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Abstract

An Adaptive I east-Squares Fimite Element Method tor the

Compressible Buler Fquat,ons

Farzad Taghaddos

A two-dimensional code s developed tor the solution of the svatem of unsteady Fules
equations in the prinutive vanables torm. using the least squares timite element method
The unsteady terms are discretized m ume using bachkward difterences The equations
written 1n the form ot a tirst-order system of PDESC we then discretized i space by the
least-squares method and are hincarized with the New ton methaod

The resulung svstem of Iincar algebiue equations, which s symmetire and positinve
definite, 15 solved usig the Conjugate Gradient sterative method - The convergence proper
ties of the iterative solver are improved by applying incomplete Cholesky and diagonal pre
conditioners Motcover, by optinuzing the user detined parameters of the iteraine solver
substantial reduction in the computational time has been achieved

The pertormance of the least-squares method m capturmg the shocks s demonsteated
through thice supersonic and transome test problems Smce, the il viscosiy mecha
msm naturally embedded in the least squares formulation 15 not able to sharply resolve the
shocks. a moving-node mesh adaptation techmque 1s employed 1o improve the quality ol
the solution The error estimation of the adaptive method s based on the second dernvatives
of a given flow vanable and 1s calculated along the edges of the elements TUis very sensy
tive to oriented structures like shock waves and, along with the moving-node scheme, will
create adapted meshes where the element edge(s) are aligned with such directional flow
phenomena. It1s demonstrated that by using the adaptation, good results could be obtaned

even on rather coarse grids.
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Chapter 1

Introduction

The motton of a flurd continuun s governed by the full system of the Navier-Stokes (NS)
cquations. Duce to the complex natuie of these non-hnear PDEs, analytical solutions are
only avatlable tor very hinmted. and sometimes impractical, situations.  In contrast, the
numencal approach. through contimuous development. can solve a much wider range of
problems

In practuice. the full NS equitions are usually simphtied o less complex form, by muto
ducimg approxumations and/or assumptions. before a numencal method 1s apphied  These
sunphifications are sometimes essential due to the laek of saientific knowledge and/or com-
putational resources as i the case of an exact analvas of a turbulent flow, and are some-
times dictated by ogie because the flow can be accurately approximated using a simpler
phyvsical model An example s the Luler equations which are obtained by neglecting vis-
cous terms and heat conduction ettects inthe Navier-Stokes equations 1t s a vahd approa-
imation tor igh-speed or convection-dominated flows, where viscous effects are confined
to very thin regrons close to the sohd body (boundary layers), and the rest of the flow 1s
essentially mvisard.

Consider the following model equation which contains the basic elements of the Navier-
Stokes equations:

Jo

5 +\~'~V<p:'§7-(k\7d)) (1.1)
(



whete o 1s the field vanable. Vs the velocity vector and 4 s the diftusion coeticient
As advection dominates the flow, the relative ettect of the dittusion term dimnnishes In
the inmt. when A 0L equaiion (1 Dy reduces to the purely iy perbohic convective tiansport
equation. which with Ve the Fulet cequations Theretore, the problems encountered
in the numerical simulation of advection-domimated lows and mviserd tlows e simila,
and so s the solutton to them For this reason, many numencal schemes devdloped tor the
solution of the Nav - er-Stokes equations with dommant advection terms, have tound then

application in the solution of the Euler equations, and vice versa

1.1 Finite Element Method for the Euler Equations

It s well known that the apphication of the standard Galerhin method, o any centered
scheme. to convection-dominated flows leads to node to node sputious osallations i the
solutton. known as wiggles This happens when the god Pedletnumber (Pe Ve A whewe
fras the charactensuc length of the element), which iepresents the relative impaortance of
convection to dittusion m the flow, exceeds two {20 The problem arises trom the fadt
that a central-ditference tvpe approximation to the convection term chirst denvative),
the absence of dittusion (second dernvativesy 1 ¢ when Pe Fodeads to equations where
adjacent nodal values are decoupled. thus destatnhizing the solution

Asuaighttorward way of overcomiung this probleny s to severely refine the meshn the
regions where osaillations occur, such that o Ped U and theretore, the comvection no
longer donunates on an element fevel This s however ampractical i hagh speed flows
due to the very large number of nodes requured  The other option s to use o different
approximation for the convection term, which 1s consistent with the hyperbohe character
of the flow. The methods developed based on this tatter idea can be generally classified mito
three categories: upwind methods, artificial viscosity methods, and charactenstc Galerkin

methods.



1.1.1 Upwind Methods

Upwind mcthods are based on incorporating the directional niture of the convection phe-
nomenon 1nto the structure of the weight funcuon. The first paper in this context was by
Christic et al. [10], who built asymmetric piecewise linear and quadratic basis functions
to create oscillation-free results for a 1-D model equation. The accuracy of their resuits
was dependent on the way the weights were consuucted. Heinrich et al. [19] later gener-
alized this idea for 1-D and 2-D problems by adding a function of the form a,, F(z) to the
standard Galerkin weight, where /() 1s a posttive function, and v, is a pararaeter which
controls the degree of asymrnetry As an alternative method of constructing an upwind
effect, Hughes [23] proposed to relocate the quadrature poi-.t in the element during the nu-
menical integration of the convection term The position of this point was detesmined based
on the element Peclet number, and was so selected to provide the proper upwind effect.

A mejor biecakthrough in the apphcation of the finite element schemes to this field was
made when Brooks and Hughes [6] introduced the Streamline Upwind Petrov-Galerkin
(SUPG) method. This method 1s based on adding a perturbation p to the standard Galerkin
test function N, and applymng the moditied weight v = V + p to all the terms in the
advection-diffusion equation, leading to & consistent formulauon. The added perturbation
p creates an upwind effect by introducing artificial viscosity n the characteristic directions
for 1-1> systems and mulu-dimensional scalar problems, and in averaged characteristic di-
t-ctions for truly multi-dimensional systems. The SUPG 1s a high-order method, which
means that itdoes not sacrifice accutacy by adding aruficial viscosity for the sake of stabil-
iy.

Hughes and Tezduyar [24] generalized the SUPG method to first-order hyperbolic sys-
tems. In their initial work, several test cases were examined, and acceptable results were
obtained. Later developments of the SUPG method mainly consisted of improving its shock
capturing ability by adding non-linear operators to the perturbation [5, 25), and .optimizing

the free parameters in the pertutbation p {S2].




1.1.2 Artificial Viscosity Methods

Since the application of the Galerkin formulation to the hyperbolic equations leads to
under-diffuse solut.ons, thus creating oscillations, it then scems logical to explicatly add
an extra amount of artificial diffusicn to balance these under-diffuse results. Keltly er al.
[32] showed that the asymmetric weighting for the 1-D convection-diffusion model equa-
tion is equivalent to using the symmetric Galerkin weight and adding a diffusion term. The
concept of balancing dissipation was then extended to multi-dimensions by the definition
of an artificiel diffusivity tensor. The necessity of defining a tensor was to apply the arti-
ficiaj dissipation only in the flow direction and elimiiate the possibiiity of any cross-wind
diffusion [6].

The artificial viscosity mcthods benefit from the use of the Galerkin formulation, which
is easy to implement compared to the upwind methods, where asvmmetric weighting com-
plicates the algorithm. The accuracy and stability of the artificial viscosity methods, how-
ever, depend on the mechanism which controls the amount of added artificial dissipation,
In the 1deal case, this mectianism should be so constructed as to smooth out the local os-
cillations without globally polluting the entire solution. Lohner eral. [36] used the flua
cortected-transport (FCT) method to obtain accurate solutions for high-speed compressible
flows. In the FCT method, which is a two-step algorithm, an amount of artificial viscosity 1s
first added. and the excess amount is then removed in a second step. This canalso beinter-
preted as combining a high-order scheme in smooth regions of the flow with a lower-order
method near discontinuities or 1n under-diffuse regions.

In another approach, Peraire et al. {45] used an exphicit method and the Galerkin for-
mulation to solve the unsteady Euler equations in 3-D. Their antificial dissipation model
was based on smoothing the solution in the vicinity of discontinuities at the end of cach
time-step, using a pressure coefficient as a sensor to de:cct sharp gradients. Another way of
adding artificial viscosity was proposed by Baruzzi et al. [3]. In their method, the Lapla-
cian of dependent variables, i.c., p, u, and v was added to the continuity, z~momentum,

and y—momentum equations, respectively. The amount of artificial viscosity was then con-



trolled by a single parameter as the coefficient of the Laplacians. They later extended this

first-order artificial viscosity method to second-order [4].

1.1.3 Characteristic Galerkin Methods

The problems encountered in the numerical solution of hyperbolic equations governing
convection-dominated flows are due to the presence of asymmetric or non-self-adjoint op-
crators, i.c., first-order convection terms, for which the Gal.rkin method is not optimal.

These asymmetric operators, however, when written along characteristic directions, gain

the self-adjoint property, and therefore the application of the standard Galerkin method
will provide the best approximation. This fact has led to the development of Characteristic
salerkin methods.

Lohner et al. [35] used this concept to develop an explicit algorithm for the solution
of a system of hyperbolic equations. They tested different problems including flow in a
nozzle and in a Riemann shock tube. In both cases, an additional artificial viscosity term
was necded to stabilize the solution: near the shocks.

To utilize the concept of the charactenstics for the advection-diffusion equations, the
cquations arc split into two parts: an advection equation which is treated by the character-
1stics method, and a diffusion equation which is treated by the standard Galerkin method.
The solution of the advection equation s used as an initial guess for the diffusion equation
{18, 34).

This split-operator approach was used by Zienkiewicz et al. [55], and Zienkiewicz and
Wu [56] to solve a range of problems from incompressible flow to transonic and supersonic
flow around airfoils and the cylinder. In their approach. the compressible Navier-Stokes
equations were split into two parts. The first contained the pure transport terms in addition
to the (nearly) self-adjoint diffusion terms, and the other equation contained the remaining
term(s). An explicit method based on the characteristics was then used 1> solve the first
system of equations. The second system, which retains the compressible terms, was solved

in an implicit manner to avoid time-step limitations.



1.1.4 Other Methods

There also exists other schemes for the solution of the hyperbolic equations, which do
not fit exactly into the above categories. One of these is the popular Tayloi-Galetkin (TG)
method proposed by Donea [12]. It uses the ideas behind the Lax-Wendroff finite difference
scheme, in a finite element context. to stabilize the solution of the convective-transport
equation. The scheme is third-order accurate in time and exhibits particularly high phase
accuracy with minimal numerical damping. Lohner er al. [36] and Oden et al. [42] used the
Taylor-Galerkin method for the solution of the Euler equations in the supersonic regime.
The TG method, being a high-order method, produces oscillations at discontinuities, and
therefore, both Lohner and Oden used a flux-corrected-transport approach to avord non-
physical oscillations 1n the solution.

Rice and Schnipke [51] proposed a direct approach for the solution of convection-
dominated flows. In their method, the convection terms are transformed to streamlime coor-
dinates, where they become one-dimensional, i.c., /’“\%(f:f' and are assumed constant within
each clement. The governing equation is then discretized using the Galetkin method  ‘The
calculaton of the convection term, however, requites the pattern of the streamhine passing
through - ae of the downstream corner nodes in the clement. This pattern 1s found using a
search algorithm based on the mass flow across the clement boundanies. The method was
extended to quadratic elements by Hill and Baskharone [20).

Another approach is based on the least-squares weighted residual method, where the
Ly—norm of the governing equations residual ts minumzed with respect to the dependent
variables. The least-squares method has very good stability properties due to ats mmnmiza-
tion nature, and has been applied for the solution of a varicty of problems [30, 33, 53]. Itis
the method adopted in this thesis and will be discussed in detail in the next section.

The methods reviewed above use different approaches to tackle the problems involved
in the numerical solution of hy perbolic equations. It can be shown, nevertheless, that many

of them can be deduced from each other, or reduced to very similar or even identical algo-

rithms when applied to model equations. For example, Lohner et al. [35] showed that the



Taylor-Galerkin method can be justified as acharactenstic Galerkin method. As mentioned
carher, Kelly et al. [32], and Brooks and Hughes [6] showed the equivalence of the Stream-
hine Upwind Petrov-Galerkin (SUPG) method and the balancing dissipation method for a
I-ID convection-diffuston equation. A comparison between the least-squares method, the
Taylor-Galerkin, and the Petrov-Galerkin methods 1s made by Carey and Jiang [9]. Fur-
ther analysis of the similarity between the Taylor-Galerkin, the Petrov-Galerkin, and the

characteristic Galerkin methods 15 carried out by Morton [38] and Comini et al. [11].

1.2 Least-Squares Methods

As onc of the carliest cfforts in this field, onc can mention the technique presented by
Polk and Lynn [48] for the solution of the unsteady expanding flow na tube. They used
tnangular clements constructed in both space and time. wath their base at ¢4, their vertex
ot fy + Al and their sides corresponding to the chaactenistics' = (o & ¢)di. The
clements, therefore, can be considered as the domain of dependence for the calculation of
the varables at vertex at fy + A¢. The first-order system was then discretized by the least-
squares method. Another space-time finite element scheme was presented by Nguyen and
Reynen [40], and was applied to the solution of convection-dominated problems in one-
and two-dimensions. They showed that by extending the least-squares formulation to the
tme domam, highly accurate and stable results can be obtained up to veiy large grid Peclet
numbers.

Fletcher [ 15] used the least-squares method to solve the Euler equations for subcritical
compressible flows around the airfoil and cyhnder. The special feature of his method was
to represent groups of variables rather than single variables. By doing so, the linearity of
the Euler cquations was retained and lower-order numerical quadrature could be employed.
Bruncau et al. [7] used a rather similar method to study the vortical phenomena created
by the subsonic and supersonic flow over a flat plate at different angles of attack. They

solved the system of Euler equations with the least-squares method, again by using group




variables.

Park and Liggett [44] combined the Taylor-Galerkin and the least-squates methods,
and proposed a new scheme for the solution of the convection-donnnated flows, called
Taylor-Least-Squares (TLS). The method uses a third-order time approximation as m the
Taylor-Galerkin method, but the semi-discretized equations are discretized m space by the
least-squares method rather than the standard Galerkin approach. The appearance of the
fourth-order spatial derivatives in the weak formulation, which teduce to second-order after
integration by parts, necessitates the use of higher-degree polynomials, ¢.g., cubic Hermite
shape functions. The method is accurate and can be extended to higher dimensions with it
tle difficulty. The disadvantages arc, however, that it is an explicit method with hntations
on the time step, and further is computationally expensive due to the use ot higher-degiee
shape functions.

Application of the least-squares method to a governing cquation of the gencral forw
L(#) = f leads to the favorable result of a symmettic and positive-definite coetficient
matrix, if £ is a first-order differential operator. If £ is a higher-order operator, however,
this property 1s completely lost during the irtegration by parts, and morcover, clements
with higher-order continuity requirements, e.g., "' must be employed.

Lynn and Arya [37] proposed to bicak down the high-order system to 1ts st order
counterpart as a way of elimmnating this disadvantage. This idea, and the fact that almost
all physical problems can be recast in the form of a first-order system, was used by Caey
and Jiang [8]to formulate an algorithm for the general system of first-order PDEs usimp the
least-squares finite element method.

An analysis of the method for the wave equation ts performed by Carey and hang
[9], including stability analysis, error estimation, and comparison with the Taylor-Galerkm
method for simple 1-D test cases. To overcome the problem of non-lincar instability, which
occurs when a developing shock steepens, Jiang and Carey [28] proposed to minimize
the H,-norm of the residual rather than the Ly-norm. This will lead to the addition of

an artificial viscosity that is proportional to the solution gradient, and will stabilize the



solution

Jang and Carey [29] used the least-squares method for the solution of the 2-D com-
pressible Euler equations, and studied several supersonic test cases with shocks. They
also extended the #1'-residual method to 2-D 1n order to suppress the oscillations created
when higher-order elements were used. Lefebvre er al. 133] applied a similar least-squares
method for the compressible Euler equations. To stabilize the solution near discontinuities
when quadratic clements were used, an amount of artificial viscosity (like the one employed
in [45]) was explicitly added to the solution at the end of cach time-step. They also adopted
an adapuve refinement strategy based on the least-squares residual as the error estimator,

in a simzilar fashion proposed by Jiang and Carey [27].

1.3 Present Method

Among different finite element methods used for the solution of the Euler equations, the
least-squares method has been chosen i the present work due to 1ts favorable features,

including;

o case of implementation.
o natually produces antificial dissipaton.

e contams no tree patameter(s).

stable with equal-order interpolation of variables.

the resulting system of algebraic equations 1s symmetric and positive-definite.

The symmetry and positive-definite property of the coefficient matrix is one of the most

important features of the least-squares method, since:

1. Only half the matrix needs to be stored, thus reducing the memory requirements by
50%. This is a very desirable advantage, especially for large-scale problems, where

storage limitations are a major concern.
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2. The resulting system can be solved very efticiently by the Conjugate Gradient (CG)
iterative method. Application of other finite element methods, such as the Galerkin
[3], or the SUPG [6], lcad 10 nonsymmetric matrices. Efficient iterative methods
used for the solution of nonsymmetiic systems are variants of the opnmal Conjugate
Gradient method, attempting to imitate 1ts properties [2]. Nevertheless, they e not
as robust as the CG method 1n terms of convergence and stability properties, stor-
age requirements, and CPU time. For example, the Generahzed Mimmum Residual
(GMRES) method, which 1s considered one of the most efficient tterative solvers for
nonsymmetric matrices, 18 af least two times slower and needs ar least thice times
more memory compared to the CG method for solving the same number of equations

{49, Chap. 3].

By applying preconditioning, the stability of the mattx ateration process s tutther en
hanced, and the computation time 1s further reduced.

The artificial viscosity produced by the least-squares method does not allow discon
tinuities such as shock waves to be sharply resolved, unless an impractically fine pod s
used. This is one of the main reasons why very hittle work has been done so far i apply
ing the least-squares method to the Euler equations, despite 1ts various obvious advantages
(29. 33].

In the present work, a very 1obust adaptive method 1s used - order to inprove the
resolution near shocks. The employed directnonally adaptive approach s a very ecent
and 1mportant development, which significantly improves the gnd efficiency compared to
traditional anisotropic methods [ 1], ftuses second denvatives of a given flow vanable as the
error estimator, compared to first denvatives used by most other adaptive methods - Since
the variables vary linearly along cach element edge, the truncation crror 1s second-order.
Employing second derivatives thus provides a more accurate measure for the approximation
€rTor.

The sensitivity of the error estimator to directional flow phenomena, such as shock

waves, is achieved by calculating the error along the clement edges rather than the com-
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monly used approaches based on nodes or elements. When combined with the moving-
node scheme, 1t leads to alignment of the element edges with such directional structures.
As a result. the shocks will be very thin and very sharply captured.

‘The present work, therefore, 15 an attempt to investigate the least-squares finite element
method for compressible flows in the transonic and supersonic regimes with shocks, and
improve its performance and accuracy via an adaptive grnd method. and a preconditioned

Conjugate Gradient itecrative solver.

1.4 Thesis Content

In Chapter 2, theoretical aspects of the least-squares method will be explaned. along with
its companson with other methods. The development of the finite clement algorithm for
a general fist-order system of PDEs, and subsequently, the Euler equations 1s followed.
Description of dstferent ways of applying the boundary conditions ends this chapter.

Chapter 3 gives a briefl review of different adaptive strategies and. in particular, the
directionally-adapuive moving-node scheme used 1 our calculations.

Chapter 4 descnbes the solution method, mcluding discussion about the choice of ma-
i s olver e s diectvs aterative, different rterative soivers, preconditioning, and stopping
chleria

In Chapter 5. the numerical results for three test cases, mcluding supersonic and tran-
sonie flows, are presented and the 1esults are discussed

In Chapter 0, the performance and robustiess of the least-squares method for the com-

pressible Euler equations 1s discussed, and conclustons are drawn.



Chapter 2

Least-Squares Finite Element Method

Formulation

Before developing a least-squares finite clement method (LSFEM) tor a genetal system of
first order partial difterential equations 1 two dimensions and 1ts implementation for the
Euler equations. a simple model equation 15 fust analyzed o discuss the properties of the

least-squares method, and compare 1t with other methods,

2.1 Analysis of the Method

Constder the followimg scalar first-order equation m one dimension

Ju i

— .1 () (2h)
o e,

Using bachwaird ditferences in time to discretize the unsteady term, equation (2 1) can be

approximated by .

u™tt o Ju

U - (2.2)
At or

where superscript 7¢ denotes an evaluation at time ", At =1,,, /,1s the time step, and
A" is the linearized coefficient based on the solution at the previous ime level: A(u*t!) 2

A(u") = A" This form of time discretization leads to a fully implicit method which 1s

12
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unconditionally stable for all Courant numbers {9]. The effect of different Courant numbers
(or different At s) on the solution will be discussed in detatl in section 2.1.2.
The least-squares method s based on miminmizing the Ly-norm of the residual of the

governing equation(s). For equation (2 2), the least-squares functional 1s:

Fam'h /If2(152

¥

. -) nitl 2
/ (u”“ —u" -+ ALA" %~) dr (2.3)

1

where ¢ 1s the residual, and € is the solution domain. To minimize this functional, its

il

vartation with respect o u 15 8¢t 10 Zero

Ui
Camt =0 (2.4)

()“11r1

0l

Setting the test functim e du™*!, gives the weak form

. -’ nel ')
att o AL e 1+ A7 7(~- wdr =0 (
) i u

Equation (2 5)1s the weighted residual statement of equation (2 2) with the weight function.

1o
N
el

woow b A (2.6)

The least squates method can therefore be considered as a Pettov-Galerkin formulation

2.1.1  Least-Squares vs. SUPG

At this pomnt a companson can be made between the least-squaies method and the Stieam-
line Upwind Petrov-Galerthin (SUPG) method. The essence of the SUPG method. as men-
troned 1 the previous chapter. 1s to create an upwind effect by directionally weighting the
clement upsircam of a node more heavily than the downstream element (Fig. 2.1). The
word “directionally”™ means that this asymmetric weighting is only employed in the flow
direction, thus avoiding cross-wind diffusion in two and three dimensions when the flow is

skewed to the mesh. The weight of the SUPG method in one-dimension is :

ON
wsypg =N +T1u e 2.7
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flow —  SUPG

=~ Galetkin

Frgure 2.1: Galetkin and SUPG weighting functions

or in vector form:
wsrpg =N 10UV (2.%)

where [V is the shape function, and 715 the veloetty vector. The patameter 7 has dimensions
of time and is called the intrinsic time scale. 101s generally a function of element size and
local flow velocity and controls the amount of upwinding to be apphied  As aresult, ity
value highly affects the accuracy of the solution.

If the trial function in equation (2 5) 1s selected as the shape tunction, an expression
similar to (2.8) will be obtained:

)\
s = N p A (29)

(1t
For the case of the inviseid Burgers equation, where 1(u)  wm (2 D). the werght becomes

, AN
e Nt N, R
/1

o1 1 vector forn.

wr, Nt NMad VN (2110

The inviscid Burgers equation and 1ts general form, the mviscid ttansport equation, are the
only cases where nearly dentical weights for both methods are obtamed

Although the general form of the werghts in the least-squares method (hyg (2.9)) and
the SUPG method (Eq. (2.8)) are different, they we analogous m some respect For ev
ample, they are both proportional to the solution gradient and both produce asymmetiic
weighting. Moreover, A™ in multi-dimensions 1s a matrix, called the Jacoman matnx, that
contains velocity components. Similarly, in multi-dimensional problems, 7 1s a matnix
whose components are calculated using the Jacobian matrices {5, 24}

Despite these similaritics there are some major differences between these two methods.
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e The weight in the least-squares method is produced naturally as part of the formula-

tion, while 1t has to be defined 1n the SUPG method.

o The least-squares method 1s a minumzation problem and therefore has very good
stability properties. For the SUPG method, however, stability depends on the amount

of upwinding applied and, hence 1s not intrinsic as in the least-squares method.

e The cocfficient matrices of the least-squares method are always symmetric and

positive-definite, while they are nonsymmetric in the SUPG method.!

e There 1s no unigque way of defiming the key parameter 7, and different methods are

free parameters and leads to a rather general formulation for all kinds of flow

2.1.2 Artificial Viscosity

Some other features of the least-squares method can be demonstiated by deriving the Euler-

Lagiange equation? correspondimg to equation (2°5)
grang

noel 1 ), ) on J el n
t u" Ju’t , , " -
P Ny - AN st e—— (212
AV, oy L Or? ) Ji- ( A¢ )
o1
wttt " oy Jdu" TR AT Q13
AY; dr O’ T

In this equation, the left-hand stde 18 an approximation to (2.1), and the nght-hand side 1s

the wtheral viscosity. The artificial viscosity term

e 15 produced nawtrally as part of the least-squares formulation without any special

treatiment or weighting,

e 1s first-order,

"Tis 1 one of the most important advantages of the least-squares method, and will be discussed m

Chapter 4.
?See Appendix A for the derivation.
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e contains no free parameter(s),
e 15 directly proportional to the time step,

e contains the non-hinear properties of the governing equation due to the presence of

the non-lincar coefficient 4", and

indirectly depends on the solution due to the coethicient "

It 1s clear from (2.13) that the only parameter which exphaitly contiols the amount of
artificial viscosity in the flow 1s the ime step  Very large or very small A7 s (on CFL
numbers) will lead to diffusive or oscillatory solutions, tespectively  The value ot At -
rectly affects the numerical accuracy and numenicai stabihty ot the solution o equation
(2.13), as At approaches zero. the numernical viscosity becomes neghigible, and the equa
ton resembles the Euler-Lagrange equation of the Galethin tormulation, which leads to the
occurtence of osallations

To obtain accurate transient solutions, convergence should be obtamed at cach ume
level using. for example. a Newton method [22] This s especially necessary n the present
formulation. since it s only hist-order accurate i tme I ondy the steady state solution as
sought, one Newton tteration per tume level sutfices in the problems wath discontiuties
(e.g shock waves), the choice of A7 required for accurate steady state soluttons s not very
sttarghtforward. In such cases, 1t s desited on one hand to use very small Nz for better
1esolution of sharp lavers. and on the other hand to use higher A1 s to avord osallations
and reduce the overall computation ime - The suitable time step will be theretore obtamned

based on trial and cuon.

2.1.3 Least-Sqnares vs. Taylor-Galerkin

It would also be usctul to compare briefly the least-squares method with the well-known
Tayicr-Galerkin method [12]. This method is in fact an extension to inite clements of the
ideas behind the Lax-Wendroff finite difference scheme. It uses higher-order time inte-

gration by including second and third time derivatives of the Taylor series expasion to
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improve the stabisity properties of the Galerkin formulation for convective-transport equa-
uons.
For equation (2.1), with a linearized coefficient /i.r , u, + A" u, = 0), the (forward-time

or Euler) Taylor-Galerkin method gives the following equation:

ntl . n n / n\2 n2.n AtAu? 2 n+l _ . .n
u u du :Ai(A) vt | )° a (u u) 2.14)

e A" — + R
AT o 2 g2 6 oz At

which is different from equatici (2.12) by only two numerical coefiicients. This equa-
tion, when discretized in space using the Galerkin method, leads to stable solutions for
convection-dominated flows. The improved stability propeitics are due to the first ierm on
the right-hand side which resembles a numerical viscosity, and is obtained by substitut-
ing the second-order time derivatives in the Taylor series expansion by space derivatives
through successive differentiation of w, + A"u, = 0.

The Taylor-Galerkin method 1s an explicit time-accurate method, and is only condi-
tionally stable compared to the unconditionally stable least-squares formulation. However,
both methods contain no free parameters and have very good stability properties (duc to

their mechanisms of controlling the oscillations).

2.2 Least-Squares Method for First-Order Systems

Consider the following gereral system of first-order partial differential equations in two

dimensions:

Lu=f (2.15)
J J 3]
L= A()E -+ A15; + AZbTJ +A
where L is a linear first-order differential operator, u” = (u;,uy, . .. ,Un) is the vector of

unknowns, f is the given source function, Ay is the identity matrix (or its incomplete form),
anu Ay, A,,and A are n x n non-linear coefficient matrices. Since almost all physical
problems cin be recast mathematically in the form of (2.15), the developed least-squares

method in the following can then be used to solve a variety of problems, by only changing
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the coefficient matrices. This will allow to construct a rather gencral-purpose code. The
method can also be easily extended to 3-D by adding the extra term A3 3/9: 10 (2.15), and
making corresponding changes in the following formulation.

Discretizing the unsteady term in equation (2.15) with backward differences in time

and linearizing the coefficient matrices using the Picard method, leads to:

Lu™t! = (2.16)

—_ d % Ao n . n AO u®
E_A0+A6 (At-i-A) ; f Af +f

It should be noted that if another linearization method (c.g. Newton) were uscd, or the
sysiem were written in A-form (i.e., in terms of Au™*! rather than u"*!), the general form
of (2.16) would remain the same. In such cases, an extra matrix or extra vectors would be
added to the left- and right-hand sides of (2.16), respectively.

Defining the residual vector as R = Lu™*! — f", the least-squares functional will be:
I(u™!) = /R"'erQ (2 17)
0

Minimizing this functional by setting I = 0 and w = du™'', where w is the weight

function, gives the following weak statement:
/([,w) (Cu™! — ) dl =0 (2.18)
0

Since the least-squares method is a minimization problem, and therefore is not subject
to the Ladyzhenskaya-Babutka-Brezzi (LBB) condition [ 1 7], cqual-order interpolation can

be used for all variables [30). Introducing the finite element approximation:

e

Nu;;“—ZN,u"“ (2.19)

where i is the number of nodes per element, and N, = N, I is the clement shape function,

into the weak form (equation (2.18)) results in the lincar algebraic cquations:

[K|{U} = {F} (2.20)
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where { U} is the global vector of unknowns, [K] is the global coefficient matrix, and {F}
is the nght-hand side vector. Matrix [K| and vector {F} are obtained by summing up the

clement matrices and vectors, respectively:

K| = /{ (CN,)T(LN,) a2 5 F = / (LN, " d9 (2.21)

The expression for Kf, indicates that it is a symmetric and positive-definite (spd) ma-
trix. This property is a characteristic of the least-squares method and does not depend on
the form of the differential operator £. The least-squares method, when applied to either
symmetric or asymmetric differential operators (e.g., second- and first-order derivatives,
respectively), will result in a symmetric, positive-definite matrix. In contrast, the Galerkin
formulation leads to such a matrix only tor symmetric (self-adjoint) differential operators.
The importance of [K], and consequently [K], being symmetric and positive-definite is
that very cfficient iterative solvers can be used for the solution of equation (2.20). This will

be discussed in more detail in Chapter 4.

2.3 System of the Euler Equations

The Euler equations which are the highest level of approximation for inviscid, non-heat
conducting flutds, can be written 1n the following first-order system in terms of primitive

vanables?t:

Ju Ju Ju
A —— - A . o—_— + ‘A. — I 0 .22
pY A or Ay (2.22)

where ul == (pouy v, p), Ag = I (identity matrix), and

[ I i ]
v p 0 0 e 0 p G
0 u 01 0 v 0 O
A] - /p A2 =
0 0 u O 00 v 1/p
0 v» 0 u 0 0 vp v j

-

‘See Appendix B for the lerivation of the energy equation in terms of pressure.
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in which p is the density, (u,v) are the velocity components, p is the pressure, and -y 1s the
specific heat ratio.

Since the coefficient matrices A, and A, are not constant, equation (2.22) 1s non-lincar.
The Newton method 1s applied to linearize the equations by setung u"t! = u" | An
in (2.22) and neglecting higher-order terms. After discretizing the unsteady term using

backward differences, equation (2.22) can be written as:

LAu=f" (2.23)
L, 0 3 A '
£ + A —_— + Cﬂ , f” - A"( ll ’_ An {?l
6 3 or Jy
| _ Ou” 4 ov” dp"  Ip" 0
dr Oy or  dy
I ( O [ n Ju” dut  ou" 0
e B v e
P dr dy BT i
C”
1 ( ()u" 01)" 3L T
R b = A 0
o B ()1/ Or iy
0 apt " dut i )
L A1 Jy "\ i Ay

The senu-discrete system (2 23) has the general form ot (217) Equanon (2 21) can there
fore be used to calculate the element coefficient matiices and vectors with the ditferen
tial operator £ defined in (2 23) The tegrals m (2 21) are numencally evaluated us
ing Gauss-Legendre quadiatuie. For linear elements, the miegrands in (2.21) are at most
quadratic polynomals for undistorted elements, and can be exactly integrated usig 222
Gauss points.

For the Euler equations, Eq. (2.23), the numerical viscosity inherent in the least-squares
formulation can be demonstrated as follows. The right-hand side vector of (2.23) as defined

in(2.21) is:

Fe = / (LN)T ™ d
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i

ON, 0N, (Ao .. Lout o Gun
/ [A, = AD;+(ZQ+C)N,] (A o T A, )dQ

ON, . ON, out o
_ n " n n o — | ... 2.24
/,,(A‘az Aa)<Aa 2ay) 2 / (229

After integrating this equation by parts, the first term on the right-hand side yields the

fi

following term in the associated Euler-Lagrange equation:

o .0 LOut o
/, (A,a—$+A2ay) (A 5 T A, )dQ (2.25)

which represents the “natural” numerical viscosity of the least-squares method.
As the steady-state is reached by time-marching, the time-dependent term in (2.22), and

consequently the night-hand side of (2.23), which is in fact the residual, vanishes. For this

case, u"t! = u" = u, and the least-squares weak form will become:
Ay Ju dJdu ow ow Ju du
4 C)w. A t A A ——+A; A -+ A, =0 (2.26
<(Ai C)w l()l 2()1/ l()1.*_ ZOJ l()1 20/ ( )

which mndicates that the steady-state solution depends on A¢. This 1s not desirable, as 1t

will testrict the choice of time-step when accurate steady-state solutions are sought

2.4 Boundary Conditions

The definttion of the problem governed by the equation (2 23) will only be compiete once
appropriate imtial and boundary conditions are specified The boundary conditions should
provide cortect information about all dependent variables on the boundarnies in a way com-
pauble with the physical character of the governing equations.

For the Euler equations, this information can be obtained through characteristics — the
lines along which information propagates throughout the flow. At a typical node P on the
boundary (Fig. 2.2), the right-running characteristic C'_ will transport information from
inside of the domain towards the node, and will affect the values at P. The left-running
characteristic C,., however, brings information from outside of the domain to the inside,

and can affect the flow in the computational domain. The number of (physical) boundary
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Figure 2.2: Characteristics at the boundary

conditions that can be mmposed at a typical boundary should be equal to the number of
incoming charactenistics. The remaiming vanables at the boundary, which conrespond to
the number of outgoing charactenistics, will be determimed along wath the soluton

Physical boundary conditions are imposed by expheutly specitymg the dependent van
able(s) at the boundary In the iimte element method. boundary values deternned by out
going charactenstuics are deternined 1 a natural way thiough the mterpolation tunctions
embedded in the formulation  In the fimite difference method, however, 1ts more difficult
to determine these values Among the different methods e discietizing the charactensies
variables, using compatibility relations at the boundanes, o1 by extrapolation Fhese meth
ods should be apphied 1 a manner consistent with the internal scheme to heep the same
order of accuracy and stability properties.

For the Euler equations (2.22), the number of incoming and outgoing chatactensnes e

determined by the signs of the eigenvalues of the matnx it defined as:
K=An,+ Ay Tly (227

in which (n, n,) are components of the normal vector i on the given boundary, pointing

towards the flow direction. In two dimensions, the cigenvalues of K are:

—

Vi, Vi, Vei+e,V-i—c (2.28)
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where 17 15 the velocity vector and ¢ is the speed of sound. Depending on the flow velocity
and 1ts direction with respect to the boundary, each eigenvalue 1s cither positive, negative,
or zero  The number of physical and numerical boundary conditions are then determined

by the number of positive and negative eigenvalues, respectively.

2.4.1 Inlet and Outlet Boundary Conditions

For subsonic and supersonic inlets and outlets, the number of physical boundary conditions
to be specified are grven in Table 2.1, It is common practice to specify density and velocity
components at infet and pressure at exit for subsonic inlet and exit boundaries, respectively

21, Chap 19]

2.4.2 Solid Wall Boundary Condition

On asohd wall, the normal component of the velocity 1s zero, and only one of the eigenval-
ues 1 (2.28) 18 positive. The physical boundary condition applied for this case 1s: 777 = ()
(1 ¢.. no-penctratton or {low tangency condition). In the Galethin method, this condition 15
castly imposed by neglecting the boundary integral contaiming the V" i term. Baruzzt et
al. 3] have neglected this term only in the continuity equation. while the integrals canying
this term m the momentum equattons, which include density in their formulation, are cal-
culated m order to determine the density at a solid boundary. In the least-squares method,

however, such an integral does not exist and one of the following methods should be used.

Subsonic Supersonic
Inlet: 3(p,u,v) | Inlet 4 (p,u,v,p)
Outlet: 1 (p) Outlet: none

Table 2.1: Physical boundary conditions for 2-D Euler equations
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Figuie 2.3: Local node numbets
Least-Squares Functional

In this method (33], the no-penetration boundary condition t: weakly unposed by adding
a least-squares functional to the ortginal integral m (2.17) The new boundiry tunctional,
which does not aftect the Euler-Lagrange equations, will be
Lu'''y- .R"‘R dQ u‘/ (Vi (220
Ja Jr
where T' 1s the wall boundary, and ' is the relative weight of the boundary tunctional with
respect to the mtenor functional. This werght determines the relative importance of the two
functionals. and should be of the order of O(10%)
Minmmizing the boundary functional with tespect to the + component ol veloctty, and

seting N on. gaves the following for the r-momentum cquation
u'/(un, Ceny ), N db (23N
A1

This integral at the element level, after mtroductng the fimte clement approsimation, can

be written as

. ; : | "
" [/ NN dl / N, N n, (/l} ! o1 Lo (230
Jie Jie .

— - { /

Il\l]

where { and 11t are local node numbers of the element at the boundary (Fig 2°3) Sumilarly,
by minimizing the boundary functonal with respeet to the y-component of velocity, tor the

y-momentum equation the following 1s obtamed:

e .
~

[Ky]

: ' ) i
w [/ NN npny dbl’ / N,Njn,’;(/l'} ! tv) Lm (232
I
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Figurc 2.4: Coordinate rotation for wall elements

By assembling the coefficient matrices [K,] and [/,] in [K]¢ (as defined in 2.21), and
choosing a suitable weight for the functional, the no-penetration boundary condition can

be discretely imposed on solid walls.

Rotated Coordinates

Another way of imposing the no-penetration boundary condition 1s to rotate the coordinate
axes at the wall nodes from the global @ — y frame to the local s -n (normal-tangential)
coordinates (50, Chap 4], In the new coordinate system, the flow tangency boundary
condition 1s casily imposed by setting 1, = ()

Consider the wtement on the inclined boundary n Fig 2.4. For nodes 1 and 2, the local

and global velocity ~omponents, (i, ') and (u. ¢) respectively, are related by:

" i " -
e Cremg (2.33)

" " Uy ")

where
cosf) —sinf
[R]=
sin ¢ cos @
is the rotation matnix, and the angle 0 is measured counter-clockwise from the z —axis to
the s—axis. A similar relation can be written between the total vector of nodal variables in

local and global coordinates:
('} = [RY) {a) (234)
where

e 7l
{u } = (P vipr, puataPs, P3Uz vy D3, P4y Vs Py)




~e1T - NN
{“‘} = (mur vy propuztapy ., paug g Pac Pty typy)

and [R*] is:

B | | ]
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|1 | l
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| s« I
0 | ! | |
R]=]-- -~ —-- e
l | 1 |
| | |
| l L
l | o
! | | 1
| | -
| l | |
_ | | | I
¢ - cosfl : s sind)
Substituting (2.34) mnto the element equatons of system (2.20)
IKNu'}  {¥) (239)
yields:
[K'JRJ{a"} {F} (2 30)

In these equations, the coefficient matrix has become nonsymmetiie To retwn the symme-
try and positive-definite propertics of the least-squares formulation, both sides are premul-
tiplied by [R€]". This gives the new element equations:

(K {a‘} = {F)’ (2.37)

where

K = RKRY and {F) = [RP)
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Figure 2.5: Discontinuous angle at wall nodes

In the transformed system (2.37), the no-penetration boundary condition 1s applied by set-
tmg: oy -y 0

When a curved boundary is approximated by finite elements, there 1s a discontinuity in
the slope at a typrcal wall point 1 (Fig. 2.5). whether linear or highei-order elements are
used. This discontinuity can become small by increasing the number of elements or using
higher geometry approximation.

In order to apply the 1otated coordinates method, each wall point should have a unique
angle, so that the velocity vector " has a sigle value at that point To accomplish this, a

weighted average of the angles of the two adjacent wall edges can be used:

10y 4150
- 220 (2.38)

The angles ¢y and 0, e multiplied by [, and (. since the lement with the shorter edge
will approximate 1"y better than the element with the longer edge.

The velocity componeats in the coefficient matrices Ay, A, and C are in the global
coordinate system. Before evaluating these matrices for the elements on a wall, the ve-
locity components of the wall nodes must be counter-rotated from the local to the global

coordinate system.



Chapter 3

Adaptive Procedure

3.1 Introduction

In the numerical solution of a well-posed probiem, thete exists a bounded cuot e the
computed results due to the discretization of the partial ditfeiential equations, no matter
which scheme 1s employed (finite clement, fimte difference, e voluine, ete). In the

finite element method, this error can be attiibuted to three sources:

1. approximation error, which 1s due to the discrete approximation of the solution, ¢ g,

by linecat., quadratic, or other functions,

2. finite arithmetic and quadrature crror, which are due to the computer tound-oft cirors

and the numencal evaluation of mtegrals,
3. error in approximating the gcometry.

The error in approximating the geometry 1s mamly dependent on the complexity of
the domain and the dimension of the problem, for example 2-D or 3-D. For simple or
structured geometries, where the domain can be discretized accurately or exactly, this error
can be highly reduced. For complex geometries, and especially for 3-D problems, the
grid generation becomes an important issue because the domain approximation error could

become significant.

28
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By using an appropriate number of quadrature points, the integrals involved in a finite
clement discretization can be very accurately evaluated, thus reducing the quadrature error.
This is not, however, always practical due to the computational cost of numerical integra-
tion. Since the finite anthmetic errors are mostly dependent on the computer hardware,
there is less control over them. Nevertheless, it is still possible to reduce tiw error by using
high-precision real variables, and in particular, optimizing the arithmetic operations in the
code.

Compared to domain approximation and arithmetic errors, the approximation error is
generally the largest. As a result, any attempt to reduce it will improve the accuracy of
the results significantly. This error, which is mecasured in some norm, depends on how
well the numerical method approximates the physical model. It can be reduced locally or
globally by adapting the gnd to the solution. This adaptive procedure which can be done in
different ways, also requires information about the quality of the numerical approximation.

Any adaptive method has therefore two basic ingredients:

1 Errorestimate: In order to assess the quality of the solution throughout the domain,
a criterion is needed. Thas criterion should reflect the error of the numerical approx-
imation, which can be inteipreted as the interpolation error. When the solution is
approximated by precewise hinear functions, a norm of first- or second-order denva-
trves of the solution could provide such an crior estimate [42, 46]. The cestimated
cerror distribution thioughout the domamn will then provide the required information

to apply adaptation.

The dependent vanable whose error is the basis of the adaptation, is usually chosen
depending on the flow regime. For inviscid compressible flows, the pressure or Mach
number are the frequently used key variables. A norm of the residual of the equations

can also be used as the error indicator [27, 33].

[SS]

. Adaptive strategy: The goal of adaptation is to improve the quality of the solution

by equidistributing the error throughout the domain. This can be achieved using any



or a combination of the following methods:

h-method The analysis begins on a rather coarse mesh, which models the basic

geometrical features of the domain Once the solution 1s obtmned, and the error
estimated, the elements with a high level of error are subdivided mto more
elements of the same type. The refinement might also be coupled with a reverse
process, leading to mesh coarsening. The h-method generally leads o isotropic
meshes, and therefore, is well suited for those problems whete the solution
gradients are approximately equal in all directions. Major disadvantages of this
method arc an increased number of unknowns, which 1s more problematic in
3-D, and a change of node connectivity, which will increase the band-width of

the coefficient matrix.

p-method In this approach, existing elements having a laige crior are replaced by

higher-order elements. Use of higher-order polynonuals to approximate the
solution will then reduce the mterpolation error Despite this tavorable prop-
erty, the p-method has the disadvantage of being computationally more expen-
stve. Moreover, constramed o transition elements must be employed to connect
lower- and higher-order elements together, adding 1o the complexity of the al

gorithm.

r-method This strategy is based on moving the nodes 1in such a way that the newly

oriented mesh has a more umform error distnibution. Node movement, as a
result, leads to anisotropic meshes. The possibility of moving nodes allows
forming elements whose edge(s) are aligned with an essenttally 1-D flow phe-
nomena, such as boundary layers and shocks. In this method node connectivity
remains unchanged, since no new nodes are added. Therefore, a drawback 1s
that the accuracy of the final results is limited by the structure and resolution of

the initial zrid.
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remeshing In this approach, as the name implies, the domain is remeshed based on
the information obtained from the distribution of the error on the initial grid [46,
47). As aresult, the mesh is refined in some regions, and is coarsened in some
others. The position of the nodes on the new mesh are generally completely
different from that of the old grid. The main disadvantage of this method is that
it is expensive, especially for 3-D problems. Local remeshing, however, can

alleviate this problem to some extent, and make the procedure more efficient.

The adaptive strategies described above can also be combined together in an attempt to

exploit the advantages of each individual method. Examples include h-p and h-r methods.

3.2 Directionally-Adaptive Approach

The adaptive method used in this thesis is based on the work of Ait-Ali-Yahia et al. [1],
and uses a moving-node or r-method as the adaptive strategy. The important part. however,
15 the error estimaticn since 1t provides the information based on which the adaptation is
done The special feature o1 the present error estimator is its sensitivity to directional flow
phenomena, such as shock waves. This 1s achieved by calculating the error on the element
edges rather than the commonly used approaches based on nodes or elements. This will
provide the moving-node mechanism with more accurate information about the distribution
of error, leading to better alignment of the element edge(s) with such oriented structures.
As aresult, less elements would be required due to the efficient adaptation. Tw o basic steps

of this adaptive procedure arc explained in more detail in the following sections.

3.2.1 Edge-based error estimate

Consider the {-D element shown in Fig 3.1, where the scalar variable o is assumed to vary
lincarly within the element. A better approximation for this variable would be a quadratic

function. In another words, the variable o can be corrected by piecewise quadratic poly-
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Figure 3.1: Approximation error in a 1-D element

nomials. Therefore, the error £ can be estimated as the difference between the quadratic
interpolation ¢ and the linear one.

After some simple arithmetic, and assuming that the nodal values of the two tunctions
coincide, the approximation error can be expressed as:

£ d*s
Ec' = é(h‘. — &) {—[7:2‘ (‘ I)

where £ 1s the local element coordinate, and /i, is the element length. Since the fust term of
the truncation error for a lincar approximation 1s a second order denvative, equation (3.1)
caa provide a good estimate for the error. The measure of etror ncach element 1s then

considered to be the 1oot-mean-square value of [7, [46]:

15”/“5' — < /.h( ﬁ‘-‘:’ (If_) : = l»--_ II'J
v Jo V120

For an optimum mesh, where the error s equidistributed and 15 equal over each clement,

) 12)
i

r/"u ‘

the following should hold for all the elements:

d*é

h? -
I dr?

¢

=( (3.3)

where C' is a positive constant. The second derivative in equation (3.2)1s based on o, which
is the desired solution and therefore is not available. It is then approximated by the second
derivative of the numerical solution, i.e., (—;—Z— by employing a recovery process based on
the weighted residual method [1].

The above methodology is extended to 2-D based on the fact that the edge of a 2-D

element can be considered as a 1-D element. The second derivative in equation (3.2) is
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Figure 3.2: Transformation of a unit circle under S

replaced by the Hessian matrix:

0o 0
0z Oxdy
I = , ’ 3.4
Fo o
dydr  dy*

whose value is calculated for all the nodes throughout the domain. The Hessian matrix can

be decomposed into the form:

H=RAR (3.5)

whete A is the diagonal matrix of cigenvalues, and 7 1s the matrix of eigenvectors. The ma-
trix /! can be interpreted as a rotation by the angle a which the eigenvector corresponding
to the smaller eigenvalue Ay makes with the 1-axis.

Since the error should be positive. the Hessian matrix is reconstructed by replacing A
with [A}mn (3.5):

H=RINRT  or 11 =88" (3.6)
where § = R\/]A] can be considered as a transformation, which when applied to an
element stretches it in the direction of the principal axes of H. This transformation applied
to a unit circle is shown in Fig. 3.2, where the semi-major and -minor axes of the ellipse
are:

a=1/VIN 5 b=/l el > A
Once /1 is calculated for all the nodes, with assumed linear variation throughout the do-

main, the error on each edge is obtained from:

2
()= [\ Fe) et a 3)
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Figure 3.3: Local spring network corresponding to node

where r(£) is the parametric representation of the edge £. This edge-based error estimate, is
then used as input for the moving-node mechanism to reposition the nodes, and accordingly,
the elements.

It should be noted that although ¢(£) is a scalar, it represents the euor in the direction
of the edge. The directional behavior of the flow features is thetefore imphicitly embedded

init.

3.2.2 Moving-node strategy

The adaptive mechanism used 1n this work {or the cquidistribution of crior 15 a moving-
node method based on a spring analogy. In this approach, the mesh s iterpreted as a
network of springs, where cach edge is considered to be a fictitious spung with its st
ness representing the measure of the error (Fig. 3.3). The equilibiium of forees v this
network will then determine the movement of cach node. This idea was fust inroduced by
Gnoffo [!6]. Nakahashi and Diewert [39] later complemented his work by incorporating a
grid-orthogonality constraint, and applied it in a finite difference context. In the finite cle-
ment method, however, grid orthogonality is not essential, and hence as explained below, a
simpler approach can be adopted.

In the spring network of Fig. 3.3, the new position of point ¢ is determined by minimiz-
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ing the potential energy of the system at that node:

P=> " (x— %) hy (3.8)

7

where x is the position vector. The stiffness of the interconnected springs, k., is defined

as:
b e(8) _ e(x,,%,) 3.9)
R (b X[ 1% =%
i which || - || denotes the Euclidean norm. Minimizing (3.8) with respect to x, gives th:
following equation:
Z (X:’H 1 mH) km+1 - (3.10)
J

which expresses the equilibrium of forces in the local spring network at the present adaptive

iteraton m + 1. By lagging x, and k,; i equation (3.10), 1t can be written as:

0 = E :(X"” | x" 4 x™ — xuu I) ,\:1}1

1 1 ] )
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Z (X;" _ X:") }‘:;:
Ax, -~ 2 - - (3.11)

2

J

The new position of x, is then calculated from:

X" = XM+ w Ax, (3.12)

]

where w 15 a relaxation parameter.

The iteration process (3.12) is applied to all nodes in the domain in order to adapt the
mesh to the solution. Boundary nodes can also move in the same way as internal nodes,
but they are projected back on the boundary to restore the original shape of the domain.

The moving-node scheme is applied to grid points in a sweeping manner. The reason is
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to allow to check the quality of each newly oriented element during the mesh movement,
and thus avoid formation of elements with a negative or nearly zero Jacobian. To obtain an
appropriate adapted mesh, the number of adaptive iterations per adaptive cycle 1s chosen to
be in the range of 1n =200 ~ 400.

The adaptive method uses the solution of one of the scalar variables to adapt the mesh,
and then interpolates the input data on the new mesh. The adapted mesh and the inter-
polated results are then used as initial data for the least-squares code to obtain a more
accurate solution. Each mesh adaptation followed by the least-squares solution is called

one adaptive cycle. In this work, the pressure is used as the key variable for adaptation.



Chapter 4

Solution Method

The solution of the system of lincar algebraic equations:
Ar=1b 4.1

resulting from the discretization of the governing PDEs, 1s one of the most important parts
of the numernical algorithm. The importance of this step becomes more evident by noting
that 1t comprises over half of the overall computation time tor large problems. The solution
method should be robust enough to handle the usually 1ll-conditioned coefficient matrices
encountered m computational fluid dynanics. Equation (4 1) can be solved by either of

two different methods: direct ot iterative.

4.1 Direct Methods

Direct methods are generally based on the factorization of the coefticient matrix 4 into two
or more matrices having special structure. For example, in the Gaussian elimination A is
factored into a lower and an upper triangular matrix, i.e., 4 = LU. Other examples are
QR factorization (where @ is an orthogonal matrix and R is upper triangular), and LL”
or Cholesky factorization (for symmetric matrices). In the direct approach, the number of
operations as well as the computation time is fixed for a particular matrix. Further, it has

the advantage of being numerically stable (at least when pivoting is applied).

37
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gnd type of | cxponent
dimension  solver 7
2-D iterative 1.021
2-D direct 1.319
3-D iterative 1.036
3-D direct 1.645

Table 4.1: Empirical values for the storage requirement formula

For medium-sized linear systems, where direct and iterative methods both equire al-
most the same amount of CPU time, the direct approach is usually prefernred because of
its reliability. For large sparse systems, however, direct methods are not sutable, The tac-
torization of A creates nonzero clements, called fill-in, which requires additional memony
Pommerell [49, Chap. 2] has conducted an analysts of more than 200 large sparse systems
(with more than 5000 unknowns) to mvestigate the memory requirements for duect and

terative linear solvers. His stady has led to an empincal tormula
s oopnt 4 2)

whete s 1s the amount of storage for a given number of unknowns n, g1 1s a coctficient, and
the exponent ¥ 1$ given i Table 4.1, 1t can be scen trom this table that in passing from
2-D 10 3-D problems, the storage requirement increases “exponentially™ for direct solvers,
while it still varies hinearly for iterative solvers.

The number of operations required to perform factorization grows ceven faster than the
memory requirements, leading to serious round-oft crrors and large CPU times. The large
amount of storage requirements and timing for direct solvers, therefore, makes the solu-
tion procedure very expensive, and sometimes beyond available computer 1esources. As
a result, iterative methods are commonly used for the solution of large sparse systems to

significantly reduce the memory and CPU time requirements.
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4.2 Iterative Methods

The essence of an iterative method is to generate a sequence of approximations
#o,.ry, . Ex to the exact solution x, with the hope that each successive iterate r, will
be closer to r than the last. In basic iterative methods, the coefficient matrix A is split into

two matrices.

A=M-N (4.3)

where Al is a nonsingular and easily invertible matrix. Substituting (4.3) into (4.1), a

recurrence formula is obtained for the (k+ 1)th approximation:
iy = Bre + o (4.4)

where I3 - A7 "N s called the iteration matrix, and ¢ = M~ 'b is a vector. For example,
choosing M Dand N = [+ U, where D, L, and U are the diagonal, and strictly lower
and upper tiangular matrices, respectively, leads to the Jacobi method.

The performance of the iteration defined by (4.4) basically depends on the spectral
vadas of 3, defined as:

p(13) = max]|A,| (4.5

where )\, 18 the set of eigenvalues of 3. The convergence will be assured, if and only 1f
p(13) < 1{13]). Moeover, the smaller the spectral radius the faster the convergence to the
exact solution  Based on these facts other methods have been constructed for splitting -,
with the wm of a simaller spectral 1adius for the resulting iteration matrix. For example, if
M == Dy Land N = U, the Gauss-Seidel method will be obtained, which performs better
than the Jacobi method.

The convergence speed can be further improved by introducing a relaxation parameter
w, as in the Successive Over-Relaxation (SOR) method. The parameter is adjusted to make
p(B) as small as possible. Nevertheless, the optimization of w in relaxation methods is
not casy in general, and further it requires an estimate for the eigenvalues. Despite the

improvements that can be obtained by relaxation or using different splitting techniques,
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basic iterative methods (also known as matrix splitting methods) have generally slow con-
vergence (2, Chap. 5]. Acceleration techniques such as the Steepest Descent and the
Conjugate Gradient are therefore preferred. They are based on changing, the structure of

the iteration, rather than the iteration matrix, to increase the convergence speed.

4.3 Conjugate Gradient Method

The Conjugate Gradient (CG) method is the best choice for the solution of the lincar system
(4.1), if matrix A is symmetric and positive-definite (spd). In essence, 1t generates a set ot
linearly-independent orthogonal search ditections in order to reach the exact solution r

The recurrence formula is of the form:
Tryy T b ogdy (4.0

where g and dy, are the sten size and search direction, respectively. Inexact anthmeue, the
CG method converges to 1 n st~ ps, wheie 12as the dimension of AL In practice, however,
convergence to at most machine accuracy (and most often i less stnngent cutetia s used)
is sought, and therefore, the CG method will attam the desned convergence m a L less
number of iterations than n.

As mentioned in Chapter 2, the least squanes method always leads 1o a sy mmetne
positive-definite coefficient matrix, regardless of the form of the differential operator
Mecthods based on the Galerkin formulation. however, lead to a symmetie matrix only
for a symmetric operator. When convection terms are present, the coctficient matrix will
be nonsymmetric. Other methods like the implicit Taylor-Galerkin or SUPG also gencrate
nonsymmetric matrices. Efficient iterative methods used for the solution of nonsy mmetric
matrices are generalizations of the CG method, in order to exploit its desirable properties.
Nevertheless, they are not as efficient as the CG in terms of storage requirements, CPU
time, and convergence properties [2, Chap. 1].

The simplest approach to solve an nonsymmetric matrix is to make the coelficient ma-

trix symmetric and positive-definite by premultiplying A by its transpose, and apply the
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CG to the normalized cquations: ATAz = ATb. This method is referred to as CGNR. It
requires an additional transposed matrix-vector multiplication compared to the CG. More
importantly, the condition number of ATA is the square of the condition number of A. This
will slow down the convergence significantly by approximately squaring the number of
itcrations, which will be disastrous if A is :il-conditioned.

Another met! ud which is generally considered the most robust iterative solver for large
nonsymmelric systems, is the Generalized Minimum Residual (GMRES). The difficulty
with using this method, is that all previous search directions must be stored in memory
in order to construct cach new one. This means that memory requirements will increase
linearly with iteration number. Since this procedure demands a very large amount of stor-
age, which is usually not available, the GMRES is restarted after m iterations. Breaking
down the GMRES (or GMRES(c0)) into GMRES(m) will slow down the convergence and
increase the number of iterations. A small value of m may also stall the method. There is
no way of finding an optimum value for m, and it is usually chosen in the rang: of 10-50,
depending on the problem size and conditioning of the ceefficient matrix

Tables 4.2 and 4.3 {49, Chap. 3] show the number of opcrations and storage require-
ments, 1espectively, for different iterative methods ignoring preconditioning. The values
given for the GMRES and the GCR are based on the assumption that m << n. It is clear
from the tables that the CG is optimal compared to others in terms of both memory and CPU
tume. Thas m tact reflects the superior advantage of having a symmetric, positive-definite

coefficient matrix.

4.4 Preconditioning

The success of an iterative method for the solution of system (4.1) largely depends on
how well-conditioned the coefficient matrix is. In many practical problems, however, the
coefficient matrix is (nearly) ill-conditioned, especially for nonsymmetric matrices. The

goal of preconditioning is to create a new linear system with a better eigenvalue spectrum,
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Method Storage requirements
Splitting methods 0

Steepest descent n

CG 2n

CGNR 2n
GCR(m) (2m + )n
GMRES(m) mn + %m"’ + O(m)
BiCG 4n
Bi-CGSTAB An

Table 4.2: Storage requircments to solve a system of » lincar equations. Itis assumed Jhat
the storage for the initial approximation o and the right-hand side b can be overwritten at

exit by the final approximation and the final residual.

1.e., with eigenvalues as close together as possible. This will speed up the convergence, and
in some cases, will allow convergence for a previously unstable system.

Applying the left preconditoning matrix \/ to system (4.1), gives the following new
system:

M YA =M1 4.7)

A good preconditioner should 1esemble A, reduce the condition number of the otiginal
system, i.e., (M~ 4) <« r(A), and be easily inverted. For example, when A/ A, M 1A
will reduce to the identity matrix whose cigenvalues are all equal, and system (4.7) is solved
in just one iteration. This is never done in practice since obtaining M s equivalent to
using a direct solver with all its disad vantages (large memory and CPU time).

Preconditioning can be applied in three different ways:
1. right preconditioning (AM~Y)(Mz)=b or AZ=b

2. left preconditioning (M~'A)c =M'b or Az =
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Matrix- Transposed  Vector Linear
Mcthod vector matrix- dot operations
products vector products on vectors
products
Jacobi, GS, SOR (1) - - ]
SGS, SSOR (2) - - 2
Steepest descent 1 - 2 4
CG 1 - 2 6
CGNR 1 1 2 6
GCR(m) 1 - %m +2 m + 4
GMRES(mn) 1 - %m +1 m+ 3
BICG ! 1 2 10
Bi-CGSTAB 2 - 4 12

Table 4.3: No. of operations per iteration for some well-known iterative solvers. For the
sphtting methods, there are no matrix-vector products, but triangular solves with the same

complexity.
3. split precondiiong, (MUY M) =M or Ai=b

where for the third type M is split into two matrices: A = M A/,

Since the Conjugate Gradient method needs a symmetric and positive-definite matrix,
the new coefficient matnx A after applying preconditioning should also have this pruperty.
In the case of nght and left preconditioning, this means that A/ ~'.4 or AM ™! should be
symmetric, positive-definite. As a result, the selection of a preconditioner is somewhat
limited, since A/" ' -4 and AM ~! are not generally symmetric nor definite, even when both
M and A are. For these cases, however, one can use a diagonal (or Jacobi) preconditioner,
which is built by setting:

M = Diag(A) (4.8)

and satisfies the above condition of A being symmetric and positive-definite.
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The effect of the Jacobi preconditioner is to make 1 more diagonally dominant, which
in turn leads to a more uniform distribution of cigenvalues. Thereione it usually has a fa-

vorable effect on the convergence rate. This preconditioner is the simplest and the cheapest

since:
e inverting a diagonal matrix is very straightforward,
e memory requirements is hmited to a vector of length n, and
e its application only costs n multiplications.

Therefore, it is often recommended to try Jacobi preconditioner first before using more

claborate preconditioners.

In the present work, three different diagonal preconditioners (M) are used:

1. m, = a, diagonal Jea h
n
2. my, = Z || 1, -norm JCG-2)
=1
n L2
3 my, = Z(au)2 1y-norm (JeaG b
)=l

where a,; are the elements of the orginal matrix 1L and i, e the diagonal clements of
M. The effect of each of these on convergence ot the CG method is discussed in Chapter S

For a symmetric, positive-defimite preconditioner matnx A7, the difficulty in obtaming a
symmetric, positive-definite M/ -1 (or AN 1), can be overcome by alternatively sphitting

M 1nto two matrices:

M =LE' (4.9)
and using split preconditioning:
(ETYAE™YE"s) = E b (4.10)

where E-'A E- T is symmetric, positive-definite. The cigenvaluesof £ 'A Js T are equal

to those of M1 A, thus indicating the equivalence of the two approaches. The factored
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matrix f¢ can be obtained by the incomplete Cholesky (IC) factorization, or in general, the
incomplete LU (ILU) factorization (for nonsymmetric M ).

For an incomplete factorization, the amount of fill-in is restiicted in order to keep the
cost (time and memory) of implementing the preconditioner low. By definition, ILU(s) or
IC(s) keeps fill elements only from levels 1,2, ..., s. ILU(0) or zero level fill, eliminates
all new nonzeros created during factorization. ILU(1) or first level fill, allows nonzeros
created only by the original entries, while ILU(2) allows fill-in created by at least one entry
from the first level fill, and so on.

ILU(0) and IC(0) preconditioning are the most commonly used incomplete factoriza-
tions, since the constructea matrices have the same data structure as A, and thus the same
memory requirements. For higher-order fill-ins. the memory requirements are not only in-
creasing, but also are not easily predictable. 1C(0) is the preconditioner used in this work,

and its performance will be discussed in Chapter 5.

4.5 Stopping Criteria

Contrary to ducct solvers, iterative methods provide a sequence of approximations to the
exact solution, and hence, it is up to the user to deci e whether or not the calculated result
is acceptabie. For this reason, a criterion is required in order to halt the iterative process
when prescribed conditions are met. The mechanisms to impose the criteria are activated

when either of the following happens:
I. the maximum number of iterations is reached.
2. the solution is acceptable (within the specified tolerance), or

3. the iterative method is stalled or is diverging.

Case 1 The convergence behavior of a particular problem basically depends on the condi-
tioning of the matrix, and the appropriateness of the chosen solver for that problem.

To avoid excessive calculations for the cases where the iterative solver makes no
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progress or the convergence is unacceptably slow, the number of solver iterations (or
matrix-vector multiplications) should be limited. The value of this maximum num-
ber, therefore, depends on the convergence behavior of the problem, which is not
known a priori. It also depends on the desired level of solution accuracy, since higher

accuracy demands a larger number of iterative 11 ps

In the numerical results presented here it has bee.. attempted to assign an optimum
value for the maximum number of solver iterations 10r cach test case, based on the

convergence trend and the preset tolerance.

Case 2 For this case, the criterion is usually based on some norm of residunal: |}, || 'vhere
rr. = b— A x;. The reason for this choice is that for mostiterative solvers the residual

vector is available at each iteration, and one only needs to calculate its norm.

The most commonly used convergence test is:

llrall < < ||l (411
where ¢ is the tolerance. Another conunon test iy
el <« lroll (4 12)

which is equivalent to (4.11) for the case of a zero mitsal guess, r.e., when ry - 0. In

this work, a more general form of (4.11) is used:

Hrall < oot 1O 4 Cans (4 13)

where ¢, and ¢, are relative and absolute tolerances, respectively.

For the case of preconditioning (either right, left, or split), the above criteria still
holds but 7 and b will be replaced by the preconditioned values at no extra cost,

since the iterative method wiil be applied to the preconditioned system.

Case 3 By assigning proper upper limit tolerances, the criteria set forth for the conver-

gence can be used to avoid divergence, as well. In situatiors where the iterative
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process seems to be stalled, one should be careful in setting up a mechanism to stop
the method. The reason is that some iterative methods after a significant number of
iterations with a rather statled pattern suddenly start to converge. The iterative pro-
cess might stall if the matrix is ill-conditioned, and in such a case, a morc efficient

preconditioner should be used.



Chapter 5

Numerical Results

In this chapter, the least-squaies method, along with the adaptation method, are apphed
to three well-known benchmarks, including supersonic and transonic flows. The cliects
of preconditioning, artificial viscosity, and adaptation are studicd for cach test case and
comparison is made with analytical solutions or published results. All the computations
presented are performed on a Silicon Graphics Indy computer, with one 100 MIiz R4000

processor.

5.1 The Shock-Reflection Problem

The first test case is the reflection of a shock from a solid wall, as shownin Fig. 5.1 The
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Figure 5.1: Reflection of a shock from a solid wall: the computational domain.
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domain 1s itially discretized uniformly with 60x20 bilinear rectangular elements. The

boundary conditions are:

p=1.0 p=17

infet { "7 29 upper boundary u=2.6193
v=20.0 v = —0.5063
p=0.7143 p = 15282

For the lower boundary, the no-penetration boundary condition is imposed by setting v = 0.
At the exit, no boundary condition is specified since the flow is supersonic. The free stream
density and speed of sound are used for non-dimensionalization. The values at the upper
boundary are used as the initial guess.

To study the effect of preconditioning on the performance of the Conjugate Gradient
(CG) rteran’ve solver, the shock reflection problem is solved using a Jacobi preconditioner
(JCG) and an incomplete Cholesky preconditioner with a zero level fill-in (ICCG(0)). Fig-
ure 5.2 shows the convergence history of the iterative solver at the 30th global iteration.

The telative and absolute tolerances (section 4.5) for the solver are set to:
— O . [
G = 10 . Cabs = 11 (5.1

and the maxamum number of solver iterations is set to a very large number in order to
obtan an accurate solution by allowing the residual of the iterative solver to drop six orders
of magnitude in all global iterations.

The Jacobi preconditioners JCG-1, JCG-2, and JCG-3 (section 4.4) are all applied from
the left. As mentioned in Chapter 4, the ICCG(0) should be applied from both left and
nght using split preconditioning, but unfortunately this option was still not available in the
iterative solver package used. The results presented for the ICCG(0) are therefore for the

left-preconditioning only.!

R Applying the incomplete Cholesky preconditioner with zero level of fill-in from the left will destroy the
numerical symmetry of the linear system, even though the matrix will sull preserve its structural symmetry.
As a 1esult, the convergence of the CG method is no longer guaranteed for this asymmetnc system. The
preconditioned matrix 1a this case was close to a symmetric and positive-definite matrix, and it was therefore

still possible to obtain a converged solution with the left ICCG(0).



Method CG JCG-1 I1CG-2 JCG-3 ICCG(O)]

CPU time (s) 2634 20.16 2080 2047 17.05
Solver iterations | 301 200 210 203 40

Table 5.1: Computation time for different preconditioned iterative methods.

Figure 5.2 shows that using the very simple Jacobi preconditioner, the residual of the
CG method dropped two orders of magnitude, and the number of iterations were reduced
by about 33%. The JCG-2 method performs better than the JCG-1 and JCG-3 methods. The
diagonal elements of the JCG-2 preconditioner are constructed using the L -norm (section
4.4) and are therefore larger, leading to a more diagonalized coefficient matiix which has
better convergence properties. The incomplete Cholesky preconditioner, as expected, has
a much better conveigence rate. The cost of its usage, however, 1s of the same order as the
Jacobi preconditioner (Table 5.1) because it requires factorization and more vector-matiin
products.

The convergence 1:ate and overall time history of different preconditoners e shown in
Fig. 5.3. Since the residual of the iterative solver s allowed to drop six orders ol magmtude
at each iteration, the convergence history of all the methods hie on the same curve.

In the present numerical examples, the solution at steady-state 1s desired, and theretore
only an approximate solution at cach time level is required, and less stringent conditions
can be imposed on the iterative solver  The shock reflection problem is solved agam by
setting:

€rel = 10 —2 ' Caby = 10 ! (52)

and the maximum number of solver iterations to 150. It should be noted that the ¢, must
be less than the convergence tolerance of the least-squares method ¢ . The ¢4, is the lower
limit for the solver residual, and since the initial residual of the solver is that of the lcast-
squares method, €545 > €5 would mean that no operations will be performed by the solver
on the linear system. Moreover, if €4, is chosen to be equal to the global tolerance, the

residual of the least-squares method will oscillate when it becomes of the same order of the
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global tolerance, hence not being able to drop below it. The maximum number of solver
iterations is chosen based on the convergence rate of the JCG’s in Fig. 5.3, and seems to be
a proper upper limit.

The results obtained after changing the solver parameters are shown in Fig. 5.4. It is
seen that the convergence history of all the methods are almost the same as in Fig. 5.3,
except for the CG method which requires 6 more iterations to converge. The important
consequence of this optimization is the drop in the overall CPU time by approximately
50%, which is quite significant. To show that the quality of the solution is not affected, the
pressute at y = 0.5 is plotted in Fig. 5.5. The last item in the legend: ”All methods; rel.
error=1.0E-6" refers to the solution of all methods before imposing these. As can be seen
from the figure, the accuracy of the solution is preserved despite reducing €,..; and €.

The performance of the JCG-2 method applied as a nght-preconditioner is also stud-
ied and compared with the left JCG-2 method (Fig. 5.6). The CPU time for the right-
preconditioner 1s 682.1 seconds compared to 632.4 scconds for the left-preconditioner,
showing about 8% increase. The 1eason 1s that for the left-preconditioning, the night-
hand side vector is premultiphed by the inverse of the preconditioner matrix (section 4.4),
while 1t remains intact for the nght-preconditioning.  Therefore, the initial 1esidual of
the nteratve solver for the left-preconditioning would be lower than that for the right-
preconditioning, thereby reducing the number of solver iterations and, consequently, the
computation time. For the rest of the computations, therefore. the JCG-2 method is applied
as a lelt-preconditioner.?

‘The same problem is also solved using a banded Cholesky direct solver. The com-
putation time is 34 seconds per iteration, and 2074 seconds overall, which is 3.28 times
higher than the optimized JCG-2 iterative method, clearly indicating the advantage of us-
ing iterative solvers. The savings in the computation time for the iterative solver compared

to a direct solver would be more pronounced for problems of larger size, as outlined in

“Since there 1s a possibihity that ICCG(0) when applied as both left- and right-preconditioner might have

a better performance than the JCG-2 preconditioner, it is excluded in making this conclusion.




At CPUume () No. of iterations

0.05 933.172 108
0.1 632.424 61
0.15 554.085 46

Table 5.2: Computation time for different time steps.

Chapter 4.

The effect of artificial viscosity on the solution is examined by using different tme
steps to attain the steady-state solution. It was mentioned in Chapter 2 that the tume step
is the only parameter which controls the amount of artificial viscosity in the least-squates
method. Figure 5.7 shows the pressure contours using different time steps . As At inc.cases,
more artificial viscosity is added to the solution, and therefore the shock 18 more smeared
At the other extreme, a very small amount of artificral viscosity, which corresponds to very
small At, tends to destabilize the solution by creaung oscillations at discontimutties

The effect of artificial viscosity on the solution near the shock s demonstrated i g
ure 5.8. which shows the pressuie disttibution at = 05 for diffesent time steps. The
convergence istory for diffetent Af's1s shown m Figuie 5.9, and the conesponding €U
times in Table 5 2

The results used for the adaptation should be of such a quality that demonstrate at least
the basic phenomena happening in the flow. If the results have poor quality, many adaptive
cycles will be 1equired to achieve an acceptable solution. It is also possible that an accurate
solution may never be achieved. A more accurate mital flow solution obtined, for exam
ple, by using a finer grid would need a lower number of adaptation cycles. Nevertheless,
these cycles are generally computationally more expensive, because of increased numbetr
of nodes which means larger CPU time.

Based on the results for different time steps, the solution corresponding to Al 0.1
is chosen as the input data for the adaptation, since the shock 1s not too smeared, and

the corresponding CPU time is moderate. The shock for At = 0.05 has better resolution
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compared to the others, but the corresponding CPU time is very high. Moreover, the results
for larger At's after one cycle of adaptation would most likely be as good as those for At =
0.05.

Figures 5.10, and 5.11 show the mesh and the flow solution for the first four adaptive
cycles usig A = 0.1. The mesh gets finer in the vicinity of the shock after each adap-
tation. ‘This s especially more pronounced in the stronger incident shock. The pressure
distribution after cach adaptation 1s shown in Figure 5.12. There is very little difference
between the results of the 3rd and 4th cycles. This indicates that the present amount of
aitificial viscosity 1s high for the size of the mesh near the shock, and it must be reduced if
better shock resolution is desired. The time step is therefore reduced to At = 0.05 for the
3rd cycle, and the computation is continued up to the Sth cycle with the same time step.

The mesh and the corresponding solution for A¢ = 0.05 are shown in Figures 5.13, and
S 14 The mesh for the 3rd cycle is the same as the one used for At = 0.1. Figure 5.15
shows the improvements obtained 1 resolving the shock (especially the reflected shock)
by 1educing the amount of artificral viscosity.

The adapted meshes in Figs 5.10 and 5.13 show how the adaptive method relocates the
clements and aligns them with the shock, where the approximation ertor is high due to the
sharp gradients. In other parts of the domain, however, the elements are stretched since the
solution 1s smooth and without any significant gradients. This behavior is consistent with
the theory outlined in Chapter 3.

igure 5.16 shows the evolution of the mesh and the solution during the five cycles of
adaptation. The convergence and time histories are shown in Figure 5.17. The CPU time
has surprisingly reduced in the 3rd and the 4th adaptive cycles despite using a lower time
step. The reason can be seen from Figure 5.18 where the number of solver iterations is
reduced significantly in the 3rd cycle, thus leading to a smaller CPU time. The reduction
in the number of the CG iterations implies that the conditioning of the coefficient matrix
has improved. This improvement could be attributed to larger diagonal elements in the

cocfticient matrix which contain 1/At terms.
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The shock reflection problem is also solved on a four times finer uniform grid (120x40
elements) using At = 0.05, for comparison with the adaptive procedure. The pressuie
contours are shown in Figure 5.19, and the comparison with the adapted solution is made
in Figure 5.20. It is evident from these figures that, the solution on the fine giid is not very
accurate compared to the adapted solution, especially for the reflected shock, indicating
the importance of compatibility of the grid orientation with the flow structure in obtaming
accurate numerical results without using more clements.

The computation time for the fine grid is 4324 seconds compared to the 7036 seconds
for the five cycles of adaptation, and the storage requirements is close to four times higher
than that of the coarse grid. The high value of the CPU time and the memory, as well as the

relative low accuracy of the fine grid clearly demonstrate the advantage ol using adaptation
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Figure 5.14: Adapted solution after ieducing the antiticral viscosity, At 005
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At =0.05.
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Figure 5.16 Evolution of the grid and the solution during the adaptation; At = 0.05 for the

last three cycles.
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Figure 5.19: Pressure contours for the fine grid, At = 0.05.
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5.2 Supersonic Channel Flow

The second test case is that of supersonic flow in a channel with a circular arc bump on the
lower wall. The computational domain for this problem is shown in Figure 5.21, and has

the following dimensions;
t/c = 0.04 ; L=c=1.0
The boundary conditions at inlet are:
p=10 , =165 , v=00 , p=0.7143

On walls the no-penetration boundary condition is imposed, and the exit boundary is free.
The free stream density and speed of sound are used to non-dimensionalize the variables.
The grid consists of 64x 16 uniformly distributed bilinear rectangular clements, with 16
clements in the y-direction, 22 elements on the bump, and 21 clements on ecach side of the
bump.

The test case is run for three different time steps to demonstrate the effect of artificial
viscosity on the solution. The results are shown in Figure 5.22. The leading- and trailing-
cdge shocks, as well as the interaction of the trailing-cdge shock with the reflected shock
are quahtatively well-captuted. As expected, the shocks are smeared for lage At’s, and are

sharper with smaller A¢’s, which correspond to smaller amounts of artificial viscosity. This
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Figure 5.21: The computational domain for the channel flow.
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At  CPU time(s) No. of iterations

0.05 666.08 105
0.1 426.11 59
0.2 327.84 36

Table 5.3: Computation time for different time steps.

is evident in Fig. 5.23, where the pressure at the cross-section y = 0.2 which cuts through
three shocks (leading-edge, trailing-edge, and the reflected one) is plotted. All the shocks
are sharper for At = 0.05, but the profile of the leading-edge shock has an undershoot.
The convergence history for different time steps 1s shown in Figure 5.24, and the total CPU
time is given in Table 5.3.

A comparison between the quality of the solution and the CPU time for different time
steps shows that the results for A? = 0.1 are the suitable ones to be used tor the adaptaton.
The reason is that the shocks have a moderate resolution and not too smeared as for At
0.2, and basic features of the flow are clearly captured. Morcover, the CPU time for 2/
0.1 is 36% less than that for A¢ = 0.05, and not too high to be considered expensive.

Before starting the adaptation, the patameters of the iterative solver we optimized in
order to reduce the computation time. The solver 15 chosen to be the Jacobr preconditioned
CG method (JCG-2) due to its good performance for the previous test case This assump
tion is verified later.

The parameters are first set to those of S 1, with the maximum number of neiotons
given a very large value. This will ensute high accutacy for the calculated solution. The
computation time for this case is 751.4 seconds The convergence history of the iterative
solver with these parameters is shown in Figure 5.25 at selected global iterations. Based
on this figure, the new value for the maximum number of iterations is set to 100, and the
tolerances are set to:

€rel = 10—2 : Cabs = 10~7

This value for ¢, is chosen based on the experience from the previous test case.
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Iterative method CPU time(s)

JCG-1 433.35
JCG-2 426.11
JCG-3 434.04

Table 5.4: Computation time for different Jacobi preconditioned iterative methods.

The convergence history and the corresponding pressure distribution with these new
parameters are shown in Figures 5.26 and 5.27. The flow solver residual is virtually the
same as for the non-optimized case, and it is therefore expected to obtain the same results.
This is confirmed by Fig 5.27, where the pressure profiles lie on the same curve. Without
losing accuracy, the computation time for the optimized case is 43% less.

The same problem is also solved using the JCG-1 and JCG-3 iterative methods, and
with the optimized parameters. The accuracy of the results was found to be the same as
for the JCG-2 method. The computation time, however, was higher for these methods
(Table 5.4). It is, theiefore, justified to use the JCG-2 method as the solver.

Using the pressure as the key variable, the results for A7 = 0.1 are then used to adapt the
mesh. Figures 5.28 and 5.29 show the mesh and the corresponding solution. The adaptation
1s continued until no major improvements are seen 1 the adapted results compared to the
previous cycle. The mesh and pressure contours of the 3rd and the 4th cycles mn Figures 5.28
and 5.29 are only shghtly different. This is more evident in Figure 5.30. which shows the
pressute distibution actoss the shocks. The shocks (especially the leading-edge shock)
become sharper after cach adaptation. Since no significant impiovement in the solution is
achieved after the 3id cycle of adaptation, indicating a high amount of artificial viscosity,
the time step is teduced 1o 0.05 for the 3rd cycle, and the computation is continued until
the Stheycle.

Figures 5.31 and 5.32 show the mesh and the results for this lower time step. The
improvements in the shock resolution is evident from Figure 5.33, where the leading-edge

shock is quite sharp, and the trailing-edge and the reflected shock profiles are close to
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vertical. The evolution of the shock and solution during the five cycles of adaptation arc
demonstrated in Figure 5.34.

Figure 5.35 shows the convergence and time histores before and after reducing the time
step. The convergence history of the iterative solver 1s shown  Figure 5.36. Smmla to
the previous test case, the number of iterations at the 3rd cycle is reduced after lowering
the time step, indicating the improvement of the conditioning of the matrix. This reduc-
tion, however, has not led to any savings in the CPU time, because the number of global
iterations is increased in this cycle, resulting in an overall merease of the computation time.

The Mach number distribution on the lower and upper walls of the channel before and
after the adaptation is plotted in Figures 5.37 and 5.38, respectively. The adaptation has
improved the resolution of the shock and damped out the overshoot before the upper-wall
shock. On the lower wall, there are some non-physical oscillations near the leading- and
trailing-edges, most probably due to the use of non-conservative formulation.

The adapted solution is compared with the published results of Eidelman er al. {14] and
Jiang et al. [31] in Figure 5.39. Since these authors have not used an adaptive method, the
shock is more smeared in their resalts. Overall, the adapted least-squares method shows

good agreement, except for the oscillations at the leading- and traihng-edges
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Figure 5.28: Orig'nal and adapted grids (after four cycles of adaptation), At = 0.1.
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is

Figure 5.29: Pressure contours of the ongmal and adapted solutions (after four cycles of

adaptation), At = 0.1.
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Frgure 5,32 Pressure contours of adapted solution after reducing the artificial viscosity,

At = 0.05
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Figure 5.35: Convergence and time histories of the flow solver with adaptive proceduie
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Frgure 5.37: Mach number distribution on the lower wall before and after adaptation.
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5.3 Transonic Channel Flow

The least squares method s also apphed to the transonie flow in a channel The com-
putaionid doman 15 shown m Fig 5 21 wath o circular are bump. having the following

dimensions

e 01 L~ - 10

The gnd consists of bilinear rectangular elements. with 32 elements unmiformly distributed
on the bump. and 16 clements on each wide of 1t centrally clustered with respect to the
bump (Fig 540y ‘The height of the channel 1s divided into 16 elements which are clustered
toward the bottom wall. with the mimmmum element size on the wall equal to 0.03125 The
Mach number at mlet s Y - 0675, which s large enough to create a supersonic pocket

on the bump tollowed by a shock The inlet and exit boundary conditions are

p - 10
infet uo 0679 exit { p = 1.5282
00

On the Tower and upper walls, the no-penctration boundary condition 15 imposed

To show the eftect of artificial viscosity on the solution and also to select proper results
for the adaptation, the test case 1s run for three different time steps. The pressure contours
are plotted in Figure 541 The top solution corresponds to At = 0.1 where the shock
is rather sharp  As the ume step increases more artificial viscosity s added to the flow
and. theretore, the shock becomes weaker and spreads over a larger number of elements
This v also demonstrated by the Mach number distribution on the lower wall shown 1n
Figure 5.42  The shock Mach number 15 considerably reduced by increasing At. The
convergence history of the flow solver is shown i Figure 5.43, and the corresponding CPU
time 1 Table S 5

For the solution of the linear equations, the Jacobi preconditioned Conjugate Gradient

method (JOCG-2) 18 used with the following reduced tolerances:

Ga =107 ey =107



N

A CPU ume (sY No o iterations

0] 44842 6208
02 20375 01
03 21312 200

Table S5 Computation time tor difterent time steps

and the maximum number of solver iterations 1s set to 100 Based on the CPU time and
the resolution of the shock. the solution for At 0 3 as chosen tor the adaptanon, wath the
pressure as the key vanable for error estimation

The gnds and cortesponding solutions after two cycles of adaptation are shown m g
ures 544 and 545 By adapting, the mesh becomes finer at the shock posttion and also at
the leading- and traihing-edges, where there are singulanties i the solution due to the sud-
den change 1n the flow direction  Despite having a finer mesh after the second adaptation,
the shock resolution 1s almost the same as in the first adaptation, mdicating a high wmount
of artificial viscostty. The artiheral viscoaty s lowered by reducmyg the e step from 0 3
to (' 1, and the computations ate 1iepeated on the second adapted mesh

The pressuie contours after reducing the artiticial viscosty e shown i Frigrure 5446
The Mach number distribution i Iagure 5.47 shows the eflects of both adaptation and
reducing the artificial viscosity on the solution "The adaptaiion has hittle etfect on the Mach
number distribution on the upper wall since there 15 no significant change m the solution
gradients. On the lower wall, however, the shock has become quite sharp and 15 captured
in 6 adapted elements, equivalent to 2 elements of the original mesh The convergence and
time histories of the least-squares method includmg the adaptive procedure we shownn
Figure 5.48.

The adapted results are compared to those of Ni [41] and Eidelman et al. [14]
Figure 5.49. The position of the shock is approximately at 72% of the chord, and the
maximum Mach number is 1.323, both in very good agreement with these results The

deviation is, however, in the Mach number distribution after the shock  Figure 5 50 shows
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the Mach contours for the final adapted case 1S seen that there 18 a viscous eifect near
the lower wall (hmited to the fust row of the elements) similar to a boundary faver This
viscous layer has hittle etfect on the solution betore the shock  After the shock. however.
the flow becomes rotational near the wall and hence adversely atfects this layer, Jeading to
ander-estimation of the Mach numbet

Fagure 551 shows that using larger A1 e o more artificial viscosity, worsens the situ-
ation both ahead and atter the shockh This 1s more evident from Fig S 47, where the Mach
number profile behimd the bump is elevated atter reducing At in the second adaptive cycle
The figure also shows that as the shock becomes stronger, thus generating more vorticty,
the twl branch of the Mach number profile 15 reduced

To gan further insieht into the effect of artihcial viscosity on the accuracy of the so-

lution near the wall, the mass flow from the sohd boundaries was calculated by evaluating

/ (v dr

! " - (5.3)

/ Jl
A

where I', 1s the sohd wall boundary  This mtegral s zero in an analvuical method. In the

the following integral

numerncal approach, however, it has some timite value representing the amount of enor n
numencal approximation at solid boundanes For the final adapted solution where Af -
01 (Fig 549 o1 550). this mtegral was of the order of O(10 '), and increased by half
orders of magnitnde atter adding artificial viscosity, 1.e., by increasing the ume step from

011003
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Chapter 6

Conclusions and Future Work

In thas thesis the least-squares finte element method was used to solve the compressible
Fuler equatons. The Euler equations, written i the form of a first-order non-hnear system
of PDEs, we hineanized using the Newton method  The apphication of the least-squares
method to this fist-order system leads to a system of hinear algebraic equations., where the
cocthiaent matnx s symmetnic and positive-detimte

Fhe symmetry and positive definite propetrty. one of the mayjor advantages of the least-
squanes inethod, allows the hnear algebraie equations to be solved very efticiently using the
Conmugate Gradient (CG)yaterauve method. To mmprove the convergence rate of the iteratne
solver, two different preconditioners 1 e dragonal and mcomplete Cholesky, were applied

The emphasis was on the diagonal (or Jacobr) preconditioner, due to 1ts case of 1m-
plementation and reduced cost m terms ot both memory and CFU time.  The diagonal
preconditioner JCG-2, whose elements were constructed based on the Ly-norm of the row
clements of the coefficient matnix, had better performance and, therefore, was the selected
preconditiongr,

It was shown that by assigning proper values to the user-defined parameters of the itera-
tive solver, i.e., relative and absolute tolerances and maximum number of solver iterations,
the computation time could be reduced by up to 50%. This significant improvement was

achieved without any degradation of the solution accuracy.
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The major goals of this thesis were D to study the ability of the feast squares method in
capturing shocks, and 2) the pertormance ot the adaptive method and the Jevel ot accnracy
that could be attined by adapting the soluton o accomphish this, two supersonie test
cases including shock 1ettecton and interaction, and a tansonic test case were studied
The numerical results without adaptatton show that the least squares method s able to
correctly captuie the shocks and their postion With the nunmmum amount of artihicral
viscosity, 1 e, on the verge of having oscillations, the quality ot the captured shocks was
still moderate. This rather low quality s attributed o the attictal viscostty mechanism ol
the least-squares method. which s first-order with a constant coethicrent

To mmprove the accuracy. the least-squares method was coupled with an adaptive
method, whose distinet feature 15 being sensitive to the onented flow structures Jike shock
waves  The resudts after the adaptaton clearly show that, as expected, the elements e
clustered near the shocks. with then edgets) ahigned with them Signaihicant improsements
i the shock resolution atter the adaptation for all test problems. indicate the robustness and
very good petformance ot this directionally adaptine method, despite using rather coarse
gnids

To improve the artficral viscostty mechanism of the Jeast squares method, seseral op

tons miay be considered m the tuture work

I The Flux-Conrected- hransport (-1 method may be combimed with the feast
squares method to control the amount of wtticral viscosity at discontmumties s
leads to a igh-resolution scheme, where the shocks are early captuied For the
Taylor-Galerkin method {12], which hke the least-squares method has no free pa
rameters and its artuficial viscosity solely depends on the vadue of the time step, a

similar combmation was used by Lohner eral |36], leading to accurate resufts

2. Since e shock wave 15 a non-lhincar phenomenon, more accurate results would be
obtained if the artificial viscosity mechanism as non-hnear as well  This can be

achieved by minimizing the /{,-norm of the equations residuals, which leads 1o
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the addition of an extra aruficial +1scosity term proportional to the solution gradi-

¢t rather than a constant amount as in the 1, method.

3 A pscudo-time step may be defined as the coefficient of the artficial viscosity term.
different from the physical time step used for the rest of the terms 1n the formulation.
This pscudo-time step may contain free parameters and vary locally, thus cortrolling
the amount of artiicial viscosity added to the flow more accurately. Another advan-
tage of using the pscudo-time step for the artiiicial viscosity term, is that one can
use large time steps to speed up the convergence without deteriorating the solution

accuracy by mtroducing large amounts of artificial viscosity.

The present method of applying the flow tangency boundary condition was found to be
accurate. The other method of applying this type of boundary condition, 1.e., the penalty or
funcuona! method (section 2.4.2) was also employed, ieading to virtually the same results.
The important point in employing this method is determination of the relative weight w
which effects the overall accuracy of the solution. Zeitoun ef al. [54) recently proposed a

systematic method, which can be used to determne the optimal value of the weight.
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Appendix A

Derivation of the Euler-Lagrange

Equation

The Euler-Lagrange equation conresponding to the weak form:

. . () RN )
/ T TR AN 2 b ~i,l 1+ A" ,( wde O (A D
. (i dr

15 derived by expanding the terms and integratung by paits as follows

) ’ . Jue
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r
+ boundary mtegral
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:/ [(1 ; —\1‘1”7;‘> (,“nH AT ,,’I‘”)] wdr 1 boundary mtegial (AD)
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Setting the terms mside the bracket equal to zcro gives the Euler-Lagrange equation

or
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Appendix B

Derivation of the Energy Equation in

Texrms of Pressure

Ior the Euler equations. where the flud 15 considered to be inviserd and non heat conduct
ing. the energy equation can be wtten i the tollowing non conseryative form

[ poDp

} (B
l” /)‘ l)/

where e 1s the mtemal energy per umt mass, pas the deasity, and poas the pressue Using

the state relation

' clp o (13 )
One can witle
e e [y ot 1)
1 ( ) ) )/ : ( ) ! (3
dp 1 dp p 1)1
Substitutmg tor Do D trom g (B 2 mto Lg o8 1), and notimg that fron the continunty
cquation,
])/) .
AR (3.4)
ne !
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Dy p dp ’

S ;)V-V = () (135)

Dt + (U(J
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Irom the thermodynamic relation:

Tds - de — % dp
7

dey o p
ap /. - o

where s 15 the entropy, we have:

Using the state ielation (B.2), along a hine of constant entropy one can write:

» ,
(de), = ((‘(‘ ) dp + <()( ) dp
' Jdp/, o/,
Je: ((‘)(‘ (')r) <
prull BRI o
<()/)>s p ) dp »

o

By mtioducing the defimuon of the speed of sound ¢,
, Ip
(
dp )
and using g (B ) equaton (B 8) becomes
1 (d()
N/,
(‘lh )
Ay )

Substitutimy this equatton into Eq.(B 5) gives:

i

Dp ,
N
e
For a perfect gas.
2P
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/)

where 5y is the specific heat ratio. Therefore, the encigy equation can be written as:

Dp ~
— +pV-V =0
Di +p
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