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Abstract

Solving the Dominating Set Problem: A Group Theory Approach

Ka Leung Ma, Ph.D.
Concordia University 1998

This thesis presents a new way to find the dominating set of a graph by introducing
the concept of an orbit graph and a weighted dominating set. We showed that the
Blokhuis-Lam method for the football pool problem is a special case of assuming that
the solution has a non-trivial automorphism group. A general purpose algorithm for
solving the dominating set problem is developed by using a coverage test, a wastage
test, and the orbit and block structure of the graph’s symmetry group to prune the
search. The algorithm has been implemented and the program can be used to find all
the dominating sets of any undirected, loopless, and labeled graph or all the weighted
dominating sets of an orbit graph.

The program analyzed grid graphs and football pool graphs, and was able to find
the minimum dominating sets of any m x n grid graph for m < 10 and n < 11.
For the football pool problem, we have determined that the automorphism group of
n matches is S31 S, and the automorphism group of a rook domain graph T, is
Sq 1 Sn. We also applied the orbit graph transformation to the football pool problem
of 5, 6 and 7 matches. By considering only cyclic subgroups up to conjugacy, we
generated 107 orbit graphs for the case of 5 matches, 220 orbit graphs for 6 matches
and 428 orbit graphs for 7 matches. Using our program, we found dominating sets
for 5 matches with size 27. For more matches, we found no better bounds within the
limitations of our implementation. However, by using the mixed integer optimizer in
the linear programming package CPLEX, we found weighted dominating sets, and
hence, dominating sets matching the best known upper bounds. They also have more
symmetry than the known solutions. There is hope that some of the unsolved orbit

graphs can lead to smaller dominating sets.
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Chapter 1
Introduction

This thesis is on the dominating set problem. We start with a general purpose
algorithm which finds a dominating set by recursively refining the vertex set. We
first prune the search by using symmetry. We next develop a method of finding
dominating sets by assuming the existence of a non-trivial automorphism group.
These algorithms are tested using the grid graph and the football pool problem.

Being a general purpose algorithm, one of its advantages is that we can test
it with different kind of graphs and find all their dominating sets. On the other
hand, one of its disadvantage is its performance may not be as good as that of the
algorithms that are tailored to a specific type of graph or algorithms that only search
for the domination number without finding all the dominating sets. There is rarely
any efficient general purpose program that finds all dominating sets of any graph.
Finding all dominating sets of any graph can help us to understand more about a
variety kinds of graphs. This is one of the reasons that motivates us to design one
such program. We have developed a coverage test, a wastage test and an isomorph
rejection to effectively search for a dominating set of a graph.

In this chapter, we give an introduction, some brief history and a survey of some
previous work done in this area. Finally, we describe briefly the organization of this

thesis and end with a summary of the research contribution.



1.1 The Dominating Set Problem

Definition 1.1 Graph A graph G(V, E) is a finite set V of vertices and a finite set
E of edges such that ECV x V.

If the edge set E, when considered as a relation, is symmetric, then the graph G(V, E)
is said to be undirected; otherwise, it is directed. If (v,v) ¢ E, for all v € V, then G
is loopless. If the vertices are labeled, typically by integers, but sometimes by letters,
then G(V, E) is called a labeled graph. In this thesis, the unqualified word “graph”

means an undirected, loopless, and labeled graph with no multiple edges.

Definition 1.2 Extended Edge Set Given a graph G(V, E), the extended edge set
of E, denoted by E', is E U {(u,u) :Vu € V}.
Let V = {v, vz,..., v} be the vertex set of a graph G(V, E). lts adjacency matrir

M = (a;;) is defined by

{ 1 if (v;,v;) € E,and
a;; =

0 otherwise.

Definition 1.3 Covering A vertez v is said to be covered by a vertez u if and only

if (u,v) € E'. The term dominated and covered are synonyms.

We call u a neighbor of v, if and only if (u,v) € E’. The neighborhood, N,, of a vertex

u, is the subset of vertices adjacent to u. In other words,
N,={veV]|(u,v)€E}

We can now define the concept of domination in a graph. In the literature, this is

sometimes called total domination.

Definition 1.4 Dominating Set A graph, G(V, E), is said to be covered by a set
of vertices D, if and only if Uyep Nu =V. The set D is called a dominating set of

G. The total number of vertices in D is called the domination number of G.

The minimum domination number ¥(G) is the cardinality of the smallest D that

covers G. The corresponding dominating set is called a minimum dominating set. The

2



Y !
Figure 1: A regular hexagon.

dominating set problem is to find a minimum domination set of a graph. Depending
on the graph, its minimum dominating set may not be unique. However, given a

graph G(V, E), the following statements are clearly true:

o one of its domination numbers is |V, with V' as the dominating set, and

e all its domination numbers are less than or equal to |V|.

Figure 1 shows an example of a regular hexagon. The minimum domination num-
ber for this graph is 2 and the largest domination number is 6. The three minimum

dominating sets are {a, d}, {b, €}, and {c, f}.

1.2 History and Previous Work

The ideas of dominating set can be traced back to the origin of the game of chess in
India. Questions concerning the optimum placement of chess pieces on a chessboard
were first published in [5, 21]. Two earlier discussions can be found in [7, 55]. A
more detailed discussion, which contains a quick review of results and applications
concerning dominating sets in graphs, can be found in [20]. For an extensive survey
of domination and its related problems, see Hedetniemi and Laskar’s article in [34]
which included also a comprehensive bibliography. Harary and Hanynes [30] had
extended ordinary domination to conditional domination and presented a survey of

the literature in which conditions are placed on the dominating set.
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In 1965, Vizing [6, 73] established an upper bound for the minimum domination
number ¥(G) of a graph G(V, E). This bound is represented by the inequality v(G) <
Vi+1- \/1_+2—|E'| . During the next thirty years, several new inequalities for v(G)
were derived [24, 49, 50, 51, 61]. Unfortunately, for the graphs of interest in this
thesis, the upper bounds obtained from those inequalities are still far from their
minimum domination numbers.

Some combinatorial problems, like the football pool problem [23, 37, 38, 75], can
be solved by transforming the problem into a graph and then finding a dominating
set for that graph. The football pool problem is discussed in detail in Chapter 6.

Different algorithms have been developed for special cases, such as for grid graph
and for the knight’s domination number of a K x N chessboard [17, 18, 32, 31].
For example, several subclasses of these graphs, such as the 1 x n grid graph can
be solved by a polynomial time algorithm. Unfortunately, finding the minimum
dominating set of an arbitrary graph is NP-complete [25]. Since it is NP-complete,
one approach is to use approrimate algorithms to reduce the upper bound on the
domination number [59]. In the last few years, several people have used simulated
annealing [2, 1, 3, 38, 69] and obtained new upper bounds for the football pool
problem [42, 58, 68, 76]. Another approach to solve the dominating set problem is
the development of parallel algorithms. Certain graphs, after restricted to a subclass,
can be solved effectively using this approach. Some examples that make use of the
parallel algorithm approach are [8, 60, 64].

The importance of solving these combinatorial problems lies in their applications.
For example, grid graphs can be used to model a variety of routing problems in
street networks and also the interconnections in a multiprocessor VLSI system. For
other applications of grid graphs, see [22, 26, 33, 45, 65, 71, 72, 74]. In another
application [46], a graph is used to represent a communication network involving
cities. A dominating set is a set of cities which, acting as transmitting stations,
can transmit messages to every city in the network. Optimizing replication in a
group of databases among several sites can also be modeled as a dominating set

problem. For general theories concerning graphs and the dominating set problem,



see [6, 11, 16, 29, 52, 67].

1.3 Our Previous Related Research

In [47, 48], we presented a partitioning algorithm to obtain all the dominating sets of
a graph with a specified domination number ¢. The algorithm was motivated by [38]
in which the authors used a similar method, to prove that 27 bets are required for
the football pool problem with 5 matches. The algorithm recursively selects a group
of vertices, called a cell, and refines it into smaller subcells. After the cell is refined
into subcells, the algorithm partitions the domination number of the cell among its
subcells. Two tests, namely the coverage test and the wastage test, are developed to
cut down the search tree.

These tests restrict the possible partitions of a cell’s domination number among its
subcells. The two tests guarantee that those partitions which are not considered will
never lead to a solution. Based on this algorithm, a program has been implemented.
This program can find all the dominating sets of a given size ¢ for a given graph.
Using grid graphs as some of our test cases, the program could find the minimum
dominating set of all the m x n grid graphs with m,n < 8. Moreover, we used the
program to verify that the dominating sets in the knight’s tour graphs on the 3 x 11,
4 x 6, and 5 x 12 chessboards, as published in [31], are indeed complete. Since this
algorithm is the starting point of this thesis, it is described in detail in Chapter 2.

1.4 Organization of this Thesis

In this thesis, we present an improved partitioning algorithm by combining the cov-
erage test, the wastage test, and isomorph rejection to cut down the computation
required to obtain all the dominating sets of a graph. In addition to the algorithm,
we present a new way to find dominating sets of a graph by introducing the concept
of an orbit graph and a weighted dominating set.

The organization of this thesis is as follows. Chapter 2 discusses in detail the

partitioning algorithm and its concepts. Chapter 3 describes the implementation

5



details of the algorithm. Chapter 4 gives the results for selected grid graphs and
summarizes the performance of this program on grid graphs. Chapter 5 presents the
orbit graph and explains how to transform the dominating set problem of a graph
into a weighted dominating set problem of its orbit graphs.

Chapter 6 shows the creation of football pool graph for the football pool problem,
and reports the results of applying our program to the orbit graphs derived from
football pool graphs. It also explains how we use a commercial linear programming
package CPLEX to help us find weighted dominating sets on several football pool
graphs. We found several solutions that have a non-trivial symmetry group and
match the best known upper bounds. The chapter includes a proof that the size of
the automorphism group of a rook domain graph I', 4 is (¢!)"n!.

Chapter 7 compares the performance of the program using different methods to
partition the grid graphs and the football pool graphs. Finally, Chapter 8 summarizes
our work and concludes with suggestions for future research.

Appendix A gives a complete list of the orbit graphs of the football pool problem
of 6 matches and the three solutions we found for the 7 matches.

Appendix B provides the source code of the program.

1.5 Research Contribution

The following list gives a summary of the research contribution in this thesis.

1. In the process of finding a dominating set, we designed a coverage test and
a wastage test to trim the search tree. A rigorous proof of the coverage

and wastage tests is presented in this thesis.
2. Isomorph rejection is incorporated into the algorithm.

3. We presented a partitioning method based on an orbit structure of a graph

under the action of its automorphism group.

4. We determined the complete automorphism group of a rook domain graph

Pn‘q.



5. We showed that the Blokhuis-Lam method for the football pool problem is
a special case of assuming that the solution has a non-trivial automorphism
group. By assuming the solution has other automorphism groups of small
order, we generated other graphs which may be useful for lowering the
upper bounds. A list of such graphs for the football pool problem of 6
matches is given in Appendix A on page 99.

6. We have discovered several solutions matching the best known upper
bounds of the football pool problem of 6 and 7 matches. Those solu-
tions for the 7 matches we found have larger symmetry groups from the

known ones.



Chapter 2
Partitioning Algorithm

This chapter outlines a partitioning algorithm to solve the dominating set problem.

It also gives the necessary definitions and mathematical theories.

2.1 Basic Approach

The basic approach in this algorithm is to recursively refine the vertex set of a graph
into subsets. We called a set of vertices a cell. The size of a cell C, denoted by |C],

is the number of vertices in that cell.

Definition 2.1 Refinement of a Cell A refinement of a cell C' is a decomposition of
the cell into non-empty subcells Cy,...,C,, where no two of the subcells have common

vertices and the union of all the subcells s C.

When all the cells are refined into subcells of size 1, no more cells can be further
refined, and the refinement is complete. Cells of size 1 are called discrete cells. In the

following definitions, we define the relationship between cells and subcells.

Definition 2.2 Child If a cell C is refined into a set of subcells {Cy,...,Cy}, we
call C the parent of C1,...,Cn, and C,...,C, the children of C.

Definition 2.3 Sibling Two cells C; and C; are siblings of one another if and only
if there erists a cell C such that C is the parent of both C; and C;.



In the dominating set problem, a vertex is either in, or not in the dominating set.

We say a vertex is on, if it is in the dominating set; otherwise it is said to be off.

Definition 2.4 Content The content of a cell is the number of vertices in the cell

that are on.

We use o(C) to denote the content of a cell C. Obviously, o(C) satisfies the following

condition:

0<4(C) <|Cl-

Moreover, when a cell is refined, the total content of its subcells is equal to the content
of the original cell. This leads to the following rule that relates the contents of a cell

and its subcells:

Rule 2.1 Conservation Rule If a cell C is refined into subcells Cy,...,Cy, then

n

S o(Cy) = o(C).

=1
Definition 2.5 Cell Refinement and Content Partition There are two kinds of

partitions involved in the partitioning algorithm. We call the partitioning of a cell the

cell refinement, and we call the partitioning of the content the content partition.

Our method of solving the domination set problem is to recursively refine the cells
and partition their contents among their subcells until none of the cells can be refined
further. This happens when the cells are all discrete. At this stage, those cells that
have a content of one is equivalent to a vertex that is on. Prior to that stage, for
each cell whose size is greater than one, we do not know which vertices in that cell
are on. We only know the number of vertices in that cell that are on.

Using the above approach, we have developed a program to search for a dominat-
ing set of size t for a graph G(V, E'), where E’ is the extended edge set of the graph
G(V, E). We call t the test size of G(V,E). In order to find a minimum dominating
set, if a dominating set of size ¢t is found, ¢ will be reduced by one and the program
will be run again. The minimum domination number will be ¢ for which the algorithm

can find a dominating set of size ¢ but not one of size ¢t — 1.

9
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Figure 2: Refinement of a cell of size 6 with content 2.

Figure 2 shows an example of how we refine the cells and partition their contents
to obtain a solution for the dominating set problem. The graph is the regular hexagon
shown in Figure 1 on page 3. Initially, cell C = {a, b, ¢, d, e, f} has six vertices
and a content of two. At each level, a cell is selected and refined into two subcells of
roughly equal size. After C is refined into C; = {a, b, ¢} and C; = {d, e, f}, there
are three ways to partition its content into its subcells. Suppose we select o(C;) =1,
and o(C2) = 1. Next we refine C into Cy; = {a} and Ci, = {b, c}. There are two
ways to partition C;’s content of 1 to its children. Suppose we select (C};) = 1, and
0(C12) = 0. Since Cy; has only one vertex in it and its content is one, this implies a
is on. The cell C};2 can be refined into two subcells. Since Cy2 = 0, both vertices b
and c are off. The refinement of C, will be similar to C;.

Algorithm 2.1 on page 11 gives an outline of the partitioning algorithm that is
used to find the dominating set. The set of predetermined rules to refine a cell will
be discussed in Section 2.2.6 on page 33.

In order to speed up the searching for a dominating set, we have to limit the

number of possible choices for content partitions. In the next section, we describe

10



Algorithm 2.1 A Partitioning Algorithm to find the Dominating Set

Find_dominating_set ()
{if 3 a cell C with |C]| > 1;
{ refine C into subcells Cj, ..., Ck according to a set of predetermined rules;
for each possible content partition of o(C) into o(C), ..., d(Ck)
Find_dominating_set ();
}
else
check if those vertices that are on form a dominating set;

how we make use of tests to reduce the number of content partitions.

2.2 Symmetry Partition

Three tests have been developed to limit the possible choices of content partition.
The first two are the coverage test and the wastage test [47, 48]. They restrict the
number of possible partitions of the parent’s content among its children. The third
test is isomorph rejection. It makes use of the orbit and block structures of the graph’s
automorphism group to reject a content partition if it is isomorphic to one that was
generated earlier. The idea of refining a cell and partitioning its content was used in
[38], and the coverage test is a generalized version of the method used there. These
three tests have been incorporated into an algorithm called the symmetry partitioning

algorithm. The following sub-sections describe these three tests in detail.

2.2.1 The Coverage Test

We first extend the definition of the neighbor of a vertex to the neighbor of a cell.

Definition 2.6 Neighbor A cell C; is said to be a neighbor of a cell C; if there
ezists an edge (u,v) in E' where u € C; and v € C;. We use C; ~ C; to denote C; is

11
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Figure 3: Refinement of a regular hexagon.

a neighbor of C; and C; # C; to denote C; is not a neighbor of C;.

Since we are using the extended edge set E’, each cell C; is a neighbor of itself. The

coverage test can be informally stated as follows:

“The content of a cell C and its neighbors must be large enough to cover

all the vertices in C.”

Let us consider an example using the regular hexagon in Figure 3. Let C = {a, b, ¢, d,
e, f} and let (C) = 2. Assume that the refinement of C is C; = {a, b, ¢} and
C, = {d, e, f}. Consider the content partition o(C1) = 0 and (C2) = 2. There are
only two vertices in C; that have edges connecting to C;. The maximum number of
vertices that can be covered in C; by the vertices in C, is 2. Moreover, as ¢(C,) =0,
there is no vertex in C; that can contribute to cover any vertex in itself. Since the
size of C; is 3, C; cannot be covered with this content partition. Hence, o(Cy) has
to be increased from 0 to 1. By the conservation rule, 6(C;) = 2 — ¢(C}), and hence
o(C2) has to be decreased from 2 to 1.

In order to compute the maximum number of vertices of a cell C; that can be
covered by another cell C;, irrespective of which vertices of C; are on, we define the

upper influence function. Here, NV, is the neighborhood of vertex u.

12



Definition 2.7 Upper Influence Function For each ordered pair (C;, C;) of cells,

the upper influence function of C; on Cj is Ug,c,, for 0 <m < |C:l,

Uo.c,(m) = | max_ (%‘3 |Nu N Cj).

In other words, Ug,c,(m) gives the upper bound on the number of edges connecting
m of the vertices in C; to vertices in C;. The maximum coverage occurs when all
the edges end on distinct vertices in C;. For simplicity, we use U;;(m) instead of
Uc.c,(m) when it is clear that the subscripts ¢ and j refer to cells C; and Cj. Given
o(C:), the maximum number of vertices in C; that can be covered by the vertices
in C; is U;;(o(C;)). One way to compute U;;(m) is by sorting the vertices u of C;
in descending order according to the value of [N, N C;|. U;j(m) is then the sum of
[N, N C;]| for the first m vertices u in this sorted list. This, however, gives only the
upper bound on the number of vertices C; that can be covered by C; with o(C;) = m,
because several edges may end at the same vertex in Cj.

Consider again the hexagon example in Figure 3 on page 12, where C, = {a, b, c}
and C; = {d, e, f}. The list of the vertices in C; sorted in descending order
according to the number of edges in E’ going from C; to C; is b, a, and ¢, where the
corresponding edge counts are 3, 2 and 2. Thus, Un1(2) = [NsNCi| + [N. N Cy| =
3+ 2 = 5. Using these data,

where the first row gives the values of m, and the second row gives the values of
Upi(m). As for Uiz, we consider edges from C; to Cz. The sorted list of vertices is
a, ¢ and b with the corresponding edge counts being 1, 1 and 0. Thus

0123
Uiz = .
01 2 2

Note that even though Uy;(2) is 5, the actual number of vertices in C; covered
by the vertices b and a of C; is 3. This is because the end point of the edge (a,a) is
already covered by the edge (b, a), and the edge (a,b) also duplicated the coverage of
(b, b).
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In this example, one can verify that Uy, = Uz;. In general Uj; is not equal to
Uj;. Consider the following choice of refining the hexagon. Choose C; = {d, e, f},
Cg = {b}, and C4 = {a, C}, then

P
Uss = ,
1o 1]

01

U34= 0 )

-0 2-

(0 1]

Usy = ;

32 -0 0-

01 2
U43—{0 1 2]=U42—U44=

(01 2 3]
Ups = ,
710000
(01 2 3]
U24= ’
01 2 2|

and ) )
01 2 3
Uy = .
710357

Notice that the largest m in Uss(m) is 1 and the largest m in Us(m) is 2. This is
because the largest m in U;(m) is equal to |C;|. When C; # Cj, U;; becomes a zero
function as in U,z and Usa.

The informal statement of the coverage test on page 11 can now be stated as:

Theorem 2.1 For each cell C;, a necessary condition for it to be covered is
> Uii(o(Cy)) 2 IG5l
Ci~C,

Proof: By definition, U;j(c(C;)) gives the maximum number of vertices in C; that
can be covered by the vertices in C; with content o(C;). Hence, Y c,~c, Ui;(c(C:))
gives the maximum number of vertices that can be covered in C;. Therefore, in order

for C; to be covered, the sum has to be greater than or equal to the number of vertices
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in Cj. a

After each cell refinement, the parent’s content has to be distributed to its chil-
dren according to the conservation rule. However, the number of possible content
partitions to be examined can be huge. For each child Ck, its content depends on
its size, the size of its parent and the conservation rule. Initially, the lower bound of
its content is 0 and the upper bound of its content is the minimum of |Ci| and the
content of Ci’s parent. If we can further improve these two bounds, the number of
possible content partitions can be reduced. However, Theorem 2.1 cannot be applied
directly, because we do not know exactly the contents of the children. We know only
the upper and lower bounds for their contents. We need to restate Theorem 2.1 in
a form which takes into account that some contents are not exactly known. For this
purpose, we define first the S-slack of a cell.

We use (C) and g(C), respectively, to denote the upper bound and lower bound
of the content of a cell C. For simplicity in names, we call 5(C) the upper content of

C and g(C) the lower content of C. Obviously, ¢(C) < ¢(C) < 7(C).

Definition 2.8 S-slack We define S;, the S-slack of a cell Cy relative to a cell C;,
to be
Sk; = Urj(G(Ck)) — Ukj(2(Ck))-

Notice that if 7(C;) = (C;) = g(C:), then Si; = 0. Using the S-slack, the coverage

test is restated in the following theorem.

Theorem 2.2 For each cell C; and for each neighbor cell Cy of Cj, in order for C;

to be covered, the following inequality must hold:
[ > U,-,-(’&(C,-))] —|Cil 2 Skj-
Ci~C,

Proof: In order to cover Cj, the best case occurs when each edge from the neighbors
of C; covers a different vertex in Cj. If all the neighbors except C have their upper

content, then the lower content of Cix must be large enough to cover all the uncovered
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vertices in C;. Based on this idea, we obtain the following inequality,

Uki(e(Ck)) = |Cj| — > Ui(F(Cy)).
(CinCy )N (iK)

Subtracting U;(a(Ck)) from both sides of the inequality, we get

Uki(2(Cr)) = Uri(5(Ck)) 2 [Ci] — Y. Us;(@(Cy))

ci~C,
& =5 2|Cil- 3 Uy(a(Cy)
Ci~C,
= [ Z U‘](F(Ct))J - ICJI > Skj. O
Ci~C,

If the inequality is not satisfied, ¢(Cy) must be raised so that U;;(a(C%)) is greater
than or equal to the number of uncovered vertices in C;.

Suppose after a refinement, there are q subcells in total. According to the coverage
test in Theorem 2.2, for each fixed j, these g subcells C,,...,C, will lead to the
following inequalities: [Zc.«,c, Uf,‘(E(C’;))] — |Cj] = Skj, for k =1 to q and Cx ~
C;. In the beginning, if o(Ck) is known, both o(Ci) and &(Cy) are initialized to
a(Cy); otherwise, o(C%) is initialized to 0 and &(Cy) is initialized to the minimum
of |Ck| and the content of Ci’s parent. After applying the coverage test, if any
of the inequalities are not satisfied, the corresponding S-slack, Si;, will be reduced
by increasing g(Cy). If this increase leads to a g(Cx) which is greater than &(Cx),
then the vertices in C; cannot be covered, and further refinement will not lead to any
solution. The partitioning algorithm will backtrack. The coverage test is summarized

in Algorithm 2.2 on page 24.

2.2.2 The Wastage Test

The notion of wastage is to measure the amount of excess coverage of the vertices in
a cell. For example, if a cell has m vertices and the total number of vertices that can
be covered by its neighbors is n, and if n > m, then the wastage isn — m. If n < m,
then there is insufficient coverage and the wastage is defined as zero rather than the

negative value of n —m. Let us first describe the basic idea behind the wastage test.
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“Given a cell C, we first measure its marimum amount of wastage. When
C is refined into a number of subcells, the sum of the minimum amount of
wastage for C’s children subcells should not be greater than the mazimum

amount of wastage of C.”

Consider again the hexagon example in Figure 3 on page 12. Once again, C' =
{a, b, c, d, e, f}, and ¢(C) = 2. The maximum amount of wastage in C is equal
to the maximum amount of coverage in C minus |[C|. The maximum amount of
coverage in C is Ucc(o(C)) = Ucc(2) = 6, because each vertex in C' has degree 3
in the extended edge set. Since [C| = 6, the maximum amount of wastage in C is
Uoc(a(C)) - €] = 0.

Consider the refinement of C into C; = {a, b, ¢} and C2 = {d, e, f} with the
content partition ¢(C;) = 0 and o(C;) = 2. Let us compute the minimum coverage
on C,. Since ¢(C;) = 0, C1’s contribution to the coverage of C; is 0. As for vertices
in C,, vertex e covers all 3 vertices of C3. Vertices d and f each covers only 2 vertices
of C,. The minimum coverage of C; by 2 vertices of C, is then 2 + 2 = 4, by using
vertices d and f. The minimum wastage is then 4—|C>| = 4—3 = 1. Since C;’s parent
has a maximum wastage of 0, it is impossible for C; to have a minimum wastage of
1.

It is instructive to compute also the minimum wastage of C;. The coverage of
C, due to vertices in C; is 0, because o(C;) = 0. As for vertices d, e, and f in
C,, they cover 1, 0, and 1 vertices in C;, respectively. The minimum coverage of
C, by 2 vertices in C, is 0 + 1 = 1. If we had defined wastage simply as coverage
minus cell size, then we would have obtained a minimum wastage of 1 — [C,| = —2.
Adding this wastage to that of C, gives (—2) +1 = —1, which would be smaller than
the wastage of its parent and would not have led to a contradiction. To avoid this
situation, we insist that wastage cannot be a negative quantity, which is the same as
insisting that we cannot leave some vertices uncovered in order to pay for the wasted

coverage elsewhere.
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The maximum amount of wastage of a cell is called the marimum allowable
wastage of a cell and the minimum amount of wastage of a cell is called the un-
avoidable wastage of a cell. Mathematically, the maximum allowable wastage of a cell

C;, W(Cj), is defined as

w(C;) = [ > U;,-(a’(C,-))] — 1Cjl-

Ci~C,

The summation 3¢, .c, Uij(¢(C;)) represents the mazimum possible coverage for the
cell C;. Hence after subtracting the size of C;, we get the maximum allowable wastage
of C;. In order to compute the maximum allowable wastage of each cell, we have to
reach a stage where the content of each cell is defined.

To compute the unavoidable wastage of each cell, we need to define another func-

tion that states clearly the minimum coverage between one cell and the other.

Definition 2.9 Lower Influence Function For every ordered pair of cells (C;, C;),
the lower influence function of C; on C; is Lc,c,, where 0 S m < |C;|, and

Le,c,(m) = pcn_ (EB [N N Cjl).

If there is no ambiguity in identifying the cells C; and Cj, for simplicity, we denote
the lower influence function as L;;(m). Given o(C;), the minimum number of edges
connecting o(C;) vertices in C; to C; is L;j(0(C;)). To compute L;;(m), the vertices
u of C; are first sorted in ascending order according to |N, N Cj|. L;j(m) is then
obtained by summing over the first m vertices in this sorted list.

Consider again the hexagon example in Figure 3 on page 12, where C; = {a, b, c}
and C, = {d, e, f}. The list of the vertices in C sorted in ascending order according
to the number of edges in E’ going from C) to C; is a, ¢, and b, where the corre-
sponding edge counts are 2, 2 and 3. Thus, L11(2) = [N.NCyi[+|N.NCi| =2+2 =4.
Using these data,
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As for Ly,, we consider edges from C; to C,. The sorted list of vertices is b, a and ¢

with the corresponding edge counts being 0, 1 and 1. Thus

0123
L = .
” [ 001 2 ]
The following are some properties of the two influence functions. For all ¢, :

1. Lij(m) S Uij(m) form =0, 1,..., |Ci,

2. Li;(IC:]) = Ui;(|Cil)s

3. Li;(0) = U(0) = 0, and

4. C; # C; if and only if L;;(m) = Uij(m) =0, form =0, 1,..., |Cy.

In our hexagon example, choosing C> = {d, e, f}, Cs = {8}, and Cs = {a, ¢}, as
Cy # Cs, hence both the lower and upper influence functions Uz3 and L2z are zero
functions.

The wastage test depends on the relationship between the maximum allowable

wastage of a cell C and the unavoidable wastage of C’s children. Let us state some

of these relationship in a lemma.

Lemma 2.3 Let C be refined into Cy,..., C, and let B be any cell where 0 < m <
|B|. Then
Usc(m) = Y _ Lpc,(m).

J=1
Proof: Let {v;,..., Um} be the set of m vertices in B which have the largest number
of edges from B to C. Let N; be the neighborhood of v; in E’. Then, by definition
Ugc(m) = E [V; N C|.

i=1

Since C4,..., C, is a refinement of C, we also have
Upc(m) =33 IN:0Cjl =33 [N:nCjl. (1)
=1 j=1 j=11i=1

By the definition of Lpc,(m), we have

Z IN,‘ ] C_,l > LBcj(m).

=1
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Therefore, (1) implies
Usc(m) 2 Y Lpc,(m). O

J=l

Let us consider the special case where B = C. We start with the following lemma.
Lemma 2.4 Let C be refined into Ch, ..., C, with contents a(C1), ..., o(C,), where
>r10(Ci) Lo(C). Then

Ucc(o(C)) 2 > Uc,c(a(Ci)).
=1

Proof: Let {vy,..., vs(c,)} be the set of 0(C;) vertices of C; which have the largest
number of edges from C; to C. Similarly, let {Va(c1)+15 Va(Cr)42> -+ -1+ Vo(Cr)+o(Ca)} DE
the set of o(C,) vertices of C; with the largest number of edges from C; to C; and
so on. Let N; be the neighbors of v; and let 7(z) = §=1 o(Cj). With the convention

that the vacuous sum 7(0) = 0, we have, fori =1,..., n,

(i)
Ucc(e(C))) = Y. [N.NC|

t=1+7(i~1)
By letting 7(n) = s, we have

n (i)

S Ueclo(@) =3 3 INNCI=YINNC] @)

=1 i=1 t=1+7(i—1)
From the assumption of the Lemma, s < ¢(C). Since Ucc is monotonic non-

decreasing

Ucc(a(C)) 2 Ucc(s)-

By the definition of Uce,
Ucc(s) =2 Y [N:nC|,

t=1
for any set of {v1,..., v,} of vertices. Hence,

Uco(e(C)) 2 3 IN:N C.
Using (2), we get
Ucc(a(C)) 2 D Uc,c(a(Cs)). O

=1

By applying Lemma 2.3 to the term Uc,c(0(C;)) in Lemma 2.4, we have the

following Corollary.
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