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ABSTRACT

A Tabu Search Heuristic for the Capacitated
Lot Sizing Problem with Setup Times and Setup Carryovers

Ke Ding

The single level capacitated lot sizing problem (CLSP) with setup times
and setup carryovers is a class of production planning problems in which multiple
items can be produced within a time period, and setups are considered to be
carried over from one period to the next. Explicitly handling the setup carryovers
is important for those production systems in which production changeovers from
one item to another incur significant setup times and/or setup costs. This
research focuses on developing a tabu search heuristic for the CLSP with setup
times and setup carryovers. In essence, the decision problem is composed of
two interrelated decisions, i.e., partial sequencing decision for setup carryovers,
and lot sizing decision. In our heuristic, three move types are designed to handle
the issue of partial sequencing, and two move types are designed to handle the
issue of lot sizing. Together, the five move types define the move mechanisms
used for local search. During the course of the search, infeasible solutions are
allowed. Global search strategies, such as dynamic tabu list, intensification, and
diversification, are employed in our heuristic. A bounding procedure for the
problem is also proposed. The computational study conducted on a large
number of test problems indicates that our heuristic performs well in solving this

computationally hard problem.
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Chapter 1
INTRODUCTION

Managerial decisions in a manufacturing organization can be represented
as a hierarchy of three levels of decisions, i.e., strategic planning, tactical
planning, and operational planning and control, as shown in Figure 1 (Bahl et al.
1987). Lot sizing is one of the decisions made at the second level, i.e., at the
tactical planning stage of the decision hierarchy. The lot sizing is concerned with
the trade-offs between production levels, inventory levels, and frequency of
setups. The goal is to optimally determine the production levels and production
timings of every individual item to meet all the demand requirements over a

given planning horizon.

Different classes of lot sizing problems have been studied in the literature.
In this study, we deal with a class of single level, multi-item, capacitated,
dynamic lot sizing problems with setup times and setup carryovers on a single
facility, and we focus on developing a solution procedure for this class of
problems. A Mixed Integer Linear Programming (MILP) model was proposed in
a recent study by Gopalakrishnan et al. (1995) to address the Capacitaied Lot
Sizing Problem (CLSP) with setup times and setup carryovers. A good solition
procedure for the model is essential as this would facilitate the application of the
mcdel to real world decision problems of this kind. The CLSP is known to be
computationally intractable, and hence in this research, we develop a heuristic
solution procedure based on tabu search framework. The tabu seairch heuristic

has the elements for both local and global search. The heuristic allows



infeasible solution to be visited during the course of the search, and contains five
move types that define the move mechanisms used for local search. The main
global search elements employed in the heuristic include a tabu list with variable
length, an intensification strategy, and two diversification strategies. We also
conduct an extensive computational experimentation to evaluate the heuristic's

performance.

Strategic Planning |
Long-range decisions
on products, processes,
plants, equipment, and
distribution _

4

Tactical Planning
Medium-range decisions
on resource scheduling,
master production
scheduling, lot sizing,
and material
requirements pianning

{

Operational Planning
and Control
Short-range decisions
on sequencing and shop
floor control

Figure 1. Hierarchy of Decisions in a Manufacturing Organization

(taken from Bahl et al. 1987)



In this chapter, we introduce the lot sizing problem and its mathematical
formulation. We also describe briefly the tabu search technique and the main

charactenistics of our heuristic, and finally present an outline of this thesis.

1.1 The Capacitated Lot Sizing Problem with Setup Times
and Setup Carryovers

Based on two important characteristics, i.e., demand type and resource
constraints, previous research work on the lot sizing can be classified into four
caiegories, as shown in Figure 2 (Bahl et al. 1987). Lot sizing problems can be
first classified into single-level and multiple-level problems based on demand
type. Product demands in a singie-level environment are independent, since
they do not depend on lot sizing decisions made for other items. The demands
for all the items can be determined by considering customer orders or market
forecasts. in contrast, there exist dependent demands in a multiple-level
environment wherein end products are made from intermediate items, and
intermediate items may themselves depend on lower level items. Although,
demands for end products can be determined externally so that they are
independent, end products generate demands for items at other levels so that for
all lower-level items, dependent demands arise. Besides the demand type
distinction, lot sizing problems can be further distinguished in terins of the
resource constraints, i.e., capacitated or uncapacitated resources. They are

termed respectively as the capacitated, and uncapacitated lot sizing problems.



Production Planning Problems

Single Level Multiple Level
(Independent Demand;) (Dependent Demand)
| | | |
Uncapacitated Capacitated Uncapacitated Capacitated
Resources Resources Resources Resources

Figure 2. A Classification of Production Planning Problems
{taken from Bahl et al. 1987)

The single level, multi-item lot sizing problem with capacity constraints is
referred to as the capacitated ot sizing problem (CLSP). There are two
approaches to modeling setups inthe CLSP. One approach handles setups
exclusively through setup costs. Another approach models setups through
incorporating both setup costs and setup times, i.e., downtimes for performing
setups that incur the loss of resource time. For a manufacturing environment in
which setup times are not significant compared with production times, it is
sufficient to model them with surrogate setup costs. However, for an
environment in which setups incur significant times, it becomes necessary to

explicitly model the setup times.

In addition, lot sizing problems are addressed in two different time bucket
settings. In the small time bucket setting, the length of time period is short, and
hence it is assumed that at most one item can be produced in any given period
(the time periods can be used to either produce, or do a setup, or remain idle).
However, in the large time bucket setting, the length of time period is assumed to

be relatively long so that multiple items can be produced in any given period. In



such an environment, if the production changeover from one item to another
incurs a significant setup time, it is very advantageous to carry the setups from
one period to the next. That is, if the item produced last in a given period is the
same as that produced first in the immediately following period, then carrying the
setup for this item into the following pericd will save significant capacity time and
setup cost. Furthermore, in certain instances, a feasible lot sizing can be

developed only if the setups are carried over from one period to the next.

Taking the above issues into consideration, Gopalakrishnan et al. (1995)
proposed a mixed integer linear programming (MILP) model for the CLSP with
setup times and setup carryovers in the large time bucket setting. In the model,
setup times and setup costs were assumed to be coinctant across items and time

periods. The MILP formulation is presented as follows:

Model M1
Minimize 2= ZZtLHit lit + A%Nt +Z%Ft Yit (1
i i
Subject to
lit-1 + Xit - lit = Dt i=1..P;t=1..T (2
ZbiXit"'thSCt t=1,..T 3)
|
Xit-MYit<0 i=1.P;t=1..T (4)
Nt=ZYit+ZSit+ZVit+ ¥ Oit -1 t=1,..T (5)
i i i i
Sit 2 Yit-1 - ait i=1..P,t=1..T (6)
Vit 2 Bit - Vit i=1..,Pt=1..T (7)
Oit 2 Yit - Yit-1 - ot i=1..P;t=1..T (8)



Yit < ot i=1,...Pt=1,..T
ZYit- 1<(P-1) 8t t=1,...T

i

ot< Yait< t=1,..T

|

mtSiZBitS1 t=1,..T

ait < Yit i=1,..Pt=1..T
Bit < Yit i=1,..P:t=1,..T
ait + Pit < 2 - &t i=1,...Pt=1,..T
ZYit=1 t=1,..T

i

Xit, lit, Nt, Sit, Vit, Oit, wt20 i=1,..,Pt=1,..T
0<dt<1 t=1,..T

Yit, ait, Bit, Yit € {0, 1} i=1..,Pt=1_.T
lio=0 i=1,...,P

The parameters in the model are:

the number of items,

the number of planning periods,

inve ntory holding cost for item i in period t,

setup cos: per setup,

fixed charge for production of an item in period t,

demand for item i in period t (units),

capacity consumed per unit production of item i (hours/unit),
setup time per setup (hours/setup),

machine capacity in period t (hours),

(9)

(10)
(11)
(12)
(13)
(14)
(15)

(16)



T
Mit= min(X Dir, Cv/bi).
r=t

The decision variables in the model are:
Xit = lot size quantity for item i in period t,
lt = inventory for item i at the end of period t,
Nt = number of setups in period t,
o , if item i is produced in period t
it = 0, otherwise,

if item i is produced first in period t

ot _
0, otherwise,

1, if item i is produced last in period t

Bit =

o

, otherwise,

_L

if the facility is set up for item i at the end of period t
Yit =

o

, otherwise,

]
s
X
{
X
l
l
o

Sit =

o

, otherwise,

1, if Bit=1andVit=0
Vit =

o

, otherwise,

0 1, if anidle period t is used to perform a setup
it =

o

, otherwise,

_L

if at least one item is produced in period t

ot .
otherwise,

0,
0, if exactly one item is produced in period t
0

<and <1, otherwise.

The objective is to minimize the sum of inventory costs, setup costs, and

fixed production charge costs, as shown in equation (1). Unit production costs



are assumed to be constant for all the items in each period, and hence are
ignored. Equations (2) capture the relationship between the opening and closing
inventories, production quantity and demand. The capacity constraints are
represented by inequalities (3), in which the setup times reduce the available
capacity of the constrained resource. Constraints (4) require that Yit = 1
whenever item i is produced in period t. Constraints (5) through (8) are setup
counting constraints. In constraints (5), the number of setups in period t is
calculated by considering the values of variables Yit, Sit, Vit, and O¢. Sit, Vit, and
O, i= 1,...,P, are used to track whether or not, in period t, a setup is carried
over from period t-1, an end-of-period setup is done, or a setup is made in an

idle period.

Constraints (9) through (16) are partial sequencing constraints. These
constraints capture the interrelationships among the variables ait, Bi, Yit, wt, and
5t, whose values are used to determine the values of Sit, Vit, and Oitin the setup
counting constraints. For any given period, this set of the constraints
determines which item is produced first, which item is produced last, and the
machine state at the end of the period. Constraints (17) through (19) model the
nonnegative and binary requirements on the decision variables. The
nonnegative requirement or: the inventory variables means that backlogging is

not allowed. Finally, equations (20) indicate zero starting inventory position.



1.2 Heuristic Solution Procedure for the CLSP with Setup
Times and Setup Carryovers

The CLSP is known to be computationally intractable, and it is shown that
for the CLSP with setup times, even finding a feasible solution is NP-complete
(Maes et al. 1990). Hence, for the CLSP with setup times, most solution
procedures reported in the literature are based on some approximate
approaches (e.g., Trigeiro et al. 1989, Diaby et al. 1992). When setup
carryovers are explicitly modeled in the formulation of the problem, the resulting
model becomes even more complex. Therefore, we have attempted to develop

a heuristic based on tabu search framework.

Tabu search, developed by Glover (1986), and independently by Hansen
(1986), is a meta-heuristic that integrates a number of anti-cycling mechanisms
into a local search procedure to lead the search to explore beyond local optima.
In tabu search, moves causing deteriorating objective function values are
allowed to be executed under certain circumstances in order to move away from
local optima. But this may result in cycling. Tabu search accomplishes anti-
cycling by rnemorizing the recently visited solutions in fabu lists (sometimes
called recency-based memory), and forbidding them to be revisited for a number

of iterations.

Tabu search can be viewed as a variant of neighborhood search methods.
Give a function f(x) to be minimized over a solution space X. Let N(x) be the
neighborhood of a solution x, and let Lk be the set of solutions memorized in
tabu lists at iteration k. Let N(x, k) = N(x) - Lk, i.e., the restricted neighborhood at

iteration k. A generic tabu search heuristic can be outlined as follows:



i. choose an initial solution x in solution space X,
X* ¢« X, and k « 1

ii. while stopping criterion is not met do
kK « k+1,
evaluate f(x') for all x'eN(x, k),
choose the best solution, say x", in N(x, k),
X« X",
if f(x) < f(x") then x* «x,
update tabu list,

end while

iii. return x*

Certain essential elements in tabu search include tabu lists, aspiration
criteria, and candidate list strategies. Tabu lists can be implemented with fixed
list length (static tabu list), or variable list length (dynamic tabu list). The dynamic
tabu lists vary the tabu list length during the course of the search, and usually
produce more robust and superior solutions. Aspiration criteria override the tabu
status of a move under certain conditions, and hence add flexibility to tabu
search. Candidate list strategies limit the number of neighbors evaluated at each
iteration, and hence are useful for handling the situation where the neighborhood

is large, or the evaluation of its elements is costly.

Sometimes short-term memory (or recency-based memory) based
strategies alone may not be sufficient to produce high quality solutions.
Intensification and diversification are two strategies that operate on longer-term
memory structure, and are often useful for achieving high quality solutions in a

shorter time span, or increasing the probability of finding better solutions for a

10



longertime. To achieve good results, an important issue is to keep a balance
between intensification and diversification in a tabu search procedure. A

comprehensive overview of tabu search can be found in Glover (1994).

The following issues were dealt with in developing an effective tabu
search heuristic for the CLSP with setup times and setup carryovers. (i) The
solution space was enlarged by relaxing the capacity constraints, and any
violations of the capacity are dealt through penalties applied to the objective
function. Our heuristic thus allows infeasible solutions to be visited during the
course of the search, and has the flexibility to start a search from any initial
solution that meets demand requirements. (i) Five move types were designed to .
define the local search. The moves allow setups for products to be moved within
and across periods, and lot sizes for products to be moved across periods. (iii)
The global search was accomplished through the use of a dynamic tabu list, an
intensification approach using an elite solution list, a diversification approach
using transition frequency memories combined with aspiration by search
direction, a diversification approach using full restart from other initial solutions,

and a variable penalty rate approach.

1.3 Thesis Outline

This chapter introduced the CLSP with setup times and setup carryovers
along with the mathernatical formulation of the problem. It also briefly introduced

our heuristic approach to solving this problem.

11



Chapter 2 presents a literature review on the single level CLSP with setup
time, and the tabu search applications to production scheduling and planning

problems.

In chapter 3, we present the elements relating to local search
implemented in our heuristic. These include the solution representation used in
our heuristic, the solution space explored during the course of the search, the

modified objective function, and the move mechanisms.

In chapter 4, we describe the global search strategies implemented in our
heuristic. These include the changing neighborhood at different iterations, the
dynamic tabu list, the intensification using an elite solution list, the diversification
using transition frequency memories combined with the aspiration by search
direction, the diversification with full restart from other initial solutions, and the
variable penalty rate applied to violation of capacity constraints. We also
propose in this chapter a bounding procedure for finding the lower bounds on the
optimal objective value of our problem so that we can have a relative measure

for evaluating our heuristic's solution quality.

Chapter 5 presents a computational study in which our heuristic is tested
on a large number of problems constructed from the test problems created by
Trigeiro et al. (1989). We analyze the gap between the objective value of our
tabu search solution and our lower bound. We also analyze the cost difference,
which is the difference between the cost of our tabu search solution for the CLSP
with setup times and setup carryovers and the cost of the solution found by
Trigeiro et al.'s procedure (1989) for the CLSP with setup times. Based on the

overall computational results for both the solution gap and the cost difference,

12



we comment on the solution quality achieved by our tabu search solution

procedure. Finally, computation times required by our heuristic, and by Trigeiro

etal.'s procedure are reported.

Chapter 6 summarizes the research results, and offers some directions for

future research.

13



Chapter 2
LITERATURE REVIEW

In this chapter, we review in the first partthe work on the single level,
multi-tem CLSP with setup times in the large time bucket setting. As mentioned
before, the CLSP in the large time bucket setting has been approached in two
different ways with regard to modeling setups: setups are introduced as setup
costs only (e.g., Eppenand Martin 1987, and Cattrysse et al. 1990), and setups
are modeled through both setup costs and setup times. The review here is
confined to the literature on the CLSP with setup times, since we aim to develop
a solution procedure for this class of the problems. Tabu searchis a meta-
heuristic technique that has proved to be successful in solving a host of
computationally hard problems. In the second part, we review the work of some

tabu search applications to production scheduling and planning probiems.

2.1 The CLSP with Setup Times

The CLSP with setup times has received continuing research attention
due to its practical importance and theoretical challenge. In this section, we
present the review on the CLSP with setup times and setup carryovers in the
following three sub-sections: the earlier work, the more recent work, and Trigeiro

et al.'s work (1989).

14



2.1.1 The Earlier Work

Modeling setups as downtimes incurred at the capacitated work center in
addition to its costs can be traced to Manne (1958). One important issue in
modeling has been the presence of binary variables for tracking the setups for
each item in each period. Manne proposed a formulation in which binary
variables are defined for production schedules for the items, rather than for
setups. This formulation approach has one advantage, i.e., a linear
programming solution to the model provides a close approximation to the
solution of the original problem when the number of items is large compared with

the number of time periods in a problem instance.

Dzielinskiand Gomory (1965) continued the work by applying the Dantzig-
Wolf decomposition to Manne's formulation so that larger problem instanc... can
be solved. Lasdon and Terjung (197 1) developed a solution procedure to
Manne's formulation using a column generation technique and a generalized
bounding method. They demonstrated that their solution procedure was more
efficient and provided better bounds than earlier approaches. These researches
showed that very large problems could be solved using this modeling approach.
The problem with the modeling approach is that the approximation may results

in incorrect costs, and infeasible solutions due to setup times.

Newson (1975 a, b) proposed a heuristic for solving the CLSP with setup
times that structures the problem as a network of unlimited capacity, and uses
an arc-cutting criterion to find feasible integer solutions. The difficult of the
heuristic is that itis not very effective in finding feasible solutions when the

number of items is not very large, or the capacity constraints are tight. The

15



methods for determining the optimal lower bounds for the CLSP with setup
times based on generalized duality theory were discussed in Kleindorfer and
Newson (1975). For certain problems, the dual solutions can be used to

generate feasible solutions that may be optimal or near optimal .

2.1.2 The More Recent Work

The MILP models forthe CLSP in which setup times are explicitly
modeled contain a structure that can be exploited by the Lagrangian relaxation
technique, and the research in this direction can be found in a number of more
recent articles. In general, for a given set of Lagrangian multipliers, Lagrangian
relaxation-based heuristic procedures relax the capacity constraints to
decompose the models into a set of independent uncapacitated single item lot
sizing problems, which then can be solved repeatedly using the efficient VW agner-

Whitin dynamic programming algorithm.

Trigeiro et al. (1989) developed a heuristic procedure of this type for
solving the CLSP with setup times as well as setup costs. The overall
Lagrangian dual problem was solved using subgradient optimization. A
smoothing routine that shifts and splits scheduled lot sizes obtained from the
Wagner-Whitin algorithm was designed to generate feasible solutions. We will

review the article in more detail in sub-section2.1.3.

Lozano et al. (1991) solved the Lagrangian dual problem of the CLSP with
setup times using a primal-dual algorithm that provides monotonously

convergent solutions to the Lagrangian optimum. A heuristic performing lot split

16



and lot shift operations at each iteration was proposed in order to eliminate the
infeasibility that might appear in the production plans produced by the primal-
dual algorithm. It was reported that for a wide range of problems tested, this
approach provided better solutions than other methods, including subgradient
method, but required greater computation times. The average gap between their

solutions and lower bounds was as small as 1.79 percent.

Another Lagrangian relaxation-based heuristic procedure for solving the
very large scale CLSP was proposed in Diaby et al. (1992). They considered
setup costs, setup times, limited regular time, and limited overtime in their model
formulation. Their procedure solved the Lagrangian dual problem using the
subgradient optimization. Transportation problems were then formulated using
the setup decisions, rather than the production plans, found in the Wagner-
Whitin solutions. A procedure called primal perturbation that operates on
transportation tableaus was designed to obtai.) feasible production plans for the
original problem. It was reported that very large problems with as many as 500
items and 30 periods were solved within one percent of their lower bounds in a

reasonable amount of time.

A similar work by Anderson and Cheah (1993) solved the CLSP with
minimum batch size and setup times. Also in their model, overtime is allowed,
but no setup costs are considered. The Lagrangian relaxation-based heuristic
procedure consists of a dynamic programming algorithm extended from the
Wagner-Whitin procedure, a modified subgradient algorithm, and a minimum-
cost network algorithm and a network-based heuristic for achieving primal
feasibility. High quality solutions were obtained with an average gap of only 0.44

percent.

17



A procedure for solving the single level CLSP with setup times based on
column generation was discussed in Salomon et al. (1993). The master problem
in this column generation heuristic is a set partitioning problem, and the sub-
problems are a set of single item CLSPs. Embedded in the procedure,
simulated annealing or tabu search procedure is used to solve the sub-problems
of generating new columns that are added to the master problem. The
computational results from testing the procedures on Trigeiro et al.’s test
problems show that the solution quality of the column generation procedure is
almost the same as that reported in Trigeiro et al. (1989). However, the solution
times required by the procedure are much longer than that required by the

Trigeiro et al.'s procedure.

Two other studies handled the lot sizing problem in a more general way in
that they incorporate both lot sizing and sequencing decisions. Aras and
Swanson's heuristic (1982) addressed sequencing of jobs within periods so that
the first and last item produced in a period can be determined. If one item is to
be produced at the end of one period and at the beginning of next, only one
setup is considered to take place. Smith-Daniel and Ritzman (1988) described a
mixed integer linear programming formulation for the lot sizing and sequencing

decision on a series of several capacitated work centers.

None of the above-mentioned studies consider the setup carryovers in
forming their modeling framework. However, in a recent study, Gopalakrishnar.
et al. (1995) proposed a modeling framework for the CLSP with setup times and
setup carryovers. The framework also extends the CLSP model to include

multiple machines and tool requirements planning. The MILP model for the



single machine case (model M1) introduced in Chapter 1 is based on

Gopalakrishnan et al.'s work.

The computational complexity of CLSP has been studied by many
researchers. For example, Florian et al. (1980) showed that the general case of
single item CLSP is NP-hard. Some special cases of single item problem, such
as the problem with nondecreasing setup cost, zero holding cost, nondecreasing
production cost, and nonincreasing capacities, are solvable in a polynomial time,
but the problem with two items under the conditions simiiar to the single item
problem becomes NP-hard (Bitran, and Yanasse 1982). When setup times are
introduced in the multi-item CLSP, even the feasibility problem becomes NP-

complete (Maes et al. 1991).

2.1.3 Trigeiro et al.'s Work

We give a more detailed review here on the article by Trigeiro et al.
(1989), because, in this study, (i) a bounding procedure for our problem is
developed based on the model studied by these authors, (ii) with minor
modification on the values of setup times and setup costs, the test problems
created by these authors are used in the experimentation of our tabu search
heuristic, and (iii) the costs found by our heuristic for the CLSP with setup times
and setup carryovers are compared with that found by Trigeiro et al.'s procedure

(referred to below as the TTM procedure) for the CLSP with setup times.
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The problem studied by these authors is the single level, multi-item CLSP
with setup times. Using the notation similar to that in model M1, we can present

the problem formulation as follows:

Model M2
Minimize Z= Y Y Hitlit+ XX AitYit+ X Y Bit Xit (&)
it it it

Subject to
lit-1 + Xit - lit = Dit i=1,..P;t=1,..T (2
2bi Xit + 3qiYit < Ct t=1..7 (3)
| !
Xit-MYit<0 i=1,..P;t=1..T (@4
Xit, lit=0 i=1,..P;t=1..T (5)
Yit € {0, 1} i=1..,P;t=1,.T (6)
lio=0 i=1,..P @)

where Ait is the setup cost for item i in period t, q; is the setup time for item i, Bit
is the unit cost for producing item i in period t, and the remaining parameters and
variables have the same meaning as in model M1. Note that the cost for a setup
depends on the item and the period, and the time taken by a setup varies with
the item, so that Ait, and gi are used rather than a constant A, and q. Also note
that if the unit costs are stationary across periods, the variable production costs
in the objective function can be ignored. One maijor restriction of the model is
that one setup is required for the production of each item in each period, and no

setup carryover between any two adjacent periods is accounted for.
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In this formulation, if constréints (3) are dualized, for a given set of
Lagrangian multipliers, the resulting Lagrangian relaxation of the problem
decomposes into a set of independent, single item uncapacitated lot sizing
problems that can be solved efficiently using the Wagner-Whitin dynamic

program algorithm.

A procedure based on the Lagrangian relaxation was developed by these
authors. The procedure consists of a primal, a dual, and a smoothing procedure.
At each iteration, the multipliers are obtained in the dual procedure using the
subgradient optimization which guarantees that the multipliers converge to their
optimal values so that the best lower bound for the relaxation will be attained.
And then a solution and a lower bound are found in the primal procedure using
the dynamic programming algorithm. The lower bound was used as a relative

quality measure for the solutions found by the heuristic.

The solutions found in the primal procedure are usually near-feasible with
respect to the capacity constraints, so that a smoothing procedure was designed
to modify the plan in order to fit the capacity. The smoothing procedure moves a
whole batch, or splits a batch among other periods in order to eliminate excess
capacity requirements in the primal plan. The smoothing procedure stops
whenever a feasible solution is reached. If the infeasibility still exists after four
passes (two for shifting lots to earlier periods, and two for shifting lots to later
periods), the attempt is given up, and one goes on to the next dual and primal
iteration. If the resulting plan is feasible, it is stored until a better one is found
later. When the procedure terininates at a fixed number of iterations, the stored

feasible solition, which is the best one ever found, is reported. If no feasible
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solutions were ever found, it is reported that the problem is considered infeasible

by the procedure.

The experimentation of the procedure was conducted in three phases on
a variety of randomly generated problems that capture different problem
characteristics. The characteristics considered in the testing problems are the
demand variability, the variability of capacity consumption per unit production,
the setup time level, the setup cost / holding cost ratio, the capacity tightness,

and the problem size.

The procedure was first tested on 70 problems in phase 1 for fine tuning
the smoothing procedure and subgradient optimization procedure. It was then
tested on 141 problems with different characteristics in phase 2. Based on the
results obtained in phase 2, it was further tested on 540 problems with five
chosen characteristics. A description of how these test problems are generated
will be given in chapter 5 when we look at how our test problems are prepared

based on the test problems from these authors.

The results for the overall solution quality of the procedure show that the
average gap between the TTM solution and the TTM lower bound is less than 4
percent. The quality of TTM lower bound appears good for it deviates from the
best lower bound computed using a coluinn generation program by less than

0.08 percent.

The solution gaps for the problems with tight capacity, high setup costs,
few items, or small number of periods, are larger. The characteristics that have

little effects on the solution gap are the variability of capacity consumption per
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unit production, the variability of setup time across items, and the variability of

demand. In phase 2, the solution gap for the problems with higher level of setup
times is smaller, whereas the level of setup times have little effect on the solution
gap in phase 3. This mixed effect is due to the different ways in which the
capacity levels are generated for the test problems. It is noted at the end of the
article that measuring an algorithm’s ability to find feasible solutions for any given

problem can be difficult.

In the next section, we will focus on the tabu search applications to

production scheduling and planning problems.

2.2 Tabu Search Applications to Production Scheduling and
Planning

Tabu search was first proposed by Glover (1986) as a general heuristic
procedure for solving integer programming, and has been applied to many types
of combinatorial optimization problems. A comprehensive description of the
method and the characterization of its elements can be found in, e.g., Glover et
al. (1993), and Hertz et al. (1992). Based on the extensive computational
results in many applications and the late developments in the literature, Glover
(1994) discussed the principal tabu search features that had contributed to the

success of the method, and offered some directions for future improvement.

Impressive results have been achieved by many tabu search applications

to production scheduling and planning problems. We present the review on
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these applications in the following two sub-sections: tabu search applications to

production scheduling, and tabu search applications to production planning.

2.2.1 Tabu Search Applications to Production Scheduling

A flow shop consists of n jobs to be processed on m machines in the
same order. The objective of the flow shop scheduling problem is to find a
process schedule that minimize the completion time of the last job. An early
application of tabu search to flow shop scheduling was developed by Widmer
and Hertz (1989). The procedure first finds an initial starting sequence using
insertion method, and then improves the sequence using tabu search technique.
The type of move is defined as swaps of positions between two jobs. The simple
rules used in the procedure include: the best solution produced by a non-tabu
move is selected, tabu list length is set to 7, and it is terminated when a
maximum number of iterations is reached. The procedure is effective in that,
when compared with the best previous heuristic for 500 test problems, it returns
better solutions for 58 percent of the problems, and the best solutions for 92

percent of the problems.

Reeves (1993) proposed an improved tabu search algorithm for solving
the flow shop scheduling problem. The number of moves for evaluation at each
iteration is reduced using a candidate list strategy. To limit the size of the
neighborhood explored at each iteration, the consideration of moves is restricted
to job set {J1, . .., Jp} first, where p < n. Then, job set {Jp+1, . . ., J2p} is tried at
the next iteration, and so on. When job Jn is reached, the process is restarted.

The idea underlying the strategy is to find a balance between searching the
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solution space and making use of the information obtained during the course of
the search. Computational efficiency was improved, and the results showed
that, when implemented efficiently, tabu search performs better than simulated

annealing on a wide range of test problems.

Tabu search was applied to a generalized flow shop problem, i.e., flexible-
resource flow shop scheduling problem, by Daniels and Mazzola (1993). In their
problem, process times of job on machines depend on the amount of resource
allocated to the operations. The problem consists of the decisions in three
levels, i.e., job sequencing, resource assignment, and operation start times. A
nested strategy that decomposes the problem into three main components
corresponding to the three decision levels was used. The nested tabu search
procedure proves to be significantly superior when it is compared with other

heuristics on a large number of test problems.

The job shop scheduling is another domain where tabu search has been
applied. The problem has n jobs, and each job consists of a number of
operations to be processed on some of m machines. Each job has its own
precedence ordering of the job operations. The objective is to find a schedule

that minimizes the makespan (the completion time of the last job).

One of the tabu search applications to the problem was reported in
Dell'Amico and Trubian (1993). Their algorithm starts with finding a good initial
solution by constructing from both ends of a partial schedule. The moves are
defined as swaps that exchange two, or three arcs expressed on a directed
network corresponding to two, or three operations. A tabu list with variable

length is employed, and the minimum and maximum lengths are revised

25



periodically using the random values from some number intervals. When the
search fails to find better solutions for a number of iterations since the last best
solution is found, a simple intensification sets the best solution to become the
current solution, and continues the search starting from the best solution.
Computational results indicate that the tabu search method is highly robust, and

outperforms two simulated annealing algorithms.

Taillard (1994) presented an implementation of tabu search in both serial
and parallel execution for solving the job shop problem. Based on two structural
properties of a directed graph formulation with conjunctive arcs (for job operation
precedence) and disjunctive arcs (for machine operation ordering), moves are
defined as a reversal of a critical disjunctive arc, and the value of a move is the
change on thi2 longest path of the graph. The tabu list length is determined
using random drawings from a range of values, and the length is changed for
every / iterations, where / is the current tabu list length. In this implementation,
the simplest aspiration criterion (accepting the move that produce a solution
better than the best solution encountered so far regardless of its tabu status) is
employed. The article reports that iabu search performs better than other
heuristics for problems of size 10 x10, but shifting bottleneck heuristic produces
better solutions for larger problems. It is also noted that tabu search has the
advantage of being able to be extended easily to handle more complicated

problems, such as the job shop scheduling problem with dynamic setup times.

A tabu search method was developed by Widmer (1991) to solve job
shop scheduling problem with tooling constraints, which is a scheduling problem
for flexible manufacturing. The problem deals with scheduling job shop with

sequence dependent setup times for the operations due to tooling constraints.
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The tabu search method uses insertion moves, and the evaluation of moves is
done with respect to a weighted cost function composed of the makespan, the
number of tool changes, the number of late jobs, and the number of machines
failing to complete operations within a planning horizon. A single tabu list with
fixed length is used in this basic tabu search application. The computational
results show that larger problems make it difficult to find the best solutions with
this basic approach. With this implementation, the adaptability of tabu search to

solving very complex practical problems was demonstrated.

Tabu search application to single machine scheduling problem with delay
penalties and setup costs are found in Laguna et al. (1991). In this problem, if
job j is processed immediately after job i, a setup cost sijj is incurred. The
problem is a permutation problem with n! possible sequences, where n is the
number of jobs. In this implementation, insertion and swap are the two types of
moves. To limit the number of neighbors explored at each iteration, the moves
involving jobs no more than d positions apart are considered, where d is
|n/2]-1. Laguna and Glover (1993) integrated into the procedure a
diversification component that discourages frequently executed moves to be
selected during non-improving periods. The resulting procedure is robust in
producing high quality solutions, and for many problem instances, it produces the

solutions better than the best solutions found by some previous heuristics.

Woodruff and Spearman (1992) solved a general sequencing problem
on a single machine that includes two classes of jobs with setup times, setup
costs, holding costs, and deadlines, using tabu search approach. Insertion
moves are used in the procedure. The procedure features a strategic oscillation

that allows the infeasible solutions to be visited, a candidate list to reduce the
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number of solutions examined at each iteration, a diversification element using a
parameter in the objective function, and & tabu list controlled by some hashing

function values. This procedure is very effective for solving the problem in that it
produces optimal solutions for 17 problems in a set of 20 test problems, and the

average deviation from optimality is 3 percent.

2.2.2 Tabu Search Applications to Production Planning

In production planning area, tabu search applications to lot sizing
problems are found in two articles. Kuik et al. (1993) compared linear
nrogramming, simulated annealing, and tabu search heuristics for solving a
multi-level capacitated lot sizing problem for assembly production systems with
one bottleneck. Setup times were not considered in the model. In the tabu
search heuristic, moves are defined as the transitions from a given setup pattern
y to another setup pattern y'. To evaluate a neighbor, an approximate algorithm
that can quickly solve the problem with a fixed setup pattern is used. The best
solution is chosen from a solution list of size 10 that contains the randomly
generated non-tabu neighbors using the transition mechanism. The
implementation contains a tabu list with length of 10, and terminates at 500
iterations. A procedure that uses the result from the LP-relaxation in the tabu
search procedure was also described. The conclusions based on test
experiments are that simulated annealing, and tabu search heuristic are
preferable to the LP-based (rounding) heuristic. The combination of LP-based

heuristic with simulated annealing, or tabu search enhances the performance.
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As we have seen in the previous section, another application of tabu
search to the lot sizing problem is found in Salomon et al. (1993). In this
application, tabu search heuristic is used repeatedly to solve the single item
CLSPs with the dual cost multipliers passed from a master problem. The tabu
search heuristic consists of a move mechanism that generates the neighbor
setup patterns by changing the value of one setup variable in a given setup
pattern, and a special algorithm that can efficiently solve the sub-problem with a
given setup pattern. This column generation approach with embedded tabu
search heuristic turns out requiring more computational efforts than the dual
based heuristic developed by Trigeiro et al. (1989). One of the reasons for this is
said to be that the tabu search heuristic is not effective enough in producing high

quality solutions to the single item CLSP.

2.3 Summary

We focused our literature review on research work on the CLSP with
setup times, and on the tabu search applications to production scheduling and
planning problems. It is found that for the CLSP with setup time alone, many
mathematical programming-based techniques were employed by researchers.
Among various mathematical programming-based techniques, Lagra. gian
relaxation is one approach that takes advantage of the special structures
presented in the models for the CLSP with setup times, and successful results
have been achieved by a number of Lagrangian relaxation-based heuristics.
Ignoring setup carryovers in the CLSP modeling had been a gap, and a

framework that explicitly modeling setup carryovers in the CLSP was proposed to
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address the gap. However, a good solution procedure for the CLSP with setup

times and setup carryovers is still missing.

Tabu search has been successfully applied to solving many production
scheduling and planning problems. The review shows that more tabu search
applications, and better resuits for production scheduling problems can be found
in the literature. Two tabu search applications to the CLSPs have been
developed in line with one method for solving mixed integer programming model
with tabu search, as mentioned in Glover (1990). In the two applications, the
moves are defined by the setup pattern transitions (i.e., changing values of some
binary variables). Then, with a given setup pattern, the procedures go about to

solve the resulting problem with an optimal or approximate approach.

We develop a tabu search heuristic for the CLSP with setup times and
setup carryovers, which, in addition to the move mechanisms that handle the
setup carryovers, contains the move mechanisms that directly operate on
production quantities, rather than on setup patterns. The design of our heuristic

will be presented in the next two chapters.
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Chapter 3
LOCAL SEARCH ELEMENTS

In the earlier chapters, we introduced the general formulation for the
CLSP with setup times and setup carryovers. We also presented a brief
description of our heuristic solution procedure based on the tabu search
framework, along with a review of the literature pertinent to the CLSP with setup
times and tabu search applications to the production scheduling and planning.
In this chapter, we present the elements for implementing the local search in our
heuristic. First, we present the solution representation, followed by the
explanation of the enlarged solution space searched in our heuristic. Secondly,
we describe in detail the different move mechanisms designed for carrying out

the local search in our heuristic.

3.1 Solution Representation

In our heuristic procedure, a solttion to the CLSP with setup times and
setup carryovers is represented a little differently from that in the MILP model
M7. We have the flexibility to represent the solutions differently, since our
heuristic is not based on a mathematical programming approach. As we will see,
the modified solution representation fits in better with the move operations

implemented in our heuristic, and has a smaller number of variables.
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Let P be the number of items to be produced, and let T be the number of
time periods to be planned in a given problem instance. We adopt the following

solution representation:

Xit -- production quantity for item i in period t;

ot -- item type (expressed as a number from 1 to P) produced first in

period t (ot = 0 if period is idle);

Bt - item type produced last in period t (Bt = 0 if period t is idle);

Yt -- machi:2 state (expressed as the item type for which the machine is

ready o produce) at the end of period t;

wherei=1,..,P,andt=1,.T.

In addition to the information explicitly reflected in the solution
representation, other information can be derived. We can determine (i) the end
inventory quantity for item i in period t by examining the demand quantity, Xit,
and the end inventory quantity for item i in period t-1, (ii) the number o1 items
produced in period t by counting nonzero Xit, and (jii) the number of setups done
in period t by checking the number of the items produced in period t and the

values of 71, o, By, and Yt. These information will be used to evaluate the

objective function for a given solution.

The solution representation defined above does not contain those

variables such as Sit, Vit, Oit, ot, and &t found in the setup counting and partial

32



sequencing constraints in model M1, but the relationships captured by these
constraints can be observed in our heuristic implicitly with the structure of the
solution representation and the operations in the move mechanisms on the
variables Xit, at, Bt, and Yt. The process of determining the number of setups in a
given period described in the last paragraph is equivalent to observing the setup
counting constraints (5) through (8) in model M1. The variables at, Bt, and 7t
express just what the partial sequencing constraints (9) through (186) in model M1
attempt to determine, i.e., the item produced first, the item produced last, and
the machine state at the end of a period. In designing move operations, we will
apply certain rules for changing the values of variables at, pt, and Ytto ensure
that after a move operation, the partial sequences are correctly reflected by

these variables .

3.2 Solution Space Explored

We let the solution space searched by our heuristic to be composed of all
the solutions that satisfy the demand constraints in model M1. Since as
mentioned earlier, the relationships captured by the setup counting and partial
sequencing constraints in model M1 can be dealt with by the solution
representation and the move operations, we need only to consider the remaining
constraints in model M1 for relaxation. The remaining constraints are the
demand constraints and capacity constraints. Because it is proved that finding a
feasible solution with respect to constraints (2) through (4) in model M1 is NP-
complete due to the inclusion of setup times in the capacity constraints, we

choose to relax the capacity constraints, and to meet the demand constraints
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during the course of the search. Thus, the solution space explored by our

procedure consists of all the solutions satisfying the demand constraints:
li t-1 + Xit - lit = Dit i=1..P;t=1,.T.

Finding a solution that satisfies the demand constraints alone is easy.
One example is the lot-for-lot solution. Another solution can be the Wagner-
Whitin solution. These solutions plus the initial values for at, Bt, and v, t=1,...,T,
can serve as the initial solutions for starting the search. The initial values for at,
Bt, and 1t where t = 1,...,T, can be obtained through identifying any items with

nonzero production quantity in period t.

However, a solution that satisfies demands alone may be infeasible in
terms of meeting capacity constraints. We deal with the infeasibility problem by
the means of applying a penalty to the objective function for any capacity
violation in a given solution, and the hope is that the infeasibility will be driven out

eventually during the course of the search.

For a given solution, the penalty for the violation of the capacity
constraints is defined as the product of a penalty rate and the sum of the
resource requirement exceeding the capacity limit in each period. The penalty
rate is a parameter in our procedure. To determine the sum of the resource
requirement exceeding the capacity limit, the capacity constraint in each period
needs to be examined. Thatis, fort=1,....T, if

%bi Xit + g Nt > Cy,

the amount of resource requirement exceeding the capacity limit in period t
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et= 2 bj Xit+q Nt-Cy;
1

otherwise, et is zero.

Thus, when the penalty is applied, the objective function becomes
f=2Z+ PXIZbXit+ g Nt - Cd*,
i

where [ x]* = max {C, x}, and p is the penalty rate. This is the objective function

associated with any solution visited during the course of the search.

3.3 Move Mechanisms

We now present the design of move mechanisms used for local search.
The moves operate on the variables Xi, at, Bt, and Yt, and generate trial solutions
that meet demand requirements. In general, if a solution in a solution space is
viewed as a node in a graph representing the solution space, one desired
property for the move mechanisms is that given any solution x, the search
process is able to generate a path from x to an optimal solution. In designing our
move mechanisms, trying to achieve this property is one guide line. Five move

types are designed, and they are presented in the following five sub-sections.
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3.3.1 Swap of Positions between the Item Produced First or Last
and Some Other Item within a Given Period

This move type is designed to realize possible setup carryovers in case
there are same items produced in any two adjacent periods. A move of this type
(called swap move) changes a partial sequence within a period. Th » notion of
partial sequencing refers to distinguishing the items produced in a given period,
say period t, into the item produced first, at, the item produced last, ft, and
hence the items produced in-between, and identifying the machine state at the
end of the period, 1t. For a given solution, the position of any produced item in
the partial sequence in any period is known. A swap move changes a partial
sequence in a given period in such a way that an item i in the position of the item
produced first or last and another item j in other position exchange their positions
in the partial sequence, so that after the move, item j takes the position of the
item produced first or last, and item i takes the position originally taken by item j.
The moves of this type can be performed for any period in which at least two

items are produced.

To implement a swap move in period t, in addition to changing the value
of at, or Bt, the value of Yt.1, or 1t needs to be changed too under certain
conditions. We can determine whether there is a setup carryover between any
two adjacent periods by looking at the information on a partial sequence.
Condition (Bt = Yt and Yt = at+1) means a setup carryover between period t and
t+1 without an end-of-period setup in periou t, condition (Bt = Yt and Yt = at+1)
means a setup carryover between period t and t+1 with an end-of-period setup in
period t, and condition (Bt =Yt and 1t # at+1) indicates that there is no setup

carryover between period t and t+1. But condition (Bt # Yt and 1t # at+1) means
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an unnecessary setup between the period t and t+1. Thus, in addition to change
the value of at, or Bt, we change the value of ¥t-1, or Yt too under the condition
(Bt-1 = Yt-1 and Yt-1 = at), or condition (Bt = Yt and Yt = at+1), respectively, so that
the undesired situation (Bt-1 # Yt-1 and Yt-1 = at), or (Bt # Yt and 7t # at+1) does not

take place at any time during the course of the search.

Now suppose that item i produced in-between is considered for a swap of
position with the item produced first or last in period t. For the swap involving the

item produced first, the following rules apply.

Swap Between an Item Produced In-between and the Item
Produced First
if Bt-1 = Yt-1 then
if -1 # atthen
at « i
else
ot « |
if penalty increase due to adding one setup in period t-1 < penalty
increase due to adding one setup in period t then
Tt1 « |
end if
end if
else (Bt-1 # 1t-1)
ot i
Yt-1 « i

end if
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For the swap involving the item produced last, the following rules apply.

Swap Between an Item Produced In-between and the Item
Produced Last
if Bt =Tt then
if Yt = at+1 then
Btei
Ytei
else
Bt i
if penalty increase due to adding one setup in period t+1 < penalty
increase due to adding one setup in period t then
Yt i
end if
end if
else (Bt=m)
Btei

end if

If a swap of positions is between the item produced first and the item
produced last in period t, the conditions about ot, t, Yt-1, and Yt at the both ends
of period t need to be examined, and a combination of the rules for the swap of
positions with the item produced first and the rule for the swap of positions with
the item produced last described earlier must be used. The foliowing rules apply

for the swaps between the item produced first and the item produced last.
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Swap between the Item Produced First and thic ‘tem
Produced Last
if Bt-1 = "t-1 and Pt = Yt then
if Yt-1 # at and Yt # at+1 then
i« at
ot « [t
Ptei
Ttei
else if Yt-1 # atand Yt = at+1 then
e at
ot « Bt

Bt « i
if penalty increase due to adding one setup in period t+1 < penalty
increase due to adding one setup in period t then
Ttei
end if
else if 1t-1 = atand Yt # at+1 then
i « Ot
at « Pt
Bt i
Ttei
if penalty increase due to adding one setup in period t-1 < penalty
increase due to adding one setup in period t then
Tt-1 « at
end if
else ("t-1 = atand Yt = at+1)

i« at
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ot « Pt
Bt i
pen-inc « penalty increase due to adding two setups in period t
if penalty increase due to adding one setup in period t-1 and one
setup in period t < pen-inc then
Tt-1 « at
pen-inc « penalty increase due to «ading one setup in period t-1
and one setup in period t
end if
if penalty increase due to adding one setup in period t and one
setup in period t+1 < pen-inc then
Ttei
pen-inc « penalty increase due to adding one setup in period t
and one setup in period t+1
end if
if penalty increase due to adding one setup in period t-1 and one
setup in period t+1 < pen-inc then
Tt-1 « at
Yt i
end if

end if

else if Bt-1 = ¥t-1 and Pt # ¥t then

if Yt-1 # atthen
i ot
ot « Pt

Btei
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i« at
ot « Pt
Bt i

if penalty increase due to adding one setup in period t-1 < penalty
increase due to adding one setup in period t then
Tt-1 & ot
end if
end if
else if Bt-1 # 1t-1 and Bt = Yt then
if 1t = at+1 then
i « at
ot « Pt
Y11 « Pt
Bt i
Ntei
else
i« ot
ot « Pt
Y1 « Pt
Ptei
if penalty increase due to adding one setup in period t+1 < penalty
increase due to adding one setup in period t then
Ttei
end if
end if
else (Bt-1 = Mt-1 and Pt # )

i « ot
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at « Pt
Yt-1 « Bt
Bt i

end if

To accommodate the situation of idle period in period t-1, and/or in period
t+1, we apply some measures to the swap move procedures described above.
In all the above procedures, Yt-2 is used in the places of fit-1 in case period t-1 is

idle, and 7t+1 is used in the places of at+1 in case period t+1 is idle.

The cost items in the objective function affected by a swap move can be
the setup costs and penalties. The objective function evaluation for a trial
solution produced by a swap move can be performed by finding out the relevant
changes in setup costs and penalties in the two adjacent periods, i. e., period t-1
and t, or period t and t+1, for a swap between the item produced in between and
the item produced first, or last, respectively. And it can be done by finding out
the relevant changes in the three adjacent periods, i. e., period t-1, t, and t+1,
for a swap between the item produced first and the item produced last. The
actual changes of the cost items in the objective function depend on the
conditions about at, Bt, Y-1 and Yt before and after a move. The computations in
evaluating a move are rather simple, but the detailed condition checkings are

required to determine the specific conditions before and after the move.
Instead of going through the detailed condition checkings for move

evaluation under different situations, we describe an example below for

illustration.
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Suppose that a swap is between the item produced in-between and the
item produced first, condition (Bt-1 = 1t-1 and Yt-1 # at) holds before the move, and
it becomes (pt-1 = Yt-1 and Yt-1 = at) after the move. In this case, setup cost for
one setup is saved, and penalty is reduced if there is any in period t before the

move. The objective function value of the trial solution given by this move is

ftl’lal = f = A" Btl

where f is the objective function value before the move, A is the setup cost per
setup, and Bt is the possible penalty decrease in periodt. Here, the value of Bt
depends on the situation of capacity constraint feasibility in period t before the
move. Let p be the penaity rate, let q be the setup time per setup, and let et be
the amount of resource requirement exceeding the capacity limit in period t before

the move. The value of Bt can be determined according to the following formula:

0 ifet=0,
Bt={p.et if0<et<q,
p.q ifg<et

Associated with a swap between an item produced in-between and the
item produced first or last, the attributes recorded in the tabu list are the ordinal
number of the period, t, and the item produced first or last, ot or .. Associated
with a swap between the item produced first and the item produced last, the
move recorded in the tabu list are the ordinal number of the period, t, and the
item produced first, ay. In our current implementation, after the current iteration at

which a swap move involving at or Bt in period t is executed, any swap move
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involving the original att or Bt in period t is considered a tabu move for L
iterations, where L is the tabu list length. This tabu restriction is more strict than

simply forbidding a reverse move, and hence cycling will be less likely to happen.

Assume all the P items are produced in each of the T periods. Then,
there will be P-2 swap moves between the item produced in-between and the
item produced first, P-2 swap moves between the item produced in-between and
the item produced last is P-2, and 1 swap move between the item produced first
and the item produced last that can be performed in each period. Thus the size
of a solution's sub-neighborhood created by this move type is at most

((P-2)+(P-2)+1)T = (2P-3)T = O(PT).

3.3.2 Setup Move to the End of the Previous Period

A move of this type moves the first setup in period t to the end of period
t-1, if the machine state in the end of period t-1 is different from the first setup in
period t, i.e., Yt-1 # atin case at least one item is produced in period t, or Yt-1 2 t
in case period t isidle. This move type helps to realize the end-of-period setup,
which is desired when the items produced in period t are different from that in
period t-1, and setting up the machine for item at at the end of period t-1, in

stead of at the beginning of period t, reduces or eliminates the capacity violation.

Suppose period t is under consideration. If period tis not idle, the

implementation of a move of this type is as follows:
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Setup Move to the End of the Previous Period
if 1.1 # ot then
Yt-1 < Ot

end if

If period t is idle, Ytis used in the places of ot in the above procedure.
Moving setup in an idle period to the end of the previous period is to help carry a
setup over a series cof idle periods. The presence of a series of consecutive idle
periods in solutions may not be very possible for practical instances. We

nonetheless provide measures for handling the situation.

The cost items in the objective function to be affected by a move of this
type can be the penalties. Thc objective function value of a trial solution reached
by a move of this type can be efficiently evaluated by considering only the
changes in penalties in the periods t-1 and t. The objective function value of a

trial solutiors generated by a move of this type is

ftrial = f + Bt-1 - Bt,

where f is the objective function value before the move, Bt-1 is the possible
penalty increase in period t-1, and Bt is the possible penalty decrease in period t.
The value of Bt can be determined in the same way as that desciibad earlier for
swap move evaluation. To determine the value of Bt-1, let p be the penaliy rate,
let q be the setup time per setup, and let ut-1 be the amount of slack capacity in
period t-1 before the move. The value of Bt.1 can be determined according to

the following formula:
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p.q ifut-1=0,
Bt-1=<p.(q—ut-1) if 0 <ut-1<q,
0 ifq <ut-1.

For a move of thic type in period t, the associated move attributes
recorded in the tabu list are the ordinal number of the previous period, t-1, and
the item type involved in the move, at, The reverse move of a move of this type
is a move of type 3 (setup move to the beginning of the next period) to be
described below involving at in period t-1. A reverse move is considered tabu for

L iterations after the current iterations, where L is the tabu list length.

At most one move of this type is possible in any period from period 2 to
period T, and hence the size of the sub-neighborhood created by this move type
is at most T-1 = O(T).

3.3.3 Setup Move to the Beginning of the Next Period

A move of this type moves the end-of-period setup in period t to the
beginning of period t+1, if the machine state at the end of period t is different from
the item produced last in period t, i.e., Bt # Yt, in case period t is not idle, or if it is
different from the machine state at the end of period t-1, i.e., Yt-1 # 11, in case
period t is idle. This move type helps to remove undesired end-of-period setup in
period t, when setting up the machine for item at+1 at the end of period t incurs
more capacity violation than setting up the machine for item at+1 at the begin ~'ng

of period t+1.
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Suppose a move of this type is performed in period t. In case period t is

not idle, a move of this type is a simple operation as shown below:

Setup Move to the Beginning of the Next Period
if Bt = Yt then
Tt « Pt

end if

If period t is idle, Bt is replaced with Yt-1 everywhere in the move operation.
Again, the consideration given to the case of idle period is to facilitate the
realization of setup carryover over a series of consecutive idle periods, though
most often a series of consecutive idle periods is not very likely to happen in

practical instances.

The cost items in the objective function affected by a move of this type
can be the penalties in period t and t+1. To evaluate a trial solution reached by a
move of this type, we can perform the computations efficiently by considering
only the changes in penalty in the two adjacent periods. The objective function

value of a trial solution from a move of this type is

ftrial = f - Bt + Bt+1,
where f is the objective function value before the move, Bt is the possible penalty
decrease in period t, and Bt+1 is the possible penalty increase in period t+1. The

values of Bt and Bt+1 can be determined using the same formulae as that

described earlier for move type 1 and 2.
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For a move of this type in pcriod t, the associated move attributes
recorded in the tabu list are the ordinal number of the next period, t+1, and the
machine state at the end of period t, 1t, The reverse of a move of this type is a
move of type 2. A move of type 2 involving Yt in period t+1 is considered a tabu

move for L iterations after the current iterations, where L is the tabu list length.

As at most one move of this type can be performed in any period from
period 1 to period T-1, the size of the sub-neighborhood associated with this

move type is at most T-1 = O(T).

3.3.4 Lot Shift to an Earlier Period

This move type is designed to shift certain amount of production for an
item in period t to an earlier period s, where 1 < s <t-1, and a move of this type
can result in a solution that yields lower objective function value due to a better
trade-off between the inventory costs, setup costs, fixed production charges, and
penalties for capacity violation. When a part of a batch is shifted to an earlier
period, a move of this type can help to eliminate or reduce the capacity violation.
When a whole batch is shifted to an earlier period, in addition to being able to
eliminate or reduce the capacity violation, it can also possibly reduce the setup
costs and fixed production charges. But, in any case, the inventory costs will

rise.

Suppose item i is produced in period t, and is under consideration for
being shifted from period t to period s, where 1 <'s <t-1. Depending on whether

item i is produced in period s or not, a lot is shifted either without a setup or with
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a setup. To determine the amount of available capacity in pcricd s for taking in
production of item i, the situation in period s has to be examined. In case item i
is originally produced in period s, the amount of available capacity for taking in
production equals the amount of slack capacity in period s since no new setup
needs to be added when a lot is shifted into period s. In case item i is not
originally produced in period s, the amount of available capacity in period s
depends on the conditions in period s. One example can help to illustrate this
point. Suppose only one item is produced in period s originally, and item i is the
same as the machine state at the end of period s-1. If we make item i to be
produced first in period s, the setup for item i will not be needed, and hence the

amount of available capacity in period s will be equal to the amount of slack

capacity in penod s.

Some rules are designed for determining under what circumstance a lot
shift should be performed, and in what size a lot should be shifted. We describe
these rules below separately for the case that item i is produced originally in

period s, and for the case that item i is not produced originally in period s.

Let Xit and Xis be the production quantities for item i in period t and period
s respectively, let bibe the capacity consumption coefficient of item i, let us be
the amount of slack capacity in period s, and let et be the amount of resource
requirement exceeding capacity limit in period t. Forthe case that itemi is

originally produced in period s, we have the following rules:

Lot Shift to an Earlier Period when Item i Is Produced in that Earlier Period
1ifet>0andus >0 then

if us = biXit then
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Xis « Xis + Xit
Xt O (whole batch is shifted)
else
if us > et then
Xis « Xis + et/bi

Xit <- Xit - evbj (part of a batch is shifted)

else
Xis « Xis + us/bi
Xit «— Xit - us/lbi  (part of a batch is shifted)
end if
end if
end if

2ifet>0 and us =0 then
Xis « Xis + Xit
Xite— O (whole batch is shifted)
end if
Jifet=0and us>0 then
if us 2 biXit then
Xis « Xis + Xit
Xt O (whole batch is shifteJ)
else
Xis « Xis + us/bj
Xit « Xit - us/bj (part of a batch is shifted)
end if

end if
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In the above procedure, a certain amount of production quar‘ity is shifted
in step 1 where the capacity in period t is exceeded, and a slack capacity exists
in period s. A certain amount of production quantity is shifted too in step 3 where
both period t and period s have slack capacity. Step 2. is included because we
want to cover as more trial solutions which might be favorable in certain cases as
possible. The moves carried out in step 2 can produce favorable trial solutions
when the penalty rate (which is varied in the main procedure as described in the
next chapter) and inventory holding costs for item i are not high so that the sum
of the possible penalty increase and inventory cost increase is not as large as

the setup cost saving due to a lot merge.

When item i is not produced in period s, before a lot is moved into period
s, condition checkings in period s need to be done in order to determine the
amount of available capacity in period s. Specifically, if two or more items are
produced in period s, as a rule, the new item i is made to be produced in-
between so that a new setup needs to be added into period s, and hence the
amount of available capzacity in period s equals the amount of slack capacity
minus one setup time. However, if only one item or no item is produced in period
s, the conditions of the production's partial sequence in period s and the machine
state at the end of period s-1 and period s need to be examined in order to
determine how many setups need to be added in period s. The example
mentioned eatrlier illustrates one of the possible situations. Once the number of
added setups is known, the amount of available capacity in period s can be

determined.

Assume the condition checkings are done, and the available capacity in

period s for item i is known. Let Xit and Xis be the production quantity for item i
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in period t and period s respectively, let bj be the capacity consumption
coefficient of item i, let ws be the amount of available capacity in period s for item
i, and let et be the amount of resou: ze requirement exceeding capacity limit in
period t. For the case that item i is not originally produced in period s, we have

the following rules:

Lot Shift to an Earlier Period when Item i Is Not Produced in that Earlier
Period
1ifet>0and ws>0 then
if ws 2 biXit then
Xis « Xis + Xit,
Xit « O (whole batch is shifted)
else
if ws 2 et then
Xis « Xis + et/bi,
Xit « Xit -et/bi (part of a batch is shifted)
else
Xis « Xis + ws/bi,
Xit « Xit -ws/bi  (part of a batch is shifted)
end if
end if
end if
2ifet=0and ws >0 then
if ws 2 biXjt then
Xis « Xis + Xit,
Xt « O (whole batch is shifted)
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Xis « Xis + ws/bi,
Xit « Xit - ws/bi (part of a batch is shifted)
end if

end if

Here, the above procedure is similar to that for the case item i is originally
produced in period s except that the available capacity is used in stead of using
the slack capacity. However, it does not consider shifting a lot when the capacity

limits in both period t and s are exceeded.

Note that in the above procedures, in case a whole batch is shifted out of
period t, and the item being shifted is the item originally produced first or last in
period t, the possible changes in the values of the variables o, Bt, and 1t for the
partial sequence need to be made in period t, and the corresponding possible

cost changes need to be reflected in the evaluation of a move.

This move type can have the effect of reducing the setup costs, fixed
production charges, and penalties when a whole batch is moved, and the effect
of reducing penalties when a part of a batch is moved. But the inventory costs
are certain to rise. The change of objective function value for a trial solution
depends on the specific conditions before and after a move, and can be
determined after some detailed condition checkings are done. For example,
assume that before the move, item i is neither an item produced first nor an item
produced last in period t, the amount of resource requirement exceeding
capacity limit in period t et is greater than 0, item i is produced in period s, two or
more items are produced in period s, and the amount of slack capacity in period

S us is greater than biXjt. When a whole batch of item i is shifted from period t to
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period s, the objective function value of the trial solution reached by this move

becomes
firial=f-A-Ft-Bt+K,

where A is the setup cost for one setup, Ftis the fixed production charge for one
item produced in period t, Bt is the penalty decrease in period t, and K is the
inventory cost increase due to the move. Here, Bt can be determined according

to the following formula:

p.et if et <q+biXit,
p.(q+biXit) if et > q+biXit,

where p is the penalty rate, and q is the setup time for one setup. And K is equal
t-1

to X HiXit, where Hir is the inventory holding cost for item i in period r.
r=8

This example shows that the evaluation of a trial solution requires simple
calculations, but very detailed condition checkings. With the above example
given for the illustration of move evaluation, we will not cover the detailed
condition checking process for many other situations, as we did earlier in

presenting the swap moves.

If a move of this type is executed, the move attributes recorded in the tabu
list are the item shifted, i, the ordinal number of the target period of the lot shift,
s. The reverse of a move of this type is a move of type 5 (lot shift to a later

period) to be described below. In the current implementation, a move of type 5
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shifting item i out of period s is considered tabu for L iterations after the current

iteration, where L is the tabu list length.

Assume all the P items are produced in each of the T period. Since the
lot for any item in period t, t = 2,...,T, can be shifted to at most t-1 previous

periods, the sub-neighborhood corresponding to this move type has the size of at
mos: (1+2 + ... + (T-1))P= %T(T-1)P= O(PT?).

3.3.5 Lot Shift to a Later Period

This move type is designed to shift a certain amount of production for an
item in period t to a later period s, where t+1 <s < T', where T' is determined in a
condition checking operation described below. A move of this type can be
performed if there is an end inventory for an item in period t, and the later period
s has available capacity for taking in the production of the item. This move type
has the effect of reducing the unnecessary inventory built up in the earlier
periods, which can happen in an initial solution, or as the result of executing

some moves of lot shift to an earlier period in the previous iterations.

Suppose item i is produced in period t, and is being considered for shift
from period t to a later period. In order to guarantee the demand requirements
are met after a lot shift, we need to determine which late period can be a
candidate target period for taking in a lot, i.e., period s, and the maximum
production quantity atlowed to be shift from period t to period s. It is found that

any later period before and up to the first period with zero end inventory level for
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item i can be a candidate target period s for taking in certain amount of
production of itemi. The maximum production quantity of item i allowed to be
shifted from period t to any target period s is determined by Q = min {li,
lit+1,....lis-1} so that the demands for item i in periods between period t and

period s-1 will be still satisfied after the move.

Lot shift to a later period can also be accompanied with or without a new
setup in period s, depending on the conditions in period s. If item i is originally
produced in period s, the amount of available capacity equals the amount of
slack capacity in period s. If item i is not originally produced in period s, the
amount of available capacity usually equals the amount of slack capacity minus
one setup time accompanying the introduction of production of item i in period s.
To determine the humber of setups to be added in period s due to a lot move,
conditions in period s need to be examined. The discussion presented earlier for

move type 4 for determining the number of added setup applies here too.

For this move type, after the amount of available capacity period s is
determined, the same rules are used for both the cases that item i is originally
produced in period s, and item i is not originally produced in period s. Let Xit,
and Xjs be the production quantity for item i in period t, and period s respectively,
let bi be the capacity consumption coefficient for item i, let us be the amount of
available capacity in period s, and let Q be the maximum allowed production
quantity of item i to be shifted from period t to period s. Assume also us is

greater than zero. The following rules apply to this move type:
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Lot Shift to a Late Period
1 ifus/bi> Q then
if Xit<Q then

Xis « Xis + Xit

Xit <« O (whole batch is shifted)
else

Xis « Xis + Q

Xit « Xit -Q (part of a batch is shifted)
end if

else

if biXit < us then

Xis « Xis + Xit

Xt « O (whole batch is shifted)
else

Xis « Xis + us/bj

Xit « Xit - us/bi (part of a batch is shifted)

end if

end if

As noted earlier for move type 4, when a whole batch of item i is shifted

out of period t, and item i is originally produced first or last in period t, the
possible changes in the values of at, ft, and yt need to be implemented, and the

corresponding chznges in costs need to be reflected in the objective function

evaluation.

In addition to the main effect of reducing inventory costs, a move of this

type can also affect other cost items in the objective function. Similar to that
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discussed sarlier for move type 4, the calculations in move evaluation are
simple, but extensive condition checkings are required in order to determine

which cost items are affected.

If a move of this type is executed, the associated attributes memorized in
the tabu list are the item shifted, i, and the ordinal number of the target period of
the lot shift, s. The reverse of a move of this type is a move of type 4. In the
current implementation, we consider a move of type 4 shifting item i out of period
s a tabu move for L iterations after the current iteration, where L is the tabu list

length.

Assume again all the P items are produced in each of the T period. Since
the lot for an item in period t, t = 1,...,T-1, can be shifted to at most T-t later

periods, the sub-neighborhood corresponding to this move type has the size of at
most ((T-1) + (T-2) ...+1)P= %T(T-1)P=O(PT2).

3.3.6 The Routine Procedures for the Move Mechanisms

To implement the move mechanisms presented above , five routine
procedures are created for the five respective move types. Each routine
procedure generates and evaluates all the possible moves of the corresponding
type. The routines are named as SWAP, SPMVAHD, SPMVBAK, LTMVFWD,
and LTMVBWD for the move types of position swap, setup move to the end of
the previous period, setup move to the beginning of the next period, lot shift to

an earlier period, and lot shift to a later period, respectively. Either all or a part of
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the five routines will be invoked one by one at each iteration in the main
procedure. Thus, the neighborhood of a solution x is the set of all the ~olutions
generated by the moves of the types invoked at each iteraticn. After the

execution of the move procedures at each iteration, a best trial solution in the

neighborhood is identified.

3.4 Summary

This chapter presents the design of local search elements used in our
heuristic. These elements include the solution renresentation, the solution space
explored, and the move mechanisms. Among the five move types designed,
three of them help to achieve good partial sequencing, i.e., realize setup
carryover across periods, and two of them help to achieve good lot sizing.
Together, the five procedures that perform the corresponding move operations

fulfill the local search function 1n our tabu search heuristic.
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Chapter 4
GLOBAL SEARCH ELEMENTS AND A BOUNDING
PROCEDURE

Chapter 3 presented the local search elements designed for our tabu
search heuristic for solving the CLSP with setup times and setup carryovers. A
tabu search heuristic contains as well the global search elements for searching
beyond local optima. In this chapter, we present the global elements used in our
heuristic, and a bounding procedure. First, we discuss our approach to invoking
the five routine procedures performing the move operations, followed by a
description of a data structure for implementing the tabu list, and the rules for
varying the tabu list length. Secondly, we describe the intensification, and
diversification approaches adopted in our heuristic. Some rules for changing the
penalty rate during the course of the search are also described. Thirdly, we
present our heuristic's main procedure in which all the search elements (local
and global) are integrated. Lastly, we present a procedure for finding the lower
bounds on the optimal value of our problem, which will serve as one of the

relative measures for evaluating the solution quality of our heuristic.

4.1 Neighborhood Structure

How the five move types are used in our heuristic is the issue we

addressed first. If all the five procedures performing the five move types are
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invoked at each iteration, the neighborhood of a solution x will be the union of

the five sub-neighborhoods generated by the moves of five types.

One problem with the swap moves was found after some preliminary
testings during the algorithm development phase. In case many items, but not
the same items are produced in any two adjacent periods, the swap moves can
produce many neighbor solutions that are neither better nor worse than the
current solution because many items can be made to be produced first or last,
and the objective function value remains the same. if no improving solution can
be fcund by the moves of other types, the next solution at each iteration will be
always chosen from the solutions produced by swap moves because of the
existence of a large number of non-tabu swap moves even with the use of & long
tabu list. The search process, therefore, stagnate at this stage. The problem
happens often when the problem instances have a large size in terms of the

number of items.

This stagnation problem is resolved by restricting the use of swap moves
during the course of the search. Specifically, the routine that performs the swap
moves is called roughly one third of the times. The approach is implemented at

each iteration in the folliowing fashion:

1 call SPMVAHD

2 call SPMVBAK

3 call LTMVFWD

4 call LTMVBWD

5 if (kmod P) < (P /3) then
call SWAP
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end if

where k is the current value of an iteration counter, and P is the number of items.
Hence, the neighborhood searched changes alternatively during the course of
the search. It is the one generated by all the moves of the five types in one third
of the time, or by the moves of four types in two third of the time. This strategy
proves working well since it eliminates the stagnation problem for those
instances with a large number of items, and achieves the same quality solutions
with less computational effort for those instances that did not experience the

stagnation problem before the strategy is used.

In our current implementation, a neighborhood is searched exhaustively at
each iteration. The best non-tabu solution among all the neighbor solutions is
chosen as the new current solution. The non-tabu requirement on the neighbor
solutions is overruled by a basic aspiration criterion that accepts a solution in

spite of its tabu status if it is better than the best solution encountered so far.

4.2 Implementation of the Tabu List

In this section, we describe the data structure used in our algorithm for

implementing the tabu list, and the rules for varying the tabu list length.
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4.2.1 The Linked List with Multiple Links for the Tabu lList
Operations

As described in Chapter 3, associated with a move of any type, thereis a
set of attributes to be memorized in the tabu list. In order to implement the tabu
list operations, a data structure for the tabu list needs to be designed. In our
algorithm, we use one single list to record the attribute sets of L recently

executed moves of different types.

The single tabu list memorize the attributes of moves of multiple types is
represented as a linked list with multiple links. In addition to the key of an
element which represents the set of move attributes, there are two pointers
attached to each element on the list. One pointer points to the next element on
the list regardless of its move type, and another pointer points to the next
element of the same move type. The link consisting of the first type pointers is
for adding and deleting operations performed on the linked list, and the links of
the second type pointers are for checking the tabu status. The linked list
operates in a FIFO manner. At each iteration, according to the rule for varying
the tabu list length (to be described below), a new sci of the attributes is inserted
at the tail of the list, and one set, or two sets of the attributes are removed from
the head of the list, or no removal takes place. The adding and deleting
operations are typical linked queue operations with the update done on the two
sets of the head and tail pointers, one for the whole list link, and another for one
move type link. In order to determine the tabu status of a trial move, we need to
check the elements corresponding to the moves of same type on the list. This
tabu status checking can be done quite efficiently for we only need to traverse

one link for the moves of same type on thelist. The tabu status checking is the
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searching operation on the linked list along the link for a specific move type.

Figure 3 is anillustration of the linked list with multiple links.

Head]whole list] Head[move type y] Tail{whole list] Tail[move type y]

| 1+ T

Head[move type x] Tail[move type x|

Figure 3. lllustration of the Linked List with Multiple Links

4.2.2 The Tabu List with a Variable Length

Another design issue is the list length. Using tabu lists with a fixed length
is a strategy easy to implement, but may not be as robust as using tabu lists with
a variable length (Glover 1994). The experiments on our heuristic using fixed
length tabu list also show that finding an appropriate value for the list length that
works well for most of test problems is hardly possible. We then choose to use

variable length tabu list.
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The variable length tabu list is usually implemented with two parameters:
a minimum length Lmin, and a maximum length Lmax. The actual {ength within
the interval of [Lmin, Lmax] during the course of the search is determined by
using either the random or deterministic rules. One example of the random rules
used by Taillard (1994) is that the list length is a value of a random variable
uniformly distributed on the interval [0.8L, 1.2L], where L is determined based on
the problem size. In our current implementation, since no attempt is made to
introduce a probabilistic element, we use a deterministic rule for the variable list
length , which is a simplified version of the work due to Dell'Amico and Trubian
(1993). Let feur and fpre be the objective function values for the current solution
and the last solution respectively, let Lmin and Lmax be the minimum and
maximum tabu list length respectively, and let Lcur be the current tabu list length.

The rules for varying the list length are given as follows:

if four < fore then
if Lcur > Lmin then
Leur « Leur - 1
end if
else
if Lcur < Lmax then
Leur « Leur +1
end if

end if

With the knowledge gained from testing on a number of problem
instances, we set the minimum length Lmin to (1-3/4)(P+T), and the maximum

length Lmax to (1+6/4)(P+T), where P and T are the number of items and the
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number of periods respectively. A tabu list with longer length not only has the
effect of preventing cycling, but it also has the effect of diversifying the search
process. The minimum and maximum lengths are set to be proportional to the
problem size, so that the diversifying effect provided by longer tabu lists is

exploited in larger problem inztances.

4.3 Intensification and Diversification Approaches

Intensification and diversification are important strategies, especially for
large problems, in that they can enhance a procedure's ability to achieve high
quality solutions with less computational effort, or better solutions for larger
computation times. In our case, some preliminary testing results with our
heuristic using short term memory alone indicated that improvements were
needed in order to yield better solution quality for some instances. We then
choose to incorporate both intensification and diversification components into our
heuristic. The approaches to intensification and diversification in the current

implementation are described in the following sub-sections.

4.3.1 The Intensification Using Restart from Good Solutions
Found in Earlier Phases

The intensification approach in our heuristic is an application of the elite

selection strategy, as discussed in Glover (1994). This approach uses a list to

record solutions thought to be good during the course of the search. When the
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best solution is not improved after a number of iterations, a solution recorded in

the list is removed from the list, and the search is resumed from the solution.

In the current implementation, we record in a list any solution that is better
than the best ever found before. The list is designed to accommodate at most
five objects, so that at most five good solutions are memorized. The list
operates like a stack: a new good solution is always added at the end of the list,
and the one at the end of the list is always removed first for re-starting the
search. However, it is a stack that never overflows, for when a new solution
needs to be added, and the list is full with five members, the object at the
beginning of the list is thrown away, and the new one is pushed in at the end of
the list. The attributes for the move that is executed at the good solution to
reach the next solution is saved together with the solution itself in the list. When
resuming the search from a solution from the list, the tabu list is emptied first,
and then the set of move attributes accompanying the solution is added to the
tabu list, so that a different search path can be launched. To be sure the
solutions in the elite solution list are somewnhat different, a new best solution is
recorded only when no more best solutions are found in the next 30 iterations

after the new best solution is found.

The intensification approach can be outlined as follows:

1. search starting from an initial solution and update the elite solution list
during the search until no new best solution is found for a number of

iterations
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2. while the elite solution list not empty do
remove the solution and move attributes from the end of the elite
solution list,
empty the tabu list,
add the move attributes accompanying the solution to the tabu list,
search starting from the removed elite solution and update the elite
solution list during the search until no new best solution is found for
a number of iterations

end while

4.3.2 The Diversification Using Frequency-Based Memory in
Combination with Aspiration by Search Direction

One diversification element in the current implementation is based on the
idea of penalizing frequently executed moves. To implement the idea, some
long term memory structures need to be defined so that the frequencies of the
moves executed throughout the search can be recorded. In our case, for the
swap move type, we record the number of times item i in period t is swapped to
become the item produced first or last. With the use of an array swpfrq[P][T],
where P and T are the number of items and the number of periods respectively,

the frequency count of a swap move executed on item iin period t is stored in

swpfrq[iJ[ t]

For lot shift moves (both to an earlier and to a later period), we record the

number of times period t and s are involved in shifting itemi. Anarray
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itmvfrg[P][T), where P and T are the number of ittms and the number of periods
respectively, is used to record the frequency counts of the lot shift moves. Thus,
if a lot move that shift item i from period t to period s is executed, the counts

Itmvfrg[i ][ t ], and Itmvfrq[ i ][ s ] are increased by o~.c.

These frequency counts on moves are then used in a penalty term applied
to the objective function so that the frequently performed moves will be
discouraged during the diversification periods. The penalty term is obtained by
multiplying the frequency count and a penalty factor. Letc be the frequency
count, and letw be the penalty factor. The modified objective function for

evaluating a move during the diversification periods is
g =f+ wsxc,

where f is the original objective function. However, the penalty term is not

applied to moves that lead to solutions better than the best solution found so far.

To evaluate a move with respect to the modified objective function g, we
need to further define the penalty factors corresponding to the two types of
frequency counts. Based on the discussion in Glover et al. (1993) and our
experiments, we set the penalty factor for the swap move frequent counts to be
the product of the square root of the neighborhood size of the swap moves and a
multiplier whose value is determined through experiments. The multiplier is set
to 3 after some experiments. If we use the maximum possible neighborhood

size (discussed in previous chapter) in the penalty factor, the penalty factor for
swap move is 3,/(2P-3)T . Therefore, the penalty term applied to a swap

move involving item iin period tis 3./(2P — 3)Tswpfrqli][t].
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As for the lot shift moves, the penalty factor is also set to be the product of
the square root of the neighborhood size of the lot shift moves and a multiplier
whose value is determined through experiments. The difference here is that the
multiplier takes one of the two values, 0.01 and 10, alternatively depending on
what search phase, improving or non-improving, the search process is currently
in. Thus, the penalty factor for a lot shift move is m\/:l'_(_T_-T)E , where mis the
multiplier taking value of either 0.01 or 10, and the maximum possible
neighborhood size for the two types of lot moves are used. The penalty term

applied to a move that shift item i from period t to period s is

my/T (T - )P (Itmvfrqfi][t]+ Itmvfra[i][s]).

For the lot shift moves, we use 0.01 for min the improving phases and 10
in the non-improving phases to vary the diversification effect in different search
phases. Also an aspiration criterion is combined in the process. Larger
penalties resulting from the higher muitiplier value, 10, create a stronger
diversification effect in the non-improving phases. Cnce a solution better than its
immediate predecessor is found during a non-improving phase, an improving
phases begins. In an improving phase, in addition to lessening the diversification
effect by applying a smaller penalty term resulting from the lower multiplier value,
0.01, we employ a special aspiration criterion that allows improving moves to be
executed regardiess of their tabu status so that a true local optimum can be
reached when animproving phase ends. Once atrue local optimum is reached,
the search enters a non-improving phase. Then, the special aspiration criterion
is discontinued, and larger penalties begins to apply'  Thus, stronger
diversificatior: and aspiration alternate for the non-improving and improving
phases. This approach is a case that contains aspiration by search direction, as

mentioned in Glover (1994).
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Let m be the multiplier for penalty factor for moves of type 4 and 5, let r be
the threshold for triggering the start of the diversification with aspiration by
search direction, let fcur be the objective function value of the current solution,
and let firial-best be the objective function value of the best neighbor solution. The
rules for changing the multiplier's value for the lot moves, and triggering the

aspiration criterion are outlined as follows:

if the iteration counter <r then
search with neither diversification, nor aspiration criterion
else if the iteration counter =r then
start aspiration criterion,
m « 0.01
else
if aspiration criterion in effect then
if four > firial-best then
continue the aspiration criterion,
else (the current solution is a local optimum)
discontinue the aspiration criterion,
m« 10,
identify the best move again withm = 10
end if
else (aspiration criterion not in effect means heavier diversification)
if four > ftrial-best then
start aspiration criterion,
m« 0.01
else

continue the search withm = 10
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end if
end if

end if

4.3.3 The Diversification with Full Restart from Other Initial

Solutions

Our heuristic contains another diversification strategy, i.e., full restart from
other initial solutions. The first initial solution we used is the iot-for-lot solution.
Then, the Wagner-Wintin's solution is used as one restart initial solution. Lastly,
the solution in which the sum of the demands in all the periods for an item is put
in the first period with a non-zero demand entry is used as another restart initial
solution. Lot for lot solution incurs no inventory costs, whereas the second
restart initial solution incurs the lowest setup costs. The Wagner-Wintin's
solution produces an optimal cost when capacity restriction is disregarded. We
found the strategy of full restart from the other initial solution to be useful in the
current implementation for each type of the initial solutions tends to produce
better solutions for instances with certain characteristics. However, the strategy

results in a longer computation time.

4.4 Variable Penalty Rate

Here, we comment on the penalty rate applied to the violation of capacity
constraints. In the current implementation, the rate is allowed to vary between a

' .
minimum value and a maximum value. We vary the rate's value because a high
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rate may be able to drive out infeasibility fast, but it may also prevent ti .2 search
from reaching the regions other than the one containing the current local optima.
Allowing infeasibility during the course of the search is necessary to help the
search to reach the other good regions. The minimum and :saximum penalty
rate's values in the current implementation are set to 5, and 100 respectively.
Let fcur and fpre are the objective function values for the current solution and the
last solution respectively, and let p be the penalty rate. The penalty rate is

altered during the course of the search according tu the following rules:

if fcur < fpre then
if p>5 then
pep-5
end if
else
if p < 100 then
pep+s
end if
end if

4.5 The Main Procedure

Now we can describe the main procedure, in which all the search
elements we adopted in our current implementation are integrated. The main
procedure CLSPTABU invokes a procedure ca''ed SEARCH. Before presenting

SEARCH, we define the parameters used in our procedure as follows:
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k': the threshold of iteration count for starting diversfication with
aspiration by search direction;

m1: the multiplier for penalty factor of the move frequency applied to
moves of type 1,

m2: the miltiplier for penalty factor of the move frequency applied to
moves of type 4 and 5;

p: the penalty rate for capacity violation;

Lmin: the minimum tabu list length;

Lmax: the maximum tabu list lenath;

rmax. the maximum number of thz iterations before terminating after the

last best solution is found.

Also, let P and T be the number of items and the number of periods
respectively, let X and X* be the current solution and the best solution
respectively, let Xtrial-best be tha best trial sclution at each iteration, let f(X) and
f(X*) be the current objective fui.ction value and the best objective function value
respectively, let k and k* be the iteration co' 'nter and the value of iteratior:
counter at which the last best solution is found respectiveiy, and let r be the
iteration counter after the last best solution is found. The procedure SEARCH is

outlined as follow's:

SEARCH (X, X*, f(X*), Move Attributes)

Step 0 (initialization):
Setk « 1, r< 1, mi« 0, m2 <« 0, and p « 50. Empty the tabu list. If X is
a solution from the elite solution list, add the move attributes associated

with X to the tabu list.
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Step 1 (move evaluation and best move selection):
Call SPMVAHD, SPMVBAK, LTMVFWD, LTMVBWD, and if
(k mod P) < (P / 3), calt SWAP to evaluate all the moves, and identify the
best move for the next solution. The moves of types 1, 4 and 5 are
evaluated with respect to the modified objective function g, which includes
the penalty term for move frequency recorded in previous search. The
moves of type 2 and 3 are evaluated with respeci to the objective function f.
If the special aspiration criterion is in effect, the move that yields the
smallest value for the corresponding objective function is selected
regardless of its tabu status. Otherwise, the best move selection is done in
the usual manner by considering the tabu status of a move.
Step 2 (determination of parameter values for diversification and aspiration):
If k equals k', start the aspiration criterion, set m1 « 3, and set m2 « 0.01.
if k is greater than k', execute the foilowing rules:
if the aspiration criterion is in effect and the best move is an improving
one, continue the aspiration criterion, and keep m2 = 0.01;
if the aspiration criterion is in effect and the best move is a nen-
improving one, discontinue the aspiration criterion, set m2 « 10 for a
heavier diversification, and go to step 1;
if the aspiration criterion is not in effect and the best move is a non-
improving one, keep m2 = 10;
if aspiration criterion is not it < t'act and the best move is an improving
one, start the aspiration criterion, and set m2 « 0.01 for a lighter

diversification.

75



Step 3 (solution update and identification of good solution for intensification):
Update current solution by setting X « Xtrial-best. Update frequency
counts for moves of type 1, 4, or 5. If f(X) < f(X*), ~et X* « X, f(X*) « f(X),
and k* < k. Setk « k+1. If f(X) < f(X*), set r < 1; otherwise setr « r+1,
If (k-k*) = 1, memorize the attributes of the move executed. If (k-k*) = 30,
store the last best solution together with the attributes of the move that
leads to the next solution from the last best solution into the elite solution
list.

Step 4 (tabu list update):

If the current list length is less than Lmin, add the move attributes to the list.
Otherwise, if the move executed is an improving one and the current list
length is greater than Lmin, delete two elements from the list and add the
move attributes to the tabu list;

if the move executed is an improving one and the current list length is equal
to Lmin, delete one element from the list and add the move attributes to the
tabu list;

if the move executed is a non-improving une and the current list length is
less than Lmax, add the move attributes to the tabu list;

if the move executed is a non-improving one and the current list length is
equal to Lmax, delete one element from the list and add the move attributes
to the tabu list.

Step 5 (penalty rate update):
If the move executed is an improving one and the current penalty rate is
greater than §, set p :=p - 5; if the move executed is a non-improving one
and the current penalty rate is less than 100, setp :=p + 5.

Step 6 (termination check):

If r is greater than rmax, stop. Otherwise, go to step 1.
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The main procedure CLSPTABU is presented as follows:

CLSPTABU

Step 0 (initialization):
Set Lmin < (1-3/4)(P+T), Lmax < (1+3/4)(P+T), rmax < 1.5(300 + 10P),
and k' « 0.5(300 + 10P). Set the initial solution count | « 1.

Step 1 (initial solution):
If I = 1, find the lot for lot solution; if | = 2, find the Wagner-Wintin's solution;
if | = 3, find the solution in which all the demanded quantity for an item is
produced in first period with non-zero demand; if | = 4, stop.
Make the current solution X equal to the initial solution. Call SEARCH (X,
X*, f(X*), Null Move Attributes).

Step 2 (elite: solution list check):
If the elite solution list is not empty, remove the first solution and the
associated move attributes from the list, and set the current solution X to
equal the solution removed from the elite solution list. Otherwise, set
|« 1+1,gotostep 1.

Step 3 (intensification):
Call SEARCH (X, X*, f(X*), Move Attributes). Go to step 2.

4.6 A Bounding Procedure

Our experiments on solving the CLSP with setup times and setup
carryovers with exact solution procedure using CPLEX (a linear optimization
software package) show that it is usually impossible to find an optimal solution
even for a small size problem, say, 6 items and 8 periods, within a reasonable

time span. Therefore, a bounding procedure that finds lower bounds of our
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problem is required so that we can have a relative measure of our heuristic's
solution quality. Developing a procedure that produces tight lower bounds for
the problem is still a subject under study. Here, we propose a bounding

procedure for finding lower bounds that may be poor for some instances.

We observe intuitively that the best result we can achieve by allowing
setups to be carried over from one period to the next in the CLSP with setup
times and setup carryovers is that one setup carryover is realized in each period.
It follows that in the best of circumstances, the number of setups in each period
is equal to the number of the items produced in that period minus one. Using the

notations in model M1, itis

Nt =3 Yit-1 t=1,..T (1)
i

Since equations (1) give the best possible condition for lowering the overall cost,
if we use them as surrogates for all the setup counting and partial sequencing
constraints in model M1, the optimal value cannot be increased. Thus, the
optimal value of the objective function under condition (1), the original demand

and capacity constraints, is a lower bound on that of model M1.

Now we derive a iower bound for our problem through analytical
reasoning. if we remove the constraints (6) through (16), and constraints (18)

from mode! M1, we obtain the following:
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Model M3

Minimize Z= XX Hitlit+AXNt+ ¥ > FtYit (1)
it t it

Subject to
lit-1 + Xit - lit = Dit i=1..Pt=1..T (2)
Y bi Xit + g Nt < Ct t=1,..T (3)
i
Xit-MYit<0 i=1..Pt=1..T 4)
Nt=ZYit+ISit+ ZVit+ T Ot-1  t=1,..T ()

i [ i i

Xit lit, Nt, Sit, Vit, Oit>= 0 i=1..,Pt=1,..T (6)
Yit € {0, 1} i=1..Pt=1..T (7)
lio=0 i=1,..P (8)

Since removing constraints cannot increase the optimal value, the optimal value

of model M3 is a lower bound on the optimal value of model M1.

Further, if we substitute Nt in the objective function (1) and in inequalities

(3) with equations (5), we have model M4 expressed as follows:
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Model M4

Minimize

Z=3YYHitlit+ A (Yt + X Sit+ X Vit+ X Oit-1) + T SFtYit (1
it t o i i i it

Subject to
lit-1 + Xit - It = Dit i=1,...P;t=1,..T (2)

2bXit +q(X Yit + ZSit+ ZVit+ X Oit-1) < Ct

t=1,..T (3)
Xit-MYit<0 i=1,..P; t=1..T (4)
Xit, lit, Nt, Sit, Vit, Oit2 0 i=1,...Pt=1..T (5
Yit € {0, 1} i=1,..,Pt=1..T (6)
lio=0 i=1,..,P (7)

Observing the above formulation, we can show that the values of all the
variables Sit, Vit, aind Oit in an optimal solution for model M4 must be zero.
Assume for the sake of contradiction that in an optimal solution for model M4,
the value of some Sit, Vit, and Oit variables are nonzero. We can always
construct another solution out of the optimal solution by changing all those
nonzero Sit, Vit, and Oit into zero, and keeping the values for other variables.
Since constraints (3) are still satisfied after the change, the constructed solution
is a feasible solution. But the objective function value of this new solution will he
lower than that of the original solution. This contradicts the assumption of the

optimality of the original solution.
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Since variables Sit, Vit, and Oit will be zero in an optimal solution, we can

set Sit, Vit, and Oit to equal zero to obtain the following equivalent model:

Model M5
Minimize Z = Z%Hit lit + Z_:%(A+Ft) Yit- TA (1)
[ i

Subject to
lit-1 + Xit - lit = Dit i=1,..P;t=1,..T (2)
Zbi Xit + qZYitsCHq t=1,...T (3)
I l
Xit-MYit<0 i=1,..P;t=1,..T 4)
Xit, lit=20 i=1,.,P,t=1,...T (6)
Yit € {0, 1} i=1,..,Pt=1..7T (@)
lio=0 i=1,.,P (8)

Since the optimal value of model M5 is the same as that of model M3, it is also a

lower bound on the optimal value of model M1.

if the constant term TA in the objective function in model M5 is
disregarded, this new model is just model M2 for the CLSP with setup times,
which was studied in Trigeiro et al. (1989). The constant setup time in model M5
makes it the special case of model M2. Although there are no known efficient
solution procedures for solving this problem optimally, the TTM procedure
produces a lower bound on the optimal value of the CLSP with setup times. This
lower bound minus the term TA is a lower bound on the optimal value of our

problem.
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To obtain a lower bound for our problem, we first prepare a lower bound
problem for model M2 by changing the capacity values and setup cost values in
our test problems. The capacity value for period t now is Ct+q, and the setup
cost in period t is A+Ft. We then solve the lower bound problem using the TTM
procedure. A lower bound for our problem can be found by subtracting the

constant item TA from the lower bound value produced by the TTM procedure.

The review in chapter 2 on the TTM procedure found that the quality of
TTM lower bound appears good for it is within 0.08 percent deviation from the
best lower bound. Thus, the tightness of the lower bounds on the optimal value
of our problem, for the most part, depends on the magnitude of the setup cost
since there is a constant item TA to be subtracted from the TTM lower bound,
and the level of setup time since the capacities in all the period are increased by
g units of the resource. Also, the number of setup carryovers in an optimal
solution affects the tightness of a bound because the bounding procedure s

based on the assumption that in each period, one setup carryover is realized.

4.7 Summary

The approaches to adapting various global search strategies, such as
intensification and diversification, to our heuristic to improve its overall
performance are discussed. We then present our heuristic's main procedure in
which all the search elements (local and global) are put together. Also, a
procedure for finding the lower bounds for the CLSP with setup times and setup

carryovers is proposed.
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Chapter 5
COMPUTATIONAL STUDY

In chapter 4, after giving an explanation of the global search elements, we
presented CLSPTABU, our heuristic's main procedure for solving the CLSP with
setup times and setup carryovers, along with a bounding procedure. This
chapter presents the computational study in which our tabu search (TS) heuristic
is tested, and its performance is evaiuated. First, we present the testing results
obtained during the heuristic development phase where we compare the
solutions found by the basic version of our heuristic with the optimal solutior: - for
a set of small size problems. Secondly, we describe the experimentation
scheme through which our heuristic is tested on a large number of problems.
We then present the analysis of solution gap. Following that, we present the
analysis of cost difference. Based on the results for both the solution gap and
the cost difference, we comment on the solution quality achieved by our

heuristic. Lastly, we present the results ior computation times.

5.1 Preliminary Testing Results

In the early phase of heuristic development, we tested the basic version of
our heuristic on a set of small size problems. The test problems are randomly
generated. The tabu search solutions are compared with the optimal solutions if
an optimal solution can be found for these problems using CPLEX within eight

hours. We present the computational results in Table 1. In Table 1, the
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computation times required by tabu search heuristic are CPU seconds on a PC
486DX-33 machine, and the computation times required by CPLEX are CPU
times on a SUN 4 (Sparc 1) workstation. The solution gaps are in percentage
term. The basic version of our tabu search heuristic produced impressive results

for these small size probiems.

Table 1
Tabu Search Solution vs. Optimal Solution

No. of No. of TS Optimal  Solution TS Sol.  Optimal

items Periods  Solution  Solution Gap Time Sol.
sec. Time
12 4 3624 3624 0 1.60 3.83 sec.
12 4 6285 6096 3.1 1.82 70 sec.
12 4 5030 5003 0.5 234 226 sec.
12 4 6337 6311 0.4 212 102 sec.
12 4 6056 5788 4.6 2.12 11.7 min.
8 6 5206 5166 0.7 245 18.3 min.
8 6 5874 5576 53 2.50 4.9 hr.
8 6 5555 5500 1.0 2.21 4.0 hr.
8 6 5698 5239 8.7 2.23 7.3 hr.
4 12 2485 2153 15.4 3.12 35 min.
4 12 2125 1972 7.8 2.87 75 min.
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After some global search strategies were incorporated into our tabu
search heuristic, an extensive computational study was conduicted to test the

heuristic on a large number of test problems of larger size.

5.2 Experimentation Scheme

The test problems used in the computational study are prepared by
making minor modifications on the existing test problems from Trigeiro et al.
(1989). In this section, we present the experimentation scheme in the following
order: Trigeiro et al.'s test problem, our test problems, and performance

measures.

5.2.1 Trigeiro et al.'s Test Problems

The test problems created by these authors are available to anyone who
is interested in the research on the CLSP, and are featured with various problem
characteristics whose effect on problem difficulty might be significant. The
characteristics considered in the test problems are the demand variability, the
variability of capacity consumption per unit production, the setup time level, the
setup cost / holding cost ratio, the capacity tightness, and the problem size.
Since the effect of these characteristics on our heuristic’s solution quality will be
analyzed below, we give a description about how these test problems were

created by these authors as follows:
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T~

Demand. For every item in each period, the demand value is
generated from a uniform distribution with a mean of 100. 25% of the items
in each of the first four periods are randomly chosen to be given a zero value
for the demands, and the demands in later periods are augmented to
maintain the overall demand of 100 per period. This is to simulate the
demand pattern with increasing trend that can exist in manufacturing settings
where some demands are already satisfied by batching decision made in the
past. The effect of dernand variability can be examined by varying the
coefficient of variation of the demand values.

Capacity Consumption per Jnit Production. The amount of
capacity consumed by a unit of production either is set to one, or drawn
uniformly from an interval ot 0.5, 1.5] for the case of high variability of this
parameter.

Setup Time. Setup times are item dependent. For each item, a setup
time is randomly generated from a uniform dictribution. The distribution
parameter is defined by the requirement on average value and variability of
setup times. For the case of low mean and high variability of setup times,
the values are drawn from [10, 50].

Setup Cost/Holding Cost Ratio. Both the setup costs and inventory
holding costs in the test problems are set to be item independent, but not to
vary with periods. For a given mean demand, the setup cost/holding cost
ratio determines the time-between-order (TBO) in an Economic Order
Quantity (EOQ) model. For each item, the values of setup cost, and
inventory holding cost are drawn from the streams of uniformly distributed
random values. For examplz, the ratio with a low mean and a high variability
is created with the setup cost value from [20C, 1000], and the holding cost

value from [1, 5].

86



Capacity. Capacity tightness is controlled through a target average
utilization of capacity. In phase 1, and 2, the required capacity levels are
calculated based on the lot-for-lot solution plus a setup time for each item
produced. First, the total amount of resource required by the lot-for-lot
solution for the whole planning horizon is averaged over all periods. The
capacity then is determined by dividing the resulting number by a capacity
utilization factor, either 0.75, or 1.00, or 1.10. In phase 3, the capacity
available in each period is generated in the same fashion except that an
EOQ solution is used, and capacity utilization factors are set to 0.75, 0.85,
and 0.95. An EOQ solution results in fewer setups in the case of larger
TBO, so that available capacity generated with the measure on EOQ lot size
is lower for higher TBO.

Problem Size. Problem size is measured by both the number of items,
and the number of periods. Problems in phase 1 have 4 6, or 8 items, and
15 periods. All the test problems except 25 larger problems in phase 2 have
6 items and 15 periods. The 25 larger problems have the size of 12x15,
24x15, 6x30, 12x30, or 24x30. In phase 3, problems have the size of 10x20,
20x20, or 30x20.

Infeasibility For those test problems that were reported as infeasible by
the TTM procedure, new problems were generated until enough number of
problems considered feasible are found for each combination of the problem

characteristic’'s parameter.
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5.2.2 Our Test Probleras

The setup times and setup costs in the original problems vary across
items, whereas the setup times and setup costs in the model for the CLSP with
setup times and setup carryovers are assumed to be constant for all the items.
Therefore. to use these test problems in our experimentation, we have to change
the variable setup times and setup costs to the constant setup times and setup

costs.

Two sets of test problems are generated based on the original problems
through the two different ways in establishing the constant values for setup time
and setup cost. In one set of the test problems, the constant values of setup
time and setup cost are obtained by setting them to be equal to the averages of
the original setup time values and setup cost values for all the items (referred to
below as the problems with the average setup related values). In another set of
the problems, they are generated by setting them to be equal to the least values
among the original setup times values and setup costs values for all the items
(referred to below as the problems with the least setup related values). The

values of other parameters in the test problems remain intact.

The test problems with the average setup related values are equivalent to
the original problems in that, on the average, the original value settings for the
capacity tightness, setup time, and setup cost are kept roughly unchanged. The
problems with the least setup related values are tested because we are
interested in examining the effect of considering setup carryovers on the total

cost under different setup related values. Also, the expectation that our lower
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bounds arz tighter for the problems with lower setup related values can be

verified.

5.2.3 Performance Measures

in this computational study, two measures, i.e., the solution gap and the
cost difference, are used for solution quality evaluation. The test problems are
solved first using our tabu search heuristic. To obtain the solution gap, the lower
bounds are found in two steps using the bounding procedure discussed in the
previous chapter. First, the lower bound problems are constructed through
modifying the values of capacity, and setup cost in our test problems. Secondly,
the TTM procedure is applied to solving the lower bound problems, and the lower
bounds found by the TTM procedure are used to calculate the lower bounds of
our problems. To obtain the cost differences, the test problems are solved using
the TTM procedure. The difference between the cost of our tabu search
solution and that of TTM solutions allow us to examine the effect of explicitly
considering setup carryovers in modeling and solution procedure on the overall

production cost.

Our tabu search procedure is coded in C, and the program is run on a
SUN 4 (Sparc 1) workstation under the operating system Sun 0S5.4. The TTM
procedure is coded in FORTRAN, and its source code was obtained along with
the test problems from the original authors. It was re-compiled using the f77-

FORTRAN compiler, and run on the same workstation.
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5.3 Analysis of Solution Gap

The Trigeiro et al's test problems are arranged in three phases by the
authors. The 70 problems in phase 1 are not controlled in terms of
systematically setting the values for problem characteristics. In phase 2, which
contains 141 problems, the problem characteristics are varied one at a time by
changing their values from the nominal values so that the effects of the problem
characteristics on solution gap can be examined. In phase 3, the 540 problems
are the result of a full factorial design on the five selected characteristics with 2
or 3 levels. Since the same structure presents in out test problems, we analyze

the solution gaps in a fashion similar to that used in Trigeiro et al. (1989).

Table 2
Summary of the Solution Gaps (in %)

Test Problems

phase 1 phase 2 phase 3
70 141 540
problems problems problems

Average Solution Gap:

problems with the average setup 11.954 11.475 9.653
related values

problems with the least setup related 3.748 4.241 5.332
values
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The overall computational results for the solution gap for the problems in

each phases are summarized in Table 2. The solution gap is computed as:

TS objective value - Lower bound
Gap =

Lower bound

The first row in the table presents the average solution gaps for the problems in
the three phases with the average setup related values, and the second row
presents the average solution gaps for the problems in the three phases with the
least setup related values. The solution gaps for the problems with lower levels
of setup times and setup costs are consistently smaller than that for the
problems with higher levels of setup times and setup costs. The largest average
gap in the table is 11.954 percent. A large gap is due to either a large deviation
of tabu search solution from optimal solution, or a weak bound. It is not possible
to judge which is the case here. However, as we discussed at the end of the
previous chapter about the quality of the lower bound, the lower bounds are

expected to be poor when setup related values are high.

The effect of the various problem characteristics on the solution gap can
be evaluated by analyzing the computational results for the test problems in
phase 2. The problems in phase 2 include a set of problems with nominal vaiues
for all the problem characteristics. Other problems are created by varying the
values for one characteristic at a time. The nominal values are 30 units for the
average setup time, 600 for the average setup cost, range [1, 5] for the holding
costs, 0.244 for the coefficient of demand variation, 1 for unit production capacity
consumption for all the items, 100 percent for the lot-for-lot capacity utilization, 6

for the number of items, and 15 for the number of periods.
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Table 3, and 4 present the analysis of solution gap with respect to the

problem characteristics for the problems with the average setup values, and for

the problems with the least setup values, respectively. For the problems with the

least setup related values, the mean values of the parameters for controlling the

levels of setup time, setup cost, and capacity utilization no longer be the same as

the original ones, but the levels of the characteristics can still be distinguished

since the least setup related values change proportionally with the mean values

in the original test problems. So, in Table 4, the levels are indicated as low,

medium, and high, instead of the original mean values.

The results in the two tables show a similar pattern for the solution gaps

with respect to the problem characteristics. The observation is summarized as

follows:

There is a decrease in the solution gap, when setup time level is high. This
can be explained by the fact that the setup times are included in the design
of capacity measure when the problems are created, and hence savings in
setups due to batching and setup carryovers loosen the capacity restriction
more for the case of higher setup time values.

High setup cost gives rise to a significantly large solution gap. This effect is
probably in part because the gap between the lower bound and the optimal
objective value is larger when setup cost is higher.

The solution gap increases when the demand variation coefficient becomes
high at 0.608, whereas the solution gap seems not affected when the
demand variation coefficient is increased from low to medium.

Introducing variability in the capacity consumption coefficient yields a larger

solution pap.
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» Tightening the capacity constraints to high level significantly increases the
solution gap, whereas a small increase in capacity tightness has little effect
on the solution gap. As discussed in Trigeiro et al. (1989), one of the
reason for this effect is that high interdependency among the items
competing for the limited resources makes problem hard to solve.

» Increase in the number of items results in a great decrease in solution gap.
One of the explanation for this effect given in Trigeiro et al. (1989) applies
here too. Lot sizing with setup times bears an analogy to bin packing. To
solve a lot sizing problem with more products is like to pack the bins with
more items of different size, which cab be done more easily. The number

of period seems to have little effect on the solution gap.
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Table 3
Analysis of Solution Gap (in %), phase 2 problems with the average setup
related values

Setup Time
Low (mean 30 units of High (mean 90 units of
capacity) capacity)
10.184 8.550

Ratio of Setup Cost to Holding Cost
Low (mean 280) High (mean 560)
10.212 23.457

Coefficient of Demand Variation
Low (0.090) Medium (0.244) High (0.608)
9.454 8.496 13.263

Variability of Capacity Consumption Coefficient
None (1.0) High (0.5 - 1.5)
8.496 12.791

Lot-for-lot Capacity Utilization

Low (0.75) Medium (1.00) High (1.15)
9.125 8.496 16.992
Problem Size No. of ltems
6 12 24
No. of 15 8.496 4.259 1.996

Periods 30 9.965 4.438 1.890
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Table 4

Analysis of Solution Gap (in %), phase 2 problems with the least setup
related values

Setup Time
Low High
3.141 1.524

Ratio of Setup Cost to Holding Cost
Low High
4,654 13.335

Coefficient of Demand Variation
Low (0.090) Medium (0.244) High (0.608)
1.289 1.342 6.439

Variability of Capacity Consumption Coefficient
None (1.0) High (0.5 - 1.5)
1.342 3.622

Lot-for-lot Capacity Utilization

Low Medium High
0.991 1.342 5463
Problem Size No. of Items
6 12 24
No. of 15 1.342 0.257 0.138

Periods 30 1.104 0.531 0.274
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The problems in phase 3 allow us to further analyze the solution gap with

regard to the following problem characteristics: the capacity tightness measured

by EOQ capacity utilization, the number of items, the ratio of setup cost to

holding cost measured by the time between orders, the demand variability, and

the setup time. Table 5, and 6 summarize the analysis of solution gap with

respect to these characteristics.

Table 5

Further Analysis of Solution Gap (in %), phase 3 problems with the

average setup related values

Low Medium High

EOQ Capacity Utilization 6.871 7.376 14.714
(75%, 85%, 95%)

Problem Size 15.358 7.946 5.657
(10, 20, 30 items)

Time Between Orders (TBO) 3.237 6.367 19.356
(1, 2, 4 periods)

Demand Variability --- 9.325 9.982
(CV =0.35, 0.59)

Average setup Time 10.309 --- 8.998

(11, 43 units of capacity)

96



Table 6

Further Analysis of Solution Gap (in %), phase 3 problems with the least
setup values

Low Medium High

EOQ Capacity Utilization 3.399 3.688 8.907
Problem Size 8.579 4,242 3.174
(10, 20, 30 items)

Time Between Orders (TBO) 1.860 2.916 11.219
Demand Variability 4.761 5.902
(CV =0.35, 0.59)

Average setup Time 6.254 --- 4.409

The solution gaps are affected by the problem characteristics in a similar
fashion in the above two tables. The demand variability and setup time seem to
have a minor effect on the solution gap. There is a great increase in solution
gap for problems with few items, and high setup cost. When capacity constraints

are far tight, the solution gaps become larger.

The effect of demand variability seems less evident in phase 3 than in
phase 2. The reason for this might be due to the fact mentioned in Trigeiro et al.
(1989) that for each item, the demand values were generated independently,
and the variability of aggregate demand is lessened by the combined effect of
many independently generated demand for each item. When the number of the

items becomes larger in the problems in phase 3, it is lessened more.
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The findings in phase 2 and 3 indicate that the solution gap is large for
problems with high setup costs, tight capacity constraints, and few items. The
setup time level, the demand variability, and the variability in capacity

consumption per unit production do not affect the solution gap significantly.

5.4 Analysis of Cost Difference

We compare in this section the total cost found by our tabu search
heuristic for the CLSP with setup times and setup carryovers with the total cost
found by the TTM procedure for the CLSP with setup times alone. The cost

difference used in the following discussion is defined as:

TTM objective value — TS objective value
TTM objective value '

Cost difference =

The computational results for the cost difference are presented in the same way
as that for the solution gap. We first present the overall results for the three
phases of the test problems, and then present the cost differences for the

problems with the different characteristics.

Table 7 summarizes the computational results for the cost difference for
the problems in each of the three phases. The results reveal that on the
average, the costs found by our tabu search heuristic for the CLSP with setup
times and setup carryovers are lower than that found by the TTM procedure for
the CLSP with setup times for all the three phases. The costs are reduced by

over 20 percent in phase 1, 17 percent in phase 2, and 5 percent in phase 3.
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The differences in cost savings among the three phases are because that the
number of items in the test problems in the three phases are different. The
effect of the number of items on the per:entage cost saving will be discussed

below.

In phase 1 and 2, our heuristic produces lower cost soluticns for all the
problems. For the problems in phase 3, our heuristic failed to find the lower cost
solutions for 39 problems out of the 540 test problems in case the average setup
related values are used in our test problems, and for 33 problems out of the 540
test problems in case the least setup related values are used in our test
problems. By cxainining the test problems individually, it is found that our
procedure failed to produce lower cost solutions for those problems that have
highly tight capacity constraints, low setup {ime, low or medium setup cost, and
high demand variability. The detailed computational results also indicate that for
most of those cases, the costs of tabu search solutions exceed that of TTM
solution by less than 2 percent, and for many problems, our heuristic finds nearly
the same cost. That is why on the average, the costs of tabu search solutions

are lower than that of TTM solutions.

Another observation is that the costs saved for the problems with the
average setup related values are nearly the same as that for problems with the
least setup related values. This means that the cost saving in percentage term is

not much affected by the levels of setup times and setup costs.
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Table 7
Summary of the Cost Differences (in %)

Test Problems

phase 1 phase 2 phase 3
70 141 540
problems problems problems
Average Cost Difference :
problems with the average setup 20.929 18.276 5.310*
related values
problems with the least setup related 20.294 17.149 5.511**

values

*TS objective value is kigher than TTM objective value for 39 problems.
** TS objective value is higher than TTM objective value for 33 problems.

The cost differences for the problems with different characteristics in
phase 2 are shown in Table 8 and 9. Tabie 8 is for the problems with the
average setup related values, and Table 9 is for the problems with the least
setup related values. Unlike the results for the solution gap, the results for the
cost difference show that except the number of items, the problem
characteristics appear to have very minor effect on the cost saving. The only
problem characteristic that exhibits a major effect on the cost saving is the
number of items. The cost saving becomes smaller as the number of items in a
problem instance increases. The reason for this is that at most one setup can be
carried over in each period when setup carryovers are allowed, and hence the
cost saved due to the setup carryovers accounts for a smaller proportion of the
total cost for the problems with more items provided the cost coefficients
associated with the items are roughly the same for the problems with different

number of items in them. Comparing the results in the two tables, we observe
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that the cost savings for problems with the average setup related values appears

to be slightly higher than that for problems with the least setup related values.

Table 8

Analysis of Cost Difference (in %), phase 2 problems with the average
setup related values

Setup Time
Low (mean 30 units) High (mean 90 units)
20.690 19.588

Ratio of Setup Cost to Holding Cost (mean)
Low (mean 280) High (mean 560)
19.640 18.747

Coefficient of Demand Variation
L.ow (0.090) Medium (C.244) High (0.608)
21.839 20.594 22.426

Variability of Capacity Consumption Coefficient
None (1.0) High (0.5 - 1.5)
20.594 19.677

Lot-for-lot Capacity Utilization

Low (0.75) Medium (1.00) High (1.15)
19.490 20.594 20.186
Problem Size No. of Items
6 12 24
No. of 15 20.594 9.873 4,728
Periods 30 19.142 9.411 4.529
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Table 9
Analysis of Cost Difference (in %), phase 2 problems with the least setup
related values

Setup Time
Low High
18.825 19.091

Ratio of Setup Cost to Holding Cost

Low High
17.500 18.187

Coefficient of Demand Variation
Low (0.090) Medium (0.244) High (0.608)
18.905 17.329 19.773

Variability of Capacity Consumption Coefficient
None (1.0) High (0.5 - 1.5)
17.329 19.215

Lot-for-lot Capacity Utilization

Low Medium High
19.217 17.329 19.215
Problem Size No. of Iltems
6 12 24
No. of 15 17.329 9.416 4.839

Periods 30 17.765 8.911 4.691
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The cost difference analysis is carried out further on the problems in
phase 3, and the results for the cost difference are presented in Table 10 and
11 for the problems with the average setup related values and the least setup
related values respectively. The findings show that the number of items has a
big impact on the cost saving. The costs appear to be reduced a little less for
the problems with high capacity tightness, high setup cost, or low setup times.
The cost saving patterns presented in the two tables for the two sets of problems

do not exhibit much differences.

Table 10
Further Analysis of Cost Difference (in %), phase 3 with the average setup
related values

Low Medium High
EOQ Capacity Utilization 5.746 5.967 4215
(75%, 86%, 95%)
Problem Size 10.049 3.844 2.037
(10, 20, 30 items)
Time Between Orders (TBO) 5.920 5.674 4,388
(1, 2, 4 periods)
Demand Variability -- 5.344 5.274
(CV =0.35, 0.59)
Average setup Time 4779 --- 5.839

(11, 43 units of capacity)
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Table 11
Further Analysis of Cost Difference (in %), phase 3 problems with the least

setup related values

Low Medium High
EOQ Capacity Utilization 6.339 6.358 3.839
Problem Size 9.712 4.305 2517
(10, 20, 30 items)
Time Between Orders (TBO) 6.067 5.977 4.491
Demand Variability - 5434 5.589
(CV =0.35, 0.59)
Average setup Time 4.962 - 6.061

Based on the results for the problems in phase 2 and 3, it is found that the
cost saving is inversely related to the number of items, and appears to be a little
smaller for problems with high capacity tightness, high setup cost, or low setup

time.

Comparing the results for the cost difference with that for the solution gap,
we observe that all the testing problem characteristics except the number of
items have a much weaker effect on the cost saving than on the solution gap.
This suggests that with regard to saving the total cost in percentage term, our

heuristic is not sensitive to the various problem characteristics.

Examining the overall results for the cost difference in Table 7, and for the

solution gap in Table 2, some comments on the effectiveness of our heuristic

104



can be made. For the problems with higher levels of setup times and setup
costs, other things held equal, the cost savings due to setup carryovers are
expected to be greater since the reduction in the number of seti:ps reduces a
larger amount of setup costs and generates more available capacity times which
in turn help to reduce more inventory costs. On the other hand, for the problems
with higher levels of setup times and setup costs, the total cost incurred in a
CLSP model without considering setup carryovers will be greater too. Thus,
other things held equal, the cost savings in percentage term due to the setup
carryovers are expected to be within a close range regardless of the levels of

setup times and setup costs.

The cost savings achieved by our heuristic are consistent with this
expectation in that the computational results for the cost difference show that for
the problems with different levels of setup times and setup costs, the cost
savings realized by our procedure account for a nearly same percentage of the
total costs found by the TTM procedure for the CLSP with setup times alone. In
contrast, the solution gaps for the problems with higher levels of setup times ard
setup costs are much larger than that for the problems with lower levels of setup
times and setup <osts. A large solution gap means that either the objective
value of a heuristic solution is not close to the optimal objective value, or the
lower bound is not tight. In our case, since the percentage cost savings
achieved by our procedure for the problems with higher setup related values are
nearly the same as that for the problems with lower setup related values, we
suspect that the large solution gaps for the problems with higher setup related
values are, for the most part, due to the large gaps between the optimal objective

values and our lower bounds.
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5.5 Computation Times

The computation times required by the current implementation of our
heuristic are presented in Table 12, and are relatively long. Computation time
tends to increase quickly with the increase in problem size, especially with the
increase in the number of periods. The reasons for this are because of the use
of the exhaustive neighborhood search at each iteration, and the multiple
restarts form other initial solutions. Candidate list strategy is a way to limit the
amount of neighbors evaluated at each iteration, and hence is often effective in
reducing computation times. The approach to applying a candidate list strategy

to our heuristic remains to be worked out.

Table 12
Average Tabu Search Computation Times (CPU seconds on a SUN 4

workstation)

“phase 1 and phase 2

Number of Items

4 6 8 12 24

Number of 15 42.17 5487 88.59 14170 438.30

Periods 30 277.50 712.80 2125.40

phase 3
Number of items
10 20 30

Number of 20 168.50 440.50 800.50

Periods
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For a comparison, the computation times required by TTM procedure are
captured for problems in phase 2, and are presented in Table 13. It can be seen

that the TTM procedure requires much less computation times.

Table 13
Average Computation Times Used by the TTM Procedure (CPU seconds on a
SUN 4 workstation)

phase 2
Number of Items
6 12 24
Number of 15 2.71 5.40 10.76
Periods 30 14.38 31.72 57.10
5.6 Summary

Our heuristic is tested on a large number of test problems, and evaluated
with two relative measures, the solution gap and the cost difference. In this
computational study, two sets of the test problems are created from Trigeiro et
al.’s problems using the average setup related values and the least setup related
values respectively. Computational results show that the solution gaps for the
problems with the average setup related values are larger (average 10.21
percent) than that for problems with the least setup related values (average 4.98
percent). The solution gap is larger for the problems with higher setup cost,
tighter capacity constraints, and smaller number of items. The variability of

demand, the variability of capacity consumption per unit production, and the level
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of setup time have a relatively minor effect on the solution gap. Computational
results reveal that on the average, the cost saving accounts for a roughly same
proportion of the total costs found by the TTM procedure for solving the CLSP
with setup times alone, for the problems with the average setup related values
and the problems with the least setup related values. The cost savings in
percentage term appears not sensitive to the various problem characteristics
except the number of items. Based on the fact that our heuristic reduces the
total costs in almost the same percentage for the problems with higher or lower
level of setup related values, we suspect that the large gaps for the problems
with the higher level of setup times and setup costs result from the poor lower
bounds for these problems. The computation times required by the current
implementation of our heuristic are quite long, and the work to reduce them

remains to be done.
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Chapter6
CONCLUSION

This chapter concludes the thesis. First, we summarize the research

results, and then, we suggest some directions for future research.

6.1 Research Results

The setup carryover issue was explicitly addressed in a modeling
framework for the CLSP with setup times and setup carryovers in the large time
bucket setting by Gopalakrishnan et al. (1995) so that the total cost of a lot sizing
plan is reduced, or the possibility of finding feasible plans is increased in case
there exists no feasible plan for the CLSP with setup time alone. Our research
here was focused on developing a tabu search heuristic for the CLSP with setup
times and setup carryovers on purpose to facilitate the application of the model
to the real world decision problems of this kind. Based on the results obtained
from our computational study, the viability of the tabu search heuristic approach

for solving this class of the CLSP can be determined.

By nature, tabu search is a meta-heuristic which must be tailored to the
specific of the particular problem under study. For our problem, first, we allowed
infeasible solutions that violate the capacity constraints to be visited through a
penalty term applied to the objective function. This provides a flexibility in our

heuristic for the search can be started from any solution as long as it meets the
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demand requirements. In addition, this strategy helps to lead the search toward

the regions not covered before when the penalty rate is varied in our heuristic.

Then, we designed five move types to respond to the nature of the
decisions to be made in the problem. The problem is composed of two types of
interrelated decisions, i.e., partial sequencing decision for setup carryovers, and
lot sizing decision. In our heuristic, three move types are designed to handle the
issue of partial sequencing. The three move types are the position swap
between the item produced first or last and the other item within a period, the
setup move to the previous period, and the setup move to the next period. Also,
two move types are designed to handle the issue of lot sizing. The two move
types are the lot shiftto an earlier p~riod, and the lot shift to a later period.

Together, the five move types allow us to implement the local search in our

heuristic.

To enhance the overall performance, various global search strategies and
the associated memory structures were employed in our heuristic. The main
search strategies include the tabu list with variable length, the intensification
using an elite solution list, the diversification using the move frequency memories
combined with the aspiration by search direction, the diversification with full
restart from other initial solutions, and the variable penalty rate for capacity

violation.

A procedure that finds the lower bounds for our problem was proposed
too. The bounding procedure works according to the following steps:
constructing the lower bound problems, solving them with the TTM procedure,

and calculating the lower bounds of our problem based on the TTM bounds.
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An extensive numerical experimentation was conducted. With small
modification made on the setup related values in the original problems from
Trigeiro et al. (1989), two sets of test problems, one with the average setup
related values, and another with the least setup related values, were prepared.
The computational results were analyzed with regard to two measures, i.e., the
gaps between our tabu search solution and the lower bound, and the difference
between the cost of our tabu search solution for the CLSP with setup times and
setup carryovers and the cost of TTM solution for the CLSP with setup times.
Regarding the effect of problem characteristics on the solution gap, larger gaps
are found for the problems with higher setup cost, tighter capacity constraints,
and smaller number ofitems. The variability of demand, the variability of
capacity consumption per unit production, and the setup time level have a
relatively minor effect on the solution gap. The percentage cost saving achieved
by our heuristic appears insensitive to the various problem characteristics except

the number of items.

The overall computational results revealed that although the solution gaps
for the problems with higher setup related values are larger, the percentage cost
savings are found to be aimost the same for the problems with higher or lower
setup related values. Based on the fact that our heuristic reduces the total costs
in a nearly same percentage for the problems with higher or lower level of setup
related values, and the solution gaps for the problems with the least setup
.elated values average less than 5 percent, we can conclude that our heuristic
performs well in producing good near optimal solutions for this computationally

hard problem.
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The computation times required by the currentimplementation of our

procedure were found to be relatively long, and the way to reduce them needs to

be worked out.

One contribution of this research is that a heuristic solution procedure for
solving the CLSP with setup times and setup carryovers is developed, and its
performance is encouraging. The work remains to be done is to reduce
computation times, and improve the solution quality for those problems for which

our procedure failed to find a better solution.

6.2 Future Research Directions

The directions for future research are presented with regard to the
following three aspects: improvement of the current implementation of our
heuristic, application of statistical bounding approaches, and possible extension

of our heuristic to the related problems.

6.2.1 Improvement of Our Heuristic

In the currentimplementation, our heuristic failed to produce lower cost
solutions than the TTM procedure for a small number of the test problems. For
these instances, the comparisons between the detailed production plans
generated by our heuristic and that by the TTM procedure will help us to work

out good strategies for finding better solutions for these problems. We can even
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execute a search starting from the TTM solutions, and examine the outcomes for

these problems.

It was found during the experimentation that the current approach to vary
the penalty rate during the course of the search appears having minor effect on
improving the solution quality. Therefore, another possible way to improve
heuristic is to test other approaches to vary the penalty rate. For example, we
can try the way described in Gendreau et al. (1994). The idea is to double the
penalty rate if a certain number of previous solutions is found to be infeasible,
and halve the penalty rate if a certain number of previous solutions is found to be

feasible.

The computational times required by the current implementation is
relatively long. One way to alleviate the problem is to implement a candidate list
strategy, which usually can help to reduce computational effort while maintaining
the effectiveness of a search procedure. The way to incorporate a candidate list

strategy in our heuristic needs to be identified and implemented.

6.2.2 Statistical Bounding Procedure

The bounding procedure used in this study may not produce a tight
enough bound for some problem instances since it is affected by the levels of
setup times and setup costs. When the available deterministic bounding
procedure fails to produce tight bounds, the use of statistical bound procedure
may be a way to resolve the problem of measuring the solution quality of an

approximate solution procedure. A statistical lower bound is defined as a
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constant z satisfying Prab(z* 2 z) > 1-a for a fixed ae(0,1), where z* is the
(unknown) optimal objeciive value of an optimization problem. Statistical
procedures for generating the lower confidence limit z on z* based on a sample
of n local optimum solution z4, ..., z, found by a local search procedure are
available, and Derigs (1985) reported some extensive computational results on
the statistical lower bounds for the traveling salesman problem and the quadratic

assignment problem. The application of statistical bound to our problem is worth

investigating.

6.2.3 Extensions of Our Heuristic to the Related Problems

Our heuristic currently solves the setup carryover model in which setup
times and setup costs across items are assumed to be constant. One extension
of the heuristic procedure is to make it to solve: the setup carryover model with
the item-dependent setup times and setup costs. The modification to
accommodate the item-dependent setup related values in our heuristic algorithm
does not require much effort, because each time a trial solution is evaluated, the
item and the periods involved in a move are known, and hence the
corresponding cost items and setup time associated with the item can be easily
identified and used in move evaluation. It would be interesting to see the
heuristic's solution quality for this class of problems, when some measures for

solution quality could be available.

Extending our heuristic to solving the multi-machine CLSP model is

another goal in future research. What we need to do is to extend the move
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mechanisms designed for the single machine CLSP to the multi-machine CLSP,

but this can be challenging, and requires much more research effort.
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