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ABSTRACT

ALMOST PERIODIC DIFFERENTIAL EQUATIONS AND
A STUDY OF THE NON-HOMOGENEQUS HEAT EQUATION

The Thesis is divided into four Chapters. The first chapter describes the preliminaries

of the subject with a little background.

In chapter 1, the basic works of Bohr and Neugebauer are reviewed and the theorem
of Bohr and Neugebauer was re-established by using matrix theoretic tricks without
getting deep into the subject. Favard’s theorem based on the generalization of Bohr’s
work 1is revisited and the theorem is reproved by applying Bochner’s almost periodicity
criterion. Some observations are made on the theorems of Bohr-Neugebauer and Favard.
An attempt is made to cbtain almost periodic solutions for a system of two differential

equations using the maximum principle and standard hypothesis.

I~ ~hapter 1II, the almost periodicity criteria for ordinary differential equations as
found in recent literature are studied. Some aspects of the subject in the light of
Stepanov’s almost periodicity are simplified. A few relatively new results are discussed

based on the use of Liapunov type of functions.

In chapter IV, an attempt is made to extend the work of Professor S. Zaidman on the
almost periodic solution of non-homogeneous heat equation. The problem was suggested
by my supervisor Dr. M. Zaki, Concordia University and I received helpful remarks from

Professor S. Zaidman, University of Montreal for which I am thankfu] to him.

A few graphs have been included in the Appendix to show the difference between

periodic and almost periodic functions.
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ALMOST PERIODIC FUNCTIONS

1. INTRODUCTION

In 1922, the Danish mathematician Harald Bohr (1887-1951) published
the 1st formal paper on Almost Periodic Functions and since then he contin-
ued to publish a series of papers on this relatively new branch of mathemat-
ics. Starting from the Ist few papers, the works of Bohr attracted interest
of quite a number of researchers who made significant contributions to the
development of the Theory of Almost Periodic Functions. Among others,
the works of A. Besicovitch, S. Bochner, N. N. Bogolyubov, J. Favard, J.

von Neumann, V. V. Stepanov, H. Weyl and S. Zaidman are remarkable.

In recent years the theory of almost periodic functions has been devel-
oped in connection with problems of differential equations, stability theory,

dynamical systems and many other disciplines.

There are a few equivalent definitions of almost periodic functions. We

will use some of them according to our requirements.



DEFINITION (1.1). Let us take an arbitrary function f(z) = u(z) + it(s)
continuous for —-x < r < +x. The real number r is called Transtation Number of

f(x) corresponding to ¢ > o, denoted by r(¢) or ry (<), whenever
[flr+ 1)~ flr)| <e, fOr —oo<z < +x.

A translation number of f(r) corresponding to ¢ corresponds a fortiori to
every quantity s, > ¢ and together with r. Again -r is also a translation

number of f(r) corresponding to «.

Also

T(&1) + T(e2) = T(&) + £2)

and

T(61) = T(e2) = 7€) + £2)

i.e. the sum or difference of translation numbers corresponding to ¢, and ¢,

will at the same time be a translation number corresponding to <, + ¢..

DEFINITION (1.2). A subset E of real numbers % is called Relatively Dense
if there are no arbitrary large gaps among the numbers of the set £. ie. a
subset E of % is called relatively dense if there exists a number 4 > o such
that
[a.a+8NE#¢, YaeR

For instance, the numbers np (n = 0,£1,42,... ... ... ... ... ,p > 0) of an arithmetic
progression are relatively dense and the set +n? (v = 0,1,%,.... ... ...) is not rela-
tively dense, since (n+1)? -n?=2n+1 —x @ n — ~. Thus roughly speaking
‘relatively dense’ sets can be described as ‘one which is just as dense as an

arithmetic progression’.

DEFINITION (Bohr) (1.3). A function f(z) continuous for -~ < z < +x
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is called Almost Periodic, if for every ¢ > o, there exists a relatively dense set of

translation numbers of f(r) corresponding to .

i.e. to every ¢, there exists a length /() such that each interval of length

I(¢) contains at least one translation number 7(c).

NOTATION

For any bounded complex function f(z) and ¢ >0, we denote
Ttf,e) = {r:|flz+7) - flz)] <&, Vz € R}

i.e. this 7(f,) is the set of translation numbers of f(z) corresponding to «.
Using this notation Bohr’s definition of almost periodic function is simplified
as:

"f(r) is lmost periodic if for every € >0, T(f,¢) is relatively dense.”

Every periodic function is almost periodic while the converse is not true.
If sis periodic of period 7, then all numbers of the form »T, where » =
41,42, ... ........ . are also periods of f and so they are translation numbers of
for any ¢ > 0. Thus fis aimost periodic as well. On the contrary, we observe
that f(1) = cost +sin 2t 1S almost periodic but not periodic. A few graphs are
given in the Appendix showing the differences between periodic and almost

periodic functions.

Now we shall define almost periodic functions in metric spaces. Let ®

be the real line, X a complete metric space and p = p(z;.2,) @ metric on X.

DEFINITION (1.4). A number r is called a translation number or an
c-almost period of f. ® — X if

sup p(f(t+ 7), f(1) <.
teR

3
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DEFINITION (1.5). A continuous function f: ® — X is called Almost
Periodic if it has a rclatively dense set of translation numbers r, for each < > 0
i.e. if there is a number /= I(¢) > 0 such that each interval [a,a+ ] c % contains

at least one number r, satisfying definition (1.4).

Now we will define almost perodic functions using complex trigoncinet-

ric polynomials.

The function T(z) = Y., exe'™, where the coefficients ¢, are arbitrary
complex quantities while the exponents ), are arbitrary real quantities, is
called a Complex Trigonometric Polynomial whose real and imaginary parts are real

trigonometric polynomials.

DEFINITION (1.6) A complex valued function f(x) defined for - < r <
+oc 1s called almost periodic, if for any ¢ > 0, 3 a trigonometric polynomial

T.(z) such that

|f(z)=Te(x)| <&, fOr -0 <z < +0c.

From the above definitions it is clear that

(i) Any trigonometric polynomial is an almost periodic function.

(ii) Almost periodic functions are those functions defined on the real line

which can be approximated uniformly by trigonometric polynomials.

(iii) From the theorem of approximation of periodic functions by trigono-
metric polynomials it follows that any periodic function is also almost peri-

odic.

In 1927, S. Bochner defined almost periodic functions in a more useful
and comprehensive way in terms of its applications to differential equations

4




and showed its equivalence to Bohr’s definition.

DEFINITION (Bochner) (1.7). A function f(z) is called Almost Periodic
if from every sequence {<,} one can extract a subsequence {s,} such that

limy—.., f(z+s,) €xists uniformly on .

NOTATIONS

For simplicity of the use of above definition, Bochner [1] introduced a

few notations.

1. The sequence {s,} is denoted as s, i.e. braces are omitted. So u, ¢ =,

means that {u,} C {s.} 1.e. {u,} is a subsequence of {s.}.

2. Let lim,— f(r+sn) = g(r). This is denoted by 7,f = ¢ and is written only

when the limit exists. Here the operator T is known as Translation Operator.

3. Ar«) denotes set of all almost periodic complex valued functions
where (' designates complex numbers. Similarly when ® designates real
numbers, AP(R) denotes set of almost periodic real valued functions. AP(E)

will be intended to mean either one.

4. H(f)= {g: 3s with T,f = g uniformly on ®}. This H(y) is called the Hull
of f(r). If f(x) is an almost periodic function such that ¢ € H(f), we camn easily

show [2] that H(g) = H(f).




2. ELEMENTARY PROPERTIES

Now we prove some of the simple properties c-{ almost periodic functions.

These are actually straight forward consequences of the definitions.

PROPERTY 1. An almost periodic function is bounded on the real line. i.e. there exists a constant

c such that | f(z)] < e.Vr € R.

PROOF. An almost periodic function can be approximated by a trigono-
metric polynomial. Let f(z) be an almost periodic function. Then for any

¢ >0, there exists a trigonometric polynomial 7.(r) such that

f(z) —Te(z)] <e,Vr e R

Suppose ¢ = 1/n and |Ty(z)] < M, where M > 0. Then we get

[/(2)] <1f(2) = Ti(a)| + [Ti(a)] S 1+ MV € R

= f(z) is bounded on %. o

PROPERTY II. An almost periodic function is uniformly continuous on the real line. i.c. given
£ >0, 36(¢) such that

|f(z1) = f(22)| L € for |z) — 2] < 6.

PROOF. Since any trigonometric polynomial is a uniformly continuous

function on the real line, for given ¢ > 0 we have a 4(¢) such that
|Te(z1) ~ Te(z2)| < /3, fOT |z) — 25| < & (1)
Again from the definition of almost periodic function, we have

|f(z) = Te(z)] < €/3,Vz € R. (@)

6



= | flz1) = f(z2)| £ 1f(z1) = Te(z)l + |Te(@1) = Te(22)] + [Te(22) = f(22)]-
Now using (1) and (2), we obtain
If(z1) = f(z2)| <ef3+¢€f/3+¢ef3=¢

Thus |f(x1) - fr2)| < € fOr |2; - 22 < 6.

= f(r) is uniformly continuous on the real line. o

PROPERTY III1. If f(z) is almost periodic, ¢ is a complex number and a is a real number, the

functions J(x).cf(r), f(z + a) and f(az) are all almost periodic.

PROOF. If 1T(x) is a trigonometric polynomial, T(z), cI'(z), T(x+a) and f(az)
can be approximated by the corresponding trigonometric polynomials and
therefore the proof follows directly from definition (1.6) of almost periodic

function.

-

PROPERTY 1V. The sum f(x) + ¢g(z) of two almost periodic functions f(z) and g(z) is aimost

periodic.

PROOF Since f(r) and g(r) are almost periodic, we have an ¢ >0 and two

trigonometric polynomials 7(r) and S(z) such that
|f(z) - T(2)| < e/2,Vr e R

and

lg(z) — S(z)| < e/2,Vz € R
= |(f(@) + g(2)) = (T(x) + S(x)] < |f(x) = T(x)| + lg(z) - 5(z)|

<ef2+¢ef2=¢

-1



= f(z)+ g(z) is almost periodic. o

PROPERTY V. The product f(x)g(x) of two almost periodic functions f(x) and g(r) is almost

periodic.

PROOF. Let ¢ be a real number such that 0 < ¢ < 1. There exist two
trigonometric polynomials S.(z) and 7.(z) such that

£
2(M+1)

lf(z) - Sz(T)| <
(n
£
lg(x) = Te(x)] < AT
where M is a number for which f(x) < M and g(z) < M on the whole of real

line.

= [Se(x)] < [Se(x) — f(@) + |f ()]

<M+ (2)

But
[fg = SeTel < |gl.lf = Sel + [Sellg — Tl

where applying (1) and (2), we obtain

[f(z)g(z) = Se(2)Te(z)] <€, VT € R

= f(z)g(z) is almost periodic since S.(z)T.(z) is a trigonometric polynomial.

PROPERTY VI. The limit of a uniformly convergent sequence of almost periodic functions is an

almost periodic function.




PROOF. Let f(z) be the limit of the sequence f,(z) of almost periodic func-
tions uniformly convergent for —co < z < +oc. Obviously f(z) is continuous.

Let ¢ >0 be given and we choose N = N(e) such that
[f(z) ~ fn(z)| S€f3, Vz €R

Then every translation number r = 7, (¢/3) is a translation number r;(). For,

we have
|flr+ 1) = flz)] S |f(z+7) = fn(z + )|+ [ In(z + 1) = (@) + | () = f(2)]

<ef3+ef3+¢ef3

=€

Since the translation numbers r,,(e/3) are relatively dense, the same is

true for the translation numbers ()

= f(z) is almost periodic. o

PROPERTY VII. Let ¢o(z,2)......., 2n) be a uniformly continuous function of (21,22, ......, 2n) €

M, where M is a set in the n-dimensional complex space. If fi(T), fo(Z)y.eeeerrirmverrencrreeraennns y Jo(Z)
are almost periodic functions such that (fi, fa,..ccoeecrcernnnen: »fn) € M for any real z, then the
function

@) = A1, oy covrenennienennnen yJn)

is also almost periodic.

PROOF. The functions fi(z), f2(2), ceerreerrersernnne ,fa(x) are bounded on the real
line %.

= the set of points (f, fou.coverrrree ,f») in the n-dimensional complex space is
bounded.



Thus without loss of generality, we can assume that M is bounded and
closed. Then by Weierstrass approximation theorem, we conclude that for

given ¢ >0, 3 a polynomial

Pe(21, 295 ceerveeenvinnnns D T T e )
such that
[ 215 22, rermerrneraens y2n) = Pe(21, 22, corenvienenens 2 T T s T < e
for all (21,2 y2n) EM
= |F(x) = Pe( fi(2), f2(T)y eorverrrererenne ) @), T @) e Ja@) < e Vre R

= F(z) can be approximated by almost periodic functions.

= F(z) 1s almost periodic. o
PROPERTY VIIL If f(z) is almost periodic and f'(x) is uniformly continuous on R, then f'(a)
is also almost periodic.

PROOF. Here f(x) is uniformly continuous.
= For given ¢ >0, 3a ¢ = é(¢) > 0 such that | f/(z;) - f'(z2)] < &, when Jzy —ry| < 6.

Suppose 1/n < 6. Then

1/n
In(f(z +1/n) - f()] = |n A (F'z+3) — f(z))ds]

1/n
<n L /(2 +5) - f(z)| da

10




So n(f(z+1/n) - f(z)) — f'(z) uniformly on %.

Thus by Property VI, f'(z) is almost periodic. o

PROPERTY (Bochner) IX. If f(z) is almost periodic, then from every pair of sequences v/ ,v/

there exists comnion subsequences uw C ', v C v/ such that
Tu+uf = TuTuf

pointwise.

PROCF. By hypothesis, f(r) is almost periodic.

So from given sequences «',v we can extract a subsequence v C v such
that 7,.f = ¢ uniformly. This g(z) € AP(C). If »* c v is common with v, we

can extract a subsequence v c v” such that T,ng = & uniformly.

Let v c v be common with . Now we can find common subsequences

wC v, vcC v such that T,,,f =k uniformly.

Since «c u”,v c v, we find that
T.g=hand T,f=g¢
uniformly. For sufficiently large =, given ¢ >0, we have,
[k(z) = flz + un + vn)| <€, Vz € R,

lg(z) = f(x +vn)| <&, VT ER,

|h(z) — g(x + un)| <€, VZ € R.
= |h(x) = k(2)] < |h(2) = g(x + )|+ |9(x + un) — f(2 + Un + V)| + | f(T + un + v5) — K(2)]
< e

11



Since ¢ is arbitrary, we have

k(:c) = h(.l‘)
= Tu+vf = Tu!] = Tu(T‘vn

=T T.f. o

NOTES

1. If f(r) and g(z) are two almost periodic functions with |g(x)| > 0, then

f(z)/g(z) is an almost periodic function.

2. If f(z) and g(z) are two almost periodic functions, then their difference

f(z) — g(z) is also almost periodic.

3. If f(z) is an almost periodic function , then (f(x))> and |f(«)]?> are also

almost periodic.

4. Let Py, 1, e ,yn) be a polynomial and fi(z), fa(2), ... , fu(x) are

almost periodic functions . Then P(fi, f2,.ccoovee. ,fa) is almost periodic.

5. The set of almost periodic functions is closed with respect to uni-
form convergence. In other words, any function that can be approximated

uniformly by almost periodic functions with any accuracy, is almost periodic.

6. If one replaces the word "bounded" by "with values in a compact set",

then the same results will follow.

12




h—

craprer 11

ALMOST PERIODIC SOLUTIONS OF O.D.E.

1. INTRODUCTION

It is Bohr, H. and Neugebauer, O. [3] who studied the almost periodicity
problem of bounded solutions of O.D.E. for the first time. They considered
the finite-dimensional linear system z' = Az + f(t) where f(t) € AP(E™) and 4, a
constant matrix and proved that any bounded solution of the system on the whole of R is
necessarily almost periodic. The research direction initiated by Bohr and Neuge-
bauer was an area of concentration for many researchers and consequently a
great deal of results on the almost periodicity properties of solutions to Par-
tial Differential Equations, to different other types of functional equations, or
to Abstract Differential Equations, were obtained. In general, more sophis-
ticated types of equations than the ordinary ones drew the attention of many
of them. Nevertheless, the almost periodicity problem of bounded solutions
for O.D.E. is still a challenge for many researchers in this field. In this
chapter we shall review and develop some results on the almost periodicity
problem of bounded solutions for O.D.E.



THEOREM (2.1). Let the set of bounded solutions of a differential equation x' = f(x,t) be non-
empty. If f is defined and bounded on S X R where S is a sphere containing the origin and a bounded

solution, then there is a solution of the equation with minimum norm.

The set of bounded solutions of the equation ' = f(+,t) is a convex set
that does not contain o if f# 0. Such sets should have an element close to o
i.e. with minimum norm. This theorem on the existence of minimum norm
characterizing the bounded solution is found in the works of Favard and the

proof in English is provided in Fink [2].

THEOREM (Bohr) (2.2). Let 2’ = f(l), Vt € R where f(t) € AP(E"). Thenz € AP(L") &

z(t) is bounded on the real line R.

Doss [4] observed that F(z) = [ f(2) dt for f e AP(?) has the property that
F(z+h)—F(z) is bounded and almost periodic for any 4. This hypothesis makes
sense without integration. So he poses the question: If F is bounded and all
differences F(z+ k) — F(z) are almost periodic , is F almost periodic ? Bochner
[1] studied a general first order system which includes the possibility of
delays and pure difference equations. He showed that if one non-trivial
difference is almost periodic and r is bounded and uniformly continuous,

then F is almost periodic.

: THEOREM (2.3). The hounded solutions of 2 = Az, A being a constant matrix, are precisely

almost periodic.

14




rrooF. The vector solutions of z' = Az for constant A are
z(t) = ez, = ;:Pk(t)e'\*‘zo
=1

where ), are eigenvalues of 4 and P, are polynomials whose degrees do not

exceed multiplicity of A. [5]. Let A = ui + ivi. Then

n
z(t) = ZPke“"‘za(cos vkl + isinvkt)
=1
where we observe that

(i) If ju # 0, no solution except o is bounded.

(ii) If s =0, we get
z = 3 Puag(cos iyt + isin wt) Which is a trigonometric polynomial.

= r € AP(E"). 0

THEOREM (2.4). Let
¥ 4+ ()Y 4 s+ an(Dy = f(1) (1)

be a linear differential equation where the coefficients a, and f are bounded on R. If y is bounded

on R, then ¥, yf"y . oo cve wue ooy ¥ are all bounded on R.

Proof is provided in Fink [2].

OBSERVATION

Changing of variables by substituting z; = y,72 = ¥« ccrevnne. ,zn = y*-1), the
system (1) becomes
' = A(t)z + g(1) (2)

15



0 1 0 0 0

0 0 1 0 0

0 0 0 0 1
—Q, —Qu_1 =y ... =02 -~

If f(1y=0, g(ty=0 and then (2) becomes of the form

1z’ = Az.

For constant 4, the result is confirmed by theorem (2.3). By the hypoth-
esis of (2.3), z is bounded and so in the scalar case, y,y............ .41 are
all bounded. But reversing the procedure, we take y as a bounded solution
of the scalar equation, even, if one of the derivatives may be unbounded.
In case of constant A it may never happen, but certainly in the nonconstant
case, it may happen. For instance, y = cost? is bounded while y is unbounded.
It turns out that if cos¢? is a solution of a linear differential equation, then it

must have unbounded coefficients.

16



2. GENERAL LINEAR EQUATION

We shall consider the general linear differential equation of the form

= Az+ f (1

where A is a constant matrix and f e AP(E"). A solution z = (z1,22,...ccrernrnee. ,Zn)
of the system (1) will be called almost periodic if all its components are
almost periodic functions of . To find almost periodic solutions of the
systems, such as (1), we must look for their bounded solutions. Since the
systems of the form (1) have, in general, unbounded solutions, one cannot
expect that all the solutions be almost periodic [6]. The following theorem,
due to Bohr and Neugcbauer, will show that the bounded solutions, if exist,

are almost periodic.

THEOREM (Bohr and Neugebauer) (2.5). A solution z(t) of ¥’ = Az + f, where A is a

constant matrix and f(t) € AP(E™), is almost periodic if and only if it is bounded.

PROOF. Here we attempt to simplify the original proof of this theorem by
applying Favard’s minimum norm idea and Bochner’s pointwise version of

almost periodicity.
Let z, be a bounded solution of = = Az + f.

= by theorem (2.1), there is a solution z(f) with minimum norm.

17



By hypothesis, f € AP(E™). So for some sequence «'. T.f = g exists uni-
formly. Then 3« c » such that 7.z, exists uniformly on compact sets and

T,z, is a bounded solution of ' = Az + T, f = Ar + ¢

Thus we got a bounded solution of + = Az +¢. Again by theorem (2.1), it

has a solution z(g) with minimum norm.

We need to prove that z(g) is unique. Let r, and r, be two distinct

solutions of «' = Az + ¢ such that

llzi(gll = 2] = llz(9)ll-

Then i(z; + z2) is a solution of ' = Az + ¢ and (s, - ) is @ non-trivial

solution of =’ = Az so that

|:‘1§(11 —z)|>p>0, V.

Now,
e+ 2 + (e - et = B g
= I+ 2z < =@ - 7
= I3 + )l <la(g)lP

which contradicts the minimum property of z(g). So z(g) is unique.

18



We know that T,z(f) = (T, f) and T, T,z(f) = Tuse2(f) Since both minimize
the norm over bounded solutions of z' = Az+T,,,f. As any two solutions differ

by some constant function, we may assume that

zolt) = 2(f)(1) + 2(t)
where z(1) is a bounded solution of z'(1) = Az(t) which is almost periodic by
theorem (2.3).

= 10 € AP(E™). 0

OBSERVATIONS

In these observations, we shall use the matrix theoretical tricks to reach

to the result of the above theorem.

1. We know that if Ae ¢ and {)\;, ), .......,A,} be the set of eigenvalues

of 4, then there exists a non-singular matrix P e c~=n such that

Q:

J(A)= P1AP= Q:

Qn
where (@, is a Jordan block corresponding to the eigenvalue ;. The matrix

J(A) is referred to as the Jordan Canonical Form of A. Using the detailed procedure
of matrix theory, we may transform the matrix A into its Jordan cononical

form. Then we look at a particular Jordan block to obtain

Al 0 0
0o A 1 0 o
= 0 0 A 0 0 T+
0 0 0 A1
0 0 0 0 A



The last equation is of the form

Y=+

with z a scalar. Proceeding up, the remaining equations are of the form

¥=Ar+yg
where ¢ is a scalar and g is a scalar almost periodic function.
Thus the theorem can be reconstructed by verifying the above sequence
of scalar equations. Let us consider the equation
2 = A+ f(1) (3)

where ) is a complex number and f e AP(E).

The general solution of (3) is given by

z(t) = e'\'{]{+ /t e~ f(s) ds} (4)
0

where K is the constant of integration.

Now we shall show that any bounded solution of such equation is almost

periodic. Suppose A=+ ib. Three different cases of the solution are coming
up.
CASE 1. When a >0.

We see that |eM| = e — +o0 as ¢ — oc. But we are interested in bounded

solutions. This is possible if

t
K+/ e M f(s)ds —0 aS t — o,
0
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i.e. when

K= —/we"\’f(s)ds (5)
o

which is a convergent improper integral, since

|- f e f(s)ds| < | £(s)

<sup|f(s)le™®*, Vs2>0.

So from (4), we obtain

t
a(t) = ('\'{—[ e-*’f(s)¢s+£ e"'\’f(s)ds}
= c’\'{—f e"‘\’f(s)cL‘-'}
= —[e‘\("’)f(s)ds (6)

= |2(1)] < sup |f(f)l-| f el 9)ds

M
<swlfl= = = @
where A =sup|f(1)]. VI € R.
= (1) is bounded on R.
We note that
2(t+7) = 2(0] < 7 supfi+7) - f(O)]. Wt € R ®
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This implies that any es-translation number of f(t) is an e-translation number

of z(1). So z(t) is almost periodic.

CASE II. When a<o.

By an analogous calculation, we get

t
z(l) = / e\t=2) f(s)ds ()

with

As in (8), any ¢|q|-translation number of f(7) is an ¢-translation number of

(1) and z(z) is almost periodic.

CASE III. When «=o.

From equation (4), we have

t
z(t) = c‘b‘{]\'+/ e"'"’f(s)(b;}. (10)
o

= z(1) is bounded if and only if

/t e~ f(s)ds
0

is bounded on ®.

Since the function under integral sign is almost periodic and so bounded,
z(1) is bounded as well. Then by Bohr’s theorem (2.2), it is almost periodic.
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Thus applying all the three cases in all the scalar equations in succession,

the theorem is re-established.

2. We note that for any matrix 4, there exists a non-singular matrix

P of the same order such that pApP-! is a lower triangular matrix with the

eigenvalues {\;, Ay, ,A.} of 4 on the diagonal, such as,
M0 .0
PAP—] - 123} ’\2 e 0
tnl tn2 oo ’\n

Substituting z = P-!y or y= Pz in equation (1), we obtain

y’:PAP‘ly+Pf.

A1 0 w 0
> y= | 0y (1)
ta tn2 . An

where ¢ = Pf.

We note that v ¢ e* by y= Pz and the reverse follows since z = P-1y. Also
llzll-[1P=1=T < Tl < 1Pl

so that the statements about norms on each equation can be transfered to the

other. The constant equations of (11) are as follows:
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3/1 = ’\1y1 +g1\

W= 1ay+ e+ .
(12)

!/n =t + 22+ ... + /\nyn + gn.

The first equation is of the form of the scalar equation (3) in the last
observation, ) being an eigenvalue of the matrix 4, where we already found
that y is almost periodic. Coppel [7] proved an interesting result that |A-ia,| >
p >0 for ), an eigenvalue of A and o, € ¢/. With this we get a unique almost

periodic y; where ev = ¢ and |jy|| < Mp~!|jni]l-

The second equation in (12) is
B=Ap+ay+e)=Ap+h

where h; = g, + 123, is almost periodic. So with the above hypothesis we get

a unique almost periodic y, with e = ¢ and

llgall € Mp~*||h2||

< Mp~Y(lgal| + ltaa |-l D)

< Mp~Y(llgll + |t22]-Mp~\gll)

< Mp~Yjgll(1 + [ta]. Mp")

Continuing in this procedure, it is possible to arrive at the almost periodic
solution y with e c ¢/ and
llvll < Mp~"lgl| P
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where P is a polynomial of degree n with no constant term and the coeffi-

cients of p are coming up from the elements of the matrix PAP-1 and threfore

depends on A eventually.

Thus the theorem is reverified.

COROLLARY (2.6). If{A~i0,| 2 p > 0 for all eigenvalues A of A and a,, € €/, then there is an

almost periodic solution of the equation (1).

PROOF. Using |A - isy| > p > 0, we already obtained an almost periodic
solution of the enuation y = PAP-1y+ ¢ in the preceeding discussion. Now
simply by substituting z = P-1y, we can obtain the solution z(f). Here the
only thing we need is to prove the uniqueness of the solution. Suppose we

have two solutions z, and z, of the equation (1) with exponents in ¢/. Let

I~ Zane“’"‘, on €¢f
n=1

and

Ty o~ ane“’"‘, an €éel.
n=1

o0
= Ty -3~ ) (an — by)ent

n=

o0
= () — 1) > Zian(an - by)etn!
n=1

Thus from (z) - z2)' = A(z; — 13), We have (io,)(an — bn) = Alan - b).
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= Since io, is not an eigenvalue of A, we get a, —b, =0, Vo, € ¢/. So

Iy =I2. ©

COROLLARY (2.7). If f(t) € AP(E™) and the matrix A has no eigenvalues with real part zero,
then the system (1) admits a unique almost periodic solution. If x = (x},&2,... . .., &y) is the
almost periodic solution and M = maxi{sup |fi()l}, t € R, then |z,({)] < KM, where K is a

positive constant depending only on the matrix A.

PROOF. Suppose 4 is not a trianguiar matrix. Then we introduce some
unknown functions by substituting « = Pz, the matrix P is so chosen that

P-1AP is triangular. Now substituting for = in (1), we get

P = APz4 |
> Z=P'AP:+f, [=Pf
j} A otz . Un 21 .ff
= ‘2 = 0 /\2 v t2n ‘:2 + :2 (13)
" 0 0 . M/ \g, i

It is clear that if = is a bounded solution of (1), then the corresponding
solution :z of (13) is also bounded and conversely. In the previous observatiun
we already discussed the cases where the real part of the eigenvalues of A are
> or < 0. So all we have to do here is to prove the uniqueness and existence
of an almost periodic solution only to the system (13). It will suffice to
show that the system (13) has a unique bounded solution on the whole of %
where A #0,i=1,2,......,n. In accordance with equations " and (9), from the

last componernt equation of (13), we have

= - f e*(t=3) f (s)ds, Re(Mn) >0 (14)
t
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Zn = /t e =9 £ (s)ds, Re()y) <0. (15)

Substituting this values of 2,(t) in the 2nd component equation of (13)
from the last, we get an equation for z,_,(¢) in the form of equation (3). Since
Re(M-1) # 0, we can find a unique solution for z,_; and so on. Hence the 1st

part of the Corollary.

Let 1 >0 where

[Re(A)| 2 1, 1=1,2,.cc.,m. (16)

From (14) or (15), it follows that

l2n(t)] < 9“1 = KuM. (17)

From (13), we have
221 = Anc12n-1 + bpo1nin + jn—1~

Exressing :,-.(t) by a formula of the form (14) or (15) and estimating the

integral, we get

1 M
:n.. t <— -ln|{= M =I'.. .
|zn-1(1)] £ #{!bn 1 |“ + } 1M

Continuing in the same fashion, we obtain

2] < KM, i = 1,2, n. (18)
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This inequality is for the system (13) according to the hypothesis of the
Corollary. Now by substitution : = P-!z, a similar inequality is obvious in

terms of .

The constant i depends on the transformation r = P, i.e. on the matrix
P for which P-'AP is an upper triangular matrix. So eventually K depends

only on A. In no way K depends on f(1).

Hence the Corollary. o
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3. FAVARD’S GENERALISATION

In the general linear equation 2’ = Az + f, the matrix A was assumed to
be a constant matrix. Favard attempted to generalise to the case when A
iS an Almost Periodic Matrix whose elements are individually almost periodic

functions. So he considered the linear almost periodic system
' = Atz + A1) (1)
and its associated homogeneous equation
= A(t)x (2)

where A(1) is an almost periodic matrix and (1) is an almost periodic vector,

each with complex valued components.

If, for some sequence u, T,A= B and T,f = g i.e. if Be H(4) and g € H(}),
then the equation

z' = B(t)z + g(1) (3)

is known as the equation in the Non-homogeneous Hull Of (1) and the equation
z' = B(t)z 1)

is known as the equation in the Homogeneous Hull of (1). Now let us prove

Favard’s theorem using Bochner’s criterion.

THEOREM (Favard ) (2.8). Suppose that all bounded non-trivial solutions of (4) satisfy

tlgg lz(t)] >0
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and there is a bounded solution of (1). Then the equation (1) has an almost periodic solution.

PROOF. First, if the set of bounded solutions of (3) is non-empty, then this
set is a convex set which has a unique element with minimum norm. This
is an argument using parallelogram identity. For two distinct minimizing

solutions z and y, we have

Z+Ypo T Yo _

{1l + s} (5)

N

Since (z —y) is a bounded solution of equation (4),

x—'y')
P> 6>0.
| 5 F>é6>0

Now we shall use the notations (4, /) and (B,g) to mean equations (1) and
(3). Let z(B,g) be the minimum norm solution of (B,g) in the hull of (4, /).
If T.(4, /) — (B,g), then by taking subsequences if necessary, T.z(4, /)=y is a
solution of (3) and

llyll < ll=(A, NI (6)

Repeating the argument with the sequence -u, we get T.,y is a solution
of (1) and ||T_.3ll < l9ll < ll=(A, )|l By uniqueness 7.y = z(4, /). It follows that

T.z(A, f) = z(B, g). i.e. the least norm solutions are translate of each other.

Thus T,T.z(A, ) and T,,.z(4, f) are both translates of a least norm solution

and solutions of the same equation.

By uniqueness they are the same and z(4, f) satisfies Bocher’s criterion
of almost periodicity. Hence z(4, f) is almost periodic. o
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LEMMA (2.9). If A(t) is an almost periodic matrix and z is an almost periodic solution to

z' = A(l)z, then infex |2(t)] > 0 or otherwise z(t) = 0.

PROOF. If inf|2(t)| = 0, let |z(uy)] — 0. Then we find a subsequence u c w
such that 7,4= B,T_.B = AT,z = y and T_.,y =z exist uniformly, by Bochner’s

criterion. Then y = By and y(0) = o.

Thus y=0and z=T_,y=0. ¢

COROLLARY (Bochner) (2.10). If every bounded solution of ' = B(t)z is almost periodic,

then all hounded solutions of ' = A(t)z + f(1) are almost periodic.

PROOF. According to the above Lemma, the hypothesis of the Corollary
implies the hypothesis of Theorem (2.8). So we get an almost periodic
solution, ¢ (say). But if y be another bounded solution, then ¢ = ¥+ x, where

\ 1s a solution of (2) and so is almost periodic. o

COROLLARY (2.11). If A(1) is periodic, then any bounded solution of z' = A(t)z + f(2) is

almost periodic.
PROOF. By Floquet Theory, there is a periodic matrix P so that P, and
p-! are bounded. Multiplying throughout by P, the given equation gives
Pz' = PAz + Pf

= (Pz) = (PA+ P)z + Pf

By applying the transformation Pz = y, we get

¥ = (PAP '+ PP YYy+ Pf
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= ¥ = Ry+ Pf (M
where R= PAP-! + PP-! is a constant matrix.

Similarly equation (2), the associated homogemeous equation, is trans-

formed into

¥ =Ry (8)

Now boundedness conditions on = carry over to the same ones for (7) and
(8). So all bounded solutions of (8) are almost periodic and the hypothesis
of Corollary (2.10) are satisfied by the system (7). So y, the solution of (7)

is almost periodic.

So z = P-1y is almost periodic, since p-! is periodic. o

OBSERVATIONS

1. From Theorems (2.5) and (2.8), it has now become clear that if Ais a
constant matrix, there is a bounded solution of « = Az + f for every bounded
f which is almost periodic; whereas if A is non-constant and almost periodic,
then in order to get almost periodic solutions to z’ = Az + f, we need estimates
for the fundamental solutions of the associated homogeneous equation ' = Az
and the equation « = B(t)z in the homogeneous hull of 2/ = 4z + /. Now we

want to relate it with Exponential Dichotomy [8].

The equation 2’ = A(t)z is said to satisfy an Exponential Dichotomy if there
exists a projection P and positive constants u,p,x,x2 0 that
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IX()PX1(s)| S xae =2, 1> s
(9)

I/\’(t)(l - P)X"l(s)| < X2C‘_p2(t—3), 1<s
for a fundamental matrix solution X(1).

We notice that the function

1) = /_tAX(t)PX"(s) f(s)ds + f X(@)(I ~ P)X~Y(s)f(s)ds

is formally a solution to the system (1) [See [2], page 126]. We have

{
loll < { [ _1XOPXYalds + [ K0T = PIX Nl

t
< {/ x,e-“l“‘°)ds+/ X2euz(i—3)dg}|lf||
-0u t

< {3+ 2 il

Since the homogeneous equation has no non-trivial solutions, = is the
unique bounded solution. Moreover, every equation in the hull has a unique
bounded solution. Thus from given sequences v, v , we can find common
subsequences u C v,v C v $O that T4, 4 = LTV A; Tupof = TUTLfi y = Tuyue and
z = T,T,¢ exist uniformly on compact sets. Since both are bounded solutions
of the same equation we have y = : and therefore T,,,¢ = T,Tu¢. S0 ¢ is almost
periodic.
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Thus if the homogeneous equation ' = A(t)zr satisfies the exponential
dechotomy (9) and f is an almost periodic function, then the system (1)

admits a unique almost periodic solution ¢.

2. From Floquet theory, if 4 is a periodic matrix, then
X(t) = Q(t)e? (10)

where Q(1) is periodic and B is another constant matrix. So ii is Sbvious that
the equation =’ = A(t)= has an exponential dichotomy only when the matrix »
has no eigenvalues with real part zero, i.e. B has all its eigenvalues off the

imaginary axis. Similar is the case with the equation «' = Bxr.
Substituting z = Q(t)y in = = A(t)z with y = By, we have
Q' =4AQ-0QB (11)
If @ is a constant matrix, then (11) implies that 4 and B are similar matrices.

Thus exponential dichotomy is, in fact, equivalent to the eigenvalues of
A being off the imaginary axis if 4 is constant. In deed, if all eigenvalues
have negative real parts, then solutions decay to o exponentially as ¢ — ;
while the situation for non-constant coefficients is quite different. Let us

take the following matrix

—1+%cos2t 1—%costsint
A(l) =
—l-%costsint —l+%sinzt

whose eigenvalues are the constants —1 +1,/7i. Although (-¢'/?cost,e/?sint) is

a solution whose norm approaches to « as ¢ — oc.
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4. SYSTEM OF TWO DIFFERENTIAL EQUATIONS

In this Section we shall study the almost periodic solutions for a system
of two differential equations. Let us consider the following system of two

equations

' = f(mv ¥1)

(1)
3/ = ¢(z, ¥,1)

If the functions f,g € AP(C%) are almost periodic in ¢ uniformly for (z,y) € K,
where K is compact subset of %2, then for each sequence u,, there is a

subsequence u, such that there exist

f(l‘,y,t) = hmf(:z:, ¥t + un),

oz, y, ) = limg(z,y,1 + un)
and these limits exist uniformly for ¢ € ®,(z,y) € K, where K is compact in ®2.

The Hull of (f,¢), denoted by H(f.g), is the collection of all pairs (f,§)
such that there is a sequence u, with the limits (2) existing uniformly for all

(r.y.) € K xR,

DEFINITION (2.1). The equation

2" = F(z,2',1) (3)
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is said to satisfy the Maximum Principle if for arbitrary « < - =nd solutions
z1(t),z2(t), the inequalities

zy(a) —zi{a) <M

Ta(b) —11(b) < M (4)
and

0 < x2(1) — z1(t) ON [a,b)

imply that z,(t) — z1(t) < M on [q,8).

The notion of maximum principle for the system of two differential equa-
tions as in system (1) may be defined with respect to one of the components
of the solutions [9]. The system (1) satisfies the maximum principle with
respect to z if for any arbitrary « < b and the solutions {(z1,y),(z2,1)}, the in-
equalities

z2(@) — z1(a) < M,
z2(b) — z1(b) S M

and

0 < z2(t) — x1(2) ON [a,b)

imply that z,(t) - 2:(t) < M on [a,b).

LEMMA (2.12). Suppose that f,g € AP(C?) are almost periodic in t uniformly for (z,y) € K,
a compact subset of R2. If each system of equations in the hull H(f,g) of system (1) has a unique

solution in 2 with values in K, then these solutions are almost periodic.

PROOF. Let (z,y) € K be the solution of the system

7 = f(zv i)
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3/ = g(x’y’t)

Since f,¢ are almost periodic, for given sequences «,v, we can find
common subsequences « C «',vCv so that T,,,f=T,T,f and so that 7,7,z and
Tu4vz €xist uniformly on compact sets. Then 7,7,z and T,,,z are solutions in
i of the same system of equations in H(f,g). Thus T, T,z = T,.,.z and therefore

z is almost periodic.

Similarly, we can show that 7,7,y = T;.,,y and so y is almost periodic. Thus

(z,y) is almost periodic. o

DEFINITION (2.2). The system (1) is said to satisfy Standard Hypothesis if
there exists a compact subset 4 in %2 such that (i) the functions f,g are almost
periodic in ¢ uniformly for (z,y) ¢ k' and (ii) each system in the Hull has a

unique solution of initial value problem in K.

THEOREM (2.13). Let the system (1) satisfies the Standard Hypothesis on K and that each
equation in the huli satisfies the maximum principle with respect to x. If there is a bounded solution

(x,y) on R with values in K, then the system has an alniost periodic solution.

PROOF. Let us define the functional
A1) = fggx(l) - tig;‘:c(t)

By Theorem (2.1) and according to the Note 6 of Chapter I, we have a

solution that minimizes A(x). Now we define i as i = k), x k; where k; is the

range of the 1st component of the minimizing solution. We claim that no
other minimizing solution is in k.
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Assume (z1,1) and (z2,3) are two distinct minimum solutions in x. We

shall abort it by using maximum principle.

Let w(t) = z5(1) —z1(1) and suppose u(to) > ¢ > 0. i.€., z3(1,) - 11(te) > 0. Now /(1)
may be >, <,=0. If #(t,) >0, then (1) > u(t,) >0 for some ¢ >+, If there is ¢, > 1,
such that w(t;) < u(t,) and u(t) >0 on [t..14), then it contradicts the maximum

principle. Thus «(t)>¢ on {t,, ).
Similarly, if /(1) <o, then we have u(t) >¢ on (-, 1,).

If w(t) = 0, then we get both. That is, (?) > ¢ on both (~c, t,] and {t,, o).

So in all cases u(t) > ¢ on a half-line. If (z;,5) is a minimizing solution,
then

sup T1(t) = sup T1(t)
ter+ teR-

so that

sup £1(1) = sup{za(t) — u(t)} < sup{za(t) —¢€}.
teR teR teR

= Both z;,z, cannot be in A;.

So by Lemma (2.12), the system has an almost periodic solution. o

NOTE

If the system (1) satisfies the maximum principle with respect to = on
t,<t<oo (Oron -oo <t <1t,) and u(t) = z,(t)—z;(¢) is increasing ( or decreasing),
the result of the Theorem is also true.
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LEMMA (2.14). Suppose the system (1) has unique solution of initial value problem when f,g €
AP(C®). If (i) f is increasing in y for fixed t,2 and non-decreasing in z for fixed t,y, (ii)g is
increasing in x for fixed t,y and non-increasing in y for fixed t,z, then the system (1) satisfies the
maximum principle with respect to y or, for somet, € R, satisfies the maximum principle on {t,, %)

with respect to z.

PROOF. Suppose {(z1,3),(z2,1)} be solutions on & of the system (1) and
let

ut) = z5(t) — 1(?)

and

u(t) = p(t) —n(1).
If there is ¢, € ® such that v(,) >0 and v(1,) = 0, then
Yto) = x2(to) — T1(to) 2 0
and from (1), we get

W'(l,) = z3(1o) = z1(t) = fto, 22(10), 12(1o)) ~ f(to, Z1(10), () > 0.

Hence »(1) > 0,u(t) >0 and (1) > 0 on some interval (1,,t,). If there is # <1,
such that o(t;) = 0 and «(t;) = 0, a contradiction with »(4) = 0 is obtained. If
there is ¢, > 1, such that «(z;) = 0 and »(¢,) > 0, a contradiction with w(#;) >0
is obtained. Thus «(t) > 0 on [t,,00) and system (1) satisfies the maximum

principle on {t,,c0) With respect to = and z,(t) — z1(1) is increasing.

If »(1) # 0 when «1) > o, then (1) satisfies the maximum principle with

respect to y. o

THEOREM (2.15). If the Lemma (2.14) holds for the system (1) and f, g are almost periodic in
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t uniformly for (z,y) € K, K is compact in ®2 and there is a bounded solution on %2, then there

exists an almost periodic solution.

PROOF. By hypothesis of the theorem, the system (1) satisfies the maxi-
mum principle with respect to y or for some ¢, € ® the maximum principle is
satisfied on [t,,00) With respect to z. Then according to the Theorem (2.13)

and the Note, there exists an almost periodic solution for the system. o

NOTE

The almost periodic solutions for systems of differential equations is
actually itself a vast field of study. Some interesting results were found in

the works of Seifert [10] which could be extended in great details.
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charrer 111

SOME ALMOST PERIODICITY CRITERIA

1. INTRODUCTION

In this chapter we will basically review some almost periodicity creteria
for O.D.E. as found in literatures of the recent time [11], [12]. In [12], some
results were obtained based on the use of some Liapunov’s type of functions.
The new feature of the results consists of certain differential inequalities that
seem to be particularly adequate when the unknown function is bounded on
the entire real line. The conditions imposed to the almost periodic system for
obtaining the almost periodicity of the bounded solution lead immediately

to the uniqueness of such a solution.

The method applied in deriving a few criteria of almost pericdicity of
bounded solutions of O.D.E. is the comparison method, i.e. the simulta-
neous use of Liapunov’s functions and differential inequalities. Since the
almost periodic functions (Bohr) are bounded on the real axis, the differen-
tial inequalities involved will usually hold on the entire real line. No initial

conditions will be required, except for the case when the inequalities are




restructed to a half-axis.

LEMMA (3.1). Let z(t) be a differentiable map from R into (0, oo) such that
2'(t) < wla(t)), VI ER (1)

with w continuous from (0, oo) into R satisfying the condition w(x) <0 when 2 > M > 0. If (8} is

a bounded solution of (1) on the real line, then

(1) < M, Vi e R (2)

PROOF. Since z(t) is a bounded solution of (1) on %, there are two distinct

cases for consideration.

First, when z(1) attains its maximum value at a point ¢, € £ Then by the
principles of maxima or minima of z(t), we have z’(¢,) = 0 and therefore z(t,)

is such that w(z(t,)) > 0 by (1). So obviously z(t) < z(t,) = M.
Secondly, there is a sequence {t,} with ¢, — 0o (Or t, — —oc) such that
nll.'t.’o Z(ln) = Twaz.
If 2(t) — zma: 88 t — o, then we can assume, without loss of generality, that
z'(t,) > o for sufficiently large . Indeed, the contrary case would mean =(¢) is

negative for ¢ > T, which is impossible. Therefore, for such a sequence {t,}

we obtain w(z(t,)) > 0 by (1) for sufficiently large », which obviously implies
W(Tmaz) 2 0 ANd 2oz < M.

= 2(t) <M, LER.
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In case z(t) does not tend to z,,,. as t — oo, there is a number z,,0 < z, < Tmazs

such that fc.r a conveniently chosen sequence {7}, — oo, we have

Jim z(1n) = zo.

In this case, the sequence {¢,} can be chosen in such a manner that {z(t,)}
represents a sequence of local maxima for z(z) and therefore again by the
principles of maxima or minima of z(t), we have «/(t,) = 0 for any ». Again

we obtain w(z(t,)) > 0, from which we get w(zpm..) > 0. Hence zp,,. < M.

When the sequence {t,}, on which z(t) tends t0 zm.z, is such that ¢, — —oo,
similar arguments hold true. For the case z(t) — zmi: 88 ¢ — —oo, it is useful

to notice the existence of a sequence {t,}, such that (t,) - 0.

Hence the Lemma. o

LEMMA (3.2). Let z(t) be a differentiable map from ® into (0, c0) such that

(1) > w(z(t)), VLER
with w continuous from (0, 0o) into R satisfying the condition w(z) > 0 whenz > M > 0. If z(t) is
a bounded solution of (1) on the real line, then

z(t) < M, VL€ R.

PROOF. Actaully this is the duai of Lemma (3.1). It is obtained when ¢

is changed into - in the proof of Lemma (3.1).

LEMMA (3.3). Let z(1) be continuously differentiable of the second order from R into (0, o)
such that
z"(t) 2 w(z(t)), V1 € R 3)
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with w continuous from (0, oc) into R satisfying
w(z) >0 forz > M >0. (3a)
If 2(t) is a bounded solution of (3) on R, then
z(t) < MVteR (3b)
PROOF. Since z(1) is a bounded solution of (3) on ®, we have two distinct
possibilities.

First, when supaz(t) is attained at a certain point 7 € ® In such case, by
the principles of maxima or minima of z(t), we have z7(i) < 0 and therefore
(3) implies w(z(i)) <0. So according to (3a), the only possibility, we have, is

z(1) < M. Hence (3b) holds true in this case.
Secondly, we assume that there is no point i ¢ # such that

z({) = sup z(1).
teR

In this case, either of the following two situations must occur:

(1) Either we can find a sequence {t,.}, tm — ~, such that

z(t,) = X = sup z(!)

or, (ii) a sequence {#, },t,, — —o0, such that
z(t,,) — X a8 m — .
Since changing ¢ by -t does not affect (3), we check only the case when

X = limz(tm), tm — +. Again, we face two distinct situations.
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(a) when limz(t) = X as ¢ — +o0, and

(b) when there exists another sequence {s,},sm — +oo, such that limz(sn) =

Xo < X, a8 m — ox.

If the situation in (a) occurs and z(t) < X for any t ¢ ®, then we can find

a Sequence {t,}, tm — +00, such that

"(tm) €0, m=1,2,3,.......

Actually if we assume z2"(t) > o for ¢ > T, then t — z(z) is a convex map.
From the boundedness of z(t) we easily obtain z(1) — X, in contradiction with

the fact that z(1) < X,vt. Hence
w(z(t'm)) <0, m=1,2,3,.. ..

which implies w(X) < 0. According to 3(a), this is possible only when z(t) <
X=M.

If the situation (b) occurs, then from z(t,,) - X and z(s,) — X, < X, as
m — oo, We easily find that a new sequence {3.},5. — +o00, must exist, with
the property x(s.) —.X, as m — oo, and such that z(s,,) is a local maximum for

z(t). At such a point we shall have :"(3,,) <0, and therefore

w(z(gyn)) S 0, m= 1,2, 3, cee 0o o

Thus «(X) <0 and again by (3a), this is possible only when

z(t) < M.

Hence the Lemma. o
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NOTE

The above Lemmas are playing very important roles in determining the
almost periodicity of bounded solutions to the system of equations which
are admitting almost periodicity properties in Bohr’s sense. But there are
some difficulties in establishing the almost periodicity of the system when
it happens that the right sides of some of the equations are almost periodic
in a weaker sense. To overcome these situations Corduneanu [13], used
some differential inequalities involving functions which are not necessarily
bounded on ® in order to obtain boundedness and estimates for their solutions.

He considered the differential inequality

z'(t) < —kz(t) + f(ON(L)), VI € R, (4)
or equivalently

Z'(t) > kz(t) — f(H)Mz(2)), VL € R, (4a)

where k >0 is a constant, f is a locally integrable map from ® into (v, oc)
such that

t+41
lIfIlM=SUP/ f(s)ds < o0, VL € R (5)
t

assuming that x(r) is a map of (0, o) into itself, continuous and nondecreasing

such that X(r) = 0 implies r =0, while

wr) = r>0, 50) = (6)

( )’

is strictly increasing for r > o, and continuous and approaches to infinity with
T.
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LEMMA (3.4). Let z(t) be a differentiable map from R into (0, o) such that the inequality (4)
holds true, where k, f and ) satisfy the conditions (5) and (6). If z(1) is a bounded solution of (4)

on R, then

supz(t) < p~ ' (K||f]Im), ()
te®

where K is a constant depending on k only.

PrOOF. Multiplying both sides of (4) by e* and then integrating from ¢,

to 1(t, < 1), we obtain

kt t ')‘ ks
[42(0),, < | Ma()fis)erds

= (1) < z(t,)e ki-te) 4 / t/\(m(s)) f(s)e=M=9ds, (8)

to

Since z(¢) is bounded, for fixed : and when ¢, — -, the inequality (8)

gives the following

i
2(t) < ] Mz() f(s)eM=2ds, (9)

Taking supremum with respect to ¢ € £ on both sides of (9) and denoting

m=supz(t), t € R, and then dividing both sides by xm), we get

p(m) < K|\ flim,

= sup (t) < u~ (K))f|Im). (10)
teR

Hence the Lemma. o
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LEMMA (3.5). Let z(t) be a map from R into (0, 00), twice differentiable and such that
z"(t) > Ka(t) - f(ONx(t)), V€ R. (11)

If z(t) is bounded on R and k, f and A satisfy the conditions stated in Lemma (3.4), then z(!)

satisfies
supz(t) < p~ (K| flim), (12)
1eR

with Kk > 0 depending on k only.
PROOF. Rewriting the inequality in (11) in the form

(¢ —kz)' + k(@' —kz) 2 —f()Na(1), L €N, (13)

Now multiplying both sides by ¢** and then integrating from ¢, to ¢, (¢t > t,),

we get

t
[(z’—k:c)c"']io > —/ M z(5)) f(s)er2ds
to

¢
= {Z'(t) - kz(1)}e** > —{z'(L,) — kz(t,)}ee - / Mz(8)) f(s)e**ds. (14)
lo

The boundedness of z(z) implies the existence of a sequence {t,} such that
when t, — o0, W€ get 2(t,) — 0. If ¢, — —oc on such a sequence in (14), we

obtain the inequality

¢
z'(t) — kz(t) 2> -/ Mz(8)) f(s)e~M!=2)ds, WL € R. (1)
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Now taking supremum with respect to ¢ on both sides and denoting supz(t) =

m, t € R as in Lemma (3.4), the inequality (15) gives

m < Am)K||flm

Hence the Lemma. o
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2. STEPANOV’S ALMOST PERIODICITY

Before we go into details of the discussion of almost periodicity criteria,
we need a little background of the difference between the almost periodicity
conceptions according to Bohr and Stepanov. The work of Stepanov was
mainly on the almost periodicity of functions with values in Banach spaces.

Naturally there is always a difference.

Let x be a complex Banach space with the norm topology; z,y,... .. are
elements from X of the norm ||z||,||yl},... ... ; R is the set of real numbers; f, or
f:R—-X,ort- f(t), or r = f(t), where ¢ ¢ R, is a function defined on the set

of real numbers ® with values in the Banach space X.

DEFINITICN (3.1). If s« is a function defined on % with values in X
and h is a fixed real number, then the function f, : ® — X defined by

Sy = f(t+h), VieR (1

is called the h-Translate of f 1.€. of the function f(1).

DEFINITION (3.2). A function 7: % — X defined by

n

T(t) = Z:ckc"\“,Vt eER (2)
=1

where ), are real numbers, ¢, are elements from x and i is the imaginary
unit, is called Trigonometric Polynomial with values in X.
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DEFINITION (3.3). A continuous function f:® — X on R is called Almost
Periodic, if for any number ¢ >0, we can find a number i(¢) > 0 such that any
interval on the real line of length i(¢) contains at least one point of abscissa

r with the property that

e+ 1)~ fOll <e, VEER 3)

The number - for which the above inequality holds true is called .-
translation number of the function f. The above property says that for every
¢ > 0, the function s has a set of ¢-translation numbers which is relatively

dense in .

DEFINITION (3.4). A continuous function f: ® — X is called Normal if
any set of translates of s has a subsequence uniformly convergent on % in

the sense of the norm.

DEFINITION (3.5). A function f: ® — X is said to possess the Approximation
Property, if for any number ¢ >0, we can determine a trigonometric polynomial

7. with values in X such that

If(t) =Tl <e, Ve R, (4)

A function with the approximation property is obviously continuous. The
approximation property is equivalent to the fact that there exists at least
one sequence of trigonometric polynomials 7,, with values in X, uniformly

convergent on R to f.

Now we shall state (without proofs) a few essenial properties of Almost
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Periodicity with values in Banach spaces from standard texts.

PROPERTY 1. An almost periodic function with values in Banach space

X is bounded in X i.e. bounded in the norm.

PROPERTY II. An almost periodic function is uniformly continuous on

the real line %.

PROPERTY IIL If is almost periodic with values in x, then Af where A
is a complex number and any translate 7, are almost periodic functions. The

numerical function ¢ — ||f(1)|| is also almost periodic.

PROPERTY IV. If f, is a sequence of almost periodic functions with

values in X and if
lim fu(t) = f()

uniformly on % in the sense of convergence in the norm, then s is almost

periodic.

PROPERTY V. The set of values of an almost periodic function with

values in X is relatively compact in X.

PROPERTY VI. The necessary and sufficient condition for a continuous
function f:% — X to be almost periodic is that it is normal.

PROPERTY VII. The sum of two almost periodic functions with values
in X is an almost periodic function.
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PROPERTY VIII. A function s : ® ~ X with approximation property is

almost periodic.

DEFINITION (3.6). Let us suppose that X = Lo, 1),p > 1 and the functions
to be considered may take complex values. As known, Lo, 1} is a Banach
space and in the case p=2 it is a Hilbert Space. Let f(z,) be a function
defined for all z €0, 1) and for any ¢ € ® such that f(z,t) € Ly0,1)] for any t e R.
Then f(z,t) is said to be Almost Periodic in the mean of order p, p > 1, if the function

t — f(z,1) € L,[0.1] is almost periodic.

In other words, f(z,1) is almost periodic in the mean of order p, if there

exist some functions é(,t) >0 and i(¢) >0, defined for ¢ >0 and ¢ ¢ ® with the

following properties:

(1). The inequality ¢, - 1| < 6 implies

1
A fzt) - flz )P dz <e 5)

(2). Any interval of length / on the real line contains at least a point r

such that
1
/ |f(z,t+ 1)~ f(a,t)|Pdz <P, te R (6)
0

The general properties of almost periodicity with values in Banach space X

are applied to this special case as well and we shall obtain the following

results:

(). If f(z.n is an almost periodic function in the mean of order p, then

there exists a number Af; >0 such that
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1
{A \f(z, 0P dx}l/p < My, VteR (7

(ii). If f(z,1) is an almost periodic function in the mean of order p, then

for any ¢ > o there is a §() > 0 such that
|t1 —t2| < 61 tla'? € ®

implies

1
A f(z, ) ~ Sz )P dz < €P. (8)

(iii). If f(z,t) is almost periodic in the mean of order p, then from any
sequence {f(z,t+h,)} we may extract a subscquence which converges in the

mean of order p, uniformly with respect to ¢ e ®.

(iv). The sum of two almost periodic functions of order p is a function

of the same kind.

Conversely, if f(z,1) € L,y[0,1] for ¢ ¢ ® and if the condition (1) is satisfied
i.e. if f(z,t) is continuous in the mean of order p, then the normality in the
sense of the convergence in the mean of order p, uniformly with respect to

t € ® implies the almost periodicity in the mean of order p for the function

f(z,1).

Now we are able to discuss little bit on the notion of almost periodic
functions in the Stepanov sense. Let f(z) be a numerical function defined

almost everywhere in ® such that f € L,e,t] for any bounded interval [¢,4] € R.

DEFINITION (3.7). The function [f(t) is said to be Almost Periodic in the sense
of Stepanov or SP-almost periodic if for any ¢ >0, there is a number /() > 0 such that
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any interval of length i) of the real line contains at least one point r for
which

+1
sup{/‘l lfit+7) = f(O)F dt}]/p <e. 9)
4

T€ T

The same class of functions is obtained replacing (9) by

T4+or /
i‘ég{él |f(t+-r)—-f(t)|”dt}1  <e (10)

where « is an arbitrary positive number [14].

Let now f(z) be an $r-almost periodic function. Consider the function
of two variables ¢z,?) = f(z +t), defined for 0 <z <1 and ¢ € ®. From (9), it

follows that

{/l |z, t+ r)—d)(.r,t)]”dz}]/p<£, te® (11)
0

Since
1
fi, [ 6te.1+ 1) - e ez =0, (12)

it means that ¢(r,1) is an almost periodic function in the mean of order p.

Properties (i), (ii) and (iii) stated above for almost periodic functions also
hold for s»-almost periodic functions. The following characterisation shows
that an sr-almost periodic function can be reduced to an almost periodic

function in the Bohr sense.

THEOREM (3.1). If an SP-almost periodic function (p > 1) is uniformly continuous on the real
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line, then it is almost periodic in the Bohr sense.

PROOF. From Holder’s inequality, we have

+1 +1 1/p
f e +7) = e < { f e+ - o), (13)

T

This inequality shows that it suffices to consider the case of p=1 only. We

consider
h
on(z) = %[; J(x+t)dt, h>o0. (14)

Using the above, we can reach to

+h
iz +r) = <7 [ U n = ol (15)

Therefore ¢,(z) is continuous and almost periodic in the Bohr sense pro-

vided that f(z) is considered to be $'-almost periodic.

It is now observed that

1 h
I6n(2) - fla)l = & l L {a+1) —f(z)}dt’

h
<3 / \fia+ 1) = fiz)lde. (16)
0
where 0 <t < h. The uniform continuity of the function f(r) leads to
If(z+1) - f(z)] < e, If h<be). (17)

Therefore, we obtain
|fn(z) = f(z)| <€, VZER (18)
provided & < §(c) which shows that f(z) is the limit in the sense of uniform

convergence on the whole line of almost periodic functions in the Bohr sense.
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Therefore according to Property VI of Chapter I, f(z) is almost periodic

in the Bohr sense. o

NOTE

This theorem shows that Stepanov’s definition of almost periodicity is

more general than that given by Bohr.
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3. RESULTS ON ALMOST PERIODICITY

Let us consider the following systems of differential equations

' = f(z,0),teR (0

and
= f(z,0),t€R (2)

where f(z,t) is almost periodic in ¢, uniformly with respect to r in any compact
subset of r~. The almost periodicity of f(z,t) will mean either Bohr’s almost
periodicity or that of Stepanov; whereas we will always mean the almost

periodicity of the solutions to be in Bohr’s sense.

We will be required a few assumptions in obtaining the almost periodicity

criteria which are as follows:

(i). The map f from R xR into R~ is continuous and such that there exist

two functions ¢ and  from (0, «) into itself with

<f($,t)‘f(y»t), $—y>2 —¢(|1‘—y|)—‘¢/)(|1‘—y|). (3)

(i1). The functions ¢ and y satisfy
Hr)=o(r)as r—0 (4)
and
liminf%{aﬁ(r) — (1)} >0 aS r— o0, (5)
while the greatest root r(¢), say, of the equation

ANr)=Yr)—er=0,€>0, (6)
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is such that

limr(e)=0 a8 ¢ — 0. )

(iii). The map ¢ — f(z,t) from % into R x R, is almost periodic in Bohr’s
sense, uniformly with respect to the second argument in any bounded set of

I,

Now we are in a position to state the following results.

THEOREM (3.2). Let z(t) be a bounded solution on R of the system (1) in which f satisfies the

assumptions (i), (ii) and (iii). Then z(t) is Bohr almost periodic.

PROOF. Let us denote that
y(t) = |zt + 1) — ()], VI e R. (8)

where r ¢ % is a translation number. Differentiating (8) with respect to ¢ and
using (1), we get

Y =2lf(z,t+71) - f(z,1)]

Taking supremum on both sides, using (6) first and then subtracting 2¢,/y

from the right side, we obtain

¥ 2 2{d(Vy) - (V) - ey} VEER. (9)
where the number ¢ is defined by
e = sup{|f(z(t),+ 7) - flz(t),1)], VL € R}, (10)

and is certainly finite because of the assumption (iii) on f(z,1). Of course, we
can choose ¢ as small as we want whenever r is chosen among the ¢-almost
periods of the almost periodic function f(z,¢).
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Now according to (5), we have w(y) = &(/4) - (/) —eyy > 0 when /y is large
enough. Again by (4) and the condition y(,/y) > o, we see that ¢ /) — ) -

evy < 0 for small values of . Let y() be the root of ¢/y) — ¥{yy) —eyy =0
and by (7) obviously ,/y > y(e) > 0. Therefore, by applying Lemma (3.2) and
taking into account the boundedness of y(t) on &, equation (9) implies

VY < y(€)

= e+ 1) -2()| <yle), Ve R (11)

So by (7), z(¢) is almost periodic. o

THEOREM (3.3). Let z(f) be a map from R into R", twice differentiable, bounded on ® and
satisfying the system (2). We assume that f(z,t) verifies the assumptions (i), (i) and (iii) stated

above. Then z(t) is Bohr almost periodic.

PROOF. In this proof, we will follow the same strategy as that of the

Theorem (3.2). So as before, we consider

y(t) = |z(t + 7) - 2(1)?
By using (2), we obtain
¥ = Wl flat+7) - f(z 1)) + 5’;/.3/

Taking supremum on both sides, we get

Y = 24 + 2iy.,/ [By (10)]
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> 2,/ye

> oy { S U WML By 6)]

> €Ay - () -yl LER (12)

According to (5), we have
wy) = HVy) - WY —efy >0

when y is large enough. If y(¢) be the root of ¢ —¥(\y) —eyy =0, by (7) it
is obvious that /y > y(c) >0. So now applying Lemma (3.3) to the inequality
(12), we obtain

(W0} = fat+7) —2()| < yle), LER. (13)

According to (7), (13) implies that z(t) is almost periodic. o

NOTE

If we choose y(r) to be identically zero and ¢(r) = mr?, i.e. condition (3)

takes the form of a monotonicity condition for f(z,1),

< flz,t) = f(g.thz —y>> mlz-yf*, m>0. (14)

As we have stated that when the right hand sides of the system of equa-
tions are weakly almost periodic, such as in the sense of Stepanov, we will
face an awkward situation. In order to deal with such cases we will now
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apply Lemmas (3.4) and (3.5); nevertheless, we are assuming the continu-
ity of f(z,t) in order to secure the existence of continuously differentiable

solutions.

THEOREM (3.4). Consider the system (1) under the following assumnptions:

(i) The map f(z,t) from R X R™ into R" is continuous and such that assumption (iii) holds

true.

(ii) The map t — f(.,t), from R into R™ is almost periodic in Stepanov’s sense with p = 1,

uniformly with respect to the second argument in any compact set of B".

If z(t) is a bounded solution of (1) on R, then xz(1) is Bohr almost periodic. Morcover, the

almost periodic solution of (1) is unique.

PROOF. Let r e ® be a fixed number and consider again the function (1)
defined by (8) where <«(¢) is the bounded solution of (1) on # whose existence
is guaranteed by our hypotheses. Following again the strategy as that in the

proof of Theorem (3.2), we obtain the following inequality
y(1) 2 2{my() - g) Y1)}, L€ R, (15)
where ¢(t) is defined as

9(t) = |f(=(®),t +7) — f(z(t),1)], t € R. (16)

Now applying the Lemma (3.4) on (15), we get
y(t) < Klglm

= {y(1)}? = |zt +¢) - 2(t)] < Klglm, (17)

where the constant k depends only on m. From (16), it is obvious that
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141
lglas = sup / |f(zfs),5+ ) = flz(s),9)\ds, t € R, (18

can be done arbitrarily small, provided the translation number r is chosen
among the almost periods of f . Consequently, any k-c-almost period of f

is an e-almost period for the solution z(t). Thus z(1) is almost periodic.

Now we look for the uniqueness of the almost periodic solution to (1)
using the Lemma (3.4) again. If we take into account the fact that y() =
|r(t) - 2(t)|* where z(1) and z(¢) stand for two bounded solutions of (1), verifies
the inequality

y 22my—¢g,

for every positive ¢. o

THEOREM (3.5). Consider the differential system (2) subject to the assumptions (i) and (ii) of
Theorem (3.4). If x(1) is a bounded solution of (2) on R, then z(t) is Bohr almost periodic and the

solution is unique.

proor. The proof of this theorem will be in the same line as that in

Theorem (3.3). We cosider the same function
)=zt +7) - (). VteR
Simple calculation gives
v 2 2{my(t) - g()/y(1) (19)

where g(1) is given by (16). Since y(1) is obviously bounded on %, from (19)

and Lemma (3.5), we obtain

Vi) = et + 1) — ()] £ Kljgllas, VteR (20)
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with K depending on m only. If we consider the almost periodicity of f(r.1
in the sense of Stepanov, the inequality (20) implies the almost periodicity

of z(t) in the sense of Bohr.

To prove the uniqueness of f(r.1), let us take two different solutions r(/)
and ) of (2). Then

y(t) = 2(1) = (1)

satisfies the inequality

Y =2my, VIeR (21)

which is strengthened if ¢ >0 is subtracted from the right side of (21). o
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crapTer IV
THE NON-HOMOGENEOUS HEAT EQUATION

1. INTRODUCTION

This work is based on the works of S. Zaidman [15] and [16]. In [15],
Zaidman considered the following non-homogeneous heat equation

wy(r,t) = Zur,rl(:c,t) + f(z,1), teR (1)

1=1
WhEre r = (r(, 72 2300 oo ooy ) € R™, u(z,1) and f(z,1) are functions from (-o0, %)

to the complete space 12(k™) and f(z,t) is almost periodic from r into L*(R™).

The function «(z,1) is said to be weakly continuously differentiable if the
scalar function

/ w(r. Odz)dz, Y&z) € LAR™
Rm
is continuously differentiable with respect to the variable :.
The function u(r,1) is a weak solution of the equation (1) if for any

#r) € S(rm), Schwartz space of infinitely differentiable rapidly decreasing

functions [17], the following relation holds



&t Jpm

4 wz, ) x)dr = / u(x,t){ ¢r.r.(1')}d1'+ / (. H@(r)dr. (2)
Rm 1=1 R

Again the function wu(z,1) is said to satisfy the initial condition u(r,t,) =

w(z) € LA R™) if, for any &(r) € L3 (R™),

lim/ u(.r,t)d)(:r)d;t:/ u(xr)d(r)dr. (3
=t JRm Rm

Applying Fourier-Plancherel transformation in 12(#™) and s(r™), it is pos-

sible to find an equation which is equivalent to (2) viz:

4 U(s,i)@(s)ds:/ U(.s‘,t){—sg}¢>(s)ds+/ F(s,0®(s)ds, (1)
dt fgm Am Fem

where U(s,1), ®(s) and F(s,t) are the Fourier transforms of u(r.t) ¢(+) and

f(z,t) respectively and ? = &2 + s} + ... ... + 2, Us,1) 1s weakly continuously

differentiable and F(s,1) is weakly continuous.

A solution U(s,t) of (4) will be said to satisfy the initial condition 1/(s,1,) =

U(s) € L2(R™) if, for every &(s) € L}(R™),

im [ U(s ()0(s)ds = / U s)0(s)ds. (5)
tm Hn

t—t, |}

Then Zaidman [15] proved the tollowing theorem.

THEOREM (4.1). Equation (4) for initial condition (5) has a unique 12-bounded solution given
by

t
Uls,t) = e“"a("‘°’U(s)+/ e“’“‘”F(s,T)dr (6)

to

where t € [a,b], an interval within the domain of definition of F(s,T).
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2. THE HEAT EQUATION

Now we are going to develop the works of Zaidman in the following

way. Let us consider the following non-homogeneous heat equation

W(z,1)  =BU(z,) -~ U
Tl Ve v + ;akaxk + F(z,1) 1
where «,’s are real constants, z = (z1,72,23,... . o, Tm) € R™, U(z,t) and F(z,1)

are functions from (-c,) to the complete space L2(R™) and F(z,t) is almost

periodic from £ into LA (R™).

DEFINITION (4.1). The function U/(z,t) is said to be Weakly Continuously

Differentiable if the scalar function

/ Uz )\¥z)dz, Vez) € LA R™)
Rm

is continuously differentiable with respect to the time variable .

DEFINITION (4.2). The function U(z,t) is said to be a Weak Sclution of the

equation (1) if, for any ¢(z) € S(k™), the following relation holds

(”/ Ulr )®(x d.r_/ U(r, l) (9 q+X:ak3 }<b(z: d.1‘+/ F(z,)d(z)dz. (2)

DEFINITION (4.3). The function U(z,?) satisfies the Initial Condition U(z,t,) =
U(r) € L3(R™) if, foi any o(z) € L}(R™),

Iim/ U(.r.t)@(;r)dx:/ U(z)®(z)dz.
=t JRm R™
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From the properties of Fourier-Plancherel transformations in 72(r™) and

S(r™), it is possible to find an equation which is equivalent to (2) viz:

m

d . . .
T - u(s, t)p(s)ds = /Rm u(s,t){—82+ t El:aksk}ds(s)ds-i- ,[em fls. g &)ds, i = /=1 ()

where u(s.t), ¢(s) and f(s,1) are the Fourier transforms of t’(r,1), ¢(x) and ks, 1)

respectively, s = (s, 82,00 oo w8m), 82 = §T 4 82+ .. . +83, u(s,t) is weakly

continuously differentiable and f(s,¢) is weakly continuous. Substituting

m
P(s)= —¢* + iZaksk
1

in (3), we get

4L wsds)ds = / u(s,0) PLs)@{)ds + / S, Oy s)ds. (4)
Rm nm

dt e

Analogously, a solution u(s.t) of (4) is said to satisfy the initial condition

u(s,to) = u(s) € L*(R™) if, for every ¢(s) € L} (R™),
Jim / u(s,l)P(8)ds = / u(s)@f s)ds. (5
t=to Jpm Hm

Now we are going to prove the following theorem.

THEOREM (4.2). If f(s,t) is almost periodic from R to L?( R™), then any solution u(s, t) of the

equation (4) which is defined and L?-bounded on R is almost periodic.

PROOF. Let us take the characteristic functions

1, if s€k
Xp(8) = {0, if ngz (7
for p=1,2,..... where E, = {s 5k <lsl < -,1,}
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We now claim that the function

up(s)t) = Xp(s)u(s’t)v (8)

for each » is a solution of (4) for the known term
fp(S,t) = Xp(s)f(sst) (9)

in place of f(s,¢) in (4). First, we prove that u,(s,?) is L2-bounded. We have

/ lup(s,t)|2d5=/ lu(s, t)|*ds
Rm E,

< / lu(s, 1)|ds
Rm

<k

since «(s,t) is 12-bounded. Hence u,(s,1) is 1?-bounded.

Secondly, we prove that u,(s,?) is also weakly continuously differentiable.

Consider

?;l;/Rm u,,(s,l)¢(s)ds = % E, u(s,t)lp(s)qS(s)ﬁ‘d,(s) € L2(Rm)
T dt

= -‘-i- u(s,t)yY(s)ds
E,

where y(s) = \p(s)¢(s) and ¥(s) € L*(R™). Since u(s,) is weakly continuously

differentiable, the scalar function

/ u(s, t)y(s)ds
E,
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is continuously differentiable and therefore uy(s,t) is weakly continuously
differentiable.

If ¢(s) € S(rR™), then P(s)é(s) € L R™) because of the rapidly decreasing
character of ¢s). Hence both the integrals

S M DRI, ) € SCR™) (10
and

/ J(s, O\ p(s) s)ds (1
R™

exist. Remembering that S(&™) is dense in *(R™), we can find a sequence

{¢n(s)} In S(k™) such that

nll{‘c:o Onl$) = \p(S)P(s), (12)

for any chosen ¢s) in 5(&™), the limit being taken in 2(f™). As a convergent

sequence in I2(R™), {¢n(s)} IS L2-bounded.

Now
m
[Ps)) =] -s*+ 52”&-‘»}?
i
m
= \s-' + (Z:aksk)z
m
= \ st 4| }l:aksklz
But |7 akse| < 37 laxl-Isk| < mals] where a = max{|a], ... ... .., |an|}. FOT s€ E,
we have
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where ¢ = m?a® > 0.

Using (13), we can show now that

lim Ps)6u(9) = xp(s)9(8)P(s) € L*(R™)

We observe that

1P(8)¢hn(8) = \p($)H5) P(s)| < max | P(s)].]|da(s) — Xp(s)8(3)!

<EL 5,9 - xotertiols

since the effective range of integration will be E,. Again, for each p,

lim 16n(8) = Xp(8)(8)lL2 = 0

and therefore, we have,
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|| P(8)n(8) ~ xp(8)(s) P(s)]| — O

Also ¢,(s) € S(km) for each n, and u(s,t) is a solution of (4). So

T‘zi? / u(s, )n(s)ds = / (s, 1) P(s)ba(s)ds + / F(s.1)bn(s)ds
R™ Rm R™

holds for each n=1,2,3,... ... ... But

sup lu(s,?)]|12 < 00
teR

by hypothesis. So from (15), we have

(15)

(16)

(17)

(s, ) P(8)énls) — u(s,)xp(S)AS)P(s)]|L2 < |Juls, )]] 12| P()n(5) = xp(8)AS) P(s)]| — 0, (18)

in fact uniformly as » — co. Moreover,

llu(s, ) P(s)én(8)l|L2 < [fuls,)|| 2| P(8)puls)]| 2 < 00

because {P(s)¢.(s)} as a convergent sequence in L2(R™) must be bounded in

norm.

Again u(s,t){P(s)¢a(s)} is in L?(R™) because both u(s,t) and P(s)¢.(s), for each

n, are in L*(R™). Hence from Lebesque’s theorem, we obtain

lim/ u(s,t)P(s)an(s)d.s:/ (8, 1) xp(8) P(8)P(s)ds
Rm Rm

Nl— 0C

Now,

1£(3,8)8n(8) = f(8,)xp(8))ILz < [IS(3,t)l|L2.[Idnl8) — xp(s) )|

< Kidn(s) = xpdl8)|| 2 — 0
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from (12) as n — o, in fact uniformly. Also

1/ (s,0)¢n(8)llL2 < NIf(s,D)l|L2-lIén(s)llL2 S & < 00

since jl4.(s)|l.> iS @ convergent sequence in L2(R™) and f(s,t) is almost periodic,
both are bounded. So

f(s,t)pn(s) € LY R™).

Hence again we can pass the limit under the integral sign from Lebesgue’s

theorem:

Jm, [ Sstuords= [ s 00 (21)

bnd =¥

Putting (19) and (21) in (16), it follows that

lim :1—1/ u(s,!)(f)n(s)(ls:/ u(s,t)xp(s)P(s)¢(s)ds+/ J(s,t)xp(s)d(s)ds  (22)
t Jrm Rm Rm

Because of uniform convergence in equations (18) and (20), the conver-
gence in equations (19) and (21) is uniform. Hence we can pass the limit

under the differentiation sign on the left in equation (21) and

Jin g [ wstonterds = g {tim [ s n(s)as)

= i [l {dim o)}
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-4 /Rm u(s, )xp(s)Hs)ds.

Hence from equation (22), we have

7 L v osids = [ s 0o Perstors + o S tasads @)
Rm R™ Rm

for arbitrary ¢ € S(k™) and each p=1,2,3,...... This exactly means u,(s,1) is a
solution of equation (4) when the known term is f,(s,¢) = x,(#)f(s,#) in place

of f(s,t) in equation (4).

Define
(s, 1) = {u(z,,t), 0 ISslls?l_f ] on
and

For reasons similar to those for w,(s,t), we have 7(s,t) a solution of equation
(4) when the known term f(s,t) in equation (4) is replaced by 7J(s,7). Using
Zaidman’s theorem (4.1), the solution for the equation (4) is given by

{
u(s,t) = ePeNt-tedy(g) 4 / ePONt=) fi g uydu (25)

- to

Let us define

t
up(s,t) = Jim / PNt £ (s, u)du (26)

where the integral is taken in the sense of Bochner and the limit is taken

strongly in L2(R™). Put

Gp(s,u) = eP(’)("“)f,,(s,u) (27)
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Using the definition of norm, we have

Gl = { [ 167909 (s, P as)?
= {/ le(—a’+i2;" aksn)(t—u)|2_|fp(s, u)|2ds}i
Ep
- {/ e—2s"'(l—u)lf (s u)|2d3}’}
= e, (8,

—d 3
<e m#{/m |fp(s,u)|2ds}

Gy

<sup ”fp(S,‘lL)”L?.e_
ueR

f=u
= Mpe'(nl))"

where

My = sup || fo(s, )| 2
ueR

The function ¢~ 57 is integrable on —oo < u<t. In fact,

t (—u
/ eI dy = (p+ 1) (28)

Hence it follows that G,(s,u) is Bochner integrable on (-o0, t) and

t 24
I / PNt (s u)dul| 2 < / [lePNt=2) £ (s, u)|| 2du
-0

-00

75



¢ -
< / Mpe™ T du
-0

= My(p+1)? (29)

and this is true for any real :. Hence

t
i P(s)(t-u)
i, [ £ s

exists strongly in L3(R™) and v,(s,?) in (26) is well defined.

PROPERTIES OF u,(s,1). We shall now investigate a few properties of
vp(s,t). First let us show that v,(s,?) is almost periodic. It is continuous (from
its integral representation) and uniformly bounded, from (29) f,(s,1) is almost

periodic from Rto L?(R™). Let ¢ >0 be given and r, be the «-tranlation number

for f(s,) which is almost periodic by hypothesis. Then

”fp(s»t + 7o) = fuls, |2 = ”)(p(s)f(b',l + 7o) — \p(s)f(swl)“lﬂ
< max [Xp()LIS(s1t + 7o) = S, Ol 22

<le=e¢ (30)

For a given ¢ > 0, choose ¢/(p+ 1)? translation number for the almost

periodic function f,(s,t). Then

3
Vp(8y 1+ To) — Up(8y1) = / ep(a)(t-“){fp(sau + 7o) ~ [l u)}du (31)
as can be seen by an easy change of variable.
t
llvp(s,2+ 7o) = w8, t)l[2z < / [je™( M= fi(8,u + 7o) ~ fy(3,u) Hiadu
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t !l-u!
< sup || fp(8, 4 + 7o) = fo(s, )| 2. / e A dy
ueER e

£ 2
s | + 1

=¢ (32)

for every 1 in i, which proves the almost periodicity of w,(s,1).

Now we show that v,(<.t) as a function from R to L?(r™) for each p, is

strongly differentiable and

d N Preve (e
s = P8, + fuls.)

We have

Hoplst + ) = vy,

t t+h
___/ 7‘_[, Psj(t+h-u) _  Pls)(t-u) fp(s.u)du+-’l;/ eP(’)(”’"“)fp(s,u)du (33)
—ao ! t

= I+ b, (say).

We are going to show that

fig 1y = PlsJup(s, e =0 (34

and
,l‘i_[]})”]? — fpls,0)||12 =0 (35)
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We have

1 +h A
= sl = [ {0 = g Yt

1 t+h R
< E[ ”(‘P(-’)(H' -u){fp(s,u) —ft'("‘vf)}”l/d"

]t
+ z [ ”{(.P(s)(wh—u) - 1}],,(.‘:,1)““1111

=1+ Iy, (say).

Again, we have

t+h
< %max lc”(’)(”"-"){[ (s, 0) = f(st)||12du — 0 (36)
as h—0, because fy(s,t) is strongly continuous in £2(#™) and v — ¢t when / — .

[INOTE

We will use the following principle: For 1y, we consider the function
eP()t+h-v) ag a function in h, say, F(h) and note that 1 < « <t+h so that when

h=0,u=1

F(h) — F(O) P A ]
————— = F(6h))

Now for 1y, we have,

1" 1 tHh P(s)(t-u+h)
B=g [ e ~ 1ol
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Y Pojt-uth) _ 4 |? 24,12
=7 {A'e 1' 13, 1)| ds} du
14h At-uthy _ 112 2,14
:[ {‘LP —————h-—-——— .'fp(S,t)I {L‘)‘} du

t+h 2 '5
:/ {/ 1)(8)CP(0)(t—u+0h)' -,fp(syt”?ds} du, 0<0<1
t E,
t+h 2 i
:/ {/ ”)(S”Ze-?a (l—u+9k)|fp(s’t)l2ds} du
' Ey

2 y t+h
S AD | / it ds) / du
acky e /

< ﬂ;i—?i./wp.h —0as h—0 (37)

Hence

Jim{I; + 13} = 0, and so lim |12 ~ fy(s, )|} = 0

Now

I{h - 1)(“)"1’(3")“1,?

1] 1 ) _ _ 1
=1 [ RN PO P [ e s il

<[,
- [,

2
|

;}.{J’h)(t-«&h) - eP(a)(t-u)} - P(s)el"(s)(!—u) fp(S,u)IQdS] tdu

2
.lfp(s,u)lzds}idu (38)

1’(-%)((” (a)t-u+8h) _ ep(’)(i-u))
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2 .
J Sl s, u)|‘ds}*

{ / ‘p(s)(fp(sm—uwh)_emsm-u))
E

< )E;ZPE {e- \p-n:-h — ¢ Ga? }”\[p (39)

and both functions inside the bracket are integrable over -0 < u < 1. Hence
equation (38) exists and therefore we can pass the limit under [_ in equation
(38). The integrand in (39) is also bounded uniformly and (39) exists for all
positive values of ». Hence we can pass the limit under the integral sign.
Again

(PUNt=ut6h) _ Psiit-u) _

for every s. Therefore from Lebesgue’s Theorem

lim
h—0 E,

and this is true for any value of « in —0o0 < u < t. Therefore

2

(s u)ids = 0

P(s) {(.P(s}(l- ut6h) _ Cl’(a)(t-u)}

2 ,
1 s, u)|2¢s] V=0

t
/ [/ 'P(s){e’)(ﬂ)(l—tl+0'1) ‘-CP(")“—")}
-~ LJE,

whose existence has been established before. Because of the presence of

fo(s,1) in the definition of v,(s,2), the effective variation of « is in £,

We can show that P(s)v,(s,t), for each p, is an almost periodic function
from R to I*(k™). For a given ¢ > 0, choose a p?¢/,/1 + ¢ translation number

for the almost periodic function v,(s,2). Then

[|P(s)vp( syt + 7o) — P(8)vp(s,){|12 max [P Nop(8, L+ To) — v 8, )1
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Thus from equations (30) and (40), it follows that the function

Edtvp(sst) = P(S)vp(sat) + fp(sat) (41)

is almost periodic as the sum of two almost periodic functions, which inci-
dentally shows that v,(s,7) is strongly continuously differentiable and hence
certainly weakly continuously differentiable. Therefore, multiplying both
sides of (41) by #s) € S(km) and then integrating, we get

ﬁr"-‘%r,,(s.i)as)ds: /nm vp(s,t)P(s)¢(s)ds+/Rm Jo(s, 1) s)ds
But
i/ V(S ()qﬁ(s)ds:/ i{v (s,1)(s)}ds
dt Jpm 77 pm dt V0

because as shown above, the strong derivative of v,(s,1) exists continuously
and hence the weak derivative also must exist continuously and the two

should be equal. Therefore we have

% /  tpl(s ) s)ds = .[?'" vp( s, 1) P(s)@(s)ds + /Rm fuls, 1) s)ds. (42)

R
Thus v(s.t) is an L2-bounded solution of equation (4) when the known
term f(s,t) is taken to be fs,1). The same thing was shown in (23) for u,(s,?).

Hence from the uniqueness part of Zaidman’s Theorem (4.1), we have

up(s,1) = vp(s,t) fOr each p=1,2,... ... (43)
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Now

;up(s,t) = p;u(s,t)\p(s)

= u(s,t) z\,,(s) forany te r
p=1

= u(s,t)x.(s), SAy

=1(s,1) as defined in (24)

where

i, <|s
w@={o TS
Moreover,

oo [=¥]
> luptstliiz = 3 [ s 0 dnptsiPes
=1 p=1 Eyp

=y / |u(s,0)|2ds (44)
p:l EP

= LE lu(s,t)*ds , since E,’s are disjoint [18]
.—_/ lu(s,t)]*ds , since UE, =[0,1)
0<lsl<1
= [, st = Ics, ol
R™
<llu(s,)lifa < k. (45)

We will now show that the convergence in
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> upls,t) = s, 1)
1

and
};Ilw(s,t)ll"}; = |[a(s,t)|[32

is uniform: for ¢ in (-, x).
First let us estimate the volume of a shell formed by two concentric

: .. L ‘
spheres with radii ! and -}; in our space R™.

The volume of a sphere of radius  in B™ is V = C,;r™ Where

if i is even and

if » 1s odd. We need to evaluate

/,—h ds:c"‘{i;l;"'"(p:l)m}

Py
<s<d

= Cn{ )

_ "GP A Cop™ it ]
- Prp+ D™

< Cmgmpm—l
pn(p+ 1™
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[because p>1 and so pm-1>pm-2> . ... and "C, +" Gy + .....< 2™ ]

szmpm—l

—

<

c y
= W (46)

where ¢ is some positive constant depending on the dimension of the space.

Again for every t € ®, we have

lup(s )lfi= = llu(s.O\p(9IL-
2 2
< Hju(s )72l p( )72

< Kllap()|32, since u(z,t) is 1:-bounded (47)

= x / Ixpls) s
Rm

=K ds
Ey

< ==, [by (46)]

pm"‘] ’

Hence

KC
llup(s,t)liF2 < e (48)

for all ¢ in (o0, oc) and ¥ ;5% is convergent and therefore 55° |lu,(s,0)(* iS
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uniformly convergent for ¢ in (-oo, o0), that is

lim Y [lup(s, )| = |[a(s, 1) (49)
n—-oo}; P

uniformly in ¢

Moreover, it can be seen easily that

I }l:“p(svt)“i’ = Z”"P(s’t)”i?

for every » and «. Hence from equation (49),

n
i, 1 (s, 01 = e,
p=

uniformly in 1.

We have already established that T5° u,(s,t) = %(s,¢) in the strong topology

of 1:(rm). Hence

Jim 1Y up(s. 0] = [[ats, Dl
p=1

uniformly in 1.
Since each u,(s.t) = v(s, 1) is almost periodic, (s,t) is almost periodic.

Let us now consider the function

(s, t) = u(s,t) —U(s,1)

_ [, s] > 1
{0. 0<lsj<1, by (24).
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Our intention is to show that u(s,?) is also almost periodic and that will

prove the almost periodicity of u(s,t).

Take the characteristic functions

- 1, s€§
8) = 51
wO={y g (51)
where
L={s:pLls|<p+1},p=123,..... (52)

From arguments similar to (7) - (23), it can be seen that the functions

iy(s,1) = Kpls)u(s,!) (53)

are the solutions of (4) when the known term f(s,1) is replaced by

Fo(s,) = Xpls, ) f(s,0). (54)

Consider the function
-~ t -~
Va(s, t) =/ ePl)(t-u) So(s,u)du

The existence of the integral follows the same way as before in (42). But

this time

1¥i(s, Ol < #ggg /(8 8)]|z2 (55)

Almost periodicity and strong differentiability of ¥(s,t) is obtained by
arguments similar to (33) - (41). The only alteration we have to make is that
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|P(s)] £ (p+ 1)\/c+ (p+1)?

where ¢ is the non-negative constant in equation (13) in placc of

|P(s)] < 1‘;2

which we took in our earlier arguments. Similarly we have i,(s,t) = ,(s,?)
and S a,(s,1) = @(s,2) in the strong topology of 1*(k™), the convergence being

uniform in «, which proves the almost periodicity of u(s,t). Since

u(s,t) = a(s,t)+ u(s,t),

the sum of two almost periodic functions, our theorem is completely proved.
NOTE

This work may be extended for the case when U(z,?) is strongly continu-

ously differentiable and also for the case of an almest automorphic solution.
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APPENDIX

GRAPHS SHOWING DIFFERENCE BETWEEN PERIODIC
AND ALMOST PERIODIC FUNCTIONS

PLOT OF f(2) = cos(1) +sin(?)

PERIODIC
+ 1.56
| A AA AAA AA AA
A A AAAA AA A A AAAA
«A A A A AR A A A A A
* A AA A A A A A A A
| A A A A AA FY S A A A
+ 0.778 A A AA A A A A A AA
| A A AA A A A A A A A
] A A A A A AA A A A A
| A A A A A A A A A A
| AA A A A A A A A A A
S L e bt T 1 LTt L odrmm - LT L R Y B - .-y
0 A A 7.85 A A 15.7 AA A 23.6A A 31.4
! A A A A A A A A A A
| AA A A A A A A A A A
! A A A A A A A AA A A
| A A A A A AA A A AA A
+ -0.778A A A A A A A A A A
} A A A A A A AL A A A
| A A A A AL A A A AA A
| A A AAAA AA AAAA A A
| AA AA A AA AAA
+ -1.56

Fig.1



= cos{l) + sin{21)

PLOT OF f(t)

PERIODIC

+ 1,94

|AA

AA
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A A
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A A
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A A
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A
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A
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LD <€ «f w <%
@
~
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-
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PLOT OF f(1) = cos(t) + sin(y/2t)
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cos(21) + sin(t)

PLOT OF f(1)

PERIODIC
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PLOT OF f(1) = cos(\/21) + sin(+/21)
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PLGT OF f(1) = con(v/2) + sm(1)
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PLOT OF f(1) = cos(y/31) + sin(1)

ALMOST PERIODIC BUT NOT PERIODIC
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