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Abstract

Adaptive Structure Neural Networks
with

Applications to EEG Automatic Seizure Detection

Wei Weng

This thesis proposes a novel approach for Back-Propagation (BP) structure level
adaptation for artificial neural networks (ANN). Back-propagation is the most commonly
used neural network algorithm. Back-propagation allows the training of the weights in a
feed-forward neural network of arbitrary structure by following a gradient steepest decent
path in weight space. However, BP networks have limitations due to their fixed network
structure. This thesis will show how a BP network may be improved by replacing the fixed
network structure with an adaptive one.

To improve the standard BP algorithm, a new scheme designated as Adaptive Struc-
ture Algorithm (ASA) is proposed to allow a neural network to adjust its structure accord-
ing to the characteristics of the input data. To overcome the slow convergence of the BP
algorithm, a modified Delta Adaptation (DA) algorithm is used in the ASA to speed up the
training time. Simulation results are presented to confirm the improvements obtained as a
result of utilizing the proposed algorithms.

To demonstrate a practical application of the proposed algorithm, OSLA is applied to
automatic seizure detection in Electroencephalogram (EEG) 'during long-term monitoring
of epilepsy. Satisfactory results are obtained, substantiating the effectiveness of the new

algorithm.
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CHAPTER 1

Introduction

The field of Antificial Neural Networks (ANN) has been originated from the bio-
logical neuron of human brain. It has brought about revolutionary changes in several
application areas such as pattern recognition, control, signal processing, etc. No one can

deny that new and challenging concepts arise constantly in this emerging field.

1.1 The biological neuron

The basic anatomical unit responsible for the processing of information in the ner-
vous system is a cell called the neuron. As shown in Figure 1.1(a), the structure of a
neuron includes dendrites, the cell body and single axon. The dendrites receive inputs
from other neurons and the axon provides outputs to other neurons. The neuron itself is
imbedded in an aqueous solution of ions, and its selective permeability to these ions

establishes a potential gradient responsible for transmitting information. Neurons




receive electrochemical input signals from other neurons to which they are connected at
sites on their surface, called synapses (see Figure 1.1(b)). The input signals are combined
in various ways, triggering the generation of an output signal by a special region near the
cell body. However, the particular interest of the neuron-biological phenomenon is the
transmitting or pre-synaptic side of the synapse. The triggering of the synaptic pulse
releases a neurotransmitter that diffuses across a gap to the receiving side of the synapses.
On the post-synaptic or receiving side, the neurotransmitter binds itself to receptor mole-
cules, thereby affecting the ionic channels and changing the electrochemical potential.
The magnitude of this change is determined by many factors local to the synapse, e.g.,
amount of neurotransmitter relcased, number of post-synaptic receptors, etc. Therefore,
neurocomputation, biological self-organization, adaptive learning and other mental phe-
nomena are largely manifested in changing the effectiveness or "strength" of the synapse

and their topology.

Candrites

(2)

Figure 1.1: (a) Biological neuron

(b) morphology of neuron-to-neuron connection or synapse




1.2 The artificial neuron

The artificial neuron was designed to mimic the first-order characteristics of the bio-
logical neuron [1]. As a fundamental building block, the neuron is the basic processor in
neural networks. Each neuron receives several inputs over tl;csc connection, called syn-
apses. The inputs are the activations of the incoming neurons multiplied by the weights of
the synapses. Each neuron has one output, which is generally related to the state of the
neuron-its activation- and which may fan out to several other neurons. An abstract model

of the neuron is shown in Figure 1.2.

Outgoing OUT = F(NET)
activation

®
Figure 1.2: Diagram of abstract neuron model

1.2.1 Activation functions
The activation of the neuron is computed by applying a threshold function to this
product. This threshold function is produced by a nonlinear activation function F acting on

the summed output vector NET as shown in Figure 1.2.
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One simple nonlinear function that is appropriate for discrete neural networks is
described in Figure 1.3, where x is the summation (over all of the incoming neurons) of

the product of the incoming neuron’s activation and the synaptic weight of the connection:

n
i=0

where n is the number of incoming neurons, A is the vector of incoming neurons, and w is

the vector of synaptic weights connecting the incoming neurons to the particular neuron.

fix)

)

-1

Figure 1.3: Threshold activation function




Another popular function, which is more appropriate for analog networks, is the sigmoid,

or squashing function:

f(x) =

1+e™

which is illustrated in Figure 1.4

f(x) )

—

1 -

-

Figure 1.4: Figure of logistic activety function

1.2.2 Learning

Learning is the most important property of ANN. It is defined as a change in connec-
tion weight values to capture the information contained in the training data. Learning
involves adjusting the weights of the network so that the application of a set of inputs pro-
duce the correct outputs. The weight adjustment scheme is known as the learning law. All
learning method can be classified into two categories: supervised leaming and unsuper-

vised learning.




1. Supervised Leaming

Supervised learning involves the association of a target vector representing the
desired output values with each input vector. After the output values of the network for a
given input vector are computed and compared to the target values, the difference (error)
is fed back so that the network weights are adjusted according to an algorithm that tends
to minimize the error. The vectors of the learning (training) set are applied sequentially
and the learning procedure is repeated until the error for the entire training set is at an
acceptable low level.

2. Unsupervised Learning

Unsupervised learning requires no target vectors for the output, and hence no com-
parison to predetermined output responses. The leaming set consists solely of input vec-
tors, and the learning algorithm modifies network weights to produce consistent outputs.
The learning process extracts the statistical properties of the learning set and group similar

vectors into classes.

1.3 Background and history of ANN

In 1949, Hebb first proposed a learning rule that became the starting point for artifi-
cial neural networks training algorithms. Twenty years later, a group of scientists tried to
combine the biological and psychological insights as electronic circuits[2],[3], which were
later converted to a more flexible medium as computer simulation. Early successes pro-
duced a burst of activity and optimism. Marvin Minsky, Frank Rosenblatt, Bernard Wid-
row, and others developed networks consisting of a single layer of artificial neurons. In
1969, Minsky and Papert published the book Perceptrons [4], which analyzed in detail a
single-layer artificial neural network model. Often called perceptrons, single layer net-
works were applied to such diverse problems as weather prediction, electrocardiogram

analysis, and artificial vision. However, because of the limitations of perceptron, neural




networks research was not active for the next 10 years.

In 1980s, this field became the center of research focus again. This was partly due to
the development of multi-layer learning algorithms which enabled the network to learn
(using a more complex structure) difficult problems that perceptrons could not solve.

Back-Propagation (BP) is one of the most well know algorithms which has been
widely used in the neural networks field [3]. Numerous successful applications of using
BP have been reported in areas such as pattern recognition [5), image processing [6], bio-
medical engineering [7],(8], control [9],[10]; etc. However, BP has some limitations.
One of the important drawbacks is its fixed network structure. In most practical problems
the fixed network structure could either fail to solve complex problems or become too
redundant to solve the simple problems. Three different approaches can been used to
solve this problem:

1. Trial and error: Start with a fixed structure. If the learning process of the
selected network does not lead to the desired accuracy, then design a new structure by add-
ing or pruning neurons. Clearly, this is not an efficient approach because no knowledge
can be gained from the previous design.

2. Choose a large number of neurons in the hidden layer: Two difficulties will
arise in using this approach. First, there may be redundant neurons for representing the
given function, and thus computational overhead is extensive. Second, more neurons in
the hidden layer result in a cost function with additional local minimum points, conse-
quently resulting in a higher probability of getting trapped in a local minimum.

3. Adaptive structure: The network has the ability to adapt its structure according
to the statistics of the training set. When the inputs of the network change, the network
structure adapts to compensate for these variations. This is accomplished provided that the
time used for weight adjustment is much faster than the dynamics of the training set. Thus

the network structure adaptation provides more flexibility to the input training set.




Structure adaptation is the best approach to overcome BP’s limitations. Currently,
there are several researchers working on the adaptive structure networks. Tsh-Chang Lee
[11], Azimi-Sadjadi [12], Fahlman and Lebiere [13], among others, have proposed several
methods to improve the performance of the BP network. A new algorithm for improving
the structure of the network adaptively will be presented in this thesis. A practical bio-
medical application namely an Electroencephalogram (EEG) automatic seizure detection

is included to demonstrate the effectiveness of the proposed networl:.

1.4 Objectives of the thesis

There are two main objectives in this thesis. First, a new algorithm to realize an
adaptive structure neural networks (ASNN) is proposed. Numerical simulations for sev-
eral classical problems are included to illustrate the superior performance of the new
algorithm compared to the BP algorithm. Second, this thesis shows the application of the
proposed neural network to seizure detection in EEG and reduction of false seizure detec-
tion during long term EEG’s monitoring. Furthermore, comparison between ASNN and

BP networks are included to demonstrate the superiority of the ASNN.

1.5 Outline of the thesis

The thesis is divided into five chapters. The first chapter introduces the background
material for neural networks, objectives and organization of the thesis.

Chapter 2 presents the theoretical foundation. First, the Back-Propagation algorithm
is reviewed. Next, an overview of the Lee's method [11] for structure adaptation is given.
Finally, ASNN is proposed which includes a new generation rule, Maximum and Mini-
mum Rule (MMR) and Delta Adaptation (DA) Rule.

Chapter 3 applies the new neural networks introduced in chapter 2 to solve several

typical benchmark problems.




In Chapter 4, the new algorithm is used to solve a real-world application problem,
namely an EEG seizure detection and reduction of false seizure detections. In addition,
several comparisons between the new network and the standard BP networks are pre-
sented.

Finally, in chapter 5, future research topics and directions for further development in

both analytical and practical areas are included.




CHAPTER 2

Methodology and Algorithm

2.1 Literature review: Back-Propagation

The Back-Propagation (BP) network was first proposed by Werbos [14] to recog-
nize computer patterns and perform mapping functions. Later, it was enhanced by Parker
[15], Rummelhard and McClelland [16]). The BP network, illustrated generically in Fig-
ure 2.1, is designed to operate as a multilayer, feed-forward neural networks, using the

supervised mode of learning.

connections connections
(weights) (weights)

Xpl > Opl
Xp2
p Op2
xpi o
n; ﬂj - Ypl
input hidden output
layer layer layer

Figure 2.1: Back-Propagation Network Architecture
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Back-propagation allows the training of the weights in the feed-forward neural net-
works of arbitrary structure by following gradient steepest decent path in weight space.
The energy surface is usually defined by (e mean squared error between desired and
actual outputs of the network. Back-propagation has a predetermined network topology.
It uses the Generalized Delta Rule (GDR) as the learning algorithm to derive weights for
the BP network [1],[17]. Back-propagation iteratively reduces the error in the learning
samples by fine turning the weights in the network. Each iteration consists of two stages:
feed-forward calculation and error back-propagation. Feed-forward calculation is used in
both network training and recall phases. Error back-propagation is used to compute the
error derivatives with respect to all the weights in the network. The error derivatives
assigned to each weight estimates the effect of each weight on the total error. The error

back propagation is applied only during the network training phase.

1. In the feed-forward phase, the output of the network is determined by using the

input vector. Let the input vector X to the input nodes be denoted by:

x = Q.1

_XpN |

where subscript p refers to the p-th training vector. The net-input values of the hidden

layer can be calculated as:

net® = Y wh,; + 0" 2.2)
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where "h" superscript refers to the hidden layer, wjih is the weight on the connection from
the i-th input node to the j-th hidden node, Oj" is the bias term which provide a fictitous
input value of 1 on a connection to bias weight. From the input values, the output of the

hidden layer is found to be:

L 5
iy =1 (nety;) (2.3)

where fi is a differentiable activation function. From the hidden layer output, the net-

input values of the output layer are:

L
Jj=1
and the output becomes:
Op = j;’(net;’,‘) 2.5)

where "0" superscript refers to quantities on the output layer.

The activation function is usually selected as a sigmoid function:

fi (”etpk) = —1 (2.6)

14+¢ "
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2. In the error back-propagation, on the other hand, connection weights are updated

based on errors between tne desired and 2ctual outputs.

First, the error terms in the output layer (using a sigmoidal activation function) are

determined:

82 = (v —0, )f (net?) 2.7
where y,, is the desired output, and 0, is the actual output and

£ =RU=f) =0, (1-0,)

Based on the errors, the weights in the output layer are updated according to:

(] R 0. o0,
wkj(r+l) = wkj(')+"5pk'pj +ozAwkj(t 1) 2.8)

where 1 is the learning rate parameter and « is the momentum parameter.

Next, the error terms in the hidden layer are calculated as:

8" = (252 )"'( th) 29
7 Pkwkjfjnepj (2.9

The weights in the hidden layer are now updated as:

13




h
wit+1) = wi(n 418 X +aAWi(1-1) (2.10)
[T

At each iteration, the total network error is measured by the following formula:

1 M 1 M

where opy is the actual output by calculation, and Ypk is the desired output value.
When the network error E is smaller than a pre-specified error level, network training is
terminated.

Both feed-forward and error back-propagation calculations are used in the train-
ing phase and only the feed-forward is used in the recall phase. Reverse propagation is
used to compute the error derivative with respect to all the weights in the network. The
error derivative assigned to each weight estimates the effect of each weight on the total
error. The back-propagation calculations are applied only during the training phase.

The performance of the back-provagation learning algorithm depends on two per-
formance parameters: learning rate and momentum. Learning rate is used to compute the
change in weights from the error derivatives, and is infinitesimally small for a true gradi-
ent descent. Momentum, on the other hand, is used to reduce oscillations caused by large
values of the learning rate. It modifies the weight changes computed using the current
derivative which is proportional to the weight change in the previous iteration. Momentum
represents the relative importance of the weight change from the previous iteration.

Although BP has played a large part in the resurgence of interest in artificial neural
netv.orks, it still experiences some limitations. One problem with BP is its extremely long

- potentially infinite - training times. The fixed structure topology of BP is another prob-
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lem that needs to be improved. If the pre-designed network structure is not sufficiently
large, learning may not converge to acceptable solu‘ion for complicated practical prob-
lems. If the pre-designed network structure is too large, there will be redundant neurons
resulting in more training time for simple practical problems. Therefore, research on the

improvement of the BP architecture has hecome a "hot topic" in the neural networks field.

2.2 ANN structure level adaptation

In recent research, structure leve] adaptation has played a dominant role. Structure
level adaptation enables the network to optimize its structure for each specific problem.
Many articles have been published in this area of research [11],{12]-(18], among them the

following articles reviewed below are particularly interesting.

2.2.1 Lee’s approach

Tsh-Chang Lee [11] proposed a general procedure for structure level adaptation for
multi-layer feed-forward networks. This structure level adaptation of the network can be
achieved through adjusting the number of neurons in the hidden layers. This can be broken
down into two steps: neuron generation and neuron annihilation. Lee [11] defined a neu-
ron generation rule as follows:

(a) Neuron i should be split into two neurons when

dE
g = awo,."WD,- >G)G (2.12)
where
WD',[n] =y WD‘.[n- 11+ Q1 —yw)Met(ﬁ‘l‘[n],W‘.[n- 1]) (2.13)
and
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€ is the overall system error (or the cost function depending on each
specific neural network model)
WD; is the walking distance for neuron i,
€, represents the contribution of neuron i to the overall system ervor
owing to its parameter fluctuation
© is the threshold value
Y, is aconstantfactor, U <<y, <1
Met

is some metric that measures the distance between vectors in a met-

ric space.

(b) When neuron generation is required, the neuron with the highest FD (”‘. which

is defined as the Fluctuated Distortion Measure, is split into two neurons. The fluctuated

distortion measure is:

Fp%1ny =[5 1|l @~ tn) [w ©, (m 2.14)

where:

5(l)i is the pre-sigmoidal error for the i-th neuron in layer 1.
Q™) js the receptive field for the neurons in layer 1.

WD(Di is the walking distance for neuron i in layer 1.

The neuron i should be annihilated according to Lee [7], if the following inequality
is satisfied:
€
Act; < 7 (2.15)

(2.16)
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Act;[n) = Y Act;[n-1] + (1-7,)y;(n)

where:
€ is the overall system error
M is the number of neurons in the network
Act is the average output activity for neuron i
Y, is aconstantfactor, 0<y,<1
yj(n) is the output level for neuron i
A simple example was tested to demonstrate these ideas in [11]. The test problem
is a two class classification problem with 2-D input feature vectors. The results show the

proposed network can find the correct decision boundaries for pattern classification.

2.2.2 Other approaches
Azimi-Sadjadi, et. al [12], proposed a new approach for dynamic node creation in
multi-layer neural networks. This method uses time and order update formulations in the
orthogonal projection algorithm to arrive at a recursive weight updating procedure for
training processes. The algorithm may be summarized as follows:
1. Limited Architecture: Construct a neural networks architecture with a small
number of hidden layer nodes
2. Time Update - Weight Adaptation: Present the training data sequentially and
iterate the standard RLS and update the weights using the order update equa-
tions in conjunction with the analog of the back-propagation method. Monitor
the Average Mean Squared Error (AMSE) at the output.
3. Order Update - Node Creation: If the rate of change of AMSE is not acceptable,

increase the hidden layer nodes by one and update the weights using the order

17




update equations.

4. Order - Time Updates Interface: To proceed with subsequent weight updating
after node creation use a proposed equation and then switch back to the time
updating process.

Azimi-Sadjadi, et. al [12] applied this network to microwave data, namely of Nylon
and Wood composition, for detection and classification. Improved results were obtained

compared to the BP algorithm

Another very interesting approach referred to as Cascade - Correlation learning
architecture was proposed by Fahlman and Lebiere [13]. Cascade - Correlation begins
with a minimum network, then automatically trains and adds new hidden units one by
one. Each layer consists of only one unit, thus creating a multi-layer structure. A diagram

is shown in Figure 2.2

18




Outputs

S

Initial State
No Hidden Units

Inputs o

0
¥ g |0
Yy VYYY

+1

Outputs
J| S
Add i
Hidden Unit 1

_/" >
Inputs 2 % :
© i
+1 - >

Outputs
Add } ?
Hidden Unit 2 v S
_/' -
_j' -
Inputs g E ;
©
+I o

Figure 2.2: The Cascade- Correlation architecture, initial state and after adding two
hidden units. The vertical lines sum all incoming activation. Boxed connection are fro-

zen, X connections are trained repeatedly.
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Cascade - Correlation also uses the quick-prop algorithm [18] instead of simple,
linear gradient descent to update the weights in the network. The Cascade- Correlation
architecture was tested on N - input parity, Sonar and Spiral problems and resulted in a tre-

mendous speed up of network convergence.

2.3 The proposed adaptive structure neural networks

(ASNN)

2.3.1 Description

In general, neural networks adaptation can be classified into three different levels:
functional, parametric and structural levels. Function level adaptation can change the out-
put activities in the neural network according to the input signals. Parameter level adapta-
tion can adapt the weights in the neural networks by changing the learning rate,
momentum, etc. specifications. Structure level adaptation can adapt the network structure
according to the statistics of the variables in the function and parameter levels. In particu-
lar, structure level adaptation allows the network to change the inter-connections between
neurons, generate neurons, and annihilate existing neurons. Hence, the research effort will

focus on neuron generation techniques for structure level adaptation.

2.3.2 Neuron generation rule

The neuron generation algorithm is based on the principle that if the neural net-
work does not contain enough neurons to learn the s; =cific mapping problem, then the
weights and the output of existing neurons will tend to fluctuate and never converge. Net-
work system error is an important criterion in order to determine neuron generation rule.
This is the case in the work of Lee [11], Azimi - Sadjadi [12], and Fahlman [13] as well

as in this thesis. New neurons should be generated when no significant system error
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reduction has occurred after a certain number of training cycles. To determine the neuron
generation rule, Lee [11] proposed the Walking Distance method. M. R. Azimi - Sadjadi,
et. al [12] presented the Recursive Least Squares method. In this thesis, the desired posi-
tion of the neuron to be split is defined by determining the neuron (1) whose input weight
has the biggest fluctuation compared with other neurons in the same hidden layer and
(2)whose output fluctuation in the hidden layer is also high. To determine the neuron with
the highest fluctuation rate, the current and the most recent iterations are considered
because they provide the most crucial historical information. This information includes

update of weights in both the output layer and the hidden layer. The formula for the neu-

ron with the Highest Fluctuation Rate HFR(”i is as follows:

HFRW; = MAX(AW®; * AoUT, ) (2.17)
AW = |w® my-w (n-1| 2.18)
A0UTY; =1 0UTV(n) - OUTO,(n-1) 1 (2.19)

where:
HFR®Y, is Highest Fluctuation Rate for the i-th neuron in the i-th layer
AW“)i is the weight difference for the i-th neuron in the I-th layer
AOUT(')i is the output difference for the i-th neuron in the 1-th layer
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2.3.3 Maximum-minimum rule (MMR)

In the dynamic neural networks structure adaptation, researchers focus on splitting
one "mother” neuron into twc new neurons each time. In other words, only one new neu-
ron is generated each time. This is widely used in the published articles [12],[18]-[21] for
the improvement of the network’s performance. However, the method of spliting one "
mother " neuron each time may still require a long time for the network to converge to the
desired error level when applied to most practical problems.

It has been determined that network convergence could be further enhanced by
splitting more than one "mother" neuron at a time, particularly during the beginning of the
network training period. This improvement will add great benefits for solving compiex
problems. The key point is to specify the appropriate number of neurons to be split at the
right time and place during the network structure adaptation process which is shown in
Figure 2.3. The proposed algorithm, designated as Maximum - Minimum Rule (MMR), is

explained below.

Consider a set of neurons in the hidden layer. The algorithm is then carried out as
follows:
1. Calculate the fluctuation rate (FR,-”), i = 1,..N}) for this set of neurons and
queue them from high to low
2. Split the neuron with the highest fluctuation rate (HFR( '))

3. For the remaining neurons in the set, check the variation fluctuation:

R

|~ ——— <FRTH (12200 Np) (2.20)
HFR

where Ny is the number of neurons in the hidden layer set and

FRTH is the threshold of the fluctuation rate
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The above formula computes the minimum difference of the fluctuation rate
between the i-th neuron and the neuron with the highest fluctuation rate. If the inequality is
satisfied for the i-th neuron, then this "mother" neuron is also split to generate a new neu-
ron. Whenever neurons are split, the weights of the new neurons are the same as the
weights of the mother neuron. The threshold FRTH is adjusted according to the specifics
of the application problem as applied to the ASNN.

+1 +1

X(i) £(X(i))

===

Figure 2.3: Three layer ASNN with two neurons split

2.3.4 Fast learning algorithms

Back-propagation is based on gradient descent on the error surface. In general, it
can get stuck in local minimum on the emor surface and can fail to discover the best set of
weights. To develop a complete methodology for generating neurons in structure level
adaptation, a new neuron generation rule was defined in Section 2.4.2 and a new MMR
algorithm was proposed in Section 2.4.3. In this section, additional research on speeding

up the network convergence will be discussed.
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2.3.4.1 The existing approaches

To accelerate the convergence rate of the BP network, different approaches have

been developed in recent years. The research can be categorized into the following areas:

1. Initial weights improvement

Back-propagation and its applications usually initiate training procedures by ran-
domizing a set of initial weights within small range of real values. These random initial
weights will cause different local minima during network training process. Therefore the
solution for a specific problem depends on the set of initial weights. If the initial weights
are set very close to network global minimum, then the network training procedure will
converge quickly. Hasanat and Eduardo [22] proposed an extrapolative methods to pre-
dict the weights in the BP network. Chih-Liang and Roys [23] developed a Forward Esti-
mation Algorithm and Recurrent Estimation Algorithm for the optimal estimation of
initial weights. Kim and Ra [24] suggested a method for nsing the minimum bound of
weights based on dynamics of decision boundaries; which is derived from the generalized
deltarule. Simulation results showed that all the above research have accelerated the con-

vergence rate of the BP network.

2. Modification of the gradient and momentum terms

Yoshio and Alex [25] proved that a modified gradient and momentum method can
speed up the network convergence. In this paper, the authors used tﬁc simple gradient
method for updating weights. The convergence time is TI1 = C1 / D, where D is the
sharpness of sigmoid function and C1 is a constant. When the momentum method was
used for updating weights, the converge time is T, = C,/ (,,/5) , where C, is a constant
and much smaller than Cy. Both methods have obtained similar improved results to cut

down the network training time.




3. New algorithms
Brent [26] published a Fast Training Algorithm (FTA) for multilaygr neural net-
work. The key point of FTA is to construct a decision tree and then simulate the decision

tree with a neural network (Figure 2.4)

Figure 2.4: A corresponding decision tree for $ different regions
(H refers to hvperplane)

This new algorithrn has been implemented and tested on problems such as the par-
ity problem and speech recognition. Experimental results showed that the network train-

ing is much faster than the BP and the accuracy achieved is as good as or better than BP.

4. Other attempts

Some other published methods are also very interesting for the speed up of the BP
network convergence. For example, Masafumi {27] proposed an accelerated BP by using
unlearning based on Hebb Rule. Wong [28] presented a selective training algorithm for
fast error propagation. All these approaches have reported a better results compared to the

traditional BP algorithm.
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2.3.4.2 The proposed approach using Delta Adaptation (DA)
In this thesis, two different approaches similar to the conventional DA algorithm

are explored ,namely, DA vector summation and a DA modification.

(i) DA vector summation

In BP, the Generalized Delta Rule (GDR) plays an important rule to speed up the
network convergence. The GDR is used so that the weight is changed by an amount pro-
portional to the product of an error signal 6. Figure. 2.5 is a simple diagram illustrating

this property.

DA(t)

o(t)

-t t

Figure 2.5: The BP generalized delta rule

From Figure 2.5, the GDR is applied to weight update by using a gradient descent
method to find the steepest direction and the step size (DA(t)). &(t) is the error calculated
proportional to the applied product.

In an attempt to improve the speed of network convergence, the DA vector sum-

mation is expressed as follows:

DA(t+1) = Ax.JDA(t) xDA(t) +dx8-2xDA (1) x 8x cos (8) 2.21)
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where A is the DA factor and 0 is the angle between DA(t) and &(t).

The resulting graph illustrating the above is shown in Figure. 2.6.

"4
DA()

DA(t+1)

8(1)

>

Fig.2.6  The DA vector summation

Theoretically, the DA vector sunimation is an ideal approach because an accurate
measurement can be performed to determine the DA step size. It is used for the updating
weights both in the hidden layer and in the output layer. The sum of any two sides of a tri-
angle is greater than the length of its third side. So if DA(t+1) replaces DA(t) in the con-
ventional method, the speed of network convergence will be improved. In practice,

however, determining the angle 0 is not trivial, which motivates the next scheme.

(ii) Proposed DA Maodification

In the BP algorithm, the GDR is applied to the network learning process. An error
term §, which represents the difference between the desired output and the actual output is
calculated using the gradient method. The error dis then transmitted backwards from the

output layer to the hidden layer for weight update in both layers.
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For the k-th output node:

o 0'
S = (yp*—op,‘ ) f*(netp‘; ) (2.22)
o - .0 o, o
wk].(t-l-l) = Wk,-(')*"apk',,j +aAwkj(t—l) (2.23)
For the j-th hidden node:
h K h
8, = (28p2w kj)fj(netpj) (2.24)
h
wilt+1) = wi() +n8" X +eAW (1~1) (2.25)
T

pJ

The objective of the network learning is to eliminate the difference between the
desired output and the actual output. The learning rate parameter 1} and the momentum
parameter ¢ are used to improve the network performance. It is often possible to
increase the size of 1| as learning proceeds. When calculating the weight change, Aw, the
momentum © tends to keep the change of weights follow the same direction.

In many cases, the error term may be small after some iterations, but the network
has not reached the desired error level, even when o and 1 are optimally adjusted. In this
case, the performance of the network training will slow down, or fail to reach an optimal
solution. One possible reason is due to the non-linear sigmoidal function shown in Figure

2.7.




fx) ,

14

]

Figure 2.7: This graph shows the S shape characterstic of the sigmoidal function

It is evident that the S shaped curve of sigmoidal function flattens as its inputs
increase or decrease. If the error term is calculated within the fat regions, the value will
be very small. In order to overcome the shortcoming of the sigmoidal function, it is neces-
sary to adjust the error term to avoid reaching the flat regions. The improved DA algo-

rithm is defined as follows.

When k is an output node:

o
5p‘; = (ypk—Opk )fk(netp: ) (2.26)

o - ]
DA, (t+1) =ADA_ () +98,; +OADA | (+-1) (2.27)
wk‘;,(t+ 1) = wk';(t)+1\DAp:(t+ 1+ aAwk‘;(t-l) (2.28)
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When j is a hidden node:

h o K h
Spj = (25pkw kj)fj(netpj ) (2.29)
0 _ h h hy o
DApj(n-i-l) = XDApj(n) +yﬁpj +0ADAP].(n 1) (2.30)
h _ _h h h
wj‘,(n+ 1) = wji(n) +1]DApj(n+ 1) + (waﬁ(n— 1) (2.31)

Where:
p: the number of patterns
A: DA factor
v: & step size
G: DA momentum
DA°pk(n+l): the Delta value at time n+1 for pattern p belonging to node k
of the output layer

DAhpj (n+1) : the Delta value at time n+1 for pattern p belonging to node j

of the hidden layer

Equations (2.27) and (2.30) are different from those in the BP algorithm. The
motivation for these two equations come from the principle of weights update. y is the
step size of & and © is the momentum of DA. Momentum tends to keep the weight
changes in the same direction. Equations (2.27) and (2.30) are modified weight update for-

mulae using the DA variable to replace the 8 variable. One possible plot for § and DA

is drawn in Figure 2.8.
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Figure 2.8 : Typical 6 and DA process plots

Several issues related to the modified DA are explained below:

(A) The minimization of the cost function
From Figure 2.8, we can clearly see that the difference between the 8 and the DA
curves is the amplitude. Both the § and the DA curves have similar decaying features.
This means that the DA will tend to eliminate the error term. Because the DA starts with
higher error terms compared to J, it is reasonable to state that DA will have faster conver-
gence speed for reaching to the desired error level before the value of DA falls within the
flat regions of the sigmoid function ( that is, the DA value falls within the flat regions of

sigmoidal function after the & value).
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(B) The convergence properties of the weight vector

The modified weight update equations for both the output and the hidden layers are
given by equations (2.27) and (2.30). The difference between the BP weight update and
the ASNN weight update is that § in BP is replaced by DA in ASNN. Large DA values

may speed up the network performance when A, ¥ and 6 parameter are properly selected.

(C) A, yand ¢ parameters

The physical meaning of the parameters yYand ¢ in ASNN is similar to the param-
eters 1 and o in BP. Parameter A is defined as the DA factor. It represents the strength of
DA in the current iteration. The selection of the parameters varies according to applica-
tion problems.

The value of A is usually selected between 0.1 to 0.4. The small A is used to adjust
the DA value for its last iteration. If the value of A is high, the system error may fluctuate
and fail to converge. A proper value for d step size y can speed up the neural networks
convergence. Step size ¥y is used to compute the change of DA. The range for its value
has been found experimentally to be between 0.5 to 1.0. In order to reduce the oscilla-
tions, the DA momentum o is used to control step size . It modifies the § changes and
represents the relative importance of & changes in the previous iteration. The range of ¢

is set between 0.2 to 0.8.
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2.4 Summary

Back-Propagation is the most widely used algorithm developed in neural networks
as used in practical applications. Itis composed of two algorithms: feed-forward calcula-
tion and error back-propagation. Error back-propagation enables the neural networks to
learn input-output properties of the data. But the fixed structure of the Back- Propagation
network limits its functions. To overcome this limitation, different approaches were tested
to find a suitable way for structure level adaptation. Lee [11]. Azimi-Sadjadi [12], Fahl-
man , et al [13], have developed algorithms for structure level adaptation and their results
are encouraging

In this thesis, a new ASNN is proposed. This new algorithm deals with only a neu-
ron generation rule. The Maximum-Minimum Rule (MMR) is developed for spliting more
"mother" neurons at a time. MMR has been verified to be an effective improvement over
the single "mother"” neuron generation method. The modification of the traditional DA
method also enhanced the network convergence leamning rate. The ASNN will be tested
using the benchmark examples in Chapter 3. A more realistic application, namely, an

automatic EEG seizure detections will be introduced in Chapter 4.
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CHAPTER 3

Simulation Results

3.1 Introduction

As pointed out in Chapter 1, neural networks is a powerful tool for practical appli-
cations such as pattern recognition[5}], image processing [6], control [13], etc. In Chapter
2, a novel approach for adapting the structure of the network, namely adaptive structure
neural network [30]-[32], was proposed. This approach is concerned with mainly neuron
generation. A neuron generation rule was defined to determine when and where the new
neurons should be added in the hidden layer. To confirm the effectiveness of the proposed
algorithm, simulation results on both discrete and analog examples are presented in this
chapter. The two discrete examples include character recognition and XOR problem.
Character recognition is often used as a test for problems in pattern recognition. XOR is
a classic example which is widely used in neural networks research. The two analog func-
tions are 4-leaf-rose and one-spiral. The one spiral problem is also a typical example used

by many researchers [13] to test the network performance.




3.2 Architecture of the proposed neural networks

A three layer neural networks is initialized with four neurons in the hidden layer to
test the proposed structure adaptation algorithm and to compare it with the standard back-
propagation [1] neural networks as well as with Lee's method [11]. The parameters
selected for the three networks are:

learning rate = 0.15

momenturﬁ =09

initial weight = random
and for the ASNN, the additional parameters are selected as follows:

FRTH=0.2

A=02

v=08

6 =02

3.3 Discrete results

3.3.1 Character recognition problem

Character recognition is widely used as a test for neural networks simulation.
Three patterns, "A" ,"C", and "D", are selected for the testing. Each pattern is represented
by a 5*7 matrix. The input and output layers consist of 35 neurons. The hidden layer is ini-
tialized to 4 neurons. Table 3-1 shows the results using the BP, Lee’s and the proposed
ASNN algorithms.
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Table 3-1: Character simulation results

Desited\pattem| BP | Lec’s method ASNN
Tor
Improved | Improved
Iteration |Iteration| Added | Iteration | Added rate rate
Neuron Neuron [ (compared | (compared
to BP) to Lee)
0.0001 A 322 140 5 47 4 85% 66.7%
C 200 143 5 40 7 80% 72.0%
D | 317 141 5 100 5 67% 29.1%
0.00001 A | 6258 | 2613 8 2042 8 67% 21.9%
C| 6041 | 2793 8 1375 14 76.8% 50.8%
D | 6106 | 2658 8 2032 9 66.7% 23.6%

Clearly, ASNN obtained the best results among the three networks. Overall,
between 66.7% to 85% of training iterations are saved by using the ASNN method com-
pared to the BP method and between 21.9% to 72.0% of training iterations are saved by
using the ASNN method compared to Lee’s method. Figures 3.1 to 3.6 show the learning

error plots for each of the characters.
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From the simulation results, one may observe that for the same value of the desired error
the BP or Lee’s method required similar number of iterations for "A", "C" and "D" characters,
but Lee’s method obtained a faster rate of convergence. This is due to the fact that BP is a fixed
structure network while Lee’s structure level adaptation splits one “mother” neuron each time.
With the same value of desired error, the iteration numbers varied when different characters
were applied to ASNN. For example, to reach the desired error of 0.0001, 100 iterations were
required when character "D" was applied to ASNN , while only 40 iterations were required
when character "C" was applied. The reason for this substantial reduction is that more "mother"
neurons were split at a time to speed up the network convergence when character "C" was
trained with the ASNN. From the relationship between the number of iterations and the neuron
generation (shown in Figures 3.7-3.9), for character "C" it is evident that two "mother" neurons
were split at iterations 14, 21 and 35. On the other hand, only one "mother" neuron was split
each time when character "D" was applied to ASNN. Therefore, ASNN is more effective and

flexible in dealing with different patterns.
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By comparing the number of new neurons in Lee’s algorithm with those in ASNN, it is
verified that, for the same value of the desired error the same number of new neurons (see Table
3-1) was generated by using Lee’s algorithm, whereas different number of new neurons were cre-
ated when these characters were trained by ASNN. The neuron splitting method proposed in
ASNN is capable of estimating a more appropriate number of neurons for spliting during the net-
work training process and thus can speed up the network convergence.

When new neurons were added to the neural networks, the system error will increase
instantaneously because the network structure has been perturbed. This phenomenon is reflected
in Figures 3.10 - 3.12. For example, when character "A" is applied to ASNN, a new neuron was
added at iteration 16. As shown a sharp peak has appeared on the curve which is then quickly
reduced after 4 iterations. The same phenomenon has also occurred in Lee’s method, but at itera-

tion 19, whereas BP did not have such a peak because its structure dose not change.
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3.3.2 XOR problem

XOR problem is a classic example often used for the simulation of existing neural
networks. To train the network, the input layer is set to 2 neurons, the output layer is set to
1 neuron and the hidden layer starts with 4 neurons. Table 3-2 shows the results demon-
strating that the ASNN performs better than the BP and Lee’s algorithms. Figures 3.13 -
3.14 depict the error profiles.

Table 3-2: XOR simulation results

Desired | pp | |ee’s Algorithm ASNN
Error
Improved | Improved
Iteration |Iteration| Added |Iteration| Added Rate Rate
Neuron Neuron | (compared | (compared
to BP) to Lee)
0.001 1704 1716 5 1202 5 29.5% 30.0%
0.0001 8486 9143 7 1802 6 78.8% 80.3%
0.00001 | 66110 | 78259 10 27468 10 58.5% 64.9%

Similar results as in the character recognition problem were obtained for the XOR
problem. Between 29.5% to 78.8% of iterations were reduced by using the ASNN method
compared to the BP and between 30.0% to 80.3% iterations were reduced compared to
the Lee’s method. Surprisingly, although new neurons were created when the Lee’s
method was applied, the network convergence was not improved significantly.

When XOR problem is applied to both Lee’s and ASNN networks it is found that a
similar number of new neurons are created (see Table 3-2), but ASNN has an average
convergence improvement of 58.4% ((30.0% + 80.3% + 64.9%)/3 = 58.4) compared to

Lee’s method. The reason is that the split mother neuron and split time are difference
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between Lee’s method and ASNN. This is another example showing that ASNN is a well
designed structure level adaptation network.

In the XOR problem when the accuracy of the desired error increases the perfor-
mance of the ASNN does not change linearly. For example, when the desired error is set
to 0.001, 0.0001 and 0.00001, the improvements in network convergence between ASNN
and BP are 29.5%, 78.8% and 58.5% respectively. In other words, the best performance
of the ASNN is obtained when the desired error is set to 0.0001.
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3.4 Analog results

3.4.1 4-leaf-rose problem

The polar to the rectangular coordinate change is given by:

R=sin2d) a.n
X=Rcosd (3.2)
Y =Rsin® 3.3)

where X and Y represent the cartesian coordinates and R and & represent the polar coordinates.
The general shape of this function is a 4-leaf-rose inclined by 450 from the x-axis. For the purpose
of the simulation the f;mction is limited to only the first quadrant as shown in Figure 3-15. The
input and output layers consist of 30 neurons each. The hidden layer starts with 4 neurons. Table

3-3 shows the simulation results comparing the BP, Lee’s and the ASNN algorithms.

0 6t 02 03 04 05 06 07 08

Figure 3.15: The first quadrant of a 4-leaf-rose function
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Table 3-3: 4-leaf-rose simulation results

Desired

BP Lee’s Algorithm ASNN
Error
Improved | Improved
Added Added Rate Rate

Iteration | Iteration | Neuron |Iteration| Neuron | (compared | (compared
to BP) to Lee)

0.00001 { 466 286 7 169 10 63.7% 40.9%
0.000001) 3833 1743 9 1162 13 69.7% 33.3%

Since only the first quadrant of the 4-leaf-rose function is simulated, the network complex-
ity and training iterations are reduced substantially. However, the results still show that the
ASNN performs better than the BP and Lee’s methods, althcugh more new neurons are created by
the ASNN as compared to Lee’s method (shown in Figures 3.18-3.19). For example, using Lee’s
method when the desired error is 0.00001, 286 iterations are required and 7 new neurons are gen-
erated. Using the ASNN method, only 169 iterations are required and 10 new neurons are gener-
ated. A better representation on new neuron generation for both the ASNN and Lee’s network
learning process is demonstrated in Figures 2.16 -3.17 and Table 3-4. For example, at iteration
13, the ASNN required another 2 neurons at the "mother” neuron positions of 1 and 2. The learn-
ing process continued with 8 more neurons added at different "mother" neurons positions. At iter-

ation 169 the network satisfied the error requirement.
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Table 3-4: The comparison for additional new neurons

Method Number of additional The.iterations when s:l?t:u‘x);?'l ::’:t‘;:f "
new neurons adding new neuron neuron
%
1 20 0
1 27 5
Lee 1 43 4
1 79 1
1 131 2
1 251 2
Total Iteration = 286
2 13 1,2
3 17 1,2,0
ASNN L 44 4
1 48 9
2 66 4,0
1 98 4

Total Iteration = 169

Lee’s neuron position

#0
#1
#2
#3
#4
#5
#6

@)
o_O

o’

o ™0

O
O
O

ASNN’s neuron position

#0 O
O

"
@)

#9 O

Figure 3.16: The neuron labels for the initial splitting in Table 3-4
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3.4.2 One spiral problem

The spiral problem is used as another example for analog function approximation.

The equations for spiral to rectangular coordinate transformation are as follows:

p=ad (3.4)
X =pcosd (3.5)
Y = p sind (3.6)

In this case the network has two continues-valued inputs and two outputs. The hidden

layer starts with 4 neurons. The training set consists of 48 X-Y values.

-
N

Figure 3-20: One- Spiral Problem
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Table 3-4: One spiral simulation results

Desired s .
Error BP Lee’s algorithm ASNN
Added Improved | Improved
Iteration | Iteration | Neuron | Iteration | Added Rate Rate
Neuron | (compared | (compared
to BP) to Lee)
0.001 2877 2304 2 1838 2 36.0% 20.2%
0.0001 | 20332 | 17885 5 12630 5 38.0% 29.4%

In order to simplify the learning process, only one spiral is selected for training the
network. It is shown that the ASNN method performs best compared to other networks.
However, compared to the results of character recognition, XOR problem and 4-leaf-rose
function, it is found that the ASNN effectiveness is reduced. For example, to reach the
desired error of 0.001, only 36.0% of training iterations were saved compared to the BP
and only 20.2% of training iterations were saved compared to the Lee’s method. These
resuits are summarized in Table 3-5. It is noticed that only a few new neurons are gener-
ated for the one spiral problem. This is due to the fact that the one-spiral problem has
many local minima to overcome. The small step size used also adds to the training pro-
cess. This is easily verified from the slow error convergence plots shewn in Figures 3.21-
3.25. Since the learning plots for the BP and Lee’s methods are combined in Figure 3.21,
the comparison of learning curves between the BP and the ASNN as well as the Lee’s and

the ASNN methods are shown separately in Figure 3.22 to Figure 3.25.
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3.5 Summary

In this chapter, the proposed adaptive structure neural networks is applied to several
examples. A comparison between the BP, Lee’s and the ASNN methods show that the
ASNN algorithm is not only superior to the traditional BP network, but also performs bet-
ter than the Lee’s network. Both discrete and analog problems are solved using these three
networks.

In the discrete pattern recognition problem by using the ASNN, between 66% to
85% of training iterations are saved compared to the BP algorithm and between 22% to
66% of training iterations are saved compared to the Lee’s algorithm. For the XOR prob-
lem, ASNN performs quite satisfactory with 29% to 78% fewer number of iterations com-
pared to the BP and 30% to 80% fewer number of iterations compared to the Lee’s
algorithm. The ASNN algorithm is shown to be an improvement over the BP and the
Lee’s methods for solving these discrete problems.

For the analog function approximation, the three networks are used to solve both
the 4-leaf- rose and the one spiral problems. When the three networks are applied to the 4-
leaf-rose problem, the ASNN training iterations is improved from 64% to 70% compared
to the BP and from 33% to 40% compared to the Lee’s algorithm. The ASNN method per-
formance for the one-spiral problem compared to the BP and the Lee’s methods improves
from 20% to 38%, respectively.

In all of the four simulation examples, we have shown that the ASNN algorithm
may improve the iterations from 30% to 80% compared to the BP and the Lee’s lﬁcthods.
In Chapter 4, a real world application problem, namely an Epileptic Seizure Detection

algorithm will be used to test the ASNN capabilities.
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CHAPTER 4

EEG Applications

4.1 Introduction

Electroencephalogram (EEG) js a signal that records the electrical activity of the
outer layer of the cerebral cortex [33]. It is widely used to diagnose the brain disease in
the clinical applications. Since Hans Berger invented the EEG in 1924, the EEG has been
quickly recognized around the world. In the 1940’s, the first EEG Auiomatic Low Fre-
quency Analyzer was invented [34]. In the 1960’s, the invention of the Fast Fourier Trans-
form (FFT) [35] greatly reduced the time needed for electroencephalograph signal
analysis. FFT made the on-line process of EEG signal frequency analysis possible and
provided significant possibilities for practical clinical applications. Since thel1970’s, due
to the advances in computer technology, other techniques have been applied to EEG
research. For example, frequency analysis by using Autoregression (AR) model [36],
time domain analysis techniques, and pattern recognition methods have been developed.
In recent years, neural networks techniques have also been increasingly used for EEG

research, especially for epileptic spike detections [7],[8].
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The EEG signals are very complex and their statistical propertics depend on both
time and space. Generally, EEG signals are very weak and low in frequencies. The ampli-
tudes recorded EEG signals range from 10! to 103uv individually. The frequency
thythms can be divided into four regions, i.e.:

@ & 05-~3HZ
(i) ©0: 4~7HZ

(iii) a:8~13HZ
Giv) B:14~30HZ

The recorded EEGs are different for adults and children. Normal children’s EEG usu-
ally appears with higher amplitudes and lower frequency than those of adults. The domi-
nant frequency rhythms also vary when people are in different states (such as awake,
quite or sleeping). Analysis of EEG signals always involve questions of quantification,
and accurate measurement is difficult because the behavior of the EEG is very weak and
unstable. (see Figure 4.1 to Figure 4.4)

An important type of abnormal EEG is called seizure (see Figure 4.5: EEG classifi-
cation). The beginning point of a seizure is called seizure onset. When a seizure nccurs,
the amplitude is first decreased and the EEG signal is desynchronized. Then, the EEG
shows the appearance of moderate or high amplitude rthythm activity. Next, the presence
of high amplitude electromyogram (EMG) obscures the EEG, and irregular paroxysmal
activity appears. In some cases, the EEG may not appear to change at all during a small
seizure. For clinical purposes, the initial seizure periods (0-~20s) is the most important

one because it reveals the vital information about epileptic focus.
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EEG

Figure 4.5: Scheme of EEG classificaiion by EEGers

Figure 4.6 shows the normal EEG and Figure 4.7 to Figure 4.10 show four different
seizure patterns (in the Figures 4.6-4.10: X-axis represents the time. Y-axis indicates the
locations of 16 channels (see Figure 4.11(a)) which are placed on the human scalp). These
four seizure patterns are only a small part of the overall seizures, but they clearly present
local seizures, generalized seizures, seizures clearly identified from EEG background, and
seizures completely mixed up with the EEG background.

EEG activities can be obtained in two ways by spontaneous or inductive methods.
The spontaneous EEG is recorded without any external influence, whereas the inductive
EEG is recorded using the man-made stimulation such as sound, lights, etc. This thesis

focuses on the research on spontaneous EEG.
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The spontaneous EEG is obtained by means of electrodes placed on the scalp and is
most useful in the investigation and management of patients with suspected epilepsy. The
recorded epileptic seizures are particularly helpful to doctors in the treatment of
patients. Because seizures usually occur infrequently and unpredictably, automatic detec-
tion of seizures during long term EEG monitoring sessions is required. For long term
EEG monitoring, distinguishing between seizure and non-seizure is important.

Over the past 20 years, numerous efforts to automate the detection of epileptiform
activity have been made and comparatively good results have been obtained [39]-[42].
This thesis is the first approach to real-time automatic epileptic seizure detection by
adaptive structure neural networks.

The developed ASNN is based on the standard back-propagation neural networks. A
three layer (one input layer, one hidden layer and one output layer) ASNN is used to map
the desired precision of EEG seizure recognitions. The EEG testing data is provided by
Dr. Jean Gotman and Mr. Qu of the Montreal Neurological Institute (MNI).

In the following sections, several important topics will be discussed. One is the EEG
data acquisition and seizure feature extraction. EEG data acquisition enables us to record
EEG for later analysis. Seizure feature extraction enables us to use only the most signifi-
cant seizure features to detect the true seizures. A Seizure Detection Method (SDM) is
proposed to classify seizure patterns. The last topic covers the results when different

approaches are applied to EEG seizure detections.
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Figure 4.11(a): The location of 16 EEG channels placed on human scalp
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4.2 EEG data acquisition and seizure feature extraction

4.2.1 EEG data acquisition

EEGs are recorded by electrodes placed on a human’s scalp. The electrodes are
made either with sphenoidal or chronic multi-conductors. A 16 (or 32)-channel cable
clementary system is used to transmit the EEG. The system includes a 16 (or 32) ampli-
fier and a multiplexer. In order to perform selective recording, the computer first delays
the EEG by 2 minutes, so that at every instant the last 2 minutes of the EEG are stored in
the computer disk. When a seizure is detected, the computer can then record the 2 minutes
of EEG before and 2 minutes of EEG after. The detection of a seizure is obtained by the
pressing of a button by either the patient or the observer; it can also be signaled by the
cornputer itself which continuously processes the EEG in an attempt to recognize EEG
seizure pattems [39]. At the same time, the patient’s behavior is also recorded by a TV

camera for later review. The related diagram is shown in Figure 4.11(b).
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In this study, sixteen channel EEGs from 5 patients with seizures and non-seizures
were recorded at the MNI These EEGs, digitalized in selected portions with 12 bit reso-
lution at 200 Hz sampling rate, were stored on a computer hard disk. In order to obtain
the most tentative EEG, one minute of each EEG was sampled every 30 minutes. The total
sampling lasted 2-4 days for each patient. This sampling method is widely accepted for
the modelling of long time monitoring because all the pessible states of patients can be

captured.

4.2.2 Seizure Feature Extraction

Automatic recognition of seizures is a very difficult problem since the EEG is not
well defined morphologically. To apply a neural networks to seizure recognition, it is nec-
essary to extract the most representative seizure features. Recognition of the EEG seizures
is based on a seizure’s characteristics, property and clinical phenomena. The EEG is bro-
ken down into epochs, each epoch lasting 2.56 seconds which are based on the sampling
rate of 200 Hz and is easy for FFT calculation (2.56 * 200 = 512). Three time domain vari-
ables and two frequency-domain variables are defined and extracted from each EEG
epoch in all 16 channels. After these features are extracted, they will be used as the input
data either for ASNN to train seizure patterns or to detect seizures. The five features are

defined below:

(a) Average EEG amplitude: This is determined in each epoch. HALF-WAVE
method [39],{42] is applied to break the EEG down into half-waves. Then the amplitude

of each half-wave is measured. The mathematical expression is as follows:

M
AM,, = Y AM, /M (4.1)
i=1




where:
AM 5 1S the average EEG amplitude in one epoch
AM,; is the amplitude measured by one half-wave
M is the number of half-waves in one epoch
(b) Average EEG duration: This is the average duration in one epoch. Similar to
the measur.:ment of average EEG amplitude, the Half-Wave Method is used to measure

the duration of each half-wave. The mathematical expression is as follows:

M
DUR = ) DUR, /M 4.2)
i=]

where:
DUR is average EEG duration in one epoch.

DUR, is the duration measured by one halt epoch

(c) Coefficient of variation: This is the ratio of the standard deviation to the mean
value. The feature is used here as a rieasure of the ‘rhythmicity’ of the EEG; it is inde-
pendent of the EEG frequency and it represents the degree of regularity in its duration.The

mathematical expression is as follows:

il T 2
Y. (DUR,-DUR)

COVA = = IDUR2 (4.3)
XM

where:

COVA is the coefficient of variation

7




(d) Dominant Frequency: For each epoch of the EEG, the dominant frequency indi-
cates which frequency is the most important one. It can be expressed as a peak in the fre-
quency spectrum. When a seizure happens, rhythmic discharge with large amplitude at a
certain frequency is significant. The dominant frequency feature is obtained from power
spectrum analysis. ‘

(e) Average Power Spectrum: A: =r one epoch of the EEG is processed by power
spectrum analysis, its average power spectrum is calculated. This feature is used to esti-

mate seizure behavior in the spectrum domain.

4.3 ASNN seizure recognition method

After the EEG data is recorded, experienced clinical doctors first review all the EEG
to distinguish seizure and non-seizure patterns. The initial seizure patterns from the same
patient may vary. On the other hand, the initial seizure patterns from one patient may be
very similar to the non-seizure patterns of other patients. These phenomena compounds
the difficulty of seizure detection algorithm.

The EEG raw data is broken down into epochs and processed sequentially to extract
the 5 features from both time and frequency domains. These extracted features are then
sent to the ASNN for either training or recall process.

In order to increase seizure detection rate and the possibility for the clinical use of
the proposed method, the following assumptions are required for the studies.
(1) Patients are treated individually and the first one or two day’s recording is used
to extract different seizure patterns.
(2) Training set : A complete EEG training set contains both non-seizure and seizure

set. A non-seizure training set is selected as in the following steps:
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- The EEG is selected in the interval of one to two minutes before the patients’s sei-
zure occurs.

- Random 25.6 second segments of non-seizure EEG (10 epochs) are extracted in
the selected time interval.
In practice, the non-seizure training set is not restricted just before seizure occurs.
Since we set the parameter to record the detected seizures two minutes in advance,
the selection of non-seizure EEG corresponds to our recorded data.

- The seizure training set is also randomly selected from any recorded seizure pat-
terns. Because the duration of seizures changes in each patient, the length of sei-
zure training set varies from 20 ~ 40 seconds and it usually begins from the seizure
onset.

(3) Recall set: All the rest of the EEG from the same patient, including the training

set and the recording data from later days, form the recall set.

From the detailed research on seizure patterns some common characteristics of seizures
can be summarized as following:.

(a) A seizure is the phenomenon of rhythmicity discharge from either a local area or the
whole brain of the patient.

(b) Each seizure’s individual behavior usually lasts from seconds to minutes.

From the above discussion, a Seizure Detection Method (SDM) is proposed to improve
the accuracy of seizure detections in the recall process:

(1) Each 2.56s EEG constitute a detection epoch. Features are then extracted to cate-
gorize each epoch as seizure or non-seizure.

(2) A seizure detection threshold for the EEG epochs is set at 0.6. This value reflects

the similarity between the training of the EEG and the recall of the EEG and is used to deter-
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mine whether an individual detection epoch is a seizure one or not. This value was deter-
mined in the following way. During our experiments, the threshold was initially set to 0.8
and it was found that some of the seizures were lost because the 80% similarity between
training and testing sets could not be reached. A value of 0.6 can match most of the seizure
patterns. Unavoidably, some of the inconsistent non-seizure epochs were also detected as
seizure epochs. Most of these inconsistent seizure epochs can be eliminated by the SDM
method.

(3) To distinguish the change from non-seizure to seizure or vice versa, 5 subsequent
epochs need to be processed. If the first epoch, plus 3 of the remaining 4 epochs, indicate
a seizure, then the phase is considered as a seizure phase. This is because when a seizure
occurs, it usually lasts from 10 seconds to several minutes. To maximize number of sei-
zure detections, 5 subsequent epochs (5%2.56=12.8 seconds) are selected as the base. The
same procedure is used to detect non-seizure phases. This reflects the fact that oni, a sig-

nificant section (>=12.8s) is required to detect a change.
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4.4 Comparison of different methods for EEG seizure
detection

Seizure and non-seizure EEG data of 5 patients were recorded (each patient may
have more than one seizure pattern) and applied to ASNN and BP to explore the follow-

ing three points:

1. Comparison of seizure detections between physician observation and ASNN

2. Comparison of network performance of seizure detections between ASNN and
BP.

3. The reduction of False Seizures Detections(FSD) during long term seizure mon-

itoring.

A three layer network is used and initialized with 4 neurons in the hidden layer to
test ASNN and for comparison with the BP. The parameters selected for both networks
are:

leamning rate = 0.15

momentum = 0.9

random initial weights
To test the ASNN, additional parameters are selected:

FRTH=0.2

A=02

Y=10

=02
To train the network, the input layer is set to 80 neurons (16 EEG channels * 5 fea-

tures). The output layer is set to one neuron.
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4.4.1 Comparison between physician observation and ASNN

In physician observation, experienced doctors review all the recorded EEG's and
classify seizure or non-seizure patterns. The ASNN simulates this recognition of patterns
by the physicians and thus is very significant for long time seizure monitoring, To evalu-
ate the performance and the practical applicability of the ASNN, the number of seizures
detected by the automatic detection method is compared to the number detected by the
physicians’ observation. From the results of Table 4-A (shown in Appendix I) , we see
that all the 38 recorded seizures by physician’s observation were detected from the tested
patients by using the ASNN network. Furthermore, the duration of seizures detected by
the ASNN agrees with the time observed by the physicians. For example, in the case of
patient 1, two different seizure patterns were classified by the physicians from the
recorded EEG. Three seizures were recorded by the computers for each seizure pattern.
All of these 6 seizures are detected by the ASNN. For the recorded EEG for patient 1, the
experienced physician noted that the starting time of a seizure is 18:22:40 and the ending
time is 18:23:22. Similarly, the ASNN marked the starting time of the detected seizure at
18:22:42.6 and the terminating time at 18:23:23.6.
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Table 4-1: Summary of comparison in the seizure detection between

physician observation and neural network estimation

# of detected seizure

The seizure start time detected by the

Number of ASNN compared to physician*
Patient Neural Maximum Minimum Average
Physician
Network difference difference difference

Patient 1 6 6 -3s +0.8s +0.97
Patient 2 7 7 +2.485""" 0s +0.19
Patient 3 5 5 -1.0s -0.1s -0.56
Patient 4 8 8 +53s -0.2s -0.84
Patient 5 12 12 +19.8s Os +6.08

Notes  [* : Assuming the beginning time of seizure detection at 0 (s) by physician

** ;" - " means the seizure start time by ASNN is later than physician

*k*: "+" means the seizure start time by ASNN is earlier than physician

Table 4-1 shows the summary of comparison in the seizure detection between

v~

cian observation and neural networks estimation. Assuming that the beginning time of sei-

zure marked by the physicians is 0, the results of applying ASNN to patient 1 show the

maximum time difference of the detected seizures between ASNN and physician observa-

tion is 3 seconds, the minimum time of difference is 0.8 seconds and the average time dif-

ference is 0.97 second

Three reasons account for the good results shown in Table 4-1. First, the classifica-

tion of seizure patterns is clear because each patient is treated individually, and different

seizure patterns are defined for each patient. This classification has its clinical meaning in
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EEG. It is worth spending one or two days to record the EEG as a training base in order
to distinguish seizures or non-seizures while patients are usually monitored for weeks.
The second reason is that the ASNN performs well. As mentioned in chapter 2, one of the
powerful functions of neural networks is pattern recognition. Seizures can be classified as
various patterns. The ASNN not only classifies patterns, but also forins  auto-adaptive
structures. This make the ASNN more powerful and effective than BP, Features extracted
from the EEG, reveal the differences between seizure and non-seizure patterns, The third
most important reason is that the proposed seizure detection method (SDM) is prope . ly
developed. The SIoM simulates the process of physician observation and reflects reauty of
the EEG’s behavior. When a seizure occurs, it usually lasts from seconds to minutes.
When a physician reviews the EEG, he / she not only is concerned with the initial seizure
onset, but also goes through the whole process of the seizure and watches the patient’s

behavior on a video, if available.

4.4.2 Performance comparison between ASNN and BP

The BP is a fixed network structure and has its limitations for applications. The other
major weakness of the BP is its low convergence speed. Whereas ASNN is an adaptive
network structure which not only is suitable to solve complex problems but also has a
very fast convergence speed. Table 4-B(a) to Table 4-B(e) (See Appendix II) show the
results for seizure detections by using both ASNN and BP. Significant differences are

summarized as follows:
44.2.1 Comparison with different number of initial hidden neurons

As shown in Table 4-B(a) to Table 4-B(e), different number of initial hidden

neurons ( 2, 3, 4, 6, 8 ) were selected to verify the consistency of the ASNN. The highest
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improvement rate is 85.2% with 3 initial hidden layer neurons obtained from the EEG
filelof patient 1 in Table 4-B(b). The lowest improvement rate is 45.4% with 4 initial hid-
den layer neurons obtained from the EEG filel of patient 2 in Table 4-B(c). The overall
average improvement rate is 71.59%. Table 4-2 shows a summary of the ASNN perfor-
mance rates. We found that the improvement of the ASNN performance is very stable and
consistent (the range is between 69 0% ~ 73,75%) over the BP. On the other hand, when
the number of initial hidden layer neuron increased, the performance of both the BP and
the ASNN is not suitable for the EEG applications. This is due to the additions in local
minima, the differences in the initial weights and the complexity of the EEG data. But in

general, the performance of the ASNN is superior to that of the traditional BP.

4.4.2.2 Comparison with the same number of initial hidden newons

For the EEG application, Table 4-B(a) to Table 4-B(e) show the results for indi-
vidual fixed initial hidden neurons for both the BP and the ASNN. Each table shows that
the number of iterations for the training is greatly reduced by using the ASNN. For exam-
ple, in file 3 of patie~t 5 (see Appendix II: Table 4-B(c)), the BP required 19752 iterations
to reach a desired error of 0.0001. However, using ASNN to reach the same error, only
2896 iterations are needed when 6 new neurons are added. In other words, by adapting the
network structure with 6 additional neurons, the convergence speed of the network has

been improved by 83.4%.
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4.4.2.3 Comparison of BPand ASNN when BP initial hidden layer neurons are the same
number as the ASNN’s final hidden layer neurons

The goal of this experiment is to verify the superiority of the ASNN when BP initial
hidden layer neurons are the same number as the ASNN’s final hidden layer neurons. For
example, in File 3 of patient 5 (see Appendix II: Table 4-B(c)), with the 4 initial hidden
layer neurons,ASNN required 2896 iterations to reach the desired error of 0.0001. During
the process, the ASNN generated 6 new neurons in the hidden layer. So the final number
of neurons in the hidden layer is 10. If these 10 neurons are setin the BP as initial hidden
layer neurons, the BP still required 17099 iterations to reach the desired error of 0.0001.
In other words, starting with 10 hidden layer neurons in BP and 4 hidden layer neurons in
ASNN, the convergence speed of ASNN is 83.1% faster than BP. The summary of ASNN

improvement rate compared to BP is shown in Table 4-2.

Table 4-2: The summary of ASNN improvement rate compared to the BP

5 patients
Number of S patients
The highest The lowest  |Average rate with
initial neurons Average rate with
improvement rate|improvement rate}  same initial
in hidden layer] ipame final neurons
neurons
e e e e
2 82.7 57.3 73.11 66.17
3 85.2 60.0 73.75 63.23
4 83.4 45.4 69.80 64.94
6 80.1 56.0 70.62 62.74
8 76.0 64.4 70.67 65.74
Ave. Rate 81.48 56.62 71.59 64.56

80




4.4.3. Reduction of the false seizure detections (FSD) during long term

monitoring

In clinical practice, catching the real seizures is the most significant issue. How-
ever, the reduction of the FSD is also an important topic to consider for the new algorithm.
Too many FSD’s will increase the tedious work for the physicians, and even make long
term seizure monitoring unacceptable.

This is a difficult topic and has been studied for many years by different approaches
[42],{43]. Our approach to this problem is to focus on both the efficiency of FSD and the
feasibility for a practical use. It is comprised of the following two stages: initial FSD

reductions and secondary FSD reductions.

4.4.3.1 pitial FSD reductions
This is obtained based on the following conditions:
(i) Doctors score and define different seizure pattemns
(ii) 20s~30s seizure EEG’s is selected randomly from each different seizure pattern
to form the training set
(iii) 25.6s (10 epochs) non-seizure EEG’s is also sclected randomly from each patient
for training set
Table 4-C (Appendeix II) shows the initial results of FSD reduction with the
recorded EEG’s of 5 patients. From the results of this table we find that the FSD ra.cs
vary with different patients. The false detection rate varies between 0.12/hr to 15.2/hr. The
average false detection rate is around 7.06/hr.
Two reasons explain why the average false detection rate is high:
(i) Some of the seizures are difficult to distinguish from their EEG background, even

for the physicians. For instance, for Patient 2, the background amplitude of this patient is
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high with large sharp waves. Many fast physical activities also appear on the EEG and
their frequencies are similar to this patient’s localized seizures. Figure 4.10 shows one of
this patients’ EEG with a seizure and unclear background. This increases the difficulty of
neural networks recognition.

(i) The non-seizure training set may not be properly selected. The training set
includes two parts of both seizure patterns and non-seizure patterns. The initial selection
of non-seizure pattern is made by randomly collecting 25.6s of continuous EEG from the
same patient. This random selection cannot cover all the non-seizure EEG patterns. Non-
seizure EEG patterns include all the stages of the patients such as awak s state, quite state,
physical state and sleeping state. The question is how to select the limited non-seizure set

to represent the generalized non-seizure patterns for training process.

4.4.3.2 Secondary FSD reductions

Although the average FSD level of 7.06 per hour obtained from the initial results is
acceptable for clinical purposes, it still has a lot of room for further improvement. In
research of initial FSD rates, it was found that the 25.6s non-seizure EEG training set
which was selected randomly was not able to cover all kinds of non-seizure patterns. It
would be useful to find a self-learning method to create a non-seizure training set for the
neural networks. This self-learning method should be able to collect non-seizure patterns
which are closer to the border of seizure patterns. To accomplish this, the following four
steps are used:

step 1: Perform the initial FSD;

step 2: Select one epoch of EEG from the initial FSD resi its which has the maxi-
mum average value for both amplitude and duration and add this epoch of
EEG to the non-seizure training sct;

step 3: Re-train the ASNN and perform the reduction of FSD;
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step 4: If all the FSDs are eliminated or the FSD rate reaches the tolerant level, then
stop FSD; otherwise, repeat step 2.

Table 4-3 shows all the results of FSD reduction for the recorded 5 patien’s’ EEG's.
After training the ASNN for the first time, the average recall FSD rate dropped to 3.92/hr.
After the ASNN was retrained for the fourth time, the average recall FSD rate dropped to
zero. For example, in the recorded EEG from Patient 2, the initial result shows that the
FSD was 15.20/hr. Then one epoch of the FSD was selected from the initial results and
added to the non-seizure EEG training set. After the network was re-tained to recall the
patient’s EEG, the FSD rate was quickly reduced to 8.14/hr. The above steps were
repeated again and the FSD rate was reduced to zero. This means a perfect recall of EEG
FSD was obtained.

However, the FSD of Patient 4 seems a more difficult one. After the initial results of
FSD, this patient’s recail FSD rate was 8.4/hr. When one epoch of the FSD was selected
and added to the non-seizure EEG training set, its recall FSD rate was up to 9.78/hr. After
the second re-training of the ASNN, its recall FSD rate was still 8.89/hr. Only at the
forth time of re-training did the recall FSD rate drop to zero. This is an exceptional case
because not all of the patients’ EEGs lend themselves to low FSD. From the viewpoint of
clinicai 2pplication, only true seizures should be detected and recorded by the computer.
This is the idcal situation which physicians want to have. Because of the different behav-
ior of patients, some patients’ EEG’s may require a short period of training for the network
to reach on FSD rate of zero, while other patients’ EEG may require a lo:ig dme for train-
ing (more patient EEGs are needed to be verified). This problem may easily be controlled
in clinical practice by setting up a satisfied threshold level which steps the network train-
ing process when necessary. Figure 4.12 to Figure 4.16 show the re-training behavior for
the reduction of FSD.

Currently, the selection of epochs for the reduction of FSDs is processed by observers
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but this work can easily be automated by computer techniques in the future.

Table 4-3: The reduction of the FSD rate after retraining

The number 1 Time | 2™Time | 3™ Time | 4% Time
Initial FSD

of Patient Retraining | Retraining | Retraining | Retraining
#2 15.2 8.14 0 0 0
#3 8.18 0 0 0 0
#4 84 9.78 8.89 8.89 0
#5 0.12 0 0 0 0
Average 7.06 3.92 2.12 2.00 0
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Figure 4.12: The re-training behavior for reduction of FSD  (Patient #1)
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Figure 4.14: The re-training behavior for reduction of FSD (Patient #3)

85



-k
F -y
T

-
N
T

-
[*]
>

FSD Rate (#h)
]

A ).

(=)
at

2 a
Number of retraining time

Figure 4.15: The re-training behavior for reduction of FSD (Patient #4)

1 T Y Y v
0.0}
0.8+

0.7fF

Eoe
ﬁ 0.5

=
f 0.4

¥

L§

)

0.3

L

0.2

o1 \
o 'y -

bF

(o} 1 2 3
Number of retreining time

Figure 4.16: The re-training behavior for reduction of FSD ( Patient #5)
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4.4.3.3 Missing_true seizures while the reduction of FSD was performed

This topic is arisen in the reduction of FSD. As a result of the ASNN method and its
application to the EEG analysis, a significant improvement for FSD has been achieved. At
the same time, we also noticed that the size of non-seizure EEG training set was increas-
ing. This will raise the question as how many true seizures could be 1. .sed and whether
the missing number of true seizures is beyond our tolerance when the non-seizure training
set is changed. From the results of Table 4-4, it is found that 37 out of 39 seizures are still
correctly recognized. More accurately, only the EEG file 2 of patient 4 missed two real
seizures. The missing rate for true seizures is 5.1%. Figure 4.17 and Figure 4.18 show the
EEG with missing seizures. It is not surprising that we find these two missing seizures are
completely mixed up with the EEG background. In other words, the more the size of the
non-seizure EEG training set, the more risk of missing true seizure. Although the missing
rate of true seizures is 5.1%, we have a dramatic deduction of the FSD. This is still worthy

in the clinical applications.

Table 4-4: Summary for missing true seizure

The number of | The number of | The missing rate
Patient Number
true seizures | missing seizures (%)

#1 6 0 0

#2 7 0

#3 9 2 22

#4 5 0

#5 12 0
Total Number 39 2 5.1
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4.5 Summary

Long term EEG monitoring of epileptic seizures is significant for clinical purposes,
especially to those patients without behavior information. Seizures, whether their behav-
ior is evident or not, are very important to doctors for drug control and surgical opera-
tions.

This is the first effort to apply adaptive structure neural networks to the detection of
EEG seizures. From the point of view for the clinical use of EEG’s, two goals have
been achieved. The first is to maximize the detection rate of true seizures. The second is
to maximize the reduction rate of FSD and to minimize the missing of true seizures at
the same time.

Five patients with thirty-eight recorded seizures from MNI were involved in the
research. All the recorded seizures have been cormrectly recalled by the ASNN. This
reveals that the ASNN is capable of addressing such a difficult problem. The sample of
thirty-eight seizures is representative of wide variety which include local seizures,
more generalized seizures, seizures with clear EEG background and seizures mixed up
with EEG background. Since some patients’ seizure patterns are mixed up with EEG
background, it made our goals harder to reach.

In practice, missing a few clinical minor seizures in exchanges for a large reduction
of FSD is still worthy because the majority of true seizures can be caught from the same
patient; and it is good enough to help doctors tc give a correct judgement. The large
reduction of FSD will bring us much more benefits.

For the EEG application, the network performances using the ASNN and the BP
algorithms are discussed in this chapter. The effectiveness and consistency of the ASNN
were tested by using different initial hidden layer neurons and satisfying results were
obtained. It means that the proposed neural networks structure is superior to fixed neu-

ral network structures. The ASNN can be used for solving difficult practical problems.

90



CHAPTER S

Conclusion and Future Work

Artificial Neural Networks is an advanced technology developed from simulating
the central neural system of the human brain. During recent years, various advanced
algorithms such as Back-Propagation, Hopfield etc., have been built for practical prob-
lems. The Back-propagation algorithm has been widely used in pattern recognition,

imaging processing, robotics and control, as well as other application areas.

5.1 Contributions

In the this thesis, the author has focused on research in neural networks structure
design; proposed a new algorithm for structure level adaptation of neural networks and
applied it to solve real-world application problems.The main contributions of this thesis
can be summarized as follows:

1. Defined a systematic neuron generation rule

2. Proposed a multi-neuron generation method

3. Proposed a method called Delta Adaptation developed to speed up training time
4, Verified the ASNN through four simulations
5. Applied the new ASNN successfully to EEG seizure detections and reduce false

detection rate
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5. 1.1 Defined a systematic neuron generation rule
Several published results [30]-[32] have been discussed in chapter 2 for the auto-
matic neuron generation. In this research, the neuron to be split is defined as the
neuron (1) whose input weight has the largest fluctuation compared with other
neurons in the same hidden layer and (2) whose output fluctuation in the hidden
layer is also high. To determine the neuron with the highest fluctuation rate, the
current and the n:ost recent iterations are considered since they contain the most
relevant historical information, Two advantages are found in this algorithim com-
pared to other algorithms. First, the neuron generation rule successfully local-
izes the neuron which needs to be split during the network training. Second, the

definition of the neuron generation rule is easily implementable.

5.1.2 Proposed a multi-neuron generation method
Through the results of simulation examples, the author found that additional
"mother” neurons can be split at one time to improve the network performance.
Hence the Maximum- Minimum Rule (MMR) is proposed to adapt the ASNN.
Whenever neurons are split, the weights of the new neurons are the same as the
weights of the mother neuron. MMR has been verified to be effective through

various simulation results and is applied to automatic EEG seizure detection.

5.1.3 Delta Adaptation improvement
In the traditional BP delta algorithm, the learning rate is fixed. Generally after
long network training iterations, the value of system error may become very
small but remain above the desired level of error. Thus the network convergence
rate will remain low. To overcome this problem, the author proposed a delta

adaptation algorithm. A detailed description of this new method is explained in
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5.1.4

5.1.5

chapter 2. The principle behind the idea is the same as that of the weights update
algorithm. To speed up the convergence of the network, 8 power factor A, & step y

and 8 momentum o were adapted.

Benchmark simulation results

Two discrete and two analog examples were sclected to test the proposed ASNN.
Character recognition and XOR problems were chosen to represent the discrete
examples. One spiral and 4-leafs-rose problems were used for analog examples.
In general, using the ASNN, 30% to 80% of training iterations can be saved com-

pared to the BP and Lee’s algorithms.

Solving practical problems

The ASNN was applied to the Electroencephalogram (EEG) problem. Five
patients’ EEG with clinical seizures or without seizures, were recorded for 780
hours and both ASNN and BP were applied to explore the following three points:
1. Comparison of seizure detections between physician observation and ASNN

2. Comparison of seizure detections between ASNN and BP

3. Reduction of False Seizure Detections (FSD) during long term seizure monitor-

ing.

First, all the seizures were correctly detected by using ASNN compared to obser-
vation by physicians (Appendix I). Second, when ASNN and BP algorithms were
used for EEG seizure detections (Appendix II),60% to 75% of training iterations
were saved by using ASNN. Even when the initial hidden layer neurons in the BP
network setup were the same as the number of ASNN final hidden layer neurons,

the ASNN still improved the training iterations by 30% to 60%. Third, the ASNN
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is verified as effective for seizure detections during long term monitoring (Appen-
dix ITI). A retraining method of seizure detections was developed to maximize the
reduction rate of False Seizure Detections (FSD) and to minimize the missing of
true seizures. The results have shown that the FSD rate can be decreased to zero
while the maximum of missing true seizures is only 5.1% These results are quite

encouraging.

5.2 Future Work

While these results are encouraging, there is considerable room for improvement.

Some further work need to be done for the enhancement of ASNN.

5.2.1

5.2.2

Testing of multi-hidden layers

Currently, ASNN algorithm is only applied to one hidden layer neural networks.
As discussed in [3],[4], multi-hidden layers could more efficiently solve practical
problems. Since ASNN is developed as a complete neuron generation technique,
more complicated network structures could be realized. This is an important gen-

eralization of the present scheme.

Research on neuron deletion (pruning)

In this thesis, a neuron generation rule is developed to optimize network structure.
In order to avoid redundant neurons, the number of initial hidden layer neurons
will be small. This may slow down network performance because one can not
predict how large a network structure should be to handle a practical problem. For
example, in some cases more than 10 new neurons are added in EEG seizure delec-
tation algorithm. If a neuron deletion rule is developed, then the number of neu-

rons in the hidden layer can start with a larger value. When new neurons are




needed for the network structure, the neuron generation rule can take it over auto-
matically; when redundant neurons are found, the deletion rule can handle it auto-

matically. This will further improve the network performance.

5.2.3 Large EEG data testing
The ASNN has been applied to EEG seizure detection and the results cbtained are
quite satisfactory. Although these 5 patients’ EEGs have covered many EEG sei-
zure patterns and EEG non-seizure patterns, more patients’ EEGs are still necded
to fully confirm the applicability of the proposed research. This work is valuable
to physicians for localizing the position of seizures and may even be used in the

hospital computerized long term monitoring systems.

5.2.4 Programming selection of non-seizure training set
The selection of EEG epochs to be included in the non-seizure training set for
reducing the FSD is currently being processed by an observer. This process should

be made automatic by further research on network training.
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Appendix I

Comparison between physician observation and
ASNN for EEG seizure detections
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Table 4-A

Patient |Training| Recall | Observe NN Observer NN
Number set set Start time | Start time | End time | End time
File 1-1 | 13:27:16 | 13:27:15.2} 13:27:50 13:27:20
File 1-1 File 1-2 | 18:22:40 | 18:22:42.6 | 18:23:22 | 18:23:23.6
Patent #1 File 1-3 | 21:00:52 | 21:00:55 | 21:01:44 |21:01:41.44
File 2-1 | 18:26:28 | 18:26:27.2 | 18:27:52 18:26:35
File 2-1 File 2-2 | 19:25:23 { 19:25:23.8 | 19:26:04 } 19:26:07.2
File 2-3 | 07:19:03 07:19:04 07:19:42 07:19:45
File 1-1 | 07:26:58 | 07:26:55.2 | 07:29:44 07:29:29
Fle I-1 oo T2 | 20:50:54 | 20:51:04 | 20:52:18 | 20:52:32.9
File 1-3 | 04:10:41 | 04:10:43.2 | 04:12:28 04:12:25
Patient #2
File 2-1 16:21:59 16:21:56 16:22:14 | 16:22:08.3
File 2-1 Foc 22 | 00:35:33 | 00:35:32.4 | 00:35:45 | 00:36:26
File 2-3 | 04:32:42 04:32:42 04:32:51 | 04:33:33.2
File2-4 | 12:28:00 12:27:03 12:28:15 | 12:28:02.8
File 1-1 | 16:14:23 | 16:14:23.4 | 16:16:04 | 16:16:35.9
Patient #3 | File 1-1 File 1-2 | 03:26:48 | 03:26:48.6 | 03:28:29 | 03:28:29.8
File 1-3 | 05:29:11 05:29:11.1 | 05:30:47 05:30:51
File 1-4 | 13:09:06 | 13:09:06.7 | 13:10:21 13:10:21
File 1-5 | 18:51:40 18:51:41 18:52:15 | 18:52:18.7
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Patient |Training| Recall | Observe N.N Observer N.N
Number set set | Starttime | Starttime | End time | End time
File 1-1 | 20:04:24 | 20:04:24.9 | 20:04:38 | 20:04:35.2
File 1-1 | File1-2 | 10:37:27 | 10:37:41 | 10:38:00 | 10:38:09.2
File 1-3 | 14:12:38 | 14:12:34.2 | 14:13:36 | 14:13:36.2
Patient #4 File1-4 | 16:51:00 | 16:51:06 | 16:51:24 | 16:51:35.4
File 2-1 | 05:00:26 | 05:00:26.2 | 05:00:40 | 05:00:40.9
File 2-1 | File2-2| 00:37:58 | 00:38:32.5 | 00:38:06 | 00:38:59.5
File 2-3 | 01:30:16 | 01:30:15.7 | 01:30:28 | 01:30:33.6
File 2-4 | 02:49:04 | 02:48:11 | 02:49:30 | 02:50:1.9
File -1 | 06:44:43 | 06:44:48 | 06:45:27 | 06:455:14
File 1-1 | File 1-2] 08:09:40 | 08:09:30.6 | 08:11:10 | 08:11:24.4
File1-3 | 20:12:30 | 20:12:12.4 | 20:13:36 | 20:13:10
Patient #5 File 1-4 | 22:11:110 | 20:10:58 | 22:12:12 | 22:12:09
File 1-5 | 11:21:06 | 11:21:17 | 11:22:26 | 11:22:14
File 2-1 | 03:10:06 | 03:09:57.3 | 03:11:06 | 03:12:26
File 2-1 | File2-2 | 03:32:58 | 03:32:45 | 03:33:50 |03:33:51.6
File2-3 ] 11:24:06 | 11:23:46.2 | 11:24:55 | 11:24:45.3
File2-4 | 10:04:46 | 10:04:36 | 10:05:44 | 10:05:44.6
File3-1 | 14:05:02 | 14:04:58 | 14:05:31 | 14:05:34.9
File 3-1 File3-2 | 16:59:06 | 16:59:05.6 | 16:59:40 | 16:59:41.5
File 3-3 | 08:57:08 | 08:57:08 | 08:57:46 | 08:57:48.6
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Appendix II

The performance comparison between ASNN and BP

networks

105




Table 4-B(a)
BP  |Improved]Improved
BP
Patient | Training | Recall ASNN Fixed rate% rate%
Fixed
number Set Set Start Hidd N=2 [N=ASNN’| Same Same
Hidd N=2
final |(initial N)| (Final N)
Iterations| Iterations|Added| iteration
N

File1-1 | File ] 9274 2665 4 11396 71.3 76.6

¥l File2-1 | File2 | 15168 3729 7 12617 75.4 76.6
File 1-1 | File ] 11908 5475 10982 74.4 50.1

#2 File2-1 | File2 | 19695 6615 18545 72.2 64.3
#3 File1-1 | Filel | 21405 9147 4 15754 57.3 419
File {-1 | File ] 16031 4855 4 14704 69.7 67.0

#4 File2-1 | File2 | 21958 5518 16628 74.8 66.8
File 1-1 | File 1 15192 4128 16315 72.8 74.7

#5 File 2-1 | File 2 19494 3868 4 10750 80.5 64.0
File3-1 | File3 | 20026 3460 17060 82.7 79.7
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Table 4-B(b)

BP  |Improved{ Improved

BP
Patient | Training | Recall ASNN Fixed rate% rate%
Fixed
number| Set Set J Start Hidd N=3 [N=ASNN’'l Same Same
Hidd N=3

final |(initial N)| (Final N)

Iterations| Iterations|Added] iteration

N
File 1-1 | Filel | 12325 1818 9 7095 85.2 74.4
File 2-1 | File2 | 13793 3424 4 12604 75.2 72.8

#1

File 1-1 | File1 | 12598 5293 4 8286 60.0 36.1
File 2-1 | File2 | 17820 5051 7 12043 7.7 58.1

#2

#3 | Filel-1] Filel | 16860 6571 9 12892 61.0 49.0

File 1-1 | File1 | 14704 2788 8 13894 81.0 80.0
File 2-1 | File2 | 21598 6736 6 16628 68.8 59.5

#4

File 1-]1 | File1 | 15289 3522 9 10620 80.0 66.8
File 2-1 | File2 | 15126 4141 10 8787 72.6 529
File 3-1 | File3 | 19067 3420 5 19741 82.0 82.7

#5

107




Table 4-B(c)
BP  |Improved| Improved
BP
Patient | Training | Recall ASTIN Fixed rate% rate%
Fixed
number|{ Set Set Start Hidd N=4 [N=ASNN’] Same Same
|Hidd N=4,
final I(initial N)| (Final N)
N
File 1-1| File 1 9525 3119 4 6605 67.3 52.8
#1 File 2-1 | File2 | 14358 3280 8 14533 77.2 774
File 1-1 | File ] 9714 5303 4 8288 454 36.0
" File 2-1 | File2 | 18141 4829 7 12531 73.4 61.5
#3 File 1-1 | File1 | 15626 5251 4 15024 66.4 65.1
File 1-1 | Filel | 15926 4557 4 13737 714 66.8
#4 File 2-1 | File2 | 19431 7128 4 17538 63.3 66.8
File 1-1 | File1 | 12704 3496 8 10620 72.5 67.1
#5 File 2-1 | File2 | 12647 2826 8 10385 77.7 72.8
File 3-1 | File3 | 19752 2896 6 17099 834 83.1
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Table 4-B(d)

Bp BP  |Improved|Improved
Patient | Training | Recall ASNN Fixed rate% rate%
Fixed
number Set Set Start Hidd N=6 [N=ASNN'| Same Same
Hidd N=6|
final |(initial N)| (Final N)
Iterations| Iterations|Added] iteration
N
File 1-1 | Filel | 11393 2815 4 7217 75.3 61.0
#l File 2-1 | File2 | 15538 4717 6 14533 69.6 67.5
File 1-1 | File1 | 10982 4124 7744 62.5 46.7
#2 File 2-1 | File2 | 18545 5356 4 12043 71.1 55.5
#3 File1-1 | File1 ! 15754 5344 4 13707 65.2 610
File 1-1 | File 1 14704 3084 10 13227 79.1 76.7
4 File2-1 | File2 | 16278 3518 8 15217 78.4 76.9
File1-1 | File1 | 18178 3610 6 10620 80.1 66.0
#5 File 2-1 | File2 | 10750 3345 7 8787 68.9 619
File3-1 | File 3 | 17204 7567 5 16507 56.0 54.2
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Table 4-B(e)

B BP  [Improved|Improved
P
Patient | Training | Recall ASNN Fixed rate% rate%
Fixed
number| Set Set Start Hidd N=8 [N=ASNN’| Same Same
IHidd N=§
final |(initial N){ (Final N)
Iterations} Iterationsj{Added] iteration

File 1-1 | File 1 6605 2106 6216 68.1 66.1
# File2-1 ] File2 | 11613 3639 14533 68.7 80.0
File 1-1 | File 1 8288 2432 7519 76.0 67.7
#2 File2-1 | File2 | 13711 3219 12148 76.0 73.5
#3 File 1-1 | File 1 | 15024 5353 12539 64.4 57.3
File 1-1 | File 1 | 13737 3935 14339 714 72.6
#4 File2-1 | File2 | 17538 5091 14949 71.0 65.9
File 1-1 | File1 | 13887 4028 9124 71.0 55.9
#5 File 2-1 | File2 | 10168 2897 8772 72,0 67.0
File 3-1 | File3 | 19741 61,0 12582 69.0 51.4
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Appendix III

Initial FSD reduction during long term monitoring
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Table 4-C

File 2-1

File 1-16

File 1-17

File 2-20

File 2-21

File 2-22

File 2-26

FSDs* Rate

Patient’s Number Training Pattern Recall Pattern
Patient #1 File 1-1 File 1-15

34/h

Patient #2

File 1-2

File 1-12

File 2-1

File 1-13

File 1-14

File 1-18

File 1-19

152 /h

Patient #3

File 1-1

File 0-1

File 1-3

File 0-9

File 1-7

File 2-0

File 2-2

File 2-3

File 2-4

File 2-5

File 2-8

File 2-9

8.18/h

* FSDs--False Seizure Detections
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Patient’s Number Training Pattern Recall Pattern FSDs* Rate
Patient #4 File 2-2 File 0-2
File 3-2 File 0-3
File 3-3 File 0-4 8.4/h
File 0-5
Patient #5 File 3-1 File 0-71
File 3-2 File 0-72
File 4-1 File 0-81 0.12/h
File 4-2 File 0-82
File 5-1 File 1-01
File 5-2 File 1-11
Flle 1-22
File 1-32
File 1-42
File 2-02
File 2-11
Total Rate=7.06/h

FSDs--False Seizure Detections






