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ABSTRACT

A Translator for the Multiprocesging-ianguage Pascal-C

~ Stephen Cabilio

This thesis describes a Eranslator for the - Pascal-C
_prdgramming. language. Pascal-C is an extension of Pascal
' for solving combinatorial and similar computationally-bound
" problems on a loosely-coupled multiprocessor. This language
is one component of a prototype Pascal-é system developed at
Concordia. The wunderlying hardware is  inexpensive an
easily assembled, conéisting of micro- and mihi-prOCessors
connected by ‘'serial lines. The most' prominent
characteristic of the systemn is its hierarchical,

master/slave architecture which suits ‘the deébmposabkg

nature of the type of problem it is intended to solve. The -

powerful  high-level constructs in Pascal-C allow the,

applications programmer to exp;git the master/slave
~ concurrency in the = system with relati%e ease, The
description of‘the translator is organizea according to the
main phases of translation, with special aFtention to
diffiéglt areas sd&h as .'dealing ' systematically with
syntactic ’errors.. Also deséribed are'some software tools
used to develop and.maintain_the translator, and finally the
development of .an adequaté scheduliné‘mechanism to support

. concurrent processes in the Pascal-C run-time system.

~ iii -
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1. Introduction

There are many problems in combinatorial mathematics
that are éimple to state and have obvious solutions, but
nevertheless require a great deal of computation. A.classic

"

A example is the knapsack problem. In one version of this
prdbleﬁ, we are givén a set S of integers ;nd a separate
integer t, and we are asked to determine if'any combination
of the elements in S adds up to t; This can of course be '
solved by attempting' the summation for every subset of S
until either one is found that satisfies the criterion or
else all(subsets have been tried unsuccessfully. It is also
clear that this method is highly inefficient, since the
number of subsets of S is 2 to the power of |S| (the size of
S). Yet there is no alternative kpown. that is substantially
better than this crudé method; that 1is, for all known

algorithms the worst-case computing time is- an exponential

function of [S|.
The knapsack problem is typical of.a large class known
as NP-complete problems (1], many of which are of keen

interest, both‘pragmatic and theoretfTal in a wide variéty

: , _ of disciplines. For all these problems,/ the only exact
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Zlgorithms known must consider many possibilities, whose

ber increases expongntially with the size of mthef'da;a
given to the problem. It ;s widély suspected, thoggh not
yet proved, that there | cannot in ° fact exist any
'sub$tantiafly better’ methéd. If so, this places a severe
l@mit on the size of any pfoblem instance for which a
-s;iution can be expected in.a‘reasonable length of time,
-evén with the fast%st computing machines now available. As

for the future, although .the technological improvements over

- T—

- the years have been remarkable, the increase in computing

spggd has been essentially 1linear, so the apparent
intraétability of these problems is’unlikely to be relieved
by brute aforcg. One cannot hope for more than a modest
increase in the size of the pioblem instances ?ha; are
practical to solve. This is nevertheless a worthwhile goal,
since some  problem instances thaﬁ are of interest to
combinatorial mathematicians (and others) seem to be just

4

out of reach at present.

L The fastest computers are very expensive, but they

provide facilities that, are not needed. for the kind of

problem under consideration, such as sophisticated’

_multiple-user operating systems, and hardware for extremely

fast ' floating-point arithmetic. The mini- " and

microcomputers, on the other hand, are dropping dramatically
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in price though they remain rather slow. ﬂthe prospect of
combining She computlng,power of several small processors is
becoming more and more appealing, since if this could be
done effectively for the problems at hand,lthe power of a

large computer would be obtained at a fractlon of the cost.

-

. . ¢
Indeed, problems like knapsack appear to _ be

particularly well-suited for multi-microprocessors. Any
1erge instance of the problem can be expfessed in terms of

slightly smaller instances, as is evident from the recursive

' algorithms often employed for such problems,. If s is a

member of S in the knapsack example, ;;e\;?bblem may be

.reformulated as two subproblems, both with S - '{s} as the

\

set, and one with t as the target and the other with t - s.
The first subproblem considers the possibilities with s
excluded from the solution subset;* the seeond withl.s
incloded. If the answer to either is positive, then, so is
the answer to the larger problem. This is equiveient to
searchinq a tree in which the> nodes represent subproblems

that are decomposed into smaller and more numerous

subproblems at each successive level. The subtrees of

~

"

sibling nodes are disjoinff which indicates that the.

cofre5pond}ng subproblems are independent in terms of data
and order ~of evaluation. -In other words, such subproblems

can be solved simultaneously with go communication among



them. The -parent's communication with its children,

moreover, is limited to sending them-data at the beginning

and receiving their results at the end. Even this movement
of data is expected to be small in comparison with the

amount of computation required, except perhaps at the lowest

levels of the tree.

'
/
-

L]

The architecture suggested by these observations is a
hierarchical one, wherein va master processor genétates

subproblems of suitable size and submits them for solution

N\

v

i P
3{//qéneral' configuration, a hierarchical -arrangement has the

N, rééults to the master at”the end. .Compared with a more
/ .

ladvantgge of requiring few 1logical “intercgqnections (oné
;esé than the number of nodes). Mo{eqver, like h}erarchical
structures in systems of any sort, such an organization ls
easier go‘ understand and contfol, which is an important

consideration in the complicated and ‘error-prone business of

parallel computation.

‘A prototype of such a single-user multiprocessor has
been de&eloped at Concordia (2].° It takes ad&antage of the

-low communication requirements between the nodes of the

system by assembling inexpensive, off-the-shelf éomponents‘

into a loosely-coupled system. No exotic or specially

6n slave processors, which work in parallel and return their
"\ ;



designed hardware is required. At present, the prototype

features a PDP:}1/34‘ and two LSI-11/23's connected via
serial lines. Each‘computef has access to peripherals ;Lch
as monitoré and disk drives, though this may not be true of
prggessoré added in the future. Note that the pHysical .

?
laﬂgut of the interconnections is not important, as long as
—~ ¥ .

e e

the 1oéical connections ¢an be configured into a wvirtual
'hie:archy (31. The current’ syépem supports a two-level
hie;a;chy, also known as a star confiquration, and will
probably not support a multi-level’ hiérarchy (with
intermediate-level processors acting as both slaves tgﬁ the
higher 1level and masters to the iower level) for some time
» to come. The additional gffort Tequired to implement such a
generalization would only be justified if there were toé
many processors fpr ai single méster to service them

efficientiy and kéep them’pds} with subproblems.

- Q‘,

Thus thg=goél of‘ecqnomytﬁs easily satisfied, at least
- as far as thé,hafdware is concemned. The more difficult
",goalg, which depend largely on the softwére, are to ensure
“ ' that thé'system's computiﬁa power 1is utilized effectiQely
’ %gnd that the system is reasonably simple to use for the
inténded applications. Accordingly, an impottant .part of
the”ptojgct was Epe development of the Pascal-C language, an

extension of standard Pascal (4] which enables the user to
~e
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specify how the problem is to be decompbsed into independent
subproblems to be solved on the slave processors. The main

subjggt‘of this thesis is the 'implementatjon of a translator

of Pascal-C for this system. A closely related component,
the\- language's run—-time system “(RTS for éhort),. was.- -
implemented by Yin-Lam Wong and described in her thesis (5].
. : o o

.Chapter 2'reviews the. Pascal-C language anqwghapter 3,
the core of this thesi§, @escribes its .translator. Chapter
4 . describes some software tools thit helped in the"
implementation'of the translator and can Be used to maintain

it. Finally, chapter 5 describes work done in connection

with certain run-time features, prihcipally withTregard to

: . ) «
process scheduling. , . ' ?
/
. U 7
=z \ *
# | |
~ - 4




, 2. The Pascal-C Langquage
‘, -, ‘ 9 9'

9

” T e

\

-

EB automatic .method has yet been  developed - for
detecting the inherent parallelism 'in an ‘algorithm and
exploiting‘this:knowledge effectively and reliably on a

multiprocessor. A programmirfg language must therefore

r

provide special features that allow a programmer to
7'  communicate this knowledge of parallelism more or less

egplicitlyu The existing concurrent 1anguagesn '(e.g.,
‘Eoncurrent Pascal [6])) tend to be oriented towards systems

~programming on a single processor rather than applications
. . , .

& : . .
programming on a multiprocgsspr. It was therefore decideq‘
to devise ra langyage .that is appropriate for sgolving

qewbiﬂator%gl problems such the knapsack problem.

]
5

9
°

As its name ' implies, Pascal-C is a variation of
- . . 4

“standard Pascal [4]. Rather than - create an entirely new
language, which would require a great deal of work for its

design ané implementation as well.as a substantial learning

g f

effort on'thé,part of prospective users, we extended a very

4 familiér‘Janguage with a few powerful constructs. .If used
s < ~ '
» properly, the new features enable the programmer to exploit

4

the muitiprocessor's computing potential without being
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" burdened w%bh irrelevant details concerning thefﬁystgm's

operation. The s&tcinttnesS of the languaée \for the
.intended applications is forcefully illustrated when one
compares a typical Pascdl-C program with its labouriously
'coaed_,‘\equivalehgt} in" Coencurrent Pasca143 (7). . Not
surprisingly, the very power of ‘these constructs rgsults in ,
elaborate semantic specifications that are in contrast with

- their concise appearance. This ﬁhaptér describes Pascal-C's

. spécial fegturés: the DOWN procedure, tA:‘COPY sgection, the. .
BRITICAL procedure, the WAIT procedure, and the TERMINATE
procedure. Appendix 1.1 shdws a complepsﬁpaécallprogram to
solvewthz knapsaék problem, with a Pascal-C equivalent in,
appendix 1.2 for comparison. ~Similarily-, appendices 2.1 ahg
2.2 are quickéore implementations written in Pascal gﬁé
Pascal-C ;espectively. Taken together, the appendices
illustrate all the special features of Pascal-C. The
aescriptioﬁ in this chapter is informal, concentrating on
égdé implication; of Eascal-Cfstfeatures fog their use and
implementétion. A th;rough discussion of the lénguage'b
history and raéionale can be fqund in’ thé ~Pasc;1;c_ report
(8l. o | .

¥ . . o

- '
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2.1, The DOWN Procedure . /
h | ’ ' N : Y

As illustrated in appendix 1.2, 'a DOWN procedure looks

like a ;égular procedure except for the keyword DOWN and the

_optional COPY section, which is discussed in section 2.2.

Note thé heading in the example:

DOWN PROCEDURE SLAVETRY (SUM : INTEGER;‘CHOICE : SUBSET;
' CRITICAL PROCEDURE SOLUTION (CHOICE : SUBSET));

The master-slave relafionsﬁip between processors, which
was described in the introduétory shapter, is reflected'in
the static strgcture of a'Pascale program. The pafts of
the program that are execupéd in the élavés are the DOWN
procedureé; all other pafts are executed in the master. The

. ~ .

DOWN procedufe may be considered the most important of

Pascal~C's special features, sinee its semantics. cover the
‘ . - . a .

principal rules for parallel exegtution . and data

communication among processors. This static partitioning of .

the program into master and slave parts has its merits,

since much of the analysis can thereby be done during .the

rd

translation, but it also has disadvantages from the point of

view of programming convenience. It means that a recursive

- o

pattern must be broken at some pqiﬁt to call the DOWN

*

procedures. . Typically, there is. one type of . recursive ‘

- 09 -
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procedure declared for the master which calls-the DOWN

-

procedure at igs leaves, and another recursive procedure
declared for the slave which resembles its éqdlvalent in a
sequential program. The partitioning also ‘implies that the
. program's logic, must make good decisions concerning the

appropriate points to call the DOWN procedures. Otherwise,

-

the subproblems sent to the slaves may be too small or too
. large. If too small, ‘the overhead will be excessive,

espéﬁially with  regard to communication. If too large,

there is a chance that some slaves may be idle while otners

have long tasks, especia;ly'near the end of the computation.

4

@

L}
DOWN procédures can be nested at an arbitrary level

‘N

within regular procedures and functions, they'may have any

ynumber of }egular° procedures and functions nested within

" them (which, like their host procedures, are executed in the
‘\ "

slaves), and they, .are invoked exactly 1like regular

procedures.

“

DOWN procedures are-always called from éhe master part
~Of the program, which’ implies that :hey’ikay‘“ﬁbt call
themselves or other DOWN prdcedgres, either ‘diréctly or
' indiréctly; (In a multi-level hieraéchy, however, a DOWN
procedure’cogl@-gall another DOWN 'procedugé nested withiﬁ

it, which -~ would 'correséond to an intermediate-level

4

- o
4

- 10 - B /.



processor activating a lower-level slave. In the current

two-level implementation, such nesting is forbjdden, and the

»

ensuing discussion will take only a two-level system into
.account. For all features of the language, nevertheless,
the extrapolation to a multi+level system is fairly

*

straightforward.) The invocation of a DOWN procedure results

in the dynamic creation of a new process, an activation. of

the DOWN ptécedure that will execute asynchronously in some
available slave processor. In the meantime, the master is:
“free to proceed beyond the invocation statement and continue
generating processes, most typically (though = not
necessarily) activations® of the same DOWN procedure with
different subproblem data. The master 1is aufomatically
blocked as 1long as thefe is no slave available for the
current invocatfén, so the programmer need not worry about

v

the ~mumber of processes being generated or the numbér of
+° .

processors in the system. (The blocking could be
. AN

forestalled by implementing a queue for requested

) aétivations, but the queue would be liable to £ill wup

rapidly since subproblems tend to bevgenerated more quickly
than they can be solved. So blocking would soon occur in.
any case, and no significant effect on the total waiting

time could be expected.) \

The master can only send data to the slave at the time

2
’

—11_



the DOWN procedure is }nvoked:'namely, the aétual parametefs
and the current values of ‘whatever relatively - glébal
variébles are listed i; the QOPY section. The language does
not provide the master with any means for subsequently

altering or adding to the original subproblem ddta while the

slave 1is still executing. (Future extensions ‘to the

language may allow the master to update the slave's data
periodically, as would be required for ’certain important
~ applications such as branch-and-bound algorithms.) The

evaluation of the pérameter§ is treated as a critical region

and is thereby protected from possibly disruptive actions’

from the slaves (see the CRITICAL procedure feature in

section 2.3). If the termination 'condition on the DOWN

procedure is set (see the TERMINATE feature in section‘z.S),'

no activatjon will take place but the DOWN proceduré's

parameters will nevertheless be evaluated, so that any side
' >
effects caused by the evaluation will occur.

’

AN

+

There are two quite giffefent ways for the slave to
return resﬁlts. One way, through CRITICAL procedure calls,
is described in sectien 2.3. The other is through the DOWN

‘iprocedure's VAR parameters. In appendix 2.2, for example,

we have the declaration
. L (Y

DOWN PROCEDURE SLAVESORT (VAR E : VECTOR; LO, HI : INTEGER);

- J

)
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3

wvhich causes the contefits of A to be returned to the master
at the end of each activation of PARQUICK in the slaves.
The VAR parameters }n a DOWN procedure, like the value
parameters, exist as locql copies within the slave. The
updating of the actual parameters in the'haster tgkes-plaqe
only some time after the end of the DOWN procedure (see the
WAIT feature, section 2.4), so the semantics are in this
sense more like those of value-result parameters than those
of fegular VAR pqrémeters iﬂ Pascal. Noie that anylphanges
to the variables listed in the COPY section’affect‘only EPE
sigve's local . copiés} so results cannot be returned to the

master by modifying relatively global data. : '\

/ 3
4

. , s - 4
- At some point in the program, the master st

/
synchronize . with the slaves by calling the WAIT procedure,

which blocks the master until all processes connected with
the given DOWN procedure ha;e come to\comﬁletion.' Cnly then
ére the slave's VAR parameters, which until now have 'been
bufféred, used to update the actual ‘pa;ameters in the
master. A novel aspect of this updaking is that only those
com;onents of. the VAR parameters that have actually been
altered will be written back to the original variables.
Thus, for- example, a single array could be sent as a VAR

parameter to several activations of the DOWN procedure} and

the slaves could update different portions of the array.

- 13 - . -



This selective updating modifies the value-result semantics
.menéiohed g in * the previous paragraph to simulate the -
properties of reqular VAR parameters. Moreover, there is a
run-time check to ensure that no coﬁponent of such an actual
VAR parameter has been altered by different 'activations of
_ the bOWN procedure. The sets of components updated by the
varioué act;vationslmﬁst be disjoint, or else an:  error |is
rebo;ted. (In this context, "component" means al; simple
tfées« and set types, since these are effectively
irreducible. A component is' judged to have been altered
when its value at the end of the DOWN procedure is different
- from its wvalue at the begiﬁning of that _procedure,
regasaae;s of‘any changes that may meanwhile have taken
place, in. the origiAal copy in éhe master.) It was reasoned
that.confiib?ing updates by the DOWN procedures “could not
possibly ' be part of the programmer'é intention, since these

o

~are bound to overwrite each other in an unpredictable

f

sequéhce. These rules apply also. to simple VAR parameters,

which are treated as single-component types.

L]

Theré"afq a number of special restrictions tegarding.

DOWN: . procedures, besides the, ones already mentiéped. Any

.relatively global object that is referenced in the " body , of
the . DOWN procedure must be identified in its COPY section
(described in section 2.2). The ' standard" predefined

L
W

~

- 14 ‘-
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identifiers are availa&le to ' the bOWN procedure without
appearing in the COPY gfction, except for the special
Pascal-C procedures WAITf\and TERMINATE which cannot be
invoked by a DOWN procedure.\iThe data typeé that appear in

the DOWN procedure's parameter 1list must not have any

pointer or file components, since the different processors -

do not have access to commoﬁ memory or peripﬁerals. In
» adsﬁtion, VAR parameters must not be part of dynamig
daria@les, since there is no reasonablg way to check whether
or'not they have been mistakenly disposed by the time the

. updating ' takes place. Record variants are also excluded

within- VAR parameters because component-by-component

=,

updating becomes problematic’ when different.variants are -

.involved. CRITICAL procedures are allowed as formal
parameters to DOWN procedures, but regular procédpres and
functions are not. Finally, DOWN procedures are not allowed

as parameters to any kind of procedure or function.

- 15 -
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2.2. The COPY Section

The COPY section is an optional feature following the
DOWN procedure heading. It consists of the 'keyw0td' cory
followed by' a list of identifiers separatéd by commas and
terminated by a demicolon, as illustrated in DOWN procedure
SLAVETRY of appendix 1.2: , )
COPY L o .
SUBSET, LAST, T, S, DEPTH; . ..

: ? )

If the body of " "the bOWN procedure contains any
references to relatively global identifiefs, these
identifieré must have their scopé explicitly extended by
listing them in the COPY section. This exception to éhe
normal scope rules of Pascai underlines the fact that the
DOWN procedure executes in a remote.. ﬁrocessor. The
translator éould compile an implicit 1list af nonlocal.
references, éut"forcing the programmer to make the list,
explicit helps document theyexteg: of impértation‘ftqm the
DOWN .procedure's environment, * and facilitates the
translator's job as well. Note that the standard predefined
. identifiers are évailgble to the DOWN procedure, and it |is
an error to include them in the COPY section (unless they
have been redefined in the user's program).

-

-]‘_6_



j. Any variables listed in the COPY section reside within
the slave. ‘Théy are initialized with the current values of
their namesakes in the master every time the DOWN procedure
is invoked, just as if they were value parameters. The
restriction against pointer and file types in DOWN procedure
parameters also applies to the COPY variables. And as with
value parameters, changes to the COPY variables in the slave
do, not affect gheir counterparts in the master. Note that//
the master may chanéé the values of the copied variables
frqm one invocation to another, thoﬁgh as a matter of

/ ' prbgramming practice it would be more appropriate to use

value parameters for such a purpose.

res and CRITICAL procedures are not allowed
in the coP ctiéon. Ordinary procedures and functions are
as long as they do not_contain references to DOWN
procedure CRITICAL procedures, or the WAIT prog@dure
described Sélow. Of course the "copied" procedures need not
be copied with each invocation; in the implementatioﬂ, they
may be 1linked to the code for the DOWN procedure proper.
Thus procedures and'functions that are of use to both master
and slave do not have to be redefined within the DOWN
. proceduré.

In the orliginal Pascal-C report (8], éflatively global

’ - 17 -
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constant and type identifiers could be referenced in a DOWN
procedure without appearing in its COPY sectioﬂt The issﬁe
. was brought up again during the implémgntation .0f the
q§gpslator;gpen it became apparent‘thaé there is no good

g . . .
reason for.~-this inconsistency (it is true that typeg\:nd
1

¥ oy e
&f

constaﬁts do. nqp' have fto be copied at run time ke
variables, \but then neither do procedures) and that this
information is as wuseful to the translatorA as is the
expliéit_ listing of nonldcal variables, procedures, and
functions. It was therefore agreed that the requirement

should be extended to all identifiers whose scope must

include the DOWN procedure. The only exception is that the

type identifiers in the DOWN: procedure's parameter list are -

implicitly included in the COPY list. This is a concession
to the fact that it would seem. rathei‘ odd to force a
programmer to include these names in the COPY section after

they have already been used in the parameter list above it.

Since the purpose of the COPY section is{to make
explicit any relatively‘global objects that are needed iﬁ
the DOWN procedure - fqr‘ihe sake éf the translator as well
aé the reader - it follows  that any relatively global
objects that are referenced in a copied procedure must ,also
be included in the COPY list. If these objects include
_ other  procedures, the same'rulé applies to them, and so on

- 18 - T a
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until the COPY 1list includes all relatively global

Py idenﬁifieré, no matter fow indirectly they are referenced.

\ .
\\~__\\£9§§E§;)f°r constants and types in the COPY section, in that

— . it is not necessary to include the named tonstants and types

N ‘Any omigsion causes an error tofbe reported. This rule is

that may have been used in.their definitionms.

’

" . Thé fact that the COPY section appears after the DOWN
;/;//, procedure heading may lead to some confusion ;egarding scope
. rules. To clarify thisg, it should be remembered that~the
COPY section merely enables the normal scope of relatively

global identifiers. The items in the COPY list arg still

. considered relativeiy global to the DOWN procedure, so téey

may be identical to identifiers defined locally.in the DOWN

procedure (e.g., in ﬁhe parameter list) without causing a

-» -

multiple-definition error= (Of cwurse the scope of such

items would be occluded by the local finitions, but they

.may be needed to satisfy nonlocal references that occur in

some copied ptocedﬁrés rather than in the .DOWN procedure
. 8
itself.) ] C '

1 ‘ ) o
}

Finally, note one restriction that 'is peculiar to this
implementation. For reasons discussed in section 3.7.1, tﬁé

variables in a COPY list'must'have been originally declared

with a single type fﬁentifier, not a new type definition, on
T “ : L

¢
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the right-hand side of the declaration. ' This‘restriction is

easier to remember if one thinks of formal parameters in
[ ' ~ . s

Pascal, which also must be declared with a single type

identifier. . . -
Q - -
/ _
/
e
- .
. - !
Ay . b
- . )
' D
e~ [Ny
!
?
') N

. L
u. i t ’
) ;‘

"\

, - -~ .
b4 1
)
Q 3 . .
- 20 - .



>

% 4

q.

e

4 2.3. The CRITICAL Procedure'

u

A CRITICAL procedure resembles an ordinary procedure

‘ekcept for the keyword CRITICAL in ,the headiné, as

. illustrated in appendix 1.2: K

CRITIEAL PROCEDURE SOLUTION (CHOICE : SUBSET);

It is invoked just like an ordinary procedure.
<. 7 B

~
~

A CRITICAL procedure can only be°deglar§d\i? the master

part of the program, and it always executes in that
. &

‘environpment, but it can be, invoked by either the, master
process or a slave process. It is called CRITICAL because

/ it can interrupt the master process (when called from a

slave), but once it begins execution it cannot ' be

interrupted By another CRITICAL activation, nor willscthe

- . A
interrupted master process resume until’ the CRITICAL
%

;’ procedure is complete. Slaves can use a CRITICAL procedure

to return ' results asynchronously, or even output results
SN . - .
‘directly, so it provides an alternative to the VAR parameter

A

: dﬂﬂa  method of réfurning Tesults from a DOWN procedure. The

exclusion condition ensures that the CRITICAL procedure
~activations will be serialized, and therefore cannot
interfere with one another. 'When a CRITICAL procedure is

.

- 21 -
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sensitive operations that must be protected’ from the

call from a slave. (With the former method, Qhére would

called from the masterh‘thé purpose is uéually to perform

asynchronous actions of CRITICAL procedures called from the

slaves. 'Note that the exclusion condition is in é:fect even .
at the time of evaluation of the CRITICAL procedure's -
parameters, so no action by a slave can .cause an
inconsistency in the parametér evaluation. " The exclusion
condition persists when & CRITICAL procedure calls other
procedures, and is cancelled only upon exiting the procedure

[4

that set the exclusion condition.

To make a iCRITICAL procedure accessible to a .DOWN
procedure, the name of'the'tRITICAL proceduré must -be passed
és an actual parameter’iﬁ thé DOWN précedure invocation.
The éortesponding formal deqlération in the DOWN procedure's
géraﬁeter list is like that of anyy procedural parameter
except, 'égain, for the keyword CRITICAL before PROCEDURE.
In th original language proposal, CRITICAL procedures were
not passed as parameters to the DOWN procedure but invoked
directly as relatively global objects. The curient method

is more flexible and,easier to implement, and perhaps more

-

L)

3
suggestive of the true'semantics of a CRITICAL procedure

have to be an éxception to the Pascaf—c _scope rules’ that‘*“,
- would otherwise .require -~ rather éontusingly - that the
~ T |
- 22 - o
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CRITICAL procedure must appear in the COPY section in order

to be referenced directly.)

The only legitimate parameiérs'to a CRITIéAL‘procedure
are vaiqe parameters (excluding file and pointer t§pes); no
proceddral or VAR parameters are qllowed. _Wi€hout VAR
parameters, there ié no way for the {slaye gg bbtain data
“from the master, which is an intentional limitation in this
system. Once the slave finishes communicating it;~ request
to the master, it can continue without wéiting for the

1

CRITICAL procedure to finish or even begin dits execution;
, e

the DOWN procedure may even come to completion before the.

CRITICAL procedure does. The activation of the CRITICAL

4h‘gcedure. by: a " slave therefore constitutes another

dynamically created process, indepé%dgnt of either its slave

‘parent or its master grandparent.

(. . . N

‘When a 'slave sends a CRITICAL procedure request, tife

request may be queued, depending on the RTS implementation,
so that the slave can proceed regardless of whether or not
the master is currently able td Fulfill . the request.
CRITICALLﬁbrocedures should be regarded as having high

priority with'respect to the master process, so if the

-

exclusion condition 1is not set the activation should take

plap:ithout much delay. Between activations of CRITICAL

v
.

‘- 23 -
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procedures, however, the master g?ﬁgsfs may be given a time.

"

slice to ensure that it is not starved out altogether.
% 4 ' )

When a DOWN procedure.is called, the evaluatior of its
g

parameters takes place with the exclusion condition set, as

if a CRITICAL procedure were running. This protection |is

w
N i

provided automatically besause it is forbidden to call DOWN -
procedpres from\éRITICAL procedures' (or, more 'geqerally,
when the exclusion onditién' is set), so the programmer
cannot use the CRITICAL procedure method to explicitly
protéct the DbWN 'procedure's. parameter evaluatioh. The

reason for the restriction against calling DOWN procedures .

from CRITICAL procedures is twofold. First, it would givef :

slaves a way of invoking DOWN procedures at their own level,-

which would violate the mastér/slaye principle. Second, the
master is ’automaticélly blocked if it invokes a DOWN

*

procedure- when all the slaves are busy,‘which'can lead to

4 .

the CRITICAL procedure queue filling "up if the exclusion

'condition remains set, and pogsible deadlock as a ;esﬁlt. . -

()

Like DOWN procedures, CRITICAL procedures may be nested

at an arbitrary level within regular. procedures and
functioné. Unlike DOWN procedurés, however, they may also
be nested within each other, and may. call other -CRITIGAL

’ %

ptqcedd£é§ or make recursive calls without restriction.

L4
’ “ . . . .
. "
. ’ v
| . - - .
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CRITICAL prbcedures cannot call the WAIT procedure, for much

- —

the 'same reasons that they cannot call a DOWN proceduré: A

WAIT inside a CRITICAL proceédure could block the master

‘while in the exclusion condition and thereby deadlock the

system, ‘and slaves should not have even indirect access to a
synchronizing procedure that is properly.invoked only by the
master process. CRITICAL procedures may nevertheless call

the TERMINATE procedure.

“The” CRITICAL procedure is a powerful ' feature that .
requires some;cautiop on the part' of the programmer, dedpite
its built-in 'sgfgguards. Moreover, aithéugh “a  DOWN-
procedure . activation may make ;nyb pumber §f CRITICAL
p}ocedure reqguests (énd may return VAR parameters as well),

they should be'célled. sp;ringly., Otherwise, .a flood of

‘ CRITICAL procedure requests could easily tie up the master

L4

and overload the communication channels, causing a -drastic

deterioration in peéerformance.



2.4, The WAIT Procedure

The WAIT procedure is predefined in Pascal-C. 1Its

invocation is illustrated near the end of appendix‘l.z:

WAIT (SLAVETRY);

-

s wh W

Note the unusual fact that it takes the name of a DOWN

procedure as its parameter; in fact, a DOWN procedure name

is the oniy legitimate parameter to the WAIT précedure.

The WAIT procedure is used to synchronize the master
procesg with the slave processes tha£ are executing the
specified DOWN procedure. The maste£ will pause until ‘all
activations of that DOWN procedure, and all their CRITICAL
procedure requests, have come to completion. Only at ' that
boigt are the actual VAR parameters coanected with that DOWN
procedure updated. Until then, the VAR updatés returned by

-

the slaves were kept in temporary storage.

The master then proceeds past the WAIT s;atemeht. It
may create further instances of the same DOWN procedure, but
these are considered a new set, and they must be concluded
at soﬁe point with anotﬁer call to WAIT. It is an error to

come to the end of the program ugless every set of DOWN
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4
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procedure invocations has had a 'subsequent WAIT statement
issued against it. The WAIT may have to be called within a’
more restricted region if some of the actual VAR parameters
fare local variables in a procedure: It 1is an error to
attempt an update on an actual VAR parameter that has

- dalready been deallocated.

The WAIT procedure cannot be inéoked, neither directly
nor indirec;iy, by a DOWN procedure or a CRITICAL progeduté.’
" This ensures that the strict hierarchical structure §f the
system is ‘not violated and prevents the possibility of
deadlock. ‘ . . |

Unfortunately, there 1is no way for the WAIT procedure
to distingpisb among ‘the various activations pertaining to
the DOWN procedure: They are all dealt with as a“single
'group. A future wversion of Pascal-C may change this,
proviaed 'that some reasonable méthod can be devisedvfor
identifying individual activations or subgroupy of

activations.

‘-.27-



2.5. The TERMINATE Procedure.

Like the WAIT procedure described in section 2.4, the
TERMINATE procedure is predefined in Pascal-C and takes a
DOWN procedure. namé as its sole parameter, as illustrated

. within CRITICAL procedure SOLUTION in appendix 1.2:

TERMINATE (SLAVETRY); N

The master uses the TERMINATE feature to: bring all’
activations of a DOWN procedure to a premature but orderly
halt. 'The usual occasion for doing this-‘is when enough
solutions have already been retﬁfned (typically via CRITICAL
pr::Ldure calls from the slaves) and no further computation
is. necessary. Often a single solution is all that a

particular problem _requires. The TERMINATE: feature can
" AW

1

there. shorten the expected 1length of the computation,
though of course it will not ‘affect the worst-case

behaviour. R

A TERMINATE procedure may be invoked anywhere within
the scope of tﬂ; DOWN procedure ig ‘references, except within
‘the DOWN procedure itself. It shares the WAIT restriction
against being called by a DOWN procedure, but unlike WAIT it

L]
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may be called by a CRITICAL procedure, even if the CRITICAL

/-\
. ' procedure was requested by a slave.

-

. ;ThévTERMINATE\prézedure pre-empts all activations of
the specified DOWN procedure, whether current or pending,
and returns the slaves that Qere executing them to an idle
state. Similarily, it cancels all CRITICAL procedure
requests that have been iséued by those activations. (When
TERMINATE is called by a CRITICAL procedure, however, that
particular activation continues through to its nbrmal end.).
The effect of TERMINATE persists afterwards until a WAIT is
issued on that DOWN procedure, thereby concluding the entire
set 6f activations. Thus if the master contifiies to invoke
tpe‘DOWN procedure with the termination condition set, the
actual parameters in_‘EE; invocation will be evaluated (as
discussed in section 2.1) but no activation will take place,
a condition that can only '‘be cancelled by issuing the
appropriate WAIT. When a WAIT is issued with the TERMINATE
condition in efféct, no VAR dpdating takes place; the update
information, if there is any at the tipe, is ‘simply

discarded. '

It retrospect, it would have been more consistent to
forgEF calling TERMINATE from CRITICAL procedures, since
w ’ J

neither WAIT nor DOWN procedures can be invoked from

_29_
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CRITICAL procedurés. In the latter'caseé) there is a danger
of ' deadlock that -does not apply to TERMINATE, but another
reason for sﬁch restrictions  is to prevent sBlaves from
controlling other slaves at tb; same level of the'hierarchy.
Hence TERMINATE violétes a basic*prq@ise ofu'a hierarchical
system when it is called 3y a CRITICAL ﬁrocedure that in
turn was called by a DOWN procedure. Neverthekgs?, this
' . ' ! '

relaxation is undoubtedly /an advantage from the point of

N

view of programming convenifnce. The alternative w%ﬁld be
, : |
explicit statements -in the .CRITICAL procedure to set some
sort of té;minafion flag, which the master process would
have to test petiodically, calb{f; TER&INATE vhen the f£1

so indicates. : : -

Like WAIT, TERMINATE refers to all activations of a

DOWN procedure and cannot distingﬂish individuals or

' subgroups of activations. This capability might well prove

useful (e.g., in branch—and-bouhd problems) and is a‘likely

A

candidate for a future language extension.

.
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3. ‘The Pascal-C‘Translator

This chapter, the core of this ‘thesis, describes the
implementation of the  Pascal-C translator. It is divided
into sections which correspond to the major modular
divisions or phases of translation. The translator itself
is a program written in Pascal. Associated with it are

various auxiliary pieces of software, some written
<

especially for this project, which are described in chapter

4.

/o i . ~
?ﬁe cﬁ;rent translator generates sequential Pascal
rather than low-level code, so -in this respect it is a
preprocessor. This sho;t cut was taken to ggg;a prototype
Pascal-C system in operétion. In . many respects,
,‘Qnevertheless, thé translator performs much like a compi}er,

and indeed a qud'deal of it can be used in a future

compiler. With this possibility in mind, some care was

taken to modularize the different phases of translation to -

make it easier to extend the program eventually to generate

¢

low-level gode.

Section 3.1 outlines some _general considerations

-
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regardﬁng .errbr. process?ﬁg${ Although error checking is
Hisé;ibuted throughout the analysis phases, there is a .
central mechanism described in this section fp?tisgging |
'errors. Recovery from Eyntactic\errqrs is a special topic
that is dealt with in séction 3.4. The listing of error

messages is also treated separately in section 3.3. In

general, the translator will detect and report most bf the

]

errors.that cag be handled by a compiler. ®

~A ‘ ,
Section 3.2 describes the,lexical analyzer. This is

the ' first phasé of translation and often the mést N
time-consuming. Attention here was given to making 1lexical ‘
analysis efficient ‘and uniform in structure. To this end,
the lexical analyier recoénizes several textual elements

" that are not cénsidered tokens of the language: end-of—line,
end-of-file, comment string, erroneous symbgl, and so forth.
Eacﬁ kind of textual element has an action assoctated with

it. Besides denerating»tbkens for the parser, the lexical ,

analyzer controls the input of the source .text, the output

of the listing, and the processing of translator’ directive

"embedded in the cpmmehts.

Section 3.3 describes the listing mechanism. This is
. ] ! .

fairly conventional except: for the manner- in which error

messages are generated. Some effort was made to make error M

Y - 32 4
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messages more meaningful than is wusually the case _with

4
5

compiler '1istings, while at the same time making the

generation of these messages as systematic as possible to

allow for easy modification. This is particularly important

with regard to syntactic errors, since syntactic analysis %7'.

'now ushally based on systemahic;metbods that are difficult

w_—

»
to integrate with an ad hoc approach to error processing.

~ §ec£ioh 3.4 describes syntéctic analysis and recovery
from syntactic errors. Tﬁe former 'is a well-understood
aspect of compiler design, and this‘péfser was based on one
of the many . systems now,availaﬁle for geng{atrn? parsing

tables automatically."Uqfoftunately, Errorcrec¢Vﬁ£¥ remains

" poorly understood by comparison. A systematic parsing

method calls for a systematic recovery Etrategy, just as’ it

¢

demands a systematic approach to generating error messages.

£ -

The preirﬁt\recovery strategy is based on various schemes
suggested in the 'literature, in a ‘unique but effeétive

combination_arrived at partly through experimentation.
Sectién~325 gives a' broad outline of the _ semantic

routines, what they cover and how they are linked to the

éérsing mechanism. This sectiodzis preliminary to the two’

major partitions of semantic routines described in the next

tw°\\sections: bookkeeping ~and synthesis. The features

-

¢
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. ' . .
the symbol table could” be hidden from the rest of the

r4

described in all Ehe preceding sections of-this chapter are
about as compléte as tﬁey would be in a }ypica} 'complle;;_
It is in the semantic routines that the.translatb; takes
advantage of the short cuts ﬁoééihlé when the target 1is a
high-level language. More épecifically, ’ the data

declaration parts of the source program atfe analyzed Cin

detail to find the exact size in machine unitg of all data

items, since this information is vital to communicating with

the RTS. Here the translator is still comparable to a
;o . /

compiler. But the statement parts - are not analyzed in

semantic detail because no. low-level code is generated.

-

' Some effort is made to detect cofimon semantic errors in the

. -

statements, and statements that ihvoke Pascal-C's special

features are processed in more detail, but on the whole this o
major aspect of compiling is bypassed.

&,

- .

" Section 3.6 describes the organization of the symbol

i ' ) .

table and the routines associated with it. 'The most notable

aspect of this component is that a layereq'approaqh‘ﬁés uséd

in designing these routines, so that the storage detéils of
o

translator. An attempt was made,.-within the“limits of the

£

language of impleméntqtion, to deal "with objects in the

2, -

.symbol table as abstractions that possess certain attfibu;es

-

and unique ‘names :(as opposed to identifiers,-which are

K

-

Ll d

@

; ‘ T -34 = .



haierd

,‘ N

‘not be. possessed by sSome objects). This should make it

LY
atlributes_that are not necéssarily unique and may in fact

eagier to alter tﬁe.symbol table organization without unduly
» .
disturbing the rest of the translator. .

: ? s
Finally, section 3.7, by  far the 1longest in this

chapter, describes the appearance\¢§nd function of - the
modules produced by the translator, and the multi-pass

o v .
scheme for* producing those modules. It is divided into

subsections’ describing the general features of the output,
the particular features of the wvarious :modules, and the

synthesis scheme. The key to this section is understanding

. how the‘madules produced by the translator interact with the

. > .
Pascal-C run-time system. The special features of -Pascal-C

are translated in part as "internal” ¢ode and’ in part as

calls “to the external RTS.

Cy

¥



3.1. Error Processing .

<

H
\

Ideally, the -translator should discover all distinect
errors on the part of the user, and report only those

errors. In practice, here are many kinds of errors that’
Y 3

’

are difficult or impossible for the translator to detect.’
Some of these errors can be relegated instead to the
error—-checking mechanism of the run-time system. Subscript

expressions, for example, are usually checked at run-time to

N

ensure that they do not exceed the bounds of the array.

5 T

v dthe; errors ma§ escape both the translator and the run-time
checking. Still others are detected at'tranélation time but

have a disruptive effect on the translator that results in

)

spurious or redundant error messages at various places, or
. . i
conversely, in.failure to report genuine,additional-errors.

'An attempt was made to minimize the disruptive effects 'of

[

such errors - in the Pascal-C translatés (see section 3.45,
;hdugh they cannot be eliminated altogether. Finally, some
featurz; in the progr;m nay prgyoke‘etror mesgages, not.

, because they are strictly speaking iqcorrﬁpt, but because

they exceed certain implementation limits enforced by ‘the

. translator, such as the maximum size of integer 1literals.

Y

Despite these limitations, error checking is an important -

component of translation and susceptible to varying degreés
. \ N
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When a translator's output is a high-level ianguage
Elosely red;mbling the source lanquage, as in the case of a
preprocessor that cohverts structured Fortran to more
primitive Fortran, much of th; translator's error ~checking_
in the first stage may be omitted, since the subsequent-
compilation can be expected to discover those same errors.
In this way the first-stage translator may be simplified

i considerablf - at some ‘inconvenience to the user, who would-
thereby be compelled to run two translations for evefy
error-éorrection cycle, and to relate the second-s' ge error
messages to the original source text. In the presenk case,
oh the other hénd, the translator's task necessitates most’
of the analysis ordinarily performeé by a compiler; it_ﬁiA

(\'mainly.in the absence of'l;b-levél code generation that this
translator 1is a ‘simplification of a regular compiler.
-Thorough analysis entails thorough validation,, soA most
errors‘ are discoveré&, and repd{ted, by the’ Pascal-C
translator. This is of particular benefif to the user since
‘the output of this translator is sufficiently‘different érom
the inpht to make it relatively difficult to 1relate
subsequent compiler meaegges back to the "source program.

nThis'translator reports allllexica% éjdﬁ syntactic eg;Brs,

and most semantic errors as well. The major omissions are

4 S hd
. ' ’ »,
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in the statement parts, where the translator skips most of
the analysis associated with low-level code generation, and
therefore neglects to check for the relevant errors. In
particular, although there are checks to ensure that objects
used as variables, arrays, records, and so on are declared
as such, there is nevertheless no validation of the various
aspects of type compatibility within the statements. .Since
procedufe calls may involée such special Pascal-C features

as DOWN procedure invocations or synchronization statements,

the translator does more.error checking on pro\§EUre calls

than on other kinds of statements.

~ ' ' /;57

There are two.levels of error severity recognized in

‘Eorresponding error-logging
N

routines. Fatal errors are éhose for which recovery is

this implementation, and two.

considered impractical. Such ggrrors often reg&lt from
. k)

-. exceeding critical implbmentation limits, such as the

capacity of the symbol table. The logging routine for fatal
errors diéplays the appropriate message directly on the user

terminal, along with the line number in the source program

fmfat which the disaster occured, and then causes the

34

translation to halt. Recoverable errors are more typical,
and can be expected in some abundance. The , messages for
recoverable errors are incorporated into the listing, with

only a summary of the errors appearing on the terminal. The

— .,
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logging routine EQ: recoverable errors éncodes the relevant (‘
information into an er;or record, which is appen&ed to the
error records already accuﬁhlated with regard to the current
line. After the current line has been complétely processed,.
. .the 1listing routine decodes the error records into textual
hessages and disposes of them.. The informatiqn‘ passed. to ;
the logging routine and stored in the record includes the
‘kind of error, the position~in‘the line at which the error
Qﬁg detected, and an. integer valué whose interpretation
avwdepends on the kind of error.. This info;mation guides the
. listing routine‘in constrdcﬁ&ng the text of error messages,
although in many instances the integer item is nét
applicable. Th%‘logging routine keébs the list sorted using
_the position‘item as a key; that is, the records are.
maintained “in left-to-right order of text position. Since
° errors may be encountered ﬂg ﬁearly all phases of
translation, calls to the two error—-logging routines afe

o

very widely distributed in the translator.

-




3.2. Lexical Analysis’

The lexical analyzer is invoked whenever the pérser”

nggds‘ a ‘new token. Lexical analysis operates directly on
the source text, and may therefore be éonsidgréd-the initial
~ phase of Eranslation.’ It converts the text into a stream of
tokens which the parser, in the syntactic phase of

14

translation (see section 3.4), conshmes as terminal symbols
of the grammar, In some cases the 1lexical analyzer also
‘as§oqiates semantic information with the token for the
benefit of translation phases beyohd syntactic analysis.
Since it is so closely associated wigth Ehe"squrée ;ext,'the
lexical analyzer is also used‘ to :%Eg?bl the input £n9
listing of the -source program, and to process translator
dirgcti&és that may be embedded in the comménts.

. -

. The current line of text is stored in a character

R

buffer, with pointers that move down the buffer as the - :
) i [ . ~.. ) .
lexical analysis proceeds. To simplify scanning, 'a sentinel

. , .
value after the last valid character. in the buffer indicates

end-of-line, unless the buffer contains the last line in-the

file, in which Case an end-of-file sentinel is used instead.
wWhen'a token beyond the buffer is needed, the current line

is listed (see section 3.3) and the next 1%§e, if any; is

' . .
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read into the buffer.

We may distihguish two subprocesses in Ef”ﬁ:;;t5

analysis: scanning and screening.[9,p.109]. Scanning groups
sequences of characters into distinét textual elements.
Screening ' determines which token, if any, is represented by
the textual elg@ent that was- just scanned, ‘ and may
supplement the token value with addlﬁ&onal informatioﬁ. |

Scanning can Sé handled by a finite-state maéhi;e,.

implemented either procedurally or with a transition table
4

~and driver. .There are automatic generators that produce

- scanning table from 3 reqgular grammar or regular expressions

{lo,p.124].q”J£ut scanning, unlike parsing, is a relatively

simple procesé and hardly justifies the overhead in using

" automatic generators and adapting their outpdt to suit the

translator (for an illustration of this problem, see the

.

discussion on automatic parSer generation in. chapter 4).

Y

The table would also occupy a substantial amount of memory

and would fesult in slower execution as compared with the
ptpcedugal method. The scanner was therefore impleme?ted
procedurally.

Screening, on the other hand, is a largely ad hoc
' '

'process, and accounts for most of the code mjn the 1lexical

’ .
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analyzer. The procedural framework required for screening

is easily extended to include scanning actions. In this
implementation, a _case statement selects the appropriate

scanning >nd screenlng actions based on the flrst character

o the current textual. element. (Vlrtually all textual
elemeg;a_in thlS language can be identified upon examining

’

their first 1 or 2 characters.) If the current textual-

‘4

. element is recognized as a token, lexital analysis is

- suspended to give other phases of translation a chance to

L]

process'the’ associated information, ‘whlch is passed in
global variables. Most tokens are represented only by thelr
token velues, with the following exceptioﬂs. Integer
literals: are accompanied by tpeir numerical values (whieh
may bel needed for subrange calculations, for exampfe).
Character qnd' string literals are stripped of their
extraneous quotes and passed in s-special buffer. Finally,
identifiers are truncated to 10 characters, converted to
uppervcese, and stored in this form in the special buffer,
and are also accompanied by pointers to the corresponding
entries in the symbol table (the table 1lookup is used as

well to distinguish an identifier token from keyword

tokens). .

.The'tokens that may be proéuced by the screening

process include not only the basic elements of the lénguage,

¢

K|
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but also certain symbols added -fer convenience, such” as a

token to represent a character not in the~lexicon (which
\ ha

%o repre*\t.

end-of-file. Tokens are always passed to the other phases

implies a 1lexical error) and a token

of translation, but other textual elements are not. If the
current - textual element is not a token, some action may be

taken but afterwards the scanninqyand screening are repeated

,until a token is finally encountered. Non-tokens include

strings of blanks, which are simply skipped, and

ends-of-line, which result in listing and inputting actions.

., Comment strings are also non-tokens, and '‘may result in

end-of-line actions if the comment goes over 1line
L
boundarieséaer in the processing of translator directives if

any are presert.

w7,

The only franslator directives -that. havé been
implem?nted so far are concerned with control of the listing
-(see section 3.3), bﬁt the proce;sing of directives in the
translator has been modularized to allow for easy additions

to the tepértory.

Several "kinds of lexical errors are distinguished.

Striﬁg litera

character-;f%@ unclosed at end-of-line. Integer literals
may be tdo large, while real literals may have bad formats.

PN
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The input 1line itself may be too long, which results in
trpncation. A comment may still be‘ uhclosed when
end-of-file is reached. All of the?e errors have individual
méésages associated with them,& including pogitional
information (in the case of an unclosed comment, the line
number at which the comment apparently began is included in
the message).' A somewhat different case is a character that
is not in the lexicon (and "noé within a comment). The
lexical anaiyzer sc}eens‘this as a token and exits without
_reporting the error. Since this special token is not an
element of the ‘langﬁage, the parser will~report it as a
syntactic error and invoke its .error-recovery mechanism)(see
secti?n 3.4), which will causé any adjoining-bad characters
to SE skipped ahd, resume normal processing when some
reasonable input is encountered. Sihce sucﬁ lexical ‘'errors
fteguently provoke syntactic errors as well, treating them

as syntactic errors from the start should cut down on

- redundant error messages. ) )

3
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3.3. Listing of the Pascal-C Source Pfogram

»
4

The translator ordinarily produces a ‘listing of the
‘Pascal-C source program formatted with line numbers, page
headings,.summary information, and possibly error messages;
The' quality of the 1listing, and of the errbr messages in
particular, are of great practicél importance to '.the
programmer in his debugging efférts.: The information should
be precise, meahingful to the' programmef, and fairly
éompiete without being superfluous. frransiators do not
often satisfy these criteria.. Henée:ﬁgbme attempt was made

in the Pascal-C translator to improve upon the typical

quality of diagnostic information. At the same time, the

]
. - - Ny i

error reporting mechanism, espefiglly for syntactic aprors,
was designed to be systematic and therefore ff?éible.
Over-reliance on ad hoc methods for report}ng errors would
make development and maintenance ‘of the translator more

difficult.

- As noted in sectijon 3.2, lexical analysis processes the
gsource text and is therefore the most suitable phase\ to
control the list}ng. After all the tokéns in the éurrent‘
line have been seen by 'all phases of translation, error
.processing for this line is complete aﬁd the listing routiné

-
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is invoked. The listing routine first checks whether the'
suppression directive is currently active (see the
corresponding translator directive below). If the listing
is not being suppressed, or if° there ‘are any errors . .
ass;ciated with this Iine, the listing routine pcoéeeds to
output the line and its messages. If this information is
too long to fit intd’the\current page, a new page.is started
before 1listing the 1line. The source line ié printed with

the&current line number” in the left margin. The error

-

’hessages, if any, follow on the rfext few lines. .

i)

.

The page heading identifies the'translator, it host
computer, and the univérsity, and displays the time, date,
and éagg number’, To help locate the errors in a large
listing, the heading also indicates the page on which the
previous message, if any, apgﬁared. The last pageqpf’?he
listing features a brief summary which is printed whether or
nbp the list%ng is suppressed. The summary gives the number

of lines in the Pascal-C program, and either the number of

errors detected or else a message indicating no errors. 1If
L4

there were errors, it gives the page and line numbers of the

first and last errors.

\

-

\‘ N ‘

The listing can be suppressed by embedding the 'L~' oo

di;pctive as a comment (see section 3.2 for a discussion éﬁ

{
\ « ‘
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ttanslafor directives), The 'L+' directive resumes the
listiﬁg, so that selected pérts -can be suppressed if
désired. ‘Whenéver an error is detected by the 4ranslat6r,
however, the offehding‘line is listed regardless, along with
the associated messages. The 'N+' digective forces a new
page, while the 'N-' directive suppresses baéing. The 'ﬁiﬂ
directive,~"where i is an integder literal, resets the number
qf lines per page from the previous (or defaﬁlt) value to i.
. ‘

As mentioned in section 3.1,.the current line may have
a list of error records associated.with it, Q;e for each
error detected whiie processing the line. The listing
routine decodes this information intolmessageS'directed at

the user. The rest of this section describes how these

messages are generated. *

~
)

The listing‘routine scans the error records twice. The
first scan picks up the égror locations stored in the
records. In _yhe 1listing, a line cons;sting of .error
pointers is printed just unﬂE: the sour;e line,‘sp that the
error locations are indicated graﬁhically. The letter 'A'.
appears under thé leftmost error, 'B' under,the next, and so
on. {Note: the letter points to the first éharacfér in the

textual element that was being processeé when the error was

detected; the symbol(s) that actually need to be corrected

i 3 - 47 -
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may have occurred somewhat earlier.) The second .scan picks

‘up the . other informatidh\}n the error records to cqnétruct ‘

the messages below the source line and - the pointer line.

The letter usgﬁf to point to the error also appears in the

margin of Egp/garreéponding message, to make it easier to.

~

refer ﬁhe messages to;_;he appropriéée locations in the
sodrée code when a large number of errors.ﬁate ;nbolved.
(When therg. are two distinct errors repérted for a given
location, thé same letter pointer appears 'in both messages. )
Each ‘hessage appears on ; separate line. The errofs'gre
numberedvin sequence from 1 onwards throughoutothe/:iiséing,
" with the error number appearing in Eﬁe left margin of the
message. T . ’
.-

.
*

. :
Besides indicating the locations of the errors, the
- pointér line shows how much text has been skippéd in
. p - # s ' . o
recovering from syfitax ergbrs (see section 3.4). ' The

location of the last character skipped is contained in the

correspdnding error recqrd, and may be_as far as the end fo'

the line |if successful'“recoverQ‘has not yet taken place.
The listing routine underlines the entire skipped.portion of
fext with a suitably ‘long striﬁg of '~' characters just to
- the right of the error: pointer. When"recqvery continués

ove® line boundaries, so does this underlining process.. To

.do this, the recovery mechanism logs a kind of pseudo-error .
, Fs e '

-
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the line number of a rélevant declaration. . -

1

after, crossing a 1line boundary. When the listing routine

comes across the record for this pseudo-error, it processes

it' like a reguiar syntax error, exéept that no~ié§ter

'poihter is printed and the corresponding message simply

explains that recovery is continuing from a previous error.
R s

Revealing the skipped portions of code so explicitly can be

helpful to' the user. The peculiarities of *regovery may

cause some good code to be skipped, and - knowing- this may

help to account for spurious error messages farther on. It

is also, useful for monitoring the performance of the
tecovery'mgchanfsm, allowing the developgr to optimally tune

-

that feature of the translator.

o /\\& . ) . .

' : ' . L S S . .
For each nonsyntactic error, there is a' fairly complete

‘jmessage which the listing routine selects according to the

error type found ,in the error record. Additional

-

information in the error record may play a minor role in the

(o] N (]
message; for example, the message may cont?ln a reference to

/
’

* - 2 N
N e

dystehatically according to the information jin the error

record. The key item of information is the shift state that

the LR parser was #in when the error was detected (see
. X .

-
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Syntactic error messages, in contrast, are constructed

o
i

© .section '3.4). Associated with that shift state is’the
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current grammatical syhbol in the parse (that 1is, the one

most recently shifted or reduced), and, through the state's.

Lkernel, a list of the symbols that can legitimately follow

(assembled from the applicable grammatical productions).

These symbols are converted ' into their textual
representations and incorporated into the syptactic error

o 1

g - o’ %
message. The result is usually quite readable apd to the

point, since it is based upon theegrammatical productions

thatjﬂefiﬁe th%,language's syntax, productions with which

the typical user is familiar. For example, the error record

may identify shift state 75, whigh is reached (say) after .

processing ‘the boolean expression in an IF statement. The
error routine consults the parsing tables for this state,
and finds that the symbol covered by state 75 is EXP

t . : .
(expreesion) and the symbols that can 1legitimately follow

" are THEN -«wand BINARY OPERATOR. Using another table to map

\

tﬁesg symbols to their textual representations, the error

B
N . ’ / - 7
'

routine writes:
‘ A

"THEN" OR BINARY OPERATOR EXPECTED AFTER EXP.

3
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3.4. Syntactic Analysis and Error Recovery

~

)

Syntactic analysis is ‘probably the best-understood
aspect of translation. A variety of efficient formal

%
techniques are available to choose from. Most important,

many products have been developed to generate’ a set of
parsing tables aut;matically‘from a given grammar, provided
that certain restrictions intrinsic to the pagging method
are adhered to in the grammar. In this case, a product
called SLRGO was used. SLRGO pfoduées a set of SLR tables
llotéec.6.3] whiﬁh are used in the translatot by a
lhand-written parser driver. giR is a member o§ the

bottom-up LR -family of parsing methods, which by most

criteria.are among tge best available.

A practical translator should be able to recover
éEE:Etively' from* typical errorg‘in ch source and generate
fairly specific errof messages. Lexitai and semantic errors
tend to be rather 1ocal in éheir effects, but syntactié
errors.disrupt parsing, and it is the parser that détermines
the structure of the program and: controls all other‘agpects
of translation. There are aé yet no systematic m?t;ods of
recovery ;hat fan compare wi;h the highly developed

techniques for parsing correct inputs. Given the lack of
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widely-accepted methods, dbveloping an effective error
strategy for the translator was .an object of special
interest and will be dealt with at some Tength in this
chaptef.'

Recursive descent is a parsing technique that lends
itself well to ad hoc error strategiés. Since the parsing
éctions are distributed over a set of procedures, . it is
natural' to insert -code for error-handling in the various
places where errors may be detected, aﬁd to suit these
actions to the context of the error. This applies to the
choice of‘messaggs as well as to the method ' of reéovery.
The correspon@ing abproach for a table-driven parser is to
construct a CASE statement that selects the appropriate set
of actions based on the current state of the parse. Thi;
time, however, we must match the actions with thé ‘seemingly
arbig}ary values that“ represent @iézefent parsing states.
Relating. states- to the original gfammar is especially
difficult if, as- is usually the case, the tables are
generated by someone else's programf Much of the attractiox
of automatic parser generators is lost if one is compelled

-
to interpret the output in this manner, .and maintenance

®

becomes a broblem.

g Clearly a systematic strategy is needed for handing
(

o — A

~— "
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errors in a table-driven parger. "PaniF mode" is a' simple
systematic method that is still mﬁch'in use. Once the error
has been detected and reported, the panic mode- strategy is
_to\ discard input symbols until éncountering one of a set of
délimitipg symbols; that is, symbols such as TYPE or END >)
that serve as milestones in'a Pascal prograd. The parsing
stack is then popped until the tbpmost state has a parsing
action for the delimiting symbol, whefeupon normal parsing
resumes. The optimal set of delimiting symbols 1is best
determined by experimentation on some representative errors.
If the set is too small, the parser will skip too mucﬁ input
and may therefore fail to detect distinct errors; if too
large, the parser will not skip enough to give a reasonable
assurance of success afs?r recovery, which ﬁay lead to a
series of messaées provoked by a single error. A'Iérge set
of delimiting symbols aldo makes it more likely that when a
given delimiter is éncou;tered, no ’state with .a
corresponding parsing action will be found in the Stack.
The panic mode algorithm shpd\d ‘therefore include a check

for such a failure, skipping|to the next delimiter until a

matching state is found .in the \stack or else the input  is
\ h

-

exhausted. This consideration is often omitted in
descriptions of the paﬁic mode method. R
AN L‘-‘ * » ‘v ~
'\\: 4 =
Panic mode works quite well in many cases b:l very
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poorly in others. Suppose, for example, that a syntax error

3

is detected within a variable declarétion. Tﬁe token ";" ig

a likely choice -for theé set of delimiters, since it marks.

of £ many basic program units: variable , declarations,
constant definitions, statements, and so on. We would
expect the recovery mechanism to skip the remainder ofi the
faulty deélaration, recover at the semicolon, and parse the
subsequent variable declarations normaily. If one or more
variable declarations have aleady been successfullyﬁparsed
before encountering the error, there will be a state near
the top of the stack that represents a nonterminél symbol
such as variable_declaration_list, and from that state there
is 1indeed a parsing action for ";" (and only for ";"). if,
on the other ha§§\ the error occurs in .the first *variable
%fclaration of th; series, this state will not yet have been
put on the stack. The stack will be popped down to the
state representing VAR, which opens the variable
declarationg. Since ";"™ cannot follow VAR, 'the stack will

. /
be popped further until, perhaps, the state representing

type definition list is encountered. At that point ";" is’

.acceptable qu recovery takes 'placgt but ail‘subEEQuent
variable deglarations in fhis section ‘will be treated as
erroneous type defi@itions. A test confirmed this drastic
deterioration in performance when the error occurs in the

Tirst variable declaration. A

Ve
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A strategy .proposed by Aho and Johnson [11] for LR
parsers does noJ have this problem. To implement their
method, certain productions must 'be added tp the grammar.
On the left-hand side of each new prdduction is a
nonterminal symbol that represents a basic unit such as a
variable declaration, while on the right is a special
terminal symbol, "error", which can never actually occur in
the input. The pa;ser replaces the current input token by
this special symbol when it detects an error.\ The sfack.is'
popped until the topmost state has: a parsin aétion for
“e{ror“. The .normal parsing actions that follow will reducgl
"error" according to whatever production is appropriate in
the context. In our example,‘this will leave at the top of

\
the stack the state represf%%}hg variable declaration, which’

'will in° turn be reduced tgo variable_declaration_list. The

input symhols are then skippeWtuntil one is encountered that’

. can follow the symbol represented by the topmost state.

Since " is the only " token that can follow

varxableideclaratxon list, in’our example recovery will take
[\

place at that point, as it does under panic Yode. Unlike

panic mode, however, this method ensures that the context

e et b

emains that variable declarations, since we will have
N \,\ -

‘dec aratién_li t at the top of the stack even if




:
The translator implements a vérsion'of this strategy,

with a few‘modiflﬁations to alleviate'éertain problems. To
ﬂillustrdte the /ost serious problem, consider another
example of a syntax error: a missing semicolon between the
last type defin;’ion apd- the beginning of the variable
declaration section. Using the unmodified reco;ery strategy
*just described, &pe parser will replace VAR with the special
symﬁg;_ "error" \ and reduce "error" to Fhe symbol
type_definition. bventually the top state wilI/)represent
thgr symbol type definition_list, which can only be followed
by "." Qo the first variable declaration will bé skipped,
‘recovery will take pibgé at the following semicolon,'and all
subsequent variable declarations will be treated as
/~h_\‘\\’///f‘erroneous type . definitions. This is the same undesirable
effect produced by panic mode in our earlier. example. The
‘two situations are in fact symmetric; this method fails
Eécause it discards too much input, panic mode fails because
it discards too much' of the stack: By combining the two
methods, hbwevgr, these flaws can be cancelled out, as will
be shown below. The secénd problem is what to do if no
state with a parsing action for "error" can be )found in the
stack. This proplem, like the first, can be solved by
incorporating panic mode as a backup to the Aho and Johnsén

strétegy. The third and final problem concerns the practice

of replacing L input symbol by "error" at the time of
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detection. It is poséible that the nature of the error is a
simple omission of one or moreée tokens, in wh}éh case the
current input symbol is not incqrrect but merely premature.
It may in fact 'be -needed to recover agggr the error
reductions, so that in discarding the‘burrent input symbol
we risk discarding much of thg correct text that fqllows.
This is avoidéd by considering"the ef;or ‘syﬁbol as an
insertion in front -of the current input symbol, not .as a
replacement of it. (Note that this by itself does not solve
the first problem discussed above. After the inseftion, VAR
will still be an unacceptable input, since typf_definitioq
list will still be at the top of the sthk and VAR can qnly
follow ‘";". Hence panic mode will be invoked and VAR wI&l
be discarded, leaving e*'ltly the same situation as woJld
resulé from its rep}aéement.) The insertion of symbols by
the recovery mechanism is in -'general dangerous, since it
carries the risk of getting iﬁto an infinite loop. 1In this
case, however, the danger is averted because the currént
input - symbol is always consumed before recovery is
completed, either as a legitimate input to the parser
following the processing of ihe”"error" symbol,or as an item
discarded in panic mode. As long as some input is consumed

in every recovery cycle, the parsing must eventually

_57_
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The algorithm for erro£ recovery, then, is as follows.
Report the error upon detection. Search the stack for the
topmost state with a parsing action for "error". If one |is.
not found, go into panic mode; Ytherwise, continue. POop the
étapé if necessary to uncover thé state, and perform the
regular parsing actions considering "error" as the next
symbol. One or more reductions will £follow. When it"is

o

finally time for ahother_ shift, determine whether the

current input symbol (which was current at the time of
deééction) can follow the topmost state. If it cannot, go
'into panic medearotherwise, resume normal parsing. (The
"improved" veté&on of the panic mode algorithm has alrgady
been described.) \

The performanc;‘if this recovery algorithm has been
encouraging. Note what gggpens ‘in our second example,
assuming that VAR is in the delimiter set. Following the
reduction of the error symbol to type_definition_lisg, VAR
cannot follow the top state, .only ";" can. So panic mode is
entered, and VAR 1is not skipped.' Instead,vthe stack is
bopped until VAR can follow the top state, in which casé
normal parsing resumes. Tuning efforts indicate that a
small number of well-chosen error productions is sufficient,
while the set Qf.delimi§ing synmbols is Eigt kept lafge./ In

_fhis combination, it is the error productions that determine

%
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the "granularity" of recovery, while the delimi€ing symbols
play a ;econdary role. Only the ubiquitous identifiers and
integers are excluded from the delimitihg set in this

implementation.

~
t

bl

Just as a table-driven parsing technique %alls for a
systematic . recovery mechanism, - s0 too does it call for a
systematic way of generatihg error‘ ?essages. Ad _ hoc
messages can be very good in some. cases if they are based on
experienée with the most common proéramming errors, but
systematic métﬁods can also‘producé adequate messages, and
‘by all other criteria they are superior to ad hoc methods.
As is the case with\récovery, bofh methods are limited by
the difficulty of guessing whdt the precise nature of the
error ,was,‘ since that depends on the user's iptention. A
reasonable approach is to tell the use? at what point- in the
parse the error was detected, and what input was expected
(15 opposed what was actually observed), and 'let the user
determine tﬁg nature of the problem from that "honest"
information.. The symbols used. in the message should be
meaningful ta any user who is familiar with the language
definition. Here LR grammars have a distinct advantage over
their LL counterparts. If one starts with a well-known

formal description of the syntax (Backus—Naur form,- for

example), it gerderally requires fairly‘ minor'changes to
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transform this to an LR grammar, With LL grammarsT~_inﬁﬁ7iﬁ__~l
contrast, the left factoring aon elimination of left
recursion lead to a considerable distortion of the original ’
prodJctlbns and the addition of many new and ratngp///
arpitrany nonterminal symbols. This ma$es it Qdifficult to
relate'parsing states to recognizable language constructs.

The following is an explanation of how.a parsing state

‘in our own"%:R(l) parser is associated with the symbols.used

in the message.

Each shift stgté in aﬁy SLR grammar corresponds to an -
LR(0) set of items [10,sec.6.2]. The kernel of the set
[lo,p,236] comprises the most important items, the
' highest;level productions associated with ghe' state,
together with a pointer that indicates how many‘symbo;s'on
the right-hand side og the productions havg already been
pto;essed. The symbols to the ieft of the poifher are
.’necessariiy the same for . all productions in the kérnel,
while those to the right may differ depending on what ;

different productions mai be consistent with what has

-
N

already: been seen. The message isJCOnstructed by listing
all the symbolg\xhat are expected at this point, that \is,
all the symbolé to' the immediate right of the pointer,
foilowed by "expected after", followed by the symbol most

O
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recently parsed, the one to the immediate 'left of the
pointer. Note that the &ymbols listed may -be nonterminals
as well as tokens; in fact, they will be the highest;leVel
§tammar symbols in thaf context. To return té the example
¥ presented 'in seét;on 3.3, sgéft' state~ 75 has a kernel

consisting of <%wo. items, with a dot representing the

_ pointeq: .
o2 . IF STAT -> "IF" ‘EXP . "THEN" STATEMENT
. EXP -> EXP . BINARY OPERATOR  SIMPLE EXP

. . ®™The corresponding message is:,
" '“PHEN" OR BINARY OPERATOR EXPECTED AFTER EXP.

Note how \the kernel gives the succinct nonégrminal sy@bol
BINARY OPERATQR so that one is'jnot compelled to list all th.e.
Vi corresponding terminal ‘sgpbéls ("+" OR "-" OR "*”wgtc.)ﬁ
Clea;ly,‘the quélity of .the messaées depends largely on the
choice of meaningful, familiar symbol names in thé grammar,
since the same grammar that is input,;b the parsér genératqr

is used °' to derive thé text for these messages (see chapter
. -

Py

4).,

, ) ,
- s . )
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3.5. Semantic Routines” -

o

¢

’ l‘ -t
The semantics of a language typically account for most

fof the céde in a compiler, and this is indeed the case with’
) the_Pascal;C‘translgtor. The semantic routines perform a
variety of tasks which can be ‘brouped under two basic
headings.‘<first, they complete the analysis begug “in  the
. lexical and ntghtic phases, particularly with regard to
' h‘ , : Tcollectihg‘iggzi;ation on user-defined symBols and™ checkiné
them for coqsistent use. Thege are asggctsxof analysi§ that

'\\

cannot be cén&éniehtly handled in the earlier phases.
Second, the ;emantic routines generatehthe.target code. The
prg;enl section deséribes the semantic 'routineé‘ benerally,'
and ;how they are linked with the rest of the translator.
- ‘th ‘The two subseéuént sections 'elaborateQ‘onﬁ the semantic
. routines: Section 3.6 .éxplains how” symbol information is
maintained and section 3.7"descrrb§s the gene:gtidn of the

A target modules.

. - /W.g » - l . \

» . B
analyZed relatively thoroughly in this g{gpslatoq, much as

- - i
they would be in a compiler. In the executable porticns, on

= . the other hand, the semantic analysis is mu;h ‘simpler than

’ it would Be in a compiler. Part of the reason for' this
. o . 2 g S
» , \ . -
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difference‘is that the Pascal-C declaratiohs, particularly
of . DOWN‘cprocedure35 requlre more complicated .changes than
any statemehts in order to,translate them into seduential
Pascal. Mgre significantly, the translatof is requ1red to
extract low—level information from_ data declaratlons but,
since. tha\ target code 1is a high-level language, not from
statements. ;hé low-level information required from data
declatatlons is. the exact size in bytes of any varlable that

may'be passed from one processor to another. This passing

is dond&via RTS ‘roytines (see 'section 3.7), and the size of

the itemJbéing passed is one of the essential parameters in

aﬁch RTS imlls.;v The 'only\ kinds of 'statements that do

- require special attention by this translator are, procedure

. . 4 - e
calls, since they may involve specific Pascal-C features,

and WITH statementsf aincé field references caﬁégined in the

WITH statement must be.properly resolved.

3

The extent of semantid” error checking reflects the
- depth of semantic ana1y51s requlred in different sections of

l
the program. : Thhs the error checking for the declarations

Is .much more complgte than - for the statements ™ 1In

statements that Sontain expressiong, in.particular, there is

* none of the usual validation of type cémpatibility among

operands and operators. Nevertheless,, the level of analysis

within statements is sdf%icient, with a 1little additional

.

~
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effort, to allow detection\of most of the common errors. -As

explained in section 3.1, the translator detects ind reports

. - . . ~ . J
errors wherever it is reasonable to do so, even if similar

error éhecking will beg%ubseqﬁéntly performed by the Pascal

compiler on the translator's output.

The translation is syntax-directed; that is, all the

semantic actions are linked to productions in the grammar,

which in a bottom-up parser are in turn associated with
parser reduce states ({10,p.246]. JWhenever the pqréer'

performs a ieduqtion, it activates the semantic phase of

-

translation through a semantic control procedure. A CASE

statement in the control procedur elects whatever semantic

"

actions, if any, may be appropriate for the current reduce

.

‘state. To make this part of the translator more readable,

each CASE element is dccompanied by a comment that shows the

corresponding grammatical production. (BeeAchaptet 4 for an N

account of’ how thege comments afe automatically generated.)
The statgments in a_CASE element consist mostly of‘callg to
one or more semantic subroutines, For reduce states that do
not require any seﬁantic actions, the corresponding CASE
éléments are simply omitted and control falls through to Eﬁg

LS

empty OTHERWISE clause. ‘ : ,

Closely associated with the semantic control procedure'

v
3
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is the semantic\stéck, a data structure which is effectively
, -t

an extension of tHe parsing stack. Its purpose is to

temporarily store séqantiC‘information in parallel with. the

- syntactic information contained in the parsiqg stack. The

semantic control p;ocedufe %s exclusively resp siblei for
maintaining the semanéic stack, just as the paréer,"owns“
‘the parsing stéck,rfut both stackﬁ‘are implemented as ;global
structures since 1in Pascal we “cannéuiggplare stafically

LN

allocated variables as local to a procedure. * In a

reduction, the parser  rémoves the top elements from the’
- <4 ? >

&

parsing'stack, which cgrrgqund to the symbols“on e right
side of the grammatical production in question; and repiaces
‘them with a new element, c§rresp9nding to the éymbol on‘ tﬁe
left side of the production. The semantic control routine
echoes these moves, but befo;g‘discarding the top glements'
of the semantic stack, it may pass the information contained
therein to the semaqtiC'rodﬁines,‘and these may return some
infbrmatggp to' be incorporat@@ into the new element at tﬁe

top of the stack. . .
ol ! . ‘¢ ' . \
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3.6. Bookkeeping _ -

[

< Y
The role of the symbol table is to keep track of all
' identifiérs used in the source program and their attrisute;,‘
as well as predefined identifiers, keywords, and identifiers
that' are referepced but as yet undefiﬂed. Labels and
literals are not preserved in the symbol ‘table” in this
‘implementation. Labels, . in fact, are _virtuqily ignored
beyond the syntactic phase, but literals are eGalupted and,
if the literal aépears within a constant or Ekpe defiﬂition,'
its value %ay be storedwin the symbol table as parw of the

Ve
informatidn fox that cordstant or, type.
LN ~ '

The bookkeeping routines perform storage, retrieval,

and deiefion operations on the symbol table, Since symbol

information 1is so ubpiquitously referenced, the bookkeeping . !
N

routines: fulfill the important function . of hiding theé

i

storage details from the rest of the translator. 'The symbéi\\
table together with 1its bookeping operations would be )
defined as a module in a language like Modula {12]), but with
Pascal a; the language of implementation we are cd&pélled to
make the lsymbol taple a globqj data structure. The

translator follows an informal"discipline, avoiding any~

' !
reference to the symbol table except’ via a clearly

=

Al ]
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i%ﬁhtified set of bookkeeping routines.
—
" The é}anslator's initializatiqg routine performs the
first bookkeeping oberations: the insertion of keywordé'and

predefined identifiers in the symbol “table. Subsequently,

as de®larations (or undefined references) are encougﬁered in
. ‘ .

the source program, new entries are inserted. The
information in a given entry may be extendedgor updated as
the declaration is processed, or in some cases later on in
thg translation. At the end of a subprogram declaration,

the corresponding block of local objects is popped off the

s -

symbol table, except for the information (e.g., parameter

v
list) nggded to check subsequent calls to the subprogram. b

d ~
-

< 3

The majority of bookkeeping operations do not perform

\

iqsertions or deletions but access the individual attributes:
of existiné objects. A typical attribute has a pair of
associated access routines, one for storage (using a value
paraméter) and one for’rétrieval (using a function wvalue),
The object °in question is identified by its key, a unique
value generated by the bookkeepipg routine that inserts the
new object, and of significance only within the translator.
Henceforth an object's "key" will be understood to mean this
value, while the character string that denotes the object in

the source program will be called its "jdentifier" to avoid

~
L]
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confusion. There ;are many reasons why, for internal

purposes, the :3§ is a more.convenient way to denote the

object. In the first place, there is a one-to-one

correspondence between existing objects and valid keys. An

object's identifier, in contrast, may be occluded within an
inner block because another object is defined there with the
same identifier. Moreover, some objects may be defined
anonymously, which is to say without identifiers: 'variants
within ‘records, or structured types within variable
declarations, for example. ‘Another important consideration
is fhat keys can be implemented as compact, scalar values,

and are therefore much more gfficient as object pointers in

terms of both computation and storage space. N

When identifiers are encountereéd in the source text
they are converted into the equivalent keys.' The
bookkeeping routine that perfofms-this mapping is unique- in
that it is invoked by the lexical'analyzer rather than by
the semantic routines. (Recall from section 3.2 that the

lexical analyzer, as

s

of its screening function, must
distinguish keywords from true identifiers. This re&uirés
access to the object in question.) Once thé key becomes
available, it denotes the object and the identifier may be

_ considered just another of the object's attributes.

!

—ksa -
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The most fundamental attribute, which largely
determines what other attributes may be relevant to the
obﬁect, is its class. Keywords form one class of object; so
do constants, variables, functions, and so on. Pascal types
arg.so heterogeneou® that thay are subdivided into separate
é{asses for arrays, records, pointers, ordinals, etc. There
are also a few classes that are used by the translator for
special purposes, such as when an object is undefined or

multiply defined (so that redundant error messages cam be

avoided). !

Another attribute common to all objects is the defining
region. . For most objects, the defining region is
represented by fhe key of the fﬁmediately surrounding block
(program or subroutine), while for fields it is the key of
the surrounding record. Keywords and p;edefined objects are
considered to be defined within a larger region, one that

encleses the entire source program.

&
’

In this implementation, most user-defined objects have
another pair of attributes: the coordinates (line number and
character position wi;hin‘ the line) for the beginning éng
~end of the object's declaration in the source text. Section
3.7 xplains the main application of this information in

{an

synt ing the target code. The coordinates are also

(2
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1nc1dentqlly used to enhance certain semantic error
messages} for example, by listing the 1line number pr? the
relevant declaration when an object is improperly

referenced.

We shall now describe the representation of the most
important classes of objects.
. . g ‘

Constants can be defined directly in a constant
definition sécti?é, or indiregctly as the elements of an
enumerated -ty§%. Either way, constants have a type
attribdte: thé key of the constant;s base type, which must
‘be either 5 predefined or an enumerated type. The constants
qf gfeatest interest in this translator are those thaf have
an ordinal base type (i.e., integer, bobléan, char, or
enumerated),'since such constangs may be dubsequently used
within the definition . of a tybe object. _For example, any
ordinal constant may be a lower or  upper limit of é
subrange, and the subrange may in turn‘define the index of
ah array. Ordinal constants thus help determine the size of‘
data objects, which is essential uinformation‘ in this
translator. Hence all ordinal constants in the symbol table
(which excludes . literals) have a value attribute. This is

an integer value, which in the case of a noninteger constant

‘represents its ordinality. Three constants, all ordinals,

- 70 -~



>
4

3y

are predeﬁined: maxint, false, and true.

: I

Types, as explained previously, are subdivided into
different classes. There are the predefined types REAL and
STRING, each ef which is in a “%®lass by itself and does not:
ﬁossess any particular atttibutes. (Literal strings .are
considered Eo be of type CHAR if their 1length 1is exactly
one, and of type STRING othefwise.) Many of the other types
have an attribute that is simply a pointer to a related type
object: Those of class- FILE have a cemponent type, those of
class SET an element type, and those of class POINTER a

domain type. A special class arises when one type is

defined as syngnymous with‘another; for example, "t2 = t1l".

Type t2'is ofdlass SYNONYH and has af attribute pointing to
tl or, if tl is itself a synonym, to the type pointed to by
tl. Array objects have two type attributes: one fo} the
component type and another for the index type, which always
exists as iiséb&rate ordinal objecf TX class ORDINAL, as
the term 1mp11es, comprises the predeflnéd types integer,
boolean, and char, the enumerated types, and all subranges
thereof. All ordinal objects are treated- as subranges in
that their attribute; Enclude'the low and high limits of the
range (expressed'és integers), and the key of the host type.
For ordinal objects that are not true subranges, the values

4

are those of the unrestricted range and the host type is the

/ . K
/
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object itself. (This uniformity makes certain bookkeeping

operations simgéfr to perform.) Type objects of class RECORD

have 'two integer attributes: the number of fields in the
fixed part and the number of variéntg: Fields resemble
ordinary variables, except that in their region attribute
they point to‘thé enclosing record oq variant rather than to
the subprogram. The field identifiers are re;dered inactive
after processing’ the record declaration, and are only
reactivated when the‘ record is referenced in a WITH
statement or in a field designator. vVariants -form another
class with the same structure as records, since variants may
themselves contain a fixed and a variant part. As with
fields, the defining region of variants is the enclosing
record or variant. (Note however that any constants or
types defined implicitly in field declarations have the
surrounding block as thei; defining region, just as if they
were declared éutide the record definition.) The tag field,
if any, is simply treated as the'[ast field in the fixed
part. This translator considers the overlayiﬂg of variants‘
in determining the correct size of record types, but is/ not
concerned with the details of discriminated type unions.
Finally, there is a temporary class for typés that. afe\
referenced as the domains of pointer types but haFe not yet

been defined, and one for types that are still in the

process of being défined; i.e., in an ongoing type

- 72 -.



definition. 1In the absence of .errors, both of these are
eventually reésolved to a specific class of type object.
(Unresolved domain types are trapped:as errors at the end of

the declaration part of the block.)

ﬁariables have a type attribute, through which their
size can be determined. (Note that only the variable's g?ze
is important in this implementation; its relative starting
address is not.) ValuQ parameters are in the same class as
variables; while VAR parameters and fields have their own

classes but an identical attribute structure.

Thex@® ‘are %our classes of | user-defined subprograms:
proceaures, EJnctions, DOWN procedures, ‘and CRITICAL
procedures. The predefined Pascal-C ?rocedures WAIT and
TERMINATE have their. own distinct classes, while the

remaining predefingd“subprograms are standard procedures and
o .

functions. Nhen + a  subprogram declaration 1is being

processed, its key represents the current defining region.
At the end of the declaration, the subprogram's local
objects are popped‘from the table and the EPY of 1its own
defining . region is restored as the current defining region.
The identifiers of ©“the éuéprogram's parameters are.
deactivaged, but the parametérs are prese%ved in the symbol
table to check. the calling sequence in subsequent

a
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inQSEations of the subprogram. They are finally deleted -
when the subprogram itself is deleted. 1If the subprogram is
‘deciared with a forward directive, it once égain becomes tﬁe
current region.when the forward block - is encountered, and
the parameter identifiers are reactivated. All use;—defined
subprograms have an associated block object that contains ’
general informatiopvaﬁd also marks Qhe end of the paiameter
list. One of the attributes of a subprogram object 1is the
key .of' its block object. The class of the block‘object
determines whether a real blogk follows or the subprogram is
forward, external, or a formal parameter. If a real'block
exists, the block object has an attribute pointing to the
first 1local object, if any. Thelsubprogram object-also has
a type attribute if it is a function. If it is DOWN
procedure or a formal CRITICAL procedure par;meter in a DOWN
procedure heading, it has an inte93§aaxtr;bute: ‘a sequence
number that is wused to identify the procedure in calls to

.

the run-time system (see section 3.7).

In the current implementétion, the main part of the
symbol table is an array. of records. Each record represents
an object, and the record's indek in the array is equivalent
to the object's key. The fields within an object's record
correspond to its attributes. (This fixed-storage scheme

could be improved upon in the interest of minimizing space,

]
t

a -



but with some loss of simplicity.) There{és also a hashing
table to convert identifiers/ to keys through a hashing

function. Objects whose identifiers hash to the same value

" are linked together in the main table, so a linear search

14

may .be required after hashing. Note that an object's

identifier can be rendered inactive by temporarily removing
Lo A

the corresponding record from its hashing list, restoring it

'later if need be. (Field identifiers, for example, should

) be active only at certain times, although the fields are

always accessible for internal purposes through their keys.)
Since access to the symbol table is restricted to the
bookkeeping routines, such implemeptation details should not

be too difficult to modify in the future.

* The CoPY list in a—Pascal-C program (see ,iﬁétion 2.2)
is represeqtedv apértlfrom'ihe symbol table, but’ja closely
agsociated with it nonetheless. The COPY list is.maintained
as a linked 1list of keys which includes not only those
objects mentioned explicitly in the COPY sectioﬁ, but alqo‘

the types of the data parameters in the DOWN procedure

-

- - \
. heading, as well as all types and constants which are needed

Yo close .the definitions of all preceding objects in the

T
list. Thesé‘ additional keys are .added to the list
automatically for the user's convenience, except in the case

of'subprOgrams in the COPY list. For all such subprograms,

-

AN
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the user must ensure that any.bqnlqcal objects referenced
within them are explicitly in the“'con' list or will be

. . . .
included by the translator “%wpen it resolves other

definitions. The CQPY list is retained until the end of the

k\‘ DOWN procedure declaration, and is tHen discarded. The .
trapslaﬁor uses it maInly tg.t;apbnoancal réfefences that -7
ought to have ‘correspbndiﬁg entries in the COPY list. If
this error i; committed indirectly by a copied"supproéram. :f

. however, it .will escape the translator's notice and yili
eventually provoke an "undefined reference"‘errof when- ‘the
output module correspondiné to the DQWN.‘prpcedure'_is

! compileS? , " o L.
v
. | ﬁy. | o
- .ézg' : . . .
— ) — . |
R £
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\ The first part of this section gives a general
description of the: tganslator's output,. focusing on those
» " . . .bm d -
. " features that are common to the output modules. Following
k\../ P '

this ate detailed descriptions of .the pyarious output
modules. At the end of .this section isuép account of the
-, . _translator's strategy for producing he ‘eutput.’ To see
examples of the translator s output, see the appendices,

whxch anlude translated versions of the Pascal—c,progrﬁme‘

o

for the knapsack and qu1cksort problems a" o 2;
- . . . £
. ' (X} = . - * 4 ! ¢‘ ) +
. r . v, RIS - — 2
‘ I , - , ; cr
Wi . . 3.7.1. . The translator's output ) ) ﬁf,
) D a . ; i ’ rd
; . . ‘l% - % . . . , N
- f The trafislator converts the Pascal*C source program._

»\ . 3
!T “ 8

into a set of modules in, sequential Pascal. These are to be
1
complled and llnked 80 that\we end up with two executable

) .. . n R
& programs: one to run on the master processor and the other

°

I

Lo ' / -
torrun on each of the slaves. The.master and slave programs
e . Twy ' .
] communicate wvia ‘their repective run-time systems. One of
[

o

the principal re\pon51b111t1es of the transjator is. to

"N ! ingert explicxt RTS calls wherever these are needed in, the N
. code,, and ' to back these up,’ by inserting -appropriate
. . & -
declarat1ons beforehand - . .‘ ) ‘ !
' . ) "‘ S & .
e e T , A %
“ f ) \,‘ F"_ 77- ] ' ‘ \ ‘
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One of the modules produced by the translator serves as .

<

the master program, while the others are linked together to .

form the slave program. The master module is based on all

parts of the 'source - program that 1lie outside the DOWN

procedures. On the slavé side, there is a small main .

program with a number of external procedures,-each one based

on one of the DOWN procedures declared .in the source .

program. The slave s ma1n program serves to control the

execution of these procedures in response to DOWN procedure

r

requests from the master program.

u

L]

. 1 ' '
The slave program is therefore capable of executing any.

- of the DOWN procedures. If many DOWN procedures. are

declared in the source program, the external procedures

produced by the translator should be complled separately and

°

Llnkéd\hlth the slave's main program as overlald segments, .

'S0 that only the currently actlve DOWN procedure will be in

the slave s memory at any given -time. Slnce a typical DOWN
procedure activation: is expected t§ run for a very long

time, the overhead involved in switching gsegments should be
N\ . .

relaﬁively insign;ficant. Even 'so, this overhead can be

&‘minimized if the master " RTS, when it must choose’ among

several idle slaves, gives preference to those that already

. i b !
. possess the appropriate segment in memory~(§re.i those that

. & . -
‘have .executed’ an instanfe of the same DOWN procedure last

L e \Qf'\ e v‘;b - Lo -
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time). This strategy would also be effective in a future

b

system that did not provide disk access for every slave. In:

such a system, the master would have-to transmit the DOWN
procedure code to the slave directly, but could avoid

repeating this action uneccessarily by giving bfeference to

slaves that still have that information in memory.

qu run-time system required té supp9rt Pascal-C can be'
divided into two parts: the cohventional run—-time support
required for sequential-Pascal, and the ;dditional run-time
support required fo; Pascal-C's special Eeaturés. ‘ One of
the advantages '-of generating Pascal code with this
translator is that the conventicnal RTS is already provided

with the system used to compile the translator's output

moduleé. The special RTS needed for Pascal-C, developed by

Yin-Lam Wong [5], is nevertheless very considerable, since

it mugt perform the many hidden bookkeeping, communication,
and synchrodizati tasks that supﬁbrt Pascal-C's power ful

features. Some par ‘the Paééal-c RTS had to be written

3

.r*

i assembler langu?ge}f r PDP-11 computers, but most of it
was written in Parallel Pascal [13], a high-level language
for concurrent programming that borrows its main features

. fro‘g., Modula [12]). The fact that Parallel Pascal's"
sequential subset is very close to standard Pascal makes it

particularly suitable for this project, since it means that

M,
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L
the translator's output modules, too, can be cogpiled as

Parallel Pascal modules. It is then easy to dink the
compiled modules with the compiled run-time routines, since
the calling protocols will be compatible. Hence the entire
system relies on Parallel Pascal's conveﬁtional support,
and, in the case of the Pascal-C RTS, its concurrent support
as “well, (But see chapter 5 for a discussion of the
shortcomings of Parallel Pascal's run-time support for

concurrency, and the measures taken to remedy them.)

Although Parailel fascal's s%guential subset is very-
clpse to’'standard-Pascal, there are a few minor aeviatiops.
Since the translator's output modules are to be compiled
using the,Pamg}lel Pascal system, the user must ensure that
the conventional Pascal features of the Pascal-C source
program ané compatible with Parallel Pascal. Most , of thé
deviations from standard Pascal are in fact extensions which

L 4

the user may choose to ignore. Nevertheless, some of these

P
. .
extensions have proven to be quite useful for the )
translator. When the translator must set up a declaration
of its ‘own making, for éxample, it may insert a new. CONST,
TYPE, or ‘VAR section as needed since these data sections can
R . . - . - -
be™ repeated within a block in any Order, as long as all the
local data declarations precede tyg local proéedure
declarations. ' : » 4
J ' '
»
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A typical parameter list for an RTS procedure includes
an action code to specify the particular action 'requésted,
plus one or more other Arguments to supply relevant
informatiqn fér perférming that action. The translator must
insert explicit RTS calls where needed, along with explicit
declarations of those RTS procedures as externals. Pascal's

o

strong Eype checking: causes a difficulty here, in that

- sometimes the arguments of the RTS procedures are data items

whose types may be user-defined and of arbitrary complexity
(for example, the parameters of a DOWN proce@ure). It lis
imﬁossible to prepare a fiféd 9umber of RTS prodédpres to
handle eVery)cénceivablé data"type. Some RTS procedqéfs
must serve a variety of data types, and it is up to gﬁe
translator to redefine them appropriately without provoking
compiler errors. The 1loophole used in this case is that
Pascal al?lgws external procedures to be defined as local o)
ordinary procedurés, yet ensures that all eéxternal
procequres with the same identifier will ‘be lifiked to the
same external entry point. Hence an RTS procedure ‘can be

redefined as often as necessary, without provoking an error,

redefinitions 1local to dummy procedures

by makiﬁg the,

crea}ed for that purpose. The dummy procedures, of course,
. . v \ -

all have distinct iden#tfiers, and each one's parametér list

reflects that of the redefined RTS procedure within it.  The

'‘program _invokes ° the dummy procedure instead of calling the’

. . .
=81 - . ‘ ‘ p

C 4y



: §

RTS procedure directly. The dummy procedure, in turn, calls
its local RTS procedure and thereby-passes on its arguments.
For example, supose that in the source program we have a
DOWN procedure with two value,parameters} one of typg Tl _and
the other of type T2. ,There is a- univers#l RTS procedure
for‘ sending value parameters from master to slave, and it

must be redefined to suit the two data types in questien,

’ &
The translator sets ug dummy procedures for this purpose, as

shown in the following: L. e
PROCEDURE ZZPRO1 (ZZACTION : INTEGER; VAR ZZDATA : ?l;
. ZZSIZE : INTEGER); )
PROCEDURE RTS3 (ZZACTION : INTEGER; VAR ZZDATA : TI1;
ZZSIZE : INTEGER): EXTERNAL;
BEGIN o
RTS3 (2ZACTION, ZZDATA, ZZSIZE} -

END; (* ZZPRO1 *) ‘

PROCEDURE Z2ZPRO2 .(Z2ACTION : INTEGER; VAR ZZDATA : T2;

' ZZ8IZE : INTEGER);
PROCEDURE RTS3 (ZZACTION : INTEGER; VAR ZZDATA :-T2;
4 Z2SIZE : INTEGER); EXTERNAL;
BEGIN . _
RTS3 (ZZACTION, ZIDATA, ZISIZE) .

END; ZZPRO2 *) -

¥

Note that the dummy procedurés ZZPROl and 22ZPRO2 ‘have
A I v‘ - 3 . . ” 4
distinct ¥ identifiers while the nested external procedure

RTS3 appears in both, and that the type identifier of the

second parameter is TI in, the first case and T2,in the’

. A ¥ ,
second. +Similar redefining takes place in other situations,

on the slave side Lés well as on the master side. This

. . 1

o
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~ scheme seems rather awkward and requires some machine-level

Y

knowledge of <calling protocols. to ensure. that the RTS
pro®edure will correctly handle those arguments that can be
based on a variety— of data'tyﬂbhni Nevertheless; it‘is a
breach of security that need not concern/the Pascgl-C user,
but only the fzglementer% of the system, who have the
opportunity to consider and verify all of the possibilities
beforehand.

Note" also the use of Ehe‘prefix‘mzz;‘if many places.
It is thé ﬁractice of the translagor to us; this prefix for
all identif};rs that it generates for its‘ownxpurposes.‘
Pascal-C users are expected to be aware of this fact in
order. to avoid conflicts with their own identifiers in-the
source program. - Users should also beware of choosing
identifiers that are prefixed with "RTS".

)
» E .
Besides its strong  type checking, ’ Pagcal presents

» A
another problem for the. translator in constructing RTg

declarations., In Pascal .précedure declarations, formal

- parameters must be defined using single type -identifiers; no

new type. constructions are allowed within parameter lists.

This is not a problem in the aexample cited above, but only
. - 4

because DOWN procedure parameters are alfeady subject to
this restriction in the sourcé_prodram.' A variable 1listed.

[ N ’ L
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in the COPY section, ¢n the other hand, may have been
dgclared using a new type conséruction. If 8o, the
stranslator 'will not have a type identifier to use when ﬁt
generates the dummy procedure and RTS redefinition for
transmitting this wvariable, It would be possibfe for‘the
translator tohcreate an appropriate type declaration, but
Pascal would then require‘that the new type identifier be
used in ;he original variable declaration as well as in the
formal parameter d%claration; This,would greQFly complicate
the tranélator;é strategy: for synthesizing the output
modules (see section 3.7.5). Therefore, a programming
‘restriction was addéd to this implementation that was not
present 1in the Pascal-C langquage defin}tion: Variables
listed in the COPY section, like parameters in a procedure,

must have been declared with a single type identifier. This

restriction has already been mentioned in section 2.2.

.~

-

Finélly, before proceeding to the detailed descriptions

1

of the translator's output modules, qgii’ that numerous

comments are inserted in the text to identif§ the modules

and explain many specific insertions of declarations or

statements. These comments may prove helpful should the
user ‘find it necessary 23 examine the translator's output

[}

before compiling it. -
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.discqssed in section 3.7.1). ' “ﬁ

3.7.2. The master module

The master module is based on those parts of the source

program that lie outside the DOWN procedures. Appendices
1.3 and 2.3 show examples of the master program. The major

\
modificationsg to the original code are as follows:

¥
v

(a) The translator inserts the following declaration at
the very beginning of the master module's global

declarations:

. i .
VAR ZZRTSBUF : ARRAY \(..1500] OF INTEGER;

g

-

The sole p&rposg of this vé::;ﬁle is to provide some
workspace for the RTS; it is not referenced elsewhere in the
master module. The'RTS locates this area by referencing the
starting location for fhe brogram's globél memory. 'Note
that ‘ thé variéble appears within its own
varlab;e-déclaratidn sectiqf. This illustrates the
conveqieﬁce of beidg able to disregard the number and order

of data-declaration sections in Parallel Pascal's syntax (as

- ]

;
v

(b) The bodies of the DOWN procedures are ‘transferred
to the slave modules, but the ﬁasggr retains the heaéings in

. v
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modified form and with new bodies appended to them. The

function of the modified procedure is

ractivation of the deu procedure in a slave

>

pérameters and COPY variables

To transiatetthe heading of the former DOWN procedure
to’ sequential Pascal, the keyword DOWN is eliminated, as is
the keyword CRITICAL in'any CRITICAL procedure parameters.
The declaration part of the new body contains external
declarations of the.RTS_procedures that are used to pass
information to the slave. To adapt these RTS.gqpla;atiogs
to tMe appropriate data types, they are redefined within
Qummy'; procedures as described in section 3.7.1. The
statement part of the new body consists most;y.of calls to
RTS prdbedhfes, either directly 3? indirectly through calls
to the dummy procedures.

7

The first statement is an RTS call to check whether a
TERMINATE statement has been issued against this DOWN
procedure; i the remaining statements are" skipped.
This 1is the 'logf&al point at which to ask this question,
" since Pascal-C requires that a DOWN procedure's parameters
be e@alua;ed (énd any. attendant side effects'produced)
whether or not the .termination condition is in effect. The

v

next RTS call, if executed, starts the activation 'by

]

L LA &
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informing the RTS of the DOWN procedure identification and
the number of VAR parametersito expect. Next is a sequence
of calls to the dummy proéedéres to send down the COPY
variables and the rDOWN 'procedurehfpafameters. " When data
objects are being sent, the RTS parameters in each call
include tpe action code, ~the/\aata object (as a VAR
par;meter), and the size of the’object in bytes. There aré
geparate action codes for value and VAR parametérs. For

procedure parameters (which were originally CRITICAL

procedure parameters), the RTS parameters are the ‘action

code and the procedure identifier, which has the effect of

transmitting the procedure's static link and entry point.

’

The final statement An the master's .version of the DOWN
. c .
procedure is an RTS- call that signals the end of the

activation process.

(d) The statements that invoke the DOWN procedure are®
rgtained in the master module, since the headings have
effectively remained the. same, but the invocations are
bracketed by RYTS calls, two before and one after, and this
whole group of procedure calls is further brackefed‘by BEGIN

and 'END. <The first RTS call reserves a free slave

processor. The secdnd sets the exclusion condition that

blocks any asynchronous execution of CRITICAL procedures

4 . .
requested by The slaves. The final RTS call, which follows

~ \.

_8'7-

)
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the DOWN procedure call, cancelg” the exclusion condition.
Pascal-C requires that the evaluation of a DOWN ‘procedure's
parameters be protected from asynchronous events initiated
by the sl&ves, which is why the. exclusion condition must be
set before the invogétion of the DQWN4procedure. But before
setting the exclusion condition, one must be certain that a
slave processor is available. To wait for a free slave
while the exclusion condition is set invites deadlock. (The
slaves may all be held up trying to send CRITICAL procedure

requests to the master, which cannot take their -requests

because .the CRITICAL procedure queue is full, and nothing .

from the queue can be consqged so long as CRITICAL
9 )

procedures are excluded from execution.)

1

(d) There is a kind of run-time error peculiar'to‘

Pagcal-C that is quite difficult to detect, though it may

\pave disastrous consequences. This error concerns the
1 “ '
4

actual WAR parameters

Pascal-C's semantics are not updated until the master issues
a synchronizing WAIT statement on that DOWN procedure and
all activations have come to completion (see section 2.1).

The problem is that by the time .the WAIT statement 1is

" invoked, some ‘of those actual parameters may have been

already deallocated. ‘Thé updating mechanism wbuld then

blindly overwrite whatever. currently _occupied those

& T . - 88 -
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locations in memory, with. utterly unprgaictable, results.
Such a "dangerous possibility cannot be permitted in the
sysﬁim, yet there seems to be no practical way to detect the

deallocation at the time of updating.

Static error checking has only limited usefulness in
. this regardf Whether or not a ﬁarticdlar combination of
DOWN procedure invocation and WAIT statement actually occurs
will in general depend on the flow 6f execution. On the
other hand, .the translator could enforce a stricter language
provision, such as allowing onl& global variables as actual
VAR parameters to ‘a DOWN procedure, but such restrictions
were rejected as too severe. The only alternatiye is to

deteét the error at run time,

AN

ﬁThere are two. ways in whicﬁ variables can be
deallocated during the lifetime of ‘a prégpaﬁ. One way is to’
explicitly DISPOSE dynamic (i.e., heap) variables. this‘
presents no problem because there is a current language
restrictlon agaxnst passing any part of a dynamic variable
~as an actual VAR parameter to a DOWN procedure (see secthn
2.1). The RTS has access to tha"heap pointer, and by

comparxng it with the addresses of incoming VAR parameters

the RTS can determlne whether any VAR parameters are dynamic

B il ARG SN
Soe » Wt

va;iables, and if so reports a run-time error.
-7 \‘
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The other kind of deallocation occurs implicitly at the
»

} 1
end of procedures. When a procedure's block is deactivated,

all local variables and formal parameters. are popped frdﬁ

»

_the run-time stack. If this includes some variable (or,

equibalehtly, a formal value parameter) that hag yet -+to .- be
updated as a VAR paéameter to a DOWN procedure, an error has
occurred. This is the flrgt po:;t at which the._error can be
deteéted, and 1is perhaps the only pract1ca1 point. For if

the RTS postpones this error check until, say, the time

/A\Fomes for updating the gctﬁa} VAR, parameters, the stack

level may by then have risen again through other procedure
calls, leaving' no evidence of the accidental deallocation.
In this implementation, therefore, .the system must™ monitor

the stack level and trap the error és soon as the stack

-

shrinks Be}ow the highest variable on the stack that is

<,
%

awaiting ' updating. 'Noté' that’ ‘the definition of ‘error

implied by this method may be a little m9re ~severe than

necessary: There may be a call later on to TERMINATE the

‘DQWN procedure and thereby. cancel the updating (sée section.

2.5), in which case it is debatable whether a premature
O .
deallocation sheuld really be considered an error. .

-
The RTS can compare the curregw)stack level‘agalnst the
level of the highest actual . parameter currently on‘the

stack; it has access to or is able to "maintain both’ thése‘
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. 2K 2 y / |

items ofé inforhation. The ‘role of the {ranslator is to
L

. y '
determine at which points such a ¢heck is appropriate; and

[

insert RTS callls accordingly. The obvious place is either

Ao

‘djat the end of a procedure where an actual VAR parameter /[is
locally declared, or just aftzr such' a procedure is called.

The latter positidn‘ds problematical because the - procedure

'in questiom may be a function that is called in the middle

[

of an expressipn. (It may be convenient to call a 'DOWN

proééduigw from within a function, although technically that

v

dauid: constitute a side effec?.;‘ At the end of the
procedure, on the other hqnd, the variables- are still actige
and the‘RTS'cannot detefmine in advance how much memory will
be deallocaﬁed. me:suppiy this information, therefore, the
RTS call at the end of the procedure passes the'first local
vériéblé as a VAR parameter, effectively giving the RTS the
starting address ofg the current activation  block.
(Variables in this system are allocated memory in the exact
order of their dectaration. This would not be ‘a safe

.

assumption generally-.) Since the RTS procedure includes a
user-defined variable in its parameter list, its declaration
is  inserted .as local to the procedure to allow for the

redefinition of parameter types. . ‘ %

The remaining problem for the translator is to identify

the procedures in which these RTS calls are to be inserted.

?
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The currént criterion is simple but too strong: all
procedures Ih the master’module excep¥ those w1th no local
variables and those deflned w1th1n Cg}TICAL procedures (it
is an error to call DOWN ‘procedures in the CRITICAL state,
as explained rn section 2.3). A more refined criterion

could, be implemented in the future through the use of

~>

data-flow analysis to trace back actual VAR parameters £from.

‘the DOWN procedure calls to the procedures in which they are

declared as local variables; ohly those procedu}es are at
X

risk for accidental deallocation. | {

{e) CRITiCAL procedure declarations do not require any
modification beyénd eliminating the keyword CRITICAL. " E&ery
call .éo ~a CRITICAL procedure in the master {calls from.the
slaves will be considered in section 3.7.3) is preqedga- by
an RTS call to set the exclusion cond1t1on and followdd by
Man RTS call to cancel the .condition, all bracketed by BEGIN

and END. This ensures that the scope of protection,for the

S 3
CRITICAL procedure includes the evaluation of its

&

parameters, as requzked by Pascal-C's specifications (see -

section 2.3). Note that’ CRITICAL procedures may Dbe

.recurslve or call each other, o) th RTS must keep track ;and

cancel the exclue/pn’condltlon only after the first CRITICAL .

/

procedure activation 1‘\the series has ended.
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(f) Calls to the Pascal-C synchronization proéedhtes l

WAIT and TERM;NATé are replaced by the equ;Qalent RTS 4&119,

with the original calls retained as comments for legibility.
5
y The first parameter to the RTS call, the action code,

distinguishes/} between WAIT and TERMINATE. The second

parameter identifies thé& DOWN procedure in question.

pa}t., which corresponds to’ the same-part in the original,

1 -~

Pascal-C program. The translator inserts an RTS call as the
first statement. This informs the RTS of the number of DOWN

. /
procedures declared in the program and tells it to perform

its initialization tasks. Another RTS call is inserted as.

the last statement, this time ,to trigger the final

housekeeping chores.

]

3.7.3. The main module for the slaves

The' main slave module is a small program generated by
the translator (se¢ appendices 1.4 and 2.4 for complete
examples). It is to be linked with the DOWN procedures,

which are issued separately as external préceduré ‘modules

(see section 3.7.4). The cqre‘of the main slave program is

a loop to ‘obtain DOWN procedure requests from the master and

activate the corresponding external procedures, as follows:

- 93 - -

(g) The master module ends with the main statement'
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REPEAT A

RTS6(160,DOWNID); (* WAIT FOR DOWN PROGC REQUEST *)
" CASE DOWNID OF .

1:DP1;

2:DP2;

etc.

OTHERWISE , _

END; ) ‘ @
UNTIL DOWNID = -1, ‘ : , L

——

'Y

’
Procedure éTSG returns.:  the dogp iprocedure
idehtification in parametér DOWNID» after regeiving this
information ffqm "‘the master,‘ which may’! involve an .
indefinitely long wait. DOWNID is of type inteper. Dgl;”
"DPQ, etc. are the names given to the external procedures by
‘the"'translator, in their order of occurence as DOWN
procedure declarations in the source program. At the end of
the proéram'the master sends a DOWNID value of -1 instead of

a legitimate value to let the slave programs exit in an

orderly fashion.

There are two initialization statements ' in the ﬁainr
slave module that gprecede this loop. The first is an RTé
‘call to perfore the housekeeping chores. The second is a.
call to a low-level procedure known as ZZSTAT which.has been
incorporated into the Parallel Pascal RTS (see chépter 5).
This procedure saves impértant information that defines the
current status of the slave program (program counter, stack

/l\
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pointer, and so on) in memory locations knowp to the
¢ L' - »
Pascal-C RTS. This helps the RTS to:return the slave

program to the beginning of the 1loop when a TERMINATE

‘directive received from the master causes the interruption

of a DOWN procedufé'acfivation.

Note that the slave's main program, like the master

program, has a special data declaration inserted at the:

beginning to provide the RTS with some workspace.

2 .

(

3.7.4. The DOWN procedure modules for the slaves

.

The external slave procedures are derived from the

. blocks of the DOWN procedures in the sdurce program. They
7'\

are collected in a single output file. (See appendices 1.5
and 2.5 for complete examples of the exterhal procedures.)
As explained in. section 3.7.1, these modules are to be
linked with the élave's maiﬁ‘module (possibly as overlaid

segments) after compiling all of them as Parallel Pascal

modules. The translator names the slave procedures DP1,’

DP2, and so forth, reflecting the order of appearance of the

correspohding -DOWN procedure declarations ,f; the source

program. Unlike the original DOWN procedures, these slave

procedures have no parameter lists. Instead, both the COPY

variables an8 the DOWN procedure pérameters appear as

[
N\ " - 95 -



2 s
RIS
.

’

locally declared variables that are rgceiQed from the master
by igsuing appropriate RTS calls at an eérly point‘ip the
slave procedure. For every item ‘Ehat/ the master _sends
during . the activation of the DOWN procedure (recall section

3.7.2), there is a corresponding call in .the slave to

\\\ifceiﬁe it in a local variable, ‘ s
-~ . 1

N

So the translator must insert l&cal declarations for
whaé /wer; formerly DOWN .procedure parameters and COPY
variables. " In ' éddition, the translator must .fnsert
declarations for Ehe other objects in the COPY 1list:
coﬂstants, "types, and procedures. The slave procedure is a
separate module, whi'‘ch means that any nonlocal objects would
be undefined unless they were redeclared locally. fhere is
a difficulty in making all these insertions in that the
original items may have come from different defining regions
within _the source program. For example, a procedure
declarJZLon may appear in the COPY list along with a type
declaration from a more clogely nested‘region farther dowﬂ
the source érogrém. The translator cannot "flatten out"

these two declarations within a single reéion and at the

~

same time preserve their original order of appearance, since
type declarations cannot follow procedure declaratiqns in
Pascal (nor .in Parallel Pascal). On the other hand,.
inserting the declarations in a different order would make

»
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it ‘diff;cult to ponstrupt the output, modules in a s@ngle
" additional pass accofding to the scheme outl}néd in section
'3.7.3. Instead, the traﬁslétox iaferts the d élarations in
thgif original order of appearance, but éEhoq rthe original
nesting pattern whenewuer necessary: The declarations aré
laid out linearly except when a data declargtion follows a
procedure declaration, which requf;e that the data
declaration be nested at a deeper level. /At that point, the
translator sets up the heading for a/new procedure in the
slave moedule, local to the previous procedure. The deebest
level of nesting contains the local deciarationg for the
DOWN procedure parameters, .ana~ the DOWN procedure! body,
;Eseif: (As expla%ned in sécti n 2.2, all objects in, the
COPY list are considered .relat' é?y global ‘to the DOWN
procedure, so the latter always occupies the deepest level
of nesting.) Of course, this éattern "of nesting must be
‘unwound at _Ehe end of the module. Each level has a

statement part with RTS calls to receive values for its
< .
local variables, if any,/followed by a call to activate the
' .
next (deeper) procegure evel.
19
" In most casesh//the simplest approach to copying a
declaration is te/ read the original text from the source

program and cop it directly to the output’ module.

' Constants, types, and procedures listed in the COPY section

1
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are best handled in this manner. For procedure

. declarations, ‘in fact, there is really no alternative. But

b AN f§-§ ri:B4g declarations are eaS$ily reconstructed from the

. s}hﬁol table, provided that a single fype identifier was

uéed'£o denote the variable  type in the declaratioli. This

is indeed theucase for DOWN procedure parameters as well as

for variables listed in the‘ COPY section (recall section
f33.7_1).' Moreover, copying straight from the gexé could bé .

partichlarly awkward for a COPY variable, since it m}ght be

,j declared as part of én identifier 1list tﬁat includes
/fg unwanted variables, in which case the declaration should not

be copied wholesale.

2

The RTS procedures used to” receive the former COPY

variables and DOWN parameters must deal with arbitraryﬂ data
types, and hence must be rédefined in the manner described.
in section 3.7.1.  These RTS redefinitions accémpany their
corresponding variable declarations at the same neéting”
level of the slave procedure.
For former VAR parameters, the slave procedure requires
" more than the inserted declarations described above. Each
local variable declaration for a VAR parameter must be __

accbmpanied by a buffer variable of the same data type. The

buffer {is used to retain the original contents of the VAR

- 98 -
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5'parametér at the beginging of the p:océdure, so that Ehanges
can be detected at the end (recall the semantics 'of VAR ‘
parameters in seétion 2.1). If}{n addition the data type of
the VAR parametgr is an array or contains arrays, the
¢ translator must generate declarations for index vatiaSIes of'
the‘appropriate types. ‘These are used to traverse the’ data
structure wﬁen the variable and it buffer undergo their

componentwise comparison at the end (see below for details).
, .

*

’

If the DOWN procedure had any CRITICAL procedure
parametérs, the master will 8end the name of the former
CRITICAL procedure té’the élave as degscribed in section
3.7.2; .What is actually §Fnt is the static link and entry
point for the corregponding procedure in the master. To be

"able to receive this information explicitli in the slave,
the static link and eptry point are treated as integers and
the translator generates integer variagle deéla&ations for
the purbose, and an RTS procedure redefinition to receive

7 )

them.

The first statements thatluaqe executed in the slave
procedure are the RTS calls to receive COPY variables. At'
each level of the nesting pattern in the slave procedure,
the local COPY variables (if any) are received and the next

level is activated. Finally, we reach the level of the DOWN

T——

bl
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procedure p;ober. At the beginning of the statement part at
o this 1level, the translator inserts the RTS calls to receive

~

the DOWN proéedure parameters. For VAR paramétets; the RTS
c;31 is followed by an assignment statement to store a copy
of the original data in the corresbonding buffgr variable.
The user statements follow, unch;nged except for explicit
invocationsdof Pascal-C features, which on the slave side

are limited to CRITICAL procedure calls.

——
— ~

In the ‘Pascal-C source program, the DOWNrocedure
cannot contain any CRITICAL procedufe declarathmnsxiz?t in a
g o two-level system, at any rate), but it can call any of tbe
| J CRITICAD procedures in its parameter 1list.- and have the

corsesponding actual \pfocedures executed 1in _ the @asler.
This remote invocation of a CRITICAL procedﬁre is
‘ %mplemented“by RTS calls, but it is never:heless convenient

¢ 'for the translator to set up a local version of the CRITICAL

procedure that will collect the parameters and issue the RTS'
’

. calls. (Recall the analogous situation in section 3.7.2,
¢ ! whg;enit was found convenient to have such local versions of
DOWN procedures 'in the master module.) The modified
procedure heading omits the keyword CRITICAL, éhd adds three
value parameters t;’ the original 1ist, which is itself
restricted by the language definition to value parameters
(seg séction 2.3). The three new Qarame@ers give thé ‘fotal

.

el

4 S o - 100 - /

— —’(\



LY

g .
size of the origiqal parameters ‘and gge stat&é linkéanq
entry goint, treated as integer variables, for 'the actual
CRIf CAL procédure residing in the ﬁaster.‘ Th}s com;letes
the heading for the local slave version of the CRITICAL
procedure. Inside tHe block there is only one deélaratiqn
and one statement. The declaratién is an RTS redefinition
to send the whole paramet®r 1list in a single block. This- is
basically for the convenience of the RTS, which will send
the ‘backage up to éhe> master as a' CRITICAL procedure
request. The sole statement "is the call to the RTS
procedure. The first parameter is the only one sent, but it
is a VAR parameter and the si;e is the size of the whole
parameter block, so the ,cafl effectively sendg the whole
parameter block to the RTS. The master RTS will eveﬁﬁually

decompose the package and usé it to,simulate a local call to

the former CRITICAL procedure.

»

At the end of the statement part of thé pOWN procédure,
the master inserts' statements to detect and send back the
uédated porqions of the VAR parameters. Each VAR parameter
has a buffer variable containing ; copy of its contents at
the time of invocation; these two are compared component by
' component. ("Component” refers to simple data types’ot set
typés, which in this‘conCext are considered indivisible.)

For each VAR parameter, there is an initial RTS call to
B ' M
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announce'the~dpdate and pass the .starting address of the

local variable. The subsequent calls give the size of each 3

component in bytes and a boolean parameter to indicate

whether or not that componeﬁt has been altered.” The actual |

»
boolean  parameter is an expression of the . form

ﬂvariable_compbnent <> buffer_component". To access all the
components in an order that refiécts their order of storage
within the vériable, the ttaﬁslafor nMust insert étateﬁents
to traverse the data étructure in tree fashion, with the RTS
calis occuring at the leaves. For records the fields are
considered in turn in their usual order, * while for arrays
the translator inserts (possibly nested) loops using the
variables set aside.for igdexing the arrays. The task of‘
generating these statements is’ further cdmplicéted by the
fact‘théﬁ the compiler‘ used on the output modules will
always allocate an even number of bytes to array and record
structures, adding a dummy byte if necessary to méke the
number even. To keep Qhe RTS's offéet calculations
accuratg, the translator must 'Eheck every structured
caﬂponent\\in -the wvariable to determine if the component's:
size is odd, and if .so it appends another BTS comparison
call, a "dummy" <call, with a value of’"false" to indicate
"no change"” and a byte size of 1. 1In this way the ﬁTS can
be spared the details of the variable's structure; the
_ information in these calls is adeéquate for it to maintain a

- - 102 -
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byig—by—byte rather than a component~by-componént record of

‘the updated portions. ﬁmis allows the RTS to perform its
o Ce T (
complex updating tasks in the slaves and in' the master in a’

fairly uniform fashion.

- -
-

The final statement in the slave procedure is an RTS\ - 7
call to signal the completion of the DOWN proceduré.' |
[ ‘> . i.,.n
Jﬁ? 3.7.5. Synthesis strategy ' , , .
| A |

“ _—~
It 'Qg;d ﬁbe impractical to éttempt’;ne—eﬂfizé tésk of ‘

‘translation in a single pass; Consider, “or example, thaé a
procedure ‘may be - named in a COPY list iopg afté: its
declaration has been processed. Clearly, to copy the
procedure to the slave module the source text must be
‘reread, at least up to the end of =that .pfodﬁéure. (Ah
additional pass is therefore required to copy but-the source
segments that weére identified in ‘ the fifsf pass.’
(Technically, a second pass -could be avoided by copying
gverygprocedure dgclarabfon into a separate file in case it
later appears in a COPY séction and must be, merged into the

o . ’ . - r
output, but it is no} difficult to see that, if anything,-

this alternative reguires more' overhead: than a’
: : Y ‘
straightforward additional pass.) Of course the' analysis

conducted in the first pass need not be repeated, since the
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-additional pass is required only for simple merging 'of the

text. - e,

9
" While analyzing e prdgraﬁ' in the first bass, the

translator denerates a sequence of directives that will
o~
later be reread, in the same strlctly sequential fashion, to

dlrect the constructlon of the output modules. There are
&

two kinds of dlrectlves to consider: one for copying from
]

the source text and the' other for inserting new text
generated by the translator. The deletion of parts of the

sodzce text is performed implicitly, by issuing two copying

-

directives that skip the portion ipg éuestion between them.

Insertion directives contain the actual text to be inserted;

o

copyiﬁa\‘directives, in contrast, contain the coordinates in
‘ . v ’ .
the source text for the beginning and end of the portion to

be copied. Each coordinate consists of a line number and a
( v . - 0
character position within the line.
- ) s

A

When the trapslator génerates copying directives, ‘itt
gets' tﬁe codrainates from thé current posifion, or from a
-paved positlon, or from a position recorded ;n the symbol
gable, dependlng; on the c1rcqmstances. It is mainly for
.tpis reason that many objects in éhe symbol t;bie have these

boq;dinates as attributes.

L ' . [
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The directives could be arranged so as to require only .

.

:qpe additional pass.r This would involve interleaving and
1 4 . .
combini%g the output so that no backing up is ever required’

while traversing the source module for the second time (many

w : L ~
objects, such as procedures in a COPY list, end up in both

master and slave modules). ~This in ,turn would complicate

. <
matters for -the translator, since it would have t& perform

backpatching on the directives’and keep open an arbitrary *“

number.  of destination ' files. Instead, ghe current
, ﬁ , £ ' ’ o ]
implementation issues a separate. sequence Qf directives for -

. £y . . » .
each output module (not including the slave's main program, ..
which isﬁuggnerated without' tqe dée of direcEjves) and
[ - "

. processes the sequences in ‘turn, rereading the source

Y

program each time a new set of éopying ditectives is opened.
- ’ . h ) ) ‘ .

Within each sequence, of course, the ‘directives are arranged
. ~ ST i

so that only one rereading of .the source prograﬁ is

w—

necessary. Since only one module is created at a-time, the
destination module is known implicitly and need not appear
5 oo '

as an arqument in the directives. .

» .
- . ~ \'w

Hence the total number of passes performed by this
translator is N+2, where N is the numbet of DOWN prpcghure ;
! : ’ o
declara€§ons‘ in the source program, but only. the first pass

involves analysis of the text.

W

v, . * ” X ’
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‘4. Software Tools for the Tianslator

This chapter describes several software tools that were

-

used to help develop the Pascal-C translator, and should
prové equally useful in maintaining‘ it. Of . these tools,
only the parser generator was already available; the others

were dgvéloped specially for, this project.
. N

. Tu;“ parser generator is a product called SLRGO

developed at the Univer51ty of Toronto.! The input to SLRGO

.

*is a list Jf gramurtlcal productlons and its output is the

l 4

correSpondlng set ' of tables . for an SLR({) parser -

[10,5gc.6.3]. The parser driver, on the other hand, is
hand—written ahd embedded within the translator as a
procedure. It uses the da(a in the SLR(l) tables,\ tobether'
with the stream of lnput tokens, to determlne the sequence
of moves. Now the drxver, like the rest of the translator,

is implemented in Pascal, whereas the tables are produced as

data declarations to be incorporated within an XPL program.

.One could still incorporate the tables into the translator

by editing them or copying their contents, but this would be
a tedious and error-prone operation. Moreover,. the' result

would be to inflate the translator's code’ with either a

N
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large number of assignment statements in the initiatization
routine, or else a value clause that initializes static
variab;eé automatically, which has the addip&onal
disadvantage of tbeing a nonstandard feature. A Dbetter
sqlution is to choose whatever data structures are most
fpprdpriate for the kind of access required by the parser,
and to convert the SLRGO eables~to this form automatically.
In this implemenfation, there is a separate program called
PCCONV for th&s purpose so that the translator does not havé
to repeap}the time—consﬁm&ng process of gonversion every
time it 1is run. 1Instead, PéCONY produces a permanent file
of Binary"data, ‘PCTABL,. that the translator reads in to-
initialize its data structures.‘ Of course PCCONV must be‘,

i

exequted (following SLRGO) whenever the grammar is modified.

- "' ‘

] .

In a syntax-direct translator such as this one, the &
\ :

parser controls semantic processing, lexical analysis, and
syntactic error handling. BuE‘since the parsing tabies . are
generated automatically,‘they contain rather arbitrary data ‘
that is difficult to link‘up meaningfully with those other:*

functions. The semantic routines are selected according to
. .

. N !
.the current reduce state, which is in turn related to the

sequence number of the corresponding production. This
5 4 3 »

leaves the linkage between reduce 'spates and semantic

actions highly vulnerable to changes in the grammar such as
| ‘”
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adding or deleting a production. Similarily, the parser .

generator ‘uges its qén code to.repregent g;ammatical\tokens,
and this must be linked to the'repfesentation used by the
lexical analyzer whiéh -must deliver these tokené to thé
pafset. Again, such a linkaée is u stable because it is
drastically affected by changes in the grammar. Finally, as
expléined in section 3.4, every syntactic errot‘ message in
this translator is systematically derived from the kernel of
the LR(0) set of items corresponding to the shift state at
the tihe of detection. This requires not only a table to
link shift states ts kerneltihfofmation, but. also a table to
link the parser generaﬁai's. code for grammar symbols to
their external string representgtidhs, so that t;e messé%e
can be constructed. As already noted, the symbol
'fepresenation used by the parser generator may change

A SE
considerably with a slight change to the grammar.

For the sake of easier development and maintenance, the

.ptinciﬁle of automatic parser generation was extended to all
fgatures that'ultimately‘depend on the grammar. The résult
is a multi-step procedure that must be followed after any
change to the grammar, ‘involving a number of programs
developed for this purpose. It essentially factors out _all
syntactic aspects of the translator and unites tﬁem in this
procedure. Theé end result is that the binary file that
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contains the converted parsipg tables is expanded to include
other initialization data, and that‘somgwtext is generated .
that must be merged into the source text of the trénslat&r;
overwriting the previous tgxt at those points and requiring
a recompilation of the translator.

The remainder of this chapter outlines the steps
involved in this procedure.: '

)

Step 1 - Linking syntax and semantics

. The starting filé contiins the productions of the
grammar -in the form required bynthe SLRGO paréer generator.
It also_ contains the éemantic statements (in Pascal), most
of which \h§§ calls to semantic procedures. Each Qroup of
statements appears just after the: production to whigh it
shopld be 1linked. Some g:oductions, of course, may nét.be

-

associated with any semantic actions.’
N

) -

This file-is built and maintained manually. A program
called PCGRAM reads ié and produces two output files. The
firsg consists of the'ptoductions alone; it is used as the
input to SLRGO in the next stépl The other containg the
core of a Pascal CASE statement. This statement is uBed to

select the appropriate semantic actions based on the CASE

7
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; selector, which is the production number indicated by the
current reduce state. Each CASE element contains the CASE

constant, which reéresénts the production number, followed

by the text of the'product;on as a §§ymenq for the sake of

legibility( and finally the associated semantic‘ statements.

This text is merged into the source code of the translator
ingside the semantic-control routine.

-

Step 2 - Generating the parser
"The f£ile containing the grammafical productions is used
| , :
as input to SLRGO. If the grammar - is not SLR{1l) the
‘ . :
generator may still work but the output must be examined to
{

détenminé whether the default parsing actions are correct.

If not, either the tables must be altered manually, or else//

/

the process must be repeated- from step 1 with a modified

/

f 7/
grammar. At present the grammar has sgveral non-SLR(1l)

features but all of thém can be safely ignored except for

one that requires manual intervention. This is the familiar
< .

ambiguity regafding the two forms of the IF statement: with
and without the ELSE clause. Removing this ambiguity at its

‘source requires substantial complications in the grammar.

£y

In contrasg, its effect can be corrected by simply removing
. )

ELSE from the 1look-ahead set of the IF statement in the:

tables. This is fairly simple to do manually if care is

-
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taken.

SLRGO recognizes a number of user options.' One of
these produces a listinglthat includes” the LR(0) sets of

items, which are needed to compose syntactical error

4

messages.. Unfortunately, the listing of the parser

generator is the only, source of the LR(0) items, so the

information must be extracted from this textual form. Both

the XPL parsing tables and the listing serve as input to
step 3.
. Step 3 - Producing the final tables

, o ,f .

The primary task for program PCCONV is to convert the
 XPL tables produced in step .2 and output the results in
binary form to the initialization file PCTABL. PéCONV then
reads the llstlng produced in step 2 by SLRGO, and thereby
obtanns the kernel 1tems. The table relatlng kernel items

to shkft states is added to the 1n1t1allzat10n file for use

.in generating sytactic error messages.  Another table added

to the initiialization B file links the . external
representations of the grammar symbols to their internal
values as assigned by the parser generator. ?hiéhcompletes

the translator'slcapabilityffdr generating syntactic error

,messages.

o

N
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As it .produces the binary tables contained in PCTABL,
PCCONV also generates the text- for certain constant
definitions. These are used to define the ligits of the
data structyres in PCTABL. They will ?beh merged' into the

translator's source text in step 4.

The program then opens another input file called
PCSYMB. Like PCGRAM in step 1, PCSYMB is a manually created
text file. This file features two lists of items in a
relatively free format. The first is a list of all terminal
symbols that are' referenced by name in the translator. A
constant definition is produced for each one and added to
the previous file of constant definitions. the external
representation appears on the left-hand side of the
definition and the internal integer value assigned by the
p&rser generator appears on the right. ﬁeqce the symbol can
be referenced anywhere by name and yet be linked" to its
ffpresentation in the parsing tables. In cases where }the
external representation does not qualify as a Pascal
identifier it i§ even possible to specify a pseudonym that
will appear in its place on the left-hand side with the same
internal value on the righti (Only strings appear in this
input file; the internal values used by the parser generator
;ie determined automatiqally by PCCONV by matching the

strings.)
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The éecond part of file PCSYMB is a list of all
terminal symbols‘thqt are keywordsf in the language. The
translator does not refg; to these directly, since in this
implementqtion keywords are stored like ordinary identifiers
in the symbol, table, But the lexical a yzer must be able
to return the correct internal value whegjiit recognizes a
keéyword. The éxternal and intérnél representations of Ehe
keywords are added to PCTABL, which is now,complete; During
initializatioh, the compiter ;eads the keywords from PCTAQL

‘and stores them in the symbol table along, with -their

- {
internal wvalues, -

- Step 4 - Editing and cbmpiliné

1

Finally, the constant definitions produced in step 3

and the case statement list produced in step 1 are mefged,-

~

with the help of a text editor, into the appropriate places
in the source program, taking care to overwrite the
superseded text; The ﬁraﬁslato: is then given over to the

Pascal compiler.
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5. écheduling Processes at Run Time

i

As explained in chapter 3, ' the Pascal-C translator
produces a set of modules in sequential Pascal [4]. These
modules do not themselves display any concurrency, but

)

external procedure calls.‘ It is the run-time system (and

rather ‘invoke the Pa§qal~é< run-time system (5] through

¢

its supporting ' software, such as the communication

subsystem) that implements Pascal-C's concurrent features.

Most of the RTS fpor Pascal-C is written in Parallel Pascal

[13], whose concurrent) features are inspired by Modula [12].

. . ‘ s
There ar ome aspects of Parallel Pascal's run-time
éuppoft that\are not well suited for implementing Pascal-C,

notably the %c ’duling policy. Since Parallel Pascal's RTS

was distributed as a package of source modules (in Macro-11

assembler lanqguage [14]), it was possible to _make the
required modifications. This chapter outlines the reasons
for and extent of these changes to Parallel Pascal's RTS.

The full details can be found in f15]. Note that most of

the comments regarding Parallel Pascal also apply to its

predecessor Modula.

@y
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We will begin by fevigéing the varieties of coneurrency
found in the Pascal-C systém. In the first place, we have
the masteﬁ program and its DOWN procedures. Thesé processes
run on‘’entirely,separate hardware units and therefore
interact in a réZEE; indirect manner. Each dnit treats the
otheré conhected to it as peripheral devices - that may
initiate action at eéséﬁtially unpredictabfé times, This %s
commohly encountered in operatinq_systeﬁs with I/O devices
and suggests a 'similar solution. Namely, for eacb
peripheral device there is a "device handler", a concurrent
process dedicated to servicing it [16,p.69]. This is an
apparent Jdather than a true concurrency. éuch processes
" execute in intérleaved fashion on the.same pfocessor,1unlike
the truly parallél’execution among the DOWN procedures and
the master’ progfamu It is also wotth noting that the

communication processes are permanent, QSF created

dynamically like DOWN-procedure activations. They belong to

the run-time system, their activities and data structures’

' transparent to the Pascal-C programmer. For example, in the
master we would have on or‘ more processes to receive
coﬁmunications’ from . th:~\>gaves. The actual parameter
updates returngd at the end of a DOWN procedure would be
"stored in a buffer; a CRI&ICAL procedd;é.request would be
added to a queue of such requestsh Being transparent to the
user progrém, such actions can be performed asynchronously.
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It is in fact important that these tasks be cbmpleted as
soon as possible, so that eﬁe slaves can éo on with other

useful wovtﬂ‘ We again note an analogy with operating

systems, where I/O devices are a bottleneck and must be kept

"busy to exploit their potential parallelism, to which end

priority is often given to jobs that are I/O bound. In the
Pascal-C system, priérityk should be given to the
communication processeé to keep the slaves as busy as
possibig. .The user program should be suspended in favour of

the communication processéé whenever possible.

A CRITICAL procedure. requested’by a slave is another

précessh distinct from both the master process and ‘the

_communication processes' just mentioned. Since the semantics

of Pascal-C demand the serializatidh of CRITICAL procedures, .

there need be only one progess in th syPEem dedicated to

.. running them. This process may be viewed. as the, consumer in

a producer-consumer relationship with the procéss that
queues CRITICAL procedure requests. It would' fit in Dbest
with the semantics of Pascal-C if it were givgn a priority
intermediate betw;;n‘the IOijriority'méétér process and the
high-priority communication processes. One pecuiéqrity of
this process is that, unlike the communication proceéses, it

-

has access to practically the'entire memory space of the

master process. (In. the present impleméntation,  this-

S
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process does not run the CRITICAL procedufe directly.
Instead, it célls a special routine chét manipulates the
description and stack of the main process so that when the
main process réﬁumes, it will simulate an ordinary call to

the CRITICAL procedure.) .

So the scheduling policy should support a pridriﬁy

ordering of processes. Unfortunately, Parallel Pascal doeg
not support pyiority-based scheduling. As edch process is

created, it is “linked into a circular ~queue, and the

‘processes retain their relative ordering throughout their
L}

"lifetimes. When the cuirently active process waits for a
o ' ¢

signal, control passes to the next runnable progess in the

queue. If it sends a signal, on the other hand, gnd some

._waiting process is thereby unblocked, control passes to that -
: s .

, , J
process. . The authors of Parallel Pascal call th%;

round-robin écheddling) but it is ‘clear from the above:

Jaéscripti J that this is only frue in the case of the wait
ﬁ%tatemént;‘ Consider whgt happens if we have three processes
‘A, B, and C in the circular queue, with A"periodfcally
‘waiting for a signal ‘that is later ‘gent by B. If B
immediately follows A ,in' the queue, control wilixélide.to B
when A waits, and will pass back to A‘whgﬁ B sends, jumping

over C. As long as this pattern.gersists,‘ C will starye.

But given a different order-qf creation, C might be the next

“w
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‘—~ate blocked. The curtently agtiv

procesg in khe queoe aéter A, in which case starvation would
be » avoided This schedullng policy is evidently
unsatlsfactory in its own right, qulte apart from the lack
of prfbricy capabilities.
L L ( ‘ |

In the revised run-time system for‘Panal}el Pascal,’ a
process sets (or alters), its own priofity by calling a.

special p;ocedugp. The circular queue which formerly

cgntained all normal processes is replaced by a linear one

which contains only those that are runnable. The processes

in this "ready" queue are linked in. desceﬁding order of

priority. the top is the next one.to 535>if a swgtch

takes place, whlle at the bottom'is a speci idle task that -

aiwlys has

-

he lowest prld%lty, in case a 1 normal processes

procdss is not in tdpﬂ
ue. 'When "a process is inserted into‘the Queue, it is__
qp

ordlnarlly placed behind those of greater or equal priority.,

Thi¥ amounts to xa round -robin scheduling po;lcy among AS

p;ocesses‘gf'eqpal priority. In this case,' a processAs:
position among its peers in the queue depends upon how long
it'has been runnable but idle. . This,is "fai?er" ' thamn the
round-robin'o;derisg in the:original.version,‘which depended
so' ly on the relative order of the processes' creation.

Whenever "the current process sends a signal, it ss suspended

[

and re-inserted into the * re_ady queue Sto all_ovp other

-
-
-
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processes “35;/962\\same priority' to run. ' The signalled

process (if any) ~is) not automatically activated .as it

/

formerly was, Fyincé it too is inserted behind other ready

piocesses of it; priority. The ready queue thus resembles a.

signal queue in\?arallel Pascal. (A process that.issues a

5

wait on a signal ig inserted into the signal queue behind

-
4

all other “processés of the same "rank", which is specified
e M .

as a parameter to Parallelﬁpascal's wait procedure.)

) So_a process that sénds a signal bill be suspended as
beféggf‘ but the process that takes its place will be chosen

accordind®to consistent scheduling criteria. In retrospect,

it may be preferable \(to drop altogether the practice of
, \ ;

s ahtbmatiéally suspending % process when it sends a signal,

: ! .7 LN ’ ) . o . '
«Sending a signal and self-suspension are distinct operations
-~ I *

4

— that may not be both appropriate in a given situation. This

‘.

,is thllCltly recognized in Parallel Pascal in the case of

»

<
1nter$§gt routlnes, whlch are never suspended when they send

.-a signal. ‘It would be convenient to make this kind of send
p :

)

'

available to normal processes as well, .with perhaps a°

e
separate ocall to ‘provoke a round-robin shift, with no-

reference to any signal, whenever dppropriate. . ‘
- . ‘ . -

——
~ '

’

-,

Slnce an interrupt routine can send a 31gnal, it may

unblock a- process of higher. priority than the one that was

; -—

-



v
running when the interrupt occured. Yet Parallel Pascal

always restores the interrupted process, regardless of the

2

~ situation when the .interrupt routine finishes. This

practically defeats the usefulness of a priofity scheme,

P

since the high-priority process will remain: idle

}indefinitely - that is, dntil_the current process suspends

itself, through a wait or send for example. Accordingiy,

‘the exit from an interrupt routine had to be changéd to

permit a scheduling action when appropriate. This task was

w

somewhat complicated by the fact that interrupt routines in

PDP -11 systems, (17] may themselves be interrupted, “and no

norma1~ process should be restored unti& the loweést-nested

I3

interrdpt has been serviced. User-written interrupt

w . .

routines . can.employ a-counter to keep track of the level of

nesti{zé but some iﬁterruﬁt routinee are hidden within the
L 8

RT-11 dJperating system [17]. It appeared that the only

solution was to %et‘the RT-11 system keep traek of the level

\

of nestlng, which is done by following certaln conventlons,'

mainly a set of system calls at the beginning and end of all
interrupt routines. When a switch is appropriate, the
interrupt routine makes ‘a special RT-1l1l call that scﬁedules
a section of uset code for execu%}on following the
lowest-level intsfrupt routine. It is this serialized~,code

that effects the desired switch.”
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A number of improvements whjéh are not related directly

to schedulng were made as the opbortun(@&gg\grose. The most

ipportant ones are described below. A variety of other’

L.

deficiencies in the original version were corrected or At

N ]
A

least documen‘ed in [15]).

'3 ! -
»

Wait and send are supposed to beé performed differedt;y

¥

when issued by ankkistetrupt "routine. The distriﬁuted

.version of Parallel PaséQ\\ijlies'on the compiler alone to

make this distinction: All waits and sends are translated
into theig normal forms unless they appear within the
statement part of an interrupt routine. It is therefore an

error for an interrupt routine to call a procedure that

calls wait or send, but this error is not detected and may

bring down the system evéhtually. “In\the revised version,

' the scheduler precedes any action by a.simple run-time test

- i
that determines whethey a normal or interrupt process is

14

issuing the statehent. . " ' .

o4 ' [

Certain operations in the tun-time system manipuiate
important global data; - procedures new and dispose, for

t e
example, alter heap markers. In the distributed version of

L]

Parallel Pascal, these operations are vulnerable to re-entry

"

via interrupt routines. In the revised version, they are

consideréd critical regions and can only be performed by one



process at a time. 1Inside the critical regions, no process

switching' is éllowed. Interrupts may occur, but any
high-priority process that may be unblocked by the interrupt
routine is only activated when the current process exits the
critical region. Iftthe interrupt routine itself attempts
to enter a critical region- (which would nof be very
appropriate since most of the operations ~concerned are
rather too 1lengthy to be performed as part‘of an inéerrupt
service), the,.routine is:suspended and forced to resume as a
. normal progess for the remainder of the interrupt servicing,
subject to the wusual scheduling rules. .'These measures
ensure . the éérial;zation of all ﬁkocesses with respect to

~ ' f
gritical.regions.” - -

°

~1/0 operations are also treated as critical regions.
Formerly, .most I/0, operations performed an implicit’wai€,

allowing other processes to run before the I/0O operation was

’

complete. In the revised version the proéess does not lose

control when it performs I/0. e

When an interrupt routine 'issues a wait, it is

"suspended and treated as a normal process fof the remainder

-

of the interrupt servicing, Jjust as in the case of an

interrupt routine that attempts to enter a critical region.
: ~
This approach in the revised version makes for more uniform

.
1
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process handling in the scheduler, and removes the former
restriction against one interrupt routine signalling another
(which formerly resulted in an undiagnosed system failure).

»

The signal mechanisms provided by Parallel Pascal can
’lead to the loss of a sijna; if a 'Signal is seng but‘ no
‘prbcegs is waiting for it. The }evised version uses the

- -signal mechanisms.as a basis for develobing Dijksﬁra—type
semaphores [18]. A‘ semaphore has a count asseciated with

it. Each send increments the cgunf if no process is waiting
for it at the time. The next process to issue a wait on the
semaphore will decrement the count instead of actually
waiting. These “operation§ are protéctgd against any

- .

interrupts and may therefore be cornsidered primitives.

A few }ow—level routines specifically intende§ for
Pascal-C Thad to be implemented 1in addition to the
general—purposg.ones described above. One of them simulates
an ordinary éall to a CRITICAL procedure from thé master
processy  Another one ;aées crucial information at a stable
point in a slave's main program so that its status may be
restored in the case of a TERMINATE command from the master
(see section 3.7.3). A complementary routine, invoked by
the slave RTS to complete termination, restor?s the status

recorded by the first routine and therby returns the slave

] » o =.123 -
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. _ to the idle state; ready for another DOWN procedure

~

activation.




6. Conclusion .

k3

+

At the present stage of the Pascal-C project, -we have a
working prototype’that has.demonstratednthe feasibility of
solving combinatorial problems on  an inexpensive
multiﬁrocessor, using a powerfﬁl applications-oﬁ{snte¢

language based on Pascal.

-

~

The main part of this thesis described the translator
for the Pascal-C language. In the prototype system; this
translator generafes sequential Pasca}, but its structure is
sufficiently modular to permit the eventual addifion of
low-level code generation without unduly affecting the other
components of the translator. One notable aspect of the
translator's design is _the attempt to include systematic
strategies for reporting and recovering from syntactic
errors, problems which persist in compiler‘design despite
the development of systematic methods for parsing valid
programs. The perfofmance of these errorxstfatggies has so
far fulfilled expectafions. Certain software tools were
also deveioged that éffectively extend the scope of the.

automatic parser generator, linking together all components

of the translator that are associated with the syntax,

e
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including the error-handling mechanisms just mentioned.
These tools ease the chore of developing and maintaining the
translator. The . revised scheduling system described in

chapter 5:also seems to\be’ézrforming adequétely. .-

On the 'qegative side, the’ lack of 1low-level code
genérationiin'the prototype system is .bound to prove an
inconvenience to users, since this adds another step to the
alreadf tedious process of preparing a source ﬁfogram for
execution on the multiprocessqf. Moreover, the translator's
output modules, along with most of the RTS routines, are
éompiled using Para;lel Pascal, whose compile-time and
run-time error diagnostics are.woefully inadequatﬁﬁ"‘ Thése
shortcomings should disappear if and when a complete
compiler and RTS are developed for é;scal-c.,

. ,

With regard to the language - features, it was the
semantics of VAR parameters to DOWN procedures that
presented the most difficulties. The translator has to
construct elaborate code in the slave procedures to
détermine which éomponents og. the pargmeters have been
altered, and must insert code in many of the master's
procedurgs to check against the prémature deallocation of
the actu;?BVAR parameters. Similar chailenges would present
thémsglvég in any implementation of Pascal-C, though it

/
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might be possible to shift some of thngurden to the RTS. "

‘As poted‘ in the text, some of the;originai language
specifications were changed, partly in poﬁsideratkon of thqf
relative ease of impiementation.' The variables in‘the COPY
section, for example, must have beem declared with single
type, i 'fierg} but this gis oé importance only in the
pfototyj§:§2¥sion. Other changes have merits of their own,
and should- perhaps be consideéed as permanent language
features. The inclusion of types and constants ih.the COoPY
séction has the appeal’of cpnsisﬁency, thle the provision
Af CRITICAL proéedure parameters to DOWN procedures provides

e M

more flexibility and avoids forward referencing.

v
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APPENDIX 1.1

L3

'(* 'This is a solution to the knapsack problem in Pascal.

S [FIRST..LAST] contains a list of integers. The program

ds out if any subset of them adds up to the integer T
and either outputs the first such subset found or else
reports failyre to find a solution.

. The hea of the program is the recursive ptocedure TRY
whlch attempts\every subset CHOIQE of the integers’in S,
until a soluté n is found or else all possrbllltles have

e .

been exhaust

¢

Note the/GOTO in procedure SOLUTION, which has the
effect of jymping out of the recursive sequence when a
solution is” found. This makes the sequential version of
SOLUTION somewhat analogous to the CRITICAL ver51on in

appendix 1. 2. *)

*

PROGRAM KNAPSACKl1l (INPUT, QUTPUT);

LABEL ‘ . L
[ 99; , t N . ! . -
, . . ")

CONST

FIRST = '0; '

"MAX .= 50; °
TYPE ' ' L

ITEMTYPE = FIRST .. 'MAX;

SUBS = SET OF ITEMTYPE;

SLIST = ARRAY [FIRST..MAXJ OF INTEGER'

/

VAR

LAST : ITEMTYPE; °*

ITEM : ITEMTYPE;

T : INTEGER;

S : SLIST; Y

FOUND: BOOLEAN; Y

(]
\\
‘ {

. -
./



PROCEDURE SOLUTION (CHOICE : SUBSET), °
VAR . “ 4 ' t ' | .
“ ITEM : ITEMTYPE; ' co .

BEGIN (* SOLUTION *) -
WRITELN ‘('HERE IS A SOLUTION:'):
FOR ITEM := FIRST TO LAST DO S
\ IF ITEM IN -CHOICE THEN" . PRI

~ WRITELN ('ITEM: ', ITEM,' ‘VALUE: ',S [ITEM])); -

FOUND := TRUE; S
GOTO 99 \ -

END; (* SOLUTION *)

PROCEDURE TRYSUM (SUM : INTEGER; CHOICE : SUBSET;

" BEGIN (* KNABSACKL *) o

-«

ITEM » ITEMTYPE),

¥

BEGIN (* TRYSUM *) - .
F SUM = T THEN o K

SOLUTION" (CHOICE) S . .
ELSE . .
IF ITEM <= 'LAST THEN v " -
BEGIN T '

TRYSUM (SUM, .CHOICE, succ (ITEM)),.
TRYSUM (SUM +5 [ITEM], CHOICE +[ITEM],
J SUCC (ITEM)) PN
"END . \
END; (* TRYSUM *) - . o _ ,

4n

READ (LAST, T); . v
_ FOR ITEM := FIRST TO LAST DO S . y/<
READ (S [ITEM]); £ N\

FOUND := FALSE; - : a . 7

TRYSUM (0, (1., FIRST), o ) L '~////1

IF NOT FOUND THEN
WRITELN ('THERE IS NO SOLUTION"}" :
END. (%' KNAPSACKL *); . . T t

-t
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N\t

~ ot
T—"TCONST : T~

' CRITICAL procedures to return results and’ to TERMINATE the
* DOWN procedures in the elaves. . . ’ :

» N N - APPENDIX 1.2

3

(* This is a Pascal-C version of the knqpsack
program of appendix 1.1. It illustrates a ;yplcal use of

4

At a given level (varxable DEPTH) in the v
recursion, the subproblems are consigned to, slaves ' .
by calling the DOWN procedure SLAVETRY. Note several {" \

" identifiers that had to be included 1n SLAVETRQ s pOPY Ny
sectlon. . ' ‘ : . '
. y ' . —_
_~ There are now two recursive procedures ih the program,
one fior the master and the other. for the slaves. :
(.

MASTERTRY performs the upper levels of the recursion
in the master, calling SLAVETRY at the proper depth.

TRY is identical to its namesake in appendlx 1.1, and 3
..performs the lower levels of recursion in the slaves. ~

S SOLUTION is now a CRITICAL procedure called hy TRY
from the slares. It prints the solution as before, and -
7 terminates all activations of SLAVETRY. *)

PROGRAM KNAPSACK2 (INRUT, OUTPU&); ’
. R

"~ FIRST
» MAX

L

it n
n.o
o
1
A}

TYPE ! -
- ITEMTYPE
,SUBSET
SLIST

FIRST .. MAX;
SET OF ITEMTYPE;
ARRAY [FIRST..MAX] OF INTEGER;

$
) -
:

LAST : ITEMTYPE; .
X ] ITEM : ITEMTYPE;

T : INTEGER;
.S ¢ SLIST; ‘ .-
FOUND: BOOLEAN; F ,
DEPTH: INTEGER; ' . - . ' r

“y
. A



« . Pd
) \/\\ ) S
“ r \ - . - ‘ - IR
EER DOWN PROCEDURE SLAVETRY (SUM : INTEGER; caozca. SUBSET:
., CRITICAL PROCEDORE SOLUTION (cnorcs : SUBSET));
) \ copy . .
SUBSET, LAST, T, S, DEPTH; -
. PROCEDURE TRYSUM (SUM\: INTE€ER; CHOICE : SUBSET; S
) ITEM :, ITEMTYPE); :
- BEGIN (* TRYSUM *) N ,
\ * IF SUM = T THEN . N
. . SOLUTION (CHOICE)
AN ~ + ELSE i
. IF ITEM <= LAST THEN
BEGIN ~ ‘

TRYSUM (SUM, CHOICE, 8UCC (ITEM)),
TRYSUM (SUM +S [ITEM], CHOICE +[ITEM]),"
SUCC (ITEM)) :
END : .
ENQ; (* TRYSUM *), | ;oo

. BEGIN (* SLAVETRY *)
TRYSUM (SUCC (DEPTH), .SUM, CHOICE)
Ao END; (* SLAVETRY *) .

CRiTICAL APROCEDURE SOLUTION (CHOICE % SUBSET) ;

v

. VAR
ITEM : ITEMTYPE; Co-

7. BEGIN (* SOLUTION *)
.- WRITELN ('HERE IS A SOLUTION:');
FOR ITEM := FIRSQA\_TO LAST DO
. IF ITEM IN CHOICE THEN ~ C
y WRITELN (‘'ITEM: ',ITEM,' VALUE: ',S [ITEM]);
, FOUND := TRUE; . RE
' . TERMINATE (SLAVETRY) f .
N END; (* SOLUTION *) S
S ) . -

-
[y
.
f
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PROCEDURE MASTERTRY (SUM : INTEGER; CHOICE : SUBSET;
\ " ITEM : ITEMTYPE):. -

- BEGIN (* MASTERYR g *)
IF JITEM > DEPTH THEN .
'SLAVETRY (SUM, CHOICE, SOLUTION) \
. ELSE . -
N S “BEGIN
| MASTERTRY (SUM, CHOICE, SUCC (ITEM));
MASTERTRY (SUMc+S [ITEM), CHOICE +[ITEM],
. succ (ITEM)) .
END
™ END; (* MASTERTRY *)

BEGIN (* KNAPSACK2 *)-
READ (LAST, T, DEPTH);
‘ FOR ITEM := FIRST TO"LAST DO
READ (S [ITEM]); ‘ .
FOUND :=-FALSE; °
MASTERTRY (0, [], FIRST); : )\\
WAIT (SLAVETRY);
"+ IF NOT FOUND THEN,

' WRITELN ('THERE IS NO SOLUTION') . ,
END. (* KNAPSACKZ *) :\\5\‘ -



—~

(*

>
APPENDIX 1.3

\

This is the master module produced-by the translator

for the Pascal-C version of knapsack in appendix 1l.2.
Note that this module, like the ones in appendices

1.4, 1.5, 2.3, 2.4, and 2.5, were actually produced

by the translator but have been edited somewhat to

fit them into the present page format.

PROGRAM KNAPSACK2 (INPUT, OUTPUT):;
VAR ZZRTSBUF:ARRAY [1.

*)

»

.1500] OF INTEGER; ( *FOR PASCAL-C RTS*)

CONST
FIRST = 0; ‘
MAX = 50;
TYPE - ¢
ITEMTYPE = FIRST .. MAX; R
- SUBSET = SET OF ITEMTYPE;
, SLIST . = ARRAY [FIRST..MAX] OF INTEGER;
VAR 2 - /
LAST ': ITEMTYPE; .
o ITEM : ITEMTYPE; | '
N\, T : INTEGER; “ (
S : SLIST; -
FOUND: BOOLEAN; -
DEPTH: INTEGER; -

i (*PASCAL-C RTS DEFINITiONS*)
PROCEDURE RTS1 (ACTION:INTEGER);.
PROCEDURE RTS2 (ACTION,DATA:INTEGER);

7,
X

TERNAL;

EXTE

. PROCEDURE RTS3 (ACTION,DATAl,DATA2:INTEGER); EXTERNAL;
FUNCTION RTS4 (ACTION,DATA:INTEGER):BOOLEAN; EXTERNAL;
(*END RTS DEFINITIONS*) .

PROC%DURE SLAVETRY (SUM

INTEGER;' CHOICE : SUBSET; .
: SUBSET));

PROCEDURE SOLUTION (CHOICE

(*RTS REDEFINITIONS TO DEFEAT TYPE CHECKING*)
PROCEDURE ZZPROl(ZZACTION INTEGER; VAR ZZDATA:ITEMTYPE;

ZZSIZE:INTEGER);

PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:ITEMTYPE;

BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END
PROCEDURE Z2ZPRO2(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;

ZZSIZE:INTEGER) ; EXTERNAL; ’ |
./
ZZS1ZE:INTEGER); ’

PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;

ZZSIZE:INTEGER) ; EXTERNAL;
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BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
PROCEDURE ZZPRO3(ZZACTION: INTEGER;VAR ZZDATA:SLIST;
2ZSIZE: INTEGER) ; N
PROCEDURE RTS3(ZZACTION: INTEGER; VAR ZZDATA:SLIST; 3
ZZSIZE: INTEGER) ; EXTERNAL;

. BEGIN RTS3(ZZACTION,ZZDATA, ZZSIZE)END

PROCEDURE ZZPRO4(ZZACTION:INTEGER;VAR ZZDATA: INTEGER
ZZSIZE:INTEGER) ;
PROCEDURE RTS3(ZZACTION:INTEGER; VAR ZZDATA: INTEGER,
ZZSIZE:INTEGER); EXTERNAL;
BEGIN RTS3(ZZACTION, ZZDATA,ZZSIZE)END;
PROCEDURE ZZPROS(ZZACTION: INTEGER;VAR ZZDATA: INTEGER
ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA: INTEGER,
Z2SIZE:INTEGER); EXTERNAL;
BEGIN RTS3(ZZACTION, ZZDATA,ZZSIZE)END;
PROCEDURE ZZPROG6 (ZZACTION: INTEGER; VAR ZZDATA:ITEMTYPE;
ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:ITEMTYPE;
ZZSIZE: INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
PROCEDURE ZZPRO7(ZZACTION:INTEGER; *
PROCEDURE ZZCRIT(CHOICE:ITEMTYPE));
PROCEDURE RTSS5(ZZACTION:INTEGER;
PROGEDLRE ZZCRIT(CHOICE:ITEMTYPE)); EXTERNAL;
BEGIN RTSS5(ZZACTION,ZZCRIT)END;
(*END RTS REDEFINITIONS*)

BEGIN
IF RTS4(96,1)THEN BEGIN RTS3(66,1,0); (*NEW ACTIVATION UNLESS
TERMINATED*)
ZZPRO1(64,LAST,1); (*SEND CORY OF vangksLE TO SLAVE*)
2ZPRO2(64,T,2); (*SEND COPY OF VARIABLE TO SLAVE*)
2ZPRO3(64,5,102); (*SEND COPY OF VARIABLE TO SLAVE*)
2ZPRO4 (64 ,DEPTH,2); (*SEND COPY OF VARIABLE TO SLAVE*)
2ZPROS(64,5UM,2); (*SEND COPY OF VARIABLE TO SLAVE*)
2ZPRO6 (64 ,CHOICE,1); (*SEND COPY OF VARIABLE TO SLAVE*)
2ZPRO7(128,SOLUTION); (*SEND CRIT PROC INFO TO SLAVE*)
RTS1(16)END; (*END DOWNLOADING*)
END; (* SLAVETRY *) -

PROCEDURE SOLUTION (CHOICE : SUBSET);

VAR -
ITEM : ITEMTYPE;

BEGIN (* SOLUTION *)
' WRITELN ('HERE IS A SOLUTION:');
FOR ITEM := FIRST TO LAST DO
IF ITEM IN CHOICE THEN

L 4
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o WRITELN ('ITEM: ',ITEM,' VALUE: ',S [ITEM))%

’ ' FOUND := TRUE; : )
' RTS2(33,1) (*TERMINATE (SLAVETRY)*) :

%

- END; '(* SOLUTION *) : \
y

'PROCEDURE MASTERTRY (SUM : INTEGER CHOICE : SUBSET

ITEM : ITEMTYPE);

.- PROCEDURE ZZPRO1(ZZACTION:INTEGER;VAR ZZDATA:INTEGER);
PROCEDURE RTS2(ZZACTION: INTEGER; VAR ZZDATA:INTEGER);
' . EXTERNAL; {
BEGIN RTS2(ZZACTION, ZZDATA)END;
BEGIN (* MASTERTRY *)
. IF ITEM > DEPTH THEN _ ’
3 BEGIN RTS2(34,1);RTS1(0); (*RESERVE SLAVE & LOCK
: BEFORE DOWN CALL*)
SLAVETRY (SuMm, cnoxcz, SOLUTION) ; RTSl(l)END (*UNLOCK AT END
¢ . OF DOWN CALL*)
,ELSE
) * BEGIN ‘
- MASTERTRY (SUM, CHOICE, SUCC (ITEM)); ,
MAETERTRY (SUM +S [ITEM], CHOICE +[ITEM],
, A succ (ITEM)) o
. ' END
; ZZPRO1 (35,SUM); (*CHECK FOR ACTUAL VAR PARAMS TO DOWN
: PROCS*)
. END; (* MASTERTRY *)

L]

BEGIN (*MASTER MAINLINE*)
RTS2(48,1); (*INITIALIZE MASTER RTS*)
(* KNAPSACK2 *)

READ (LAST, T, DEPTH);

FOR ITEM := FIRST TO LAST DO
N : READ (S [ITEM]);
_FOUND := FALSE;} ‘ o
MASTERTRY (0, [], FIRST); .
RTS2(32,1) (*WAIT (SLAVETRY)*) = &~

KR

. e

IF NOT FOUND THEN
WRITELN ('THERE IS NO SOLUTION')
sRTS1(17) (* END PROGRAM *)
END.

-y,
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. APPENDIX 1.4

(* This is the main module for the slave, created by

“the translator for the Pascal-C version of knapsack. *)

\

VAR RTS:ARRAY (1..1500] OF INTEGER; (*FOR PASCAL-C RTS*)

DOWNID: INTEGER;
PROCEDURE DP1l;EXTERNAL;
PROCEDURE ZZS$TAT; EXTERNAL;
PROCEDURE RTS2(X,Y:INTEGER) ; EXTERNAL;
PROCEDURE RTS6(X:INTEGER;VAR Y: INTEGER) EXTERNAL;
BEGIN

RTS2(48,0); X;:INITIALIZE SLAVE RTS *)
Z2STAT; (* SAVE STATE TO RESTORE AFTER T%RMINATION *)

REPEAT Aa
Rggg(lﬁo,DOWNID), (* WAIT FOR DOWN PROC REQUEST *)
CA DOWNID OF , .
1:DP1; . ,
OTHERWISE .
END; o n :
UNTIL DOWNID = -1
END. , £
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(* This is the external module for DOWN procedure
SLAVETRY in the Pascal-C version of knapsack. *)

( *$E* ) PROCEDURE DP1;

CONST- —
FIRST = 0; .

CONST -
MAX = SO‘f/—__/‘
TYPE ‘; °
ITEMTYPE, = FIRST .. MAX; , "
TYPE . \. o
SUBSET SET OF ITEMTYPE; :
TYPE -
SLIST = ARRAY [FIRST..MAX] OF INTEGER;
VAR LAST:ITEMTYPE;
VAR T:INTEGER;
VAR S:SLIST;
VAR DEPTH:INTEGER;
(*RTS REDEFINITIONS TO DEFEAT TYPE CHECKING*) ‘
PROCEDURE ZZPRO1(ZZACTION:INTEGER;VAR ZZDATA: ITEMTYPE,
© ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:ITEMTYPE;
2ZSIZE: INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
PROCEDURE ZZPRO2(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;
. ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;
7ZSIZE: INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
PROCEDURE ZZPRO3(ZZACTION:INTEGER;VAR ZZDATA:SLIST;
ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION: INTEGER;VAR ZZDATA: :SLIST;
ZZSIZE: INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
PROCEDURE ZZPRO4(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;
- ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION: INTEGER; VAR ZZDATA: INTEGER;
‘ ZZSIZE:INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
* (*END RTS REDEFINITIONS*)

>

PROCEDURE DOWN; ’

(*BEGIN DECLARATIONS FOR DOWN PROCEDURE PARAMETERS* )
VAR SUM:INTEGER; ( *VALUE PARAMETER*)

VAR CHOICE:ITEMTYPE; (*VALUE PARAMETER*)

AL e

SN
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VAR ZZLINJ,ZZENT7:INTEGER; (*STAT LINK & ENTRY PT FOR
CRIT PROC IN MASTER¥)

(*END OF DECLARATIONS FOR DOWN PROCEDURE PARAMETERS

€ .
~ un
PROCEDURE TRYSUM (SUM : INTEGER; CHOICE : SUBSET;"
ITEM : ITEMTYPE);
BEGIN (* TRYSUM *)
‘IF SUM = T THEN
SOLUTION (CHOICE,2,ZZLIN7,ZZENT7)

. ELSE
' ~IF ITEM <= LAST THEN
BEGIN :
- TRYSUM (SUM, CHOICE, SUCC (ITEM)):

TRYSUM (SUM +S [ITEM], CHOICE +[ITEM],

SUCC (ITEM))

: END
END; (* TRYSUM %) /

(*ﬁﬁﬁCAL-c RTS DEFINITIONS*) e

PROCEDURE RTS1(ACTH@N:INTEGER) ; EXTERNAL;

PROCEDURE RTS3 (ACT&ON: INTEGER ; CHANGED : BOOLEAN;

) SIZE:INTEGER); EXTERNAL ; ,

(*END RTS DEFINITIONS*) N

(*RTS REDEFINITIONS TO DEFEAT TYPE CHECKING*)

PROCEDURE ZZPROS(ZZACTION: INTEGER;VAR ZZDATA:INTEGER;
ZZSIZE: INTEGER) ;

PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;

2ZSIZE: INTEGER) ; EXTERNAL ;

BEGIN RTS3(ZZACTION,ZZDATA,2ZSIZE)END;

PROCEDURE ZZPROG (ZZACTION: INTEGER;VAR ZZDATA:ITEMTYPE;
ZZSIZE: INTEGER) ;

" PROCEDURE RTS3(ZZACTION: INTEGER; VAR ZZDATA:ITEMTYPE;

ZZSIZE:INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,2ZSIZE)END;
PROCEDURE ZZPRO7(ZZACTION:INTEGER;VAR ZZDATA: INTEGER
ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;
ZZSIZE:INTEGER) ; EXTERNAL;
BEGIN RTS3(2ZACTION,Z2ZDATA,ZZSIZE)END; \}
PROCEDURE SOLUTIO CE:ITEMTYPE;
2E,ZZLINK, ZZENTRY INTEGER) ;
PROCEDURE RTS3(ZZACTION: INTEGER; VAR ZZDATA INTEGER;
ZZSIZE:INTEGER) ; EXTERNAL;
" BEGIN RTS3(76, ZZENTRY,ZZSIZE+6)END;

—
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. (*END R¥§ REDEFINITIONS*) - _ , B

BEGIN (*DOWN PROCEDURE CORE*)
ZZPRO5(74,SUM,2); (*RECEIVE COPY OF VARIABLE FROM MASTERY)
Z2PRO6 (74 ,CHOICE, 1) ; (*RECEIVE COPY OF VARIABLE FROM MASTER*)
ZZPRO7(74,22LIN7,4); (*RECEIVE CRIT PROC INFO FROM MASTER*)
(* SLAVETRY *)
TRYSUM..(SUCC (DEPTH), SUM, CHOICE)
RTSl(l?)END, (* END DOWN PROCEDURE CORE *)

BEGIN (*REGION FOR COPY SECTION ITEMS*) -.
ZZPRO1(74,LAST,1); (*RECEIVE COPY OF VARIABLE FROM MASTER*)
ZZPRO2(74,T,2); (*RECEIVE COPY OF VARIABLE FROM MASTER*)
ZZPRO3(74,5,102); (*RECEIVE COPY OF VARIABLE FROM MASTER*)
ZZPRO4(74,DEPTH,2); (*RECEIVE COPY OF VARIABLE FROM MASTER*) .
DOWN END; (*END COPY SECTION REGION*) . N
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APPENDIX, 2.1

»

(*  This is a Pascal version of quicksort.

The elements to be sorted are held in E [1..NUM].

The heart of the program is the recursive procédure
"SORT, which divides a given portion of E into two parts

-

that are sorted with respect to each other, then sorts. each
of the two parts internally. SORT calls procedure PARTITION

to divide the portion into two and .group lower values in

one part and higher values in the other. *)

PROGRAM QUICKSORT1 (INPUT, OUTPUT);

TYPE :
~ ELEMENT = INTEGER; ., - , .
LIST = ARRAY [1 .., 1000] OF ELEMENT;
VAR ! N
E ,¢+ LIST; - N

NUM, J : INTEGER;
rl ’ . &
PROCEDURE PARTITION (VAR E : LIST; LO, HI :
- VAR MID : INTEGER);

VAR . N ) 5
KEY, TEMP : ELEMENT;
K : INTEGER; _ o

4

INTEGER;



3

"

"~

PN

~.

BEGIN (* PARTITION *)
" KEY := E [LO];
K ¢= LO;
REPEAT
REPRPEAT

LO := LO+1;

e UNTIL E [LO] >= KEY;
‘ REPEAT

HI := HI-1;. ~
UNTIL E -[HI]) <=
"IF LO < HI THEN ,
BEGIN A

A TEMP
E [LO]

E [HI]
END

| ONTIL LO >= HI;
< E [K] := E [HI); ' v
E [HI] := KEY;my ,
MID 1= HI ‘ .
END; (* PARTITION *)

PROCEDURE SORT (VAR E : LIST; LO, HI

: INTEGER);
VAR . AY .
MID : INTEGER; »
BEGIN (* SORT *)
IF LO < HI THEN ~
BEGIN ¥
. _ PARTITION (E, LO, HI+l, MID);"
/ f .SORT (B, LO, MID-1);

, SORT {E, MID+1, HI)
. END
END; (* SORT *)

BEGIN (* QUICKSORTL *)
' READ (NUM);

FOR J := 1 TO NUM DO
READ (E (J]);

# E [NUM+l] := MAXINT;
SORT (E, 1, NUM); .-
FOR J := 1 TO NUM DQ.

. WRITE (E [J)}

END. (* QUICKSORT1 *)

»
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' ' ., . ?
’ E APPENDIX 2.2 /////

(* This is a Pascal-C version of the quicksort programégf
appendix 2.1. It illystrates the use of VAR paramieters
to return resultsd from DOWN procedures in the slaves.

+

When the master creates portions of the list that are
neither too small nor too large, it sends them to the slaves
using DOWN procedure SLAVESORT. SLAVESORT, using the VAR
mechanism, returns only those portions that have been
sorted to update the original list in the master.

There are again two recursive procedures: MASTERSORT
to-handle the largest and smallest pieces in the master,
and SORT to handle ‘the protions sent to the slaves.

, Note how the COPY section is used to avoid duplication
of ‘code by making procedure PARTITION available to the
DOWN procedure. *) :

PROGRAM QUICKSORT2 (INPUT, OUTPUT); ‘4

N TYPE
, " ELEMENT = INTEGER;
LIST = ARRAY [l .. 1000] OF ELEMENT;

4 VAR . &
E : LIST; ‘ ~
NUM, J : INTEGER; ‘ S .
LARGE, SMALL : 'INTEGER; ' |

PROCEDURE PARTITION (VAR E : LIST; LO, HI : INTEGER;

‘ VAR MID : INTEGER);

? " . )

| VAR .

KEY, TEMP : "ELEMENT;

- K : INTEGER; e
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BEGIN (* PARTITION *)
- KEY" := E [LO];
K := LOT
REPEAT
REPEAT

LO := LO+1;
UNTIL E (LO] >=
REPEAT

HI := HI-1;

UNTIL E [HI) <=
IF LO < HI THEN
BEGIN
TEMP =
E [LO] :=
E [HI] :=
END T
UNTEL LO >= HI:
- B [K] .¢= E [HI]:
- E [HI] := KEY;
" MID := HI
.- END; (* PARTITION *)

LR

DOWN PROCEDURE SLAVESORT
CoPY 4
PARTITION; °

PROCEDURE SORT (VAR E
& VAR ‘
MID : INTEGER;
BEGIN (* SORT *)
IF LO < HI THEN
. BEGIN
‘PARTITION
SORT

END
END;' (* .SORT *)

BEGIN (* SLAVESORT *)
SORT (E, LO, HI)
END; (* SLAVESORT *)

'Y

«

Ml i
N
\

- > T
¢
KEY; . T, . ’{
KEY;q - .
E [LO]; ) S
E [HI); S '
TEMP
¢
. o
<
. 4 4
(VAR E : LIST; LQ.~HI : INTEGER) .-

L

“ .
: LIST; LO, HI. : INTEGER);

.
[ « ‘ v
’

o ~

(E, - LO, HI+l, MID);

(E, LO, MID-1);
SORT (E, MID+1l, HI)
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PROCEDURE MASTERSCGRT (VAR E : LIST; LO, HI : INTEGER);

. . VAR .o
"MID : INTEGER;
BEGIN (* MASTERSORT *) . ..
IF LO < HI THEN ~
BEGIN
' , . . IF (HI-LO < LARGE) AND (HI-LO > SMALL) THEN
3 L SLAVESORT (E, Lo, 'HI)
' L ELSE - , y
o BEGIN : ’ ,
PARTITION (E, LO, HI+l, MID); -
. _ MASTERSORT (E, LO; MID-1); ‘
. .- *MASTERSORT (E, MID+1, HI). )
END : -

3

g _ . END
END; (* MASTERSORT *)

- . BEGIN (* QUICKSORT2 *). k
. READ (NUM, LARGEs L); . b
B . FORJ := 1 TO NUM DO g

AR READ (E [J]); ’ , S
Fon E [NUM+l] := MAXINT;
: T MASTERSORT (E, 1, NUM); .
~ . WAIT (SLAVESORT); . c
' T .FOR J := 1 TO NU _ S L e
" WRITE (E [J)) ) T > .
- _END, (* QUICKSORTZ *) L .




.- E : LIST; N

, 52 APPENDIX 2.3 .
(* This is the master module produced\by the translator’
for the Pascal-C version of quicksort gn pendix 2.2, *)

\

PROGRAM QUICKSORT2 (INPUT, OUTPUT); N
VAR ZZRTSBUF:ARRAY [1..1500} OF INTEGER (*FOR PASCAL-C RTS*)

TYPE . :

ELEMENT = INTEGER;. ‘
LIST = ARRAY [1 .. 1000] OF ELEMENT

"4

. VAR . ) o ’ .

L

NUM, J : INTEGER;
LARGEaSMALL : INTEGER;

PROCEDURE PARTITION (VAR E : LIST; LO, HI : INTEGER?
. - VAR MID : INTEGER);
VAR AN _
KEY, TEMP : ELEMENT; . .
K : INTEGER;

*

-

PROCEDURE ZZPROl(ZZACTION INTEGER VAR ZZDATA: INTEGER),

PROCEDURE RTS2(ZZACTION:INTEGER;VAR ZZDATA: INTEGER) EXTERNAL

BEGIN RTSZ(ZZACTION ZZDATAJEND;

.BEGIN (* PARTITION *) : . .
KEY := E (LO]; :

K := LO; . . . -
REPEAT .
s . REPEAT ' . I o
- i LO := LO+l; -~ - : .
UNTIL E [LO] >=. KEY; o ‘
REPEAT ,
HI := ‘HI-1; \

UNTIL E [HI] <= KEY; ‘
IF LO < HI THEN : ) S
. : BEGIN . < .
: TEMP := E . '
E [LO] := E
E [HI] := T
, END :
UNTIL LO >= HI; . " b
E [K] := E [HI];
E [HI] := KEY;
MID := HI S



;ZZPRO1(35,L0); (*CHECK FOR ACTUAL VAR PARAMS TO DOWN.
’ PROCS*)
END; (* PARTITION *)

(*PASCAL-C RTS .DEFINITIONS*)
PROCEDURE RTS1 (ACTION:INTEGER); EXTERNAL;
PROCEDURE RTS2 (ACTION,DATA:INTEGER); EXTERNAL;
PROCEDURE RTS3 (ACTION,DATAL,DATA2:INTEGER); EXTERNAL;
}  SIZE: INTEGER ) ; EXTERNAL ;
FUNCTION RTS4 (ACTION,DATA:INTEGER):BOOLEAN; EXTERNAL;
(*END RTS DEFINITIONS*) t

PROCEDURE SLAVESORT (VAR E : LIST; LO, HI : INTEGER);
(*RTS REDEFINITIONS TO DEFEAT TYPE CHECKING*)
PROCEDURE ZZPROL (2ZACTION: INTEGER;VAR ZZDATA:LIST;

Z2ZSIZE: INTEGER) ;
PROCEDURE RTS3(ZZACTION: INTEGER;VAR ZZDATA:LIST;
ZZSIZE: INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
PROCEDURE ZZPRO2(ZZACTION: INTEGER; VAR ZZDATA INTEGER; . .
2ZSIZE: INTEGER) ;
_PROCEDURE RTS3(ZZACTION:INTEGER; VAR, 22DATA: INTEGER;
ZZSIZE:INTEGER) ; EXTERNAL;
BEGIN RTS3(Z%ZACTION,ZZDATH, ZISIZE)END; _
PROCEDURE 2Z2PRO3(2ZACTION: INTEGER;VAR Z3DATA:INTEGER;
ZZSIZE: INTEGER);
PROCEDURE RTS3(2ZACTION: INTEGER; VAR ZZDATA:INTEGER;
ZZSIZE:INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END; °

~ L

(*END RTS REDEFINITIONS*) )

/
BEGIN *
IF RTS4(96, 1)THEN BEGIN RTS3(6%,1, 1) (*NEW ACTIVATION UNLESS
z/ ' TERMINATED*)
ZPR01(65“£p2000), (*SEND VAR PARAMETER TO SLAVE*)

ZZPRO2(64,L0,2); (*SEND -COPY OF VARIABLE TO SLAVE*)
ZZPRO3(64,HI,2); (*SEND COPY OF VARIABLE TO SLAVE*)
RTS1(16)END; (*END DOWNLOADING*)

END; (* SLAVESORT *)

PROCEDURE MASTERSORT (VAR E : LIST; LO, HI : INTEGER);
VAR
MID : INTEGQER;

!

Q§PROCEDURE ZZPRO1 (ZZACTION: INTEGER; VAR ZZDATA:INTEGER); *
PROCEDURE RTS2(ZZACTION:INTEGER;VAR ZZDATA:INTEGER); EXTERNAL
BEGIN RTS2(ZZACTION, ZZDATA)END;

BEGIN (* MASTERSORT *)
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IF LO < HI THEN .
BEGIN -
IF (HI-LO < LARGE) AND (HI-LO > SMALL) THEN
BEGIN' RTS2(34,1);RTS1(0); (*RESERVE SLAVE

& LOCK BEFORE DOWN, ZCALL*) "

SLAVESORT (E, LO, HI); RTS1(1)END (*UNLOCK AT END OF DOWN
, CALL*)

ELSE
BEGIN

g PARTITION (E, LO, HI+l1, MID); ”

MASTERSORT (E, LO, MID-1);
MASTERSORT (E, MID+1, HI)

. END o

£ND

;ZZPRO1(35,L0O); (*CHECK FOR ACTUAL VAR PARAMS TO DOWN.

. PROCS*)
END; (* MASTERSORT *)

L]

BEGIN (*MASTER MAINLINE*) v ’

FOR J := 1 TO NUM DO ' .
READ (E [J1);

y E [NUM+1] := MAXINT; .

. MASTERSORT (E, 1, NUM); | :

RTS2(32,1) (*WAIT (SLAVESORT)®) :

RTS2(48;,1); (*INITIALIZE MASTER RT * ' \ -
(* QUICKSORT2_*) , |
READ (NUM, LARGE, SMAL B

-e

FOR J := 1 TO NUM DO

WRITE (E [J]). B
ARTS1(17) (* END PROGRAM *) ( .
END. - . o -

[ T
.

)
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. APPENDIX 2.4
‘

(* This is the main module,for the slave, cteated by
the translator for the Pascal-c\version of quicksort. *)

»

»

. VAR RTS:ARRAY [1..1500) OF INTEGER ( *FOR PASCAL-C RTS*)

- DOWNID:INTEGER;
PROCEDURE: DP1; EXTERNAL;
PROCEDURE ZZSTAT;EXTERNAL;
PROCEDURE RTS2(X,Y:INTEGER); EXTERNAL;
PROCEDURE RTS6(X:INTEGER; VAR Y:INTEGER) ;E
BEGIN

RTS2(48,0), (* INITIALIZE SLAVE RTS *)
ZZSTAT; (* SAVE.STATE TO RESTORE AFTER TERMINATION *)
REPEAT

RTS6(160,DOWNID); (* WAIT FOR DOWN PROC REQUEST *) .

CASE DOWNID OF ' '

1:DP1;

OTHERWISE

END; - co "
UNTIL DOWNID = -1 -
END,

»



(*

APPENDIX 2.5 .

1

This is the external module for DOWN ﬁ%ocedure

SLAVETRY in the Pascal-C version of quicksort. *)

(*$E*)PROCEDURE DPl;

TYPE

LIST = ARRAY [1 .. 1000] OF ELEMENT;

PROCEDURE . .
PARTITION (VAR E : LIST; LO, HI : INTEGER;
VAR MID : INTEGER); :

VAR
.+, KEY, TEMP : ELEMENT;
- K : INTEGER;

BEGIN (* PARTITION *)
: ' KEY := E [LO];

K s= LO; o
% REPEAT .
' REPEAT .
' ' LO := LO+1;
Y UNTIL E [{LO] >= KEY; .
REPEAT
HI := HIN; . .
UNTIL E [HI)] %= KEY; ‘
. "IF LO < HI THEN
¥ . BEGIN
: TEMP :t= E [LO]);
E [LO] := E [HI];
‘\‘”///’\b\\\ S E [HI] := TEMP
' — END _
UNTIL LO >= HI; *
~> E (K] := E [HI}; J
E [HI] := KEY; .
i+ MID := HI

END;

» (*RTS" REB@FINITIONS TO DEFEAT TYPE CHECKING*) (

( *END RTS: REDEFINITIONS*)

PROCEDURE DOWN;

(*BEGIN DECLARATIONS «FOR DOWN PROCEDURE PARAMETERS*)
VAR E,ZZBUF1:LIST;(*VAR PARAM & COPY FOR UPDATE CHECK*)
221X1:1..1000; (*INDEX TO SCAN FOR UPDATES -IN ABOVE VAR

. PARAMETER* )
VAR LO:INTEGER; (*VALUE PARAMETER*)
VAR HI:INTEGER; (*VALUE PARAMETER* )
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(*END OF DECLARATIONS FOR DOWN PROCEDURE PARAMETERS*j

. e

PROCEDURE SORT (VAR E : LIST; LO, HI .: INTEGER);

: MID : ENTEGER;
z ' A
. BEGIN' (*, SORT *) : -
IF LO < HI THEN

BEGIN

PARTITION (E, LO, HI+l, MID);

SORT (E, LO, MID-1);

SORT (E,” MID+l, HI)
END ,
END; (* SORT *)

\-N

»

-

( *PASCAL-C RTS DEFINITIONS*)

PROCEDURE RTS1(ACTION: INTEGER) ; EXTERNAL;

PROCEDURE\?TS3(ACTION:INTEGER;CHANGED:BOOLEAN;
WINTEGER) ; EXTERNAL; -«

( *END RTS DEFI IONS*)

(*RTS REDEFINITIONS, TO DEFEAT TYPE CHECKING*) L
"PROCEDURE ZZP ZZACTION: INPEGER; VAR ZZDATA:LIST; -
i SIZE:INTEGER); ,
¢ZACTION:INTEGER; VAR ZZDATA:LIST;
\ ) 2ZSIZE: INTEGER) ; EXTERNAL;
» BEGIN RTS3(ZZACTION,ZZDATA,2ZSIZE)END:
. » PROCEDURE ZZPRO2(ZZACTION:INTEGER;VAR SZZDATA : INTEGER;
. ZZSIZE:INTEGER);
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:INTEGER;
ZZSIZE: INTEGER) ; EXTERNAL;
BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
)i ~ PROCEDURE Z2ZPRO3(Z2ZACTION:INTEGER;VAR ZZDATA:INTEGER;
ZZSIZE:INTEGER); ‘
PROCEDURE RTS3(ZZACTION:INTEGER;VAR ZZDATA:INTESER; \
) ZZSIZE: INTEGER) ; EXTERNAL;
" BEGIN RTS3(ZZACTION,ZZDATA,ZZSIZE)END;
(*END RTS REDEFINITIONS*) '

» " PROCEDURE RTS

1

BEGIN (*DOWN PROCEDURE {ORE*)
ZZPRO1(75,E,2000)} (*RECEIVE VAR PARAMETER FROM MASTER*)
Z2BUFl:=E; (*SAVE COPY OF VAR PARAMETER TO DETECT CHANGES*)
ZZPRO2(74,L0,2); (*RECEIVE COPY OF VARIABLE FROM MASTER*)
ZZPRO3(74,HI,2); (*RECEIVE COPY OF VARIABLE FROM MASTER*)

. (* SLAVESORT *)
\///\\\\ SORT (E, LO, HI) .
®
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o

; | . o .
ZZPRO1(72,E,2000); (*BEGIN UPDATE OF VAR PARAMETER*)

FOR 2Z1X1:=1 TO 1000 DO BEGIN
RTS3(73,E[Z21X11<>Z2ZBUF1[Z21X1),2); (*CHECK FOR UPDATE*)
END; (*FOR ZZ1X1*)

RTS1(17)END;. (* END DOWN PROCEDURE CORE *)

BEGIN (*REGION FOR COPY SECTION ITEMS*)
~DOWN END; (*END COPY SECTION REGIDN*)

¢ .,@9"
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