
chapters. For the steady state condition, the simple harmonve

solution 1s found to be

{ Xt = { A} sin ( wt. + O ) (R3.2)

Substituting into the equation of motion (B.l) above yields:

~w [ M1 { A} sintwt +0) + [T KJT{iAbLsintw ¢+ 0)

{0 f

rearranging:

{ [ K1 -w [ M1 } {A} sin (wt+ 0) oo

or:

[ K1 -wiIMI{ALL= {10! (B.3)




The above  equation can be  solved easily by using the

woell—-known Crammer's rule as shown below:

f 01
[ A ] - mmmemmmmm e
PR - wh MY
whoere ) X denotes the determinant for a matrix. For a

non-trivial solution, the denominator determinant vanishes,

ar.
K T-wr MY =0 (B.4)

Equation 4.4 is the classical eilgenvalue problem in the

form of:

[ K1 té¢ 1= [ MI]{¢} U
where
U' = is the diagonal matriz of eigenvalues
{ ¢ 1 = is the matrix of corresponding eigenvectors

or in a more tradional form, the above equation is

which leads to a set of n eigenvalues (natural frequencies)

and n eigenvectors (mode shapes). The frequency vector is

defined as:

ro
hanad
a




{ w } = . (B.9S)

Knowing the fregquency  vector,  substitute  back  antao

equation (4.2) yields:

With w! known it 1s now possible to solve for { A 1, since
the [ K 1 and the [ M ] matrices are asssumed to be known
heforehand. A closer examination of the form of the eqgquation
reveals that no exact solution can be obtained for { A | but
a relative magnitude can be found 1in terms of any of the
coordinate. The solutions so obtained are known as the mode
shapes of the elastic system. These are the free vibrating
shapes for each mode if the each individual mode  were to
behave independently from its anothers. These mode shapes
possess a special property known as the orthogonality of the
mode shapes. The orthogonality of the mode shapes can be

shown for any MDOF systems such that:

(¢TI MIT I ¢, ]
[l o 1T T KT ¢,

0 m = n

il
=
3

1

n

Accordingly, one can form a matrix [ ¢ 1 1n which cach

216



column 1s a4 mode shape, this 1s 1f:
l ¢ ] - [ ’l ¢l } { ¢1} { ¢1 } { ¢‘ } LI {¢|} ] (B¢6)

'—¢n ¢ * ¢ ¢ ¢n|
i ¢a

¢ll ¢Il

Then, for n DOF systems, the orthogonality conditions can be

wrillien as:

]
-

-~
o

(¢ 1" I M) ¢!
(¢ 1V LKII[ ¢]

i
—

-~
[a—

where [ V] denotes a diagonal matrix. To normalize the [&]

one must scale the mode shapes such that

(¢ 1'iml el =10T1) (B.7)

For dynamic analysis, the displaced position of a system
can be represented by the free vibration mode shapes. These
shapes constitute the number of DOF independent displacements
patterns, the amplitudes of which may serve as generalized
coordinates to express any form of displacements. For any

given elastic system, the displacements are given by the mode

shape vector ( ¢ ) multiplied by the modal amplitude [ Y, 1.
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Thus:

. (B.8)
The total displacement is then obtained as:
X2y Yo+ Yy Yo+ o, V.

or in matrix notation:
x =[¢e]1[Y] (B.9)

To obtain [ Y ], it is easier to post multiply [ o ]J by
(MITI[X]

(¢,  IMIIx)I=0¢d1 [MILeI[Y]
The right hand side then is:

[ 1, IMILOTILYI=0e [Mo Y,

o LMY, e MDY

All terms will vanish except the n" term because of the

orthogonality with respect to mass

[¢1, [M] [ x1=0¢1 [MIL&IL Y
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(o1, [MITIx]
S T, Sl S (B.10)

[ &1 IMITL eI

For an undamped system, the equations of motion becomes:

[MIIXI+TKILXT =1[Pt)] (B.11)
but

[X1=[o1TC[Y]

[X1=C[611[Y]

[X1=[¢1[Y]

Since the mode shapes do not change with time, the last
equations of motion become:

[(MIT L[] [ Y1+ [KI[]I[Y]=TPHt)]
Premultiply by [ ¢ ]J one gets :

¢ [MI1LOIYJ+0 61,  [KIL®][Y]=
[ ¢ 17 P(t)

expanding the teft hand side gives :

L

¢, LMI o). Y, +¢, [ K1Y =4¢,P(t)

introducing:
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M. = ¢{ [ M1 ¢, the generalized mass
K. = ¢f { K1¢. the generalized stiffness
P.(t) = ¢ P(t) the generalized load

and rewriting, gives

M, Y, + K Y. = P.(t) (B.12)
which is the generalized equation of motion for a SDOF system
for mode n. Equation (4.12) 1is a set of N independent
equations of motion, one for each mode. It also can be shown

that:

The above procedure allows a MDOF system be converted
into a series of 1independent SDOF systems. For a damped
system, the similar procedure is applied with the inclusion of
a damping matrix. The procedure uncouples the equations of
motion due to the orthogonality of the mode shapes. Knowing
the period of free vibration for each of the mode of the
system, the dynamic response can be found by integrating the
Duhamel’s integral:

t
B -_jl_ f -§, w, (t-1) . i
Y. (t)= P.(t) e sin w. (t-t) dt

qu, 0
The response for each mode can be found successively and

the overall response for the whole system 1is found by
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superposition, thus the name "mode superposition method”. For
a typical modal analysis, one only has to determine the free
vibrating frequencies of a system and then pick up the
response parameters of interest from a computed response
spectrum. Then the superposition method is used to determine
the overall response. This gives fairly accurate assessment of
the dynamic behaviors of a system. For MDOF systems under

earthquake like loadings, the equations of motion are:

My Yo + Cp Y, + K Y. = ¢, M vg(t)

¢nm{1}'v';<t)

[V (t)

where

h =4 M {1}

= is the modal participation factor

X, = is the ground acceleration

The modal response from the earthquake again can be
computed from the Duhamel’'s integral:

f t - . W, (t-t)
Y. (t)z —==-- v;(t) e ' sinw. (t-T) dt

0

3]
N
Jry



and the total displacements are summed by:

{x 3} =9 V.

The vector { x } will yield the elastic displacement of the

system under the earthquake ground motions.
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