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ABSTRACT

A Time-Accurate Finite Element Solution
of the Navier-Stokes Equations

Mohamad Sleiman

A finite element formulation of the Reynolds-averaged Navier-Stokes
equations (RANS) for three-dimensional unsteady, viscous, compressible,
turbulent flow, written in conservation form, is presented. The equations are
linearized using the Newton method. They are discretized in space using a
Galerkin finite element approach and are integrated in time using the Gear
scheme: a multi-level, implicit, unconditionally stable method, with an order
of accuracy that can be controlled by using a number of preceding time levels
at each time step. The resulting set of algebraic equations for continuity and
momentum, at each time step, are solved in a fully-coupled manner by a
preconditioned iterative solver. To reduce memory requirements, the x—¢
two-equation turbulence model is solved in a segregated manner, by the same

solver.

The solution of the unsteady viscous Burgers equation, a model equation for
the Navier-Stokes system, is presented by both the Gear method ard the more
popular Crank-Nicolson method, and the results used as a justification for

the selection of the Gear method.

The outcome of this Thesis has been embedded into a Concordia-Pratt &
Whitney Canada code, NS3D. The unsteady capabilities of the code have been

validated against two incompressible test cases: the laminar flow over a
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circular cylinder at Re=100 and the turbulent flow around a triangular flame
holder at Re=45,000. The von Karman vortex street shedding, observed
experimentally, is captured in both cases and its computed shedding

frequency is shown to be within 5% of the measured ones.
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1. Introduction

This Thesis extends the computational capabilities of the Concordia CFD

Laboratory, in partnership with Pratt & Whitney Canada, to the analysis of

unsteady flow phenomena.

Most fluid flow problems of current interest in Computational Fluid
Dynamics (CFD) are three dimensional, viscous, turbulent and unsteady. The
ensuing complexity of the governing nonlinear Navier-Stokes equations
makes the solution of such flows quite chal'eiiging, with great demands on

computer power and memory.

For situations of interest, depending on the type of applications, researchers
continuously make appropriate assumptions to circumvent complexities and
reduce the cost of solving these equations. In the absence of extremely large
computational resources, the major assumption has been, and will continue
to be in the foreseeable future, to eliminate the need to resolve the structure
of turbulent flows in time-accurate detail. This simplification is provided by
ensemble-averaging the Navier-Stokes equations to yield their Reynolds-
Averaged Navier-Stokes (RANS) form. In this case, turbulence is accounted
for by means of a Reynolds stress and a scalar flux tensor, with the Reynolds
stress simulated by various techniques, ranging from algebraic models, to
one- and two-equation models, Reynolds' stress models, etc. I'urthermore, for
high-speed external aerodynamics, researchers have assumed that, away from
the boundary layers, one can neglect the viscous terms in the RANS,
obtaining the Euler equations, with their further lower order approximation

to potential irrotational and rotational flows. These simplifications have




permitted them over the last few decades to numerically compute various
flow problems of interest. Currently, a focus of research is the development of
methodology and the application of the RANS to a wide range of problems of

industrial interest.

The assumption of flow steadiness must be carefully assessed as one can
argue that, strictly speaking, all fluid flows are unsteady by their nature.

Unsteadiness can, in general, be due to two phenomena:

a. A time-dependent input at a boundary or the interaction of adjacent
stationary and moving components. Such situations are encountered in
turbomachines where sources of unsteadiness are present such as
stator /rotor interaction, flutter and inlet distortion, blade wake
interaction, vortex shedding, passage and tip vortices, etc. The
unsteadiness due to the relative motion between stators and rotors has
lately become the focus of intense computational research and is the
motivation behind the work of this Thesis, considered a building block
towards achieving an unsteady predictive capability for the interaction of

stationary and moving components [1].

b. Inherent unsteadiness due to the instability of the flow itself (bifurcation),
such as behind bluff and profiled bodies, at high Reynolds numbers. The
flow around bluff bodies, such as circular, square, or triangular cylinders,
is a good example of such unsteadiness. The flow past a circular cylinder is
known to be symmetric, stable, and steady for Reynolds numbers of up to
40. For higher values of Reynolds numbers, however, the flow structure

changes dramatically, with, two attached oscillating eddies of unequal



kinetic energies form behind the cylinder. Then, the one having higher
kinetic energy divides the other into an eddy remaining near the cylinder
and another convecting downstream and shedding in the form of the

well-known von Karman vortex street [2].

The focus of this research, therefore, is to develop a finite element code for
the time-accurate solution of the unsteady compressible Navier-Stokes
equations. These equations are discretized in space using a Galerkin finite
element approach, linearized using a Newton method and integrated in time
using the Gear scheme, a multi-level, implicit, unconditionally stable
method, with an order of accuracy that can be conirolled by the use of a
number of time levels at each time step. The resulting sets of lincar

equations, at a given time step, are solved by preconditioned iterative solvers.

This time integration scheme has been embedded into a Concordia-Pratt &
Whitney 3D, turbulent, steady Navier-Stokes code, NS3D [3]. The time-
accurate implementation has been validated, for the purpose of this Thesis,
against two 2D test cases: that of a laminar flow over a circular cylinder and of
a turbulent flow around a triangular flame holder. The von Karman vortex
street shedding, observed exg :rimentally, is captured in both cases and its
computed shedding frequency is shown to be within 5% of the measured

ones.




1.1  Review of Previous Work

The time-dependent numerical solutions of complex fluid flow problems
have become more affordable with the advent of powerful computer
resources [4]. The numerical solution of the unsteady Navier-Stokes (N-S)
equations requires both space discretization and time integration. Space
discretization can be performed by finite difference methods (FDM), finite
element methods (FEM), or finite volume methods (FVM). FDM can be used
for structured meshes while FEM and FVM can be applied to structured as
well as unstructured meshes. It is not the aim of this Thesis to assess the
merits of each one of these methods. In this work, however, the Galerkin

finite element method (GFEM) is used for the space discretization.

In this section, a brief review of time integration schemes for the N-S
equations is presented. For time discretization, a choice can be made between
explicit multi-step schemes and implicit multi-level schemes. Explicit multi-
step schemes such as the Runga-Kutta (R-K) methods [5], and implicit time
integration schemes such as the 6-family of methods [6] are widely used in the

solution of the N-S equations.

The solution of the unsteady N-S equations using explicit methods has been
reported in numerous studies. Jordan and Fromm [7] applied the ADI
method to solve the vorticity-stream function formulation of the unsteady
N-S equations. Braza et al. [8] used a second-order finite volume method to
analyze the pressure and velocity fields of the unsteady wake behind a
circular cylinder. An explicit R-K time integration scheme has been

introduced by Jameson [5]. Based on Jameson's work, Chima et al. [9]



developed a code to study flow phenomena in turbomachinery components.
San-Yih Lin et al. [10] developed an explicit R-K finite element method for
the solutions of Euler and N-5 equations and investigated the accuracy and
convergence of the method for the unsteady flow over a NACA 0012 in

pitching motion.

Aside from the explicit methods described above, many authors have chosen
to apply implicit schemes to solve the unsteady N-S equations. Bristeau et al.
[11] presented a finite difference scheme for space discretization of the
compressible N-5 equations and implemented the Gear scheme of second-
order accuracy for time discretization. Launder and Kota [12] investigated the
turbulent unsteady flow around a square cylinder using the finite volume
method for space dicretization and the 6-family of methods for time
integration. Gresho et al. [13} developed a finite element code to study vortex
shedding phenomena. They formulated a time integration scheme by a
combination of two second-order time integration techniques, namely the
implicit trapezoid rule and the explicit Adams-Bashforth formula. Von de
Vosse et al. [14] studied the flow behind a circular cylinder using the penalty
finite element method and analyzed the performance of the implicit-Euler
and C-N time integration methods as well as their stability and convergence
properties. Li et al. [2] developed a finite element velocity-pressure based
method to simulate the vortex shedding behind one and two circular
cylinders. They carried out a performance evaluation for the implicit-Euler

and C-N methods and obtained a relationship between 6 and At.




1.2 Brief Overview of Thesis

The Thesis is divided into six chapters. In Chapter 2, various methods of time
approximations are presented and commented on. The solution of the
viscous Burgers equation, a model equation for the Navier-Stokes system, is
presented by both the Gear method and the Theta-family of methods, and the

results used as a justification for the selection of the Gear method.

Chapter 3 presents the governing equations of the present work, namely the
Reynolds-Averaged Navier-Stokes equations, the energy equation, and the x-
€ two-equation turbulence model. The chapter details the space and time
discretization, the linearization and the boundary conditions of the various

equations.

Chapter 4 highlights the solution strategy and analyzes the details of the
overall outer and inner iterative procedures, involving marching in time
and the solution at each time step of a set of nonlinear equations by a Newton
approach. The linearization step yields a set of algebraic equations that are
solved by a preconditioned iterative method. The chapter also describes the
use of the unsteady formulation, in a time-marching algorithm, for the

solution of steady-state problems.

Chapter 5 presents the results of code validation on two well-documented

inherently unsteady flows over bluff bodies.

Chapter 6 draws conclusions from this work and describes possible natural

extensions of this work.



2. Time Integration Methods

In this chapter, various methods of time approximation for partial
differential equations of unsteady flows are presented. The time integration of
the Burgers equation, a model equation for the Navier-Stokes system, is
carried out using the Gear scheme and the Crank-Nicolson method. A
discussion of the results of both methods clarifies the reason for choosing the

Gear scheme.

Upon space discretization and linearization of the governing equations
(details in following Chapters), the Navier-stokes equations, for all points in
the computational domain, can be represented by the following set of

ordinary differential equations in time:

MU+ KU=F 0 <t<T (2.1)

where

Global vector of nodal point values of the variable U(x,y,zt)

First derivative of U with respect to time

U
U
M Mass matrix
K Coefficient matrix representing the convective and viscous terms
F

Source vector, generally a function of U and t

~

Time

T Time span within which the vector U is computed




Equation (2.1) is written in semi-discrete form, i.e. it is a continuous ordinary

differential equation in time, discretized in space. There are essentially two

approaches for the time discretization:

a.

b.

A finite element time integration, and

A finite difference time integration.

The second approach is the more convenient one in the current work because

of its lesser demands on computer time and memory. In such

approximations, the time span [0, T] (T could be any time level or the steady

state) can be thought of as divided into a number of discrete time intervals

between ¢, tj, ty, ...... ta-1, t- The different classes of time approximation, are:

1~

Theta, 6, family.

a- Euler-forward (explicit, single-level, single-step method)

b- Crank-Nicolson (implicit, single-level, single-step method)
c- Euler-backward (implicit, single-level, single-step method)

d

Galerkin (implicit, single-level, single-step method),
Modified Euler (explicit, single-level, two-step method),
Runge-Kutta (explicit, single-level, multi-step method),
Adams-Bashforth (explicit, multi-level, single-step method),

Gear (implicit, multi-level, single-step method).



The 6-family is a single-level, single-step method in which the solution

between two successive time levels t,; and t, is assumed to vary linearly [2].

Consequently, at a time ¢, = t,.1-0At, located between times t,.; and t, one can

write:
Ult) = U= OUs + (1-0)Upps = 6 Uy + (1-6)Usq 0<0<1 (2.2)
_t-t
where 0=-—I (t1, t) (2.3)
At
therefore, oU _ U6 _ (U, - UL (2.4)
ot 96 ot At

To illustrate the differences between an explicit and an implicit scheme, the
6-family is applied to the general model equation (2.1), as follows:
Within the time interval [t-1, ta], a linear variation of vectors F and KU is

assumed, hence one can write

E. = @F,+ (1-6)F;1 0<£0¢<1
and (KU = KUY, + (1-6)(KU),1 0<0<1 (2.5)

Substituting equations (2.2-2.5) into equation (2.1) yields:
~M(Us - Uaa) + 8KUs + (1-0(KUls1 = OF, + (1-0)Fa (2.6)
a- Setting 6 =0 in equation (2.6) gives:

U, = Up-1 + At MY Faq (KU (2.7)
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Equation (2.7) can be used to determine the solution U, at time level t, using
information from the previous time level ¢,, The scheme of (2.7) is the
Euler-forward method and is an explicit method since both the F and KU
vectors are known from the previous time level. In addition, it is first-order
accurate in time, conditionally stable, but has a stringent stability restriction
on the time step size. This explicit scheme, however, requires minimum

computer storage since a matrix solution is not required.

b- Setting 6 = 1/2 in equation (2.6) gives the Crank-Nicolson, or implicit

trapezoidal scheme:

Ua = U1 + At Ml[Fr‘ (KUY (2.8)

The solution U, is computed using information from the previous time level
ta-1, and can be thought of as a centered scheme in time around a half-time
step. The scheme of (2.8) is implicit since the vectors F and KU are also a
function of the unknown solution U, The scheme is unconditionally stable
and second-order accurate in time. Although it has no restriction on the time
step size for stability, it suffers, as any other implicit scheme, from temporal
oscillations in the solution if the time step is excessively large. Because of its
improved accuracy and stability, the Crank-Nicolson scheme is widely used in

the solution of the unsteady Navier-Stokes equations.

c- Setting 6 =1 in equation (2.6) gives:

U, = Uyq + At M E, - (KUY (2.9)
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The solution U, at time level ¢t; is computed using information from the
previous time level t,.;. Scheme (2.9) is an implicit one and is often called the
Euler-backward scheme. In this formulation, the vectors F and KU are a
function of the unknown solution U, at the new time level. The scheme is
first-order accurate in time, conditionally stable, and widely used in the
solution cf the Navier-Stokes equations because of its large values of time
step sizes. It is also commonly used as a matrix preconditioner to augment the
diagonal dominance, and hence stability, of time-marching iterative

approaches to steady-state problems.

d- Finally, the unconditionally stable Galerkin method, is obtained by setting
6 = 2/3 in equation (2.6).

2- Modified Euler or Predictor-Corrector method (explicit, single-level, two-
step method)
The time integration methods outlined above are single-step methods, i.e.,
the solution at time level t, is obtained by evaluating the first order
derivative once, the penalty being that they are only first order accurate.
Higher time accuracy can be obtained by using multi-step methods (methods
which require at least two derivative function evaluation per time level) or
multi-level methods (methods which use solutions from two previous time
levels or more), or a combination of both. In this context, the modified Euler
method is a two-step method in which an explicit Euler step is first used to
predict a solution at the new time step, and a trapezoidal integration rule
similar to Crank-Nicolson, but fully explicit, is used to correct that solution.
This method is therefore numerically explicit but yields second-order accuracy

in time [15].
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3- Runge-Kutta (explicit, single-level, multi-step method).

When higher accuracy is desirable, multi-step methods such as the Runge-
Kutta approach, can be used. The basic idea of the method is to assume that
the change in the solution AU, = (U,-U,.;) between time levels t, t,; is the
weighted sum of a number of changes A evaluated at intermediate time
locations within the time interval [t, t,.;] The number of these changes 4 is

equal to the order of accuracy of the chosen Runge-Kutta method.

For the fourth-order Runge-Kutta method, for example, the total change in
the solution between the current and the previous time levels AU, can be

written as:

AU ;= U,- Uy = hAUy + hAU, + hAU; + kAU, (2.10)

The parameters b, the time locations t;, the solution U; at which the changes
AUi(t; U;) are evaluated, are chosen such that equation (2.10) and a Taylor
series expansions for the solution U,.; are made identical through the

specified or desired order of the Runge-Kutta method [15].

4- Adams-Bashforth (explicit, multi-level, single-step method).

The 6@-family of methods is a single-level, single-step, method since the
solution at time level ¢, is obtained by using information from one time level
only, t,.1 The Modified Euler method, on the other hand, is a single-level
two-step method that requires the evaluation of two derivatives. Higher-
order methods with fewer derivative evaluations can, however, be developed

by using solutions at different time levels.
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The fourth-order Adams-Bashforth method is a widely used multi-level
single-step approach that is obtained by fitting a third-order Newton backward
difference polynomial to base time level t,.; and integrating from that base
time level to the next one t, This time integration method is explicit,

conditionally stable, and has a fourth-order accuracy [15].

5- Gear (implicit, multi-level, single-step method).

The implicit Euler method is unconditionally stable, with first-order accuracy,
while the Crank-Nicolson method improves this to second-order accuracy.
Higher-order implicit methods are often desirable. Gear (1971) devised a series
of implicit time integration schemes having large stability limits. The method
is often referred to as the k-level method, with k being the order of accuracy.
The method is of the backward differentiation type and has a variable order of
accuracy in time that can be controlled by the number of time levels used [15].
For example, a first order Gear scheme (k=1), identical to the Euler-backward
scheme, requires information from one time level, to solve for the curnicnt

one.

The time term in equation (2.1) is approximated using the kth order Gear

scheme as follows:

auy_1
ot | At

k k
o Ul + Y a,.u""“‘) = th-(aoua + Y ol ,,-) (2.11)

i=1 i=1

where ;(i=0, 1,2, ..., k) and k are the coefficients and the required order of
time accuracy of the Gear scheme, respectively. Table 2.1 presents the values

of the coefficients 0; associated with their corresponding Gear order k.
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k [ oy 17 o3 o4

1 1 -1

2 32 4/2 172

3 1176 -1876 976 276

4 25/12 48/12 36712 16712 3/12

Table 2.1 Coefficients for the increasing order of Gear

finite difference approximations.

Equation (2.1) is time discretized using a Gear scheme of kth order accuracy in

time as follows:

k
Up=-Y %U&,- + ALpIF - KUL (2.12)

As can be seen from (2.12), the method requires an iterative procedure at
every time step, even for a linear equation. A perceived disadvantage may
also be that it requires multi-initial solutions at different time levels.
However, one can make all initial solutions identical at the beginning of a
computation. An alternative, say for a second-order Gear scheme (k=2), where
two initial solutions are required, U,.;and U,.;, with U,given, is to obtain
U,.1 by a first-order Gear scheme (k=1), using an appropriately small first time
step. The global accuracy of the second-order Gear scheme can be maintained
by ensuring, through a smaller initial time step, that the accuracy of the first-
order Gear step is the same as the larger step taken with the second-order Gear

scheme.
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A great advantage of this scheme in the solution of the unsteady Navier-
Stokes equations is the large time step allowable, and the choice of order of

accuracy, in an otherwise general code.

In conclusion, for fluid flow problems with rapid transient behavior, small
time steps may be required for accuracy and stability, and exglicit methods
may then be appropriate to generate solutions. However, for problems with
relative low transient behavior, implicit schemes allow the use of much

larger time steps.

2.1 Analogy between the Burgers and Navier-Stokes Equations

In solving the Navier-Stokes equations one should carry out a detailed
analysis of the discretization technique in order to assess its ability to simulate
the equations. A simpler analog equation for nonlinear fluid mechanics
would be quite useful. This model equation should have terms that closely
duplicate the behavior of the essential terms, i.e. it should have a convective,

a diffusive, and a time-dependent term.

The Burgers equation is a simple nonlinear equation which meets these
requirements. It is a time-dependent parabolic equation, with convection and
diffusion, which has served well as a model for the Navier-Stokes system. It
has exact analytical solutions for certain initial and boundary conditions,
useful when comparing time integration schemes and space discretization

schemes.
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2.2 A PFinite Element Formulation of the Burgers Equation

The proposed Newton-Galerkin finite element method is applied to the
Burgers equation, the purpose being to use this test problem to aid in the
development of a general method for time dependent, viscous flows. The 1-D

time dependent Burgers equation can be written as

ou ou ?%u

—m + — - — = as 213

ot " x Y s(x8 (2.13)
Unsteady Convection Diffusion  Source

term term term term

Equation (2.13) requires one initial condition and two boundary conditions.

The general form of such conditions is as follows:

initial condition:

u(x,t=0) = ufx) (2.14)

boundary conditions:
u(x=I,t) = up,(f)

u (2.15)
a(x=1" 2t = ur(t)

To discretize equation (2.13), the Galerkin method is applied. The variable u is

approximated in space as:

2
u(xt) =, Nj(x) ui(d) (2.16)
j=1
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where u/(f) are the time dependent nodal unknowns, and N{(x) (Figure 2.1)
are the interpolation functions, Ni(x), chosen here to vary linearly over the 1-

D element, can be written as:

Ni(x) =%__-___X;_1

Ny(x) = &i—,’é— (2.17)

The Galerkin integral formulation of equation (2.13) in the domain, T; is:

ou ou 2%u
— + U— - f— - t) ) Wdl' = 0 2.18
fr {bt uax  HFae )} (2.18)

After integration by parts, the weak-Galerkin form of equation (2.18) is:

|

Introducing the Gear time discretization:

[a—u+ uég—s(x,t)w + U

=0 2.19
P (2.19)

ot 0x

W ko [y w2

I,

ault 1 ‘ « r-ide
'a—t =Zt‘ aou + Zaiu,- (220)

i=1



18

Substituting equation (2.20) into equation (2.19) gives:

[ k . £ t
{—]—[a,,u' + Z oA W+ u—aE -s(x, )| W+ u ou W, dIr
At i=1 Ox
e
ult
- uWi—| =0
K ijlrc

Using the Newton linearization:

u™l = un + Au

into equation (2.21) gives:

] {% [Au ']W + [unduy + upau]'w + plau]w, }dI‘
Ie !

~

- #W[Aux]lt‘, =- R{
where Ry is the residual of equation (2.23), given by:

tn

k
. ou
R} = Lloutn + AW+ lu— - s(xt)] W
u {At |:au 'Z, il ] u o s(x,t)
re
1t n t,n
w22 wkar - aw|2™
0x ox|r,

Substituting equation (2.16) into equation (2.23) gives:

E 2
Z l:{ mj; + k,%j + k,z,l + k,?] Au]‘] = - Ry
1

e=1L\/=

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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where, m;; and k;; are the element influence matrices, given by:

mj; = gﬂN,-W,-]dI‘ k,'l,]- = u"b—l—\—liw,]dr
rlat nl ox

K= | [ugN;W;]dr ki = ON; Wil
L. r 0x 0Ox

Because 1-D linear elements are used, the matrices m;; and k;; can be

integrated analytically to give:

o ) o
= i) 53| 2 (2

K -

4,

Auf - of') (4 - uf') ] K, = #[1 -1]

1 =
6l (uf - uf') 2Auf - ') Lel-11

where L® = x; - xp is the length of the element.

In order to evaluate the proposed time integration scheme, the following

procedure was carried out:

Step 1: Choose a test function u(x,t) satisfying the Burgers equation (2.13),

here:

u(x,t) = ex+t sin(ox+ dt) (2.26)

where a, b, ¢, and d are constant coefficients through which one can control
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the solution. Coefficient a produces an exponentially decaying or growing
solution in space, b produces an exponentially decaying or growing solution
in time, ccontrols the spatial periodicity of the solution, and, finally, d alters
the frequency of oscillation of the solution. Therefore, through these

coefficients, one could make the solution:

e A weak or strong exponential or sinusoidal function in space only;
e A weak or strong exponential or sinusoidal function in time only;

¢ Combinations of the above.

Knowing the function u(x,t) all terms in equation (2.13) can be exactly

evaluated as follows:

%% = elax+b?) [p sin(cx+dt) + d cos(oc+dt)) (2.27)

gi;— = el@x+bt) [q sin(cx+dt) + ¢ cos(oc+dt)) (2.28)

gz% = elax+bn) [ (a2-¢2) sin(cx+df) + 2ac cos(cx+df)] (2.29)
x

Step 2: Evaluate the source term s(x,t) by substituting equations (2.27-2.29)

into equation (2.13).

s(x,1) = elax+bn {[b sin(cx+df) + d cos(ox+db)
+ elax+t) sin(oc+dt) [a sin(cx+dr) + ¢ cos(ocdt))]

- [ (a2-¢?) sin(cx+dt) + 2ac cos(ox+ dt)]) (2.30)
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Step 3: Evaluate the initial and boundary conditions by substituting equation
(2.14) into equation (2.27), and equation (2.15) into equation (2.28).

The resulting conditions are:
initial condition:
u(x,t=0) = ufx) = e?* sin(cx) (2.31)
boundary conditions:

u(x=I3,t) = ur(¢) = elal 1+ sin(cl+d1)

g—;(x=1" 2t) = up(t) = elal2+b1) [a sin(cI;+dt) + ¢ cos(ch+ dt)] (2.32)

With this, one can numerically solve for u(x,t) from Equation (2.13), given
the specified source term s(x.t) and the initial and the boundary conditions of

equations (2.30, 2.31, 2.32).
2.3 Evaluation of Performance of the Gear Method

In this section a performance evaluation of the Gear method is carried out,
versus the 6-family of methods, in particular Crank-Nicolson. The test

function considered is a sine wave traveling in the positive x-direction, given

by:

u(x,t) = sin(2a(x-1)) x[0,1] ¢[02] (2.33)
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Equation (2.33) is chosen because it is representative of the time history of a
fluid particle that is being convected downstream, as vortices are shed behind
a circular cylinder. The coefficients a, b, ¢, and d of equation (2.26) are, in this

case:
a=0, b=0, c=2r, and d=-2rt (2.34)

The equation is solved by both the Gear method (k=1,2,3,4) and the Crank-
Nicolson method for time step sizes of At=0.01, 0.02, 0.04, 0.08 and values of
u=0.1, 0.01, and 0.001. Note that u in the Burgers equation is analogous to
1/R e in the Navier-Stokes equations. The computations are carried out using

the parameters given in table 2.2.

Integration method Gear Crank-Nicolson
Time step size At 0.01, 0.02, 0.04, 0.08 | 0.01, 0.02, 0.04, 0.08
Order of Gear method, k| 1,2,3,4 inherently 2

Table 2.2 Parameters used for the evaluation of

the Gear method.

| The domain of computation extends 1 unit in the x-direction and contains 20
grid points i.e. Ax=0.05. The time-dependent computations start at time #=0
and end at t=2, covering 2 complete cycles. The initial condition is obtained by

setting t=0, a=0, b=0, c=2r, and d=-2rin equation (2.31).

At each time step, the Burgers equation is solved via Newton method, with
the time varying boundary conditions obtained from equation (2.32). It is

interesting to note that only 3-4 Newton iterations are sufficient to reduce the
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residual of equation (2.24) to machine accuracy for both methods.

The exact and numerical solutions (Figures 2.2, 2.4, 2.6, 2.8), and the error
(Figures 2.3, 2.5, 2.7, 2.9), defined as the absolute difference between the
numerical solution and the exact solution, are presented at the point A=(0.5,
for u=0.1, Ax=0.05, k=1,2,3,4, 6=0.5 and At=0.01, 0.02, 0.04, and 0.08. The
numerical solutions given in figure (2.2), are in good agreement with the
exaci solution due to the small time step used, 4t=0.01. It is clear from figure
(2.3) that the error associated with the first-order Gear method (k=1) is lower
than all the other methods used, and that the error associated with the
higher-order Gear methods (k=2,3,4) is almost identical to the one obtained by
the Crank-Nicolson method. For At=0.02, figure (2.4) shows pronounced
phase and amplitude distortions for the first-order Gear method. Such
distortions are expected due to the sinusoidal behavior of the truncation error
terms in the finite difference equation. The error associated with these
numerical solutions is shown in figure (2.5). For the first-order Gear method
the error increases from 0.04 to 0.08 when the time step size increases from
0.01 to 0.02, at time t=1, as shown in figures (2.3) and (2.5). Similar remarks
can be made from figures (2.6-2.9) showing the numerical solutions obtained
with higher values of time step sizes. It is shown that for all methods the
error increases as the time step size increases, while it is also clearly shown
that for all values of the time step size the error decreases as the order of
accuracy of the Gear method increases. Figure (2.9), for instance, presents the
error in the numerical solutions for At=0.08, showing the fourth-order Gear
method giving the smallest error and the first-order Gear method the largest.
The error of the Crank-Nicolson method is smaller than that of the first-order

Gear method, but larger than that of the fourth-order one.
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The performance of the second-order Gear method is evaluated for a time
step size of At=0.08 and u=0.1, 0.01, 0.001. As shown in figure (2.10), the
amplitude and phase distortions in the numerical solutior become more
pronounced with decreasing values of the dissipation coefficient p. As
expected, the maximum error in the solution occurs when the lowest value
p=0.001 is used, (see figure (2.11)). This discrepancy in the solution is due to

two main reasons:

1- Nonlinearity of equation (2.13),

2- Matrix conditioning,.

When very small values of u are used, the degree of nonlinearity in the
Burgers equation (2.13) becomes more pronounced and therefore more
Newton iterations per time step are required to converge. It can be shown that
the condition number of the global coefficient matrix becomes poor when

very small values of u are used.

To assess the stability limits of the Gear method for high values of At , the

following test function is considered:
u(x,t) = e-tsin(27mx) x[0,1] t[0,20] (2.35)
The coefficients a, b, ¢, and d of equation (2.26) are, in this case:

a=(0, b=-1, c=2r, and d=0 (2.36)
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The domain of computation extends 1 unit in the x-direction and contains 20
grid points i.e. Ax=0.05. The time-dependent computations start at time =0
and end at £=20. The initial condition is obtained by setting t=0, a=0, b=-1, c=2r,

and d=0in equation (2.31).

Numerical solutions are obtained by the second-order Gear method (k=2) and

the Crank-Nicolson method for p=0.1 at two time step sizes At=0.5, 3.0.

Figures (2.12, 2.13) present both the exact and numerical solutions for the time
steps, At=0.5 and 3.0, at the point x=0.8, for u=0.1, Ax=0.05, k=2 and 6=0.5. For
At=0.5, as shown in figure (2.12), both the second-order Gear method and the
Crank-Nicolson method provide stable solutions that are in good agreement
with the exact solution. For At=3.0, as shown in figure (2.13), the second-order
Gear method gives a stable solution while the Crank-Nicolson method

produces an oscillating one.

The present analysis has shown that the Gear method (a) provides a wide
range of accuracy (truncation error 0(A)-0(at?)), (b) requires only one
derivative function per time step to be evaluated, offering inexpensive
computing cost, and (c) provides stable solutions for high values of time step
sizes. Because of its good features: implicit, stable, accurate, easy to implement
into our steady code, the Gear method was therefore chosen to be
implemented into the Navier-Stokes code developed between the Concordia

CFD Lab. and Pratt & Whitney Canada.
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3. Governing Equations and Finite Element Discretization

This chapter describes the space discretization, Newton linearization, time
integration, and boundary conditions of the governing equations in the
present work. Although the constant total enthalpy condition is applied in all
the validation test cases, the formulation of the full energy equation is

presented in this chapter for the sake of completeness.
3.1 Non-dimensionalization

Using the following non-dimensionalization,

_P .y P g KT

Y I < 2

=& M

L L
the time-averaged form of the Navier-Stokes equations for three-
dimensional unsteady, viscous, compressible, turbulent flow, in terms of the

conservative variables, (p v, p), are:
Continuity equation:

2 4 velp¥) =0 (32)

Momentum equation:

A6V, o (709) Vs 7{ve¥)--Vp

+ Rie [- % V(ﬂeﬁV.V) + VXﬂeﬁ(Vx—‘?) +2Av 'I-leffv)‘_;] (3.3)
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where Re is the Reynolds number and i the effective viscosity. External

body forces are neglected.

The energy equation under the assumption of a variable property perfect gas,
and in the absence of heat sources and radiation heat transfer, can be written

as [16}:

DT, . _1 vk V(T-—v—f- ___Eb_p - Ecvye(vri
PP D~ Pr Re .[ T\ 70" 2G, “t " Re *(Vij) (34)

where p is the density, Cp the specific heat coefficient at constant pressure, kqs

the effective thermal conductivity; 7, the viscous stress tensor and Re, Pr and

Ec the Reynolds, Prandtl, and Eckert numbers, respectively.

The energy equation can be conveniently simplified, as in the present work,

under the assumption of constant total enthalpy along streamlines as:

Lol

- Y P,1vey
Ho“" 7-1 p+ VeV (35)

N

In particular for turbomachines, in the absence of variable power input or

heat transfer at walls, this simplified form is quite adequate.

Under the ideal gas assumption the non-dimensional pressure, density, and

temperature are related through the equation of state, as follows:

(3.6)

© s
u
~
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3.2 Effective Viscosity Calculation

For laminar flows, viscosity changes only with temperature and the empirical

Sutherland's law is used for an effective viscosity calculation [17]):

Pett _ (T 15[ T+ 110°K (37)
Mo (T,,) T +110°K '

3.3 Turbulent Thermal Conductivity
The effective thermal conductivity ~k_ is calculated from:

ketr=k + kturp (3.8)
where the subscript wrb denotes incremental values introduced by turbulence.
Following Reynolds’ postulate, the turbulent momentum and heat fluxes are
assumed equivalent, since both fluxes are due to the same mechanism of

time-averaged convection. The turbulent thermal conductivity kg is thus

calculated as follows:

keurb _ Pr_ Mt
= 3.9
krer Ptrogp Href (39)

and P,y is given as:

Pel. —416Pf 1.6 % _1 P(-O.00247t2m2) 3.10
Hurb r[ls 7r4n§’1m4ex Pr (310
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This formula for Pryq is derived from a theory that takes into account the

heat transfer by molecular conduction during turbulent travels of a typical

eddy [18,19].

For turbulent flows, there are a number of turbulence models that can be
used, ranging from algebraic models, to one-equation and two-equation
models. It is not one of the aims of this Thesis to determine the most
appropriate turbulence model and the one used was the x-& model [20],
already implemented in the steady code. The equations governing the two
variables of the turbulence model: k the kinetic energy of turbulence and ¢,

the dissipation energy, are:

K- equation:
oK
P ™ p(V°V)K (”‘“’*’Vx) + PE - HubS =0 (3.11)
£- equation:
pb_ + p(V-V)e (#“"b Ve) + Gp L GGCpxS =0 (3.12)
5 =L[Vi+ VI T ; ppy=
where "2 i Heurb [ (3.13)
and the chosen constants for the model are:
G=144,G=192,C,=009 ; 6,=1.0, 0,=1.3 (3.14)

and MHeff = H + Heunb (3.15)
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One should immediately notice the similarity between the x-¢ equations and
the momentum equations. In addition, if only the 3 leftmost terms are
compared, then equations (3.11) and (3.12) are identical, but with different

source terms.
3.4 Solution Regularization Procedure

In the solution of the Navier-Stokes equations, it is known that odd-even
decoupling or checkerboarding would occur unless unequal order
interpolations of velocity and pressure are used in finite element methods or
staggered grids are used in finite differences. To overcome this decoupling in
a simpler manner, it is suggested to add a pressure dissipation term, 1V%p , to
the right-hand-side of the continuity equation, where A is a small controllable

parameter. The continuity equation (3.2) can th:n be rewritten as [3]:

%’: + V-(pV) = AV’ (3.16)

The pressure dissipation term, necessary for stabilization, produces a first
order error in mass conservation. To refine this to second order accuracy,

equation (3.16) can then be rewritten as[21]:

d — -
5‘; + VolpV') = Ve[ Vp - VP (3.17)

where the balancing term Vpis calculated by extrapolating Vp from the

Gauss points to the corner nodes, followed by averaging over neighboring
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elements. In fact, this approach of subtracting two second order dissipation

terms on a uniform grid is equivalent to using a fourth order one.

With such regularization, it is then permissible to interpolate all variables
¢=(u, v, w, p, T) by equal order shape functions. In this thesis, hexahedral
elements are used and a trilinear interpolation function in each, in terms of

local element coordinates (é, n, ¢ ), as follows:
8
¢ =) Nj¢; (3.18)
F1
where Ni(g 7, g)=%(1 + EE) 1+ )1+ ¢g j=1,....8 (3.19)

3.5 Weak-Galerkin Finite Element Method

The discretized form of the governing equations is obtained by minimizing,
in a weighted average sense, the residuals of the system of equations (3.2-3.6,
3.11-3.12) over the solution domain. This is done by multiplying each
equation by a weight function, W, and integrating over the domain. In the
Galerkin method, in particular, the weight functions, W, are chosen to be
identical to the shape functions, N. The weak form is then obtained by

integrating by parts the weighted residual form of the system of equations.
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3.5.1 Continuity Equation

The continuity equation (3.17) is multiplied by a weight function, W, and

integrated over the volume as follows:

[ {%’% + Vo(p‘_/.) - AV'[Vp - Vf)] Wdo = 0 (3.20)
v

After integration by parts, the weak-Galerkin form of equation (3.20) can be

written as:
[ Pwds + ] (pV)eriwds - f (pV)evw ds
ot
14 S v
; f [Vp - vpleriwds + ,1] [Vp - VplevWds =0 (3.21)
) 1

After grouping sirailar terms, equation (3.21) can be rewritten as:
[ fow - 1671 - alvp - wplevw)ao
o

+ f [pV - /’L(Vp - Vﬁ)]-ﬁWdS (3.22)
S

whose scalar form is:

[ Pw - lpu - Ape- BAWx - [ov - Apy - BW,
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-lpw - Ap, - pIw.}do
+ L ([pu - A(px - ﬁx)]nx + [PV - A(Py - f’y)]“y

+ low - Ap; - Plnjwds = 0 (3.23)

3.5.2 Momentum Equations

The x-momentum equation in Cartesian coordinates reads:

o(pu) N o(pu?) N o(pvu) N Apwu) N op
ot ox oy 0z 0x

[2 Hett (54 - w ] [ueg (vx+ uy)]

Yy

-[M (w +

Re (3.24)

Z

Equation (3.24) is multiplied by a weight function, W, and integrated over the

volume as follows:

opu)  opu?)  lpvu) dpwu) 0p
g\ Of ox oy 0z ox

Hetf Heff
. [%-Ii Quy- vy - WZ)]x - [—Re_e (vy+ uy)y

[
[Re (w + uz)z

Wdd#d =0 (3.25)
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After integration by parts, the weak-Gaierkin form of equation (3.25) can be

written as:

pvu -%f—f(vx+ y)] wy

0

- [pwu . Mett (wx + uz)]Wz} dd

ol m e B v Ll o - 2 o,
[pwu - ‘l‘{i”- u,;J . ’-l‘i’;’fq, WdS =0 (3.26)

Similarly for the y-momentum equation in Cartesian coordinates:

o(pv) . o(pv?) . o(puv) . o(pwv) N op
ot oy ox 07 oy

[l‘eff (y + VX)L ; [%% 2y - u - WZ)L

] [‘l‘{ef; (wy + VZ)L -0 (3.27)

The weak-Galerkin form of equation (3.27) can be written as:

|

b(pV)
ot

[puv - %lg(vx + uy)]Wx - [p + pv2 - %%(Zvy - Uy - WZ)]W

[pwv - %"ﬁ (wy + vz)] }dz?

puv - %g u)Jnx

+ [pwv - % “!']"2 - —-—t;,}WdS =0 (3.28)

!
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While for the z-momentum equation in Cartesian coordinates:

o(pw) . o(pw2) N o(puw) N o(pvw) + 0

ot 0z ox oy 2z
[“e” (@ + Wx)] [”"” (vz + Wy)]
Yy
Heft
% Re 2% - %) =0 (3.29)

The weak-Galerkin form of equation (3.29) can be written as:

L{a(pW)W -[puw ) #lllei (uz + W’)] [p"w - %(vz + W} W

ot
- [p + pw2 - %%’;{é 2w - uy - vz)Wz}dﬂ
+ L [puw - % uz]nx [p + pw2 + %‘;{”(ux V) - %%wz]nz
[pvw - -‘;‘*—fé ] Fett W,}st =0 (3.30)

3.5.3 Energy Equation

The energy equation (3.4) is multiplied by a weight function, W, and

integrated over the volume as follows:

DI, = 1 \v/
L{pCPDt Pr Re

. % Beo. s
P
keff (To - 2—— :P)] - ECﬁ - —ZV'(VT,I) Wd9 = 0(331)
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After integration by parts, the weak-Galerkin form of equation (3.31) can be

written as:

oT, = op Keft v Ecy
80 , VevT,| - Be£ kett gl - V| EcVr leviv)de
L{pcp(at e ") 3" * [Pr Re ( °"2G,) Re' "V
| [ ket_yT + Ecyr, "}Wd = 3.32
L{tPr Re ¥ Re B ° " 5=0 (332)

The viscous dissipation term V+V7, in equation (3.32) may be explicitly

written as:
0 0 [4}
5,;("%‘ + Vi + Wh) + -a;(uryx + vy + wgq) + E(MZX + Vi + wzz)
. =24 (uy - v, - W)
where, for example: Tox =gHEUx = Vy = Wz (3.33)

Now, if D1 = Ul + Vixy + Wiy
Py = ulyy + Viyy + Wiy,

D3 = Ul + Vg + Wiy (3.34)

then equation (3.32) can then be rewritten as follows:

|

oT,
pCP—aTOW + ClpuTo + pvToy + pwTg]W

¥ P’r‘ef;{ [Ty + ToyWy + Toywz]} dv

ket _
+ TalWdS = RHS
L[Pr Re ] (3.35)
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where
- pdiel e () ()
RHS = {Ec——W + -—if—i—— Wy + (o=
%I[¢,nx+ ®;ny, + d{;nz]WdS (3.36)
S

3.5.4 Turbulence Equations

The k-equation (3.11) is multiplied by a weight function, W, and integrated

over the volume as follows:

0K o o (fev)k - L (ﬂtuw ) ] _
L{p Y + p(VOV)x Rev. o Vi) + pe - S (Wd3 =0 (3.37)

After integration by parts, its weak-Galerkin form is:

|

[p%—t + p(VeV)x + pe - Ilturbs} + L ’be-VW}cm

I [“‘“"’ Vx-n]st =0 (3.38)
Re Ox

The scalar form of equation (3.38) can be written as:

[

oK .
pt()-; + puKy + pvky + pwkz + p€ - S |W
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N Rl;[um("xw" + KW, + Ksz)”dz?

1 | |Hu L lwds =0
Rejs[ G, Kn S (3.39)

Similarly, the e-equation (3.12) is multiplied by a weight function, W, and

integrated over the volume as follows:

0 | (Vevle . 1 yefHur 2 _ -
L{p = p(Vev)e A ( = Ve) + GpE Clq,pxS}Wdﬂ 0 (3.40)

After integration by parts, its weak-Galerkin is:

w + L Hubg v g

p——— + p(VoV)e+Qp(é) GGpKS ot

)/

. I [““"*’Ve-ﬁ]wcis =0 (3.41)

sl O
The scalar form of equation (3.41) can be written as follows:

f :[pg—i + pug + pveg + pwe + Qp(—‘;’;) - Clq,pxSlW
®

+ L[E_“‘ﬂ(gxwx + Wy + EZWZ)” dv

Re
1
Re

Heurb e,,]st =0 (3.42)

O¢
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3.5.5 Finite Element Discretization

The geometrical discretization is based on a trilinear hexahedral (8-nodes)

elements:
8 8 8
X=ZN](§, n C)X} Y=ZN1(§'77; C).Y) z:Z N,({, n Ozl (3.43)
F1 Fl 1

A typical trilinear hexahedral (8-nodes) element is shown in figure (3.1).

The regularization provided by the added pressure dissipation term to the
continuity equation permits all variables, ¢=(u, v, w,p, T, K ¢), to be
interpolated by the same interpolant. Here, a trilinear shape function is used

in terms of local non-dimensional undistorted element coordinates (5, n, C)

as:
8
9 =Y No; (3.18)
1
where 1\6(5, n, §)=21;—(1 + ééj)(l + 71771')(1 + Cg), j=1,...., 8 (3.19)

In the Galerkin weighted residual method, the weight functions, W; are
chosen to be identical to their corresponding interpolation functions Nj. This

implies that:

wilgn ¢)=Nl& n, ¢) (3.44)
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3.6 Time Discretization

The time derivatives in the governing equations are discretized by an
unconditionally stable multi-level Gear implicit scheme. This method has a
variable order of time accuracy, controlled by the number of time levels used.
For example, a first order Gear scheme (identical to the Euler-backward
scheme), requires information from one time level, to solve at the current

one. The time derivative of a general variable ¢ is expressed as follows:

(a_¢-)l‘=_1_(a(¢t + f a1¢ t-iAf) (3 45)
ot At = .

where ;(i=0,1,2, ..., k) and k are the ccefficients and the required order of

time accuracy of the Gear scheme, respectively.
3.6.1 Continuity Equation

The weak-Galerkin form of the continuity equation (3.23) is time discretized

using a Gear scheme of kth order accuracy in time as follows:

k

{j;[“op‘ ) aip“"‘“]W - lpu - Apc - BY'W,
i=1

9

oy - Apy- BIW, - [ow - Ape - Bl W) a0
‘ [ lou - oy - Bl + [ov - Alpy - By

+ [pw - Alp; - P))'njWds =0 (3.46)
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3.6.2 Momentum Equations

The weak-Galerkin form of the x-momentum equation (3.26) is time

discretized using a Gear scheme of kth order accuracy in time as follows:

{Ar [ao(pu Z a.(pu)“‘"] [p + pu? - g””” Qu - vy - Wz)]

9

[pvu - ‘;i (w + uy) [pwu - —ﬁ— (w + uz)] Wz} do
t t
+L[p+pu2+2#eﬁ(‘5, wy) - %&%u]nx+ pvu-%% wlny
t
pwu - %ﬁ u,(,] n; - [%% u,} }WdS =0 (3.47)

while for the y-momentum, equation (3.28):

1 t t-iat o 2Kt cwe -l
{At[ (pv) + Z, %(pv) ] [p v - SRe @Y T U Wz)} Wy
v

[puv - Il;iﬁ (g + uy) - lpwv - IJ—S—- (w + v,)] Wz} ddy
t t
+L[pw-%g]nx+ p s %Esfz(w w - 1AL
+ |pwv - %3% w;] n,- 'ue” }WdS =0 (3.48)

and the z-momentum, equation (3.30):

t
{Alt[ (pw) + za;(pw“‘“]w - [p + pw2 - g‘;{” 2w - u, - vy)] Wz}
)

[Puw - %e— (g + Wx)} [pvw - %"’— (v + Wy)] W, dv
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t t
o [l s [ ot 2 s - 32
Hett ]t Ueff
[pvw " Re ‘é] ny - [R W} ds =0 (3.49)

3.6.3 Energy Equation

The weak-Galerkin form of the energy equation (3.35) is time discretized

using a Gear scheme of kth order accuracy in time as follows:

{Pq;)'l [OloT‘ + Z a,T“A'}W + [GlpuTox + pvToy + pwTg)'W
i=1

t
[ﬁf‘LR—(ToxWx + TyW, + Tosz)] }dz? + L [Pfefiz eT"] WdS = RHS' (3.50)

where

RHS! = {gtc[aopt + Z a‘pt-m:lw - Rﬁi[gblwx + BW, + cbng]:
i=1
t =2 2 V> t
Kett ||V 1w YV iw d
"Pr R (2C;,)x o (ZQ)y (2c;,) ” ’
e[ [(D]nx + d)zn ¢3nz] st (351)
S

Ee
TR
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3.6.4 Turbulence Equations

The weak-Galerkin form of the x-equation (3.39) is time discretized using

Gear scheme of kth order accuracy in time as follows:

¢ k .
{%;[aox‘ + Z a,-x““"iIW + [puky + pvKy, + pwi]'W
£l
")

t
+[pe - um,bs] tw + ﬁlé[m—é‘_——;b(xxwx + KW, + xzwz)} }d19

t
- ﬁl_éL[%(xxnx + Kny + Kng)| WdS =0 (3.52)

The weak-Galerkin form of the e-equation (3.42) is time discretized using Gear

scheme of kth order accuracy in time as follows:

; k

{Z—t[aoe' + Z a,-s""’“}w + [pugc + pve, + pwe)'W
i=1

o

t t
+[C2p—5’§ - C1Cupx5] W + Rl—e[%(&wx + W, + ezwz)] }dz?

- f [ﬂf;w (60 + gy + sznz)]leS =0 (3.53)
S €




3.7 Newton Linearization

The system of equations (3.2-3.6, 3.11-3.12) must be linearized before a
numerical solution is attempted. Here, the equations are linearized via

Newton method by setting for any general variable:
49 = o™ - ¢" (3.54)
and obtaining the Jacobian matrix.
3.7.1 Continuity Equation

After introducing the Newton method and neglecting second order terms, the

continuity equation (3.46) can be written as follows:

[ e (A - - s -t - 2,

- [Apw) - Aap)'W,} dv

(a(pu) - 2ap'ny + [Alpv) - 14p)'n,
S

+ [A(pw) - Adp)'nwds =- RO (3.55)

where Ry is the residual of the discretized continuity equation at Newton step

n of the time level ¢, and is given by:

[ —
[ov - Apy - BA“Wy - [ow - Alp. - "W as
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+I‘[P"-1(nc-ﬁx)]""nx+ [ov - Hpy - )"y

+ [pw - Ap, - B)) “"nwds (3.56)

Substituting the shape and weight functions into equation (3.55), the
following delta form of the continuity equation is assembled, over all

elements E, in terms of the cell-vertex unknowns of pressure and velocity:

E 8
y [{ Y. K patou); + [KE]paov); + [KEpatow); + [k,{;]PA(p),-}]=- RE (357)

e=1] |f=1

where k;, are the element influence matrices from the continuity equation:

: ON; . ON; ON:
(], = [ggl]\&wi . A(aw,w, , QWiON; oW, N,H o
slat T ox 0x oy oy 0z 0z

- |

i - - [ [ o

oW;

d
0x v

N

157 -

|
—
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3.7.2 Momentum Equations

After introducing the Newton method and neglecting second order terms, the

x-momentum equation (3.47) can be written as follows:

ng

t
[A(pu)t]W - [Ap + 2u"A(pu) - 2 Heft Ay, - Avy - sz)] W,
At 3 Re

Hetf t
- [u"A(pv) + vfA(pu) - Re (Av, + Auy)} Wy

t
- (unA(pw) + wnA(pu) - P_e{f_ (Aw, + Auy) Wz} dd
t
I(Ap + 2u"A(pu) + g#_efﬁ (4w, + Aw,) - l‘;e—e—gAux] ny

+ |unA(pv) + vhA(pu) - ;l‘;;ff Avy ny

+ {unA(pw) + wnA(pu) - R_ Aw{] n,

+ [A(pw) - Mpz] tnz}Wd =- Ry (3.58)

where R, is the residual of the x-momentum equation and is given by:

Rpy = {A |:%(PU)° + Z az(pu)“‘":] - |pvu - f— (% + Uy)] t'nWy

=1
U4

t
- [p + pu? - 2_”"'” Qy - v - wz)] W, [pwu -— (ug + uz)] nW}dﬂ
tn tn
_ Hett ] _ [t ]‘}
pwu Re n; Re y| (WdS (3.59)
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Assembling the delta form of the x-momentum equation over the elements,
in terms of the cell-vertex unknowns of pressure and velocity components,

one obtains:

f [{ i K bu(pu); + [k putlpv); + [KE puttow); + [lg-’,?]puA(p),-}] = -R5,(3.60)

e=1 |\l

where k;, are the element influence matrices from the x-momentum

equation:

u ao alt 1 bw' aW'
k‘ = N - A ! 1 1

Hett (4 OW;ON; N OW;ON; . bW,-bN,-]dl’
Rep;j\3 ox ox oy oy 0z 0z

=~ | N un Wi, Hett (_z_aw, j_ OWi )} dv
s oy Rep\3 ox 0y dy ox

owW; Heff 2_3W,' ON; _ oW, 0N, do
0z Repi\3 ox 0z 0z 0Ox
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After introducing the Newton method and neglecting second order terms, the

y-momentum equation (3.48) can be written as follows:

[ (o -

t
unAlpv) + vA(pu) - él%% (Aw, + Auy)} Wy

[Ap + 2vrA(pv) - 2”‘3” (24v, - Auy - Aw,)] W,

- [v"A(pw) + whA(pv) - % (Auj, + sz)]th} dy

+ [Ap + 2vrA(pv) + %I‘l%‘; (Au, + Awy) - l% AV}] n,

!

t
+ |unA(pv) + viA(pu) - %% Al’} n,

t
+ [V"A(pw) + whA(pv) - ‘Il{i‘: Aw;] n,

bl vy, + Avyny + dvin]|Was -- B, (361)

where Ry, is the residual of the ymomentum equation at Newton iteration n

of time level tand is given by:

k . [ t,
Rgv - {__Al;[ao(pv)t,n + Z ai(pv)t-mf]w - (puv - ;—efé(vx + uy)] nwx
i=1 -

i

-[p + pv2 - 2”"{{(‘5, - Uy - wz)] pWV -”ef{ (M;,+ Vz)] Wz’dﬁ
tn
' s”"”-%%gl "x+[P+Pv2+§i‘:”<w CRE
tn t
" [pwv—%vg} n, -[ER'% ]")was (3.62)



and the delta form of the y-momentum equation is:

Ef8 ;

YA L (Kbt oy + [kt (o) + [t o + [K s (p),}] -RA(3.63)
e=1|j=1

where k;, are the element influence matrices from the y-momentum

equation:

oW, oW, ON; oW, dN;
kgu - . N' n ]+ /’leff 2_ 1 ]_ 1 ] dl’
(45 L7 ox T Rep\3 oy ax  ox oy

L OWi bW- ow;
+ wh
oy 0z

(K5 ov = L [%';-(Wi’\’i) -

Mett [OW;ON; 4 2W;ON; awiaN,Wdﬂ
Repi\ ox ox 3 oy 0y 0z 0z

oW; Heft OW,;ON; 0W;ON;
KM =- | |[Njvn—=—L+ 2 (AL R/} | X
[ ’ﬂpv 9 V" 23z " Re pi\3 oy 20z 0z Oy

o = [ [ M2 Jao

After introducing Newton method and neglecting second order terms, the z-

momentum equation (3.49) can be written as follows:

f {QO—[A(pW)‘]W - [u"A(pw) + whA(pu) - Hett (Au, + wa)]‘W
9 At Re

- [V"A(pw) + whA(pv) - ”"’” (sz+ Awy)] W,
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t
- [Ap + 2wnA(pw) - % (24w - Auy - Avy)] Wz> dd

4!

(A + Av,) - Lot .l

Hetf
Re
2
3 3 Re

[Ap + 2wnA(pw) + ‘;"

+ [u"A(pw) + whA(pu) - ‘11{” qu] n,

Hett Av.

+ [V"A(pw) + wid(pv) - z} n,

Hetr

Re[wanx + Awyny + sznz]

WdS =- Rpw (3.64)

where Rpy is the residual of the z-momentum equation at Newton iteration n

of time level t and is given by:

tLn
- |puw - ‘;{'ﬂ (g + wxﬂ W,

k
Rpw — {l:ao(pw)t, n Z pW)t JAt]

g

r tn t,n
- 1pvw - %e—f;- (v + wy)] w, - [p + pw2 - %#Lff 2w - u - ) Wz} dd

¢, £
+ f{[puw _ Hett q] nnx + [p + pw2 + 2 Hett ( + v) - 1 Keff Mé] nn,_
S

Re 3 Re 3 Re
tn tn
pvw - %ﬁ g] n, - [% w,] }st (3.65)

and the delta form of the z-momentum equation is:

ZE [:Zl (K wttou); + [kl + (K houts (0w + [kglwA(p),-}] — - RI,(3.66)

e=1



51

where k;, are the element influence matrices from the z-momentum

equation:

u _ : ow; Heft
[ ]ow = - L[N;W” ox ' Rep

sz,‘ij_aW,'aIVj do
3 0z Ox ox 0z

DW,'+ Heff ;bW,-aNj i oW, ON; 4o
o0y Rep\3 0z oy 0y 0z

T 4 oyn +2n____
i R 2z

( W, AW, oW,

et (aw,- ON; , OW;ON; ‘l%?ﬁﬂdﬁ

Rep; |\ ox 0x oy oy 3 0z 0z
_ ow;
Bloe= - [ [%pe]ao

3.7.3 Energy Equation

After introducing Newton method and neglecting second order terms, the

energy equation (3.56) can be written as:

j {%(PCP)‘ATJW + [GlouaTax + pvATy + pwaTa)'W
o \At

[Pr e (AToW + ATqW, + ATosz)] }dﬁ

ket ] _
+ I [Pr ATy WdS Ry, (3.67)
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where Rry; is the residual of the discretized energy equation at time level tand

is given by:

k -
Ry, = {(pc;)'j?[o’o%‘ * ) a.-To"'At]W + [GlpuTox + pvToy + pwTg)" "W

i=1

o 1
tn
+ [Pfefil e(ToxWx + TyyWy + TO},WZ)] }dz?
_keif—r]""wcis - RHS'
* fs [Pr Re” (3.68)

After substituting the shape and weight functions into equation (3.73), the
following delta form of the energy equation is assembled, over the elements,

in terras of the cell-vertex unknowns for the total temperature, To

8

f [{Z [kzg"] Tb(ATo)i}J =- Ry, (3.69)

e=1| {1

where k;, are the element influence matrices from the energy equation:

0, ON; ON; ON;
k.Tp = Lol) W + =14 1 . i ‘
[,,}]p, LAtpCpN, ; Cp(pu x pv oy + pvaz)W

ke [ON;jOW; L ON;oW; N ON; oW;
Pr Re ox 0ox oy oy 0z 0z

do (3.70)
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3.7.4 Turbulence Equations

After introducing Newton linearization and neglecting second order terms,

the k-equation (3.52) can be written as follows:

I %ptAK‘tW + [pqux + pvAky + prxz]'W
)

n t
+ Rie["t‘"’b (AKXWX + AW, + AK‘ZWZ) }dﬂ

Ox
Hruri '
Re Ox

n

where R¢ is the residual of the discretized k-equation at Newton iteration n of

time level tand is given by:

¢t k
R{ = {p—[aox'"" + ) a;x““‘]w + [purx + pviy, + pwi)t "W
At

=1
v
L
+[pe - purS] "W + Elé["l:‘)‘_’b (6Wx + KW, + KZWZ)J n} do
K
-1 [“‘L”x + Kn, + Kony)| WS 3.72
Re S Ok (xnx sy i 2) ( )

After substituting the shape and weight functions into equation (3.71), the 4
form of the x-equation is assembled, over the elements, in terms of the cell-

vertex unknown x as follows:

f [{ i [k:;'f]xmfj}] =- Rf (3.73)



where k;, are the elemental influence matrices of the x  -equation:

ON; oN; oN;
[k,f‘}],‘- = —O(QpNjW; + [pu—] + pv—L + pw——l]W;
" At Ox

by 0z
n . \ : i i ]
+ L Hun |OW;ON;  OW;ON; oW, ON;|| .0 (3.74)
Re oc | ox ox 0y dy 0z 0z

After introducing the Newton method and neglecting second order terms,

equation (3.53) can be written as follows:

f {QQ plAetW + [puAex + pvAg, + prez]tW
At
o

n t
ng (aeW, + agW, + ASZWZ)] }dﬂ

+ L
Re

t

1 WdS = - RP (3.75)

"Re
)

n
“‘;_e’b (Aexnx + Agny, + Aeznz)

where R/ is the residual of the discretized e-equation at Newton iteration n of

time level t and is given by:

¢ k
R = {p—l:aoe"" ) a,-e"“{lw + [pugc + pve, + pwel "W

At i=1
o
t, t/
-h[C;p (%2) - CIC;,pKS] nW + Rle[‘%"b(sxwx + Wy + ssz)] n} dy

tn
- RIEL{M_&S“’E(&HX + gay, + &nz)] Wwds (3.76)
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After substituting the shape and weight functions into equation (3.75), the
delta form of the e-equation is assembled, over the elements, in terms of the

cell-vertex unknowns € as follows:

ZE: [{ i [k A%'}] =-Rf (3.77)

e=1| |1
where k;,are the elemental influence matrices of the e-equation:

ON; ON; ON;

Kl = Oo ,N.W: + = 4 py—1 —Iw:
[ l.l]f f,} {Atp jYVi [pu ™ pv dy + pw 3z | V1
+ J_%ﬂx'b OW; ON; . OW; ON; . bW,‘DI\Ij\dﬂ
Re o | ox Ox oy oy 0z 0z /

3.8 Initial and Boundary Conditions

This section details the boundary conditions setup in the code. It must be
recalled that the code is a general 3-D one and that to run it in a 2-D mode
certain assumptions are made. First, a slice is taken of a full 3-D grid (x,y,2)
and the following general conditions are assumed, in order to solve for a 2-D

flow in the x-y plane :
a- Symmetry conditions exist between the two limiting x-y planes;
b- On these planes the velocity in the z direction is forced to be zero, with

only two velocity components left to soive for.

These two conditions, taken together, insure a 2-D solution from a 3-D code.
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The number of initial solutions needed to perform a time accurate calculation
depends on the order of accuracy demanded, e.g. a second order Gear scheme

would require two previous time levels to be known.

To obtain a viscous initial solution for time accurate flow calculations, a
steady-state calculation is carried out using a first order Gear scheme until the
residuals of the governing equations are reduced by three orders of

magnitude.
3.8.1 Continuity Equation

The boundary surface integrals in the continuity equation (3.22) are:

L = j [pV - A(vp - Vp)sriwds (3.78)
S

Due to the use of small 4, its contribution to the contour integral is neglected.

a- Inlet Boundary Condition:
The surface integrals in equation (3.78) are computed using a specified inlet

mass flux p{;, after neglecting the pressure dissipation term due to the small

value of A.

b- Exit Boundary Condition:

Static pressure is specified at all exit points as a Dirichlet boundary condition.

In this case, no surface integrals need to be evaluated.
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c- Wall BQ];nﬂ.ﬁm condition:
The no-penetration condition is imposed at walls, i.e. pVei=0, and the

surface integral of equation (3.78) drops out naturally.

d S Bound “ondition:
Normal mass flux is set to zero by neglecting the boundary surface integral in

equation (3.78)-
3.8.2 Mopentum Equations

The boundary surface integrals in the x-, y-, and z-momentum equations

(3.26, 3.28, 3.30) are:

_ Heff Heff
I"”’L [P 2 ey R o o - B
[pwu - %’ﬁ w;]nz - y—egq,}WdS (3.79)

£ Heft Heff
b [ foon 2 e [p o+ o 2 s - 12

[pwv - = w;] Hetf w,}WdS (3.80)

ff .
b oo 5 e fp e e B -2

+ [pvw - % tg]ny  Hett w,}WdS (3.81)
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a- Inlet Boundary Condition:

A specified inlet mass flux pV, is imposed. The inlet value of the velocity V is

iteratively updated using the fixed value of inlet mass flux and the changing
value of the inlet density, as p” = _1%)"

b- Exit Boundary Condition:
Two types are considered:
1- Normal derivatives are neglected when calculating the surface

integrals in equations (3.79-3.81), meaning that streamlines are

uniform.

2- A stress-free boundary condition is imposed, by retaining only the
convective terms when calculating the surface integrals in equations

(3.79-3.82).

c- Wall Boundary Condition:

The no-slip and no-penetration conditions are imposed as Dirichlet boundary
conditions on the velocity V, and hence no surface integrals in equations

(3.79-3.82) need be evaluated.

d Boundary Condition:

Normal derivatives of velocity components are set to zero when calculating

the surface integrals in equations (3.79-3.82).
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3.8.3 Energy Equation

The boundary surface integrals in the energy equation (3.32) are:

B =- {[ﬂ Es".} *} .
° L PrRe | " Re' " MP (383)

a- Bounda iti
The total temperature, T, is imposed as a Dirichlet condition and hence no

surface integrals need be evaluated.

b- Exit Boundary Condition:
The surface integrals in equation (3.83) are evaluated after neglecting the

normal derivative of static temperature (natural boundary condition).

c- Wall Boundary Conditions:
Two types are considered:

1- The wall static and total temperatures are identical. With this, the total
temperature is imposed as a Dirichlet condition and no surface
integrals need be evaluated.

2- The surface integrals in equation (3.83) are evaluated after neglecting
the normal derivative of static temperature (natural boundary

condition).
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c- Symmetry Boundary Condition:

This condition is implemented by simply neglecting the normal derivative of
static temperature, when evaluating the boundary surface integrals in

equation (3.83).

3.84 Turbulence Equations

The boundary surface integral of the x -equation (3.38) is:

1

Hturb -
84
e Re s[ o VK"n]WdS (3.84)

a- Inlet Boundary Condition:

The turbulent kinetic energy is imposed as a Dirichlet condition and hence no

ooundary surface integrals need be evaluated.

b- Exit Boundary Condifi

The normal derivative of the turbulent kinetic energy is set to zero as a
natural boundary condition and hence the surface integral of equation (3.84)

drops out naturally.

c- Wall Boundary Condition:
This condition is set by using the standard wall functions. This approach

relates the velocity components as well as x and ¢ to the friction velocity u*,

which is obtained from the log-law of the wall.



d S Boundary Condition:
This condition is implemented by simply neglecting the normal derivative of

k when evaluating the boundary surface integrals in equation (3.84).

The boundary surface integral in the e-equation (3.41) is:

€

E=-L L [P il was (3.85)

The value of € is specified as a Dirichlet boundary condition and hence no

surface integrals need be evaluated.

b- Exit Boun nditi
The normal derivative of € is set to zero as a natural boundary condition and

hence the surface integral of equation (3.85) drops out naturally.

c- Wall Boundary Condition:
This condition is set by using the standard wall functions. This approach
relates the velocity components, as well as k and &, to the friction velocity u?,

which is obtained from the log-law of the wall.

d- Symmetry Boundary Condition:
This condition is implemented by simply neglecting the normal derivative of

€ when evaluating the boundary surface integrals in equation (3.85).
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4. Solution Strategy for the Discretized Equations

In the previous chapter, it was shown how the nonlinear governing
equations are linearized by the Newton method and the time derivatives
discretized by the Gear scheme, a multi-level implicit, hence unconditionally
stable method, with controllable accuracy. A second order Gear scheme,

assuming two preceding time levels to be available, will be used throughout.

This chapter discusses the solution procedure and details the schemes used to
iterate for time advance and for the spatial nonlinearity. In addition, two
separate approaches are shown for the time-accurate solution of unsteady
flows and for the time marching solution of steady flows [22]. Stabilization
details through an artificial viscosity scheme are described. Robustness of the
numerical scheme is ensured through the coupling of continuity and
momentum equations. Finally, modeling aspects of the near-wall behavior of
the turbulence equation, as implemented in the NS3D code, are briefly
presented because of its novel idea of a wall finite element to represent the

logarithmic law of the wall [23,24].

It has been previously demonstrated that the following systems of equations

must be solved at each time iteration:

a. a coupled system for the continuity and momentum equations,
b. the algebraic energy equation, as implemented here, or the complete
energy equation.

¢. two equations describing the (x-¢) turbulence model.
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4.1 The Navier-Stokes Equation System
Upon space discretization and Newton linearization, the following delta

form of the continuity and momentum equations is assembled, over the

elements, in terms of the cell-vertex unknowns of pressure and velocity

components:

E [(8

2 {Z (15 latouy + [ Tpatovy + (K patomy + [kg;],,4<p),-}] o
e=1| \j<1

:
Pba ouy + [k (v + [k (ow) + [KELua (p)) | = <R3 (4.1)

E;l { '81 [ kg."l)uA(Pu)j + [kgv},ud(pv)j + [kg“l,uA(PW)j + [kglouA(P)i
e=1L\F

s———

g:l _,g {:kg'”louA(PlI)j + [k,;vlouA(pV)j + [kg“},uA (pw); + [ k,;F;]o uA(P)j} _-RZ,

This system of equations (4.1) can be symbolically represented as:

[ 1w | | AoV

(42)

(¥, (k7 |1 4P




4.2 The Energy Equation

To reduce overall memory requirements, the energy equation is solved for
the tota! temperature in a segregated way. The discretized form of the energy
equation (2.69) in term of the total temperature was derived in chapter 3 and

has the following form:

ZE: [{ i i) %(ATO),.}] =- Ry,

e=1] |1 J (4.3)

wheie k,;" is the element influence matrix, given by:

T ON; ON; ON;
k° [{——pCPN,W +Cp{ uax’+pvb—y’+pw-5;W,

Ker e(aN,-aw,- , ONidW; AN OW| o (4.4)
Pr Re ox ox oy oy 0z 0z
and Ry, is the residual equation (2.68) , given by:
k .
Ry, = (pCp)'i %To + Y T ™ W + [GlouTox + pv Toy + pwTa))* "W
i=1
Y !
ketr J }
[Pr (Tl + TyWy + ToyW) ws)

f [—’&LT} WdS - RHS!
S

Equation (4.3) is linear and hence simple to solve. This fact can be illustrated

be examining the terms in equation (4.4). In order to construct the coefficient
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matrix of the energy equation, the density, velocity, and effective conductivity

must be known throughout the flow field from the previous iteration, but

the total temperature does not enter in the construction of the matrix k,-_-'l-“’.

Hence, one Newton iteration is sufficient to reduce the residual of the energy

equation by five orders of magnitude.

The total temperature field obtained via equation (4.3), along with the
velocity field from the Navier-Stokes iteration, are used to update the static
temperature field.

4.3 The Turbulence Equations System

The discretized form of the (x€) two-equation model, (2.73, 2.79) was derived

in the previous chapter and is given by:

2 |[E ) |- »

f. [{i [k A%'}: =-Rf (4.7)

To reduce the computing cost of solving equations (4.6, 4.7), the Jacobian
matrices [k,;’;]x and [kfj]e are made identical by considering only the essential,
and similar, terms between the k- and e-equations (2.11, 2.12). Equations (4.6,
4.7) yield therefore identical influence matrices but are solved in a sequential
manner. Equation (4.6) is solved first to update x, followed by solving

equation (4.7) to update €, using the updated value of x and the turbulent

viscosity, U
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The strategy is for the turbulent parameters to be updated and the Navier-
Stokes equations solved for a few Newton iterations, usually five, and the
sequence repeated. At each turbulence update, the (x€) equations are not
solved to complete convergence; their residual is only reduced by an order of
magnitude. At, or near, convergence of the governing equations, the (x¢€)

equations are, however, completely converged.

While a low-Reynolds number (k&) model could be used near walls, it would
require an additional resolution of 10 to 20 grid points in boundary layers.
This would be quite demanding in terms of solution time and memory,
making a Navier-Stokes code a less practical design tool. An c'ternative is
using the wall function approach to exclude the high-gradient computational
region near walls from the solution by imposing, at the first point off the
wall, a slip velocity derived from the shear stress at the wall and respecting a
certain behavior between that point and the wall. In the present work this slip

velocity is given by:

u'=y* 6>y+>0
- * oyt 1 + * (4.83)
u'={y""* (20 y)+(slny + C)*(y*-20)}/14 20 >y+> 6
u+=%1ny++C y+>20
where:
§=04184;C=5.1
(4.8b)

ut=ufuyr=pyulu; ur=~TtalpRe
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For the boundary conditions i nposed on (x €) the production and dissipation
of turbulent energy at the wall are assumed to be equal. The turbulent shear
stress at the wall, T, is obtained from the wall function assumption,

equation (4.8), and is used to compute new values for (k).

While the wall-function approach reduces the number of grid points in the
near-wall region, by avoiding the solution of the governing equations in this
high gradient region, it proves to be a source of inaccuracy for three-
dimensional and separated flows. In the 3-D code used, NS3D, an alternative
approach, similar to [23,24], that is considerably more accurate than wall
functions, vet far cheaper than implementing a .ow-Reynolds number
turbulence model, is used. A special wall element, illustrated in figure (4.1),
incorporates into its shape function the partially logarithmic behavior of the
velocity vector in the direction normal to the wall, equation (4.8), while
remaining linear in the other two directions. For elements adjacent to a wall,
the velocity shape function in the normal direction to the face of the element
lying on the wall is therefore modified to reflect the presumed flow behavior
in this region, characterized by a viscous sublayer, a transition layer and a
logarithmic outer layer, equation (4.8). For example, for the element shown in
figure (4.1), assuming the bottom face to lie on a wall, Fz(n) of nodes related to

the opposite face, are re-expressed as Fy(y*/y} ) to reflect a triple deck

behavior [23,24].

As for the turbulent viscosity in the near-wall region it is interpolated as
follows: a linear behavior starting at the edge of the near-wall region, where
y+is assumed to be less than 300, to y+=30, and a quadratic variation between

y+=30 and the wall i.e. y+=0.
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It must be appreciated that the velocity shape functions in this special near-
wall element cannot be integrated accurately using a two-point Gauss
quadrature as in the rest of the flow field. Through numerical
experimentation, it was determined that nine Gauss points, in the direction
normal to the wall, are sufficient to adequately integrate the logarithmic

behavior.

4.4 Global Iterative Scheme: Outer Newton Iteration

It is seen that upon advancing to a given time, the Newton linearization
leads ¢o the solution of a series of systems of linear equations for (u,v,w,p), T,
(x, €). This is denoted as the outer iteration. To solve the linear systems at
each Newton iteration, a direct or iterative solver can be used. Since an
iterative solver is used here, this solution step is denoted as the inner

iteration, to distinguish it from the outer iteration for nonlinearity.

It is worthwhile to note that efficient direct and iterative methods have been
developed at the Concordia CFD Lab-CERCA and P&WC and have been
continuously incorporated in P&WC's NS3D. NS3D uses iterative solvers
based un the Preconditioned Conjugate Gradient Squared method (PCGS) or
the Generalized Minimum Residual Method (GMRES). The necessary
preconditioning for these two iterative approaches is obtained through an

incomplete factorization process [25,26,27,28].

To stabilize the convergence of the momentum equations at high Reynolds
number, a strategy of a centered scheme with artificial viscosity or an

upwinding scheme is always needed. Here, this extra artificial diffusion is
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introduced through a centered scheme, symbolically represented as y,RHS in

equation (4.2).

Because an iterative solver is used at each Newton iteration to solve the ill-
conditioned linear system coming from the N-S equations, it has also been
found highly beneficial for the convergence of the iterative scheme to
introduce a similar dissipation in the Jacobian matrix itself. This is
symbolically represented as uartLHS in equation (4.2). Equation (4.2), after the
introduction of these artificial viscosity terms, can be re-expressed in the

form:

Ry ()

R, (%)

[K(A' ’I'lart)] {APV} ="
4p

(4.9)

The momentum residual, R,y is also unloaded during the outer iteration,
reaching the smallest possible value of dissipation parameters, for which the
outer Newton iteration converges. Normally, the dissipation for the left hand
side, representing the iterative scheme, is left at a higher level than the right-
hand-side, representing the problem'’s physics. This is equivalent to setting up

the iteration to be at a lower Reynolds number.

4.5 Steady Flow (Time-Marching) and Unsteady Flow (Time-
Accurate) Algorithms

There are two algorithms in NS3D, one solves the steady-flow equations by a
time-marching procedure (here called steady-flow algorithm, SFA, see flow

chart presented in figure (4.2a)) and the second solves the unsteady flow
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equations by a time-accurate procedure (here called unsteady-flow algorithm,
UFA, see flow chart presented in figure (4.2b)). In both algorithms, the
discretized time terms affect the system matrix, K, improving its condition
number (by increasing diagonal dominance) and hence provide a mechanism
to ensure the convergence of the linear system, in the steady-flow case, by

dynamically choosing the time step size, as necessitated by the problem.

Steady Flow Algorithm: SFA

In the Steady Flow algorithm, also called the "hybrid artificial viscosity
algorithm”, assuming the initial values of pV and p being given,

IR v,RPI lo can be computed, and the iterations are carried as follows:
For each unloading step,

1. Compute ARHS, ALHS, ﬂartRHS and llartLHS

2. Solve the turbulence equations every Kj,; Newton iterations
and the energy equation every E;,; Newton iterations

Newton Iteration:
3. Solve ApV; and Ap; with PCGS at each Newton iteration,

APV} R
Ap Rp(lm)

(K™ ) (4.10)

4. Update pV and p:

p‘7i+| _ pi;i + AP‘—;,-
P |\ P 4 (4.11)

till IRV, Rplli;; /1 IRV,Rpllo< TOL, repeat from 1.
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The hybrid artificial viscosity scheme is a key feature in allowing large time

steps, making the use of iterative methods viable for steady-state problems.

n dv Flow Algorithm: UFA

In the Unsteady Flow algorithm, which can also be used for steady-state
problems, the values of pV and pare assumed to be given at an initial time t,

hence | IRv,RPIIO can be computed. At each time step, the solution is as

follows:

1. Solve the turbulence equations every K, Newton iterations

and the energy equation every E;,; Newton iterations

Newton lIteration:
2. Solve the ApV; and Ap; at each Newton iteration:

ws s )4 {; R"(ﬂ:,l.:s)
[K(l ,#an)]’ P }=‘{ Y (4.12)

‘\ Ap Rp ( A RHS)

3. Update pV and p
pviﬂ}_{p‘_;i}_*_ Ap‘-;,-
Py p; Ap,

4. Advance solution in time, repeat from 1.
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5. Results

5.1 Test Cases

The time-accurate implementation of the Navier-Stokes equations described
in Chapter 3 has been validated against two test cases for which accurate
experimental and reliable computational results exist: that of a laminar
incompressible flow past a circular cylinder at Reynolds numbers, Re,
between 35 and 100, and that of a turbulent incompressible flow over a
triangular flame holder at Re=45,000. For practical considerations, the
validation cases are kept two-dimensional, although the unsteady
implementation is embedded in a three-dimensional code, NS3D. To
simulate such flows in two-dimensions, two symmetry planes are assumed in
the third direction as described in Chapter 3. Finally, incompressibility is
simulated through this compressible code by using a Mach number of 0.05,

inducing a density change of less than 0.25%.

5.2  Flow over a circular cylinder: Re=100

Figure (5.1) shows the computational domain and the boundary conditions
for the flow over a circular cylinder, while the mesh is shown in figure (5.2)
and contains 4050 nodes and 1806 elements. It was found that, if the spatial

mesh is coarse, instabilities develop and continue to grow indefinitely.

First, a no artificial viscosity, steady-state calculation, at Re=100 was carried
out using the steady flow algorithm, SFA. The convergence history of the L

residual of the Navier-Stokes equations is shown in figure (5.3). About 240
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Newton iterations were needed to reduce it by two orders of magnitude. The
fact that the flow at Re=100 is physically unsteady is the cause of the dramatic
performance deterioration of the steady-state code. The behavior of the
residual, plotted in figure (5.3), indicates that the solution is periodic and
hence a time-accurate computation is a necessity for capturing the actual flow
physics. Figure (5.4) shows the velocity vectors-and the vorticity contours
behind the cylinder. It is clear from this figure that the flow is symmetric,

with a region of recirculation behind the cylinder.

The time-accurate calcuiation was started from the steady-state one obtained
by the SFA. The boundary conditions used are summarized in figure (5.1).
The second-order Gear method with a non dimensional time step At = 0.23
was used, corresponding to approximately 25 time steps per shedding cycle. At
each time step, 5 Newton iterations are sufficient to reduce the residuals of
the Navier-Stokes equations by 4 orders of magnitude. The convergence
history of the unsteady Navier-Stokes equations for the laminar flow past a
circular cylinder at Re=100 is shown in figure (5.5), with the pecaks
corresponding to the beginning of a time step and the valleys corresponding

to its end.

Figures (5.6) and (5.7) show the vorticity contours and velocity vectors of
vortex shedding behind the cylinder during a period of 6.0 (about 1.05 cycle).
The global flow field was saved at 5 equally spaced time levels, covering one
cycle of vortex shedding. The flow is periodic with a period of T=5.75, as can
be seen in figures (5.8-5.10), where the evolution of the horizontal velocity u
and transverse velocity v are plotted versus time at x/D= 0.65, x/D= 5, and

x/D= 8, downstream from the cylinder along the symmetry line y = 0. The
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Strouhal number (vortex shedding frequency), Sr=f D/V., is computed by
measuring the vortex shedding period based on the transverse velocity v
from figure (5.8) and found to be within 5% of the experimental one given in
[29]. It was also found from figure (5.8) that the horizontal velocity oscillates at

twice the shedding frequency.

The variations of the drag and lift coefficients with respect to time at R e =100
are shown in figures (5.11) and (5.12), respectively. These coefficients have a
contribution from the pressure and the viscous force, and are calculated as

follows:

3 Re R
Hetf Hef
+ [- R—-e Wx:lnz - —R—eu,,}dS (51)

(5.2)

The evolution of viscous and pressure coefficients for the drag and the lift

with respect to time are also given in figures (5.11) and (5.12).

Comparison of the principal parameters of the flow over the cylinder at
Re =100 are presented in table (5.1). The Strouhal number Sr, the maximum
transverse velocity vma at the points, x/D = 0.65 and x/D = 5.0, on the

centerline behind the cylinder, the average and peak-to-peak drag coefficients,
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and the peak-to-peak lift coefficient obtained from the present work are in
general in good agreement with the numerical results in [2,13] and the

experimental measurements in [29].

% = 0,65 % = 5-0 an- pk-pk_ pk-pk Size

Present work [0.174 | 0.24 0.65 1.682 | 0.02 |0.75 | 4050 | FEM
Lietal. [2] 0.163| 0.25 0.86 1.330 | 0.05 | 0.72 826 | FEM
Gresho [13] |0.180 | ------ 0.62 1.760 | 0.07 | 1.48 1852 | FEM
Exp.[29] 0.166 1.470

Table 5.1 Comparison of principal parameters for the flow over

the circular cylinder at Re=100

Several tests were carried out for Re between 30 and 100 to establish a relation
between the Strouhal number, Sr, and the Reynolds number, Re. It was
found that vortex shedding could only be sustained above a certain value of

Re between 36 and 48.

5.3  Flow Over a Triangular Flame Holder at Re=45,000

Figure (5.13) shows the computational domain and the boundary conditions
for a mesh of 2600 nodes (see figure (5.14)). First, a steady-state calculation at
Re=45,000 was carried out using the steady flow algorithm, SFA. Note that
artificial viscosity was needed in this test case. The convergence history of the
L> residual of the Navier-Stokes equations is shown in figures (5.15-5.16).

About 210 Newton iterations were needed to reduce the resiaual by 5 orders
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of magnitude. The resulting vorticity and velocity fields behind the flame

holder are given in figure (5.17).

Unsteady flow calculations were then started from the above mentioned
steady-state solution. The boundary conditions for the continuity and
momentum equations are summarized in figure (5.13). In addition, the

boundary conditions for the turbulence equations are [30]:

0.16 &
Inlet Kin=(0.05 V..f En = O.ZK}n
Exit % = 28_ =0
on on

where | = 3H denotes the channel height.

The second-order Gear method with time step At = 0.12 was used,
corresponding to approximately 32 time steps per shedding cycle. It was found
that 5 Newton iterations per time step, and 15 iterations on the (k¢
turbulence model, were sufficient to reduce the residual of all governing
equations by 3 orders of magnitude. The convergence history of the unsteady
Navier-Stokes equations for the turbulent flow past a triangular cylinder
(flame holder) at R e =45,000 is shown in figures (5.18, 5.19), with the peaks
corresponding to the beginning of a time step and the valleys corresponding

to its end.

Figures (5.20) and (5.21) show the vorticity contours and velocity vectors of

vortex shedding behind the flame holder during a period of 3.85. The global
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flow field was saved at 6 equally spaced time levels, covering one cycle of
vortex shedding. The flow is periodic with a period of T=3.85, as can be seen
in figure (5.22), where the evolution c¢” the horizontal velocity u and
transverse velocity v are plotted versus time at x/H= 0.76, downstream from
the flame holder along the symmetry line y = 0. At the same location in space,
as can be seen in figure (5.23), the variations of the effective viscosity g, the
rate of energy dissipation €, and the turbulent kinetic energy &, with respect to

time are also plotted.

The Strouhal number (vortex shedding frequency), Sr=f H/V., is computed
by measuring the vortex shedding period based on the transverse velocity v
from figure (5.22) and found to be within 4% of the experimental one given
in [31]. Comparison of the principal parameters of the flow over the flame

holder at Re=45,000 is presented in table (5.2).

T Sr Vimax Grid size | Method
. X =0.76
period H nodes
Present work 3.850 0.260 1.00 2600 FEM
Johansson [30] 3.703 0270 | ------ 18000 FVM
Exp. [31] 4.000 0250 | ------

Table 5.2 Comparison of principal parameters for the fiow over

the flame holder at Re=45,000
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6. Conclusions and Recommendations

6.1 Conclusions

The conservative formulation of the steady Navier-Stokes equations in [3] has
been extended to the time-accurate analysis of unsteady flows. The governing
equations are discretized in space by the Galerkin method, in time by a second-
order Gear method and the overall system linearized by a Newton method.
The resulting set of algebraic equations, at each time step, is implicitly solved
for the velocity and pressure by an iterative solver. The temperature is updated,
in a segregated manner, by solving a simplified algebraic form of the energy
equation. The k- equations are solved in a segregated manner by an iterative

solver.

The performance of the Gear method has been evaluated through the solution
of the unsteady nonlinear Burgers equation and shown to be superior to the
performance of the Crank-Nicolson method. The Gear method provided

higher ranges of stability and accuracy as was illustrated in Chapter 2.

This time accurate implementation of the Navier-Stokes equations has been
embedded into a Concordia-Pratt & Whitney Canada three-dimensional,
turbulent, steady Navier-Stokes code, N53D. The rode has been validated, for
the purpose of the Thesis, against two well-known 2-D test cases. The first case
is that of a laminar flow past a circular cylinder at Reynolds numbers between
35 and 100, and the second is that of a turbulent flow over a triangular shaped

flame holder at R e=45,000. The von Karman vortex street shedding, observed
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experimentally, is well captured in both cases and its computed shedding

frequency is shown to be within 5% of the experimental one.

6.2 Recommendations

The present formulation is capable of analyzing the unsteady flow over a
geometry consisting of a number of objects that are stationary relative to one
another. The formulation could be extended in the future to analyze the
unsteady flow in situations consisting of a number of objects moving relative

to one another.

In the context of turbomachinery, the work of this Thesis can be used to
analyze the flow in the passage of one blade row (rotor or stator), if the inlet
and exit boundary conditions are presumed known. In the general case where
unsteady flow phenomena such as wake/rotor interaction and potential
stator/rotor interaction need to be captured, one needs to carry out a

multistage analysis in which the boundary conditions are specified only at the

inlet of the upstream stage and at the exit of the downstream stage. For all
other intermediate components or stages unsteady boundary conditions need
to be defined iteratively. The work described here is therefore being extended
in NS3D to the analysis of the flow within the passage of a blade row
embedded in a multistage environment. Four, increasingly more complex,

options are available:

a- Through-Flow Approach
It assumes that the flow in the vicinity of every blade row is time invariant.

This means that there should be an axisymmetric surface of revolution
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somewhere between every two blade rows. The scheme is an interaction
between separate 3-D solution domains for individual blade rows and an
axisymmetric 2-D (through-flow) domain covering the whole machine. For
the through-flow, the effect of three dimensionality is introduced by

circumferencial averaging of the 3-D equations [32,33].

Although every blade row flow is supposed to be linked to an axisymmetric
average model, the axisymmetric model for one turbomachine should be
unique. For a multi-row machine, the solution of the through-flow is used to
get the necessary boundary conditions for individual blade row 3-D solutions
while the 3-D solutions are used to incorporate loss modeling and blockage
effects into the through-flow. Althcugh the scheme is feasible as far as
computing time is concerned, it smears the transport of flow features between
blade rows and lacks the complete effect of multistage environment

representation while solving for one blade row.

b- Mixing Plane Apprgagh

As an improvement to the previous approach, while retaining the steady
flow assumption, the mixing plane between blade rows allows the coupled
solution of 3-D domains while averaging only the quantities necessary for
conservation laws at the inter-row mixing plane and passing these quantitics

axisymmetrically to the adjacent blade row.

The multistage effect can be carried out either by coupling a through-flow
domain covering other blade rows to the 3-D domain for the target blade row,

or by solving the 3-D domains simultaneously.
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The added advantage is the ability to represent multistage environment
while solving for an individual blade row and the fact that inter-row
boundary values are calculated rather than imposed. However, the scheme

still has the smearing disadvantage of its predecessor |34].

c- Av -Passage Flow Approach
This model represents a time-averaged flow field, over a time interval which
ensures temporal periodicity, as seen by an observer whose frame of reference

is fixed with respect to a given blade row [35].

Relative to an individual blade row's frame of reference, a 3-D solution is
defined which represents the domain of the whole turbomachine. the effect
of unsteadiness due to other blade rows is accounted for using time and space
averaging. A gate function controls the averaging procedure and excludes all
moments when the point is contained within a blade thickness (no flow). If
the point is within a relative moving row, the gate function can be formed by
a group of step functions rotating with the blade row and having zero value
inside blade thickness and unity elsewhere. Outside blade rows, the function
value is identically unity. Because the existence of rigid bodies (other blade
rows) is accounted for, the resulting time and space-averaged quantities cover
the whole machine domain and the blade rows will be represented by an
axisymmetric blockage, correlation and body force-like terms. Since Euler or
Navier-Stokes equations are nonlinear, the new time-averaging will include
new correlations between time-varying flow variables. These correlations
represent the effect of unsteadiness on the time-averaged solution and
constitute, with the previously mentioned body forces, energy sources and the

space-averaging correlation, the closure requirements for the average-passage
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equations. Since the machine should have one axisymmetric component of
the flow field, the closeness of the axisymmetric parts of the ensuing

solutions is taken as a measure of convergence.

The advantage of the average-passage scheme is that temporally and spatially
averaged equations are solved on a steady basis and the solution is supposed
to represent the total effect of all other blade rows. The disadvantage is the
complexity and rising cost for multistage cases as well as the uncertainty

concerning the correlation models.

d- Reynolds-Averaged Unsteady Navier-Stokes Equations

In this approach the Reynolds-averaged unsteady Navier-Stokes equations
are solved throughout the computational domain, comprising rotors and
stators, with no averaging of flow properties at the interface between any two
blade rows. The time-accurate flow properties are communicated by
introducing a time-inclined computational plane at the interface between a
rotor and stator. The advantage of such an approach is that no closure
requirements are involved. However, it is expensive in terms of both

computing time and memory [1].

Approach (d), the most complete and complex is extremely demanding in
terms of computing time and resources. It is not currently in the realm of
turbomachinery industrial design settings. It is intended, therefore, to march
in complexity through the (a) and (b) approaches, and ultimately when

computer resources permit, implement approach (d).
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Figure 2.1 Interpolation functions for a 1-D linear element.
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u(x,t) = sin 2m(x-1)

u = 0.1, Ax = 0.05, x = 0.5
At = 0.01 k = 1

———At = 0.01 k = 2
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Figure 2.2 Finite element solution of the Burgers equation by the Gear

method and the Crank-Nicolson method, for A£0.01 and u=0.1.
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Figure 2.4 Finite element solution of the Burgers equation by the Gear

method and the Crank-Nicolson method, for At=0.02 and y=0.1.
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Figure 2.6 Finite element solution of the Burgers equation by the Gear

method and the Crank-Nicolson method, for At=0.04 and u=0.1.
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Figure 2.8  Finite element solution of the Burgers equation by the Gear

method and the Crank-Nicolson method, for At=0.08 and u=0.1.
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Figure 42a Algorithm flowchart for the steady flow scheme.
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Figure 5.1 Computational domain and boundary conditions for the flow
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(a) Finite element mesh

(b) Mesh details near cylinder

Figure 5.2  Finite element mesh for flow over a circular cylinder.
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flow, Re=100, T=5.75, Sr=0.174.
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the turbulent flow over a triangular shaped flame holder at

Re=45,000.
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Figure 5.16 Convergence history of the steady e-equation for the turbulent

flow over a triangular shaped flame holder at Re=45,000.
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Figure 5.19 Convergence history of the unsteady e-equation for the
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Figure 520 Predicted vorticity contours over one cycle at times; (a) 0, (b)
0.18T, (c) 0.36T, (d) 0.54T, (e) 0.72T, and (f) 0.9T. Turbulent flow
past a triangular cylinder; Re=45,000, At=0.12, T=3.85, Sr=0.26.
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Figure 522 Predicted evolution of the x-component of velocity, u, and the
y-component of velocity, v, with respect to time. Solution at a
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Solution at a point (x/H=7.6, y/H=0) on the centerline behind
the flame holder; Re=45,000, At=0.12, T=3.85, 5r=0.26.






