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Abstract

A Turbulence Model for the Solution of Two Dimensional Internal

Flows by the Finite Element Method

Guillaume Houzeaux

The present work presents a method in implementing and validating a turbulence
model for incompressible and internal flows. The k-w turbulence model was used
for its pood behaviour under moderate and strong pressure gradient situations, its
numerical robustness. its simple boundary conditions and its capability of predicting
transition without the use of damping functions. The two turbulence equations arce
decoupled [from the mean flow system: they are solved in a segregated fashion by a
Galerkin finite element method and a direct matrix solver. This solution procedure
proves to be robust for the test cases performed in this work. The general charac-
teristics of the model are illustrated through five test problems which were chosen to
test its performance for simnlating simple shear flows (channel and pipe). shear layers
(hackward facing step) and channel flows with a moving wall. The simulations of the
channel flow permitted the comparison between different possible boundary condi-
tions for w: smooth-wall boundary conditions gave good skin friction predictions but
led to very steep gradients while rough-wall boundary conditions are easier to imple-
ment but slightly overpredict the skin friction. A two point wall function approach
was also implemented: the pipe flow simulation underlines the poor accuracy of such

a wiethod for predicting high-Revnolds number flows. The Chien k-s low-Reynolds

i



model was also tested to compare the k- model for the fully developed channel flow

and the case of a channel with a moving wall.
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Introduction

Compwtational fluid dynamics (CFD) is a vast domain. characterized by five
main munerical discretization methods (finite difference FDM | finite volume FVM .
finite element FEM . spectral and boundary element)'. by a great variety of methods of
approximation (least-squares, Galerkin. collocation... for the finite element method:
tau. collucation for the spectral methods; ete...). by many type of schemes to enhance
numerical stability (‘TvD , sUPG... for FDM and FVM : centered. backward. forward
differences for FDM : ete...) and by many techniques to improve the accuracy of the
solution (e.g. adaptivity) and to accelerate the convergence (e.g. multigrid). The
theoretical as well as numerical advances in CFD however. come up against the most

important and common feature of almost flows in industrial applications: turbulence.

0.1 Description of the Turbulent State

A rigorous definition of turbulence. in the mathematical sense. has yet to be found.
It is therefore more relevant in the present context to describe the turbulent state in

ters of its physical features. Among these. the most important are:

¢ Turbulence is three-dimensional (even if the original laminar flow or the initial

disturbance is two-dimensional).

Description of each of the method mentioned can be found in Anderson, Tannehill and Pletcher
(1984) for #pM Hirsch (1990) for #va . Raviart and Thomas (1028). Reddy (1993) and Zienkiewic,
(1995) for Fra Canuto, Hussaini. Quarteroni and Zang (1988) and Gottlieb and Orszag (1977) for
speetral, Kitagawa (1090) for boundary element.



e A turbulent flow is always time dependent: nevertheless, it is classitied as sta

tionary if the mean flow is time independent.,

o The flow variables (velocity. pressure, density ete...) appear to vary randomly

in space and time.

o Tworandom flow variables tend to be stochastically independent when distances

and time go to infinity.
e Turbulent flows are very dissipative and very diffusive.
e Strong mixing (due to its diffusive character).
e Strong rotationality.

e The energy flux injected from large scales to small scales is of the same order

as the dissipation due to viscosity.

e Sensitivity to initial conditions.

Some features are of the highest importance for industrial applications. TFor ex
ample. the strong activity of turbulence improves the mixing in combustion reactors,

increases the homogeneity in stirring tanks and may delay boundary layer separation.

0.2 Turbulence Modeling

Despite the many approaches and turbulence models that have been attempted
since the eighties, no universal model has heen devised. For the last twenty five years,
most engineers have been using the same model. namely the k-¢ turbulence formula-
tion. While significant progress has been achieved in numerics (gridding. adaptivity.
parallelization. etc...) turbulence modeling seems to suffer from the complexity. and
often from the lack of comprehension. of the phenomena involved. Fven the simplest
analvtical theory of turbulence. namely the self-similarity assumption of the homndary

layer. has recently been seriously questioned [Gad-el-Hak (199 1)].



.2.1 The Direct Approach

The motion of a fluid can be obtained from the principles of mass and energy
conservation and the fundamental principle of mechanics. namely Newton's second
law.  As the Navier-Stokes equations are the mathematical description of such a
motion. it is expected that they can describe deterministically the evolution of any
fluid. provided its initial characteristics are prescribed. Hence they are able to predict

turbulence.

Direct numerical simulations (DNS) solve the three-dimensional and unsteady
Navier-Stokes equations. The number of degrees of freedom (V') increases so dras-
tically with the Reynolds number? that one cannot soon expect to solve flows of
enginecring interest by DNS. The simulations, however. provide a useful database to
modelers. It permits for example to devise the proper viscous corrections necessary
fo integrate the k-¢ turbulence models up to the wall. The typical Reynolds num-
ber achieved by Direct Numerical Simulations is now around 10%, in relatively simple

geometries (e.g. channels and pipes).

To circumvent the huge size of the problems DXNS tries to solve. Large Eddy Simu-
lation (LES) seems to be a good alternative [Lesieur (1990)]. as the number of degrees
of freedom can be reduced notably, The sacrifice made when LES is preferred to DN
is in the subgrid modeling and the wall boundary conditions because the use of a
universal profile near the wall is indispensable. Table 0.1 shows the typical number
of grid points required to resolve the fully-developed channel flow [the data is from
Wilcox (1993b)]. The last colummn is the approximate number of grid points needed
to run the k-« model up to the wall. Tt should be stressed that the comparison to
the A-w model is not fair as both DNS and LES require fully three dimensional and
unsteady simulations.  For the last two methods. one should take into account the

minimun nurber of time steps needed to obtain valuable statistics. in order to obtain

. - . . . a . . ..
*Laundau and Lilsehitz (1959) derived an estimate of N ~ (Fl"—’)*: Constauntin. Foias,
*orit ca
Mantey and Terman (1985) derived anestimate related to the fractal dunension of the Navier-Stokes

attractor,
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Table G.1: Grid points required for channel flow. Re = 12300, See Wilcox

(1993b) for DNS and LYs results and present work for k-,

correct averaged quantities.

Industrial applications are still therefore far from the scope of LES: still, they
can provide pertinent information to the modelers and might help to understand the

underlying mechanisms of turbulence.

0.2.2 The Stochastic Approach

One way of achieving a numerical solution for turbulent flows is to take advantage

of the random character of turbulence by using a statistical method [Chorin (1993)].

The instantaneous flow variables are decomposed into a mean and a fluctuating

part as follows

F=7T+[ (0.1)

where the averaging can be defined by several different operations:

o Time arcraging:

L R YT B
F(.L)yme = Jin 7/: Wi r)dr (0.2)

T—

.. . . . g . 14 . '
where I is a weight function that satisfies lnn/_,.,% f,'” Wdr = 1. Tt is
generally set to unity for convenience. However. for compressible flows. W =

”(”."") for compnting the mean velocity and the averaging operation is cabled

Favre or mass averaging.



o Spatial averaging:

F(F)gpatial = hm i/_/// F(T. 7)dV (0.3)

This averaging is used for the study of homogeneous turbulence.

o [uscmble ave raging:
|
F(F Hensemble = hm T Z Fo(F. 1) (0.4)
—ov
where N is the number of identical experiments. i.e. with the same set-up and

running conditions.

Fven though the concept of time averaging is more intuitive. the ensemble averag-
tng is the most completely defined (e.g. any differential operation commutes with the
sumimation sign). For a stationary flow. the two averaging processes are assumed to
be equivalent: this is called the ergodic hypothesis. The mathematical properties
of ensemble averaging are assumed to be valid while the physical analysis is developed
in the framework of time averaging (e.g. for comparison with experimental or DNS
results). The generalization of the time averaging process to unsteady flow can be
realised as long as two time scales can be distinguished: one for the fluctuations and
one for the mean flow.

Applyving the averaging to the velocity and pressure fields. an averaged solution
of the Navier-Stokes equations can be obtained: the resulting equations are usually
referred to as the Reynolds averaged Navier-Stokes equations and were first
derived by Revnolds (1895). The models emerging from this stochastic approach are
called Reynolds stress closure models [see Speziale (1991) for a complete review
and Wollshtein (1990) for a classification and a general description of both stochastic

and direct approaches).

0.2.3 Reynolds Stress Closure Models

The Revnolds stress closure models can be classified with respect to their uni-

versality. The lirst approximation towards a closure was presented by Boussinesq



Boussinesq Hypothesis

Boussinesq introduced an apparent kinematic viscosity, the eddy viscosity ji ;.

and related the turbulent shear stress to the mean flow gradionts by:

v g Jr 05
=R dy + r (05

The eddy viscosity plays the same role as the molecular (or laminar) viscosity at
the macroscopic level. However. the eddy viscosity is not a property of the fluid, but
a property of the flow. There does not exist any universal law for determining g,

and an cmpirical expression mnst be found for each different type of flow.

Algebraic Models

Algebraic (or zero-equation) models are the simplest models of turhulence, The
main assumption is that a lump of fluid irx a turbulent flow behaves like a molecule,
carrying momentum from one region to another and creating a shear stress, ln 1925,
Prandtl introduced the mixing length {,,,, and the mixing velocity v,,,,. analogous
to the mean free path and the root-mean square molecular velocity in the kinetic
theory of gases. Hence. he was able to relate the turbulent shear stress 747 to the

mean flow gradient by setting

. ] dr
= = ‘s [IHIJ‘—_ 0.6
T 2/)1 » (0.6)

He also postulated that the mixing velocity could he expressed in terms of 1,,,,, as
dr .
Crnnr X [nuJ— (“l’
dy
Keeping in mind that 77 can be negative or positive according to the mean
velocity gradient. the turbulent shear stiess thus hecomes:
dT|dr
dyldy

7y 2

T'I = /)Illlf.’ ((,"\)

{]



where the constants of proportionality of equations (0.6) and (0.7) have been absorbed
in the definition of 1,,,,. The eddy viscosity is then defined as

dr

— 0.9)
dy (

pr =pll,,,

The elosure of the svstem now only requires an empirical expression for the mixing
: yreq g

lepgth. For the near wall region. Prandtl set
lpnr = Ky (0.10)

where & = 0,11 is the von Karmar constant. In 1956. Van Driest corrected the

latter expression by introducing a damping function:
boie = wy (1 = 7 14) (0.11)
where the constant A is 26 and
gt =yt v (0.12)

is the dimensionless distance from the wall. . is the friction velocity and is the

velocity scale of a boundary layer:

Ue=\/Tu/p (0.13)
where
Ju
= = 14
Tu i/l ay (0 )

and v/ s the corresponding length scale,

Smith and Cebeei (1967) and Baldwin and Lomax (1973) proposed two algebraic

models based on the mixing length hypothesis with Van Driest corrections.

The subscript w denotes value at the wall.

-



Figure 0.1: Typical examples where the normal distance to the wall is not

uniquely defined.

One-Equation Models

One-equation models involve one partial differential equation and, to close the
system. empirical expressions for the unknown variables. As with algebraic models.
one-equation models require an a priori knowledge of the flow, in order to specify
the turbulence length scale. Prandtl (1943) and Emmons (1951) modeled a trans
port equation for the turbulence kinetic energy and closed the system in terms of the
turbulence length scale. Baldwin and Barth (1990) and Spalart and Allmaras (19%92)
devised a partial differential equation for the eddy viscosity. Goldberg and Ramakr

1

ishnan (1993) devised a pointwise® version of the Baldwin-Barth models and tested

it extensively on industrial flows: their results show that such a model can predict

turbulent mean flow properties well.

Two-Equation Models

The Boussinesq Eddy Viscosily Approrimation

In engineering applications. the most widely used rodels. namely the two-equation

models. are based on the Boussinesq eddy viscosity approximation. Unless they

TLhe original version imvolves near wall danping funetions that requare the normal distanee from
the wall, this difficulty is circunisvented by these authors,



provide a good compromise between universality and cost and can account for history

effects, they assnme isotiopy of the Revnolds stresses.

All two-equation models involve an equation for the turbulence kinetic energy (/).
‘This quantity has the advantage of being easily measurable. and bheing simply detined
in terms of the fluctuating velocity components. In order to close the system. a second
equation involving the length scale (1) is required (the eddy viscosity is given by vy =
114). T'wo-equation models can casily be devised: the partial differential equations
must contain the major physical processes (couvection. diffusion and production).
‘The closure coeflicients are chosen so that the equations satisfy some well known

behaviors (e.g. decay of isotropic turbulence, logarithmic boundary lavers...).

The best known two-equation model is the k- model. introduced by Launder and
Spalding, (1972). (1971). The model was initially used with the wall function approach
in order to avoid the full calculation of the boundary layer. Since then. several low-
Revnolds number versions have been devised. using empirical damping functions.
including the Jones and Launder model (1972). Launder and Sharma model (1974).
Lam and Bremhorst model (1981). Chien model (1982) and. more recently. the Yang
and Shih model (1993). The major drawback of the damping functions is their lack
of universality: also. they often require the normal distances to the wall which can
bein complex geometries, a difficult task to define: figure 0.1 shows two examples

of configurations where the evaluation of the normal distance is not unique.

The extensive validation of the model during the eighties has brought to the fore
its poor performances in moderate adverse and favorable pressure gradient situations
[see Wileox (1993a)]. The model is also known for predicting extensive production of
turbulence in shear layers. and hence underestimating recirculation lengths.

he & & turbudence model was devised in 1912 by Kolmogorov. It was improved
by Saflinan in 1970 and by Lauuder and Spalding (1972). Since 1972. it has been
thoroughly tested by Wilcox (1993b). Tt will be studied throughout this thesis. in the

framework of internal Hows.,
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Figure 0.2: Importance of anisotropic effects in industrial flows: (a) Flow in a
rectangular duct (Speziale 1991). (b) Flow over an airfoil at 15.3"

angle of attack (Lien and Leschziner 1991).

Other two-equation models have been considered: Zeierman and Wolfshtein (1986)
devised a two-equation model (A-k7) based on the turbulent time scale 7. Smith
(1990) developed the A-kl model. Speziale. Abid and Anderson (1990) (k-7 model)

derived a transport equation for the turbulent time scale 7.
Anisotropic Eddy Viscosity Models

Linear eddy viscosity models cannot simulate strong streamline curvature effects
as well as rotation and buovancy effects as they are mainly dictated by the anisotropic
nature of the flow. The isotropy of the normal Revnolds stresses predicted by the
Boussinesq approximation can be partly corrected by implementing an anisotropic
eddy viscosity model. These models are also called non-linear eddy viscosity maod-
els because the resulting Reynolds stresses are quadratic, or cubice functions of the
mean strain rate and the rotation tensors [e.g. see Cho. Craft. Launder and Suga
(1993) or Speziale (1937) and (1991)]. Figure 0.2 (a) shows the turbulent secondary
flow in a square duct simulaied by Speziale’s non-linear k-2 model (1987). whereas it

could not be captured by a simple linear eddy viscosity model.

Second-Order models

Revnolds stress models (RSM ) are based on the solution of individnal transpor

10



equations for all components of the Revnolds stress tensor. The recourse to such mod-
els may be inevitable as the geometries and associated flows enconntered in industrial
applications are generally complex. For example. two-equation models do not allow

for negative production which can occur in certain cases such as impiagement jets.

RSM can account for strong non-local and history effects on each Reynolds stress
component.  ‘They also better describe streamline curvature. swirl and body force
effects as. unlike eddy viscosity models, production and convection are solved for

each component individually.

Figure 0.2 shows two typical examples of the importance of the anisotropic effect
in industrial flows, Linear eddy viscosity models will not capture the secondary recir-
culation in tie square duct; neither will they predict recirculation at the trailing edge
of the airfoil. Launder (1989) presents second-moment closures and their applications
to industrial flows (conical diffuser. rotating duct. flow around bends) by comparing

a RSM to an isotropic eddy viscosity model.

Several versions have been devised in the last two decades. including the Launder-
Reece-Rodi (1975) model, Wilcox (1988) multiscale model and Hanjali¢ and Jakirli¢
(1991) low-Reyuolds number model.

Even if the number of additional equations is high (seven or more), the cost is not
directly proportional to the number of equations as the assembly of the equations can
be shared. With the development of computer resources. Reynolds stress modeling
could become a more and more attractive method in industrial computational fluid

dynamics.

0.3 The Future in Turbulence Modeling

In the framework of industrial applications. researchers are now principally devel-

oping non-lincar eddy viscosity models and second order models. The formers have

11



the advantages of the two-equation models. i.e low cost and completeness®, while
the second order models can provide an accurate desceription of the Revnolds stresses,

but generally requires finer meshes to accurately solve for the near-wall gradients.

The main weakness of these approaches remains the treatment of the near wall
region. The flow must follow the “universal™ logarithmic law and therefore the field

of application is limited.

0.4 Thesis Content

The Numerical Framework

The numerical code in which the current turbulence models are implemented is
called FENSAP (Finite Element Navier-Stokes Analysis Package). It solves for the
two-dimensional mass averaged. steady. compressible Navier-Stokes equations in con-
servation form. The energy cquation is reduced to an aigebraic form by assuming
constant stagnation enthalpy and the laminar viscosity is expressed in terms of tem-
perature via Sutherland’s law for air. The momentum and continuity equations are
solved by a finite element method. in a fully coupled and implicit form. First or sece-
ond order artificial viscosity terms are added explicitly in the equations to control the
effects of odd-even decoupling and to prevent oscillations near discontinuities. Fqual
order interpolation is used for every variable with quadrilateral bilinear elements. The

surface and contour integrals are calculated with a Gauss-Legendre quadrature,

Justification of the Choice of the A~ Model

A two-equation model was preferred to more complex models (such as ®8M) or the

simpler zero and one-equation models because it is a good compromise between the

A model is said to be complete if it does not require any a priori hnowledge of the computed
flow.



number of equations and efficiency. Two-equation models are also the simplest com-
plete models. coutrary to algebraic or one-equation models which need an empirical
expression for the mixing length. Additional eflects can be captured (as mentioned in
the last section). by implementing a non-linear eddy viscosity model. which requires

very little additional assembly time.

The k-w model was preferred to the k-z model for several reasons:

o The integraiion up to the wall can be made without the addition of damping

functions because the model predicts transition [Wilcox (1994)].
e The model allows a simple Dirichlet boundary condition for w on a wall.

e Roughness effects and mass injection eflects [Wilcox (1988)] can be directly

incorporated through the w boundary condition.

e Furthermore. the model is known to perform better than the k- model for
internal flows, but not for external flows [see Wilcox (1993b) for comparisons).
In strong adverse and favorable pressure gradients [Wilcox (1993a)]. the A-w

model also performs better.

The use of wall functions is necessary when simulating high-Reynolds number
flows to avoid a large number of grid points in the near wall-region. The finite
element method nevertheless permits the use of transmission elements (also called
logarithmic elements) in the near wall region via specialized interpolation functions.
This method allows the solution of the averaged Navier-Stokes equations up to the
wall and the imposition of the no-slip condition at the wall. For a complete description
of the method. see Manouzi-Fortin (1991). Haroutunian-Engelman (1991} and Ghaly.

Habashi and Peeters (1994).

The Contribution to FENSAP Code

The present work consists in implementing the k-« turbulence model using the

finite element method. in both low (including low-Reynolds number corrections) and
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high-Revnolds number versions (wall function approach). The model is validated for
internal flows in low-Reynolds number situations and tested for one high-Revuolds
number flow. The Chien’s low-Reynolds number version of the &-¢ turbulence model

was also implemented and compared with the A-w model for two test cases,

One test case was presented at the ERCOFTAC Workshop held in Karlsruhe, Ger-
many in April 1995 and compared well to experimental data and other participants’
results: e.g. Haroutunian [see Rodi, Bonnin and Buchal 1995] who presented the k-

model using FEM and the smooth wall boundary condition condition for w.



Chapter 1

Governing Equations

1.1 The General Equations of a Fluid

1.1.1 Basic Equations

The governing equations for a steady. compressible and viscous flow are!

(pl!).l = 0
1
(privt), = —.r/”P.,+[2;1(.5"-'—-55,'1(-3,)]
oJ
)
- 7 p
h= (7—1)211\—[’2
o Ta + 104K ( T )3/2
Ha T4+ 104K \7,
P = pRrT

where S is the strain velocity tensor defined as

St/ _ (I.«.J+l.J.a)

o] — o) —

(‘(/,”l'f” + I(Iml,:;n)

.

. . . . . .t ~ .
PIhe quantity 7, is the contravariant derivative defined as t /), = %— + Ik,



' is the " contravariant component of the velocity: 2 is the pressures 1 is the
temperature aud the t''s are the contravariant components of the velocity: pis the
density: ut is the dynamic viscosity: R is the gas constant and 3 is the ratio of specific
heats: Hx = ha, + T2 /2 is the total specific enthalpy of the incoming flow. where b

T .o I P . .
Is its internal specific enthalpy and T /2 its kinetic energy.

Equation (1.1) is the continuity equation: for incompressible flows, it simply
reduces to t!, = 0. Equations (1.2) are the Navier-Stokes equations. written in
conservative and contravariant forni. They apply for Newtonian and homogeneous

fluids. The mass conservation equation (1.1) is not resolved in its exact form in the

added in the continuity equation. Equation (1.3) is the reduced and simplified form
of the energy equation when H, =constant is assumed. It is valid for calorically
perfect gases undergoing steady and adiabatic processes. provided the work done by
the viscous forces is negligible? and the fluid remains chemically inert. Equation (1.1)
is the Sutherland’s law for air (valid over the range between —150°C" and 1790°C"),

while the last equation is simply the perfect gas equation of state.
1.1.2 The Boundary Conditions

Solid Walls

Experiments show that a fluid will stick to a solid surface, The no-slip condition

can be written as
FI = Uyan (l-s)

where 1 is a tangential vector to the surface.

For impermeable surfaces the normal velocity to the wall is zero. This is known

*This approximation is stronger for turbulent flows than for lannnar flows as the veloeity gradients
in the boundary layer are greater
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as the no-penetration condition:
l-?ﬂmd * ﬁ = l-;wall ’ ﬁ (l..())

where 1 is a normal vector to the surface.

As a result of these conditions:

l_‘:ﬂuld = Uwall (1'10)

Inlet and Qutlet Conditions

Inlet and outlet conditions can be derived from mathematical as well as physical
considerations. In the case of Dirichlet boundary conditions, both approaches lead to
the same conclusion as in the framework of finite element methods, the imposition of
an essential boundary condition leads to the imposition of the flow variable considered.
For Neumann-type conditions. however, the correspondence is not straightforward.
Natural houndary conditions obtained by deriving the weak formulation of the Navier-
Stokes equations arc not necessarily intuitive from the physical standpoint. It is also
the case for the boundary conditions leading to a well-posed problem (with a unique

and stable solution).

At an inlet. t and v arc imposed as Dirichlet boundary conditions. In the limit of
incompressible flows (small Mach numbers). this is equivalent to imposing the mass

flow rate.

The pressure will be generally imposed at outlet, together with the fully-developed
flow assumption, specifically dt/dx = v /Dy = 0. In section [5] it will be shown that
these assumptions are compatible. The latter conditions cannot capture develop-
ing flows: the domain must therefore be taken long enough to let the flow develop
naturally [see Bruneau and Fabrie (1994) for a discussion of downstream boundary
conditions and Pironneau (1986) for a general discussion on boundary conditions for

pressurce}.
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1.1.3 Non-Dimensionalization

The variables are non-dimensionalized according to the following transformations:

p— P P (poct)P

e A R R L L SR T TR (L.11)

where p.. Ux. [, pta are characteristic values of the fluid and the geometry considered.
Replacing equations (1.11) into the Navier-Stokes equations(1.2). the non-dimensional

form is obtained:

anyat . 1 7. t - 2 .,
(ACICY),, = =gk, + 4= [ﬂ(g”'v n g = gl )] (1.12)
Re ' 3 N
where Re is a dimensionless parameter, the Reynolds number. dclined as
sl
Re = P=Ux (1.13)
Hec

The Reynolds number is of capital importance: it represents the strength of the
convectiveeffects (non-linear term) over the action of viscosity. As the Reynolds num-
ber increases, small perturbations can disturb the mean flow. by amplifving them-
selves (linear growth) or by interacting with others (non-linear growth) [See Stuart
(1958)]. The flow can no longer be treated as steady and regular, and the resolu-
tion of all the scales of motion is necessary. If such fine resolution is to be avoided.
these scales must be filtered by way of operators: this is the purpose of the averaging

process, developed in the following section.

For the sake of clarity, the * notation for non-dimensional variables will be dropped.

1.2 The Averaged Equations of Motion

1.2.1 The Reynolds Equations

The filtering of the Navier-Stokes cquations leads to a new set of eqnations.
Whereas the form of the continuity equation does not change. the averaged mo-

mentum equations introduce a new unknown. the Revnolds stress. A new set of

IN



equations can be derived for the six components of the Reynolds stress: the solution
of the individual components is in the framework of second-order models. As the
exact formulations of the latter equations are quite difficult to model. an approx-
imate model will be devised for the Reynolds stress. derived from the Boussinesq
eddy viscosity approximation. This model will define two other unknowns, the eddy
viscosity jep and the turbulence kinetic energy k. An equation for the turbulence
Kinetic energy will be devised and the eddy viscosity will be expressed in terms of
k and a new variable w, known as the specific dissipation rate. The derivation will
be realised within the context of steady, incompressible and constant viscosity flows
and in dimensional form. Generalization of the concepts to compressible flows will be
briefly presented in the last section. As a starting point, the velocity and the pressure
are written in terms of their mean and fluctuation components (with respect to time

averaging):

o= T4 (1.14)

-

P = P+p (1.15)

The Continuity Equation

Substituting the latter expression for 7' into the continuity equation for an in-

compressible flow and after time averaging. the continuity equation becomes
v, =0 (1.16)
and for the fluctuation velocity,

W =0 (1.17)

The momentum equation
Deline the Navier-Stokes operator acting on a velocity field ¢ as:

_\‘(l'.) = /)l’”( :" + ‘(Im’).n _ /l‘(l‘l,'l.tjll (il«.\\)
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As the steady Navier-Stokes equations describe the spatial evolution of the in
stantanecous quantities, they give:

A =0 (1.19)

Substituting expressions (1.14) and (1.13) for the instantancous guantities, equa-

tion (1.19) gives

T = (7 — g, (1.20)
with

FU o= —PgY 4 S (1.21)

T 1) (g™, -+ g ) (1.22)

Equations (1.20) are called the Reynolds equations. The term —putud is called
the Reynolds stress tensor: its components are associated with the correlations be-
tween the fluctuation velocities and originate from the non-linear term of the Navier-

Stokes equations. the convective derivative.

1.2.2 The Energy Equation

After splitting the mean and fluctuating parts of the velocity. the instantancous
total kinetic energy is:

1 ] l
', = ;(_"i", + —u'u, + ;(l_"u, +Tu') (1.23)

-y, = =TT, + u'u, (1.24)

4

where the energies are given per unit mass. Defining the specific turbulence kinetic

energy k as’

| —oo

k= Eu'u, (1.23)

l'—o_— .

= —u-u {1.26)
2

=t

~1
"
~h
+



eqnation (1.24) simply states that

170, - 1 .
U = 20T, + k
Y | U
total kinetic mean flow turbulence kinetic
energy kinetic energy energy

The averaging of the energy equation (1.3) then gives:

=2
no= bkt — (1.28)

1.2.3 The Equation for the Reynolds Stress

Recasting the Navier-Stokes equations in terms of the mean values of the velocity
components. a new unknown is introduced, the Reynolds stress tensor. Before de-
vising a two-equation model. an equation for this tensor is needed. Performing the

following operation:

WA () + AN (1) =0 (1.29)

and substituting equations (1.14) and (1.15) gives:

prt(uiut),, = —putun T, — putw T, + plgtul + g7 ul)

+ [;lg”l(u‘u-')J — plurwu™) — plgmw + gﬂ‘u')] —2ug™ uly u

WJ

which is the required equation for the Reynolds stress? —pR: it can be rewritten in

a more compact form. specifically.
pr R = pP +TIV + /ly"lRf{ -V = peY (1.30)
a

where

TThe Reynolds stress tensor is written in terms of a new tensor BY = w'u/. Nevertheless, R"
can be more generally written as RV(F P 0U) = o (F 0w (F.17). For example, in the case of
homogenrous turbulence, its expression reduces to RY = RY(F) where F= 7 - F.
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RY = ww

N} e __ junyr inyy
Py = —-R"T, - R"TY,

HY = p(gm™ul + gmut,)

(‘:Jn _ pu'uJ un + P(ym w + !IJYI‘II)

5"1 = 21’{]”’ U','n “tl

P represents the production through the mean strain rates. Y is the pressure
strain correlation term; it redistributes energy via pressure fluctuations. ('V" contains
a third order correlation component and is a diffusion term. £ is the dissipation rate

tensor. and represents the viscous dissipation.

The difficulty introduced by the equation for the Reynolds stress is quite evident;
the non-linear term of the Navier-Stokes equations has generated higher order cor-
relation terms. including pressure-velocity correlations: this is the so-called closure
problem. At this point. some approximations are necessary to maodel those high or-
der correlation components. Equation (1.2.3) will be the starting point to devise the

equation for turbulent kinetic energy.

1.2.4 The Boussinesq Approximation

For practical engineering applications, approximations are needed to avoid solv-
ing for the six additional equations. Before making any assumption regarding the
modeling of the Reynolds stress. it is worth recalling some important physical and

mathematical aspects:

e It is known from experience that turbulent effects are more likely in zones of

strong velocity gradients: the Reynolds stress would be directly related to the

g

mean strain velocity tensor S .

P o

o [t must be symmetrical. e vt/ = wu'.

o It must vield positive energy components, e w'n, 20 Y = 12,3, and henee

positive turbulence kinetic energy. 'This is known as realizability.
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o The Revnolds stress tensor should leave the Reynolds equations invariant under

translation and rotation”.

o The fluctuating momentuin equations are invariant under an arbitrary transla-
tional acceleration. Within the limit of two-dimensional turbulence. the Reynolds

stress should be completely frame indifferent [see Speziale (1981) and (1983))].

o It must be dimensional invariant and yvield similitude under the Reynolds num-

I)(']'.

Following the Boussinesq eddy-viscosity approximation (0.3). the Reynolds stress

tensor is directly modeled as follows:
— i 2
—putw =2up ST — ;;plfg"’ (1.31)

where yrq is the isotropic eddy-viscosity. This model is called isotropic because
the eddy viscosity is a scalar®. While the validity of the symmetry is evident (¢ =
¢ = S = S the positiveness of the turbulence kinetic energy will be shown®.
Taking the trace of the Revnolds stress matrix gives,

o2
—payutud = 2ppg, 87— 5Pk99" (1.32)

with summation over the repeated indices. From the definition of 5% (1.7).

9. oY —
29,87 = g, 9"T, + 9,9"Th
— Lt} 7
- 6nl Wl + 6nl '

— = -]
- l.l+“.l

Using the time averaged continuity equation of an incompressible flow (1.16). the

latter term thus vanishes. and (1.32) gives

2
—putu, = —=phé!
putu 3;7 X

iSee Mobammadi and Pironneau (1981} for the demonstration of this item.

"Latensive research on anisotropic eddy viscosity models (also called non-linear models) has been
recently carrted ont.see e.p Cho, Craft. Launder and Suga (1995).

“Unfortunately. the normal stress components resulting from the Boussinesqg eddy viscosity ap-
provimation may violate reahzability if gy s not chosen properly
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which finally gives

which yields positive turbulence kinetic energy %u'u, provided & > ¢

1.3 The k-w and k- Turbulence Models

1.3.1 The Equation for the Turbulence Kinetic Energy
Multiply equation (1.30) by ¢,, and simplify term by term:

g, T Ry = g, " ('),
= T'(g,,u'w),

"’\',n

N

= 2

)

~h

= 2
g, P = —g, (T, + utut)

= =2atumgT,

g,V = gup(g'"ufn+_(/f"uf")

= pélwh +6u,)

= plul, +uy)
=0
pg R = g, [/ly”’(mm).z]

Gy "
= [.“.(/"l(gu “‘“J)J]
= [‘.Zﬂg"‘ k_l] .

= 2\-_"-(//6/\')

W



9,00 = g, [pireen + plgTe + g

= [/m'u,cﬁ' + p(éJ” w + é,"u‘)]

Wn

= [u" (putu, + 2p) ]

W

.(/”5"’ = 2.(]‘] Vgnlu:’n ”:l

= 2wul, u’

hence. the equation for & becomes

Tk, =P/p—c+ |vgk, — w (’i,ﬂ+ﬁ> (1.33)
2 )]
with

l pLN) .
P o= spg,l (1.34)
= —putuw'g, U, (1.35)

|

s = 50,5Y (1.36)
= l/g,_,_(/"lll',]nlltl (1.37)
= wvu',u (1.38)

¢ being the turbulence dissipation® and P the production term® of k. For an
incompressible flow T, = 0 and p is constant. equation (1.33) can be rewritten in its

conservative form:

(pr'k), =P —ps+ [pg”h, —w (/’E‘,ﬂ‘ + p) (1.39)

J
The correlation term needs to be modeled in terms of known quantities. This is

a closure approximation.

1.3.2 The Equation for the Specific Dissipation Rate

The quantity w is called the specific dissipation rate. Consider an eddy of

chavacteristic length £ and characteristic velocity k1/2; the eddy turnover time 7y e r

for sometimes referred to as the rate of dissipation of turbulence energy

"I contains g to be consistent with the notation used in the compressible case.



is defined as the time it takes for the eddy to lose its energy and its identity:

L

Tturnover X /\‘l/

te

which is the reciprocal of w. Actually. there does not exist a rigorous definition of w in
terms of velocity. i.e. there is no explicit formula involving «w and velocity components.
The dimension of w is s~!. With dimensional arguments, it can be generally written

as

5
w o= ——

3k
which defines 37 For high-Reynolds number flows, .9 is simply a constant of pro-
portionality. However. for low-Reynolds number flows, its expression depends on
the turbulence Rexvnolds number. The turbulence Reynolds number is defined as the
square of the ratio of the large eddy time scale & /s to the Kolmogorov time microscale
(#/2)"2 In terms of ¢,

A.'Z
Rep = — (1.-10)

vV

The specific dissipation rate w can then also be viewed as the rate of dissipation
per unit turbulence kinetic energy. Hence. by way of dimensional analysis. a general
equation can be derived where the major physical processes are represented and mod-
eled. Kolmogorov (1942) was the first to derive an equation for w. The actual form
of this equation is now somewhat different, since the source term was originally not
included:

w

(pr'w)s=aTP - B’ + (0 + 5—'— )g"w, ] (1.11)

L WJ

1.3.3 The k- Turbulence Model

The system of equations must be closed. The correlation term appearing in the
expression for k& (1.39) behaves like a transport-like term. It is modeled as follows

[see Mohammadi and Pironneau (1994)]:

w (/)i.-)“—' + p) = —u(/'J k., (1.12)

T
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As mentioned by Wilcox (1993h). this expression just redefines a new variable o

experience shows o, can be chosen to be constant. Equation (1.42) can be directly

snbstituted into equation (1.39). The Reynolds-averaged Navier-Stokes equations.

with the k- turbulence model can be written as!?

Conutinuity cqualion:

(pr')s = 0

Momenlum equations:

2 1
(prith), = —y”(”+§ﬂk) +[201+ﬂrﬂﬁ”—-r¢%%)
’ W .

3

Ene rgy cquation:

24 P
p = -
v~ 1) — =2k

Fquation for k:

(pt'k), =P =3"pck+ [(/1 + ﬂ)g” l.‘_,]
T J

Equalion for &

' o' ) . ir :
(pr'w), = arP- Fpa? + [(/t + %—)g Jw, ]
w W
with
Lk
pro=a’p—
W

and the six closure cocofiicients are

k- closure coeflicients
F=3/10 J = 9/100 o = 5/9 a =1

ay = 1/2 (T__,=]/2

T0For sake of elanty, the overbar notation is omitted

|,

(1.43)

(1.44)

(1.16)

(1.47)



The values of the six closure coeflicients are calculated by comparing the model to
two experimentally well-established test cases [vee Wilcox (1988)]: decaving isotropic

turhulence and incompressible constant-pressure boundary lavers.

(ontrary to the k-2 turbulence model. the standard k-« set of equations can he
integrated up to the wall without any transformation. The original A- model was in
fact devised for high-Reynolds number flows; the extension to low-Revnolds number
flows can only be done by using empirical near wall damping functions!

Low-Reynolds Number Corrections

While A-w turbulence model is valid through the viscous sublayer. Wilcox (1991)
proposes to modify the closure coefficients in order to achieve asymptotic consis-
tency. i.e. to predict the limiting behaviour of the turbulence variables and the
Reviclds shear stresst. The closure coeflicients are corrected as follows:

) o+ Rer /R
o’ = —“—-—r—/—i (1.1
1 + Re '1‘/[1);{
5 ap+ Rer[R
Dot ferffy e (1.50)
9 1+ Rey/R,
;o= 9 5/18 +(Rep/Ry)

1.3
100 1 (fr/R,)! (1.41)
with
k-« low-Reynolds number closure coefficients
Ri=6 It,=21/10 Ry=6 oj=3/3 ag=1/10
and the turbulence Reynolds number is defined as
L
Rop = — (1.52)
vw

The A-w model with low-Reynolds number corrections will be referred to as the

low-Reyvnolds number k-« turbulence model.

HGee Wilcox (1993a) for a detailed cotnparison of the two miodels i fow-Reynolds mpnber ciss

Plhese modifications faill in predicting the asy miptotic heliavionr of the Reynolds shear stross,
Wilcox model gives 7, ~ g instead of 7., ~ ', However it prediets the exact beliaviors of b and

= /k.



1.3.4 The k- Turbulence Model

The exact equation for ¢ can be derived by performing the following operation:

p(w? N0, + N0 ) = vgyg™ (N (0) o+ 0 N(0)0) =0 (153)

The final expression is quite complex and contains triple correlation terms. After

modeling the correlation terms, the standard k-¢ turbulence is written as

Fquation fork:

(k). = P pet [+ gk, (L31)
Tk J
Fquation fore:
, & &2 0T, ..
(p'2), = CaP = Cape + [+ L)y, | (1.5%)
k k o y
with
pr = pCpm (1.56)

o]

and the five closure coefficients are

k-z closure coellicients

=192 ¢, =00 or=10 o =1.3

Ca =111

<2

The standard formulation of the &-¢ turbulence model cannot be integrated through
the viscous sublayer. In order to simulate low-Reynolds number effects. several mod-
ifications to the original model have been proposed since Jones and Launder (1972)
devised the first low-Revnolds number &-2 turbulence model. The viscous corrections
permit the achievement (or the partial achievement) of asymptotic consistency. The
closure coeflicients are multiplied by damping functions and. in addition. ¢ is redefined

in terms of 7 as

€y

i
(n
-
14,

(1.57)
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where gq is the value of = at y = 0. The equation for & can gencrally he written as

(pr's), = ('snfnilf’ - szfz/’% +E+ e+ %)y"’:‘..] (1.58)

£ N

where

&
pr =, f— (1.59)

-

and f,. fi. f,. o and E are determined empirically.

Chien Model

Chien (1982) proposed the following viscous corrections:

fo = | — -ounay (1.60)
o= 1 (1.61)
fro= 1= 022wy (1.62)
E = _2/,—52—,-'1*/2 (1.6:3)
y
A.
fy = 2/111—2 (1.61)

where y is the distance from the wall. The constants were calibrated for the [ully
developed channel flow while the expression for ¢ is the exact asymptotic hehavior

of the dissipation (called wall dissipation).

1.3.5 Wall Boundary Conditions for the Low-Reynolds Num-
ber Approach

The separation of low-Reynolds number and high-Reynolds number approaches
stems from the very sharp gradients encountered in the near-wall region. The firet
approach is generally preferred as it does not involve any universal profiles assumption.
For high-Reynolds number applications. it is necessary to switch to the other iethoed
as the full solution of the near-wall region wonld require too many grid points: this

will be discussed in the section [1.3.6].
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k Boundary Condition

As a result of the no slip condition for the mean and fluctuating velocity. £ is
simply zero at a solid wall.
¢ Boundary Conditions

To derive the houndary condition for <. the fluctuation velocity components u.v

and w are first developed in a Taylor series '
uy) = ay +ayt+ O (1.65)
o(w) = by + by + O@’) (1.66)
wly) = oy + oyt + O (1.67)

where a, = a (. 2). b= b(r.2). ¢, = ¢(xr. z)and y isthe normal distance to the wall.
The substitution of these expressions into the continuity equation for the fluctuation

velocity at y = 0 gives @, = 0. Hence

| —

ko= (0 + 24 u?)

.

| —

= =(aly® + P+ aay’t + e’ + O@Y))

N

t

= Ay'+ By’ +O(y") (1.68)

and

du, du,

= pla? + Iy + vf +derey + O
= (A +2By + O)) (1.69)

where

2
a I

+

¢

—
|
—r

(1.70)

2

B

ayay+cies (1.71)

BFor the sahe of elanty the derivations will be performed 1 Cartesian coordinates.

31



From equations (1.68) and (1.69). several exact boundary conditions for & can he

devised. For examiple.if ¢ is directly imposed on the wall;

d*k | 7
S = VT : Tl
P or (1.77)
VAN
so= M| === K
Cu 1 ( (I)'I] ) (l l{)
If 2 is not needed on the wall. equations (1.68) and (1.69) also give
. k
lime=2r— (170
y—0 y*

The latter equation is used in the Chien’s low-Revnolds number model to define

gg. The boundary condition for & is therefore:

de=0 (1.75)
« Boundary Condition for a Smooth Wall
Knowing that w = /(.37 k). equations (1.68) and (1.69) leacd to
] 2y
limw = , (1.76)
y—0 Iyt

The singularity at y = 0 does not allow to impose this boundars  conditions on
the wall. The treatment of this singular boundary condition for w will be presented
in section [3.3.1].

By doing a sublayer analysis. Wilcox (1993h) simplifies the: momentum, & and @

equations for an incompressible flow and obtains:

v

w=T1.2—
3yl
3 24

asy — 0 (1.77)
kxy

which are unfortunately not the right asvmptotic behaviors deseribed by equations
(1.68) and (1.76). However. the implementation of the low-Rexnolds number corree
tions described in the previous section permits to achieve asvinptotic consisteney for

both w and k (equations (1.68) and (1.76)).
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« Boundary Condition for a Rough Wall

An interesting property of the w equation is that it admits solutions with finite

values on the boundary. Introducing a new quantity Sg:

v
wy=—~Sp at y=10 (1.78)
v

By comparison with experimental results. Wilcox (1988) gives the following rela-

tions for Sy

[ [(50)° o
(E) for kf; < 25
Sp= 4 (1.79)
1
L_P for kf; > 25
\ k%
with
I\?‘; = I.'Rl'./ll (1.80)

where kg is the average sand-grain roughness. Equation (1.79) permits to achieve the

following asymptotic behavior [see Wilcox (1993b)]:

: 1o Sp o .
Sl,l,“—-]UB = - In 00 + 8.4 (1.81)
lim B = 5.1 (1.82)

.\‘H-—'\
where B is the constant of the well-known law of the wall,

Smooth walls can nevertheless be simulated with a constant w on the wall by
choosing a value for &} lower than 5, which is approximately the thickness of the

laminar sublaver: the surface is said to be hy-draulically smoot h.

The asymptotic behavior of w resulting from boundary condition (1.78) is given
by the following function

.
e

w = ; (1.83)
()

w 7y
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where w, is the value of w at the wall and

6/.3 for the standard version

2/3"  for the low Re version

Surface mass injection effects can also be simulated: from experiments. it is known
that the normal component of the velocity at the wall affects both s and B. By e
expressing Sg and & in terms of the dimensionless normal velocity (v = v /t.).

these effects can be easily implemented [see Wilcox (1993h)],

1.3.6 Boundary Conditions for the Wall Function Approach

The wall function approach [sec Launder and Spalding (1972)] permits to reduce
the number of grid points necessary to simulate a turbulent flow. The equations of
motion are solved up to a certain distance remote from the wall, where the quantities
(velocity and turbulence variables) are assumed known'': this is the case of the

logarithmic layer. The solution of the log-layer equations gives.

o= £:lny“*—f-li (1.81)
.
i

ko= _-d_ (1.89)
la

w = N
Ty (1.86)

where (1.31) is the so-called logarithmic law of the wall. Equation (1.86) can he

recovercd by simply assuming that production equals dissipation in the log-layer.

The implementation of these houndary conditions will be discussed iy detail in

section [3.3.2].

M Another possibility 1s to impose the wall friction as a Neumann condition rather than the veloerty
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1.4 Generalization to Compressible Flows

It is known that the effects of compressibility on turbulence structure are of minor
importance for Mach numbers lower than five [see Lele (1994) for an exhaustive
discussion on compressibility effects on turbulence]. Nevertheless, even though no
simulation of compressible turbulent flows was performed in this work. the concepts

presented in the previous sections will be briefly generalized to compressible flows.

Favre Averaging
Allowing density fluctuations.

! T +u (1.87)

p= pto (1.88)
the time averaging of the continuity equation (1.1) leads to.
(pT +our) =0 (1.89)
R}

which gives a new correlation term. gu'. To account for this problem. the so-called

mass-averaging (or Favre-averaging) of the velocity is introduced:

1 T
= ﬁ-/r p(F, ) (F. T)dr (1.90)

that can clearly be written in terms of the common time average as.

A= ptt (1.91)
which gives
Pl =pT" +ou' (1.92)

and permits to simplify the continuity equation (1.89) [sce Vandromme (1983) for a

complete description of compressible turbulent flows). Only the velocity is expressed



in terms of mass averaging: density and pressure are decomposed into time mean and

fluctuating parts:

= et > mass-averaging (1.99)
p= pto - time-averaging (1.9
P= P+ p —  time-averaging (1.95)

The Continuity Equation

According to expression (1.92). the continuity equation (1.89) reads:

(pr'). = (1.9¢)

The Momentum Equations

Substituting equations (1.93). (1.94) and (1.95) in the steady, inst antaneous, and

compressible Navier-Stokes equations {1.2) gives
(ﬁ[..l[,l).‘l — (—.,-:l.l —_ ;”'UI“JH)‘I (I”T)
where 79 is approximated'> hy
=1y — 1y ) il l hNTINY (11
T = —FPgY +2u(5 - .—‘-I ) (1.98)

(. s ki + (/”‘l Jn (I(M)

|
3,
L
I
o | o—

The Energy Equation
As done for the incompressible case. it can casily be shown that
pUT, = pi0 (1.100)
Defining the specific turbulence Kinetic energy k as

| ———
ph = St (1101

V5The bars are repaced by tildes m the definition of the stress wensor
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the energy equation (1.3) becomes:

i r 1.102
Al Gl o (1.102)

The Boussinesq Eddy Viscosity Approximation

Taking into account that by calculating the trace of the Reynolds stress. the

definition of & should be recovered. the Reynolds stress tensor is modeled as follows:

R S 2
—puut" = 2y (.S"J - ig”t'f'”) ~ §ﬁk{/” (1.103)

k-w Turbulence Model

The differential equations for & and & are the same as those defined for incom-
pressible flows (equations (1.16) and (1.17)). Nevertheless. the expression for the

production factor P is slightly different:

P=—g., " putu (1.104)

where the Reynolds stress tensor defined by equation (1.103) now contains a velocity

divergenee tern,
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Chapter 2

Finite Element Formulation

The finite element method is based on a very powerful mathematical framework.
The numerical implementation of a finite element scheme must choose the appropriate
element type. grid. boundary conditions. ete. for the given application. The process
that leads to the Galerkin finite element formulation of the & and w equations will
be developed. The formulation of the mass averaged Navier-Stokes wiil he presented

briefly. For the sake of clarity, the tilde and overbar notations are omitted.

2.1 The Turbulence Equations

2.1.1 The Weak Form

The PDE’s are first multiplied by a weight function W and integrated by parts:

the resulting set of equations is called the weak formulation of the problem.

Written in vectorial form, the dimensionless turbulence equations are:

Fquation for k:

S a2 | = -
Vphi) = /]%Q - 5/)1.'!'?“ —p3 ek + E—(—V-(/ILVI:} (2.1)



Equation for «:
= o 11 0w 2 2
Vipal) = ——Q — =pawt " — pio V(N 2.2
(pwl’) T 3P0 =P +R (1. Nw) (2.2)
where yi and g, are defined as
o = p+our (2.3)
Ho = p+o,ur (2.4)
and where Q is defined as
n C l T 1 -
Q = 2¢,,v", (.S” - gu',,y’) (2.5)
and can be expressed in terms of P as
(2.6)

2
— @ — Sl ™
P=prQ— ok,
Fhe expression for P reduces to the following equalities in (Yartesian and cvlindrical
coordinate systems:
C'artesian coordinale syshm:

Qoo (20 po () 4 (2 ) 2 o oy
PR “\dy dJdy dx 3\der  dy

Cylindrcal coordinate system:
R 2 2 ) . . o\ 2 . . AL\ 2
onr o T2 oer o oes 290" a7

= 21— —_—t— | - =+ — 2.8

Q ((‘)r)+ ((L)+ (r>+(i):+i)r') 3(07'+':) (2.8)

Multiplying equations (2.1) and (2.2) by a weight function ™ and integrating the

resulting equations over a domain' Q:

N I 200
./Qu T (ph7)d2 = /u 1 QA — /ﬂu ok(t
o /n T (1 k)0
—~ *)
e (el = — [ W22 0d0 = 2 [ 1 paw
/” (putt)e 7 /n e Q(IQ ; /ﬂn pae|
/H v /l“,Vw)(IQ

"6 — /Q W p3 whd®)
(2.9)

(7 ) — /Q W p3u2dQ
(2.10)

h’(

the closure coeflicients are Lopt an the integrand. this is necessary for the low-Reynolds number

modifications for which they are not constant
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Applying Green's formula. i.e integrating by parts. the latter system becomes

- 1 2
W A'-f'kl"—/ Y3 ' = e u - = NI
ﬁ phC-ndl Qpl.l VI dQ T /QH 1 QdQ 3 ./n” ph()dQ
. 1 G e = = .
—/QJ W kdQd + e ﬁll 1 Nk ndl’ — T /n VI (i VA (2.11)
| aw 2
— [ ™ L0d0 - = I
T ‘/QH ’ pr Qs 3 /ﬂ ol pu(e))did

. 1 - 1 - -
- d”' u.‘z _ ’ w"A Y — iy Y '). :.’.
/9 purtdf + — }fn pSeidl = = ‘/u\"u (oSl (2.12)

f{ u',ur--fzdr—/ pucl -V dO =
" Q

where 1 = 77/]i7| is the unit outward normal vector to the boundary.

2.1.2 Linearization

If k" and & are the values calculated at iteration n. the iterated solution at time
n + 1 is given by?
l\'"+l — A‘" + “,Al\

u)"+l — w‘”"l‘",.Aw'

where + is a relaxation factor.

The linearization of the non-linear terms is done as follows:

Equation for k: " o o (A" 4+ Ak) 4+ O(Aw (AR))

Equation forw: (") >~ (W") 4 20, A0 + O((Aw)?)

Actually. the lincarization is a combination of a Newton and a Picard method: it
permits to decouple the k-« system. For the w-equation. the definition of jrp (equation

(1.48)) is used to replace the term 7. Writing

%/IITI( = pa” (2.13)

the first integral on the right-hand side of the w-equation (2.12) will have no contri

bution to the operator matrix. It will still obvionsly be inclnded in the vesidnal, The

)
2..n
4

n is replaced by 1 to avord confusion with the iteration nmumber noted
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lincarized equations are therefore:
- 9
f Wp( AR il — / P AR + = / W p(AK)(T,)dD
f {2 3Jo '
+] AW p, (Ak)dS2 — Lf W N((Ak))-7dT + —l—/ S (S ARY))d
£ e Jr Re Ja
- fl Wok, o -0dl’ +/ /)k,,l"-f"'i'(lﬂ + —]—/ WurQdQ
)
- ok " —_ —_
- /ﬂ ¥ pheu (7 )92 //1 W pusn k€ + }Cu 1k Rl

“%/,, ,,kﬁn (V)2 (2.14)

- *)
f W p( Auw)ird —/ ()7 + %/ ()H'pAu:(l'" d9)
J Q0 .
1 .
20 AWpe, (AL)dQ — — ¢ Wiy, w — w)))d¢
+ ‘/” I s A ) mff” PV D)) -] + - /,, S S(Aw)))d0
- 74 W e 0l +/ PN d0) +/ cm'H'pQ(IQ
J1 12 193
9 ] -
_z (1 isz-/ AW pd + — ¢ W N, -l
3 /“()H pen (1) ; U pwldQ) + T 7‘;: J Ny, e

_7;7 /“,,ﬁr-(fuu)dsz (2.13)

2.1.3 The Galerkin Finite Element Formulation

The discrete values of the changes Ak and Aw of the iterative process are:

-\'nodc

AR (Em) = D Ny, (2.16)
J=1
Noode

Au(n) = D N(En)dw, (2.17)
J=1

where the N, is the shape function and will be formally defined in section [2.3] and

Niode 18 the number of nodes per element which determines the order of interpolation

within the element. The elementary system of the decoupled and linear system for

tie variable changes A& and Aw 1s:

| K8 [N h,) = —[R] (2.18)
[ Ky, ] [Xw]=—[R] {2.19)

where the coeflicients of the matrices are:
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Equation for k:

]\',"‘J = [o. [PtV — pr (0,10 = A Jy) + (Bp(e ) + 3 pe™ )WL, dQ,
+ Jq. B[N, 00 + 9,V (0,11, = AW /z/)](fﬂ,
+ép, WoN ol - Adly = § 5 "',\"k W.dr,
R = [ [=prd 0V, — pv (0, W, = AW /) + GGt + .f"pu.'” W AmdS),
+ Jo. B 10A" DWW + D,k (0,1, — MV /)] dQ, — 3 [, W rQdQQ,
+ ¢, Wik"pl - 0dl’, — §. LA CINELLUAT L) 0

I\’f an

Equation for «:

K2 = Jo, [=proehV, — pv(@,80 = AV /y) + (Rap(en,) + 23pe )WLV, 6,
+ fo, B (DN, 00 + 0, N, (0,11, = AW /)] de,
+$r WN pir - hdl, — § W2224y7 g1,

Re = o [=prd WV, — pe(0,00, = A /y) + (Zap(e) + 3p(w) )M e do),
+ fo, B[Ok DM, A+ Dy (9,1, = AW /)], = [, poaIV,QdQY,
+ 6 Wk pi - ndl, — §) 22yl

Re oR

In the case of a Galerkin finite element approximation. the weight funetions 1V,

are identical to the interpolation functions:

The volume element dQ, is given by dQ, = Jdédy where J is the Jacobian of the
transformation (r.y) — (€.7).
The transformation from Cartesian to axi-symmetric coordinates can be achieved
hy changing the value of A:
0 for Cartesian coordinate system

A=

I for axi-symmetric flows

12



Note on Cylindrical coordinates

The following notation is nsed:

Cartesian = axi-symmetric
(r.y.2) (z,7,0)

with (1,v.w) for the respective velocity components. As an axi-symmetric flow is
actually a three-dimensional flow. the three coordinates must be considered before
further simplifications. The Jacobian of such a transformation is J = rdrdzdf. Know-
ing that there is no variation in the -direction. the integration of all the integrals
over O can be factorized and celiminated. The weight function W is divided by r for
convenience. When the weight function appears without being differentiated. the lat-
ter 1 will cancel the » of the Jacobian. For a term where the gradient of 11, appears.

the situation is the following:
l"-f’(%)rdr(l: = (034 vP) (’lﬁl + H'ﬁ(%)) rdrd= (2.20)
= v W, +v (i)yll', - ‘—Ivi) (2.21)
It is worth noting that the weight function is not defined at r = 0. Since the line

r = 0 is a line of symmetry. no contour integral has to be evaluated and therefore no

Gauss point will lie on this line,

2.2 The Mass-Averaged Navier-Stokes Equations

2.2.1 The Galerkin Finite Element Formulation

In Cartesian coordinates, the Galerkin finite element formulation is for the conti-
nuity equation of the mass averaged Navier-Stokes equations:
¢ b
Ar,
‘el g2 _ 1 .

KRB K2 xo, | = [RY] (2.
[4 .
Ay,

=
8]
£+
—
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and the momentum equations (m = ¢ and m = y)
Ap,
cm3 pormdl cm il 2 W) 4
KPR RS A, | == (1] (2.23)
t
A,

where

Conlinuily equation:

1\’11.1 = f(z, “’l-”‘\:[ L‘Ll'ndsz f] ” \ d4 7)(”

]\';Z.jzfﬂ, ln\cl<6",+~)’ )([Q —§l “"'\(l(,!%+2;, )”"‘“'
ﬂ} = JQ, I, L d G ”dQ - fl ” _LPL ’A”“"

Momentum equalions:

v = fo, W, (S 4 62) dUe = fr WON, (e 4 o) il
Im“—hlhnkﬂ'('W” + Demey 4 2L )
— T (8 4 ooy — f;a;;*a") N| s~
fr,u;[cl s (Bewop + Gomey 4+ 280m e
(aa"+a%m—?wm”')]mﬂu

3%n
Rmz fﬂ ” - ((P—‘Ll my.n (S'rln(,,+ gj/,;‘) ‘)._ Ill ( gmno_ lb’r'nlll )) (/Q,
fl', ”'z,n ((P%l'ml n + b:ln_j% e 2;:_—;—_?;;:1_(‘ gmne_ ]b"'l' )) I‘l,,(“.,

where ¢; and d are

d = 2u,, —uv'v, =2k (2.25)

The algebraic energy equation (#, =constant) is used to replace the density in

the linearized continuity and momentum cquations, It is convenient to replace 1 by

a modified pressure p* defined as

')
Pr=r+ %pl.' (2.26)
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In this case. the energy equation (1.3) becomes

a (1' 2 A) (2.27)
)= — | P — —pk 2.2
P=3 3" ‘
and p is reexpressed as
¢
= —p" 2.28
p=- (2.28)
where
’ 4§ ¢
1+ 5 :}/\

The importance of this change of variable will appear clearly when the fully-
developed flow equations will be derived in section [5.2] (for a channel flow). For
convenience, ¢ is calculated with @"~ and ™! at each Newton iteration n: hence,

d in the expression (2.29) for ¢} is not linearized.

For a more complete desceription of the finite element formulation of the Reynolds

equations, see Baruzzi (1995b).

2.2.2 Artificial Viscosity

For centered schemes with equal order interpolation®, the numerical solution of the
Navier-Stokes equations (and therefore the Revnolds equations) exhibits oscillations
in the pressure field, due to the inherent odd-even decoupling of the pressure term.
In order to damp those high frequency modes, an artificial viscosity must be used.
In the present study. the articifial viscosity is added explicitly in the form of a fourth-
order dissipation. as the difference of two Laplacian operators. In the continuity and

momentum equations. the artificial viscosity takes the following forms:

Continuily cquation:

—'6’ [(51 + 52)6P - Ezﬁ

#The present Galerkin finite element method is classified as a centered scheme as the interpolation
functions yiekd a symmetric interpolation
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Figure 2.1: General discretization 7y,

) . Figure 2.2: Transformation from a
of the physical domain €.

physical to a master element.
Momentum equations:

_\'_‘ [(51 +€2)€l~—52(_1:

where F and (i are the averaged gradients of pressure and velocity respectively !,

Only a restricted class of mixed interpolations permits avoiding the use of artificial
viscosity for subsonic flows. Artificial viscosity terms are still needed for damping os
cillations generated when the grid is too coarse with respect to the eell Revnolds mnn-
ber. and when the flow presents discontinnities (shock waves). A sufficient condition
for a pair of interpolation functions to he stable is the so-called Ladyzenskayva-Brezzi
Babuska or “inf-sup’ condition {see Babuska (1971) and Brezzi and Bathe (1990) for a
discussion on the LBB condition and Idelsohn, Stort and Nigro (1995) for an analysis
of mixed finite element formulations]. The use of the artificial viscosity terms enables

the use of equal order interpolation for the mean flow variables.

No artificial viscosity was necessary in the turbulence equations for the test prob

lems in this work.

2.3 The Choice of Basis Functions

Define the following Sobolev space in R

() = {1 € LXQ): 0f e, € 12Q) ¥ i = 1.2}

TFor more detailed information on the implementation of these terins, see Baruzzr Habiash,
Guevremont and Hafez (1995a) or Baruza (1995h)
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equipped with the inuer product
1

(J.gha= /QZ (f)’f(')’y) d¥

1=0
and the associated norm

Wl = (f. )2

Let I} be a finite-dimensional subspace of H' associated with the discretization
T
1) = {f €C0): fly€Pn ¥V K €T}

where ) is the space of polynomials (with two variables for 2-D problems) of
order 13 2y, is the decomposition of €) into an approximate polygonal. C™(Q) is the
space of m times continuously differentiable functions over Q. Therefore. C%(9)

guarantees continuity of the solution between elements but not of the first derivative.

The solution of the finite elament formulation (noted with a subscript h) of the

Navier-Stokes and k- systems belongs to the HH(Qy) space. i.e:

(( h-"lnph-kh-“"h) € []1,}(9")]')

Bi-lincar interpolation is chosen for every variable: Py must be of minimum order
one. as the weak form yields first order derivatives. The polynomial contains four
terms in two dimensions (i.e. dimPy, = 1) and the degrees of freedom are the vertices
of the quadrilateral K. as shown in Figure 2.2, P, is thus uniquely defined. and the

element diseretization is

F), Z \' T
=1
where the index ¢ represents the local numbering of the nodes on element € and

Fr = (Up v Prohyown). In the master element. the interpolation is expressed as

bi-lincar Lagrangian shape functions defined as:
. l :
Ny = 3(1 +E&&N T +ny) Vi=1.-0d (2.30)

This element is said to be conforming because it leads to continuously differen-

Hable vy, vy by and @y, in each element and to continuous pressure in ecach element.



2.4 Numerical Integration

The domain integrals are computed with a Gauss-Legendre quadrature and 3«3

Gauss points: the contour integrals are computed with 3 Gauss points.



Chapter 3

Boundary Conditions

Implementation

The boundary conditions are a crucial aspect of two equation models. especially

for High-Reynolds number sitnations. when the wall function approach is used.

3.1 Inflow

At an inflow section, both & and w are specified.

i Inflow Condition

Assuming isotropic turbulence, the normal components of the Reynolds stress

tensor are written in terms of the turbulence intensity I as
P=— Vi=123 (3.1)

where ¢ is the characteristic velocity. The turbulent kinetic energy is then expressed

in terms of I



The turbulence intensity is usually available from experimental measurements and

is generally less than 10%.

« Inflow Condition

From dimensional analvsis,

2
g =4 3.3
{ (3:4)
where [ is the turbulence length scale. If dissipation equals production:
_or - I -
—Ur— =& = .3 — 3.
dy [ (4.0

Assuming the Reynolds stress is much larger than the viscous stress (in the log

layer) and according to the mixing length hypothesis:

. i
Tt L=l — (3.5)

) Ay
With & given by the log laver equation (1.83). equation (3.1) then reduces to
A.l/z

w = e (‘())
fﬂ/ llnu.r

3.2 Outflow

Provided the outlet is far enough downstream. the flow is assumed to be fully

developed:

Vhit = Nwi =0 (3.7)

These conditions are substituted in the appropriate contour integrals of the finite

element formulation (equations (2.14) and (2.15)).
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- — : bisection
. l /3

Figure 3.1: Algorithm to find the near- Figure 3.2: Projection of the in-
est I)()il" ﬁ‘(”” l)()i“l ! 10(‘?\1('(] on “1(‘ t(\l'l)olat(\(l \'Clo(-it\'on th()tangenl
edge of an adjacent element. to the wall.

3.3 Walls

3.3.1 The Low-Reynolds Nuinber Approach

The low-Revnolds number solution of the Navier-Stokes and turbulence equa-
tions sy=tem implies the solution of all variables up to the wall. In addition. the
solution ¢f the w equation in the near-wall region requires many grid points. The
nature of its equation gives rise to very high values of w at the wall and very sharp
gradients, as the asymptotic solution varies as ~ 1/y%. The two different conditions

that can he used for w (see section [1.3.5]) will be treated separately.

Rough Walls

The imposition of & is straightforward since it is equal to zero. The only difficulty

lies in the evaluation of w on the wall which requires . (equation (1.78)). As a first



order approximation!. . is evaluated as follows,

(3.8)

where hy is the distance from point 7 (~vall node) te point 71— 1 (first grid point away
from the wali) and ¢ is the tangent velocity. The absolute value sign is necessary in
order to treat recircuiating flows; t, is set to the velocity of the wall.

Equation (3.8) implies that the grid is orthogonal to the wall. Figure 3.1 shows

how one can deal with a non-orthogonal grid. The procedure to evaluate t,- and h,

at node P is as follows:

e Determine the normal of the adjacent elements to node i
e Iind the bisection of the two normals.

e Find the intersectien 1 of the bisection and one of the opposite segments 3 1.

Interpolate to find the velocity at point 1.

e Project this velocity onto the tangential to the wall (which is normal to the
bisection). The resulting velocity is the tangential veloeity ¢,y and the normal

distance is hy.

o Apply equation (3.8).

Sniooth Walls

The value of w is infinite on smooth walls. Upon approaching a solid surface,
the behavior of w is given by equation (1.77) for the standard model and equation
(1.76) for the low-Reynolds number model. Or- way of avoiding this singularity is
to solve the equation for «w up to the first grid point. and applying equation (1.77)

or (1.76) as a Dirichilet boundary condition on this artificial boundary.  Using the

FA “second order™ ‘Taylor expanston was used for compartsor an the case of the ehannel flow (see
section [5.2]).

"~
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limiting behavior of v, the boundary condition at the first grid point away from the
wall is:

T.20

Wil = =5 for the standard version (3.9)
/i'hl
v _
wie1 = 2o for the low-Reynolds number version (3.10)
Iz

The finite element formulation requires the value of w at the numerical gauss
points within the first layer of elements (to solve the equation for k and to calculate
the eddy viscosity). Based on the recommendation of Menter (1994). & on the wall

is extrapolated from the value on the first grid point:
Wy = (w1 (311)

where ¢is a user-specified constant. The value of ¢ should not crucialy affect the mean
flow as the eddy viscosity (s = pk/w) is several orders of magnitude lower than the
molecular viscosity in the vicinity of the wall. It should be chosen high enough such

that the discontinuity in the derivative of w at a point 7 — 1 is not too large.

3.3.2 The Wall Function Approach

The Law of the Wall

The wall function approach is based on the assumption that the near wall velocity
profile follows the law of the wall which assumes the flow to be one-dimensional. In
terms of y* and ' = /.. the tangential component of the velocity is given by the

following profiles:

o viscous sublayer: 0 <yt <5

e hulfer zone: 5 <yt <30

et =50yt - 3.05 (3.13)
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¢ turbulent zone: 30 < y* < 100

= 25Inyt + 5.5 (3.11)

where the constants of the buffer and turbulent layers are adjusted experimentally.
The equation for the viscous sublayer can be derived by assuming that the turbulent
shear stress is negligible compared to the laminar shear stress. The logarithmic de-
pendence suggested by the equation for the fully turbulent zone can be recovered by
way of dimensional analysis, or by the Prandtl mixing length hypot hesis. Finally, the

buffer zone was suggested by von Karman as a transition region.

Reichard’s law groups these three profiles into one equation:

U ! { + - -yt/m -'/+ -0yt -
— = —1In{l +0.dy*) + T.X[1 — ¢ — TR (3.19)
U. K 11
This equation is used in this work to estimate the friction velocity as it allows
both continuity of the profile and continuity of its derivative. 'The continmity of the
derivative is necessary as a Newton linearization is needed to terate for the friction
velocity. At gt = 30 the set of equations (3.12). (3.13) and (3.11). does not yvield a

continuous derivative.

k# and . Boundary Conditions

The boundary conditions on the tarbulence variables are given by equations (1.85)

and (1.86).

Algorithm

The major task of the wall function approach is to evaluate the fiiction velodity
.. A slip velocity is imposed at the first grid point off the wall using 1. computed

at the second grid point. It can be swmmarized as follows:

a1l
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Figure 3.3: Estimation of the distance from the wall to the first grid point for

a fully-developed pipe flow.

lterate equation (3.15) with v = T, to evaluate t..

[

Obtain 7,y with y* = y= and equation (3.13).

.
i

Impose @+t = t,_y and - = 0 as Dirichlet conditions for the velocity

components at grid point 7 — |,

Compute the boundary values on ¢ — 1 for & and w with equations (1.83) and

(1.86).

Estimation of the Distance From the Wall to the First Grid Point

The location of the first grid point is of primary importance when using the wall
function approach. An a priori estimate of the friction velocity is needed to determine
if the first grid point lies in the desired fully turbulent zone (in the range y* € [30.30]).
For a fullv-developed pipe flow at High-Revnolds numbers (10 to 107). the friction

velocity follows the so-called Nikuradse formula:

!
— = 216ln(Ree) + 03 (3.16)



Figure 3.3 shows the variation of the non-dimensional distance from the wall to the
first grid point with respect to the Reynolds number for various y*'s. It might happen
that some grid points lie outside of the desired range (the fully turbulent zone): this is
the case of all recirculating flows. For such flows, the law of the wall is no longer valid:
the solution will be locally physically incorrect (in the recirculating zone) and might
deteriorate the overall profiles. The only way to partially circumvent the probleny is
to modify the law of the wall. by including for example a pressure gradient term (see

Wilcox (1993b)).
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Chapter 4

Numerical Procedure

The Decoupling of the Navier-Stokes and the A-. Systems

The production terms of the turbulence equations are often very large and render
the equations strongly coupled. However. the decoupling of the turbulence equations
from the mass averaged momentum and continuity equations permits to reduce the
size and bandwidth of the global matrix svstem. For two-dimensional geometries.
this decoupling allows solving with a direct matrix solver. The use of iterative solvers
generally results in an increase in the number of overall iterations and a reduction
in the stability of the scheme (i.e. it may not converge). When available memory
resources allow, direct matrix solvers are preferred and fast convergence rates can
be achieved. For three-dimensional applications, the memory requirements are much
greater and iterative solvers must be used.

In addition. the equations for k and w are solved simultaneously. This procedure
could be compared to other possible strategies such as solving the equation for w after

having solved the equation for £,



The Iterative Process

The iterative procedure is described by the flowchart in Figure L1 Artificial
viscosity cycles as well as relaxation are not included in the flowchart as their use

depends on the ty pe of flow studied. In some cases (e.g. the fully-developed channel

and pipe flows. see sections {5.2.2] and [5.3.2]). the second order artificial viscosity
Rl —
balancing terms (F.(7 in section[2.2.2] must be loaded after the first order system has

partially converged. The relaxation of the turbulence variables (Ao w. ) is generally
not necessary except for the fully-developed flows which require a special numerical

procedure (to be discussed in chapter[5]).

The solution procedure for a flow involves eight variables (cove popope 1ok w
and p7). five partial differential equations (continuity. -momentum, y-momentumn,
equation for k. equation for «) and four algebraic equations (energy equation, Suther
land’s law for air. ideal gas law. definition of yp). The energy equation permits to
express the density in terms of the pressure and the velocity compounents. Tt is sub
stituted in the continuity and momentum equations and lincarized with respeet to 1.
¢ and v. The remaining algebraic equations are assumed to bhe weakly coupled to the
Navier-Stokes ar | turbulence svstems. The temperature 7 and laminar viscosity g
arc updated at each iteration after both the Navier-Stokes syvsteny and the A-w system

have been solved.

N
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Solve the coupled continuity
and momentum equations
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Update p with the energy equation
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stop

Figure L1 Flow chart for the solution of the mass-averaged Navier-Stokes equa-

tions and the A« turbulence model.
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Chapter 5

Numerical Results

5.1 Introduction

The goal of testing a model is to determine its abilities and its limitations. The
user must know how much confidence can be put in the results to get at least a

qualitative assessment on their accuracy.

In this chapter. several test cases are studied. involving the phenomena generally
encountered in internal flows including shear flows (channel and pipe flows). reeir-
culation (backward facing step). moving boundaries (channel with one moving wall)

and periodicity (wavy channel flow with one moving wall),

Table 5.1 rresents the test cases simulated with some periinent information on the
geometry. the model used (k-w standard model (std), k- with low- Reynolds number
modifications (low) or A-w with wall functions (wf)), and the data the results are
compared to (DNS. experimental. numerical). The Conette-Poiseuille flows (channel
and wavy wall) were part of the 1993 ERCOFTAC Workshop [see Rodi, Bonnin and
Buchal (1995)]. They correspond to test cases 1A, 1B (for the straight channel) and

1C (for the wavy channel) of the workshop.
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k-w: approach Data available
type of flow geometry
std low-Re wf| DNs Exp. Num.
channel I V2 7 ) v v -
pipe e v vl - v -
channel+mov. wall S IV J ; < -
wavy channel+mov. wall | 7 ™ | J ] . - 4
backward facing step - v v ; . v

Table 5.1t Test cases characteristics.

5.2 Channel Flow

The flow is assumed to be incompressible. although the numerical formulation

holds for compressible flows. The equations will be derived for p =constant.

5.2.1 The Equations of the Fully-Developed Flow

The numerical procedure will be described after the derivation of the fully-developed

channel flow equations. Cartesian coordinates were chosen with the following nota-

tion:
r=x. =0 u=u
y=2r T=T2 =
=23 T=T3 w=8
The Reynolds number is
2he
Re = p—-1 (5.1)
It

where A is the half height of the channel and r, is the bulk velocity defined as

(1]
(S
—

h
v= 1 [T (

1 J0
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Figure 5.1:  Grid for the fully-

developed channel flow.

Assuming a 2-D steady and fully-dev
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W o - - - A
+
1
1
g |
z .
|
1
t
1
)
~ |
0 20 40 60 80 T

Iteration number

Figure 5.2: Convergence history for

the fullv-developed channel flow,

cloped flow:

(7)}?7 = 0 (5.3)
%—) = 0 (5.1)
T =0 {(H.h)
and therefore
r = T(y) (H.0)

The continuity equation thus becomes

g[ Iv
+ + —+
& dy

oy -
% ‘_"0 (-).l)
[/ et

and after applving the no-slip condition at the wall v, =0, the solution is

v

Simplifying the incompressible Reyvnol

ing to the previons assumptions (equatio

-momentum: 0 =

y-momentum: ) =

z-momentuwm: 00 =

= 0 (5.8)

ds averaged Navier-Stokes eqnations aceord-

ns (0.3) to (5.8)):

Jar 4 7] ar . (5.9)
—_— — e /1 D
ar Ty My T " ’
)
;7(/;«~‘+F) (5.10)
4 (T (5.1
7y i) a0 1)

G2



Using the Boussinesq approximation (1.31) for the fully-developed flow:

= ) (5.12)

The y-momentum equation then reduces to
2 i
Pt 3ok =flr) (3.13)

Equations (5.8) and (5.13) will serve to set the boundary conditions for the con-

tinuity and momentum equations at outlet.

The Friction Velocity

The y-momentum equation gives:
Fle.y)+ pri(y) = f(x) (5.14)

Henee, by denoting 7. as the value of the pressure at the wall. equation (3.11)
can be rewritten as

Pla.y)+ préy) = Pu(r) (3.15)

and therefore

daP(r.y)  dP.(v)

: = 5.16
dr dr ( )
Integrating the r-momentum equation (5.9) with respect to y gives
dr dp (v -
Ji= — put = ul )y+csi {(5.17)
dy dr

At the symmetry plane (y = 0). the Reynolds stress tensor component @t and %
must vanish and hence. the constant of integration is zero. Since Wt is also zero at
u = h (no-slip condition). equation (5. 7) gives

dr

dy

JpP,

Ty = =/ -
f "or

(3.1

uw
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which upon substituting into equation (0.13)'. results in either

r, = (D1

or.
v. = L |r|s (H.20)

The skin friction is by definition
I -
O T“./(;/)l q) (’)'Zl)
and can therefore be directly calculated from the evaluation of the friction velocity:
S -
cf = 2 (H.22)
9

5.2.2 Numerical Treatment
The Boundary Conditions

Figure 5.1 shows the 5 x 80 element grid used for this test case. Vwenty grid points
are located below y* = 2.3, ¢y is defined by equation (0.12) where . is the friction
velocity calculated from the velocity gradient (equation (5.20)). The first grid point
is at y* = 0.05. The grid is sufficient to permit the solution for flows up to e = 10,
As only the fullv-developed channel flow is simulated. there is no need to solve for the
developing channel. The boundary conditions applied to model the fully-developed
flow are described in Table 5.2. The sign v means that no boundary condition is
prescribed. The wall Dirichlet boundary condition for w is given by either equation
(3.9), (3.10)) or (3.11). Different values of € were tested and. as expected, ¢ does not
affect the mean flow properties and only slightly distorts the & profile at the first grid
point as shown in Figure 5.7.

The pressure p is substituted by = = p + £pk to be consistent with equation

(5.13) for the fully-developed flow. The implementation is deseribed at the end of

section [2.2.1].

TFor sake of clarity. the overbar notation will be onitted for the renpmimder of thas chiapter
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initial boundary
inlet ontlet || inlet outlet syrimetry
17 || sarabolic | U Usutlet v av/dy =0
v 0 0 0 0 0
P* Pa, P v Po v
k ko Foo || Koutter | Ok[/Ox =0 Ok/Oy =0
w W, Woo || Woutter | dw/Or =0 | dw/dy =0

Table 5.2: Boundary conditions for the fully-developed channel flow.

Grid Dependence

The grid dependence was checked in the crosswise direction. The most sensitive
parameter for determining the adequacy of the locations of the grid points was the
friction velocity. For this particular test case. the grid convergence criterion was based
on the difference in values of t. using equations (5.19) and (5.20). At convergence.
this difference should be below a specified criteria (usually ~ 0.01% in this work).

As mentioned by Wilcox (1993h). w should follow the asymptotic behavior de-
scribed by equation (1.77) (or (1.76) for the low-Revnolds number version) for y* <~
2.5. This can be achieved by placing enough grid points in the viscous sublaver. A
test was performed with 40 grids points in the y-direction including S located below
gt = 2.5: the firet grid point was at y* = 1.6. A difference of less than 1% for the

friction velocity was observed with respect to the original 5 x 80 grid.

Convergence

The turbulencc variables & and w were underrelaxed to permit convergence.

Figure 5.2 shows the convergence histor: for the three decoupled systems (#.0.v).

A and w. Even though the starting residual of the equation for « is very high (the
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iterative process takes a few iterations hefore capturing the strong w gradients near
the wall). convergence is rapidly achieved.

5.2.3 Simulation Results

Results For a Smooth Wall

The flow was simulated with a Mach number M = 107% Figure 5.5 shows some

of the solution profiles of the channel flow where

ll
u.‘+ = I« (.’),‘_’,: )
s
) 2
, v dr N
production = —u|— (H.21)
v T dy
Sy v .
dissipation :7 = o (.25)

The low-Reynolds number corrc etions permit to capture the sharp peak of & near
the wall. as well as part of the variation of the dissipation in the same vegion. However,
the law of the wall is slightly underpredicted in the fully turbulent zone, when the
cffects of turbulence become important (around y* = 10). The plot on the upper left
of Figure 5.5 shows the variations of ¢; with respeet to the Revnolds mumber, 1t s
shghtly underpredicted over the range 3-10% < Re < 10" but the error with respect

to Halleen-Johinston's correlation remains helow 104,

The profile of the pressure coefficient along the wall (Figure 5.6) shows that the
flow is actually fully-developed. The dashed line represents the solution obtained
when the term 2/3pk is added explicitly in the equation and when constant pressure
is Imposed over the entire cross-section. From Figure 5.6. it is clear that this solution
is not fully-developed.

Figure 5.7 presents the near wall asymptotic behavior of the turbulence variables.
As expected. w and £ closely follow the behavior deseribed by equations (1.77) for
the standard version and equations (1.76) and (1.68) for the low-Reynolds number

Versior,
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Figure 5.1: Experimental set-up of
Poiseuille’s experiment. The appa-

ratus height is 2.5-3 m.

Comparisons with the « Boundary Conditions for a Rough Wall

The boundary condition (1.7%) for « on a rough wall requires the frictien velocity
t'.. For practical reasons. U, is evaluated using a first order finite difference expan-
sion (see section [3.3.1]). Computations were also performed using a “second order”
expansion for comparison (see Figure 5.3). The procedure is as follows: the velocity

is expanded using Taylor series around points ¢ — 1 and ¢ — 2:

1 l d*
' = Uy — 5= 5.26
Uiy U, o | > Uy 3 h? + O(h3) (5.20)
au l d* . -
Uiy = Uy — ()l (I + 1,2)4@5—‘2 (hy + h2)2 4+ O((hy + ha)?)  (5.27)

Multiplying the first equation by (hy + h,)2. the second by h% and subtracting:

(._)l_' _ /I'i)l -2 = (Ill + 112)2I'|_1 ~+ hg(hg + ?_h‘)l',
iy - II]/Q(/Il + hy)

—
o}
[}
2]

Pubs

I" l Y
O (ke ) + O (hy + h)?)

By setting by = by the error of a second order backward difference scheme on

a uniform grid is recovered. i.e O(h%). Since no appreciable difference was found
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K 3.5 4.5 3.5 6.5

cp || 721070 [ T 107 | TAT 107 T 107

Table 5.3: Friction coefficient for the channel flow. Ke = 13750,

between the solutions when using the two expansions. the test cases will be performed
using the first order expansion as it is simpler to implement (it requires only the

distance from the wall to the first grid point}).

Table 5.3 compares the results obtained for the friction coeflicient for different
values of A% (defined by equation (1.80)). Note that the value computed for a smooth

wail and from Halleen-Johnston's correlation of experimental data ave,

¢y = 691107 simulated for a smooth wall (5.29)

¢y = 652107 from Halleen-Johnston’s correlation (5.30)

The friction coefficient computed from the smooth wall boundary condition for w
differs from Halleen-Johnston's correlation by 6. ‘The difference goes up to I18.3%
when computed for a rough wall with & = 6.5, The value of w on the wall is thus

crucial for the determination of the friction coeflicient.

Comparisons with the Chien k- Model

The Chien low-Reynolds number version of the A-z turbulence model was tested
using the same strategy as that used for the k-w model (described in section [5.2.2]).
Convergence was achieved using a relaxation factor of 0.1, Figures 5.8 and 5.9 show
the profiles obtained for the velocity and the main turbulence properties. Results are
compared with the Jow-Reynolds number version of k-w. As observed by different
auihors [e.g. see Yang and Shib (1993Dh)]. the value of kat the centerline is overpre

dicted. The friction coefficient is 6.07-107* and is under redicted by 74 with respedt

6N



to Halleen-Johnston’s correlation. The turbulent shear stress is w1 lerpredicted near
the wall. around the peak. The law of the wall departs fromn the prediction of the
k-w model when turbulent effects become important. Production and dissipation are
overpredicted in the fully turbulent region. whereas dissipation at the wall is around

50% greater than the experimental value. as also observed with k-w model results.

Conclusion

The imposition of the w houndary condition directly on the wall is preferable to the
perfectly smooth wall condition. It induces less sharp gradients and does not require
an extrapolation of w to the wall. The mean flow profiles are barely different from
those computed with the smooth wall boundary condition. provided A} is reasonably
small (A} <5). When sublayer quantities are required. such as the friction velocity
or the friction coeflicient. it may be necessary, however. to use the perfectly smooth

wall approach.
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5.3 Pipe Flow

5.3.1 Characteristics of the Test Case

Cylindrical coordinates were chosen where =, r and 0 are the streamwise. crosswise
and augular coordinates respectively and . v, w and u, v, w are the corresponding
physical? mean and fluctuation velocity components. The Reynolds number is
2R,

H

where 12 is the radius of the pipe and ¢, is the bulk velocity defined as

2 (R
U, = R*’/u v(ryedr

The pipe flow will be studied in low-Reyvnolds number situations and in high-

Re=p

Revnolds munber situations using the wall function approach.

5.3.2 Low-Reynolds Number Model

Numerical Treatment

Although the numerical treatment is exactly the same as for the channel flow. the
fully-developed flow equations are slightly different. The boundary condition for the
Pressure is:

;;-),— (P + /)F) = ? (w~' - ?7) (5.31)

Within the framework of the Boussinesq eddy viscosity approximation. however.

isotropy of the normal Reynolds stresses gives:

J 2
o <p+ —‘—p}\) =0 (3;_))
()l' )
and thus
D
P Sk = 1(2) (5.33)

“as opposed to contravariant or covariant
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Simulation results

I'he two evaluations of the friction velocity are given by the following, formulac:

T Jdr -
. = ! i “ (H.3 1)
o R \dr, e

- = \"5 S (5.33)

The pipe flow is also known as Poiscuille flow. Jean Léonard Marie Poiscuille
(France, 1797-1869) was the first to relate the volumetrie efllux rate in tetms of the
pressure drop. the tube length and its diameter: the original experimental apparatus

is shown in Figure 5.1.

The passage from a laminar stete to a turbulent state was first recognized by
Revnolds whose experimental results give a transition Revnolds number around 2000
in a pipe. This critical Revnolds number depends on the turbulence intepsity of
the incoming flow. If the imcoming flow is not disturbed and the geometry is per
feetly smooth. an infinite Revnolds numbers could theoretically he achieved withont

generating, turbulence.

The main characteristic quantity of such a flow is. as for the channel flow. the
friction coefficient. As long as the flow remains laminar, the ftiction coefhicient can
be analytically calculated (¢; = ) and remains independent of the wall roughness.
However. for turbulent flows. the friction coeflicient can be evalnated by Nikuradse's
formula (3.16) or Prandtl’s universal law of [riction (verified by Nikuradse (1932) for
Revnolds numbers up to 3.4 10%). Prandtl and Nikuradse derived from expetimental

data che following empirical relations:

Nikuradsec s formula:

= 2.16n(fte \/3,) + 0.3 for 10" < Jte = 107 (5.0

[
=
Sy



standard version || 5.83-107%

low K¢ version 5.88-1073

‘Table 5.1 Friction coefficient for the pipe flow, Re = 40000.

Prandtl’s universal law

]
[
-1
~—

1 .
— =dlog (2R /c7) - 1.6 for 10* < Re < 10° (:
L i o)

Table 5.1 gives the computed values of the friction coeflicient. The difference of
the standard and the low-Revnolds number versions with respect tg Prandtl’s law
-3

prediction of e = 5.49 - 1077 are approximately 6% and 7%.

The comparisons to experimental data are essentially the saime as those observed
for the chiannel flow. Low-Revnolds number corrections permit to capture the sharp
peak of A and partiaily correet the dissipation in the near wall region. It is worth
noting that Laufer’s data for dissipation near the wall are physically incorrect as they
show that dissipation goes to zero as y — (.

Figure 5.10 shows the profiles obtained with the standard and the low-Revnolds

nnmber versions,
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Figure 5.10: Pipe flow. e = 10000, Comparison with experimental results (o

Laufer). Standard k-w: — low k-w: ---.
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5.3.3 Wall Functicn Approach

Characteristics of the test case

The Revnolds number of this test case is 388000, based on the diameter D of
the pipe and the bulk velocity ;. The length of the pipe is set to 85D which is
sufliciently long to allow the flow to develop. Most of the experimental results are
from Barbm (1961). except for the comparisons of the turbulence kinetic energy and
the turbulent shear stress which use the experimental data of Laufer (1954). Laufer
based the Reynolds number on the maximum velocity. The corresponding Reynolds

number based on the mean velocity is slightly lower.

Numerical results

The two-point wall function approach was used. The implementation of the wall

boundary conditions is summarized in section [3.3.2].

I'he first test is to verify the dependence of the flow on the artificial viscosity

coeflicient. Simulations with coeflicients varving from 107" to 107" show no major



b ean (330) | e (eqn (535) | G W, — b

0015 || 3.62 1072 (13%) | 5.24 11072 (:

0016 |f 3.65 -1072 (12%) | 5.16 1072 (2

0022 || 3.83 1072 (8%) (LIS ff L1 (%) || 52.6 — 32,
0027 3.94 -1072 (B%) | 449 11072 (3%) || 114 (6%) (i:;.-l—~>-n.§_~
0035 || 1.04 -1072 {3%) | 4.27 11072 (

0047 || -1.08 11072 (2%) (1

279 | 1167 (3%0) | 36.7 — 21.1

5901 1161 (15%) || 39.0 — 22.7

174 41072

-1

3%) | 1133 (6%) || 0.3 — 518

4.16 11072 (1%) LIS (T%) || 10LT — T4

Table 5.5: Test on the effect of the first grid pomt location.

difference. The results that Lollow were computed for a coeflicient of 1077

Table 5.5 shows the results obtained for different distances of the first grid point
from the wall (h)). The same number of elemeuts were used in all cases. The two
evaluations of the friction velocity given by equations (5.31) and (5.35) are com-
pared. as well as the velocity on the centerline v, . The percentages in brackets
indicate the difference with Nikuradse's formula (5.36) for the friction velocity with

the experimental data for the centerline velocity, which are approximately.

v.fr, ~ 1151074 (Nikuradse formula)

Coaa U = 121 (Barbin’s data)

Figure 53.135 (¢) illustrates the convergence when using equations (5.31) and (5.45)
in the evaluation of the friction velocity., The two formulae seem to converge towards
the same value. very close to the one given by Nikuradse's formula, As Iy inereases,
the logarithmic profile is imposed over a larger distance and the solution tends to be

more accurate. at least for the velocity. as confirmed by fignie 5.1,

The dependence on the location of the second prid point which is required to
iterate for the friction velocity was also checked. Several simmlations were s with

different locations but no significant dependence was fonnd.
As shown by Figures 5.3 (a) and 5,13 (b). the velodty deselopment is nnde

P



estimated near the symmetry line of the pipe. The value of the centerline velocity
Uy, decreases as the first grid point is moved further from the wall, but remains in
a reasonable range (< 7%). At the same time, the profiles of the turbulence kinetic
energy and the Revnolds shear stress (Figures 513 (¢) and 513 () are in better

agreement with the experimental data.

The dependence on the inlet conditions for b and w was also analvsed. Figure 5,13
(f) shows a strong dependence of the flow on the freestream turbulence intensity and
turbulence length scale. especially in the region 30 < /R < 90. The results presented
were computed for a turbulence intensity equal to 5% and an adimensionnal mixing,

length 1, equal to 1/23.6.

It is also important to note that the convergence was found to he slower as by

increases, Figure 5.12 shows a ty pical convergenee history,

Conclusion

The weakness of this approach is evident: sinee the flow properties show an impo
tant dependence on both the geometry and the turbulence variables inlet conditions,
selection of the fiest grid point is highiy case dependent. However, choosing the
location of the first gric point within the fullv turbulent zone permits to achicve rea
sonable results. As a compromise between the aeenracy of the mean flow viniables
(such as the maximum velocity and friction veloeity) and that of the turbulent prop
erties (such as k profiles). it can be coneluded that y* 2- 50 is a good value for the
first grid point away from the wall. Unfortunately. this is an a posteriori remark and
the optimum choice ior this location remains hazardous when more complicated ilows

are simulated.
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(f): Dependence on the inlet conditions of the turbulence variables:

I'is the turbulence intensity and [ = 28.61,,,,. Fxp: Barbin (1961).
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Figure 3.14: Dependence of the solution on the location of the first grid point.

The correspondence y < yt s 0.0016 & 210 0.0022 < 33,

0.0027 < 0. 0.0035 & 52 for . = 3.83- 1074,
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Figure 5.15: Characteristics of the channel with a moving wall.

5.4 Couette-Poiseuille Flow

5.4.1 Characteristics of the Test Case

In this section. the same (fartesian notation as that used for the channel flow will
be adopted. The experimental data concerning this test case is from Corenflos. Rida.
Monuier. Dupont. Dang Tran and Stanislas (1993)? and the DNS results from Kuroda.
KNasagi and Hirata (1993) The simulations were carried out on a 200 x 70 grid. after
having achieved grid independence in the region of interest! (& > 0).

Figure 5.15 gives the characteristics of the channel: the total length of the channel
was set to >~ 110,16, The characteristic length is 6 and the reference velocity is t,.

The Revnolds number based on the two latter characteristics is

Re = Lut

| v

(5.38)

The following flow parameters are given: where « is a non-dimensional pressure
gradient defined as
ar

a=(6/pi)— (5.39)
e

igare 516 shiows the experimental set up
& |

PLhe test grids were 100 x 60, 200 x 60, 200 x 70 and 350 x 80.
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Figure 5.16: Experimental set-up of Couette-Poiseuille flow (Corentlos e al.

(1993)). The first part of the channel on the left is long enough
to permit a fullv-developed and turbulent Poisenille flow: turbu
lence is generated by a grid located at the end of the contraction

section at the origin. Measurements are made with hot wive prohes,

and represents the pressure gradient at the outlet. where the flow is fully developed,

while ¢, is the bulk velocity.

5.4.2 Numerical Treatment

The reference velocity beiug the velocity of the moving wall, the mass flow rate
must therefore be modified according to the parameter ¢, /i, given in Tahle 5.0,

A difficulty with this test case arises at the intersection of the stationary wall and

Parameters case A case B
R 3000 H000
Uy U (0xp.) 0.805 0.19
o (exp.) ~1.18-107* 0
a (DNS) —1.33- 1077 i

Table 5.6: Characteristic parameters of the Couette-Poisenille flow.
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Figure 5.18: Velocity vectors near
Figure 5.17: Convergenee history of the “discontinuity™ at the nodes.

case A (ahnost the same as case B).

the moving wall. The chosen finite element interpolations yield continuous variables
between elements, The velocity will therefore be continuous and cannot exactly model
the discontinnity at the intersection, The discontinuity is approximated by setting a
stall element Tength Awl imposing a zero velocity on the left wall node and ¢, on
the right wall node. The velocity then varies linearly from 0 to ¢, over the small
distance A,

The test cases were simulated using both the standard and the low-Reynolds
number approaches. Simulation results will be presented for the developing flow. and

for the fully-developed flow by directly imposing the pressure gradient.

5.4.3 Boundary Conditions

All variables are imposed at inlet with values of a fully-developed Poiseuille flow.
as suggested in the ERCOPTAC test case description®. At the outlet, zero streamise
gradients are assumed for turbulence variables. Along walls. w was imposed according
to equation (1.78) for a rough wall. In order to simulate smooth wall effects. kj was

fixed to L5 (as mentioned in section [1.3.3]).

*“They were computed for a Reynolds number of 5000 as suggested by the ERCOF TAC test cases
presentation

7
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Figure 5.19: Mean velocity profiles at different stations for case A (o Corentlos

el al. (1993)). Standard k-w: —. low e h-w:i---.

5.4.4 Numerical Results
The Developing Flow

Figures 5.17 and 5.18 show a typical convergence history and the velocity field
around the discontinuity. The behavior is similar for test cases A and B Fignres 5,19

and 5.20 show the velocity distribntion for the four stations:

It

station 2 — 0 = 0.165 mclers 26.914

33.676

station 3 — & = 0.265 mclers

station 1 — = 116D mclers = 91286

101.014

station 3 — = 1.265 mcters

i

The velocity was scaled by a factor 1/0.505 and 1/0.19 for case A and B respe

tively 1o permit comparison with the experimental data. Figures 5.23 and 5.21 com

NS
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Figure 5.20: Mean velocity profiles at different stations for case B (o Corenfics

ol al. (1993)). Standard k-w:—. low Re¢ k-w:---.

pare the development of the normal streamwise Revnolds stress component Vu? with

experimental data. Assuming incompressible flow. Vu? can be calculated from the

Boussinesq approximation (1.31):

YA
—wut = 2pp S — %g"l; (2.40)

Henceoas ¢' =1 Vi=1.2.3 for Cartesian coordinates.

— 9 T
0e = §l\' - g,ri_ll (5.41)

Figures 5.21 and 5.22 give the outlet profiles of & and the Reynolds stress —aw/c2.

The latter i calculated from equation (1.31):
arav
VR LB L (5.42
! (()y ().1') )
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As —% is zero at exit.

Jar

- NI K
I()!I ( '

The variable & and @t are normalized by ¢ 2. At the ERCOF IAC workshop held
in Karlsruhe (Germany) in April 1995, some comments were made on the experiment:
for case A and B. one must be very carveful when dealing with the crosswise compo-
nents of the normal stress. Measurements are in fact very inaccurate in that region.
Furthermore. in case B. it is suspected that the flow is not fully-developed at outlet,
This would explain why the computations of the participants and the present ones

do not to predict the flow quite well in the outlet region.

The Developed Flow

For the developed flow. the simulation results at station 5 are first considered,
The technique used in section [3.2.2] for the fully-developed channel flow was also
tested and will be presented later.

Taking the derivative of the y-momentum equations for fully-developed channel
flow (5.10) with respect to o and rearranging gives:

' . Tz‘ s
¢ (()(m )+(_)L) ~ 0 (1)

Ay \ e dr
For a fully-developed flow. the first terin vanishes and

d (0F J7r
— ! —]1=0 — = ¢sl 545
Ay (U.x') < e dvi ( (543)

flow

The pressure gradient in the r-direction is then constant over the entire outlet,
DNS computations were performed by imposing the pressure gradient at ontlet, For
case A. the experimental gradient and the DNs gradient are slightly different. T the

present computation this gradient was found to be moderately grid dependent.

The comparison with experimental and DNS data are given by table 5.7, where

NT



casc A case B

low std low std

a | =1.27-107% ] =1.31 21073 || 6.7 -107% | 7.0 - 1075
o, 6 - 10-° 6 -10°° 1-10°% ] 1.10°%
Lt 152 153 143 143

Table 5.7: Pressure gradient and friction velocity.

@ is the average pressure gradient computed over the channel width and ¢, is the

variance and are defined as:

28 l

i = ~_______f°jfﬂ(-'§)‘~” (5.16)
o Y

JE aly) — aldy

f(f ¢ dy

—_
zt
',
—
~1

~

Assuming that « is uniform across the channel height. the variance o, can be

Ued

== obtained by Kuroda ¢t al.

interpreted as the error in the value of @. The value of

(1993 is 151,

Some simulations were also run on a 5 x 70 grid for the fully-developed flow and
for a perfectly smooth wall. The length of the channel is 58 and the pressure gradient
is imposed by forcing a Dirichlet boundary condition for the pressure at both inlet
and outlet. The velocity and the turbulence variables are updated at each iteration as
described in section [3.2.2]. However. the mass flow rate need not to be specified as it
will be fixed by the pressure gradient. Table 5.8 shows the mass flow rate obtained for
cases A and B as well as the friction velocity on the fixed wall for case A. The results
should be compared to the values given in Table 5.6 for the test case parameters and

Table 5.7 for the siightly rough wall approach.
The error in mass flow rate is less than 1% for case A (¢ = —1.18-1073) and 27 for
case B (¢ = 0) with respect to experimental data. The friction velocity on the fixed

wall ix approximately the same as the value obtained with the rough wall approach.

,.
.
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casc A

case B

@«

(itnpo-ed?

1,

rcalculaged s

Ly

L./

thxed walky

«

(unpo-ed)

Uyl

{catoulatedy

—1IR- 107 | 0.79%

0 .50

133107 | 0.833

i

Table 3.8: Mass flow rate induced by the pressure gradient. & @ model,

Figures 5.25 and 5.26 show the results obtained with this method compared to
the experimental data and the simulation results obtained for the developing channel
at the last station. Contrary to the developing How method. the wall is treated as
perfectly smooth. i.e. the boundary condition for w is given by equation (:3.49) and

(3.11).

The normalization of the velocity for case A is 0, instead of 17,0 As two pressure
gradients are tested. the natural normalization is the common characteristic veloe
ity of both simulations. i.c. the velocity of the moving wall. The greater pressuve
gradient {¢ = —1.33 - 1073) results in a mass flow rate that is too large compared to
the experimental results, For ¢ = — 118 - 1077, the sinmlation is very close to the
experimental profiles. However. the pressure gradient calculated with the rongh wall
approach is around —1.27 - 107 and the mass flow rate is exact (it is imposed). A
already noticed for the pipe flow (section [3.2.3]). the boundary condition of w for
a rough wall tends to increase the friction velocity and the pressure gradient. This

explains why the mass flow rates are almost equal and the pressure gradients are
I A |

different.

For case B. the normalization is the bulk velocity as experimental and simulation

results give almost the same valuc,

The Chien A-z model wax also tested for the fully-developed flow. Figures 5,25
and 5.26 compares this model (noted dvlpd) to the standard k- for the developing,

flow at station 3 (noted dvlpng). and to the standard h-w using the fully-developed

N



case A casc B
T Ut | VL[ a /U
(mpoe #dy {calculated) ffixed wall) (impo-ed) (calculated)
—1.I8- 107 | 0.835 112 0 0.50

Table 5.9: Mass flow rate induced by the pressure gradient. k-2 model.

flow strategy. For case A, the mass flow rate is overestimated as the k-¢ prediction
gives [ = 0835, & is also overestimated over the central part of the channel. For
case B, the mass flow rate is 0.5 and is consequently equal to the k-= prediction. k is
still overestimated in the central part of the channel and. as with the k-« model. the

k-2 model caunot capture the two near wall peaks.
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Figure 5.22: & and Reynolds stress @7 profiles at outlet for case B (o Corenflos
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Figure 5.26: Mean velocity ¢ and & profiles for the fully-developed flow, case B.
The pressure gradient is fixed to zero (o Corenflos of al. (1993)).

Std k-w (dvlpng):- -, std k-w (dvipd) : —, Ctien k- (dvipd):---.

93



5.5 Couette-Poiseuille Flow with Wavy Wall

5.5.1 Characteristics of the Test Case

Figure 5.27 shows the characteristics of the wavy wall channel: the equation of
the upper boundary is given by h(r) = 26 — c cos(2x.r/L) where L is the total length
of the chanmel (6= 7.5 mm. L = 14mm and ¢ = 4.5 mm). The Reynolds number is:

l.u'(s

124

R = = 1000 (5.48)

where 1, 0s the veloeity of the wall.

5.5.2 Numerical Treatment

As mentioned in the ERCOFTAC workshop presentations. the calculations should
be performed using periodicity for the velocities and the pressure gradient. These
conditions. however. do not uniquely define the flow. as the pressure gradient is the
quantity that will set the mass flow rate. Some simulations were run with differ-
ent values of veloeity as initial conditions (the flow is uniform everywhere) and as
expected, the converged solutions were totally different. In order to define the flow
uniquely. a pressure gradient must be imposed. This can be achieved by imposing
the pressure at hoth inlet and outlet: the optimum pressure gradient to recover the
experimental mass flow rate was found by trial and error. Figures 5.29. 5.31. 5.32

and 5.33 show the solutions computed with two different pressure gradients:

Ap
gradient 1 (dashed lines) — 1—: = 9.66- 107" (2.49)
Co - Ar — - -
gradient 2 (solid lines) — v 3.10-10 (5.50)

Periodicity on velocity was not imposed directly on the matrix system to avoid
a very large bandwidth, A dirichlet condition for © was imposed at inlet and after

cach New.on iteration. the values of the streamwise velocity component at the inlet
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Figure 5.27: Characteristics of the channel with a moving wall.

nodes are updated by the values computed at the corresponding outlet nodes, The
normal velocity component v is assumed to be zero at exit. Tn order to impose the
periodicity on the pressure gradient. the following equation for the pressure at station
2 (see Figure 5.27) is imposed:

Py — D'y

= TAJ“ + 1" (.').f)l)

-

In order to enforee this condition correctly in the system of equations (to keep
the same conditionning). cquation (5.51) was multiplicd by the mean value of the

diagonal entries of the global matrix.

With a 200 < 70 grid. no instabilities were generated using this procedure and the
converged solution is perfectly smooth. To achieve convergence, the test cases were

simulated with k% = 6.0 for the w wall boundary condition.

5.5.3 Numerical Results

Periodicity on the pressure gradient is well imposed. as confirmed by Fignre 5,29,
The friction velocity is overestimated which may be due to the value b = 6.0 being
too high. The iso-contours of Figure 5.30 show that the mean and turbulent variables
are actually periodic and smeoth. The numerical procedure for iimposing periodicity

on the mean variables and pressure gradient is aceurate,



The profiles for the streamwise mean velocity (Figure 5.31) show that gradient
2 indnees a mass flow rate that is too high. compared to the experimental value.
Gradiem 1 gives profiles guite similar to experimental data and to the £~z model of
Cazalbou and Torres [see Rodi. Bounin and Buchal (1995)). The computed vertical
velocity at station I is in the opposite direction of that found by Cazalbou and Torres:

the magnitnde is however only 0.1% of the streamwise velocity.  The streamwise

velocity fluctuations (Figure 5.33) also compare well to experimental data.
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5.6 Symmetrical Cartesian Backward Facing Step

5.6.1 Characteristics of the Test Case

The backward facing step s probably the case most tested by turbulence modelers.
Figure 534 shows the characteristics of the symmetrical backward facing step. The

Revnolds number is defined as

—_—
wt
It
[

o
Re = p—2 — 30210
It

where ¢y is the bulk velocity at entrance and A is the channel height.

5.6.2 Numerical Treatment

Thenumerical results obtained are compared to the experimental results of Smyth
(1995) and to the numerical results of Jaw and Hwang (1994). Jaw and Hwang used 3
versions of the bz turbulence model: Lam-Brembhorst low-Reynolds number version

(low). a wall function approach (wf) and a two-layer model (two).

The profiles for the velocity, & and « at the inlet were computed for a fully-
developed channel flow at Re = 30210. However. the magnitude of & was adjusted
to obtain the proper experimental profiles for - and u? at the step entrance (Figure
3.47). These two profiles were found to he crucial for the development of the flow

hevond the step and consequently for the prediction of the recirculation length. The
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Jaw and Hwang (1991)

Exp. | k- | k-2 (low) | k-2 (wf) | A-2 (two)

1.y | 2.1 1.6 2.1 1.0

Table 5.10: Recirculation length for the backward facing step.

greater the turbulence kinetic energy & at the step entrance, the faster the eddy
viscosity will dissipate the momentum of the incoming flow. and hence the smaller

the recirculation length. The standard approach was used using b = 1.5.

5.6.3 Numerical Results

Station 1 is located at @+ = 1.2h and station 2 at « = 1h. Figure 5.37 shows
the main velocity profiles at the step entrance and at stations 1 and © 'The velocity
profiles seem to be in rather good agreement with the experimental data but do not

show the weakuess of the model in evaluating the recirculation length.

The recirculation fength (see Table 5,10 for comparisons) is one of the most im
portant characteristics of the flow. and the present formulation using the & w model
overpredicts it by &~ 31%. Similar results were reported at the 1995 ERCOFTAC
workshop for test case 2A (flow over a hill): all the computations runned with the A-w
model gave a recirculation length approximately 25% greater than the experimental
value.

As expected (see Figore 5.38). the model predicts quasi-isotropy of the normal
Revnolds stresses in the recirculation zone. whereas the crosswise normal Reynolds
stress component 2 should be smaller than the streamwise component.

Finally. the model captures a secondary recirculation as shown in Figure 5.39.
This secondary recirculation zone in the corner was also obscerved in the original

experiment by Smyth (1979).
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Conclusions and Future Work

5.7 Review of the Work

The k-« turbulence model was implemented in the framework of the solution of
compressible and low-Reynolds number situations: it was validated for internal flows
involving recirculation and moving boundaries. The Chien A-z low-Revnolds model
was also implemented to compare the A-« model for the fully-developed channel fow

and the case of a channel with a moving wall.

The numerical methodology is a Galerkin finite element method using equal order
bilinear interpolation for every variable. For stability, second order artificial viscosity
terms are added in the continuity and momentum equations. The iterative procedure
is described in Figure 4.1. The b-w system is decoupled from the Navier Stokes
equations: the equations for & and w are solved separately and implicitly using a
direct matrix solver. This method proved to bhe very stable for the test cases in this
work.

The crucial aspect of the k-w turbulence model is the houndary condition on a
wall for w. Two types of conditions were tested: the smooth wall and the rough
wall approaches. The latter permits w to be imposed direetly on the boundary and
to control the roughness of the wall. For the smooth wall approach, high values of
w and very sharp gradients appear in the near wall region. The friction coeflicient
predictions. however, are improved. as confirmed by the channel and pipe flow sim
ulations. When only mean velocity profiles are desired. the rongh wall approach is

preferable as it is more robust. The backward facing step simulations have pointed
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out the inaccuracies in predicting the recirculation length. As was also observed by
different authors {or teot cace 24 (flow over a hill) of the 1995 ERCOFTAC Workshop
[see Rodi. Bonnin and Buchal (1995)]. the recirculation length is overpredicted by
25%..

A wall function approach was also implemented to test the performances of the
model in high-Reynolds number situations. The pipe flow was simulated at Re =
388000; the results underline the poor accuracy of the wall function approach to treat
high-Reynolds number flows, even for very simple geometries. The main deficiency of
this method is its lack of universality. as the flow is assumed to follow the logarithmic
iaw of the wall. The pipe flow simulations show the strong sensibility of the model
to inlet conditions and also to the location of the first grid point. Thesc deficiencies
render the solution of high-Reynolds nnmber flows uncertain and must be taken into

account when more complex flows are simulated.

A strategy to simulate periodic boundary conditions was tested: inlet conditions
are updated with the corresponding outlet values after each Newton iteration. This
strategy proved to be very fast for simulating the fully-developed channel and pipe
flows. and the channel with a moving wall. It also gave good results in the case of a

wavy channel with a moving wall and periodic boundary conditions.

5.8 Future Turbulence Models in FENSAP

Despite the FENSAP code being a comipressible solver. the k-w model was tested
only in incompressible situations and its validation for compressible flows is still to

bhe done.

For high-Reynolds number flows. the wall function approach is still extensively
used in industry, as few alternatives exist. Additional terms in the law of the wall
permit. however, to correct the boundary conditions when pressure gradients are
moderate (see Wilcox (1995h))  To avoid solving the w P.D.E. up to the wall. two

laver models specify the turbulence length scale in the near wall region (typically
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yt < 50). As another alternative. the use of logarithmic elements permits to mimice
the logarithmic profile of the velocity in the wall region. However. the boundary
conditions for the turbulence variables remain the same as those used in the wall

function approach.

The k-« turbulence model is known to he particularly deficient for external lows.
This is principally due to the sensitvity of the model to the freestream boundary
condition for w: the implementation of another model is thus necessary for simulating

such flows.

The implementation of a two-equation model is the first reasonable step for pre
dicting industrial flows. When the model has been validated. the implementation of
anisotropic eddy viscosity models can be envisaged. This is a transitional step which
permits to account for moderate anisotropy effects at low cost without involving ma-
jor code modifications. The upgrading of the turbulence model of an industrial code
is a function of the available ressources. but also of the applications covisaged. [
some turbulent flows. anisotropic effects may not be important and the recourse to
a non-linear model can then be useless. However, if anisotropic effects are dominam
and if computer ressources allow. Reynolds stress models are, up to now. the latest

step in turbulence modeling in the framework of industrial applications.,
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