A4

National Library
of Canada

Acquisiions and
Bibhographic Services Branch

395 Wellington Street

Bibkothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa, Uuntano
K1A ON4 K1A ON4

NOTICE

The auality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pagec may have indistinct
print especially if the original
nages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. (-30, and
subsequent amendments.

Canada

Ottewa (Ontano)

Youw e Ve M eveen o

(R o Notre (ererens v

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines nages peut laisser a
désirer, surtout si les pages
wiginales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

AN APPROACH TO CONCURRENT ENGINEERING OF
USER INTERFACES

SAl RANI VALLURUPALLI

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1995
(© SA1 RANI VALLURUPALLI, 1995

I " I National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

305 vwehinyion Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

The author has granted an
irrcvocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your e Volie rdferen ¢

Cur fugr - Nolew 1@'0ren ¢

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’'auteur conserve la propriété du
droit d’auteur qui protege sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent © étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10906-2

Canada

ABSTRACT

AN APPROACH TO CONCURRENT ENGINEERING
OF USER INTERFACES

Sai Rani Vallurupalli

The user interface of a software system is an artifact, through which the user
and the system interact with each other. The user interface supports the user with a
medium for communicating with the underlying software system. Therefore, it is often
the principal determinant of a system’s success. It is not given adequate importance in
the development of software systems. There is no software process model where in the
necessary importance is given to the various stages of the user interface development.
In today’s competitive world of computer applications, it has become necessary for
fast prototyping of software systems. This has become more essential with regard
to the user interface subsystem which exhibits look and feel characteristics. There
should be a software process model which will let the user interface development
and the computational part of the software development, to take place more or less
concurrently. In this thesis, we propose an Advanced Evolutionary Prototyping Model.
It has two characteristics: (a) The various stages of user interface development are
clearly identified; (b) It supports the concurrent development of the user interface

with other parts of the software.

The Advanced Evolutionary Prototyping Model perceives the software devel-
opment as two loosely coupled, concurrent processes: the user interface process, and
the computational process. The activities involved during the various phases of the
computational process affect the user interface process only at the pre-determined syn-
chronization points in the Advanced Evolutionary Prototyping Model. The Concur-
rent User Interface Methodology(CUIM), developed and discussed in this thesis, pro-
vides a systematic procedure to put the Advanced Evolutionary Prototyping Model

into practice.

As a part of CUIM, different notations are proposed for various stages of the
user interface development. By mcans of a case study, this thesis also demonstrates
the feastbility of the Advanced Evolutionary Prototyping Model in general, and the
CUIM methodology in particular. We believe that the various steps in CUIM when
followed, would result in an easy to use, and casy to learn user interface for a given

software system, and reduce the total software development time.

Dedication

To my loving husband
Srinivas

Acknowledgment

At this moment, I would like to thank many people who helped me to get

through the tough times and who made this thesis possible.

First and foremost, I would like to thank my supervisor Dr. 'T'. Radhakrishnan
for both his supervision and financial support. I am very thankful for the opportunity
I had, to work with Dr. Radhakrishnan during my master’s. His many meetings
were a source of motivation and inspiration throughout my rescarch. Moreover, his
insistence on ezcellence and quality is a learned lesson which 1 will carry during the
rest of my career. I consider Dr. Radhakrishnan to be much more than a supervisor.

He is a father figure who cares very deeply about the welfare of his students.

The financial support provided for my work, by BNR and NSERC, through a

research grant to Dr. T. Radhakrishnan is gratefully acknowledged.

I would like to thank the undergraduate students in Computer Science De
partmeni, for their cooperation during the testing of the user interface developed.
Next, I would like to thank Joanna Sicnkiewicz, and Judit Barki whom I could al-
ways count on for being my good friends. Our time in the lab, discussing diflerent
issues is memorable. I would also like to thank all my family friends who helped me

when the need came.

To my daddy & amma, to whom this means so much, I want to thank them
for their love and encouragement. Also to my brother-in-law and my dear sister for

their love and inspiration, and for their e-mails which always made me laugh.

Last, and the most, I like to give a special thanks to my husband who was
always there whenever times became difficult. I deeply appreciate his care, warmth,

and moral support during my studies at Concordia.

vi

Contents

List of Tables
List of Figures

1 Introduction
1.1 Software Crisis e
1.2 State of the User Interface Development Process
1.3 Supporting Concurrency in the Software Development Process . .

1.4 Overviewof thethesis

2 User Interface Design Models

21 WhatisaModel? o oo
2.2 Software Process Models
2.3 User Interface Design versus Software Design
2.4 Designing the User Interface

vii

xi

x1ii

2.4.1 Using Well-Defined Principles and Techniques
2.4.2 Mimicking the Existing Software Process Models.,
243 Usirg Ad-hoc Methods o0,
2.4.4 Other Existing Models for User Interface Design
Conclusion e

Concurrent Engineering - An Overview

3.1 ADefinition e
3.2 Extending the Concept to User Interfaces - Advantages
3.3 Concurrent Enginecring in User Interfaces 0. .0 . 0 L.
3.3.1 Methodologies that Support Concurrency in User Interfaces
332 Evolutionof CUIM
3.4 Applying the Advanced Fvolutionary Protolyping Model
3.5 Dialog Specificationin CUIM
3.5.1 Extended State Transition Diagrams
3.5.2 Interaction Diagrams
3.6 Summary e e e e e e

User Interface Analysis in CUIM

4.1 Constructing the User Profile

viil

16

I8

20

21

LD hod

-

29

30

30

31

38

17

18

4.2 Specifying the Dialog between the User and the Interface 61
4.3 Specifying the Interactions between the IOBs and COBs 73
4.4 Verifying the Extended State Diagrams with the Interaction Diagrams 79
4.5 Ensuring Cons.stency between IAD& CAD 83
User Interface Design in CUIM 86
5.1 Dialog Design o o o e 87
5.1.1 Identifying Appropriate Dialog Styles - Cell Matrix Method . 87
5.1.2 Integrating the Multiple Dialog Styles. 94
5.2 Refining the Dialog between the User & the Interface 95
5.3 Static Structure of the Interface 100
5.3.1 Listing the Class Charts 100
5.3.2 Depicting the Spatial Organization of the Interface 103
5.3.3 Spccifying the Class Descriptions 108
5.4 System Interactions o . 111
5.4.1 Behavioral Specification 111
5.4.2 User Interface Configuration 114
5.5 ReviewingtheDesign 123
5.6 Ensuring Consistency between IAD&IDD 132
5.7 Ensuring Consistency between IDD& CDD 136

X

6 Implementation and Conclusions 139

6.1

Implementing the User Interface00 L. 139
Testing the User Interface [BY!
The Hyper-media Design Tool0 ... 152
Conclusions e 15h
Future Work L 157

List of Tables

1.1

4.2

4.3

4.1

4.5

4.6

4.7

4.9

4.10

4.11

5.1

5.2

User Profile e 60
User Goals e e 62
Overview of the Dialog Specifications 63
Data Dictionary for transition values to & from a functioncall 68

Data Dictionary for IOBsin CAS 74
Data Dictionary for COBsin CAS. 75
Data Dictionary for Internal Events in Interaction Diagrams 76
State-IOB Association Table 82
FunctionCall-COB Association Table 82
Event Verification Table 83
Necessary Changes tothe COBs 85
Dual view Association Table 126
Class Attribute Table 128
Command-Callback Table 130

xi

5.4

3.5

5.6

5.8

5.9

6.1

6.2

6.3

Constraint-Tnvariant Association Table

Event-Callback Table . . .

Event Correspondance Table .

Node-Class Association Table

Action Response Table

Overview Table

Callback Verification Table . .

Error List e

Test Results o o e e e e e e

xii

131

132

133

134

135

137

145

List of Figures

2.1

3.1

3.2

3.3

3.4

3.6

4.1

4.2

4.3

The Spiral Model (from Boehm 88)
Advanced Evolutionary Prototyping Model
Current Advising Procedure
Automated Advising Procedure
Symbols in Extended State Transition Diagrams
Basic Symbols used to build Interaction Diagrams
Interaction Diagram: when the user enters the account number. . . .
Top level state transition diagram of the Course Advising System

The ‘pref choi’ sub-conversation
The ‘pref course’ sub-conversation
The ‘pref time’ sub-conversation
The ‘pref campus’ sub-conversation
The ‘pref load’ sub-conversation

The ‘unpref choi’ sub-conversation

xiii

4.8 The ‘unpref course’ sub-conversation, 70
4.9 The ‘unpref time’ sub-conversation 71
4.10 The ‘unpref campus' sub-conversation 71
4.11 The ‘unpref load’ sub-conversation 72
4.12 The ‘advise’ sub-conversation 72
4.13 Interaction Diagrams: Set One. 7
4.14 Interaction Diagrams: Set Two 78
4.15 Interaction Diagrams: Set Three., 78
4.16 Interaction Diagrams: Set Four 79
4.17 Verification Process oo 81

5.1 Appropriate Dialog Styles - Cell Matrix Mecthod (from [Mayh92]) . . 88

5.2 Appropriate Dialog Styles - First Pass 90
5.3 Appropriate Dialog Styles - Second Pass 92
5.4 The Initiator & Messenger Interfaces 93
5.5 The Select Interface L Lo oL 93
5.6 The Preferences Interface. 93
5.7 The Constraints Interface 94
5.8 The AdvisorInterface. L. 9

5.9 Modified Top level state transition diagram of the Course Advising
System e e e 96

Xiv

5.10

5.15

5.16

6.2

The Modified ‘pref choi’ sub-conversation
The Modified ‘unpref choi’ sub-conversation
The Modified ‘advise’ sub-conversation
Class Charts for the InterfaceClasses,
Spatial Organization Using SON Notation
Interface Classes Spatial Layout - Toplevel View
Spatial Layout - of the Chouccr, Advisor & Messenger Classes

Class Descriptions: setone o o oo
Class Descriptions: set two0 ...
Notations used in TROM

Initiator Behavior Specification

Messenger Behavior Specification

Advisor Behavior Specification oo 0oL L.
Selector Behavior Specification. oL L
Choicer Behavior Specification o oL,
User Behaviour with different [I0Bs,
User Interface Configuration Specification - Course Advising System .
The initiator Interface

The messenger Interface

XV

112

115

116

124

6.3

6.4

6.5

6.6

6.7

The selector Interface

The preferences Interface . .

The constraints Interface
The advisor Interface

The Hyper-media Node-Link Diagram

Xvi

Chapter 1

Introduction

Computers are playing a vital role in our day to day life. They are being used in
almost all the disciplines of life by people with varying background, knowledge and
task experience. Both, computer users and software developers accept that just being
able to do a task on a computer is not the only important factor. The question asked
now is: “Can this task be performed with ease, on a computer ?” Therefore, user

interface design of computer systems has become an important research topic.

The user interface of a system relates itself with three things: the system,
the user of that system and the way in which both of them interact. It is the user
interface that provides the user with a language for communicating with the system.
Barfield[Bart93] gives an analogy that shows how unacceptable the current state of
computer-user interface design would be if it had occurred in other, more familiar,
areas of design for use. “Imagine you are at the exhibition talking to a salesperson.
Just listen to this! It’s got a nine-inch blade, Sheffield steel, tempered cutting edge,
and here are some glossy pictures of finely cut up vegetables produced by it. It can
do this and this. You are convinced, you buy it, get it back home and opened the
box. You discover that it hasn’t got a handle! The salesperson wasn't lying, it has
got all the features he listed, and you can use it to chop and slice vegetables so that
they look just as good as those in the glossy pictures he showed you. The problem

is that it’s awkward, it's complicated, it’s time consuming, and it involves learning

completely new way's of chopping vegetables dictated by the silly user interface design
of the knife!” Therefore, what is needed is to take the problem of engineering the

user interface as seriously as any other part of soltware engineering.

Scientific analysis of user interface design is a novel area of research. Most of
the research in the literature focuses on small parts of human-computer interaction
problem. Norman[Norm84] proposes high-level models which address the important
cognitive relationships between users and computers. Shneiderman[Shne87] identi-
fies critical issues on which developers should focus when creating user interfaces.
However, not much research has been done in developing a fully articulated process,
which addresses all the phases of user interface development. As a consequence, user
interface developers are left with little guidance on how to develop user interfaces.
Methods and techniques that help user interface designers to make good design deci-

sions for a given product with regard to its users are necessary.

1.1 Software Crisis

In the early days of computing, in order to get the computer to do something useful,
the process of programming was viewed essentially as he to place a sequence of
instructions together. The program was written generally by a mathematician or
an engineer to solve an equation of interest to him or her. The problem was just
between the programmer and the computer. There was no distinction hetween the
programmer and the end user of the application. As computers became cheaper and
more common, people with different background started using them. The growing
need in software development lead to the development of higher level languages which
made it easier and quicker to develop applications. But still, the activity of getting the
computer to do something useful was essentially done by a person who was writing a
program for a well-defined task. This resulted in the creation of a new profession: “the
programmer”. Rather than doing the job by themselves, people started assigning the
task of writing a program to the programmer. Thus, applications were developed,
by just writing a program. But it was found that, as new requirements evolved,

subsequent changes to the code structure were expensive and the results became

less relisble. Many solutions were proposed and tried. Some suggested that the
solution lay in better management techniques. Others argued for better languages
and tools. The final consensus was that the problem of huilding the software should
be approached in the same way that engineers build other large complex systems
such as bridges, machinery, and airplanes. These problems and suggestions resulted
in introducing the design phase prior to coding. But, since the user and the developer
of the software product are not the same person, the user had to specify the task in
different notations. The developer then interpreted this specification and translated
it into a precise programming notation. This sometimes resulted in the developer
misinterpreting the user’s intentions. These problems underscored the need for a
requirements phase prior to the design and coding phases. Thus, software engineering
is viewed as having an entire life cycle, starting from conception and continuing

through design, and development.

The process we follow to build, deliver, and evolve the software product, from
the inception of an idea all the way to the delivery and final retirement of the system,
is called a software development processGhez91). Many different life cycle models
have been proposed, to organize the software development process that enable us
to produce high-quality software products reliably, predictably, and efficiently. An

overview of the most common software life cycle models is given in Chapter 2.

1.2 State of the User Interface Development Pro-

cess

An userinterface acts as an intermediary between the user and the system. The user
interface forms the part of the software to be developed. Currently, software engineers
employ different methods for the design and development of user interfaces. In the
article, “Designing the Star User Interface”, the authors Smith, et. al.[Smit82] use
some general principles and techniques for developing the user interface. Some times,
the customer himself does not know the complete set of requirements. New require-
ments evolve as the product is developed. As a result, Draper and Norman[Drap85]

suggest that an iterative/prototype modeling must be adopted during user interface

3

development. The GOMS model[Kier88] for developing user interfaces, mimics the
prototype model specified in traditional software engineering. This model focuses
on “how to do it” , with regard to the intended tasks accomplished. Ad-hoc meth-
ods which combine the design of the user interface with the software design are also
proposed[Sutc91]. Sutcliffe and McDermott[Sutc91] propose a method for user inter-
face design which builds on Structured Analysis/Structured Design(SA/SD)[Pete87].
In today’s environment, software is developed not for personal use by a programmer,
but for people with little or no background in computers. By developing the user
interface together with the software system, software engineers tend to develop the
software by focusing on efficiency of code and flexibility of architecture, and they
often overlook or over simplify the real issues and constraints of the end user. This
result in the development of software systems whose user interfaces does not satisfy
the end user. Chapter 2 gives a detailed discussion of how the skills required for user

interface design are different from the skills required for software design.

Some other models which focus on the user’s cognitive interactions with the
different components of the user interfacc are proposed in [Norm84], and [Fole82].
These models are concerned in structuring the components of an user interface to be
developed. Even though these models deal with understanding the user intentions,
they do not provide a well-defined process which could guide the development of an

user interface.

Also, many researchers ([Bilj88], [Drap85], [Hill86], [Radh93]) emphasize the
need for a rigorous separation of the functionality of a soft ware system from its user
interface. Distinguishing the user interface from the application is a reasonable design
principle because a proper modularity permits the user interface and the application
to evolve more independently. Separation simplifies the construction and modification

of the user interface. It allows teams with different expertise to work together.

From the above, we see that there do not exist methods, which provide a
systematic procedure for the design and development of user interfaces, and to link
the development of the functional(non-interface) part of an application system with
that of the user interface. Therefore models are needed to support the design and

development of the user interface which provide linkage to the functional part of the

software system. Such models could then lead to methodologies and tools for user

interface design.

1.3 Supporting Concurrency in the Software De-

velopment Process

The principle of separating the user interface design from the functional design of
a software system([Bilj88], [Drap85], [Hill86], [Radh93]), remains sterile unless some
way is provided to put it into practice. This dissertation accepts this principle of sep-
aration, and develops a feasible model, which also reduces the software development
time. The Advenced Fvolutionary Prototyping Model proposed as a means in this
thesis allows two teams of different experts to work concurrently on the same soft-
ware project. The Advanced Evolutionary Prototyping Model, perceives the software
development as two loosely coupled concurrent processes: the user interface pro-
cess, and the computational process. Since well-defined methodologies which support
the computational process, already exist, this thesis focuses only on the user inter-
face process. The activities involved during the various phases of the computational
process affect the user interface process only at the synchronization points in the Ad-
vanced Evolutionary Prototyping Model. The user interface process in the Advanced
Evolutionary Prototyping Model, contains the analysis, design, implementation and
evaluation phases. The various activities that are to be carried out during each of
these phases of the user interface process are collectively named as a Concurrent User

Interface Methodology(CUIM).

The Concurrent User Interface Methodology developed and presented in this
thesis, supports concurrency in the software development process. The analysis phase
in CUIM discusses how the user model and the system model are constructed. CUIM
also discusses the wverification process that is to be carried out at the end of the

analysis phase.

The design phasein CUIM concentrates in achieving the requirements analyzed

during the previous phase. This design phase models how the user’s view of the

interface can be constructed. The user model constructed during the analysis phase
is refined to correspond to the dialog decisions made during the design of the user
interface. The transformation steps from the user’s view to the designer's view are
described. The design phase in CUIM also specifies the behavior of all the interface
classes(objects) and the interaction relationship with other classes(objects) in the
system. CUIM also discusses the verification process that is to be carried out at the

end of the design phase.

The next phase is the implementation phase. The output of the design phase
serves as an input to the implementation phase. CUIM specifies how the various
design activities assist the user interface implementer in constructing the look of the
user interface, in specifying the callbacks and in writing the code for the callbacks.
We also discuss the verification process that is to be carried out at the end of the

implementation.

The “Course Advising System”(CAS), is a software system developed by two
graduate students, J. Barki and K. Duong. Its goal is to advise the undergraduate
students in Computer Science course selection. We use CAS as a running example
for discussing the various activities modeled in CUIM. During the evaluation phase
in CUIM, we conducted user testing in order to evaluate the user interface that
is developed following the CUIM methodology. The test results obtained are also

presented.

We therefore demonstrate how the application of CUIM methodology,

e enables concurrent working in the software development process, and

e leads to a systematic procedure for designing user interfaces, which when sup-
ported by a development environment, could help in quicker development of

software products.

1.4 Overview of the thesis

The goal of this thesis is to promote concurrencyin the software development process
by providing a systematic approach for the design and development of user interfaces.
In chapter two, we survey the existing human-computer interaction research which
focuses on models for developing user interfaces. The different methods the software

engineers use for designing user interfaces are described in detail.

The third chapter deals with extending the concept of concurrent engineering
for user interface design. This chapter introduces the Advanced Evolutionary Proto-
typing Model proposed, to achieve concurrency in the software development process.
The advanced evolutionary prototy ping model suggests a systematic procedure for
developing prototypes. In order to put this model to practical use, we proposed the
CUIM methodology which is discussed in this thesis.

Chapter four presents the user interface analysis phase in CUIM. This chapter
discusses how the interactions between the user and the interface, and the interaciions
between the interface part and the computational part of the software system can be
specified. The verification process that is to be carried out at the end of the analysis

phase is also discussed.

In chapter five, the various design activities modeled in CUIM are discussed.
This chapter discusses how the appropriate dialog styles that satisfy the user are
identified during the dialog design. The dialog between the user and the interface,
specified during the analysis phase, is refined to correspond to the dialog decisions
made during the design. The steps which translate the look of the user interface
to the designer’s view are described. The behavior of all the interface classes and
the interaction relationship with other classes in the system are described next. The
verification process that is to be carried out at the end of the design phase is also

described in this chapter.

Chapter six is concerned with the implementation and evaluation phases in
CUIM. This chapter discusses how the various design activities assist the user interface

implementer in constructing the look of the user interface, in specifying the callbacks

and in writing the code for the callbacks. The verification process that is to be carried

out at the end of the implementation phase is also described in this chapter.

The evaluation phase in CUIM is discussed next. We conducted user testing
of the interface developed, in order to evaluate it. The test results obtained are

presented in this chapter.

A Hyper-media Design Tool(HDT) which supports the various activities in
CUIM has been proposed. A short description of the features of the HDT tool are
also given in Chapter 6. Finally, the conclusion of this thesis and some insights for

future work are presented.

Chapter 2

User Interface Design Models

Awareness of the importance of human-computer interaction is spreading. Over the
past few years, a number of significant advances have been made in the area of user
interfaces. This Chapter surveys the existing human-computer interaction research
which focuses on models for developing user interfaces. Since, user interface design
models is the focus of this Chapter, a interpretation of the term model is given in
the next Section. A quick overview of the various software process models is given in
Section 2.2. Section 2.3 discusses how user interface design which was given a back
seat in the past years, is now shifted to the front. This Section also reasons out why
the skills required for user interface design are not the same as those required for
software design. In Section 2.4, the different methods the software engineers use for
designing user interfaces are described. Finally, the “Conclusion” Section at the end

of this Chapter points out why the various models studied here are incomplete.

2.1 What is a Model?

A methodology is a process followed to build, deliver and evol+e the software product,
from the inception of its idea, all the way to the delivery and final retirement of the
system. Methodologies can generally be classified according to the concepts involved

and the way they organize the development effort. Therefore, we now defiue a process

9

model or a model as an abstraction of a methodology into various phases, where the
output of each phase is presented as a document. The primary functions of a model
are to determine the sequence and interaction of the various phases involved in the
software development and evolution, and to establish the transition criteria for pro-
gressing from one stage to the next. These include completion criteria for the current
phase plus choice criteria and entrance criteria for the next phase. Consequently, a
methodology focuses on how to navigate through each phase and how to represent

phase products (for example: structure charts, state diagrams etc..)

A methodology guides the software engineers in their work in all phases of soft-
ware development; increases confidence in what they are doing, teaches inexperienced
people how to solve problems in a systematic way, and by encourages a uniform, and
standard approach to problem solving. It promotes a certain approach to solving a
problem by preselecting the methods and techniques to be used for verification and
validation during the soitware development process. Tools are developed to support

the application of techniques, and support the methodology.

2.2 Software Process Models

Many new paradigms[Agre86)] for software development have been proposed in the
last decade. This Section captures the various software process models which enable

us to produce software products.

1. The Code and Fix Model

The software production process in this model basically consists of two steps:

(a) Write code.

(b) Fix the code to eliminate errors, enhance existing functionality, or add new

features.

The code-and-fix model has been the source of many difficulties and deficien-
cies. After a sequence of changes, the code structure becomes so messy that

subsequent fixes would be very expensive, and the results become less reliable.

10

These problems underscored the need for a design phase prior to coding. An-
other reason behind the inadequacy of the code-and-fix model was the frequent
discovery, after development of the system, that the software did not match the
user’s expectations. So the product either was rejected or expensively redevel-
oped to achieve the desired goals. As a result, the software development process
was unpredictable and uncontrollable, and products were completed over sched-
ule and over budget and did not meet quality expectations. This made the need

for a requirements phase prior to the design and coding phases.

The failure of the code-and-fix process model led to the development of more
structured models which make the development process predictable and con-
trollable. The waterfall model’s approach (described next), helped eliminate

many difficulties previously encountered on software projects.

. The Waterfall Model

The software development process for the waterfall model is structured as a
cascade of phases, where the output of one phase constitutes the input to the
next one. Each phase, in turn, is structured as a set of activities that might be
executed by different people concurrently. The various phases involved in the

waterfall model[Royc70] are:

(a) Feasibility Study
(b) Requirements Specification
(

c) Design Specification

)
)
)
(d) Coding and Module Testing
e) Integration and System Testing
)

(
(f) Delivery and Maintenance

The result of the requirements specification phase is the requirements specifi-
cation document which documents what the analysis has produced. The result
of the design specification phase is the design specification document, which
contains the software architecture and a description of what each module is
intended to do and the relationships among modules. The output of the coding

and module testing phase is an implemented and tested collection of modules.

11

Verification is an independent activity of the waterfall life cycle. Appropriate
verification is done at every stage on various kinds of activities and follow-
ing suitable standard procedures. In most cases verification is performed as
a process of quality control by means of reviews, and walk-throughs. Its goal
is to monitor the quality of the application during the development process.
A primary source of difficulty with the waterfall model is that, it emphasizes
fully elaborated documents as completion criteria for early requirements and
design phases. Since the waterfall model does not anticipate changes, when-
ever changes are required, the software engineers tend to make changes only
by modifying the code, without propagating the eflects of those changes to
changes of the specifications. Thus, specification and implementation gradually
diverge, thereby making future changes to the application even more difficult
to perform. Also, updating the affected requirements and design specifications
are difficult because thy are usually textually documented, and changes are dif-
ficult to make and trace back. These concerns led to the formulation of the

evolutionary development model[Boeh88].

. The Evolutionary Development Model

The evolutionary development model consists of various phases which are ex-
panding increments of an operational software product, with the directions of
evolution being determined by operational experience. This approach consists
of a step wise development, where parts of some stages are postponed in order
to produce some useful set of functions earlier in the development of the project.
Increments may be delivered to the customer as they are developed which is

referred to as evolulionary or incremental delivery.

The development begins by analyzing an increment at the requirements level.
Each increment is then separately designed, coded, tested, integrated, and de-
livered. Increments are developed one after the other after feedback is received
from the customer. This model suggests that as users actually use the delivered
parts, they start to understand better what they actually need. This leads to
changes in the requirements for further increments and revisions of the original

plan.

12

Raviaw

Deor i ne
objectives,
aliarnatives,
constraints

—

Commiunant

Evaluats alternatives,

identify. resclve risks

partiton Requirements plan

ilfe-cycle plan

De

Integration
and teet
pian

Deeign validation
and verificaton

Plan next phase(s)

Figure 2.1: The Spiral Model (from Boehm ‘88)

In contrast to the waterfall model, a change may be taken

easily in the evolutionary model.

. The Spiral Model

Develop, varify
Doxt-level product

into account very

Another model that accounts for a structured development of a software is the

spiral model[Boeh88]. The main characteristic of the spiral model is that it is

cyclic and not linear like the waterfall model. Each cycle of the spiral consists

of four stages(Figure 2.1): and each stage is represented by one quadrant of the

Cartesian diagram. The radius of the spiral represents the cost accumulated so

far in the process; the angular dimension represents the progress in the process.

Each cycle of the spiral begins with the identification of the objectives of the

portion of the product under consideration, in terms of qualities to achieve

(such as performance, functionality, ability to accommodate change, etc.). The

alternative means of implementing this portion of the product (design A, de-

sign B, whether to buy, or reuse) are also identified during stage 1. Finally, the

constraints imposed on the application of the alternatives (cost, schedule, etc.)

is identified. In stage 2, the alternatives are evaluated relative to the objectives

13

and constraints. The different sources of risk are identified at this stage. Conse-
quently, stage 3 involves the formulation of a cost-effective strategy for resolving
the sources of risk. This may involve prototyping, simulation, benchmarking,
etc.. After evaluating the risks, the next stage consists of planning for the next
iteration of the spiral whic’. is determined by the relative remaining risks. The
risk-driven sub-setting of the spiral model steps allows the model to accom-
modate any appropriate mixture of a specification-oriented, prototype-oriented
approach to software development. After each cycle of the spiral, unstated

requirements are checked as part of the robustness of the application.

The spiral model may be viewed as a meta model, because it can accommodate
any process development model. By using it as a reference, one may choose the
most appropriate development model (for example, evolutionary versus water{all
model). It incorporates many of the strengths of other models and resolves
many of their difficulties. However, this model places a great deal of reliance
on the ability of software developers to identify and manage sources of project
risk. Suppose a team of inexperienced developers produces a specification with
variation in levels of detail such that, a great elaboration of detail for the well-
understood, low-risk elements, and little elaboration of the poorly understood,
high-risk elements. Unless there is an insightful review of such a specification
by experienced developers, this type of model will give an illusion of progress

during a period in which it is actually heading for disaster.

2.3 User Interface Design versus Software Design

Until the past few years, developing an user interface for a software system has been

thought of as a trivial job. Mayhew[Mayh92] points out that there exists a com-

munication gap between “professional” software engineers and the “non-technical”

users of software systems because the software engineers do not have the expertise

in understanding the user needs. This communication gap is being carried over to

the human-computer interface. The software engineer tends to judge his or hcr own

work by criteria that may have little to do with the needs and constraints of the end

user. For example, efficiency of code and flexibility of architecture may be admirable

14

engineering goals, but may have little or nothing to do with the success of a computer
system in being accessible to and supportive of a particular type of user. Even though
software experts slowly iearned that their logical structures and jargon are obscure

and alien to non-professionals, user interface design was still given a back seat.

Since the user interface mediates between two main participants: the operator
of the interactive system (the user) and the computer hardware and software that
implement the interactive system, each participant imposes requirements on the final
product. The operator is the judge of the usability and appropriateness of the inter-
face; the computer hardware and software are the tools with which the interface is
constructed. Consequently, an interface that is useful and appropriate to the operator
must be constructed with the hardware and software tools available. Because of the
complexity of both components, the construction of the user interface involves mak-
ing many decisions about how to employ the tools available to best satisfy the user.
Developing the user interface is further complicated by the fact that the customer
may not have a complete idea of the requirements for the system being constructed
and may have preconceptions about the interface that are expensive and difficult to
implement. The software developers realized that the user interface accounts for ap-
proximately 50 percent of the total life cycle costs for interactive systems[Myer89)],
and the diverse use of computers in homes, offices, factories, hospitals, hotels, and
banks has stimulated widespread interest in user interfaces. As a consequence of this,
software professionals thought that a high-quality user interface is in fact important
and user interface design which was given a back seat is now shifted to the front.
This resulted in a vested interest in creating a user interface in a way it satisfies the

customer and in using the best available tools and techniques.

Designing user interfaces is a complex and highly creative process that blends
intuition, experience, and careful consideration of numerous human and technical
issues. Any decision regarding the design of the user interface to specific functionality
should be based on a sound and thorough knowledge of the user. The rationale behind
“knowing the user” is that the designer will be able to decide what level of support
the user requires. A conceptual model of the system should be explicitly designed
and effectively presented through the user interface. The user interface designer

should design the tools that most effectively fits the user. Since look and feel of the

15

user interface is an important aspect, the user interface designers should design the
appearance of the user interface in a way that is both attractive and compatible with
the operator’s expectations. Evaluating the design provides the best predictor of
the success of an interface. Different techniques such as, mock-ups and simulations
are used to demonstrate the appearance and dynamic behavior of the user interface,
which is quite different with respect to traditional software evaluation. Therefore, we
see that the skills required for user interface design are not the same as those required

for software design.

2.4 Designing the User Interface

This Section discusses the different methods the software engineers use for designing

user interfaces.

2.4.1 Using Well-Defined Principles and Techniques

e The Xerox Star

Even though the article presented by Smith, Irby, Kimball, Verplank, and
Harslem[Smit82] does not propose a formal model for developing user inter-
faces, it presents some principles and techniques about how and how not to

design user interfaces.

Most of today’s software developers recognize the importance of focusing on
user interfaces early in the development process; but this was not the case ten
years ago. Therefore, we can point out that the most significant decision made
by the developers of the Star was to focus on the user interface “before” the
rest of the software was developed. The following are the main goals that were

pursued in designing the Star user interface[Smit82].

1. Familiar user’s conceptual model : The first task that has been carried
out during the design process is to decide what model is preferable for users

of the system.

16

2. Seeing and pointing vs. remembering and typing : The Star user

interface does not hide things that burden the human short term memory.

3. What You See Is What You Get (WYSIWYG) : Star adheres to this
principle by displaying documents which include typographic features such
as boldface, italics, superscripts, and layout features such as embedded

graphics, page numbers, headers, and footers.

4. Consistency : The Star user interface maintains consistency by provid-
ing similar mechanisms whenever they occur. For example, the task of
selecting a set of characters from a textual object and the task of selecting

a line from a graphical object is done in a similar fashion.

5. Simplicity : The Star user interface promotes simplicity by making the
system uniform and consistent and by minimizing the redundancy in the

system.

6. Modeless interaction : In the Star user interface the object (noun) is
almost always specified before the action (verb) to be performed. This

helps make the command interface modeless.

7. User tailorability : This system is designed with provisions for user

extensibility.

Prototyping has taken on a fundamental role in user interface development
[Maso83]. The design of the Star user interface also focused on the importance
of prototyping. While many of these principles are commonly agreed among
today’s human-computer interaction research community, they were not as well
known when the Star was being developed. However, the developers of the Star,
particularly in their succeeding article[John89], emphasize that these principles
were appropriate for their system’s needs. Systems with similar users and ca-
pabilities could benefit from these guidelines. Therefore, we can conclude that
the design of the Xerox Star system is based on a systematic strategy which is
based on principles of good human-computer interaction. The Star is a good

example to keep in mind during the user interface design process.

17

2.4.2 Mimicking the Existing Sofiware Process Models

Draper and Norman present a number of important insights into user interface devel-
opment [Drap85]. The overall theme of this aiucle is that lessons learned in software
engineering may prove useful in addressing challenges in user interface design. It is
difficult to perform a formal analysis on a user interface because it is hard to de-
velop a complete set of requirements. Therefore, more empirical methods of testing
and benchmarking are required. Due to the fact that the quantitative principles
upon which one can predict design decisions are not well known, an iterative strat-
egy/prototype modeling must be adopted with emphasis on the testing and validating
between phases. The user-program interaction needs testing by exercising each pos-
sible “branch” of the interaction. Since, test procedures for user interfaces do not
exist, development of good test plans, of a good pool of users upon whom the tests

will be run, and careful observation and evaluation of the results are necessary.

One of the models proposed in the literature, for constructing the user interface
is the GOMS model. This model mimics the prototype model specified in traditional

software engineering.

¢ The GOMS Model

In [Kier88] Card, Moran, and Newell propose a model for describing the user’s
cognitive structure. It is a representation of the “how to do it” knowledge that
is required by a system in order to get the intended tasks accomplished. GOMS
model basically consists of the following:

— a set of Goals

— a set of Operators

~ a set of Methods needed to accomplish the specified goals and

— a set of Selection rules for choosing the appropriate method for achieving

the goal

Goals: A goal is something that the user tries to accomplish. The analyst (a

person who constructs the GOMS model) identifies and represents the goals

18

that typical users will have. A set of goals usually will have a hierarchical
arrangement in which accomplishing a goal may require first accomplishing one

or more subgoals.

Operators: Operators are actions that the user executes. The behavior of the

user is described as a sequence of these operators.

Methods: A method is a sequence of steps that accomplishes a goal. The

definition of a method includes the fact that it is known prior to the initiation

of the task.

Selection: Selection is the process of choosing one method over another. A set

of rules are described such that the appropriate method is selected.

GOMS task analysis allows the analyst to repeatedly make decisions about how
users view the tasks in terms of their goals and how they decompose a task into
its subtasks. The authors suggest that the analyst should make judgment calls
during the task analysis, because it is not possible to collect data on how users
view and decompose the tasks. By starting with listing the user’s top-level goals,
then defining the top-level methods for these goals, and then going on to the
sub-goals and sub-methods, the analyst will be in a position to make decisions
about the design of the user interface directly in the context of what the impact
is on the user. Once the methods are written, this model suggests that the
analyst choose some task instances to check the accuracy of the methods. The
GOMS model so constructed represents different aspects of the implementation

of the user interface.

Taking the Goals, Operations, Methods, and Selection rules described during
the GOMS analysis, the interface is constructed. The user interface developed
is then tested and the various methods the user uses to accomplish a task
are observed/recorded. After getting the feedback from the user, the GOMS

analysis is iterated to match the user actions.

The user interface designer can make use of the tasks modeled by the analyst,
when prototyping approach is followed during user interface design. This model

is also useful for predicting times for user tasks.

19

2.4.3 Using Ad-hoc Methods

User interface design is also carried out by many people using ad-hoc methods. In
many such situations, the design of the user interface is combined with software
design. One of the models discussed in the literature which falls into this category is
the model proposed by Sutcliffe and McDermott[Sutc91].

¢ The Structured Analysis/Structured Design Method

Sutcliffe and McDermott propose a method for user interface design which builds
on structured analysis/structured design (SA/SD)[Pete87]). This method uses
SA/SD notations for interface specification and works from requirements anal-

ysis to detailed design.

The analysis phase consists of three activities: analyzing the user tasks, de-
scribing the user characteristics, and analyzing the user views. The authors say
that the objective of describing the user characteristics is to obtain a thorough
knowledge of individual users to predict how they may react to tasks and in-
terface design styles with different conaplexities. They point out that the user
characteristics influence the strategic choice of the interface. The user’s struc-
tural knowledge of the system and its external appearance are captured during
the user view. During the analysis phase, the system is decomposed into func-
tions, or discrete pieces of work which achieve a given goal. Then, a Data Flow
Diagram (DFD) portraying the map of the system is built by linking the func-
tions (portrayed as circles) with the data connections, called data flows which
are illustrated as connecting arrows. The specification phase ends with choosing
the interface design styles in light of the requirements and characteristics of the

target users. At the end of this stage a review of the specifications is done.

Task analysis is followed by task allocation and design. This method uses
Structured English Descriptions|Pete87] for specifying task allocations. The
Structured English Descriptions express processes in simple English phrases
composed of nouns for data, and verbs for actions. These descriptions list the
tasks that are allocated to human, to computer, and to both. Task design aimns

to match task demands to the user’s abilities.

20

The final phase is the detailed design. At this stage, DFDs are transformed into
structure charts following the procedures of Structured Design[Pete87]. The
structure charts depict the architecture of the software system. During the de-
tailed design phase, the Structured English Descriptions from the design phase

are mapped to dialog sequences. The mapping process is as follows:

— Transform the Structured English Descriptions into a dialog diagram with
the mapping:
Input actions = transition arcs

Output actions = diagram nodes (states)

— wach dialog is elaborated to include control and support arcs, for example:

prompt and error messages, defaults, help and escape facilities.

— Sub-dialogs are joined together and the higher level control dialogs are

added by creating a hierarchy of dialog-interface modules.

The interface module hierarchy diagram so constructed shows the executable

sequence of screens and their dialog sequences. They are verified with users.

Distinguishing the user interface design from the application design is recom-
mended by [Bilj88], [Drap85], [Hill§6], and [Radh93]. But the model proposed in
[Sutc91], does not provide a clear cut division between the two. Also, this model does
not support iterative design of user interfaces, which is necessary[Drap85] for user

interface design.

2.4.4 Other Existing Models for User Interface Design

The key issue for user interface development is modeling the user. None of the models
discussed in the previous subsection capture this. Therefore this subsection focuses
on some of the models given in the literature, which give priority in modeling the

user.

User Interaction Models are models of the components of a user interface based

on user’s cognitive interactions with these components. The authors[Norm84],[Fole82]

21

claim that proposing models of how users interact with the different components of
the user interface helps us to gain better understanding of how to develop user inter-
faces. Each of these models propose a somewhat different approach for understanding
user’s interactions. The Stages and Levels model, and the Linguistic model which are

described below, correspond to User Interaction models.

All the activities which occur during the lifespan of a software system, start-
ing with project initiation and ending with system replacement constitute a life
cycle[Cutt88]. Extending this concept to the area of user interfaces we can define
the User Interface Life Cycle Models as, those models that describe all the activities
which correspond to the user interface of a software system. The Star Life Cycle

model is also included in the following:

e The Stages and Levels Model

This model concerns with the overall process of interaction with the computer.
In [Norm84], Donald Norman states that the interaction between the user and
a computer system involves four different stages of activities. Norman proposes

that the full cycle of stages for a given interaction involves:

1. Forming the Intentions: Norman defines intention as the internal, mental
characterization of the desired goal. The intention is what the user wants
to accomplish. He says that forming intentions may not even be a conscious
activity.

2. Selecting an Action: Selection is the mental state of determining what are
the actions that will be used to accomplish the task. There should be
some list of available operations from which to choose. Once selected, this
process includes the determination of a particular command or a sequence

of commands in order to initiate the operations.

3. Executing the Action: The process of entering the selected comrands
into the computer is execution. This implicitly suggests that one of the
commands informs the computer that the rest of the commands should
be processed. Norman stresses that intention and selection are mental
activities, whereas execution is a physical activity which involves entering

information into the computer.

22

4. Evaluating the Outcome: Norman observes that the results of the actions

need evaluation, and that evaluation is used to direct further activity.

Each of the different stages described above, facilitates the user interface de-
signer to concentrate on different aspects of the user interface. An inference of how

the stages proposed by Norman leads for user interface design is given below.

The initial stage of forming intentions allows the user interface designer to
concentrate on issues like “What is possible ?” Given the system facilities and the
current status of the system, the designer can design the various possible intentions

the user can have.

The sclection stage helps the designer to decide what information (the different
commands available and so on) should be made available to the user. This stage
facilitates the designer to choose either menus or help commands which allow the

user to determine the possible commands.

The erecution stage facilitates the designer to focus on the types of input

modes to be provided to the user. The designer concentrates on issues like:

1. What is the form of command language (if command language is chosen as the

input mode) ?
2. How are ill-formed sequences to be handled ?

3. How much support should be provided for the user at this stage ?

Finally, the evaluation stage facilitates the designer to tackle with issues of
how to provide feedback to the user by informing him whether the operation has

been completed successfully or whether it has failed.

Even though the model proposed by Norman cannot be thought of as a com-
plete process for user interface design, as seen above, the different stages of activities

described in his model provide implications to the design stage.

23

¢ The Linguistic Model

The authors Foley and Van Dam(Fole82] define the user-computer interface as
being composed of two languages: one supporting the user communicating with
the computer, and the other which supports the computer communicating with
the user. They suggest that the first is expressed with 2 <tions applied to various
interaction devices, while the second is expressed graphically to form displayed
images and messages. They suggest that there are four major activities which
must be addressed in order to completely define a user-interface. The four major

activities are:

1. The Conceptual Design: This can be thought of as the user’s model. It
consists of the key application concepts which must be mastered by the
user. The conceptual design activity is composed of objects, relationships
between the objects, and operations on the objects. As a simple example,
the author uses a text editor. In the text editor, the objects might be
the lines and the files. One relation is that the files are sequences of
lines. Operations on line objects inciude insert, delete, move and copy.

Operations on file objects include create, remove, duplicate, and rename.

2. The Semantic Design: The detailed functionality of the system is defined
by the semantic design. This describes what information is needed to
perform each opcration, what are the different errors that could occur,
and what are the side-eflects that may be produced by each operation.
Foley and Van Dam points out that this design activity involves defining
meanings. It does not identify the sequence of how to perform particular

operations.

3. The Syntactic Design: The sequences of inputs and outputs are defined
during the syntactic design. Syntactic inputs include lists of tokens needed
for a particular operation to occur. Syntactic design defines how to con-
struct correct sentences. Whether the sentence has any semantic mean-
ing is a “semantic” design issue. Syntactic outputs include symbols and
drawings as well as sequences of characters. They also include spatial

information.

4. The Lexical Design: The actual hardware primitives which are necessary

24

to build tokens are specified during the lexical design. Input devices such
as keyboard/mouse provide for forming the input tokens. Output consists
of whatever is available on the particular hardware, such as characters or

graphics.

Through various activities that are involved during the design, this model ad-
dresses different aspects of the same design but from a different level of abstrac-

tion and detail.

Both the user interaction models discussed above provide a structure for the
components of an user interface to be developed. This structure is based on
a human-centered model of the activities involved in the interactions between
humans and computers. Even though human factors is a focus for design of the
user interface, none of the User Interaction models discussed before provide a
well-defined process/methodology which guid-s the development of the complex
structure of an user interface. All the User Interaction models achieve one par-
ticular purpose (which is, understanding user’s intentions) without addressing
the wider aspects of svstems development. Therefore, they do not cover the

whole systems development life cycle.

The Star Life Cycle Model

Hartson and Hix[Hart89] say that the life cycle for interface development should
not “naturally” follow the traditional software development life cycle, with its
top-down, linear sequence of somewhat isolated activities for requirements, de-
sign, implementation, and testing. The authors comment that the attempt to
impose the classical “waterfall” paradigm[Ghez91] on interface development are

undoubtedly the cause of many bad interfaces.

The authors hypothesize that their interface development life cycle most natu-

rally occurs in “alternating waves” of two kinds of complementary activities:

1. Typical early activities of interface development are bottom-up, based on
concrete dialog scenarios, often augmented with state diagram like rep-
resentations which provide a direct representation of logical sequencing

of end-user navigation among screens. Scenarios and state diagrams are

25

translated into supervised flow diagrams which show both control flow and

data flow.

2. Subsequent activities involve top-down, step-wise decomposition and struc-
turing. Activities that are bottom-up, synthetic, empirical and related
to end-user’s view alternate with activities that are top-down, analytic,
structuring and related to a system view. These two kinds of development
activities reflect different kinds of mental modes, which the authors call
as “synthetic” mode and “analytic mode”. An interface developer may
alternate between these analytic and synthetic modes of mental activity
several times within a single phase of development activities and within a

short time period.

The different activities involved in the Star life cycle model are listed below:

—

. Task Analysis/Functional Analysis

. Requirements/Specifications

[J-R]

. Conceptual design/Formal design representation

1N

. Prototyping

(S04

. Implementation and

6. Evaluation

Since rapid prototyping is a key to support evaluation and iterative refinement,
this model supports rapid alternation between prototyping and other develop-
ment activities, especially design. Output of the design activity is used during
this phase to produce executable program code. The evaluation stage is the very
heart of the Star life cycle and necessitates different kinds of support tools at
different times during the development activities. For example, support needed
to evaluate designs is different from that needed to evaluate the real applica-
tion system after implementation. The authors suggest that UIMS support for
evaluation of application system design should include traceability to relate the
design to the requirements, and even some very eazrly prototypes to test out
various interaction styles. The authors say that tools that capture log data
files of end-user activities during interaction with the system are also needed to

support evaluation after application system implementation.

26

2.5 Conclusion

We ohserve that the user interface design and development should be done throughout,
the software development process. Software engineers realized that the user interface
design should start when the project starts, and should not be done as a patch work
in the later phases of software development. The various methods software engineers

use for designing the user interfaces are described in this Chapter.

In the GOMS model[Kier88] proposed by Kiers, once the analyst completes
writing the methods, he is required to choose some task instances to check the ac-
curacy of the methods. This checking is done by executing the methods using hand
simulation, and noting the actions generated by the method. These sequence of ac-
tions are then verified manually to see whether they are the correct ways to execute
the tasks. If the methods do not generate correct action sequences, the methods are
modified such that they execute correct task instance. But this type of verification
would be very tedious for large projects. Also, specifying a step-by-step description
of the methods as a textual description makes the model cumbersome. In the method
proposed by Sutcliff and McDermott[Sutc91] the authors did not make it clear of
how the specifications during the analysis phase are reviewed. Also, no indication
is given about how the detailed design is reviewed. Mockups and reviews play an
important rolc[Bass90] in user interface design, but the model proposed by Foley and
VanDam|[Fole82] does not suggest any reviews to be done during the various design
activities. Even though, the Star life cycle[Hart89] deals with different issues at var-
ious stages of the life cycle, this model does not try to model the user domain which

is very important for user interface design[Mayh92].

Despite the advances in human-computer interface development, there exists
only a very few methodologies which guide the design and development of the user
interface according to a systematic procedure. Even, these methodologies lack to link
the development of the computational (non-interface) part of an application system
with that of the user interface. Although the model proposed by Sutcliffe[Sutc91] rep-
resents the whole system (user interface component and the functional component),

it does not distinguish the design of the user interface from the application design.

27

But many researchers(Bilj88, Drap85, Hill86, Radh93] suggest that the user interface
should be distinguished from the application for reasons such as modularity, reuse,
and for rapid development of software systems. Therefore, issues such as separation

of concerns and concurrency of user interfaces are the main focus for Chapter three.

28

Chapter 3

Concurrent Engineering - An

Overview

In future, the success of a software system will be the result of understanding the
user needs, and developing an user interface to meet those needs. We will need
powerful functionalities, but a simple, and clear interface. We want ease of use, but
also ease of learning. Interface designers find themselves constantly confronted with
these kinds of conflicting goals. Methods and techniques are needed to help interface
designers to effectively manage the design and make good design decisions for a given
product with regard to its users. When the competitive climate of an entrepreneur
changes rapidly, product development time also becomes more critical. Getting a
quality product to market fast is the name of the game. This chapter introduces a
concurrent methodology for the development of a user interface design. It is our belief
that the concurrency introduced in the software development life cycle, will help to

reduce the product development time.

This chapter starts by giving a definition of concurrent engineering. Section
3.2 lists the advantages of extending the concept of concurrent engineering for user
interface design. In section 3.3, the methodologies that support concurrency in user
interfaces are discussed. The evolution of the concurrent user interface methodology

CUIM, is also discussed in this section. Section 3.4 captures the entry point in the

29

Advanced Evolutionary Prototype model. In section 3.3, different dialog specification

models used in CUIM are described. The summary of this chapter is given in Section

3.6.

3.1 A Definition

Concurrent Engineering is a systematic approach for integrated product development
that embodies different teams working at the same time and cooperatively, towards
accomplishing a common goal. The phrase “Concurrent Engineering” usually applics
to human work[Huyn93]. Concurrent Engineering aims for improving the logistics
within a development process, making sure that the right things are done at the right
time, by the right people. Concurrent development can be thought of as an advanced
form of software-factory approach[Aoya93]. The conventional factory approach fo-
cuses on productivity and quality with little attention to the development cycle time,
and the total cost over multiple cycles. In contrast to this, concurrent development’s

systematic way of developing software systems shortens the development cycle.

3.2 Extending the Concept to User Interfaces -
Advantages

The existing paradigms for user interface development, discussed in chapter 2, are
basically sequential; the development activities take place sequentially. For concur-
rent engineering, this trend has to be changed; the user interface and application

development activities must be performed concurrently. The following justifications

apply:

e Expertise in the development process: From chapter 2 we see that, the
skills required for user interface development are different from that required

for software development. It is not very common to find the expertise required

30

for user interface design and that for the application design to be in one per-
son. This kind of job specialization is likely to occur more and more in the
future. The concurrent engineering methodology permits different groups of
designers to inter-work systematically in the development process. Draper and
Norman[Drap85] observe that some of the successful interface designs (for ex-
ample, the Xerox Star and the Apple Lisa) have been developed by teams that

worked exclusively on user interfaces.

¢ Ease of construction: In contrast to the sequential development process,
the concurrent-development of the user interface and the application processes
allow us to divide the software into two major subsystems and incrementally

construct each of these subsystems.

¢ Coping with changes in requirements: As discussed in chapter 2, the cus-
tomer himself may not have a complete idea of the user interface requirements
for the system being constructed. Therefore, the requirements of a user in-
terface keep evolving. Since concurrent engineering of user interface and the
application promotes separation of concerns, and the coupling between the two

subsystems being low, coping with changing requirements would become easy.

o Length of development cycle: Concurrent Engineering in user interfaces
leads to shortening the software development cycle. Mikio[Aoya93] claims that
when compared to sequential development time, there was a 75% reduction
in development time when they applied concurrency for developing a software
system. By separating the user interface from the application development and
incorporating concurrency in these two developments, we can hope to reduce

the software development time.

3.3 Concurrent Engineering in User Interfaces

Rescarchers[Drap85, Wass85] in the area of human-computer interaction proposed
some strategies that support concurrency in user interfaces. The various strategies
and the methodologies that support the separation of user interface design from the

application program design are discussed below.

31

3.3.1 Methodologies that Support Concurrency in User In-

terfaces

e Modular Decomposition

Draper and Norman[Drap85] present a strategy for separating the interface de-
sign from the program design. This strategy views a software system into three
sets of modules: program as one set of modules, the user interface as another
set, and the user comprising the third set. The virtue of this view is well known
in the software engineering community; namely, as long as the communication
structure and the data representation are well specified and adhered to, the
modules can be developed more or less independently and changed without too
much effect on the rest of the system. They propose that one might consider a
user interface to be “run” on a human being analogous to the way that other
software programs are run on a computer. The authors propose that the user
and the program parts of the user interface can be thought of as coroutines each
communicating withone another. The communication between the Inferface and
the Usercan be changed in any arbitrary manner as long as the communication
between the Program and the Interface is not affected. This requires, that the
only part of the system that may interact directly with the user is the Interface
Module. A well-defined protocol between program modules and interface mod-
ules can be defined at the outset, leaving the interface designer free to change
the interface without interfering with the independent development of program

modules.

The authors suggest that when evaluating or debugging a user interface pro-
gram, not only must the software part be debugged, but so must the interactions
between the user and the system. This can be especially challenging since it
is quite difficult to obtain a full specification of the user which, in turn, means

that it is difficult to design to a user’s defined behavior.

In this article, the authors present two important ohservations:

— New languages would be beneficial for representing the dialog between the

user and the computer.

32

- Developing documentation for the user of a systern is part of the pro-
cess of developing a user interface. The authors point out that the term
“documentation” should not be viewed in a fine grain fashion. Necessary
information should be given to the user from a number of sources which

include: normal displays, error messages, manuals, and tutorials.

Even though this article does not provide a holistic methodology for design-
ing user interfaces, the suggestions and observations made by the authors are

important to keep in mind.

USE Methodology

User Software Engineering(USE) methodology developed by Wasserman, Pircher,
Shewmake, and Kerstern|Wass85] is based on the prototype model for develop-
ing software systems. The key aspect of the USE methodology is the ability to
rapidly create system prototypes, presenting user view of the evolving system.
The authors emphasize on the user interaction portions of the system. They
say that the user interface provides the user with a language for communicat-
ing with the system. The interface can take many forms, including multiple
choice menu selection, a command language input, a database query language,
or natural language-like input. In all cases, however, the normal action of the
program is determined by user input, results, requests for additional input, error

messages, or assistance in the use of the system.

This methodology focuses on the analysis, design and implementation phases
of the development process. The authors use a modified form of transition di-
agrams for specifying the user interface of the system to be developed. Each
node in the transition diagram correspond to a machine state and the output
displayed at that point, and the various arcs from a node correspond to alter-
native user inputs anticipated in that state. The analysis step serves to identify
the major functions, and the required inputs and outputs. The concern of the
design phase is to determine how the user can request those functions and how
the output will be displayed. The third step in the USE methodology is the
creation of an executable version of the user interface defined during the design
stage. The executable version is then jointly explored both by the developer

and the user. Accordingly, modifications are made to the original design, and

33

the analysis, design and implementation phases are iterated until one or more

acceptable interfaces are found.

To create an executable version of the user interface, asystem called RAPID / USE
has been developed. This systemn consists of two components: the Transition
Diagram Interpreter (TDI) and the Action Linker{Wass82]. The TDI was de-
signed to accept an encodingof the USE transition diagrams, and this encoding,
is called dialog description. The dialog description can be produced in cither of

the following two ways:

1. Draw the USE diagrams by using a graphical tool, called the transition
diagram editor{Mill84]. Once the USE diagrams are drawn, the editor

automatically generates the “dialog description”.

2. The textual description of the USE diagrams is manually re-written into

a “dialog description”, that can be given as input to the TDI.

Input to TDI consists of one or more dialog descriptions, each description rep-

resented as a transition diagram.

The Action Linker part of RAPID/USE allows programmed actions to be as-
sociated with the transitions. This linker provides linkage to routines written
in C, Fortran, or Pascal. Thus, RAPID/USE is used both for building and
validating user interfaces (TDI). However, this methodology is not a complete
solution for concurrent user interface design/development due to the following

reasons:

1. The different dialog styles chosen to communicate with the user, effect. the
ease of use and ease of learning of the user interface developed|Mayh92).
But the USE methodology, does not follow any systematic procedure for

designing the dialog styles which are appropriate to the users of the system.

2. It does not propose any verifications to be done at the end of each phase,

while developing the user interface.

3. At theend of the user interface design, the function calls (represented in the
form of rectangles), are substituted by the appropriate program modules.
In this methodology, no provision is made for verification between the user

interface modules and the program modules.

34

3.3.2 Ewvolution of CUIM

The Concurrent User Interface Methodology (CUIM), which is developed and dis-
cussed in this thesis, provides a systematic approach for concurrent engineering of
user interfaces. The design methodology CUIM, supports the separation of the user
interface subsystem from the program subsystem and serves in reducing the software

development time.

CUIM is based on the Advanced Evolutionary Prototyping Model of software
development. The traditional evolutionary prototyping model[Ghez91) is modified and
coined as Advanced Evolutionary Prototyping Model. Its main goal is to promote
two different. sets of people work simultaneously on program development and user
interface development. The wvarious development activities that are sequential in
the traditional model are carried out concurrently in the Advanced Evolutionary
Prototyping Model. The Advanced Evolutionary Prototyping Model cunsists of the

following distinct phases:

1. User Interface Analysis

o

. User Interface Design
3. User Interface Implementation and

4. User Interface Testing

The outcome of each phase is marked by a clearly stated set of docurnents. At the

end of each phase we ensure that the various documents produced are consistent.

In the evolutionary prototype model[Ghez91}, several prototypes are devel-
oped. These prototypes do nothing more than display the interfaces on the computer
screen and activating “dummy functions” when specific services are requested by
the user, during interaction with the system. The different prototypes developed
might differ in the layout of interfaces, in the sequences of possible operations per-
formed and so on. Some of these will be throwaway prototypes, but some may be

chosen to be evolutionary. Once, the user has selected the prefered prototype, the

39

program modules that accomplish what is requested by the various functions that
are to be activated as a consequence of user interaction are designed and developed.
The functions developed are then linked with the interfaces developed before. Thus,
the prototype gradually evolves into the final system. The Advanced Evolutionary

Prototy ping Model differs from the existing model in the following two ways:

1. Rather than developing the prototypes by trial and error, the Advanced iivolu-
tionary Prototyping Model suggests that a systematic procedure for developing
prototypes should be followed. Towards this end, the Advanced Evolutionary
Prototyping Model incorporates the analysis and design stages prior to the de-
velopment of the prototype. The advantage of doing this is, the analysis and
design stages reduce the number of prototypes to be developed. Therefore we

can hope, an interface which satisfies the user can be developed in shorter time.

2. The steps of designing and implementing the program modules are carried out

concurrently with the developing and testing of the user interface modules.

In the Advanced Evolutionary Prototyping Model, the user interface develop-
ment life cycle and the program development iife cycle are perceived as two concurrent.
processes: the user interface process and the computational process. A view of these
processes is depicted in Figure 3.1. The objects associated with the two processes
will be referred to as Interaction Objects (10Bs) and Computational Qbjects (COBs)
respectively. The group of software engineers associated with the user inlerface pro-
cess will be referred to as the Interface Group and the group associated wiih the

computational process will be referred to as the Computational Group.

In Figure 3.1, an ellipse denotes a phase of development whereas a reclangle
represents the output of the preceding phase. Given the specifications of the product,
to be developed, by the customer, the software engineers (Interface Group + Compu-
tational Group) prepares the Informal Requirements Docurneni(IRDD). This document,
is nothing but a clearly stated SRS(Software Requirements Specification). The IRD
acts as a bridge between the customer and the software engineers. The IRD serves
as input to the analysis phase of both the user interface process and the computa-

tional process. The output of the interface analysis phase is the Interface Analysis

36

— () Coupgnal

Contst
mp ! --» Check | ‘--4 cap Synchroniztion Point1

\
w ;:e @lﬁg[:}lﬂ

Consistency
I DD |'- "> Check) <| CIF) | Synchrooization Point2 one cycle

nnfhhdory

Figure 3.1: Advanced Evolutionary Prototyping Model

37

Document(1AD), and the output of the interface design phase is the Interface Design
Document (IDD). CAD and CDD corresponding to the computational process repre-
sent the Computational Analysis Document and the Computational Design Document
respectively. From Figure 3.1, it is obvious that the output of one phase serves as in-
put to the next phase. The refinement of the activities carried out during the analysis
phase, to match the design decisions, is implied, and is not shown explicitly in Figure
3.1. The various activities involved during the analysis and design phases of the com-
putational process affect the user interface process only at the synchronization points
in Figure 3.1. These peints mark the step at which the user interface group and the
computational group must interact, to ensure consistency between the user interface
part and the computational part of the software system. Unless otherwise specified,

the various phases discussed later on correspond to the user interface process.

Since well-defined methodologies which support the computational process,
already exist, this thesis concentrates only on the user interface process. The activ-
ities involved during the analysis and design stages of the user interface process, are
modeled in CUIM. CUIM aims at providing complete coverage of the user interface
process, by giving guidance from the analysis phase down to implementation and
iesting. By applying the CUIM methodology for user interface design and develop-
ment, the user interface engineers could concentrate on different aspects that lead to

produce user interfaces that promote ease of use and ease of learning.

3.4 Applying the Advanced Fvolutionary Prototlyping
Model

We describe the Concurrent User Interface Methodology (CUIM) using an example.
Since our main concern is designing the user interface, an interactive application is
sclected. The interactive Course Advising System(CAS) has been chosen for this
purpose. Following the advanced evolutionary prototype model, the first step is to
prepare the IRD document for the application chosen. The informal requirements of
CAS are specified below.

38

3.4.1 General Description

The CAS system, is intended to advice undergraduate stuidents in selecting those
courses that are offered during the academic year, towards achieving their degree.
The Ul to the advising system is to be designed in such a way that it mimics the
existing advising system, where ever possible. The rationale for doing so is to let
users encounter minimal changes in the use of this new service. The various features
the system provides are discussed in the IRD. Taking the requirements (user domain,

functionality etc..) presented here, the Ul to the advising system will be designed.

The expected user population for CAS is described in section 3.4.2. The various
modes of interaction with the system are specified in section 3.4.3. In section 3.:.4, the
current advising procedure is discussed. In Section 3.4.5, the functional requirements
of the interactive advising system are described. Section 3.4.6 discusses the hardware

and software environments for the course advising system.

The style and presentation of an IRD is not fixed. This document should give a
clear picture of the system to be developed, by describing the ways that the users
follow currently to do the job, the knowledge that the system should have before it

is initiated, and so on.
3.4.2 User Profile

The general characteristics of the users of the course advising system include people
with: at least a high school degree, computer literacy ranging from low to high, no
prior training in the use of CAS, low frequency of use, and discretionary use of the
system. Therefore, the user domain includes people with different levels of motivation
(high/low due to fear, high due to interest). Since we cannot control the level of
motivation of the users, we aim at an interactive system that minimizes the negative
emotions of fear, boredom, and the like; and maximizes job satisfaction, and thus
motivation. Towards this end, the user interface should be easy-to-use and easy-to-
learn. The users for this system are the students. So, the term “students” will be
used synonymously for “users”. For conciseness, the word “his” is used instead of

“his/her”.

39

3.4.3 Modes Of Interaction

1. Input Modes: The different modes through which the user can interact with the

system are:

o KeyBoard and Mouse: A student uses the mouse pointer for selecting
various options given by the system. The user types in the choices(course

number, time, and so on) using the keyboard.

2. Output Mode: The mode through which the system responds to the user is:

e Display Screen: The system uses the display screen for displaying all the

information and messages to the user.

The modes of interaction can be enhanced by providing features such as audio, touch-

screen etc.. Considering the issues such as feasibility and cost, the above modes are
chosen for 1/0.

3.4.4 Current Advising Procedure

At the beginning of every academic year (Fall Semester), every student receives
a registration form, the student’s up-to date transcript, the course schedule hooklet,

and an appointrnent card to consult an advisor.

o legistration Form: The different sections the registration form contains are

as follows:

~ Student Information: In this section the student has to fill in his name,

ID, and the program which he is registered in.

— Course Information: In this section, the student lists all the prefered
courses. The student has to fill in the course code, the course number,
the term in which he wants to take the course and the section he is willing
to attend.

— Approval Information: This section is to be filled in by the advisor during
the advising session. In this section, the advisor indicates his approval of

the courses listed in the registration form.

40

e Transcript: The transcript contains the following information: At the top
is the name and mailing address of the student. In the top right hand side
is the ID #, the date of birth information and the home phone number of
the student. Below the name and mailing address is a tabular section which
contains information describing to which program the student is admitted to,
the option name, minimum credits required for achieving the degree, the basis
of admission, and the prerequisites (if any) the student should take. Below this,
is the list of courses the student has completed. The list describes the following:
the course name, the course number, the term the course was taken, the section,
course credits indicating the number of credits the course is entitled to, the grade
obtained in this course, and the credits granted. Below the course information
is the program status section. This section indicates the program name, option,
minimum credits required for achieving the degree, credits completed, student
status (j.ermanent resident or visa student or independent student), and the
GPA since entry into program. A sample copy of the transcript is shown on the

next page.

e Course Schedule: The course schedule booklet contains information pertain-
ing to various courses that are offered by each department during the academic
year. It includes a list containing the course number, the course name, the
diflerent sections available for this course, the time of day when this course is

offered, the professor’s name , and the department that is offering this course.

s Appointment Card: The appointment card contains the date, the time and

the location the student is supposed to be present for registration.

As a first step, the student fills in the form by listing his prefered courses, satisfying
all the prerequisites and co-requisites for the course(s) listed towards accomplishing
the degree and with no conflicts in the course timings. Not all students fill their

registration forms:

e Some students in their first year do not know how to select the courses.

e Some students are not clear of the courses they should take and cannot come

to a conclusion in their course selection.

41

. STUDENT RECORD
A 1
' Concordia
v Y PAGE 1
(" 10 RO
NARME & ML ING ADPIRESS T
OAtE F V.,
[»] [%) A
1 HOME Priong «
J . B
-
COURSE
CREDIT
DESCRIPTION NAME & NO SECT | CR HRS GRADE GRANTED

Ak ek kA h Ak rkk kAt kbR Ak Ak Nk kxk+ ADMITTED TO
* B.COMP.SC.

* OPTION SOFTWARE SYSTEMS

* MIN. CREDITS REQUIRED : 90.00

* ON BASIS OF: COLLEGE OF ED/DAWSON 1985-90
*

*

LA A SRR R EE SRR R AR R R R R R R RSN AR 2 ALK

01/09/90

MUST TAKE WITHIN PROGRAM PHYS 205 PHYS 225

I E X R PRSI R R R A AR RS SRS EE SRR RS RlE R R R RRRARRR Rl SRR R ER R NE N

FALL-WINTER 90-91

TRANSFER CREDIT GENL COLLEGE OF EDUCATION 1985-87 2.00
INTRO TO DISCRETE STRUCTURES COMP 231 /2 V 3.00 A 3.00
PROGRAMMING METHODOLOGY COMP 244 /2 T 3.00 DISC 0.00
LANGUAGE LABORATORY - PASCAL COMP 291 /2 VV 1.00 DISC 0.00
INTRODUCTION TO PROBABILITY MATH 242 /2 01 3.00 A 3.00
ADVANCED CALCULUS 1I MATH 262 /2 01 3.00 A 3.00
LINEAR ALGEBRA I MATH 282 /2 51 3.00 A 3.00
PROGRAMMING METYODOLOGY COMP 244 /4 02 3.00 B 3.00
LANGUAGE LABORATORY - PASCAL COMP 291 /4 X 1.00 A- 1.00
INTRO TO MATH STATISTICS MATH 243 /4 01 3.00 A+ 3.00
ADVANCED CALCULUS 1II MATH 263 /4 02 3.00 A+ 3.00
LINEAR ALGEBRA II MATH 283 /4 AA 3.00 A- 3.00
FALL-WINTER 91-92
COMP. ORG. & ASSEMBLY LANG. COMP 220 /2 TT 4.00 A- 4.00
LANGUAGE LABORATORY -FORTRAN COMP 293 /2 S 1.00 B 1.00
INTRO-THEORETICAL COMPUTR SC COMP 335 /2 VvV 3.00 B- 3.00
DIFFERENTIAL EQUATIONS I MATH 271 /2 A 3.00 A+ 3.00
CONCEPTS OF PROBABILITY MATH 351 /2 01 3.00 B 3.00
LANGUAGE LABORATORY - C COMP 298 /4 Z 1.00 A- 1.00
DATA STRUCTURES & ALGORITHMS COMP 352 /4 XX 3.00 A- 3.00
ELEMENTARY NUMERICAL METHODS COMP 361 /4 V 3.00 A 3.00
TECHNICAL WRITING ENCS 281 /4 L 2.00 A- 2.00
ELECTRICITY & MAGNETISM PHYS 205 /4 01 3.00 A 3.00
INTRO EXPERIMENT ELECTRICITY PHYS 225 /4 01 1.00 A+ 1.00

01/06/92 TRANSFERRED TO HONOURS SOFTWARE SYSTEMS

DATE OF ISSUE: 02/11/94

In such situations the student can fill in the registration form during the advising

session and discuss his difficulties with the advisor. It is at this stage CAS can be

very helpful.

If the student has filled in the form by listing his prefered courses, prior to seeing
an advisor, then the advisor checks (manually) the registration form. If the student
is unclear of his preferences, then the advisor interacts with the student and asks
him of his preferences/constraints in terms of courses, time schedule, campus and

workload he is willing to accept. In either case, the advisor suggests the courses.

The advising sesvion ends when the advisor has approved the registration form.

The existing advising procedure is shown schematically in Figure 3.2.

3.4.5 Functional Requirements of CAS

e Prerequisites To The System:

The database containing the following information should be made available

before initiating the course advising system.

— The transcripts of all the students.
— The course schedule, listing the courses offered by each department.

— The calendar stating the degree requirements and pre-requisite require-

ments outlined by the department.

e Course Advising System - Services:

CAS is an interactive system, which intervenes in each and every action the
user does and corrects him whenever something goes wrong. This system helps
the user in completing his task easily. The following are the services provided

by the system.

— Initialization: When the student enters his id, the system performs a
validity check on the id entered by the user. If the id entered is invalid,
the system informs the user of the invalid input. Otherwise, the system
retrieves the student’s transcript from the database, and gives the following

options to the user:

43

acceptable

Advisor approve.
the registration
orm

Advisor checks
the registration
orm

unacceptable

Advisor suggests
the courses

registration fo C
guira f suggested Approved registration
transcript, course list form
preferences/
constraints

Y

Student

represents an active object

O represents a process

————=3 represents the flow of data

Figure 3.2: Current Advising Procedure

44

1. Specify the preferences.
2. Specify the constraints.
3. Request for advice.
4.

Terminate the advising session.

— Specify the Preferences/Constraints: The system allows the user
to specify his preferences/constraints, in terms of courses, time sched-
ule, campus, and work load(maximum/minimum number of courses, max-
imum/minimum number of credits). The system performs a validity check
on each prefered/unprefered course number entered by the user. The sys-
tem informs the user if the course number given is invalid, or the student

did not do the pre-requisite for the course.

Give Advice: Bascd on the preferences/constraints given by the user,
the pre-requisites the student has completed, and the course schedule set
by the department, the system suggests a list of courses which the student
should take, towards achieving his degree. The suggested course list given
by the system contains the course number, course name, the instructor for
that course, the day, the time, and the term in which the course is offered.
After suggesting the list of courses the student should take, the system

provides different options to the user:

1. The system asks the user if he has any more preferences/constraints.

2. If the suggested course list is acceptable to the user, then the system

prepares a (hard) copy of the suggested courses.

3. Terminate the advising session.

The automated advising procedure is shown schematically in Figure 3.3.

3.4.6 Design Constraints

The platform and tools that aid the development of CAS are described below:

e Hardware Environment

45

Transcript Course Schedule

Course
Calender = Advising System

A

i,
preferences/ Suggested
constraints Course List
User

represents the data store

represents an active object

— represents the flow of data

Figure 3.3: Automated Advising Procedure

46

1. The user interface to the automated advising system will be implemented
on the Sun Sparcl0 Stations (running SUN O/S) under the X-Windows

environment.

2. The user interface will be mouse-driven.

e Software Environment

1. The user interface to the automated advising system will be implemented
in MOTIF using the UIM/X toolkit.

2. The user interface will be developed by using different colors identifying

different components of the interface.

The informal requirements specification of the automated advising system is pre-
sented. The main qualities of the interface that are intended to provide are the short
learning time and the easc of use. Such features are necessary in this type of appli-

cations, because of high task importance, low frequency and discretionary use of the

systen,

3.5 Dialog Specification in CUIM

The next phase in the advanced evolutionary prototype model is the user interface
analysis. During the requirements analysis phase, the user model and the system
model are constructed without regard for eventual implementation. The dialog be-
tween the user and the interaction objects, and between the interaction objects and
the computational objects are captured during this phase. CUIM suggests the use of
two major representation techniques for constructing user models and system models
during the analysis phase: eztended state transition diagrams, and interaction dia-
grams respectively. Since the dialog specifications play a vital role in CUIM, this

section details the notations used during the analysis phase.

47

3.5.1 Extended State Transition Diagrams

Transition diagrams[Wass79] have long served as a means for unambiguous specifi-
cation of programming languages[Neil77] . Transition diagrams are used by many
people[Case82, Jaco83, Kier83] as a formal specification technique for describing user
interfaces to interactive systems. The extended state transition diagrams|Wass85] re-
tain the formalism, yielding an unambiguous method for dialog specification. These
diagrams were selected in preference to other specification models (eg. Backus-Naur
form[Leeu90], command language grammar[Mora81] etc.) largely on the basis of rel-

ative comprehensibility.

An extended state transition diagram is a network of nodes and directed arcs.
Each state transition diagram is associated with a textual description. The different
sections in a textual description are: Actions, Diagram/Sub-Conv, Variable Declara-

tions, Define, and Node Specifications(Figure 3.4).

A node is shown by a circle, representing a stable state awaiting some user input..
Each node within a diagram is labeled, and an output message may be displayed
when a node is reachea. The section Node Specifications, in the textual description
shows the message displayed(Figure 3.4) when a transition is made to that node.
There exists one start node and one end node, for each transition diagram. The
section Diagram, in the textual description, specifies the diagramm name. Scanning
of the diagram begins at a designated entry point(start node) and proceeds until an
exit node is reached. Each arc shown by an arrow connects two nodes together, and
represents a state transition based on some input. The input is designated by a string
literal, such as “quit”. One arc emanating from each node may be left blank, in which
case it becomes the default transition, and is taken only when the input fails to match
that specified on any other arcs. An operation is shown by a small square(Figure 3.4)
with an associated integer. An action may be associated with a transition to represent
an operation that is to be performed whenever a specific arc is traversed. The same
action may be associated with more than one arc. The Actions section(Figure 3.4) of
the text attached to the transition diagram, lists the various function calls invoked.
Intuitively, one can see that paths may contain arbitrary strings and that the state

transitions can invoke arbitrary operations. The distinguished inputs then lead to

48

different states from which other input symbols may cause yet additional actions.

The different features provided by the extended state diagrams are:

1. Specify the formatting and layoul(Figure 3.4) of system output. The following

are the notations used for formatting the system output:

¢ In order to specify a message which begins on row 2, and at column 5, we
specify it as:
r2, ¢5, ‘messagel’
If the above line is followed by:
r + 1,¢5,'message?’
Then it denotes that, message2 should be displayed at column 5, and on

the succeeding row of messagel.

e Rather than counting spaces to find the correct starting point, in order to

center a message, the symbol “c_” is used.
e The symbol “eol” denotes the end-of-line.

e The symbol “nl” denotes a new line, and indicates that successive messages

should be displayed on the next line.

e The symbol “cs” denotes clear screen.

2. Display the input text given by the user as part of the output specification.
Variables are used in such contexts. All the variables and their types are de-
clared in the Variable Declarations section, of the textual description. The
variable name can be shown on one or more arcs in a diagram. When such an
arc is traversed, the input string is assigned to that variable. In Figure 3.4, the

account number entered by the user is assigned to the variable “acct_no”.

3. The extended state diagrams provide facilities for different forms of input pro-

“I” followed by a character on an arc means

cessing. The appearance of the
that a single “character” input is used to cause a transition. Also, some times
the input string ends with nonstandard terminators such as: esc, tab. This is
facilitated by giving a list of zero or more alternative terminators to the left of

the “/” and the length, if fixed, is given to the right(Figure 3.4). For such cases,

49

input is read until a nonstandard terminator is received, and then truncated to

the given length.

. The symbol “+” on an arc denotes that, no user input is required, for the
transition to take place. And, the symbol “@" denotes that any character input

causes the transition to occur.

. For highly interactive applications, there is much more dialog between the user
and the interface. Therefore to improve the comprehensibility of the dialog,
sub-conversations are used in the state transition diagrams. A sub-conversation
is represented as a named rectangle on a transition arc(Figure 3.4). A sub-
conversation is a refinement of the dialog between the user and the interface.
The various states involved in a sub-conversation are shown as a separate di-
agram. In such cases, the “Diagram” section of the textual description, is
replaced by the “Sub-Conv” section. The “Sub-Conv” section specifies the
name of the sub-conversation. When control reaches a sub-conversation, con-
trol is transfered to the start node (a different diagram) of this sub-conversation.
Again, when control reaches the end node of a sub-conversation, control returns
to the successive node in the original state diagram, from where control has
been transfered before. Sub-conversations are also accompanied by return val-
ues. The return value is indicated as a transition value followed by a “#” sign,

on the final transition of the sub-conversation.

. In addition to handling the syntactic user input, the transitions between nodes
are extended to handle the semantic values too. This is necessary hecause,
the direction of a dialog is often dependent upon the result of an action. For
example, in a banking system, the user (a teller) would be asked to input
a customer account number. A subsequent action would be to look up this
account number in the bank’s customer account database. The :ext message
presented to the teller would depend on the “result” of the search. So, a return
value is associated with the action, and then to branch on that value. This is
accomplished by indicating one or more arcs emerging from an action hox(Figure

3.4), with arcs labeled with alternate return values.

. While specifying user interfaces for real time systems, unexpected delay in the

user input indicates a problem. Therefore, it is desirable to be able to effect

50

w"
‘ lcct_no—>?-— valid options
invalid
!
NS L
“w', llB"
l‘D" \
| _subconv1] \

Actions
1 venfy(acct_no)

Diagram main

digit acct_no

. Legend:
Define key ‘Press any key to continue.’
@ start node
node start
** Enter your account number.'
node err @ end node
r2,c_,'Invalid account number.’, nl
r+l.c_key + no user inuput is required
node options [} a single character input
r2,c_,'* W :for withdrawal.’, nl s required
l’+2.C_." D :for DCPOSi(.’, nl ’I indicates & non-standard
r+2,c_,'* B :for Balance.’, nl terminator in the fnput
4 —] subconversation
node x

cs /* exit the system */

Figure 3.4: Symbols in Extended State Transition Diagrams

51

™~ - o

) : The EOB symbol The 10B symbol

————3 The Interaction symbol O The COB symbal

Figure 3.5: Basic Symbol. used to build Interaction Diagrams

a transition on the expiration of a predefined time limit. In this way, it is
possible to branch to another node, from which a reminder or help message can
be displayed. Such situations can be handled by using the alarm transition.
The alarm transition is denoted by writing the time limit on the appropriate
arc(Figure 3.4). The alarm transition is made if no input is received from the

user before the time limit expires.

. The extended state transition diagrams also promote re-usability. This is quite
handy because, one might want to display the same message at different times:
examples are, online help messages, screen headings, error messages etc.. The
message, and its name are declared in the Define section(Figure 3.4) of the tex-
tual description. Re-usability is then provided by referring the message name,

whenever we want to display that message.

3.5.2 Interaction Diagrams

The interaction diagrams proposed in this thesis model the communication between
different Interaction Objects(I0Bs) and Computational Objects(COBs). An interac-

tion diagram is a graph consisting of nodes and directed arcs. To differentiate the

interface objects from the computational objects, different representations are used.

A circular node corresponds to a COB and the solid line rectangle represents an 108,

The user forming an eziernal object(EOB) is shown by a broken line rectangle. An

irteraction is shown by a solid line with an uni-directional arrow. The different sym-

bols used to build an interaction diagram are shown in Figure 3.5. Each interaction

52

acct_no

verify(acct_no) (list) valid -

invalid
Start

Interface

invoke(Err Interface)

(o """ i |

Figure 3.6: Interaction Diagram: when the user enters the account number

represents a control (associated with data values) communication between two ob-
jects. The object which initiates the communication by sending an event with the
data values associated to it is referred to as the from object, and the object which
receives the event is referred to as the to object. The data values associated with an

event are optional.

In response to an event from the user, an IOB may interact with more than one
COB. For every interaction Iy, from the user to an I0B, there is an interaction I,
coming from an I0B to the user. All those interactions that happen between the IOB
and COB, from the time Iy is sent to the time I is given are referred to as the set of
interactions. All the IOBs together are referred to as the set of interface objects and
all the COBs together are referred to as the set of computational objects. The to object
for the interaction Iy is refevred to as the start object. Conversely, the from object
corresponding to the interaction I; is referred to as the end object. Those objects
(excluding the start object and the end object) that communicate from the time Iy is
senc to the time Ij is given are referred to as the intermediate objects. For every set of
interactions there is a start object, end object, and intermediate objects. Start object
and end object always belong to the set of interface objects. Intermediate objects are
objects either from the computational objects set, or from the interface objects cet.
There can be more than one end object in a set of interactions, or some times both

the start object and the end object may correspond to the same 10B.

53

In the CUIM methodology, an interface object does not perform any cemputations.
An interface object, say IOB, always interacts with a computational object, say
COB; to request for any required service. So, there is no necessity for an interface
object(/OB,) to interact with another interface object(I0B;). Therefore, in CUIM
an interaction between two I0Bs is always interleaved by an interaction with a COB.
This feature makes the design of the system simple, by reducing the number of objects
with which an object has to interact. Considering the example of the banking system,
the interactions between the IOBs and COBs, when the user enters the account
number, represented as an interaction diagram is shown in Figure 3.6. The interface
object, Start Interface after receiving the “acctno” from the user, interacts with the
computational object list, by sending the event “verify” with the account number
associated to it. The list object then verifies the validity of the account number
given by the user. If the account number is invalid, then the “invalid” event is sent
to the interface object Start Interface. Otherwise, the “valid” event is sent. In the
former situation, the IOB, Start Interface sends an “invoke” event to list, requesting
it to invoke the IOB object Err Interface. The list object then invokes the 108

Interface, by sending the “invalid” event with the associated error message.

Even though there is more than one output arrow emerging from the object hst,
in the interaction diagram(Figure 3.6), it is important to understand that at any
instant, only one of all the output events will happen. The next chapter shows how
the interactions between the various I0Bs and COBs (for the example system CAS)

are specified using the interaction diagrams proposed here.

3.6 Summary

When the user interface and the program design activities are performed concurrently,
interaction between the user interface designers and the program designers is neces-
sary because, the program designers may overlook the modeling of some tasks required
by the user interface designers and vice-versa. It is important to ensure consistency
in the system being designed by these two groups of people. The USE methodology

proposed by Wasserman et. al.[Wass85] does not model these interactions during the

54

analysis and design phases. This is a major drawback of the USE methodology. The
concurrent methodology CUIM developed, and which is the essence of this disserta-
tion, overcomes such limitations and provides an effective environment for concurrent

engineering of user interfaces.

95

Chapter 4

User Interface Analysis in CUIM

The first phase in CUIM is the requirements analysis phase. It concentrates on
understanding and modeling what the user wants. The result of the analysis is a
clear understanding of the problems and issues which serve as a preparation for the
design of the user interface. In section 4.1, the basic determinants of user behavior
which serve in understanding the user are discussed. As the user interface provides a
language for communicating with the user, section 4.2 concentrates in specifying the
dialog between the user and the computer. The user interface acts as an intermediary
between the user and the computational part of the software, therefore specifying the
interactions between the interface objects and the computational objects is necessary.
Section 4.3 specifies these interactions. Section 4.4 deals with verifying the extended
state transition diagrams with the interaction diagrams. And finally, section 4.5
shows how to ensure that the output of the user interface analysis phase (the IAD
document) and the output of the computational analysis phase (the CAD document)

are consistent.

4.1 Constructing the User Profile

The performance[Mayh92] of a user can be measured in terms of the amount of time

and effort consumed to complete a task. Therefore, improving the user’s performance

56

in his or her job is the main goal for user interface design. Towards this end, the first
step during the analysis is to identify the factors that affect or determine the user’s
performance. A classification strategy serves as an useful tool for knowing the user is

described below[Mayh92].

e User Psychology

It is a well known fact{Mayh92] that the user’s motivation plays a significant
role in the performance of tasks requiring motor, cognitive, or perceptual skills.
It is important to provide incentives if users lack motivation (either in their jobs
in general or to use computers in particular). Discretionary users (who choose
whether or not to use a computer) need to feel immediately that a system will
not take too long to learn. Mandatory users (who must use a computer as
part of their job) need to immediately experience some benefit from using a
computer. Users who are highly motivated out of fear (for example: of losing
their job, or of appearing incompetent) need the reassurance that the system is
not overly complex and will not be difficult to learn. Therefore, user interfaces
which are consistent, predictable, and simple to understand should be designed

to increase motivation.

e Knowledge and Experience

Instead of considering the user’s experience as a simple binary expression (novice,
expert), a number of types of knowledge and experience which are listed below,
are relatively independent of one another and must all be considered during

user interface design.

1. Task erperience corresponds to knowledge of the task domain. Shneider-
man [Shne80] refers to task experience as the semantic knowledge of the
system. For example, to use an air traffic control systemn, the user needs

to know quite a bit about how the air traffic is controlled.

2. In contrast to task experience, system ezperience corresponds to knowl-
edge of a particular language or mode of interaction of a given system.
Users may have been performing their job for years effectively by hand,

but will be unable to perform the job when it is automated until they

57

have learned the idiosyncratic language of the new system. In the exam-
ple of the air traffic controller, system experience pertains to knowledge
of the syntax for entering a flight plan, codes for diflerent airports, and
the route specifications, the signaling commands which would be received
from other controllers etc.. System experience can be called as syntactic
knowledge[Shne80).

3. It is important that the user interface designers consider the level of com-
puter literacy of the intended user population. The user interface designers
should sketch out whether the users are highly technical and computer lit-
erates, or they have no prior experience with computers at all? The user
interface designers should know whether the users of the system will be
familiar with the use of keys such as tab, return, backspace, and with

computer jargon and concepts such as memory, saving etc.?

4. Another important user characteristic that should be considered is the
typing skill of the user. With the advent of GUI and other interface tech-
niques, their skills may be viewed generally as “user-computer interaction
skills”. It will be clear later on, how the various characteristics listed here

affect the decisions made during the design.

The various kinds of knowledge and experience listed above are relatively
independent of one another. For example, a given user may have low typ-
ing skill, low computer literacy and high task experience. Any combination
of different levels of different kinds of knowledge and experience is possi-
ble. Users with varying degrees of knowledge and experience have different
needs that must be accommodated by the system. For example, users with
little task or system experience will need a system with many prompts of
both a semantic and syntactic nature, and eflective error recovery proce-
dures. Therefore, the users knowledge and experience which affects the
performance is an important determinant to be considered during user

interface design.

e Job and Task Characteristics

58

Also, the nature of the user’s job(or tasks), the frequency with which it is

erformed and its importance will affect the user’s level of knowledge and ex-
p F g

perience over time. These factors, in turn determine the relative emphasis to

be put on ease of learning versus ease of use, and thus will affect the amount of

syntactic and semantic assistance required in the interface. Therefore, the job

and task characteristics drive user interface design in many ways. A number of

dimensions of the user’s job, which have implications for user interface design

are discussed below:

. One of the most important determinants of user performance with an in-

teractive system is the frequency of use of the system. Frequency of use
has profound implications for user interface design because it affects learn-
ing. Frequency of use affects system design in two ways. First, users who
spend a lot of time on the system are usually willing to invest more timein
learning, and therefore efficiency of operation takes precedence over ease
of learning. When the user interface is mainly used by frequent users, its
design may give more weight-age to the efficiency of operation, and the
adaptability of the interface to individual users or user groups. Low fre-
quency users will not be able to learn and remember an interface unless it

is designed for ease of learning.

. Another important determinant is primary training. The amount of avail-

able training determines in part how easy to learn the interface must be.

. Another determinant that guides user interface designers in the ease-of-

use/ease-of-learning trade offs is system use. When the system usage is
discretionary, first impressions are more important to create motivation,
so promoting ease of learning is important. Butif the system useis manda-
tory, users usuaily get training, and ease of use will provide them with a

sense of power and control, thus keeping up their motivation.

. The importance of the task autornated by a new system will influence how

much of an investment in learning the users (especially disc1 etionary users)
are willing to make. According to the amount of time the users are willing
to invest for training/learning, promoting ease of learning would be more
or less important relative to other design goals such as power,and ease of

use. When the task is perceived to be important, motivation is high, then

59

User Psychology
Motivation € {Low, High}

Knowledge and Experience
Computer Literacy € {Low, Moderate. High}
System Experience € {Low, Moderate, High}
Task Experience € {Low, Moderate, High}
€

Ty ping Skill {Moderate, High}
Job and Task Characteristics

Frequency of Use € {Low}

Primary Training € {None}

System Use € {Discretionary}

Task Importance € {High}

Table 4.1: User Profile

the system should promote easc of use. The task importance and frequency
of use are not necessarily the same. The task may have a high importance

but be executed with a low frequency.

To understand the user population and to improve user’s performance, the various
determinants described above are used to construct the user profile. The scale for each
of the determinant could be: Low, Moderate, and lligh. As mentioned in Chapter
3, the course advising system(CAS) will be used as an example, while discussing the
various activitiesin CUIM. The user profile constructed for the intended population
of CASislistad in Table 4.1. The intended user pop- lztion for CAS includes students
with low motivation, either due to fear of using a computer or they don’t like to be
controlled by a machine. Also, there will be students who are highly motivated out. of
interest or due to the fear of appearing to be incompetent. Since, not all the students
are computer literates!, the range for computer literacy varics from low to high. CAS
is not a highly sophisticated application, therefore the syntactic knowledge required

to use the system is not high. Since there are students with low computer literacy,

1A computer literate for our purpose is expected to be confident in the use of a mouse, and the
associated window operations.

60

the system experience varies from low to high. The first year students might not have
enough knowledge of how the courses should be chosen. Therefore, the task ezperience
for the users of CAS, also varies from low to high. We assume that every user is at
least a moderate (10 words per minute) typist. Since, the advising system will be used
only during the registration period, we say that the frequency of use of the system is
low. The task importance for this application is high because it is important for the
students to get advise before registering their courses. The characteristics primary

training and system use are set by the management.

After establishing the user profile the next step in CUIM is to specify the diaiog

hetween the user and the interface.

4.2 Specifying the Dialog between the User and

the Interface

In order to specify the dialog between the user and the interface, the user goals need
to be identified. A goal(task)is something that the user tries to accomplish. By using
the informal requirements document (IRD), the list of goals the users will have are
identified. Sometimes, accomplishing a goal might require accomplishing one or more
sub-goals. Table 4.2 shows the goals and sub-goals if any, to be accomplished for the
examplc system CAS. It shows that goall requires at least one of the sub-goals 1.1,
1.2, 1.3 and 1.4.

After the goals and sub-goals are identified, the next step in CUIM is to define
the specific actions that are to be performed by the user and the interface in order
to accomplish these goals. This is done by specifying the dialog between the user
and the interface, where the required inputs and outputs are identified. This dialog
specification also identifies the major functions which provide linkage to the compu-
tational objects. During this stage, decisions are also made about, Task Ordering,

Task Anticipation, and Assistance, as explained below:

o Task Ordering, which refers to making decisions about how much freedom must

61

Goal

Description

Goal 1

Specify the preferences
1.1 Specify the prefered courses & /or
1.2 Specify the prefered time & /or
1.3 Specify the prefered campus & /or
1.4 Specify the prefered workload

Goal 2

Specify the constraints
2.1 Specify the unprefered courses & /or
2.2 Specify the unprefered time & /or
2.3 Specify the unprefered campus &/or
2.4 Specify the unprefered workload

Goal 3

Request for advice

Table 4.2: User Goals

be given to the user to switch between tasks.

o Task Anticipation, which refers to how much information must be provided

about the next tasks allowed, once a particular task has been specified.

o Assistance, which corresponds to how much information must be suggested for
error repair. Since, users make errors[Norm86] either due to non-int -l s~
tions or due to inappropriate intentions (lack of semantic knowledge), ..
situations are also identified during this stage. The user actions are analyzed

for possible error conditions that might occur during the execution of a task.

The dialog diagrams therefore capture the dynamic behavior of the interface. As

described in Chapter 3, the eztended state transition diagrams are used for specifying

the dialog between the user and the interface.

An overview of the different dialogs between the user and the interface, which are

specified towards accomplishing the goals listeu efore, is given in Table 4.3. Figure

62

Dialogs Description
Figure 4.1 This diagram specifies the initialization of the dialog be-
tween the user and the interface. The different tasks that
can be carried out next, by the user are also specified
here.
Figure 4.2 The dialog between the user and the interface when the

user wanted to list his preferences is specified in this
diagram.

Figure 4.3 through 4.6

These diagrams specify the dialog between the user and
the interface when the user enters his prefered courses,
prefered time, prefered camous, and prefered work load.

Figure 4.7

The dialog between the user and the interface when the
user wanted to list his constraints is specified in this
diagram.

Figure 4.8 through 4.11

These diagrams specify the dialog between the user and
the interface when the user enters his unprefered courses,
unprefered time, unprefered campus, and unprefered
work load.

Figure 4.12

This diagram specifies the dialog between the user and
the interface when the user requested the system to give
advice. The tasks that can be carried out next, by the
user are also specified here.

Table 4.3: Overview of the Dialog Specifications

63

‘e SYDITD o &
x apow

S WOOFTOCAR Anal B R

® . Oasis xgwed o] o3,

B, acpFm sootaad un 08 O smomaANg,

B _ERsis ag ol) amape 3W O] APV,

T, 3008 pazagasae Al aey w0k I sow) papude,],
W 3000 paaRid A 2amg 504 § 500K P,

w—m 3pod

JIWEGEY OF AXY AN SN,
™ . Q] pman],
PRt 08

LTS 300G mRaks xg rmbd o),

W 5, wmsy ey Q] WoL x=el,
ixy opoa

caunoo o8 L3y AFm iy,

B . Pu00) 100 ($0[Y eqEe(,
@oe apoo

uns apos

p oy
PA G wsieyg

teooanll. .

suprTop »
(PP Anma £
smopings T
douns |

Figure 4.1: Top level state transition diagram of the Course Advising Systern

64

4.1 shows the top-level state transition diagram for CAS.

The state transition diagram in Figure 4.1 begins at the node start. The action box
numbered “1” is a call to “start_up”. If this action returns “success”, then control
flows to node key; otherwise, control flows to node nodb and the message specified in
the textual description for “node nodb” is displayed to tne user. The system remains
in this state waiting for user input. Once the user input is received, the control flows

to node z and the program terminates.

If the control fiows to node key, then the message given in the textual description
for “node key” is displayed to the user. The system will remain in this state awaiting
user input. If the input received from the user is “Exit”, then a call to “shut_down” is
made and the program terminates. Otherwise, the input given by the user is assigned
to the variable “id”, and a call to “verify.id” is made. The value of the variable “id” is
passed as the parameter during the call. If this action returns “success™ then control
flows to the node main. Otherwise, control flows to node inv_id and an error message
is displayed to the user. When the user hits any key, then control returns to node

key and the system behaves as explained before.

When the control is at node main, the system provides a menu-like interface by
providing different options to the user. Depending on the user input, the system may
enter the sub-conversations “pref choi”, “un pref choi”, or “advise”. The main node
also provides fur terminating the program, or going to the pr:vious option of entering

an id number.

The sub-conversation “pref choi” is shown in Figure 4.2, and has much the same
structure as does the top-level diagra . The start node for this sub-conversation is
preferences. This node displays a list of options the user can choose to specify his
preferences. The “pref choi” sub-conversation iavokes “pref course” when the user
wishes to list his prefered course(s). The sub-conversation “pref conrse” is shown in
Figure 4.3. When ihe user enters the course number, the user input is assigned to
the variable “course.no” and a call to “check_course_number” is made. The value
of “course_n10” is passed as parameter during the call. If this action returns “valid”

then control flows tc node start; otherwise, control flows to node msg1 and an error

65

e’ -
course o)

) ‘tme
cmmpiis’ —— Smefpret carmpal -
*workload ——3m{ <prof loaits J—— —om
—_ .
Actions

1 clear_input
Sub-Conv pref_cho:
node start

‘Course To specify prefered courses ° nl
*Twme To specify prefered tume, choose ' nl
‘Campus To apecify prefered campus *° nl
‘Workload To specify prefered workload * nl
‘Help For m: re information *

node x

cs /* control returns to node “‘maan’’ i fHigure 4 1 (or)
to start node of figure 4 12, depending on from where
this sub-conversaton 1s invoked »/

Figure 4.2: The ‘pref choi’ sub-conversation

message is displayed to the user. As soon as the user hits any key, control returns to

node start. The user can now enter the next course number (if any).

The user either chooses “Accept” or “Cancei” after listing his prefered course(s).
If the user input is “Cancel”, then a call to “clear_input” is made in “pref course” and
then control flows to node z, at which point control is returned to node preferences

i)

in sub-conversation “pref choi”. If the return value in “pref course™ is “Accept” then
control returns to node preferences via node r, without any invocation of a function
cail. If the user chooses other prefered choices, then depending on the user input, the
“pref choi” sub-conversation invokes either “pref-time”, or “pref campus”, or “pref
load”. These sub-conversations are shown in Figures 4.4 through 4.6. Control returns

back to node main when the preferences node receives “Close” as input from the user,

From node main control may flow to sub-conversations “pref choi”, “un pref choi”,
or “advise” depending on the user input. Figures 4.7 through 4.11 model the interac
tions between the user and the interface, when the user wishes to list his un-prefered

choices.

When the “advise” sub-conversation is invoked control flows to node startin Figure

66

*Cancel’ ———-{_ﬂ——" dons

Aduons

1 check_ <ourse_nundcourse _nu)

2 clear_angnn

Sub Conv pref course

digut course_neo

node maon
‘Enter c ourse munber nl
‘Accepr To confirtn your anpnut nl
‘Cancel To canoel yourinput' nl
‘Helgp ¥or mote informauon ® nl

.

node sagl

'Conrse numnber not found ° nl
‘it any keay to conunue *

node =
s /* control returns to .= stan node of figure 4 2 =/

Figure 4.3: The ‘pref course’ sub-conversation

dw), fron_tUdme, to_tims
é E *Accept’
'c.n“r.___,—m_— done

Actions
1 clear_input
Sub.Conv pwef_time

acde start
‘HEnter prefesed Ume (day, from_time, to_time) ° nl
‘Accegt To coafirm your input © nl
‘Cancel To cancel your input* al

"Help For moee iaformation * nl

aode n
cs /* cuntrol retur nis to the start node of figure 4 2 */

Figure 4.4: The ‘pref time’ sub-conversation

67

'“’“"‘_‘—_—:l
SGW'

*Accept®

*Cancel® _-——m—. done

Acuons
1 clear_input
Sub-Conv pref_campus

node start
*Enter prefered campus ol

*Accept To confirm yourinput * nl

*Cancel To cancel vournput * al
*Help For more informauon * nl

node x

cs /* control returns to the start node of figure 4 2 */

Figure 4.5: The ‘pref campus’ sub-conversation

Transition Value Description

Advise give a list of suggested courses

cancel cancel the input given during the accomplishinent of the
current goal/sub-goal

course_no verify the validity of the given course number

done requested operation has been completed successfully

list requested operation has been completed successfully and
a list of values are returned

Exit terminate the program

failureansg an error is encountered while doing the requested operi-
tion and the type of error is reported

id verify the validity of the given id number

valid data value given is acceptable N

Table 4.4: Data Dictionary for transition values to & from a function call

68

'Mn_Coun‘u‘coun——>
'Mln_Courl min_cours—>3

’Mu_Cnd‘——>@— MAX_Cr =t
*Min_ (‘nd‘-—ﬁ@— min_cr ———l

*Accept’

v

'Cancel’

done

Actions
1 clear_1nput

Sub-Conv pref_load

digit max_cour, nn_cour
djgit max_cr, min_cr

node start
*‘Max_Cours To specify the maximum number of courses * nl
'Min_Cours To specify the nunitmum pumber of courses ' nl
*Max_Cred 'To specify the maximum number of credits * nl
‘Min_Cred To specify the runimum oumber of credits° nl
‘Accept To confirm yourinput * nl
*Cancel To cancel yourinput ' nl

node Maco
‘Eater maxamum oumber of courses

node Mico
*Enter maximum number of ccurses

node Macr
‘Enter maximurh gumber of credits *

node Micr
‘Fater mimimum number of credits *

node x
ca /* control returns 1o the start node of figure 4 2 */

Figure 4.6: The ‘pref load’ sub-conversation

69

‘close’ ————-—-’@
'cnur-o'—-*nl <unpref unlr-o)}_
‘time’ >} <unpref_time> l—-’-—
‘campus’ -—*{nnnpnf_mmpu.:}————-»—
'wnrkln.d'-—’{ <unpref lomd> '—»—

Acuons
1 clear_ainput
Sub-Conv unpref_chos

node astart

‘Course To specify unprefered courses nl
“Time To specify unprefered tume * nl
‘Carmnpus To specify unprefered campus ° nl
*Workload To specify unprefered workload * nl

*Help For more informaton

node x

cs /* control returns to node “"main’’ of figure 4 1 (or)
to start node of figure 4 12, depending on from whete
thus sub-conversation 1s invoked */

Figure 4.7: The ‘unpref choi’ sub-conversation

1
*valld® w

*Accept’

i

' Cancel’

Acuons

1 check_course_num(couras_nc)

2 clear_anput

Sub-Conv unpsef_course

digit course_no

node start
"Enter course number
*Accept To confirm your anput ° nl
‘Cancel To cancel your sngput * nl
‘Help For more informsuon ' nl

¢ ol

node msgl
‘Course number not found * n?
*Hit any key to continue *

node x
ce /% conwrol returnas to the start node Of figuse 4 7 =/

Figure 4.8: The ‘unpref course’ sub-conversation

70

day, from_time, to_time
*Accept’

——
*Cancsl’ , I,

Actions
1 clear_input

Sub Conv unpref time

neoxde start
‘Hnter unprrefered dine (day, from_ume, to_time)
‘Accept Toconfirm your input * ot
‘Cancel To cancel your input ° nl

nt

‘Help For more Infonmatdon ® nl

node A
s /™ contrul returns to the start node of figure 4 7 */

Figure 4.9: The ‘unpref time’ sub-conversation

‘Loyola*
SGW*
*Accept’
‘Cancel’ '. 1 '. done
Adtions
1 cleas_input
Sub Conv ungmel_campus
node swart
"Hnter unprefered campus ' nl

‘Accept ‘To confinn your input ol
‘Cancel To cancel your input *° ol

‘Help For more informaton nl

unode x
cs /* contrul returns to the start node of figure 4 7 =/

Figure 1.10: The ‘unpref campus’ sub-conversation

7l

‘Nias_Cours O DN e o d

Ain_C O—""" € ou re——T—t
'l\lu_m‘———@— Han ¢ r————d—
~sun_m———>@— [T TS p—— |

*Accept’

*Cenced’

Acuons
1 clear_input

Sub Conv unpref_toad

digit man_conu, min_cour
digit max_cr, min_cr

node sart

“Max_Cours To specify the maximum sumber of courses * nl
Min_Coure 1'To specify the minimum numbtres of courses nl
Max_Cred :To specify the marimum numbwer of credita ni
Min_Cred To specify the minimum ousnter of credite nl
Accept To coafirm your input * ol

‘Cancel To cancel your input nl

Bode Ms._ o
‘Enter of .

Mico
‘Hoter maximum number of courses

mode Macr
‘Eoter . of crediw

Mice
Eater minimum asumber of credits °

mode
e /* control returne to the start node of figure 4 7 =/

Figure 4.11: The ‘unpref load’ sub-conversation

*ViewUnPrefersdChotces '——3pmfliin prof cholf— + —ef Y}

[LEX]
'Vlowl‘r.f.rodcholru -+ ——-’m—"
g é 'Approve’———3mm-J ¥} done ——

"Hxit’

Acuons

1 shut_down
2 do_advise
3 do_approve

Sub-Conv advise
node sart

*® The suggested coure list is " nl

'® coursel, course2 . coursen’ n!
‘ViewPkbreferedChoices To view your gmeferences nl
‘ViewUnpreferedClwices To view your consusints nl
‘Approve To get approval form.’ n)

‘Cancel To cancel your input ° nJ

‘Bxit To quit the system’ nl
‘Help For more inforamtion *

n

x
cs /* exit CAS */

Figure 4.12: The ‘advise’ sub-conversation

72

4.12. In this state, the system displays the suggested course list to the user. At
this point, the user can view either the prefered choices, or un-prefered choices, or
accept the course list suggested by CAS, or even terminate the program. If che
user chooses prefered choices or un-prefered choices, then either the sub-conversation
“pref choi” or “un pref choi” respectively is invoked. Once the user finishes listing
his preferences/constraints control is returned to the start node in Figure 4.12. It
is obvious from this Figure that a call to “do_advise” is made after returning from
cither “pref choi” or “un pref choi” sub-conversation. Therefore, the start node always

displays the up-to-date suggested course list to the user.

After specilying the dialog between the user and the interface, all those transition
values to and from the function calls in the various state transition diagrams are
tabulated, from which data dictionaries are generated. The term transit'on values is
used to refer to values on the transitions going fo or coming from a function call in
the state diagrams. The data dictionary corresponding to function calls in the state

transitions diagrams for CAS is shown in Table 4.4.

4.3 Specifying the Interactions between the I0Bs
and COBs

After specifying the dialog between the user and the interface, the next step in CUIM
is to specify the interactions between the I0Bs and the COBs. The interaction
diagrams explained in the previous Chapter, are used to specify the communication
between different 10Bs and COBs.

The dialogs specified between the user and the interface are used to identify the
different 10Bs and COBs. The different tasks performed by the interface depicted in
the textual description of the state transition diagram, are mapped to 103s, and the
function calls in the state transition diagrams .orrespond to COBs in the interaction
diagrams. In the state transition diagrams the tezt inside a node represents the name
of the state, whereas in the interaction diagrams, the tert inside a node represents to

the name of an object. The :"+7erent 10Bs required for CAS and a description of each

73

I0OB Description

| Initiator an object which initiates the dialog with the user
Main Interface an object which provides the user with different goals
which can be accomplished next
Prefs Interface an object which allows the user to specify his preferences

for courses, time schedule, campus,work load, and con-
firm his specifications

Constraints Interface | an object which allows the user to specify his unprefered
courses, time schedule, campus, work load, and confirm
his specifications

Advisor Interface an object which gives the list of suggested courses to the
user; also provides the user with different goals which can
be accomplished next

Messenger an object which gives messages (error) to the user

Table 4.5: Data Dictionary for 10Bs in CAS

IOB is given in Table 4.5. Table 4.6 lists the different COBs and the dava dictionary
for each COB. The COBs modeled by the interface group during this phase serves
to establish a link between the interface process and the computational process. The
transition values that are genecrated in response to each input from the user, which
are specified at an abstract level using function calls in the state transition diagrams

are refined in the interaction diagrams.

The interactions between 10Bs and COBs when the user enters the id number is
shown in Figure 4.13(a). The interface object, Initiator after receiving the id input
from the user, interacts with the computational object list by sending the event “data”
with the id value associated to it. The list object then verifies the validity of the id
value given. If the id value is valid then the “valid” event is sent to the interface object
Initiator. Otherwise, the “invalid” event is sent to the I0B object Initiator. In the
former situation, the Initiator sends an “invoke” event to {fisl, requesting it to invoke
the I0OB object Main Interface. The list object then invokes the IOB Main Interfuee
by sending the “valid” event. For the later case (if id is invalid), the Iniliator sends

an “invoke” event to list, requesting it to invoke the IOB obhject Mrssenger. The

74

COB

Description

advisor

a person who is qualified to suggest the list of courses the
student should take during the current academic y+ar, by
considering the student’s preferences/constraints if any,
the pre-requisites the student has completed, the degree
requirements set by the university, and the course sched-
ule given by the department

approver

an object that prepares an official listing of the suggested
courses

rontroller

an object which controls the system by initializing all the
databases when the system is started, and shuts down all
the databases while exiting the system

list

a repository for all the values entered by the user; this
takes care of checking the validity of the value given by
the user. Upon request, this object clears all the data
values which are stored during the accomplishment of
the current goal/sub-goal.

Table 4.6: Data Dictionary for COEs in CAS

75

Internal Event Description

do.advise give a list of suggested courses

clearinput cancel the input given during the accomplishment of the
current goal/sub-goal

data(course.num), | verify the validity of the given course number

done requested operation has been completed successfully

list requested operation has been completed successfully and
a list of values are returned

do_exit terminate the program

invalid(err_type) an error 1s encountered while doing the requested opera-
tion and the type of error is reported

data(id) verify the validity of the given id number

valid data value given is acceptable

Table 4.7: Data Dictionary for Internal Events in Interaction Diagrams

list object then involies the IOB Messenger by sending the “invalid” event and the
corresponding error type as the parameter. Even though there is more than one
output arrow emerging from the object list, in the interaction diagram 4.13(a), it is
important to understand that av any instant, only one of all the output events will
happen. Also, from this diagram, one can easily see that no two solid line rectangular

nodes interact.

Figure 4.13(b) shows the interaction diagram when the user enters the prefered
course number. Figures 4.14 through 4.16 show the interactions between different
I0Bs and COB:s for different user inputs. The solid rectangular node shown in Figure
4.16(b) means, that the user sends an “Exit” event either to the Initiator or to the
Main Interface or to the Advisor Interface. Depending on which 10B receives the
user input, that IOB interacts with the computational object controller to achieve

the desired functionality.

Once the interactions between the 10Bs and the COBs are specified, the next step
is to prepare a data dictionary for the internal events in the interaction diagrams. All

those events that flow between an IOB and a COB zre termed as internal events, and

76

imvoke(Main

velid Iaterface)
E
Main
Interface

tuvoke(Messenger)

tmvalid(ery_type)

(a) when the user enters the 1d#

= — - — '
1 User]
| |

cosurse _num

wnvoke(

Pr;/' data(course _num) Prefs Messenger)
Interface | Interface
invalid(err_type)
Prefs
Inence Messenger

(b) when the user enters the pref_course #

Figure 4.13: Interaction Diagrams: Set One

-~3

-3

“Cancel®*

clear_input

Inlf:;’:f:? I

Frefs
Interface

(a) when the user choases * Cancel’” after listing his preferences

\
Mruroge)
Contrants Coamrants
[[e
aveldsn npe)
Crumany Masengn
bt

(&) wrate rceserste wpr! ceed

Figure 4.14: Interaction Diagrams: Set Two

Matn

Mam
Inerface nerface

iavoke(Adrisor

lamrpucs)

display(line;

{3) whes the uer chooses “Advise”’

“Cancel"*

claar input

Comstramnis
Intetface

€ onstratnge
Interfuc e

(b) when the user cliaes "Cancel’” after Usting tis 1 misatis

Figure 4.15: Interaction Diagrams: Set Three

Advesorirnterface

Startinterfon o/ do exn
do_approve dose
Advuor @] lﬁ;:(’ Munlnterfa e/

(8) when e user chooses **Approve”” (b) when the user chooses **Hxit™

Figure 4.16: Interaction Diagrams: Set Four

those events that flow between the user and an O3 are termed as external events.

The data dictionary for the internal events modeled in the interaction diagrams for

CAS is giv en in Table 4.7.

4.4 Verifying the Extended State Diagrams with

the Interaction Diagrams

The extended state transition diagrams and the interaction diagrams tackle different
aspects of the same problem. It is clear from Sections 4.2 and 4.3 that, the state
diagrams concentrate on the dialog between the user and the interface by abstracting
the interactions between the I0Bs and the COBs, where as the interaction diagrams
concentrate on events between 10Bs and COBs by abstracting the the external events.
Since, humans lack the ability to perform with perfection, verification at various stages
of the development process is necessary. The term verification in our context can he
defined as an activity which assures that the results of each successive step in an user
interface development cycle correctly realizes the intentions of the previons step. In
CUIM, the process of verification is carried out at the end of cach phase to ensure
a more reliable process of user interface development. At the end of the analysis
phase, we verify that the state transition diagrams and the interaction diagrams are

consistent. The verification process is as follows:

79

1. Ensure that a circular node, say Sy (explained in the textual description of the
nodes) in the state transition diagram corresponds to a solid line rectangular
node, say /OB, (described in the data dictionary for IOBS) in the interaction

diagram.

To ensure that (1) is true: Construct a state-IOB association table, which con-
tains three columns. The first column specifies the dialog diagram, the second
column lists the state node in that diagram, and the corresponding 10B object
is specified in the last column. After constructing the state-IOB association
table, the textual description of the nodes and the data dictionary for JOBs are

used to check that the state node corresponds to the IOB object.

2. Ensure that a function call, say FFCy (explained in the textual description of
‘Actions’) in the state diagram corresponds to a circular node, say COB; (de-

scribed in the data dictionary for COBs) in an interaction diagram .

To ensure that (2) is true: Construct a function.call-COB association table,
which contains three colimns. The first coluinn specifies the dialog diagram,
the second column lists the function call number in that diagram, and the
corresponding COB object is specified in the last column. After constructing the
Junction_call-C'OB association table, the textual description of the actions and
the data dictionary for COBs are used to check if the function call corresponds

to the COB object.

3. If (1) and (2) are true, then the transition value between S; and FC; should
correspond to the internal event between IOB, and COB, (Figure 4.17). If
this correspondence between the transition value and the internal event is es-
tablished, we conclude that the the state transition diagrams and the interaction

diagrams are consistent,

To prove (3), the correspondence between the internal value and the transition
value is established by constructing the event verification table. The event ver-
ification table contains two columns, where the first column lists the transition
value between the nodes S; and FC; and the second column lists the internal
event between JOB, and COB,. Similarly, all the transition values and inter-
nal events are listed in the event vcrification table. Once, the event verification

table is constructed, we can check that each transition value has an associated

80

trans vul
Dualog Spectfication ° m

: . mim_evt
Interaction Specification 108, coy

Veificationmeans (S corresponds o 10B)) & (FCy corresponds 10 COY)

:> trans_val corresponds to mtm_evnt

Figure 4.17: Verification Process

internal event. The data dictionary for transition values and the data dictionary
for internal events is used to check that the transition value corresponds to the

internal event.

Since the event verification table groups the transition values in the state diagram

with the internal events in the interaction diagram, one can casily identify:

1. if there are any transition values that are not modeled in the interaction dia

grams and

2. if there are any function calls which are missing in the state diagrams

The verification process for the example system CAS is given below:

e Step 1: The stale-IOB association table for CAS is shown in Table 4.8. By
using the data dictionary for IOBs (Table 4.5) and the textual description of
the nodes (given in Section 4.2), we say that the state nodes in column 2 of

Table 4.8 correspond to the IOB objects in column 3.

e Step 2: The function.call-COB association table for CAS is shown in Table 4.9,
By using the data dictionary for COBs (Table 4.6) and the textual description
of the actions (given in Section 4.2), we say that the function calls in column 2

of Table 4.9 correspond to the COB objects in column 3.

81

Dialog State I0B
Figure 1.1 key,x [nitiator
main,x Main Interface
Figure 4.2 start Prefs Interface
Figure 4 3 through 4.6 | start

Figure 4.6

maco, mico, macr. micr

Figure 4.7
Fignre 4.8 through 4.11
Figure 4.10

slart
start
niaco, mice, macr, micr

Unprefs Interface

Figure 4.1 inv_id, nodb Messenger

Figure 4.3, 4.8 msg!

Figure 4.1 X Advisor Interface
Figure 4.12 start,x

Table 4.8:

State-1IOB Association Table

Dialog FunctionCall COB
Figure 4.1 1,2 controller
Figure 4.12
Figure 4.1 3 list
Figure 4.3 through 4.6 |1
Figure 4.8 through 4.11 | 1
Figure 4.3, 4.8, 4.12 2
Figure 4.12 3 approver
Figure 4.1 4 advisor

Table 4.9: FunctionCall-COB Association Table

Transition Values Internal Events
Advise do.advise
cancel clearinput
course_no data(course.num),
done done
list done(list)
Exit do_exit o
failure_msg invalid(err_type) o
id data(id) T
valid valid -

Table 4.10: Event Verification T'able

e Step 3: After ensuring step 1 aud step 2, we should now ensure that the the
transition values in the state diagrams corresponds to the internal events in the
interaction diagrams. The event verification table for CAS shown in Table 4.10
associates transition values to internal events. By using the data dictionary for
internal events (Table 4.7) and the data dictionary for transition values (‘Table
4.4), we say that the transition values in the state diagrams correspond to the
internal events in the interaction diagrams. Thercfore, we conclude that the

state transition diagrams and the interaction diagrams are consistent.

4.5 Ensuring Consistency between IAD & CAD

All the above activities (constructing the user profile, modeling the dialog between the
user and the interface, and modeling the interactions between the I0Bs and the COBs,
verifying the extended state transition diagrams with the interaction diagrams) that
are carried out during the user interface analysis phase comprise the Interface Analysis
Document(IAD). The Computational Analysis Documenl(CAD) comprises all those
activities carried out during the analysis phase of the computational process. Once

the IAD document and the CAD document are produced, the analysis walk-through

83

is conducted. An analysis walk-through is an informal analysis of IAD and CAD
documents, as a cooperative and organized activity by the two groups of people(user
interface engineers, and the software engineers). Software engineers from either group
(interface group and the computational group) meet to review the output of the
analysis phase of both the interface process and the computational process. This

meeting focuses on “discovering the errors and inconsistencies”, but not fixing them.
b)

Key people (say, the group leaders) in either group walk through the IAD and
CAD documents to present and explain the rationale of their work. The software
engineers check that. for every internal event sent by an IOB in the IAD, there exists
a COB in the CAD document, which accepts that event. Similarly, for every internal
event sent by a COB in the CAD document, there should exist an IOB in the IAD
document, which accepts that event. During this process, the user interface engineer
takes notes on the changes that are to be made to the IOBs/COBs in the IAD
document. This applies to the software engineer too. Therefore, this walk-through
scrves the interface group to ensure that the CAD document does not miss any of the

tasks that are modeled in the IAD document and vice-versa.

CAS is used as a running example in this thesis. At the end of the user interface
analysis phase, we have the IAD document as the output of this phase. Since the
various activities in CUIM are independent of the activities involved in the computa-
tional process, this thesis does not concentrate on the computational analysis phase.
In following the advanced evolutionary prototype model, ensuring consistency between
the IJAD document and the CAD document is necessary. This requires the CAD
document for CAS, which was prepared by Kim[Duon95] in her project work. We
conducted analysis walk-throughs to review the IAD and CAD documents. By re-
viewing the IAD and CAD documents, we ensured that the CAD document does not

miss any of the tasks modeled in the IAD document and vice-versa.

The analysis walk-through served us to identify the changes that are to be made
to the IAD and CAD documents to ensure consistency between them. The changes
that are to be made to the IAD document are in the interaction diagrams. The object
names given to the COBs in the interaction diagrams are to be changed in accordance

to the names specified in the CAD document. Table 4.11 shows the changes that will

84

Existing COBs New COBs

advisor Suggested Courses
approver
list Transcript

User Constraint

controller CAS

Table 4.11: Necessary Changes to the COBs

be made to the COBs which are modeled during the user interface analysis phase.

The time taken to produce the IAD document, may not be the same as the length
of the computational analysis stage. The length may vary from application to ap
plication. In such cases, the interface group postpones the analysis walk-through
until the CAD document is available, or may enter the user interface design stage in

anticipation of consistency. The next Chapter deals with the design issues in C'UIM.

Chapter 5

User Interface Design in CUIM

In Chapter 4, we considered the user interface analysis aspects following CUIM, and
in this Chapter we consider the interface design aspects. The user interface part of a
software system is something which has look and feel characteristics. Since the feel of
the interface cannot be achieved until it is implemented, specifying how the interface
looks is tackled during the design phase. Section 5.1 discusses how the look of the in-
terface(user view) can be constructed. The dialog between the user and the interface
specified during the analysis focussed on the user view of the interface, and summa-
rized in the IAD document. This is to be refined further in a way that it corresponds
to the decisions made during the dialog design. The issues of how this refinement can
be done is discussed in Section 5.2. Section 5.3 discusses how the various design activ-
ities such as listing the class charts, depicting the spatial organization and specifying
the class descriptions help the user interface designers to construct the static struc-
ture(designer’s view) of the interface. By designing system interactions which realize
the behavior of the various classes and the interaction relationship among them, the
user interface designer moves closer to implementation. Section 5.4 discusses how this

can be done.

Since the design phase in CUIM includes various activities to be carried out, ensur-
ing cons:stency among the outputs of these activities is important. Section 5.5 shows

how the design can be reviewed in order to ensure consistency. As shown in the

86

advanced evolutionary prototype model, the outcome of the design phase is the 1DD
document. Since the user interface analysis focuses on what needs to be done(1AD),
and the user interface design provides a solution to the problem analyzed during the
analysis(IDD), Section 5.6 verifies that the IAD and IDD documents are consisten!
with each other. And finally, Section 5.7 ensures that the outcome of the design phase

of the user interface process and the computational process are consistent.,

5.1 Dialog Design

Since the user interface consists of different dialog styles, in order to communicate
with the user, identifying appropriate dialog styles which satisly the user needs is
important. Therefore, considering the User Profile specified during the analysis, the
first step in dialog design is to identify the appropriate dialog styles. The second step
is to decide how to integrate the different dialog styles identified during step one in
order to maximize the overall usability. Subsection 5.1.1 discusses the first step and

subsection 5.1.2 discusses the second step.

5.1.1 Identifying Appropriate Dialog Styles - Cell Matrix
Method

A cell matriz is a rectangular array of cells set out in rows and columns. The Cell
Matriz MethodMayh92] proposes a strategy for selecting an appropriate set of dialog
styles for an application. In the cell matrix, the top-most row lists the different
dialog styles from left to right, and the left-most column lists the user characteristics
from top to bottom. Figure 5.1 shows the cell matriz which lists the different dialog
styles and the user profile. Each cell in the matrix holds a particular value of the
user characteristic in that row, for which the dialog style in that column would be
appropriate. For example, in Figure 5.1, going from top to bottom under the column
“Menu”, it can be seen that menus might be an appropriate dialog style for users
with low motivation, low typing skill, low system ezperience, low task experience, low

computer literacy, low frequency of use and so on. In contrast, going down the column

87

Pili-in Question Command Frunction Direct Natural

Menu forms and apawers language kays manipulation Language
Low Low

Low Low High Low Low
Motivation Moderate High
TYPing Modsrate Moderate Moderate Low Low High
ax111 High High High
Syatem Low High Low Nodarate Low
expariencs Moderate Moderate High
Task Low Moderate Low High Moderate Moderate High
experience High High High
Computer Moderate Moderate
Literacy Low High Low High High Low Low
Frequency Low Modarate Low High Low Low
of use High High
Primary Little or]| Little or Little or ro 1 Little or Some Little or
Training none none none none none
Systenm Discreti- Discreti- Discroti- Mandatory Dimcreti- DPiscreti- Diacreti-
Uss onary onary onary onary onary onary
Task Low Low Low
Importance Low Moderate Low High High

Figure 5.1: Appropriate Dialog Styles - Cell Matrix Method (from [Mayh92})

under “command languages”, it can be seen that command languages might be an
appropriate dialog style for users with high motivation, moderate to high typing skill,
high system experience, high task experience, high computer literacy, high frequency

of use and so on.

After determining where the intended user group falls on each user characteristic
(constructing the user profile), we read across each row in the matrix by marking
(putting a tick mark) every cell that matches the user characteristics. For instance,
if the intended users for an application are low in motivation, then all dialog styles
in the matrix, except command language would be marked in the row for the user
characteristic “motivation™. Therefore, an initial marking is prepared by marking the
cells which are appropriate for the user domain constructed. Then, the number of
tick marks obtained for each dialog style are added. The total for each dialog style is

tallied at the bottom of each column.

Once the initial marking has been done, a second pass is made and each “unmarked

88

cell” is further inspected against the following criteria: Check whether the dialog style
for users other than those indicated in the cell for each row or user characteristic, has
any serious disadvantages? If the dialog style does not have any serious disadvantages
for that user characteristic, then the cell should be marked. For example, if the
intended users for an application have users with high typing skill, then the cell under
“Menu” for the row “typing skill” will not be marked during the initial marking phase.
However, menus do not carry any penalty for good typists. Therefore, menus should
get a tick mark on the typing skill characteristic. Even though they provide no special
advantage for high-skill typists, they do not introduce any particular disadvantage for
this type of users. In brief, we can conclude that, even though the user characteristies
noted in each cell do not match the user characteristics in the user profile, they should
still be marked if the dialog style does not pose any particular disadvantage for the

users with characteristics listed in the user profile.

At the end of the second pass, the number of tick marks for each dialog style across
user characteristics are again added. The new total for each dialog style is tallied at
the bottom of ¢>ch column. The dialog style with the highest score is considered as
the best match to the user profile constructed. At this point, if more than one dialog
style has the same highest score, then the highest score dialog styles are examined in

the context of other factors such as:

1. Identify the cost of implementing the dialog style.

2. The accommodation of this dialog style on the available hardware platform; i.e,

check if the hardware imposes any constraints for this dialog style.

3. The matrix method described above, does not take into account the “relative
importance” of the different user characteristics. The scoring strategy outlined
above, gives all user characteristics equal weight in the scoring. Therefore for
applications where same of the user characteristics are more important than
others, an alternative strategy would be to create a weighted matrir, where, the
characteristics are prioritized and a weighting factor is included in the scoring

technique.

In any case, it is important to note that, for a given set of users and tasks, the

89

riil-4nop Question Command Punction Direct datural
Manu forma and answers language keys manipulation Language
Low Low
1gh "
%ot tvat fon V /. \M ¢ \</ \0/
TYyping Low Moder, - Moderphe Mode - Low ig
eki11)
byatem Loow ig Low oder, [Low
experisnce rate ate 1
o \"’/ e ‘(/ "{9/ gascy | Jeanyl | o
experiance)
Computer Moder, - Moderate
Literacy \Q/ \</ W ; v
FPreguency Low Moderate Low High Low Low
of use High
Primary Litt or Littlpfor \L?(or ro 1 Littlgfor Some Litelg”or
Training &/ ° D)
Symatem Disc 1- Discr - Discr - Mapdato Disc 1- DiacrepA - DiscreyA -
Oaa na na a ad a a
Low

Task Low Moderate Low Hig Low Low
Importance 1

7 7 8 L & 6 8

Figure 5.2: Appropriate Dialog Styles - First Pass

cell matrir method provides only a cookbook strategy rather than a strict algorithmic

method, to help select an appropriate primary diaiog style.

We will now see, how the cell matrix method described above, helps us to design the
dialog for the user profile constructed during the user interface analysis phase, for the
example system CAS. Since the example system CAS contains users whose motivation
is low as well as high, all the dialog styles in the row for the user characteristic
motivation should be marked. Since the users typing skill ranges from moderate to
high, fill-in-forms, question and answers, command language, and natural language
should be marked in the typing skill row. Figure 5.2 shows the cell matrix, resulted
from the initial marking of every cell where a simple match with the user characteristic

value was found.

So,

during the second pass, a tick mark can be made under menu for the typing skill row.

For users with moderate/high typing skill, menus are not a disadvantage.

Also, the menu style does not impose any penalty for high task importance. So the

90

task importance row under menu style can be marked. Since the frequency of use for
the example system CAS is low, the chances that the user makes syntactic mistahes
would be high. So. the cell for frequency of use under fill-in forms should not he
marked. Fill-in forms provides a forward context and due to high ‘ask importance,
the cell under fill-in forms for the fask tmportance row can be marked. Question
and answers make the application tedious by asking the user to enter a lot of input.
This would cause typographical errors(typos). So, users need to spend more time
correcting typos, rather than doing their job. Therefore, the cell under question and
answers for the task importance row should not be marked. Command language loads
the users long-term memory due to low frequency and discretionary use of the system.
So, the cells for frequency of use and system usc under command lanyuage should not
be marked. Function keys are not a disadvantage for users with moderate/high typing
skill. So, the cell under function keys for the typing skill row can be marked. The
same reasoning applies for direct manipulation column in this row. When compared to
other dialog styles(fill-in-forms, question and answers), direct manipulation interfaces
sometimes might take longer time to complete a task. For example: consider the
situation where the user needs to give his ‘id number’ to the system. This can be

done in different ways:

1. By giving a list of all the ‘id numbers’ {direct manipulation dialog style) and

asking the user to select one of them.

2. By using fill-in-form dialog style and asking the user to type his ‘id number’.

Using direct manipulation dialog style in this situation would take much longer time.
For applications with high task importance, efficiency in the task to be executed is
important. Therefore the cell under this dialog style, for the row task tmportanee
should not be marked. Natural language interfaces hide the enhancements from the
user. Therefore, due to high task importance, the cell under natural language for the
task importance row should not be marked. Figure 5.3 shows the cell matrix at the
end of the second pass. The number at the hottom of each column is the sum of all
the matches of that dialog style with the user characteristics. From the Figure, we
see that the dialog styles that best match the user characteristics of the intended user

population of CAS are menus and function keys. The closest competitors are fill-in

9]

Pill-4in Quesation Command Function Direct MNatural
Menu forms and anawers language keys manipulation Language
Low Low
igh]
Motivation V % V \“h/ V \O/
Typing orple Moderpte Mode - 1g
akill
System Low Low tgh Low ode o
experience Tate ate 4 \
Task mv/ Moder V/ ron cderas Moderadl ‘o
experience
Computer . / Noderpile Modarale "
Literacy W igh
rregquency Moderate Migh Low
of use High
Primary Lite or Littlp’or wor ro 1 Littlg/or gome LittlpZor
Training > G n n
system Diacyafi- | Discroei- \Da.;?‘- Mandatory | \P1oc#t - ;1\-;?(- Discreyf-
Tae na na a - a
Low

Taak v oderple Low Hig \/ Low Low
Importance 1

9 s 8 6 9 7 8

Figure 5.3: Appropriate Dialog Styles - Second Pass

Jorms, question and answers, and natural language dialog styles. Therefore, the cell
matrix method suggests menus and function keys as the suitable dialog style for our
user domain. However, this initial suggestion must be examined in the context of
other factors. Since the frequency of use is low, the system needs to provide a lot of
feedback to the user for function key dialog style. Therefore, comparing menus and

function keys, the best choice of dialog style would be “menus”.

Different dialog styles lend themselves better to different tasks and users. Gen-
crally, a system is used by different users performing a variety of tasks. Thus in-
corporating multiple dialog styles would be advantageous. For example, while some
user inputs are best solicited through menus, others cannot be and are best solicited
through fill-in fields. While employing multiple dialog styles, they should be “consis-

tently™ assigned to actions, in a manner anticipated by users.

The following are the multiple dialog styles that are to be used for the example

systemn CAS. Even though CAS is primarily menu driven, fill-in forms can be used

92

[Welcome Lo the Automated Course Advising System

EnteryouriD: [] Invalid 1D.

{ ok | | Exir}

® To start the advising sessien: enter your Id and click on 0K

OK

¢ To exit the system. click on EXIT .

(») (b)

Figure 5.4: The Initiator & Messenger Interfaces

l Adyvise J I Prefered Choices | Lllnprefertd Cholces I

e R .

To get advise from the system: click on Advise.

If you have any preferences: click on Prefered Choices.
If you have any constrainis: click on Unprefered Choices.
To go to the previous window: click on Previous.

To quit the system: click on Exit.

Figure 5.5: The Select Interface

Fraferwd Course Lise

Rnter Consrse Mumbar 1

Frefered ¥isme Liee Balewt Frafared Cosspss
= -caw
L oy mlo
Enter Tizme:
—1
Permmat: Wow shiee saime
Entes Frader od Weskioe @
Maomtrmiame *® af ewurses s [T Mantnien ¢ of areaiss s [T)
Minisniume * af asurses + [T_—) Mintanimm @ of creadss s [

[aAssems] [_Sanser]

Figure 5.6: The Preferences Interface

93

L e R R

Eains fowusan B

1

Cimpr atas ad Time 3 ace Salact LUnpretes od < ommapas

=0 sow

- L ypmim

Monsms T howem s

| S—]
Ae AMND ASS
Mnter Linps afered Workilead
~e ~ - 2 - - =
NS e ® ol ewurees s [Minimatsms @ of erradses » [

L _asaers 1 [Coneow]

Figure 5.7: The Constraints Interface

> Based orn your preferences/cornstralrnis and the prereguisites
Yorss have cowpleted, she following is the list of suggested courses.

Course ¥ Course _Name Instructor Time Teorm
l Prefered Cholices I l Unprefered Cholces I
1 Print 1 | Exit |

Figure 5.8: The Advisor Interface

whenever menus are not best suited. Fill-in forms would be appropriate for entering
information like the id number, the course number etc.. Therefore, the interactive
course advising system CAS, contains menus and fill-in forms as the dialog styles
interacting with the user. Since, the key to usability of an interface incorporating

multiple dialog styles would be “smooth integration”, consistency in the actions to

be performed by the user, is aimed during integration.

5.1.2 Integrating the Multiple Dialog Styles

The multiple dialog styles identified in the previous Section are integrated in a way

such that the interfaces designed, are consistent with the actions that are to be

94

performed by the user. For example, fill-in-forms are used for all user inputs of
specifying the course number, time schedule and so on. Figures 5.4through 5.8 show
the multi-dialog-style interfaces for CAS. The start up interface which appears as
soon as the system is invoked is shown in Figure 5.4(a). This interface uses the fill-
tn-form dialog style for entering the “student id” and menu dialog stvle for choosing,
different options available. Using direct manipulation style for choosing the *student
id” would be a bad design compared to fill-in-forms. Euntering the “student id™ with
direct manipulation dialog style will take much longer time because the user need to

scan the whole list to find the “student id”.

Figure 5.4(b) shows how an error message is communicated. A response to this
does not require any input from the key board. So, this interface contains only the
menu dialog style. Figure 5.5 allows the user to select one of the goals of specifying the
prefered choices, unprefered choices, and requesting for advice, uses menu as a means
of interaction with the user. The preferences and constraints interfaces in Figures
5.6 and 5.7, again combines the menu dialog style with fill-in-forms. The advisor
interface in Figure 5.8 uses menus for displaying the various options available, to the

user.

5.2 Refining the Dialog between the User & the

Interface

By now, we have the various user interfaces as seen by the user(designed in Section
5.1). At this point, the dialog between the user and the interface which is specified
using the ertended state transition diggrams during the analysis phase needs to be
updated to currespond to the decisions made during the dialog design. The various
user interfaces designed during the dialog design are used to present the output from
the system to a user. Since the textual descriptions of the nodes in the state transition
diagrams also specify the system output, these textual descriptions are modified to

be in correspondence to the dialog designs.

95

% o

g w0 X0 wanke apimb o] o, ‘§ITN

SROMASI] 5O NI -mopute shotadmd mp oy 0B o) o, ‘CIT

~ R0 o 3> Awe onwy #0L 31 . ‘ST
S IEOYIPES PRI WO XN -secnasagand Lwe euwy wod 5 o, §IT
SORAPY B0 JIND TWIRALS ap W0) eutape B O o, ‘SN

TPy AR POIITH

oouaq INH, VOREG MMOjAN], T EN
DonAg SeoRMDpEIIdnr, BOUAQ SENONIPAMPN]. VAN APV, T2 G
o spow

SONM YR N0, TP
. a1 PYreARL, 7273
PFam apos

. 11X 00 IO TINAE |B XS OL o, ‘£ L43
A0 PO XM BoMese FTWIADS BB LMS O] o, '§2 T
TPOY MLp W) YT+

soNRq JRE VONNG YO, TITH

voqiade) ‘.. (1 Mok X807 ‘€G3

TROYALD WEIT TN

R g TUWAPY SUR0D) PRFEERAY MO) SWONS, ~ T
Aaxy spom

. moRooo oy Ay aw gy,
B, Posoj)08 (s)efy oeeqmsQ,

Qpos spos
wileq epow

scnagueadys¢ SoREqTXN SOUSG
waeguInigyg wonaq swyaQ
MIRJIAR] Yogedwy swaq
nemdes ROy ATy swya]
 Beas

s ampey WD

e don wabng

supe=op ¥

(PHIPYépiam ¢

SmopTInye I

dayme

RNy

Figure 5.9: Modified Top level state transition diagram of the Course Advising System

96

‘v&ld *

course_ 1 fadlure_type magl

‘OK*

® tHme_str

IMAX course

min_course

max_cred

MERT

min _cred

«Cancelt done

«Accept’ [e.+)

Acuons

1 venfy_course(course_no)
2 clear_input

Sub-Conv pref_cho

strang course_no

string ume_str, campus

dagnt failure_type

digit max_course mun_course,max_cred. qun_cred

Define draw_honz separator
Define draw_vert separator

Define commandboxa 8x20command
Define daylhist 11x1lscrolledText
Define from_timelist 6xSSscrolled Text
Define to_umelist 6x55scrolledText
Define togglebutton 3Ix3toggleButton
Define mnputbox 3xitextField
Define button 3IxB8pushButton
Define sack_button 3x4pushButton

node preferences

r2,c10, ‘Prefered Course List’

r+1.c8, ‘Enter Course Number .’, commandbox
r+2.cl eol, draw_honz

1+2.c5, *‘Select Prefered Time’

1+2.c2, daylst, from_timelist, to_timelist
c_sr5.r11, draw_vert

17.c20, *Select Prefered Campus’

r+3,c23, togglebutton. * SGW’

r+3,c23, togglebutton, * Loyota’
r1i,cl,e0l. draw_honz

r+2.c_, ‘Enter Prefered Work Load®

1+2,c2, ‘Maximum # of courses *, inputbox
r+2.c2, ‘Munimum # of courses'’, inputbox
£15,c18, ‘Maximum # of credits *, 1nputbox
r17.c18, ‘Munimum # of credits ', inputhox
r+2,c_. "Accept’ tiaitton, ‘Cancel’ button

node megl

r_.c., ‘Invalid Course #°
r3-1,c_, ‘OK’ ack_button

aode X
cs

Figure 5.10: The Modified ‘pref choi’ sub-conversation

97

L,

— W tattare_type __><)_ cox

MAax_courss

min_course

max_cred
min_cred
done

«Canocel® A%
‘Accept’ @

LYYy V

Acuons

1 venfy_coursa(course_no)
2 claar_soput

Sub Conv unpref_cho

string course_no

string tGume_str, campus

digit faslure_type

digit man_course,min_course.max_cred.tun_cred

Define draw_honz separstor

Define draw_vert separstor

Define dbox 8220c d
Define daylst 11x11scrolledText
Define from_timelist 6x35scrolledText
Define to_timelist 6xS5scrolledText
Define togglebution 3Ix3toggleBution
Define nputbox 3Ix1textField

Define button 3x8pushButton |
Define ack button 3x4pushBution

node coonstralals

r2.c10, ‘Unprefered Course 1.ist*

r+1,¢8, '‘Enter Course Number .’, commandbox
r+2.cl. 00, draw_horiz

r+2.c5, ‘Select Unprefered Time’

r+ 2.c2, daylist, from_umelist, to_timelist
c_.r5.r1t, draw__vert

r7.c20, ‘Select Unprefered Campus’
r+3,c23, togglebutton, * SGW’

r+3,c13, togglebutton, ' Loyola’
rll.cl.e0l draw_honz

r+2.c_. ‘Enter Unprefered Work Load’
r+2,c2, ‘Maximum # of courses °, inputbox
£+ 2,c2, ‘Mimumum # of courses *, inputbox
r15.c18, ‘Maxamum # of credits °, inputbox
rit7.cl8, ‘Miasonum # of credits *, iaputbox
1+2.c_, ‘Accept’ button, ‘Cancel’ button

node msgl

r_.c_. ‘lavaid Conrse #°
8 l.c.. '‘OK’ ack_tutton

node =
cs

Figure 5.11: The Modified ‘unpref choi’ sub-conversation

98

'P'-'-"dchnm-‘——————’-_———— —— 2 % am

sPFrine® —i—CD done ,

—— ‘UnprefersdCholces’ ———————ef Tun-pre? _Shal——— + —— e Lt}

e

[T+ 1}
8y

Exit® [T

©

Actions

1 shut_down
2 do_advise
3 do_pnnt

Sub-Conv advise

Define draw_horiz separator
Define suggest_list 8x31llabel
DPefine button 3Ix20pushButton

node start
1.

r+3,c3, '* Based on your p Z and the prareaquisitas’
r+1.c3, ‘you heve completed, the following is the list of suggaetod courses *
r+1l,cl,@0l, draw _horiz

r7,c4 ‘Couree # Course_Name Insguctor Time Term'

r8.c3, suggested_list

r) 7.cl.,@0l, draw_horiz

r+2.c_, ‘Prefered Choicos® button, ‘Unprefered Choicas’ button

r2.c_, 'Priot’ button, 'Exit’ button

node meg2
Job Completed Successfully

node xn
ce

Figure 5.12: The Modified ‘advise’ sub-conversation

While developing the user interface, specifying the positioning of various compo-
nents of the user interface on a two dimensional screen is necessary. Therefore, at
this stage, the textual descriptions are changed not only to correspond to the deci-
sions made during the dialog design but also to contain information pertaining to the
exact or relative position of the components on the screen. The symbols described in

Chapter 3 are used to format the system output.

In Figure 5.9, the line:

r2, c_, “Welcome to the Automated Course Advising System”
specifies that the welcome message need to be displayed on row two and should be
centered in that row. The next line,

r + 1, cl, eol, draw horiz
specifies that a horizontal line should be drawn on the succeeding row on which the
welcome message is specified. The “cl, eol” indicates that the separator should be
drawn starting from columnl and ending at the end of the row. The symbol ‘r$-1’
used to specify the node “invid” indicates that the acknowledge button should be
placed on the last but one row in the interface. Therefore, one can easily specify the

exact or relative positicning of the output to be displayed. The definition of inputboz

99

in Figure 5.9, represents a textField widget whose height equals 1 row and width
equals 7 columns. Also, one can see how the message name “draw_horiz” has been
used at several places, for drawing the separator widget. Figures 5.9 through 5.12

show the modified dialog specifications of the Figures 4.1 through 4.12.

5.3 Static Structure of the Interface

The user interface design phase provides a solution to constructing the interface.
Therefore, after designing the appropriate dialog styles, the next step in the design
phase of CUIM is to construct the static structure which depicts the designers view
of the interface. For this purpose, we use the class charts, which depict the spatial
organization of the interface classes, and we provide the class descriptions. Jean
Marc[Ners90] discusses an object oriented notation BON (Better Object Oriented
Notation) for object oriented design of software systems. We have adapted BON
for our purposes and called it Simplified Object Notation (SON). The various design
activities such as: listing the class charts, depicting the spatial organization, and
specifying the class descriptions are carried out using the SON notation. The the

SON notation is explained by giving examples in the following subsections.

5.3.1 Listing the (lass Charts

All the interface classes identified during the analysis phase are examined for any

changes that are necessary. The reasons that would necessitate the changes could be:

1. Extra classes! need to be added as a result of the dialogs designed in the previous

step.
2. Some of the classes identified during the analysis phase might be redundant.

3. The result of the analysis walk through might demand more interface classes to

be added, if the interface group did not model the tasks that have been specified

1The term “class” is used as in the case of Object Oriented Modeling.

100

by the computational group.

After identifying the new list of classes, the interface designer draws a class chart for
each class to give a textual description of the class. The different rows in a class chart

are:

e Name: The first row of a class chart contains the name of the class.

e Definition: The row below the class name, defines the class and contains two

columns:

1. Type Of Object: This column gives an informal description of the class.

2. Behaves Like: The Behaves Like column states that this object behaves

like (inheritance relationship) another type of object.

o Miscellaneous: The last row in a class chart lists three basic types of informa-

tion:
1. Questions: What information can the class ask from the user.

2. Commands: What services can the user ask the class to provide.

3. Constraints: What knowledge must the class maintain.

The values for the columns Behaves Like, Questions, Commands, and Constraints are
optional. Considering the example system CAS, it has been found that some of the
classes (Prefs Interface, Constraints Interface) identified during the analysis phase are
redundant. Both the Prefs Interface and the Constraints Interface which allow the
user to specify his prefered /unprefered courses, time schedule, campus, and workload,
can be thought of as different instances of a single class. So these two classes in the
analysis phase are now changed to a single class called the Choicer. Figure 5.13
shows the new list of classes, by drawing the class charts. The classes Main Interface
and the Advisor Interface (specified in the IAD document) have been renamed as
Selector and Advisor respectively. From Figure 5.13, one can easily understand that
the Initiator class asks the user to enter his id#, in order to start the advising session.

The class chart for the Selector class shows that this class allows the user to request

101

Selectar

Initiator
Type Of Objece Behaven Like: Type Of Object ; Behaves Like
Thus class 15 the heart of the advini
That 19 the start up 1okerface of the ltuﬁmhw»m‘mm&w
courm sdvimng ryviem. evamiable
Qursel C & Comtireing Questions Commands Constraints
1 request advise
1 stndent1d 1 start advimng sesmon 2 requen prefs
2 mquest exst 3 request coostrmnts
4 request previous window
3 request exst
Advisor Messenger
Type Of Objecs : Behaves Like : Type Of Object: Behaves Like :
Thirclas & the sdvise W the studeot
hm:::u-vl'-?oz'mmdu-cm-p This c!ass reports all the (ezror) messages
ing nfamatoo ‘mld-dmgmanhe © the user
wser with severa] goals that csn be executed
s Questions G " G ;
Questions Commands Constrainy
1 sckoowkledge error 1 caller_clws_name
1 request prefereoces
2 request consrmou
3 request spproval
4 mquest exil
Choicer
Type Of Object : Behaves Like :
Thus class allows thw aser (o specely hus
peferences/constrmots {1 also allows the
asex 0 confi 1 hus 1pecfs
Questions Ce di Ca)
1 courves 1 sccept user grelerences | 1 caller_clae_omne
2 wme 2 cancel uaer prefesecces
3 campis
4 work lond

Figure 5.13: Class Charts for the Interface Classes

102

for advise, request for specifying his preferences/constraints, or to exit the system.
The Messenger class needs to have knowledge of the interface class which invoked
it via a COB. This is necessary because once the user acknowledges the message,
the Messenger should return control(via a COB) to the 10B which invoked it before.
From the interfaces designed in Section 5.1.2, we see that the user can specify his
choices by invoking the Choicer object either from the Selector interface object or
from the Advisor interface object. Depending on from where the Choicer object was

invoked, at the end of the user input activity, the control will return to that 10B.

The knowledge of which IOB should be invoked next, must be maintained either
by an IOB or a COB. During the analysis phase, it is the user interface group who
specifies the order of the tasks that are to be carried out. If the knowledge specified
in the “Constraints” column is maintained by a COB, then any changes made by the
interface designers to the ordering of the tasks would necessitate these changes to
be propagated to the computational group. Therefore, it is logical to maintain this
knowledge in an IOB.

5.3.2 Depicting the Spatial Organization of the Interface

The spatial organization captures the physical placement relationship among the var-
ious widgets in the interface. A widget is a user interface object which the user sees
as a picture on the screen, and the user interface designer sees it as a set of resources
and callbacks. The resources lets the designer to control the appearance and behavior
of the widget as suited to the user needs. For example, every widget has a “width”
and a “height” resource, which determines the width and height of the widget on the
screen. A change in the resource during program execution lets the user see a change
in the appearance of the widget. The callbacks let the widget communicate with the
program as the user performs actions. For example, if the user changes the value of
a scale’s slider, the widget recognizes the change, and generates a “valueChanged”

callback. This causes the widget to call the specified function.

The SON notation is used in depicting the spatial organization of the user interface.

In SON, the spatial organization of the user interface is shown as a graph containing

103

nodes connected by solid lines. A solid line in the graph represents the relationship
between the different nodes in the graph. This relationship can be either “spatial” or
“functional”. The aggregation and inheritance relationships between any two nodes
correspond to the spatial relationship. In SON, aggregation is indicated by a small
square which is drawn at the assembly end of the relationship. The node attached

to the non-assembly end of the relationship is called the component.

The nodes in the spatial layout are categorized as:

1. Non-Terminal Nodes, and

2. Terminal Nodes

A non-terminal node is represented as an ellipse, if the node corresponds to the name
of a class. Oth:rwise, it is represented as a broken line rectangle. A terminal node
is represented as a solid line rectangle. We define a terminal node as: “the node
which is not an aggregate node”. The component can be either a non-terminal node,

or a terminal node.

The inheritance relationship that can exist between a class and one or more refined
versions of it is shown by a solid triangle connecting the parent to its descendants.
The parent is connected by a line to the apex of the triangle. The descendants
are connected to base of the triangle. Deferred classes (abstract classes)[Meye88]
are topped with a star sign. Figure 5.14 gives an overview of the SON notations
used for depicting the spatial organization of the interface. In SON, the “functional”
relationship arc is shown as a directed solid line emanating from a terminal node to

a non-terminal node.

The modeling of COBs is not the concern of an interface designer. However,
if the COBs do not exist, the IOBs stay apart. In order to connect the different
10Bs, the modeling of a COB should be done hand in hand or by simulating the
COBs. In CUIM, simulation of the COBs is done while constructing the spatial
organization. This simulation is achieved by labeling the functional relationship arc
with the functionality that is to be achieved. The spatial organization does not sliow

any COBs. Only the desired functionality is shown abstractly, irrespective of how

104

Figure 5.14: Spatial Organization Using SON Notation

or by whom it is achieved. The desired functionality is indicated as a label on the

functional relationship arc.

The spatial organization of the interface is constructed by using the dialog inter-
faces designed in Section 5.1.2. The interface components designed in Sectior 5.1.2
correspond to the components in the spatial organization. By using the SON notation
described above, Figure 5.15 shows the toplevel spatial view of the course advising sys-
tem CAS. All GUI applications which are developed on the X window system([Sche92)
contains a “toplevel shell” which holds the application. The toplevel shell created in
X/MOTIF[Brai92] can hold only one widget. But, most of the applications need to
display a number of widgets simultaneously. This problem can be solved by using
“manager” widgets[Brai92]. The manager widgets handle the placement of multiple
widgets in a single window. Therefore, the toplevel shell widget indirectly holds mul-
tiple widgets by handling a single manager widget. Both the toplevel shell and the

manager widgets are invisible to the user.

The Initiator class(Figure 5.15) contains the “toplevel shell”, which in turn con-

tains the “form1” as the manager widget. The widgets hdr_labell, msg_label2, ok _buttonl,

exit_button2, and id_enter_areal are also the components of the Initiator(forinl). An
instance of a class crznmunicates with the user through its components. The “invokes”
relationship i% Figure 5.15 corresponds to the functional relationship arc emanating

from a term-nal node to a non-terminal node. Figure 5.15 shows the component

105

o]
:;pT:-C-ITJ
o |
1= = ol !
‘-—n-—-

[bdr_l-bdg I moeg)

wbel2 | [meg tabeda] [ok _buttont | | exitbutton2 | [id_enter_areal] | heeparsiors |

invokes

invokes [

Cdtestor
-

L _fem1

——fprcv ~l:mmm.lJ I advise |

blmon4| Ipula_butlonsl [unpref_buaontsl leﬂt_bunon'll r mng_lubelSj [hnpnnwrlJ

smvokes

émvohkes invokes

oo Coier> i

Figure 5

.15: Interface Classes Spatial Layout - Toplevel View

106

T
o |

E
!
=

H
H

4 001
Lt

:J—x

-

1

j'_-_"_';-_-__]

Figure 5.16: Spatial Layout - of the Choicer, Advisor & Messenger Classes

107

through which the Selector is invoked. Figure 5.15 also shows the functional relation-
ship bhetween the components of the Initiator class with the Selector and the Mes-
senger. Figures 5.15 and 5.16 show the various components of the different interface

classes, and their relationship (if any) with other classes.

5.3.3 Specifying the Class Descriptions

The “user interface system” contains inlerface components and callback functions.
The various classes and their components constructed in the spatial organization will
be dummy objects if the user actions are not communicated to the user interface
system. Therefore after constructing the interface layout, the next step is to notify
the user interface system about the user actions, which is achieved through class

descriplions.

The class descriptions in CUIM, describes the attributes, callback functions and
invariants if any. The class charts used in the development of class descriptions

include the following mapping;:

e Commands in class charts are mapped into callbacks.

e Constraints in class charts are mapped into class invariants.

Sometimes the components in the spatial organization need to be changed during
the run-time. For example: consider the component which displays the context sen-
sitive help messages. This component need to be changed (during the run-time) as
the context changes. Updating the property value of a component is possible if the
component is specified as a class attribute. Therefore all the class components in the

spatial organization become attributes to the class.

The class descriptions are described using the SON notation. In SON each class
is described with its header and a body. The header contains the class name. The
body contains attributes (properties of the objects in the class), callback functions

and class invariants.

108

(Selector)

form! : swidget
hdr_labell : swidget
nsg_labell : swidget
msg_label2 : swidget
ok_button] : swidget
exii_butten? : swidgel
id_emter_srea] : swidget
msg_label34 : swidget
hoeparateré : swidget
toplevel_shell : swidget

ok_butten!_calibeck()
{

]

etit_butten2 calibeck()
{

}

prev_butten3 : swidget
advise_buttend : swidget
prefs_buttom$: swidget
vapref_buttens : swidget
exi(_buitenT : swidge(
msg fabel3 : swidget
hoeparatar] : swidge!
form2 : swidget

prev_botton3_calibeck()
{
}

advise_button$_calibeck()
{

)

prefs_buttonS_callback()
{

)

umprel_buttens_caliback()
{
}

exit_butlon7_callbeck()
{

any

err_msg_ labeld) : swidget
ok_buttemi4: swidget
formd : swidget

ok_butten14_callback ()
{

lnvariant

caller =" "

Figure 5.17: Class Descriptions: set one

109

L

form3: swidget
oourse _labeld : swidget

cmnd _box1 : swidget
hseperator? : swidget
time_labelS : swidget

cmnd box2 : swidget
vseperatorl : swidget
campus label9 : swidget
campus togihuttonl : swidget
campus_toglbutton2 : swidget
hseperatord : swidget
workload _label10 : swidget
max_course labell 1 : swidget
maco_enier_sreal : swidget
min_course labell2 : swidget
mico enter_areal : swidget
mux cred)t_labell3 : swidget
macr_enter_aread : swidget
min_credit labell4 : swidget
micr_enter_sreaf : swidget
hseperatord : swidget
accept_button8 : swidget
cancel _bution9 : swidget

accept button8_callback ()
{

)

cancel button9_callback ()

{

invariant

0 e

caller im

Advisor

r msg label26 : swidget
course#_label27 : swidget
course_name_label28 : swidget
instructor_label29 : swidget
time_label30 : swidget
turm_label3l : swidget
suggested_list_label32 : swidget
print_buttonl0 : swidget
preferences_buttonl1] : swidget
constraints_button13 : swidget
exit_buttonl2 : swidget

hseperators5 : swidget
formS5 : swidget

print_button10_callback ()
{

}

preferences_buttonll_callback ()

{

constraints_button13_callback ()
{

exit_button12_callback ()
{

Figure 5.18: Class Descriptions: set two

110

* Attributes are described according to the svntax:
attributc : TYPE
* Callbacks are described following the syntax:

callback name(arg!: TYPE, arg? TYPE,, argn: TYPL)
{

} - - callback ends

[T 33

* Abstract functions are preceded by a sign.

* The invariant appears in a clause titled by the keyword invariant.
* Comments are written by beginning with “/*" and ending with “*/”.

Figures 5.17 and 5.18 show the class descriptions for each of the classes listed iv

the class charts.

5.4 System Interactions

The interaction diagrams during the analysis phase specify abstractly the interactions
between the user, the IOBs and the COBs. These interaction diagrams are further
refined during the design phase by specifying the internal behavior (Section 5.4.1) of
the different interface objects, and by specifying the interaction relationship (Section

5.4.2) among the various objects in the system.

5.4.1 Behavioral Specification

The class descriptions specified in Section 5.3.3 give a template of the class by listing
the various callback functions that the class contains. The behavior of the class when

its callbacks are triggered needs to be specified. Therefore, the next step during

111

—
Symbol Description

class I
corresponds to the name of the class

e represents the ports at which the
interacion with other classes can happen

event 7 represents an input event

event ! represents an output event

{as1r1, atir2) represents the attributes that are acuve,

in the state to which they are associated

represents the initial state

represents an intermediate/end state

Figure 5.19: Notations used in TROM

the design phase in CUIM, is to specify the behavior of the class when its callbacks
are trigerred. In an event driven application, a callback is triggered in response to
an cvent from the user. Therefore, the behavior of the class with respect to the
cvent received is specified using the TROM model (Timed Reactive Object Model),
developed in the doctoral research of [Achu94].

A TROM is a finite state machine augmented with attributes, time constraints
and logical assertions. In TROM, the transitions are labeled by events, and, these
events form the fundamental message components of an interaction of an object with
its environment. The attributes model the data computations associated with the
transitions. Each transition is associated with three assertions:

1) Pre-condition: The conditions under which the transition will be initiated are
specified in the pre-condition.

2) Post-condition: The data computation that is associated with the transition is
specified in the post-condition.

3) Port-condition: The port at which an interaction can happen is specified in the
port-condition.

Figure 5.19 gives a description of the notations used in the TROM model.

112

Communication between any two TROMs is based on synchronous message pass-
ing. The port associated to a TROM specifies the interaction ports of that TROM
with its environment. A port is a bi-directional communication channel between a
TROM and its environment. There can be multiple ports associated to a TROM.
Each port has a unique port-type and multiple port-types can be associated with a
TROM. The port-type determines all the set of messages and the possible sequences

that are allowed to communicate with that port.

The TROM model in [Achu94] is based on a three-tiered approach for the specifi-
cation of system design. The top-most tier describes the interaction relationship that
can exist between the objects in a system. The middle tier constituting the detailed
specification of the objects used in the system architecture, is given using the TROM
model. The bottom most tier specifying the data abstractions used in the class defi-

nitions of the middl= tier by means of the Larch Shared Language (LSL)[Gutt91].

During the user interface design in CUIM,the data abstractions used in the class
definitions in TROM, are already specified in [Visa93]. The user interface designer,
therefore specifies the behavior of the class for each of the user event the class reccives.
The behavior of the Initiator class for different events the class receives from the user
is shown in Figure 5.20. Initally the Initiator will be in state wail. Tho Initialor
goes from state wait to state active, when it receives the invoke_I event from cas(a
COB). After receiving the ok eveni from the User, the Initiator goes into state check
to check the student id given by the user. At this instance, the Initiator sends the
id value entered by the user to the transcript object (which is a COB) and requests
it to verify the student id. The Initiator then comes to state wail from state check.
The Initiator comes to state invoke by receiving either velid or invalid event from the
transcript. If the event received is valid, then the Initiator sends the event invoke.§
to cas (which is a COB) and comes to wait state. Otherwise, the Initiafor sends the
event invoke_M to the transcript and comes to wail state. The Initiator comes back
to active state only when it receives the invoke_I event from cas. When the user gives
the exit event, the Initiator notifies cas that the system needs to be terminated and
comes to end state. The Initiator also comes to end state, when it receives the erl
event from cas. The end state marks the state in which the object is killed. In the

notation used in TROM, the reserved word trashed indicates that the object is killed.

113

The TROMs for the Messenger, Advisor, Selector, and Choicer are shown in Fig-

ures 5.21 through 5.24. The behavioral specification of the User is shown in Figure

5.25.

5.4.2 User Interface Configuration

As a next step in the design phase of CUIM, the user interface designer constructs
the User Interface Configuration(UIC)[AARV95]. The UIC specifies the possible in-
tera-tion relationship that can exist between the user, the IOBs and the COBs. Since
CUIM does not support the interaction of any two [0Bs, no interaction relationship
exists between any two 10Bs in the UIC. The UIC shown in Figure 5.26 defines the
user interface system by composing objects instantiated from the classes described

before. The different Sections in the UIC specification are:

1. TheInclude section lists the system /subsystem definitions imported from other

user interface configurations. This section is optional.

2. The Instantiate section specifies the instantiation relationship between the
objects and their classes. The cardinality of each type of port associated to the
class and the values for the attributes if any, which needs to be initialized are
also specified when an object is instantiated. For instance in Figure 5.26, i, is
an instantiation of the Initiator and has one port of type Al, one port of type
X and so on. There are no initialization attributes for Initiator. Considering
the Choicer class, we see that the Choicer has n instances ¢y, . ..,c, and has one
port of type C1, one port of type P, and n ports of type M. The initialization
attributes for Choicer are win and valid. The other classes and their object
instances together with their initialization attributes if any are shown in Figure
5.26.

3. The Configure section defines the user interface system by using objects speci-
fied in the Instantiate section. The operator “c” is used to link the respective
ports of each class. The basic relationships that can exist between cbjects of two
classes are one-to-one, one-to-many, and many-to-many. For example, to spec-

ify a one-to-many relationship which exists between the objects of the Selector

114

Class Initiator [@A1,8X,QG1]

Events: ok(id-val)?,valid?,invalid?,invoke 17,
verify(id)!,invoke S!,invoke M!, exit?, exit!
State: *wait, check,active,invoke, end, exit
Attributes: flag : boolean,id : integer
Attribute-function:

check — id; wait — flag,;

end, exit — {};

active,invoke — flag, toplevel shell;
Transition Spec:

Ry : (active, check); ok(idval)?(pid :@Al);

true — id' = id_val;

Ry : (check,wait); verify(id)!

(pid :@X);true — flag' = flag;

R3 : (wait,invoke); valid?(pid : @X);

true — flag' = flagA (eu] @A OX. @01
Uz Popdown Inter face(toplevel shell);

| * T hebehaviorofUz PopdownInter faceis
givenin|[Visa93] x /

Ry : (wait,invoke); tnvalid?(pid: @X');
true — toplevel shell' = toplevel shelln
flag' = FALSE;

Rs : (invoke, wait); invoke S!(pid : @G1);
flag=TRUFE — flag' = flag;

()

Re : (invoke,wait); invoke_M!(pd : @G1);
flag = FALSE — flag' = flag;
Rz : (wait, active); invoke?{pid : @G1);
flag =TRUE — flag' = flagA
Uz PopupInter face(toplevel shell, no_grab)
| * T hebehaviorofUx PopupInterfaceis
givenin[Visa93] * /
Rg : (wait, active); invoke?(pid : @G1);
flag = FALSE — flag' = TRUENA
toplevel shell’ = toplevel shell;
Rg : (active, exit); exit?(pid :@Al); ——
Rio : (exit, end); exit!(pid :QG1);
true — trashed;
Ri1 : (wait, end); exit?(pid :@Gl);
true — trashed;

end

Figure 5.20: Initiator Behavior Specification

115

Class Mcssenger [@D1,@Q,QL)

Events: ok?,invoke M (type-val)?, invoke Ch!,

tnvoke Al invoke 1!, exit?

State: *wail, active,invoke, end

Attributes: intr_prtl :QL ,msg_type : integer

Attribute-function:
wait,end — {}; invoke — formd;
active — msg.type,intr_prtl, formd;

Transition Spec:
R, : (aclive,invoke); ok?(pid :@D1);
true — Uz PopdownInter face(formd); (yiaae]ept. 00
R, : (invoke,wait); invoke I!(pid :QQ);
msg.lype = 1 — true;
R3 : (invoke,wait); invoke Ch!
(pid = intr_prtl);msg-type = 2 — true;
R4 : (invoke,wait); invoke_A!(pid :QQ);
msg_type = 3 — true;
Rs : (wait, active); invoke_M (type_val)?
(pid :QQ); true — msg_type’ = type_valA
intr_pril’ = inir_prtlA
Ux Popuplnter face(form4,no_grab);
Re : (wail, active); invoke M (type_val)?
(pid :QL); true — msg_type' = type_valA
intr_prtl’ = pidA
Ux PopupInter face(form4,no_grab);
R7 : (wait, end); exit?(pid :QQ);
true — trashed;

end

Figure 5.21: Messenger Behavior Specification

116

Class Advisor [@F1,@0)]
Events: print?, unprefs?, prefs?,
exit?, done?,print!,invoke _C!,
tnvoke A(list)?, invoke M!, exit!
State: *wait,active,invoke,
approval, end, exit
Attributes: win, type : inleger
Attribute-function:
end, approval, wait,exit — {};
invoke — win,type, formb;
active — formb;
Transition Spec:
Ry : (active, invoke); prefs?(pid :QE1);
true — win’ =1 Atype’ = 1A
Uz Popdown Inter face(form5);
R, : (active,invoke); unpre fs?(pid :QE1);
true — win' =1 Atype’ = 2A
Uz PopdownInter face(form5);
Ry : (active, exit); exit?(pid :QE1); ——
R4 : (active, approval); print?(pid :QFE1); ——
Rs : (approval,wait); print!(pid :Q0); ——
Re : (wait, invoke); done?(pid :Q0);
true — win' =2 Atype' = type
Aform5' = formb;
Rz : (invoke, wait); invoke M!(pid :Q@0O);
win = 2 — lrue;
Rs : (invoke, wait); invoke_C(type)!(pid :@0);
win = 1 — true;
Rg : (ezit,end); exit!(pid :Q0O);
true — trashed;
Rio : (wait, active); invoke_A(list)?(pid :@0);
true — Uz Popuplinter face(form5,no_grab);
Ry : (wait, end); exit?(pid :@0);
true — trashed;

Adviscor l @F1. &0

end

Figure 5.22: Advisor Behavior Specification

117

Class Selector (@B1,T,@QN]
Events: previous?,prefs?, unprefs?,
advise?, invoke S7, exit?, invoke C (type)!,
invoke_A!, invoke I, exit!
State: *watit,invoke,active, end, exit
Attributes: win, type : integer,
intr_prtl (N
Attribute-function:
end, exit — {}; wait — intr_prtl;
invoke v win, lype, form?2;active — form?2;
Transition Spec:
Ry : (active, invoke); previous?(pid :@B1);
true —— win’ =1 A type’ = lypeA
Uz PopdownInterface(form?2);
R, : {aclive,invoke); prefs?(pid :@B1);
true — win’ = 2 Atype’ = 1A
Uz Popdown Inter face(form?2);
Ry : (active, tnvoke); unprefs?(pid :@B1);
truc — win' = 2 A type' = 2A
Uz Popdoun Inter face(form?2);
Ry : {active, invoke); advise?(pid :QB1);
true — win’ = 3 A type’ = typen
Uz PopdownInter face(form?2);
Rs : (active, exit); exit?(pid :Q@B1); ——
Re : (invoke, wait); invoke I'(pid :@T);
win = 1 — ntr_pril’ = inir_prtl;
R : (invoke, wait); invoke C(type)\(pid :QN);
win = 2 — ntr_prtl’ = pid;
Ry : (invoke, wait); invoke_A!(pid :QT);
win = 3 — ntr_pril’ = intr_pritl;
Rg : (wail,active); invoke S?
(pid :QT) —
Uz Popuplnter face(form2,no_grab);
Ry @ (wait,active); invoke S?
(pid =intr_prtl) —
UrPopupinter face(formZ,no_grab);
Ry : (erit,end); exit!(pid :@T);
true — trashed;
Ry @ (wail,end); exit?(pid :QT);
frue — trashed;
end

Selscte | @B1 @N OT

Figure 5.23: Selector Behavior Specification

118

Class Choicer [@C1,@M,QP]
Events: accept?, cancel?, course_val?,
valid?,invalid?,veri fy(course)!,
t.wval?, macoval?, micoval?, macr val?,
micr.val?, empl val?, cmp2_val?,invoke C?
invoke_Se(t dist, course,macr, micr,maco, mico, cmpl, cmp?2)!
invoke A(t list, course, macr, micr,maco,mico, cmpl, cmp2)!
invoke M!, exit?
State: xwatt, active,invoke, verify,end
Attributes: win : integer;valid : boolean;
macr,micr, maco, mico : string;cmpl,cmp2 : boolean;
course, t_list : string,;
Attribute-function:
tnvoke — valid, cmnd_boxl, cmnd_box2,
maco.enter_area2, mico-enter_areal,
macr.enter_area4, micr_enter_aread,
campus_toglbuttonl, campus_toglbutton2, forms3;
active — win,valid, form3,;
verify — course;wait, end — {};
Transition Spec:
R, : (active, invoke); accept?(pid :QC1);
true — emnd_bozl’ = emnd_bor1N
emnd_bor2' = emnd.box2A
maco.enter_area2’ = maco_enter_area2A
mico-enter_areal’ = mico_enler_arealA
macr_enter_aread’ = macr_enter_areadA
micr.enter_aread’ = micr_enter_areadh
campus_toglbuttonl’ = campus_toglbuttonlA
campus_toglbutton2' = campus_toglbutton2A
valid' = valid A Uz PopdownInter face(form3);
R; : (invoke,wait); invoke Se(tlist,course,
macr, micr, maco, minco, cmpl, emp2)!
(pid :@M);valid = TRUE Awin = 1 — true;
R; : (wait, active); invoke C7?(pid :GM),
valid= TRUE — valid' = valid A win’ = 1A
Uz Popuplnter face(form3,no_grab);
R, : (invoke, wait); invoke A(tdist,course,
macr, micr, maco, minco, cmpl, cmp?2)!
(pid :@P);valid = TRUE A win = 2 — truc;
Rs : (wazit,active); invoke C?(pid :@P);
true — win' = 2 A valid' = validA
Uz Popuplnter face(form3,no_grab);

119

R : (active,invoke); cancel?(pid :QC1);
true — valid = validA

Uz PutlListItems(cmnd box2,t list)A

/ * ThebehaviorofUzPutListItemsis
gtvenin[Visa93] » /

Uz PutListItems(cmnd-boxl,course)A
Uz PutListItems(cmnd box2,1 list)A

Uz PutText(maco-enter_area2, maco)A

[* ThebehaviorofUz PutTeztis
gtvenin[Visa93] * /

Uz PutText(micoenter_areal, mico)A
Uz PutText(macr enter_aread, macr)A
Uz PutTezt(micr_enter aread,micr)A
Uz PutSet(campusdoglbuttonl,cmpl)A
/ * ThebehaviorofUz PutSetis
givenin[Visa93] * /

Uz PutSet(campus toglbutton?, cmp2)A
AUz PopdownInter face(form3);

Ry : (active,veri fy); course_val?(pid :QC1);
true — course’ = course.val;

Rs : (verify,wazit); vert fy(course)!

(pid :@M); ——

KRy : (wail, active); valid?(pid :GM);
true — valid = valid A win' = winA
Jorm3 = form3;

Ryo : (wait, invoke); invalid?(pid :Q M);
true — valid = FALSE;

R, : (tnvoke,wait); invoke_M!(pid :QM);
valid= FALSE — true;

R,y : (wait, active); invoke Cpid :QM);
valid= FALSE — valid' =TRUEA
win’ = win A form3' = form3;

R : (active, active); tval?(pid :QC1);
true — wir’ = win A valid' = validA
Sorm3' = form3;

R4 (active,active); macoval?(pid :QC1);
true — win' = win A valid = validA
form3' = form3;

Rys : (active,active); micowall(pid :QC1);
true — win' = win A valid = validA\
Jorm3' = form3;

120

Chocer| @C1, QM. @P

t_val? cmpl_val?,
maco_val7, raco_val?,
comce_val?, mmce_val?,

Ri6 : (active, active); macr.val?(pid :QC1);
true — win' = win A valid' = validA
form3' = furmy;
Ri7 : (active, active); micr val?(pid :QC1);
true — win' = win Avalid' = validA
form3' = form3;
Ryg : (active,active); empl _val?(pid :QC1);
true — win’ = win A valid' = validA
form3' = form3;
Rys : (active,active); emp2_val.(pid :QC1);
true — win' = win A valid' = validA
form3' = formg3;
Ryo : (wait, end); exit?(pid :QP);
true —— trashed;

end

Figure 5.24: Choicer Behavior Specification

and the user constraint classes, the class Selectorf@N] is instantiated with the
cardinalicy for the port N as n and the class user constraint[@ J]is instantiated
with the cardinality for the port J as one. Then the ports N and J are linked
as follows:

s1.QN, & us,.QJ,
Figure 5.26 shows how the respective ports of interaction, between objects of

two classes are linked.

To achieve clarity in depicting the interactions between IOBs and COBs, the same
instance of a particular COB is redrawn. That is, the cas ohject in Figure 5.26,
interacting with the Initiator is the same cas object that is interacting with the
Messenger, although it is drawn many times. Similarly, the user object even though
drawn many times, represents a single instance of the User class. Multiple instances
if any, of an interface class are shown as a double square. And, multiple instances if
any, of a computational class are shown as a double circle. Therefore, from Figure
5.26, we understand that only the Choicer and the user constraint classes can have

more than one instance created.

121

Class User [@U,@V,@B,@Z,QC]
Events: ok(id_val)!,previous!, prefs!,unprefs!,
advise!, ok!, course_ val!, time!, maco!, mico!, macr!, micr!,
cmpl!, emp?!, accept!, cancel!, print!,displayS?, displayl?,
displayC?,display A?, displayM?, ezit!
State: aclive, *watt,end
Attributes: win : integer;intr_prt3 :QB;
Attribute-function:
wait,end — {}; active — win,inir_prt3;
Transition Spec:
R, : (active,wait); ok(id-val)!(pid :QU);
win =1 — true
R, : (active,wait); previous!(pid :QV);
win = 2 — true;

Rj : {active,wait); prefs!(pid :QV); (] wernn
win = 2 — true;

Ry : {active,wail); unprefs!(pid :@V);

win = 2 — true;

Rs : (active, wait); advise!(pid :QV);

win = 2 — true;

He : (active,wait); ok!(pid :QZ);

win = 5 — true;

Rz : (active,wait}; course_vell(pid = intr_prt3);
win = 3 — true;

Rg : (active,active); time!(pid = intr_prt3);
win = 3 — true;

Ry : (active, active); (maco! V micolV

macr!V micr!)(pid = intr_prt3);win = 3 — true;
Ryp : (active, active); (cmpl! V emp2!)

(pid = intr_prtd);win = 3 — true;

Ry : (active,wait); accept!(pid = intr_prt3);
win = 3 — true;

Ry2 : (active, wait); cancel!(pid = intr_prt3);
win = 3 — true;

Ry5 : (active, wait); print!(pid :QC);

win = 4 — true;

R4 : (active, wait); prefs!(pid :QC);

win =4 — true;

Rys : (active, wait); unprefs!(pid :QC);

win =4 — true;

122

Rie : (wait, active); displayS?(pid :@V);
true — win' =2 A intr_prtd’ = intr_prt3,;
Ry ¢ (wait, active); displayl?(pid:@QV);
true — win’ =1 A intr.prt3’ = intr_prit3;
Ris : (wait, active); displayA?(pid :QC);
true — win’ =4 Aintr_prt3’ = intr_prt3;
Ryo : (wait, active); displayM?(pid :QZ);
true — win’' = 5 A intr_prt3’ = intr_prit3;
Ry : (wait, active); displayC?(pid :@B);
true — win’ = 3 Aintr_prt3’ = pid
Ry : (active, end); exit!(pid :QUV
pid :@QV Vv pid :QCwin=1V win=2
Vwin = 4 — true;

end

Figure 5.25: User Behaviour with different 10Bs

Since TROM model helps us to formally specify: (1) the various states the class
undergoes and (2) the communication between the various objects in the system via
ports, CUIM suggests that during the design phase both the Interface Group and the
Computational Group should use the TROM model to specify the behavior of the

class.

5.5 Reviewing the Design

By reviewing the design we ensure that the user’s view of the interface (Dialog Design)
is translated properly to the system view (Spatial Organization). The systemn view
is then refined such that, each user action is notified to the system (Class Descrip-
tions) and the behavior of the system in response to each user action is clearly spec-
ified(Behavioral Specifications). We also ensure, that the output events of the User
Class(Behavioral Specifications) are input events to another interface class(Behavioral

Specifications). These translations are achieved as a four step process:

o Step 1: Ensure that the class components in the spatial organization “corre-

sponds” to the interface components specified during the dialog design. To

123

UICS Systern
Include:
Instantiate:

w i User(@U : 1,6V :1,@B:n,@Z:1,
@C:1J;

1y Initzator[@A1 : 1,@X : 1,

@G1 : 1}; (flag = TRUE);

sy :: Selector[@B1 : 1,@T : 1,@N : nj;
m, = Messenger[@D1 : 1,@Q : 1,@L: nj;
Cly-++s€n i Choicer[@C1 : 1/@QP : 1,
QM : n]; (valid’ = TRUE);

a, :: Advisor|@FE1:1,Q0 : 1;

try u transeript[@QY : 1];

cay i cas[@K : 1,@] :n,@QF:1,QD : 1,
@fi1:1}];

usy,. .., usy i userconstraint[@J : 1,
all:n,QF : 1];

Configure:

end

Viel...n

‘U].@U] — i].@A]l
u,.@Zl — ml.@Dll
u,.@V, L d S].@Bl]
ul.@B. — C,.@Cl]
U].@Cl g al.@Eh
i,.@,\'l > tr,.@Y,
i].@Gl] - C(l].@Hll
m;.QL, « us; QF,
m;.QQ, « ce;.QF;
$1.QN; « us,.@QJ,
S].@Tl Aand CG].@I\’l
C,‘.@Pl — ca..@];
¢,.OM, « us, QH,
(11.@03 Lo d C(l].@D]

124

User Model Ineerface Mode) Compomional Model
.......
Lacras J \GT\ 11

(=)
------ - 11K
T SRR L B) o "/@
} U {Mesecope]-~T

Figure 5.26: User Interface Config-
uration Specification - Course Ad-
vising System

User View Designer View Class
Welcome to the Automated | hdrlabell Initiator
Course Advising System;

Enter your ID;; msg.label2

OK; ok_buttonl

EXIT; exit_button2

user types the id here; id_enter_areal

online help messages; msgJabel3d

a line separating the help mes- | hseparator6

sage display area from the

push buttons on the top;

Previous; prev_button3 Selector

Advise;

Prefered Choices;
Unprefered Choices;
Exit;

advise_buttond
prefs_buttond
unprefs_button6
exit _button?

online help messages; msg-Jabeld
a horizontal line separating | hseparatorl
the help messages area from
the buttons above it;
system generated message; err_msg_label33 Messenger
OK; ok.buttonl9
advisor message area; msglabel26 Advisor
Course#; course# label27
Course Name; course_name_abel28
Instructor; instructorJabel29
Time; time _label30
Term; term Jabel31
area which displays the sug- | suggestedlist labeld2
gested course list;
Print; print _button10
Prefered Choices; preferences_buttonl!
Unprefered Choices; constraints_button13
Exit; exit _button12
a line separating the advisor | hseparatord
message area from the sug-
gested course list;
contd.

User View

Designer View

Class

Prefered Course List;

Enter Course Number:;

Prefered Time List;

Enter Time:

Select Prefered Campus;

toggle button for SGW;

toggle button for Loyola;

a horizontal line separating the course
list from the time list and campus
specification area;

a vertical line separating the time list
and the campus specification area;
Enter Prefered Workload;

Maximum # of courses:;

user types the maximum number of
courses he prefers;

Minimum # of courses:;

user types the minimum number of
courses he prefers;

Maximum # of credits:;

user types the maximum number of
credits he prefers;

Minimum # of credits;

user types the minimum number of
credits he prefers;

a horizontal line separating the work-
load specification from the time list
and campus specification area;
Accept

Cancel

a horizontal line separating the push
buttons area from the choices specifi-
cation area;

course_labeld
cmnd_box1
timeJabelb
cmnd_-box2
campus_label9
campus.toglbuttonl
campus._toglbutton2
hseparator2

vseparatorl

workload label10
max_course labelll
maco.enter.area2

min_course_Jabel12
mico_enter_aread

max.creditJabel13
macr.enter.area4

min_credit_label14
micr.enter.aread

hseparator3
accept_button8;

cancel_button9;
hseparator4

Choicer

Table 5.1: Dual view Association Table

126

Class Questions Class Component Class Attribute

Initiator student id hdrabell hdr_labell

- msgJlabel2 msg_label2

- ok_buttonl ok_buttonl

- exit_button?2 exit_button?

- id_enter_areal id_enter_areal

- msglabel34 msg_ label34

- hseparator6 hseparator6
Selector prev_button3 prev_button3

- advise_button4 advise_buttond

- prefs_buttonb prefs_buttonh

- unprefs_button6 unprefs_buttont

- exit_button7 exit_button7

- msglabel3 msg _label3

- hseparator] hseparator]
Messenger | - err_msgJlabel33 err_msglabel3s

- ok.button19 ok_button19
Adpvisor msg_ label26 msg_label26

- course## label27 course# label27

- course_name_label28 course name Jabel28

- instructor label29 instructor_label29

- timeJabel30 timeJabel30

- termJabel31 termJdabel31

suggested list Jabel32
print_button10
preferences_buttonl1
constraints_buttonl13
exit_button12
hseparator)

suggested dist label32
print_buttonl(
preferences_buttonl |
constraints_button13
exit_button12
hseparator)

contd.

127

Class Questions Class Component Class Attribute

Choicer courselabeld course_label4
Courses cmnd_box1 cmnd_box1
- timeabel5 time_label5
time cmnd_box2 cmnd .box2
- campuslabel9 campus_label9
campus campus_toglbuttonl campus.toglbuttonl
campus campus_toglbutton2 campus_toglbutton?
- hseparator2 hseparator2
- vseparatorl vseparatorl
- workload label10 workload Jabell0
- max_.course_labelll max._courseJabelll
workload maco.enter_area2 maco._enter_area?2
- min_course Jabell2 min_courseJabe]12
workload mico.enter_areal mico_enter.aread
- max_credit labell3 max_credit labell3
workload macr_enter_aread macr._enter.aread
- min_credit label14 min_credit label14
workload micr_enter_aread micr_enter_areadb

hseparator3
accept_button8
cancel.button9
hseparator4

hseparator3
accept_button8
cancel_button9
hseparator4

Table 5.2: Class Attribute Table

ensure this, the user interface group prepares the Dual View Association Table.
The Dual View Association Table contains three columns: The first column
lists the components of the user view specified during the dialog design. Fach
user view component in this column is separated by a semi-colon. The second
column lists the corresponding components in the designer view which are spec-
ified in the spatial organization, and the third column lists the class to which
these components belong to. Since the toplevel shell, and the manager widgets
in the Spatial Organization are invisible to the user, the user’s view does not
contain these components. Therefore the Dual View Association Table, does
not list the toplevel shell and the manager widgets. Table 5.1 shows the Dual
View Association Table constructed for the example system CAS. By doing
this, the designers can check if for each component in the user’s view there is a
corresponding class component in the designer’s view. Therefore we can assure

that all the user views of the interface are translated to the systemn view.

Step 2: In step 2 we verify, that the spatial organization, the class charts and

the class descriptions are consistent. This consistency can be achieved by:

1. Ensuring that the class components in the spatial organization became
class attributes in the class descriptions, and “Questions” in class charts
are mapped to attributes in the class descriptions. To do this, the user
interface designers construct the Class Attribute Table which lists the class
name in the first column and the “Questions” in the class charts are listed
in the second column. The third column lists the class components. And
in the last column, the attribute corresponding to the class component is
listed. The Class Attribute Table for the example system CAS is shown
in Table 5.2. By doing this, the designer verifies that for each Question
in the class chart there is a class component which accepts the user input,
and that class component became class attribute when the design moved

closer to implementation.

2. Ensure that commands in the class chart are mapped to callbacks in the
class description. This is ensured by constructing the Command-Callback
Table, which has three columns: the first column specifies the class name.
The second column lists the commands in the class chart for that class.

And the third column specifies, the callback corresponding to the command

129

Class Command Callback
Initiator | start advising session ok_button1 _callback
request exit exit_button2_callback
Selector request advise advise.buttond_callback
request preferences prefs_button5_callback
request constraints unpref_.button6_callback
request previous window previous_button3_callback
request exit exit_button7_callback
Messenger | acknowledge error ok_button14_callback
Choicer accept preferences accept.button8_callback
cancel preferences cancel_-button9_callback
Advisor request preferences preferences_button11 _callback
request constraints constraints_button13_callback
request approval print_buttonl0_callback
request exit exit_button12_callback
Table 5.3: Command-Callback Table
in the second column. The Command Callback Table for CAS is shown in
Table 5.3. By doing this the designers ensure that the class is notified of
each coinmand /request given by the user.
3. Ensure that the constraints specified in the class chart are mapped to

class invariants in the class description. To do this, the user interface
designers will construct the Constraint-Invariant Association Table. This
table has three columns: The class name is specified in the first column.
The constraints specified in the class chart are listed in the second column
and the class invariants in the class description are listed in the third
column. The Constraint-Invariant Association Table for CAS is shown
in Table 5.4. The interface designers thus ensure that the knowledge the
class should maintain, which is specified in the class charts is also specified
explicitly in the class description.

By ensuring 1, 2, and 3, the designer can convince that the various ac-

tivities involved in constructing the static structure of the interface are

consistent.

130

Class Constraint Invariant

Initiator none none
Selector none none
Messenger | caller_class_name caller ! = *"
Choicer caller_class_name caller ' = 7"
Advisor none none

Table 5.4: Constraint-Invariant Association Table

e Step 3: Ensure that the set of behavioral specifications cover the behavior for
each of the callbacks specified in the class description. Since, the callbacks in
class descrij ions become user events in the behavioral specification, we check
that for each callback in the class description, there is an user event in the
behavioral specification. To do this, the Fvent-Callback Association table is
constructed. This table contains three columns: the first column lists the name
of the class. The second column lists the callback function (specified in the
class description), and the corresponding user event (specified in the behavioral
specification) is listed in the third column. This helps the interface designers
to verify that the behavioral specifications specify the behavior for cach of the
callbacks specified in the class description. The Event-Callback Association
Table for CAS is shown in Table 5.5.

e Step 4: In CUIM, there does not exist any interactions between the interface
objects. The interactions of the User object with other IOBs, specified in the
Behavior Specifications, are verified using the Event Correspondance Table. The
Event Correspondance Table contains two columns: The first column lists the
class(EOB) and the output event generated by it. The second column lists
the corresponding class(IOB) which receives this event. The input event corre-
sponding to the output event is also specified in this colurnn. Table 5.6 shows
the Event Correspondance Table constructed for the example system CAS. By
constructing this table, the designers check that, each event sent by the User

object is received by an 10B.

131

Class Callback Event
Initiator ok_button]_callback ok
exit_button2_callback exit
Selector advise_buttond_callback advise
prefs_button5_callback prefs
unpref_button6_callback unprefs
previous_button3_callback previous
exit.button7_callback exit
Messenger | ok_buttonl4_callback ok
Choicer accept_button8_callback accept
cancel_button9_callback cancel
Advisor preferences_button1l1 . callback prefs
constraints_button13_callback unprefs
print.button10_callback accept
exit_buttonl2.callback ~xit

Table 5.5: Event-Callback Table

5.6 Ensuring Consistency between IAD & IDD

1. The Dual View Association table constructed while reviewing the design, shows
the system output in the User View column. Since the textual description of
the nodes in the state transition diagrams also specify the system output, we
need to ensure that the task of displaying the system output which is described
by a node in the IAD document is handled by a class in the IDD document.
To do this, the interface designer constructs the Node-Class Association table.
This table contains two columns. The first column lists the different nodes in
the state transition diagrams. The corresponding class name is listed in the
second column. The Node-Class Association Table for CAS is shown in table
5.7. By doing this, the designers ensure that for every node stated in the state
transition diagrams of the IAD document there exists an interface class in the

IDD document which handles the required system output.

2. Since the decisions about how much freedom must be given to the user to

switch between tasks are made during the analysis stage, it is important for the

132

From Output Event Input Event To
User ok(id-val)l@U ok(id_val)? Initiator
User previous!@V previous’ Selector
User prefs!@V prefs? Selector
User unpre fs!@V unprefs? Selector
User advise!@V advise? Selector
User ok!@Z ok? Messenger
User course_val!@B course_val? Choicer
User time!@ B tval? Choicer
User maco', mico!, maco.val?, Choicer
macr!, micr'@QB mico_val?,

macr_val?, micrval?
User cmpl!, cmp2'@ B empl?, emp? Choicer
User accept!@B accept? Choicer
User cancel'@B cancel? Choicer
User print!@QC print? Advisor
User prefsi@C prefs! Advisor
User unpre fs!QC unpre fs’ Advisor
User ezit!@QU,@V,aC exit? Initiator

exit? Selector

exit? Advisor

Table 5.6: Event Correspondance Table

133

Node Class
nodb Messenger
inv.id
msgl
msg2
key Initiator
X
main Selector
X
X cas
preferences Choicer
constraints
start Advisor
X

Table 5.7: Node-Class Association Table

interface designers to ensure that the ordering of tasks in the IDD document is
consistent with the ordeiing of tasks described in the IAD document. This can
be achieved by constructing the Action Response table. The Action Response
Table contains three columns: the first column lists the actions performed by
the user. The second column which specifies the node in the state transition
diagrams contains two sub-columns: Current, Next. The sub-column “Current”
lists the node which shows the current state of the system. The sub-column
“Next” lists the next possible node(s) that can be reached in the state transition
diagrams. The last column in the Action Response Table specifies the interface
class in the IDD document which corresponds to the node(s) in the second
column. The sub-column “Current” in this column specifies the class that is
currently active, and the class name(s) specified in the sub-column “Next” lists

the possible class that can be invoked next.

From the Node-Class Association Table (table 5.7) constructed earlier, one can
understand which nodes correspond to which interface classes. Therefoie, by
comparing the columns “Node” and “Class” in table 5.8, the designers check

that the system responses listed in the third column are consistent with the

134

User Action Node Class
Current Next Current Next
ok key main Initiator Selector
inv_id Messenger
Previous main key Selector Initiator
Prefered Choices main preferences Selector Choicer
Unprefered Choices | main constraints Selector Choicer
Advise main start | Selector Advisor
OK inv.d key Messenger Initiator
msgl preferences | Messenger Choicer
constraints
msg2 start | Messenger Advisor
Prefered Choices start preferences Advisor Choicer
Unprefered Choices | start constraints Advisor Choicer
Accept start msg2 | Advisor Messenger
[Exit key - initiator -
main - Selector -
start - Advisor -

Table 5.8: Action Response Table

135

system responses listed in the second column.

5.7 Ensuring Consistency between IDD & CDD

All those activities (dialog design, constructing the static structure, behavioral specifi-
cation, and so on) that are carried out during the user interface design phase comprise
the Interface Design Document(IDD). The Computational Design Document(CDD)
comprises all those activities carried out during the design phase of the computa-
tional process. Once the IDD document and the CDD document are produced, the
design walk-through is conducted. A design walk-through is an informal review of the
IDD and CDD documents, as a cooperative and organized activity by several partici-
pants(user interface engineers, and the computational engineers). Software engineers
from both groups (interface group and the computational group) meet to review the
output of the design phase of both the interface process and the computational pro-
cess. This meeting focuses on “discovering the errors and inconsistencies”, but not

fixing them.

Key people (say, the group leaders) in either group walk through the IDD and
CDD documents to present and explain the rationale of their work. The software
engineers check that, for every output event sent by an 10B in the IDD, there exists
a COB in the CDD document, which accepts that event. Similarly, for every output
event sent by a COB in the CDD document, there should exist an IOB in the IDD
document, which accepts that event. This process of verification becomes much easier
if the computational group also uses the TROM model to specify the behavior of the
various classes. During the design walk through, the user interface engineer takes
notes on the changes that are to be made to the I0Bs/COBs in the IDD document.
This applies to the computational engineer too. Therefore, this walk-through serves
the interface group to ensure that the CDD document does not miss any of the tasks
that are modeled in the IDD document and vice-versa. An overview of all the tables

created during the User Interface Design phase in CUIM, is given in Table 5.9.

Since the various activities in CUIM are quite independent of the activities involved

136

Table

Name

Purpose

5.1

Dual View Association Table

Ensures that the components in the
spatial organization corresponds to the
interface components specified during
the dialog design

5.2

Class Attribute Table

Verifies that for each Question in the
class chart there is a class compo-
nent which accepts the user input, and
that class component is mapped to at-
tributes in the class descriptions

5.3

Command-Callback Table

Ensures that the commands in the
class chart are mapped to callbacks in
the class description

5.4

Constraint-Invariant Associa-

tion Table

Ensures that the constraints in the
class chart are mapped to invariants
in the class description

5.5

Event-Callback Table

Ensures that the set of behavioral spec-
tfications cover the behavior for each
of the callbacks specified in the class
descriptions

5.6

Event Correspondance Table

Ensures that the output event sent by
the User object is received as an input
event, by an 10B

3.7

Node-Class Association Table

Ensures that the task of displaying the
system output which is described by a
node in the IAD document is handled
by a class in the IDD document

5.8

Action Response table

Ensures that the ordering of tasks in
the IDD document is consistent with
the ordering of tasks described in the
IAD document

Table 5.9: Overview Table

137

in the comrulational process, this thesis does not concentrate on the computational
design phase. But, following the advanced evolutionary prototype model, ensuring
consistency between the IDD document and the CDD document is necessary. This is
achieved by using the CDD document for CAS, which is prepared by Kim{Duon95].
We conducted design walk-through to review the IDD and CDD documents. By
reviewing the IDD and CDD documents, we ensured that the CDD document does

not miss any of the tasks modeled in the IDD document and vice-versa.

Once again, it is important to note that the length of the interface design stage
may not be the same as the length of the computational design stage. The length
may vary from application to application. There will be situations where the IDD
document is available, and the CDD document is not available yet. Then the interface
group postpones the design walk-through until the CDD document is available, and
enters the user interface implementation and testing stage. The implementation and

testing phase in CUIM is discussed in Chapter 6.

138

Chapter 6

Implementation and Conclusions

Following the design phase in the advanced evolutionary prototype model are the imple-
mentation and testing phases. Section 6.1 describes how the various design activities
assist the implementer in constructing the “Interface Subsystem”. The testing phase
in CUIM is discussed in Section 6.2. Section 6.3 introduces a proposed Hyper-media
Design Tool to assist designers in following the CUIM methodology. The conclusions
of this thesis are presented in Section 6.4. Finally, Section 6.5 points out the future

work that can be carried out.

6.1 Implementing the User Interface

As pointed out in Chapter 5, the user interface posses the look and feel characteristics.
Since the look of the interface is already achieved during the design, the implemen-
tation phase achieves the feel characteristic by implementing the user interface, and
letting the user try it. The output of the design phase, which is the IDI document,
serves as the input to this phase. "he user interface developers build the look of the
user interface by using the class cnarts, the spatial organization constructed during
the design phase and the dialog specifications given in the IAD document. While im-
plementing the user interface, it is possible that the placement(row number, column

number, and so on) of the various components of the user interface might slightly

139

vary from that given in the dialog specifications.

Once the look of the interface is implemented, the user interface developers make
use of the class descriptions to specify the callback functions required for each class.
The system interactions specified during the design phase are then used in writing the
code for the callbacks. The behavior specified in the system interactions is rewritten
in C**[Berr92]. The port identifiers in the behavioral specification, correspond to
object instances during the implementation. An event in the behavioral specification,
corresponds to either a method of a class or a return value from a method, during the
implementation. For example: considering the Initiator TROM (Chapter 5), the event
“invoke I” corresponds to the method “Invokel” and the event “valid” corresponds
to the return value from the method of a computational object. It is up to the
implementer to make these decisions of whether an event in TROM should correspond
to a method or to a return value from a method, during the implementation. Since
the design phase in CUIM suggests for simulating the functionality of the COBs,
in order to connect the different interface objects implemented, the functionality of
the COBs is simulated during the implementation phase. Thus, the output of the
implementation phase is the “Interface Subsystem”, which comprises the executable

file, and the code written by the user interface implementers.

The existing GUI tools such as UIM/X[Visu93), and OSF/MOTIF[Brai92] can be
used for implementing the user interface on the X Window System{Sche92]. The var-
ious user interface classes of CAS, designed during the design phase are implemented
in MOTIF, using the UIM/X toolkit. Figures 6.1 through 6.6 show the X Win-
dow dumps of CAS user interfaces implemented. UIM/X assisted us to interactively
choose the MOTIF widgets (such as, pushbuttons, scrollbars, and so on) to construct,
modify, test, and generate code for the look of the user interface. This resulted in
developing the user interface to CAS, in shorter amount of time. The time taken to

develop the user interface to CAS was 1 week!.

The next step after implementing the user interface is to verify, that the Interface

Subsystem corresponds to the decisions made during the design. Code walk-throughs

"This does not include the time taken to learn UIM/X; Knowledge of OSF/MOTIF is essential
to learn UIM/X

140

itiator

Welcame to the Automated Interactive Advising System

Entor Your I :

® To wstart the advising sexviont snbtee gaur 1 amwd click on 0K,
® Tn guibt the sgsten: click on EXRIT,

Figure 6.1: The initiator Interface

Figure 6.2: The messenger Interface

141

Unprefered Chotces

-4

aiss from thes aystems elick on Rdvise,

wiry preFeencess click on PreFered Croloes,
g conxtalntyy olick on Urpeefered Dhadves,
e pravious windoel click oo Pravious,

syztam} vlick wn Exit.

L
4

25§
i}

£

s e e
P38 - X X
£

-

EadE od

et vttt €A meere

* v Timw:
1

Forwuats Tho 12502 - Adgren

oeaePuevopet eyt Locuomed

Maxinum ¥ ol Conavasm ‘l K § Denwhttme & wad Groditme

Miltaun @ 1€ Tunreewe 2 Minimue & oxf Coedtivx

r

Figure 6.4: The preferences Interface

Uworaltared Courne
Jree s e e s s e N,

|
|

S EBrte Dousvew Muskmre 3
-4 vt

{1

Lirsger-ead®coxcowt t Lrmxe

A Kesherer Fimewx .

1

Faresans The 1200

SvpreaForaet enuneoss
LS] 340

LOXOLA

Yook

Mexx Sanen B OF Coverenes

Mindman & o Courses

Moen Jrnan # of Creetlitan

Banimam & of Crofits

Figure 6.5: The constraints Interface

¥ Baser! 9 sour ErefsrenomGanstraints, arf the pre-reqisiies you hwe opleted
the tellowing 38 the s of avgpested oovrses -
Courues 3 Courus Nowe Instrucior Tine Torn
et 23 b Introduct ton Lo Computer S lence B Atwood Ur 08;45-10:15 2
P231 Introdction to Biscraty Skructsens Be Rwrg lor W 11:45-13:15 ?
mn2e2 Introduct ion to Probebiltity B Soric UF 15:00-15:30 2
M43 Inbroduct{fon b Hablwnoticsl Statistics BBt 1 13:3%-14:48 2
PRYSZON Tachanics e Noris 1J 15:00~15130 2
o220 Compustar Drgonizat ton and fxseedsiy Lguags B Rucdhsaler Ludwian i 11145~13:15 4
245 Programing Hethodo logy .Crog Wilac UF 00:45-10:15 4
mTze2 Aduoncad Cotoulus | M Anard 1) 13:15-14:43 4
Nz Linesr Rigetrs I * Rivedi W 13:00~16:30 4
PHYSZ0S £luctricity and Hegratisn ¥r.Cariton TJ 00:49~10:18 4

Figure 6.6: The advisor Interface

143

are performed to verify the program against the design. Since the executable file
produces the user’s view o. the interface, the different interfaces produced by the
executable file are compared with the user view(Design Stage) to see if they resemble
the interfaces produced during the dialog design. Comparing the CAS user interfaces
implemented, with those designed during the dialog design, we see that the inter-
faces implemented resemble the interfaces in the dialog design. Once this is verified,
the callback functions for each class specified during the implementation phase are
compared with the callback fuunctions listed in the class descriptions. This can be
achieved by constructing a callback table. The callback table contains three columns:
with the first column listing the class name, the second column listing the callbacks
from the class descriptions, and the third column listing the corresponding callbacks
specified during the implementation. The callback table for CAS is shown in Table
6.1. From this table we see that for each callback specified during the design there
is a corresponding callback realized during the implementation and vice-versa. The
interface designers and the interface implementers walk through the code to verify
that the behavior specified during the design phase has been implemented during the
implementation phase, for each of these callbacks. When this verification is satisfac-
torily done, we can say that the implementation phase in CUIM, models the decisions

made during the design.

6.2 Testing the User Interface

The user interface development process is completed, when the outcome of the testing
phase is satisfactory. Generally the testing phase concentrates on validating the user
interface developed against the customer requirements. Testing of the user interface

is categorized into two types: 1. Customer Testing, 2. User Testing.

e Customer Testing:

Customer testing is the one that is carried out by the interface developers and
the customer. A set of tasks representing all the User Goals listed during the
analysis, are prepared prior to conducting the test. During the demo(customer

testing phase), the system is tested to see if it satisfies all the user goals when

144

Class Design Phase Implementation Phase
Initiator ok_buttonl.callback activateCB_pushBv‘ionl
exit_button2_callback activateCB_pushButton?2
Messenger | ok_button14_callback activateCB_pushButton7
Selector advise_button4_callback activateCB_pushButton3
prefs_button5_callback activateCB_pushButtond
unprefs_button6_callback activateCB_pushButton
prev_button3_callback activateCB_pushButton6
exit_button7_callback activateCB_pushButton8
Choicer accept_button8_callback activateCB_pushButton9
cancel_button9_callback activateCB_pushButton10
Advisor approve_button10_callback activateCB_pushButtonl)
preferences_buttonll_callback | activateCB_pushButtonl6
exit_button12_callback activateCB_pushButton18
constraints_button13_callback | activateCB_pushButton17

Table 6.1: Callback Verification Tatle

the tasks listed are performed. Since the User Goals listed during the analysis
represent the different goals the different users of the system will have, the tasks
prepared during this phase, represent the different goals the different users of
the system will have. Therefore if all the goals arz achievable, then we say that

the interface developed, satisfies the goals of users with different task erperience.

CUIM suggests that customer testing should be performed prior to user test-
ing. It is a well known fact[Ghez91] that in most of the cases, the customer
himself does not know the complete requirements of the application that is to
be developed. New requirements evolve as the system (user interface) is be-
ing demonstrated. Since the user testing is costly, CUIM suggests that if any
requirements evolved during the customer testing phase, the development pro-
cess should be iterated prior to user testing. In successive iterations, the user
interface analysis, and design phases are iterated to match the new (modified)
requirements. Customer testing is carried out once again, after implementing

the user interface which matches the new requirements.

145

Considering our example system CAS, the following are the list of tasks that we
have selected to execute during the customer testing phase. This task selection

will be based on the task analysis performed at the analysis stage.

— Task Set 1
1.1 Without specifying your preferences/constraints, request the system to

give advice.

— Task Set 2

2.1 Specify your preferences.
2.2 Specify your constraints.

2.3 Request the system to give advice.

— Task Set 3

3.1 Specify your preferences.

3.2 Specify your constraints.

3.3 Request the system to give advice.
3.4 Change your preferences list.

3.5 Request the system to give advice.

A customer is the individual who has commissioned the development of the soft-
ware. Customer may or may not be the end user. The Informal Requirements
Document(IRD) has been developed in close consultation with the customer.
He is involved in Customer Testing. At the end of the customer testing phase,
we found that: all the specified goals are achievable. However, one omission

was discovered and corrected. This is explained below:

- The requirement: Allow the user to delete the course, time which is spec-

ified before, in the prefered/unprefered choices.

We went through one iteration of the user interface development process, to in-
corporate the requirement evolved. This iteration resulted in adding a “delete”

button which allows the user to delete the course, and time specified before.

e User Testing:

146

User testing is carried out by randomly selected people who comprise the user
population for the application being developed. The true test of an interface is
to conduct user testing, which evaluates how satisfactory is the developed user
interface. Issues such as error rate, user response time (task response time), ease
ot use, and ease of learning of the user interface are considered in evaluating

the user interface.

The amount of time spent in the completion of a task depends on the system
response time(SRT) as well as the user response time(URT). Therefore, we can
define the task performance time(TPT) as the sum of SRT and URT. An un-
acceptably higher TPT would make us conclude that the system is inefficient.
Since, SRT is taken care by the computational group, the user interface group

strives to achieve lower URT.

In CUIM, user testing is carried out by allowing users to perform a pre-selected
list of tasks on the interface dev:lopec. Prior training is also given to the users if
the user profile constructed during th 2 analysis states that training is necessary.
The user tries to complete these tasks while an evaluation expert is observing.
The observer is passive with respect to the task being attempted, but records
the errors made by the user in the completion of the tasks. A questionnaire is

also prepared to get user feed back about the interface developed.

After conducting the test, the results of the test are examined. If the outcome
of the test resulted in unacceptable user response to any of the test parameters, we
conclude that the test results are unsatisfactory. At this point, the user interface

group e.amines the following:

1. If the test results and the conclusions derived from them are reliable. If not,
should the test be repeated.

2. If the inadequate performance is due to shortcomings in the user interface, what

modifications are required to the user interface.

Considering our ex. mple system CAS, we conducted user testing on the interface
developed. Ten undergraduate students from the department of Computer Science

performed the testing of the user interface. During the testing phase:

147

1. The students were first asked to get familiar with the interface system by per-

forming different actions such as entering the id, listing the preferences etc..

2. After they got familiar with the system, the students were asked to perform a

given set of tasks prepared during the Customer Testing phase.

3. Finally, a questionnaire was given to the studeuts to get their feedback about

the user interface.

Test Resuits:

1. User Profile:

From the test conducted it was observed that the users who participated in

testing the user interface have the following characteristics:

e During the test:

(a) The errors committed by the students were noted down by the ob-
server. Table 6.2 shows the errors committed by the users while using
the system for the first time. ¥rom this table, we see that student #2
is not confident about how to give input to a mouse driven application.

(b) The type of eriors made by other users (Table 6.2), tells us that the
errors made are not due to lack of computer knowledge. Therefore, we
say that most of the students are familiar with GUI based interactions.

(c) Some of the students suggested that more beautiful user interfaces can
be created by using Microsoft Windows. At this point, it is important
to see ‘he difference between (b) and (c). Point (b) talks about stu-
dents who have knowledge of using windows and point (c) talks about

students who have knowledge of creating windows.

Therefore from (a), (b), and (c), we conclude that the computer literacy of

the users particivated in the testing, ranged from low to high.

e (a) There are students who made errors (Table 6.2) while specifying the
prefered time.

(b) There are students who did not make any errors (Table 6.2).

148

Student | Error committed while using the system for the first time

[e—y

specifying the prefered time
is not confident about how to give input to a mouse driven application;
specifying the prefered time
none

specifying the prefered time
specifying the prefered time
specifying the prefered time
none

none

none

none

[\

O, W=D G| =W

(S
(=4

Table 6.2: Error List

Since the user population included people with low computer literacy, we
can say that it included people with low syntactaic knowledge. From the
errors listed in (a), and (b), we observe that the syntactic knowledge for

users participated in the testing, ranged from moderate to high.

e Table 6.3 shows that there are variations in the time taken by the students
to perform the tasks. Onc of ‘he possible reasons for this could be the
typing skill of the users. Therefore, we can say that the test is performed

by people with different typing skills.

e During the customer testing phase, it was found that the user interface

satisfied the goals of users with different task erperience.
o The characteristics such as Frequency of Use, Primary Training, System

Use, and Task Importance are independent of the user population.

From the characteristics mentioned above, we conclude that the characteris-
tics of the user population participated in the test, maiched the user profile

constructed during the analysis stage.

2. Efficient:

Efficiency of an user interface can e measured in several ways([Bass90}, [Barf93]).

In this evaluation experiment, we chose to measure it by means of the time taken

149

by a user to complete a set of selected tasks. The user interface designer is con-
sidered as the erpert user. The amount of time spent by an expert user in

performing the tasks given to the users is as follows:

(a) Task 1: 30 sec
(b) Task 2: 2 min
(c) Task 3: 3 min

‘ask #3 when carried out in the “existing manually oriented advising system”
(professor-student interaction) would take an average of 17.5 minutes, spread
over the interval of 15-20 minutes. We set a goal of getting advice from CAS
should be at least two times faster. This gave us an expectation of 8.75 minutes

or 9 minutes (when rounded) for completing the task.

From Table 6.3, we see that the average time taken to perform the task is much
less than the acceptable average time. Therefore, we consider that the average

task performance time is quite low, or the interface is efficient.

3. Easy to Learn:

It was found that the average number of errors performed, when users performed
the selected tasks for the first time was 0.6 . Also, the users did not repeat the
errors which they committed once. Therefore, we conclude that the system is

easy to learn.
4. Easy to Use:

(a) From the questionnaire, it was found that 80% of the users marked that
the interface is Easy to use and 20% of the users marked that the interface

is Very Easy to use. This is an indication of the subjective evaluation.

(b) By noting down the number of errors made by the user during the testing
phase, we found that the average number of errors committed while doing

the tasks given to them, was zero.

(c) Since, the system response time(SRT) is negligible, we can say that the
task performance time(TPT) is practically equal to the user response

time(URT). The low TPT resulted in low URT.

150

Taskl Task2 Task3

55 sec 3.40 min | 4.59 min
43 sec 3.13 min | 4.12 min
30 sec 2.09 min | 3.10 min
1.42 min 3.45 min | 4.46 min
43 sec 2.54 min | 3.43 min
33 sec 2.16 min | 3.27 min
31 sec 2.06 min | 3.08 min
32 sec 2.43 min | 3.30 min
32 sec 2.12 min | 3.07 min
30 sec 2.15 min | 3.01 min

Ave.: 43 sec | 2.34 min | 3.34 min

Table 6.3: Test Results

From (a), (b) and (c), we conclude that the user interface is casy to use.

5. In the questionnaire given, users felt that the interface is easy to use, and
commented that it would be better if the OK button in the start interface is

replaced by a return key.

Since the test results obtained above, are satisfactory and the changes in user
requirements evolved from user testing are minimal, we concluded that another iter-
ation of the development process is not necessary. The process of integration will be

carried out in future, when results of the computational process are available.

151

6.3 The Hyper-media Design Tool

In Chapters 4, 5, and 6, we have shown how to apply the Concurrent User Interface
Methodology proposed in this thesis. But we had no good tools to support the various
activities in CUIM. We propose the Hyper-media Design Tool(HDT) in this Section.
As the name implies, the /DT tool is based on hyper-media concepts[Niel90]. The
HDT tool will assist the user interface designers during the various design activities
in C'UIM by ensuring that the steps in CUIM are faithfully followed. The HDT will
support the different specification notations used in CUIM. The 1ool as abstracted in
Figure 6.7, contains different nodes(boxes) corresponding to different design activi-
ties in CUIM. 'The information flow between the different design activities(nodes) is
represenied as a link{an unidirectional arrow) The HDT tool contains two types of
links: 1. Hard Link and 2. Soft Link. A Hard Link is denoted by a directed solid
line, and, a Soft Link is denoted by a directed broken line. A Hard or Soft Link
emanating from node A to node B denotes that node A serves as input to node B.
Multiple inputs to a box, denotes that all those inputs are required to perform the

activity corresponding to the incident node.

We defne the term component to denote the contents of a node. In HDT, Hyper-
links are established between components. No hyper-link can be established between
components of the two nodes which are connected by a Soft Link. A hyper-link is
established by the user interface designer who is designing an user interface following
CUIM methodology. The HDT tool is useful for establishing such hyper-links. Spec-
ifying the node components and the hyper-links between the node components is left
to the user interface designer. However, the hard link from one node(box in Figure
6.7) to another is automatically established by the HDT. Traversing is possible either
through the automatically established links or through hyper-links.

By providing access to relevant information via hyper-links, HDT enables the de-
signer to scan the relevant information to any depth that is needed. This should help

in the change and maintenance of the design.

The boxes in the node link diagram(Figure 6.7) are explained below:

152

Interactions
Sgracifier

Class Chart
<

Leogemds:

- -

A bou deDotes an aci vity i CUIW
and

The arrow frosm one bos o another
danotes informmation fiow e the
form of dosuseents

This furthar feadicates that, na
hypor-ink samn be snabliched

et ween AAY & we boRes, SomBerted
By this nrrow.

Dialog Specifer

Dlalog Styler

Bpatial
Organiser
e A D
€ L
D..cr‘:“n'

—are A (@ >y
Roouse
v Bahavior
Ane-Funcsten | pecifer
Trvane.»

.

¢ Construstor

Figure 6.7: The Hyper-media Node-Link Diagram

153

The Dialog Specifier: The Dialog Specifier requires a graph editor, which
allows the designer to draw the ertended state transition diagrams, while speci-
fying the dialog between the user and the interface. The Dialog Specifier serves

as input to the Interaction Specifier and the Dialog Styler.

The Interactions Specifier: The Interactions Specifier requires a graph edi-
tor, which allows the designer to draw the interaction diagrams, while specifying
the interactions between the 10Bs and the COBs. The Interactions Specifier

serves as input to the Class Chart Constructor.

The Dialog Styler: The Dialog Styler requires a graph editor, which allows
the designer to draw the various dialogs identified during the dialog design. This

node serves as input to the Class Chart Constructor, and the Spatial Organizer.

The Class Chart Constructor: The Class Chart Constructor provides a
form-like user interface, and asks the designer to enter the information pertain-
ing to a class chart. Then the class charts are constructed automatically, by the
Class Chart Constructor. This node serves as input to the Spatial Organizer,

and the Class Descriptor.

The Spatial Organizer: The Spatial Organizer requires a graph editor, which
allows the designer to draw the various classes, class components, relationship
arcs, and the text required for labeling, while constructing the spatial organiza-

tion of the user interface. This node serves as input to the Class Descriptor.

The Class Descriptor: The Class Descriptor requires a graph editor, which
allows the designer to describe the components of the header and the body in

a class deseription. This node serves as input to the Behavior Specifier.

The Behavior Specifier: The Behavior Specifier requires a text editor, which
allows the designer to describe the textual description of the behavior of the
class. Taking the textuai description, the equivalent finite state machine is gen-
erated by the Behavior Specifier. This node serves as input to the Configuration

Constructor.

The Configuration Constructor: The Configuration Constructor requires a
graph editor, which allows the designer to specify the configuration of the user

interface subsystem.

154

With respect to the editor supported by the HDT, we recognize the following design
choices:

Design Choice 1: A single editor, which facilitates the construction of:

e the extended state transition diagrams

e the interaction diagrams

the dialog styles

the class charts

the spatial layout of the user interface

the class descriptions and

o the behavior specifications

Design Choice 2: Each node(box in Figure 6.7) in the HDT contains an associated

editor. In this case, each editor could be a specialized syntax directed editor. We

recommend the design choice 2 because,

¢ A local editor to each node, provides the notations specific to a design activity,

by omitting the rest.

e More meaningful messages can be given to the user, when the rules of CUIM
are violated. For example, when constructing the interaction diagrams, the

designer will be informed if an interaction happens between any two IOBs.

6.4 Conclusions

Different user interface models ([Fole82), [Kier88], [Norm84]) proposed in the litera-
ture concentrate on developing the user interface, and do not provide any indication
of how the user interface developed will interact with the computational part of the

software. Also, these models do not provide a systematic procedure for user interface

155

development. The model proposed by Sutcliffe[Sutc91] is an exception, in the sense
that it deals with both the user interface part and the computational part. But there
is no clear cut division hetween them. The Advanced Evolutionary Prototyping Model
proposed in this thesis, views the software development to consist of two loosely cou-
pled, possibly concurrent processes. This model allows user interface developers and
software developers to work concurrently on the same project, with interactions be-
tween them occuring at well defined points in the development process. We believe
that the concurrency supported by the Advanced Evolutionary Prototyping Model,

would result in shorter software development time.

The Advanced Evolutionary Prototyping Model determines the sequence and in-
teractions between the various phases in the software development, and establishes
the transition criteria for progressing from one stage to the next. To put this model
into practice, the Concurrent User Interface Methodology(CUIM) has been developed.
CUIM focuses on how to navigate through each phase of the development and how to

represent the “phase-products”, in the Advanced Evolutionary Prototyping Model.

Based on the Advanced Evolutionary Prototyping Model, we conducted a case
study which followed the CUIM methodology. As a part of the case study, the user
interface to the Course Advising System(CAS) has been developed, and an evaluation
experiment has been conducted to test the developed user interface. This thesis has
shown the feasibility of the Advanced Evolutionary Prototyping Model in general, and
the CUIM methodology in particular. The experimental evaluation made us believe
that the CUIM methodology can lead to better user interfaces; better in the sense of

promoting ease of use, and ease of learning of the user interface.

Although the concurrency between the user interface process and the computa-
tional process in the Advanced Evolutionary Prototyping Model is logically evident,
no rigorous evaluation is done in this thesis. Through this concurrency, that one can
reduce the product development time is a subjective claim and no objective testing

1s done in this thesis.

156

No methodology can be widely practiced without a good set of tools. The Hyper-
media Design Tool(HDT) proposed in this thesis, will assist the user interface design-
ers during the various design activities in CUIM. Use of the HDT tool will ensure
that the various steps in CUIM are followed. The design, and development of the
HDT tool are left as part of the future work.

6.5 Future Work

The work presented in this thesis, serves as a starting point for developing a systematic
procedure for the design and development of user interfaces. Some of the possible

directions for further research related to this thesis are as follows:

o The Hyper-media Design Tool described in this thesis needs to be refined, im-

plemented and tested.

o In a typical multi-media application[Phil91], there can be multiple sources of
input. For example, consider a voice command as one input, and mouse click
or keystrokes as another input. These two modes can be concurrently active.
The eztended state transition diagrams used for dialog specification, does not
support this. Extending the dialog specifications to capture the multi-modal

and simultaneous input needs further research.

o Through a case study, the Timed Reactive Object Model(TROM) developed in
[Achu94] is demonstrated as a potential tool for user interface design in CUIM.
The Behavioral Descriptions developed using TROM are manually verified(that
every output event sent by the user object, is received by an IOB) with the help
of tables. This verification can be automated. In this context, we note that
work is in progress as a continuation of [Achu94], to develop a set of tools for

using TROM in specifications.

o The Course Advising System(CAS) is the only example which was used in this
thesis for examining the CUIM methodology. Extensive testing of the adequacy

of this methodology for all types of user interfaces can be undertaken in future.

157

Bibliography

[Agre86)

[Aoya93]

W.W.Agresti, “New Paradigms for Software Development”, IEEE Com-
puler, 1986.

Mikio Aoyama, “Concurrent Development Process Model”, IEEE Software,
July 1993, pp. 46-55.

[Achu94] R. Achuthan, V. S. Alagar, and T. Radhakrishnan, “A Formal Model for

Object-Oriented Development of Real-Time Reactive Systems”, Concordia

University, Montreal, Canada, May 1995.

[AARV95] R. Achuthan, V.S. Alagar, T. Radhakrishnan, S.R. Vallurupalli, “A frame-

[Bilj88]

[Boeh88)

[Bass90]

[Berr92]

[Brai92]

work for the formal development of user interfaces”, Workshop on Formal
Specification of User Interfaces (CHI'95), Denver, Colorado, May 1995.

Willem R. Van Biljon, “Extending Petri nets for specifying man-machine
dialogues”, International Journal of Man-Machine Studies, 1988(28), pp.
437-455.

Barry W. Boehm, “A Spiral Model of Software Development and Enhance-
ment”, IEEE Computer, May 1988, pp. 61-72.

Len Bass, Joelle Coutaz, Developing Software for the User Interface,
Addison-Wesley Publishing Company Inc., 1990.

John Thomas Berry, The Waite Group’s C** Programming, The Waite
Group, Inc., 1992.

Marshall Brain, MOTIF PROGRAMMING The Essentials ... and More,
Digital Press, 1992.

158

[Barf93]

[Case82]

[Cutt8g]

[Deut8l]

[Drap85)

[Duon95)

[Fole82]

[Fole86]

[Gent90)

[Ghez91]

[Gutt91]

[HilI86]

Lon Barfield, The User Interface Concepts & Design, Addison-Wesley Pub-
lishing Company Inc.,1993.

B. E. Casey and B. Dasarathy, “Modelling and Validating the Man-Machine
Interface”, IEEE Software, Vol. 12, No. 6, June 1982, pp. 557-569.

Cutts, Geoff, Structured Systems Analysis and Design Methodology, New
York : Van Nostrand Reinhold Company Inc., 1988.

Michael S. Deutsch, “Software Project Verification and Validation”, IEEE
Computer, April 1981, pp. 54-70.

Stephen W. Draper and Donald A. Norman, “Software Engineering for
User Interfaces”, IEEE Transactions on Software Engineering, Vol. SE-11,
No.3, March 1985, pp. 252-258.

Duong Kim, Course Advising System, M.Comp.Sc. Major Report, Com-

puter Science Department, Concordia University, (Under Preparation).

James D. Foley and Andries Van Dam, Fundamentals of Interactive Com-

puter Graphics, Addison-Wesley Publishing Company Inc., 1982.

James Foley, “Guest Editor’s Introduction: Special Issue on User Interface
Software”, ACM Transactions on Graphics, Vol.5, No.3, July 1986, pp.
175-178.

Donald R. Gentner, Jonathan Grudin, “Why Good Engineers (Sometimes)
Create Bad Interfaces”, CHI ’90 Proceedings, April 1990, pp. 277-282. 7,
ACM Transactions on Graphics, Vol.10, No.3, July 1991, pp. 213-254.

Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Fundamentals of Software
FE’ngineering, Prentice-Hall, 1991.

J. V. Guttag, J. J. Horning, and A. Modet, Revised report on the Larch
Shared Language (version 2.3), Technical report, (58), Digital Equipment

Corporation Systems Research Center, 1991.

Ralph D. Hill, “Supporting Concurrency, Communication, and, Synchro-
nization in Human-Computer Interaction - The Sassafras UIMS”, ACM
Transactions on Graphics, Vol.5, No.3, July 1986, pp. 179-210.

159

[Hart89]

[Huyn93]

[Jaco83]

[John8Y]

[Kier83]

[Kier88]

[Leeu90)

[Mora81]

[Maso83]

[Mill34]

[Meye88)

Hartson and Deborah Hix, “Toward empirically derived metho<dologies and
tools for human-computer interface development”, International Journal of
Man-Machine Studies, 31, 1989, pp. 477-494.

Pierre Nam Huyn, Michael R. Genesereth, Reed Letsinger, “Automated
Concurrent Engineering in Designworld”, IEEE Computer, January 1993,
pp- 74-76.

R. J. K. Jacob, “Using Formal Specifications in the Design of a Human-
Computer Interface”, Communications of the ACM, Vol. 26, No. 3, March
1983, pp. 259-264.

Jefl Johnson, Teresa L. Roberts, William Verplank, David C. Smith,
Charles Irby, Marian Beard and Kevin Mackey, “The Xerox Star: A Ret-
rospective”, I[EEE Computer, Vol. 22, No. 9, Sepetmber 1989, pp. 11-26.

D. Kiers and P. Polson, “A Generalized Transition Network Representation
for Interactive Systems”, in Proc. CHI 83 Human Factors in Computing
Systems, 1983, pp. 103-106.

David E. Kiers, Handbook of Human-Computer Interaction, Elsevier Sci-
ence Publishers, 1988.

Jan Van Leeuwen, Handbook of Theoretical Computer Science, Cambridge,
Mass. :MIT Press, 1990.

Moran, T. “The Command Language Grammar, a Representation for the
User Interface of Interactive Computer Systems”, International Journal of

Man-Machine Studies, 15, 1981, pp. 3-50.

Mason R.E.A., and Carey T.T, “Prototyping Interactive Informations Sys-
tems”, Communications of ACM 26, 5, May1983, pp. 347-354.

C. Mills and A. I. Wasserman, “A Transition Diagram Editor”, in Proc.
1984 Summer Usenir Meeting, June 1984, pp. 287-296 .

Bertrand Meyer, Object Oriented Software Construction, Prentice Hall Inc.,
1988.

160

[Myer89] Brad A. Myers, “Tools for Creating User Interfaces: An Introduction and
Survey", IEEE Software, 6(1), 1989, pp. 15-23.

[Myer90] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zan-
den, David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Mar-
chal, “Garnet Comprehensive Support for Graphical, Highly Interactive
User Interfaces”, IEEE Computer, November 1990, pp. 71-85.

[Mayh92] Deborah J. Mayhew, “Principles and Guidelines in Software User Interface
Design”, Prentice Hall, Inc., 1992.

[Meye92] Bertrand Meyer, Eiffel : The Language, Prentice Hall Object-Oriented
Series, 1992.

[Neil77] J. T. O'Neill, Ed., MUMPS Language Standard, ANSI Standard XII.1,
Amer. NAt. Standards Inst., 1977.

[Norm8&4] Donald A. Norman,“Stages and Levels in Human-Machine Interfaces”, In-
ternational Journal of Man-Machine Studics, 1984, pp.265-375.

[Norm86] D. A. Norman, Lewis, C., “Designing for Errors”, In User Cenlered System
Design, Lawrence Erlbaum Associates, Hillsdale, N.J., 1986, pp. 41-32.

[Ners90] Jean Marc Nerson, Extending Eiffl Toward O-O Analyis and Design, TR-
EI-28/AD.Version 1, December 1990.

[Niel90] Jakob Nielsen, Hypertezt and Hypcrmedia, Academic Press, Harcourt Brace
. Jovanovich, Boston, MA, 1990.

[Pete87] Lawrence Peters, Advanced Structured Analysis and Design, Prentice-Hall

Series in Software Engineering, 1987.

[Putn80] L. Putnam, Software Cost Estimation and Life-Cycle Control, IEEE CS
Press, Los Alamitos, Calif., 1980.

[Phil91] Richard L. Phillips, “Mediaview: An editable multimedia publishing sys-
temn developed with an object-oriented toolkit”, In Proceedings of the Surr-
mer ’91 USENIX Meeting, pages 125-136, 1991.

161

[Royc70]

W. W. Royce, “Managing the development of large software systems: con-

cepts and techniques”, Proceedings WesCon, August 1970.

[Rumb91] James Rumbaugh, Michacl Blaha, William Premerlani, Frederi<k Eddy,

(Radh93]

|Shne80]

[Smit82]

[Shne87]

[Sing91]

[Sute9l]

[Sche92]

[Visa93)

[Visu93]

William Lorensen, Object-Oriented Modeling And Design, Pre...ice-Hall,
Inc., 1991.

T.Radhakrishnan, On The Rapid Development of Telecommunication Ser-
vices, Technical report Submitted at BNR, Montreal, October 1993.

Shneiderman, Ben, Software Psychology: Human Factors in Computer and

Information Systems, Cambridge, Winthrop Publishers, Inc., 1980.

David Canfield Smith, Charles Irby, Richard Kimball, Bill Verplank and
Eric Harslem, “Designing the Star User Interface”, BYTE Magazine, April
1982, pp. 242-282.

Ben Shneiderman, Designing the User Interface: Strategies for Effective
human-Computer Interfaces, Addisc.-Weeley Publishing Company Inc.,
1987.

Gurminder Singh and Mark Green, “Automating the Lexical and Syntactic
Design of Graphical User Interfaces: The UofA* UIMS”, ACM Transac-
tions on Graphies, Vol. 10, No. 3, July 1991, Pages 213-254.

A.G.Sutcliffe, M.McDermott, “Integrating methods of human-computer in-
terface design with structured systems development”, International Journal
of Man-Machine Stucies, 34, 1991, pp. 631-655.

Robert W. Scheifler and James Gettys, X Window System: The Complete
Reference to XLIB, X Protocol-X Version 11, Release 5, Third Edition,
1992,

The UIM/X Developer’s Guide, Document Version 7.9.3, Visual Edge Soft-
ware Ltd.

Visual Edge Software Ltd.,UIM /X, Release 2.5, Document Version 5.93.

[WassT9)]

[Wass82]

[Wass85]

A. I Wasserman and S. K. Stinson, “A Specification Method for Interactive
Information Systems”, Proc. IEFE Comput. Soc. Conf. Specification of
Reliable Software, 1979, pp. 68-79.

A. I. Wasserman and D. T. Shewmake, “Rapid Prototyping of Interactive
Information Systems”, ACAM Software Engg. Notes, Vol.7, no.5, December
1982, pp- 171-180.

A. 1. Wasserman. “Extending State Transition Diagrams for the Specifi-

cation of Human-Computer Interaction”, IEEE Transactions On Software
FEngineering, Vol. SE-11, No.8, August 1985.

163

