Vo

1

vl

National Library

: o

Bibliothéque nationale

.\,

\
i

of Canada du Canada *
L ® ’ . 3 —~ b
- Canadian Thbses Service éfrvice des théses canadiennes,)
] ‘ W |
Ottawa, Canada ' ¢
K1A ON4 i
— F4
‘ o
— &
- v J
~ ,
- . <
- . e B . ‘
NOTICE ‘ AVIS -

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible. .]
If pages are missing, contact the university. which granted
{he degree. ’

Sorﬁe ages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Previously copyrighted materials (journal' articles, pub-
lished tests, etc.) are not filmed.

'Reproduction |n full or in part of this microform is governed
" by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30,

“

La qualité de cette microforme.dépend grandefnenl de la
qualité de la thése soumise au microfilmage. Nous avons

tout fafiour assurer une quajité supérieure de reproduc-
tion. = - ’

Sl mancle des pages, veuillez communiquer avec
I'umiversit ¢

-

qui a conféré le grade.

La qualité d'impression de cenaines pages peut laissera -
désirer, surtout si les pages originales ont &té dactylogra-
phiées a l'aide d'un ruban usé ou si I'université nous a'fait
parvenir une pholocopie de qualité inférieure.

Les‘documents qui font déja l'objet d'un droit d'auteur
(articles de revue, tests publiés, etc.) ne sont pas

microfilmés, -

La'repfoductio,ri, méme apartiel!e, ‘de cette microforme st
soumise & la Loi canallienne sur le droit d'auteur, SRC
1970, ¢. C-30. .

[

-

An Ehvi&onmenl for Robot Trajec‘tory
. Planning and Geperation

P

Stuart E. Thompson

A Thesis
in .
The Department
, of .

Electrical and Computer Engineering

<

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering at
Concordia Uhiversity
' Montréal, Québec, Canada

April 1988 ~

. © SruanE Thompson, 1988 (.

- o
.

AN
-

’

Permisgion has been granied
to the National Library: of
Canada - to microfilm this

thesis and to lend ot sell

copies of the film.

~

The author (copyright owner)

‘has reserved other
publication rights, and
neither the thesis nor

extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

o . /

.

.

~ : | I8BN ' 0-315-41652-1

‘L'autorisation a &té accordée
3 la‘ Bibliothdque nationale
‘du Canada de microfilmer

cette thése. et de prédter ou
. de vendre des exemplaires du

film.

L*auteur (titulaire du droit
d'auteur) se réserve

ni la thése ni de -longs
extraits de celléd-ci ne
doivent, &tre imprimés ‘ou

autrement reproduits sans son
quto:iTat;on écrite.

les
autres droits de publicationy

- . ABSTRACT -

An Environment for Robot Trajectory
Planning and Generation

Stuart E. Thompson -

i A new ﬁrogramming environment called RIGID for describing, constructing

and verifying complex motion trajectories of rigidly-linked bodies, such as those of

-t

a robot, is described. RIGID allows a transformation-based Qe/sc_riinion of the
@ Halls)

/
world and a motion task to be completely irtegrated using kinematic equations and a

trajectory construction procendure which uses the theory of'B:splines. RIGID

. consists of a library of C"langue'age functions that are used to d@qibe the world of

o)
the rigid-body, the rigid-body itself and to simulate the path which the rigid-body

should follox@. i

3

. W
This thesjs avoids the creation of a new and specialized language for robot

programming so that more ‘effort could be concentrated on the .mathematical

’

algorithms and data structures requh:cd to solve the motion plannir;g problenzs. The _
RIGID library rcciukcf no spé”éif:lc hardware, and has been implémented on. a VAX
11/780 under UNIX ésBSD, an IBM PC/AT using the MicroSoft C compiler 4.00
and a Maclntosh Plus using Lightspeed C.with very minimal effont. .. ' B

The system is composed of two shbsystems: the world modeler and the

trajectory generator. The world modeler subsystem inputs homogeneous -

-
' i -

3

transformation equationé and converts them into lists of dynamic data structures.
These equations, or closed kinematic chains, describe the relative locations of
objects arid path points in the world of the rigid-body. Th-:“trajectory generation
subsystem inputé motion of the rigid-body, as specified by a time sequence’ of

positions and orientations of the last link of the body, or end effector. These are

transformed into sets of manipulator joint displacements.

Research on robot programming languages has been camed out for more than a

decade, and many languages have been 1mplemented successfully. A review of the

\
* goals and features of these languages is provided in this thesng. Earlier research in

‘trajectory generation is presented, followed by an evaluation ‘of various methods for

approximating geomemc functions. B-splines are used to fit the time sequence of

" manipulator motion for each Jomt The procedure, consxsnng of simple recurswc

algonthms, allows constraints to bc imposed both on the magnitudes of the Jomt

velocities and accelerations and .on their initial and final values. A trajectory

canstructed by this method has the property that local modifications can be m_g;le to

a _predefined path by twea}ong spemﬁc cgptrol pointstwithout recomputmg the entire
sl

trajecmr) -Qn line path generation usmg B- splmes is possible with only a few

Jook-ahead points being requ1red due to the ﬂex;bllxty of the path constraint
- ‘ . - N . A . .

.formulation.

_— t
. t . - v
L4 N v .’3 ’ I
. . Acknowledgements -
oo -
g) !) a . h
_ o, lam gratcful to Dr. R.V. Patel, who ot only provided me w'{h lhc mccnnvc \]

° --and conﬁdenc\¢ I needed to succced as a graduatc student, but who also taughl me ° o
how to‘explore new ideas.. Many thanks for slomng me jnto his busy time)
schedule) "

- - . L] -7 . (/ v v
. : : -$.
. . - . N
b) : ’ \ ' hanend 3 I-’ ;S
I,am ctcma!ly indebt to m) wife, Penny Campbell ho put up with m}f';atc '-_
. hours and ramblmg about computers and robots.)
- q "\ » L) " . ‘Q l‘rﬂ .

o . I am also grateful to the members of the Concordia University graduate control

. o group for their useful suggestions for this thesig and encouraged discussion oi -
[} N - .. 1 -) -

future projects. . . Y s) ‘ oL TR

. - . .y ' ' ‘
" ‘. .
P »
" - / '

. ° ~ ¢ T 4)

T e
3
»
|
P
.
C
-~
'
S
<
5
P

R T2 T A

.
-
K S

z
K
o aF

L 4
N
3;,:. -
FE L TR

. ~
3

ol

i

»
Ta
Xt

Y
-t
b

.
'

5
f

A A A

..- “
‘_ﬂ'

SER A Lo
mo.j.m .L‘.éi".m?‘

« - -] . :
. . An Enwronment for Roboi TraJectory \ ,'
PRI BRI - -Planning and Generat:on o
f/ ‘ - o '.‘ ’ ' ‘ i - - | B
- - . Table of Contents CL
" . v . , _— .
. : A o ’ o AN v
,é" /1 Introductionn oo |
B) - 2, Rg dly-Lmked Bodies e . .
) s . '«2.1 Terminology and @natomical smlcsure P P
' 2.2 Homogeneous transformatmns b e 10 .
. "2.3- Kinem#tic equations o .7 e)
~ 2.4, Sur\;ey of .manipula{c)r solutions'. NPT 18
. g ‘ |
. 7 . 3. Task-Level Planning) - .
| 31 Collision avoidance e . 4!

’ L. M ' ‘ 3.2

3.3
3.4

3.5

- Coordinated motion ,. Vil

Automated grasping
Fine motion $ynthesis ’

................

Task-level programming languages..

1

*

4. Geometric Modelling for Trajectory Generauon
. 4.1
- ” N) ' ‘ ‘ “ .‘4 4.2

Evaluauon of geometric j odelhng funcuons e

Review of trajectory generation research «.,......... 31

. . 5 Trajectory, Generation using B-Splines ~ .
L o 5.1 General B-spline theory O O |

. 5.2°

, , Trajectory generationovoevvnianven..n 46
v o 5.3

"Local path modifications4 . i .. .uuiiea .yt

‘ ' ~
v .
- N Y
s
4 @
r.- 4 A - L

4 - v L !

.. . .

. N ,

W A

, . . ~ - ’

e —— . »

A . , '

L L}
‘ “ - Vi
- .) -

. -
y . {

€ ‘ - —
P ‘y “ - ~ +
I
] LI - . [
P v L LI .

N

»

5

14 . - - \ e,
3 L] RJ/ . ! . -
?) ~ 4 . \ Ve :
6. RIGID Lan‘guag‘e Implementation Details T
6.1 ‘Rcvnew of the Cprogmrnmmg languagc vheer . 60
6.2 PrggramrmngwxmmeRIGIDlanguagc N 1/

6.3 RIGID languagc 1mplcmcntauon details . 7. . .

7. Ilustrative Exam‘ples
7.1 " Relationexamples% . ..cvunn.n,

4

7.2 Trajectory examples

1

\ 8. Conclusionis......... e
.)
R 1 e e a ‘ . .
References . .. e o/ oo i i el . L
\ N) " N e r
19 A ./ .) ’: 1

Appendix A~ RIGID reference library + «

*Appc.ndix B Cprogramming language syntax summary
- Appendix C Frame transformations - [o
. Appendix D Puma 560 robotmodel - -7,)

/ .

s ' -
L]
1] ')
c &4 ‘
», ¢ N
)
L}
0
, (s
. ’ »
- N * .
»
— ¥
d
\ ¥
. ~ - 3
11 -~ * .
,
i
, .
¢ \
E
’ 5 1
{)
1
|
- ' ‘ 4
o/
. ———
* . .
[¢)
- .
.
— s =
a
.
. oL :
-
"~

e, 69
e 94

cvees 119

k)
’
L]
s
-
-
—
-
4
r ~ .
N .
-
L]
i
o ?
4 »
i -
&
!
4
-
»
t
i
A

i& 102

- ' /’ /)I \ .
' 2
: 7 s | ¢ .
(e 4
\ VN -
List of Figures - .
. -
N . y
* Figure ' . . \ Page
1.0 RIGID system ovcr_v‘iew e e e e 5
2.1% * Prismati& and revolute joints L PRERTE 8
2.2 Right-handed coordinate systém [v, 8
23 -Orthogonal orientation apd-position”vectors:......... 12
2.4 "~ Robot location scenario D 12°
2.5 Directed transform grapho oL v 17,
S50 Bespline hulls ...l .. 4
5.2 Trajectory generation pseudocode g . 96
6.1 Relation icon definitionscovverurnn. . \ .. 74
6.2 OpenRelation() icon schematic. ... 0 74
6.3. EquateFrame() icon schematic......................:., T5¢
6.4 EquateRelation() icon schematic 76
6.5 Trajectory icon definitions et 80
' 6.6 OpenTrajectory() icon SChEMAtc =% v v e oo ereennnn. 80
6.7 SetVelocity() icon schematic DU ,. 84
6.8 Bodchlocxty() icon schcmancs e e e 84
6.9 MoveToFrame() icon schematic T S 85
6.10 MoveToRelation() icon schematic 86
6.11 MoveToTrajectory() icon schematic 87
6.12 BodyPosition() icon schematic’............ R e s 87*
6.13 Action of trajcctory queue e e et e 90
+6.14 Transformcd queued knots into splmc VECIOT-. ..ot 93
7.1 Object features P PR Loo.. 95 7
7.2 . Block stacking scene, e e . ve. 98
73 Joint space example, e e I L
7.4 " An gular position, velocity and acceleration profiles 106-108
7.5 Constrained and unconstrained joint velocities 109
7.6 Constrained and unconstrained joint accelerations 110
viii
- , -

W
.] .
° ~ .
o
<]
* ~ —
» T
{
- .
(L.

. 7.1
1.8

- 7.8

‘ ol

C2

: D.1
' D.2

- A Bhd -~ TR
) : RO "
;
~ e
: - . -
[l - 1Y L -
N Q@
3
.
- ~ i
M -

Sp:a;paintcarbody............‘............:..‘.... 12
Angular position, velocity and accelerations + H5-117
UMA 560 path inscriptionerror,....cconvenn.. 118
RPY angles T

~ EUL angles . ' ' -

»

PUMA 560 robot . ‘ . ’
Link representation of PUMA 560 . ' ‘ ‘

LY ,)
> . . —
l/ ——
~
.
> -
. ’ . |
o
* \) , : ,
' A y
'
L \
’
14
. ! L =~
Pl
..
LI
N '
f . . . i V.4 N
¢ R} N N
- [I~
ﬁJ 3
@
a . :
.\
A 9 -
3
b -
i 1 » . A 1
. " -
. r 4
- N
. .)
I Ay
s . = . N .
‘ 5
-
e *
[- ' .
k - i - " .
v [l N 0
' v 'n
. o , <
[] .
. . — . ? .
<o
. °
N | N ¢
‘) .
hd = .
s N .
ha !
~ . —
® / - -
,
v
3 ‘. - R .
¢ N . * -
i
‘ - .
- v N s L . R .
o
L]
q ; B
- L4 y - . 'L‘ .
.
= v_ . : S
, -
l v
4 ~
. . ~— Vs \) -
s , s .
5 o '
\ L4
.
- - [
. - -
N . . - . i
: : ix
A
B) . D
S b [
.:‘, N f LY
b

AT
TS

T 8

_ Chapter 1 - Introduction : ‘ '

Py b
-

> @

- The ;;ast decade has been n;arkcd by substantial growth in the area of robotics.
v his scientific c’iiscif)li.ne has been drawing cxpcrtisé‘from the fields of mechanical
and electrical engineering and oﬁfnﬁuter science in an ancmp’f to imﬂrove the current

state of manufacturing technology.

As] p?m of a search for more powerful and sophisticated levels of automation,
robotics is being introduced to mar;y sectors, including manufacturing, medical
. technology, hazardous chemical experimentation, ‘oceanography sand space
’ exploration. In order to perform independently am; "intelligently” in these
situations, robots must be aware of their environment and be able to respond
effectively to unéxpccted events. The accomplishment of such directives
necessitates solutions to problems, in computer vision, tactile sensing, automated
reasoning/planning apd real-timé control. The simple déy-to-day operations often
taken for granted nevertheless require tremendous complexities of interaction. For
example, the sfmple action of reaching down to pick up a pencil re(quircs hand-eye-
. touch coordination of such complexity that computers devote great computational

efforts to synthesize the necessary motion and to gain an understanding of the -

"ﬁ visual information in order to iﬁcremcmally accomplish this task.
- .

An industrial manipulating robot is a computer-controlled, programmable,
/ general purpose machine consisting of thre¢ major subsystems: the mechanical
comp;)ncnts, which constitute the manipulator and end effector, including the

actuators that move them; sensors t& measure the internal state of the robot and

determine its external environment; and the control structure- allowing the desired

k]

< -
task o be specified and executed, given the initial stase of the arm and the world
external to the robot. Conversely, a mobile reobot is largely a }')ropulsion and -

7 communication system. It may be tethered to a power and communication line or

>3

‘u

v A

equipped with onboard systems. Although the material presented in this thesis
focuses on planning motion for rigidly-linked bodies, almost all industrial robots
are considered to belong to the ¢lass of rigidly-linked bodies;. therefore, the

. principles and problems presented are valid for most industrial robot manipulators.

\

“Fhe great complexity in the control of a rjgidly-linked body results from the

»

. nonlinear joint coupling dynamics. A vast number of numerical technigues exist foﬁ' T

solving the types of nonlinear differential equations océumng in robotics. Robot

v

control ts usually resolved in two stages: trajectory generation, or path
planning, and trajectory tracking, or path tracking. The first stage is concerned -
' with the generation and approximation of robot joint angles under realistic

. manipulato{ constraints. The trajectory generator receives a spatial path description

<

as input. From this, it generates a time sequence of desired positions, velocities

‘and accelerations. The trajectory tracker is responsible for matching the actual

»

position, velocity and acceleration of the 1obot Wwith the desired values provided by ‘-

»
Yo <

y the trajectory generator. The tracking algorithm must be able to compensate for e s
slyhamic response and payload loading on the minipulator. Much of the attgntion
(I . v .
of the robotics engineering community is currently being directed to these two

stages.

b
There are dit:'c?cm strategies for describing the location of the robot along

trajectories in joint space. It is desirable to interpolate the robot motion with

o

continuous or very dense motlon information so that the robot's movement is
. ;

smooth.' The most popular method currently used in industry involves leading the

u

. ' . S

hé 3

[

manipulator through a sample run of the task. An interactive device, such as a
.joystick or teach pendant is used. During thie sample runs the computer stores a
> o

large number of densely p'ack7d join‘tclocation lists from which the robot then
operates in a contJi'nuous playt_)flgk mode. This is referred to as teaching-by-

v doing. Inherent severe dra\a}backs, however, restrict this method of teaching to |,
simple app]icatiens such as spray painting and spot welding. Thée principal
drawbacks of this method are the flexibility limitations imposed 'by the dense
Jocation list repreéematioxs. The repetition of a recordéd sequence of motions with

”—on]y minor changes requires fastidious re-programming and is difficult to edir. Pre-
programmed location lists do not permit sensory data to be used to overcome
uncertainties in the robot's environment. If any sort of closed-loop feedback is to ,
be used, the determination of velocity and accc]erasion in ordef to preziict certain
actions requires the searching of 1a{gc lists of joint locations, the accumulation. of
stétisties and periodic checks. The coordination of several interacting robots cannot
be accomplished by ‘teaching-by-doing methods alone. oOn‘the other hand, the

, approximation of :obot trajectories by meens of gcome&ic functions requi“res much "~
less storage than dense location lists, allows a ~patb to be easily duplicated and .

PR

edited, and provides a straightforward r;leans of computing its dcrivati'ves._
N In the fu’ture the use.of high-leVel symbolic robot programming languages,
which use verbs for .actions ‘and nouns as ob_)ects will provide the most
J tt‘)plhxsncated and integrated user-mterface for all aspects of trajector(y gcneranon
world modellin g, task descnpnon and 'sensory feedback during trajectory tracking.
Trajccwry generauon using approximating funcuons has the potential to become the
basis of the ﬂg' ion subsystcm of a robot programming language. In this thesis, an

attcmpt to partially fulfill t’he developmcnt of such a system has been made Figure

1.0 shows the three block components of RIGID system, consnstmg of a trajectbry

-

L]

’

generator, world modeler and rigid-body interface. Function calis to the RIGID

programming language library manipulate the v;prld modelling datav structur'&:s.

Other function calls create motion requests from the.world models which bccomﬁ

[' .

transformed into individual motion displacements corresponding to some rigid-
body mechanism. These joint displacements are formed into joint space trajectgries’ .
using a B-spline trajectory generation procedure which generates physically feasible

‘rTobot movements.

14

-

.
.
«
.
.
»
4
-k
.+
¥
.
>
7
. »
N s

[2

« ¢

Robot Kinematics
! Dynamics

PR

LI

Figure 1.0: RIGID system overview.

2

“

N
¥

. _ Chapter 2 - Rigidly-Linked Bodies ~ *

The pcrformancc of any type of path plhnnm gor fccdback control 01> rigidly-
linked body demands a thorough understanding of its anatomy. In gc‘omcmCal
terms, the construction of any particular ngxdly-lmﬁcd mechanigm can bg

anatomlcally categonzed and a gcncrahzed soluuon dcvclopcd using kinematic

cquauons in order to predlct and plan the motion of each link of the mechanism.

]

-

2.1 Terminology and Anatomical Structure .

" There are two basigtypes of moving joints. A‘prisr‘né’tic, or sliding joirt, is
that in which the lenglh of the link yaries, usually along Cartesian coordinates.
.With'threc joints prismatically-linked in onhogdna‘l directions) it is possible to %

position the end-effector of the last link of a rﬁcchanism at any arbitrary point in 3D

space. The more popular type of joint ingindustrial robots is the revolute, or

gngular;jéint that rot‘a!cs radially about an axis so that there is a variation in the
anélé:~MIweén two links. “Three revolute jointg also allow the last link of a
mechanism td be pdsitioncd at ar;y arbitrary pointin 3D sp.:acc; but, uplikc the case
- of the ‘prismatic joint, the orientation of the last link will not be the same for each

. position in space. Figures 2.1a,b depict manipulators with three prismatic joints -

and three revolute joints, respectively.

/

In gcncral thcrc arc six geometric paramctcrs requx.red for the complcle

sPe.cxﬁcanon of any arbnrary position and oncntauon of a ngxd body wmhln some

et - . . © A

Al

" confined work'spacg This can be aocomplishcd with six degrees of freedom, or‘

.

number of linked Jomts in the body Common mdusmal robots usually have six or
more degrees of frccdom (DOF) and consist of combxnauons of both prismatic and-
revolute joints. Typically, three large-scale motion axes provide posmon and three)

wrist motions provide orientation. A servoed gripper, or any such end effector, is

considered as another DOF. Robots that };ove fewer than six DOF cannot getto -

any-orientation for a given position. However, even robots with six or more joints.

o

are restricted from some movements due to possible intersection of their own bodily ,

geometry.

-
’

Robot drive mechanisms are classified as either kinematically open-chained

or closed-chained. An open kinematic chain has physical link i driven by the ith
y :

o

actuator, whereas a closed kinematic chain per;hi}s link i to be driven in parallel by

more than one actuator simultaneously. The purpose of closed-chain structures in a
- < . 4

~ linked mechanism is the reduction of the loading on any one particular joint. -

’
A (1)

it

_\ ° R o
’ :
v -
. . ’
‘ +
‘ ~ : Figlre 2.1a,b; Prismatic and revolute joints,
” .) "\ ,

. \ .
5 - X]
,‘ ! T . “ ‘ .
: - Figure 2.2: Right-handed coordinate system.
' . : »
e * -) ..‘L *

B

’

S

combinations of prismaticrand/ctr rcvolut&joints, is the ability to position the last

link anomc location (position and orientation) in 3D space. The highly nonlinear

. and complex geomc,tric coupling between adjacent links of the robot must be

expressed in some mathematical form which will relate joint space, or movement

of the joints, to-the geométry of world space in which the specification of a
robot's task is very stratghtforward In world spacc position is often specified as
Cartesian coordtnates and\orientation given as cnthcr Euler or RPY (roll, pitch, yaw)

angles.[1]. The pnoEiént of end-effector-placemenr theh becomes one of conversion

between wor]d and jomt spacc coordmate systems In reality, this conversion is

easily made through the application of a well known homogeneous matrix

transformation method callod‘ the forward kinematic solution [1, 2). This’

method develops the world space position and grientation of each link succcssivélix
and systemattcally from the base qf the robot given the Jomt space descnptton The
convcrsc ‘problem, i.e. world space to Jomt space, or. inverse kmemattc

’

solution is much more complicated and often results in redundant solutions and

smgulanttes in the soluttoncspacc Although there are some gcneral rules, the

inverse solutton 1S n,ot always obvious and oftcn requirés good geomemc insight-to

obtain a solution. As would be expected, the kinematic analysis of a closcd-‘ch’ain

-~

* + Q
mechanism is much more difficult than that of an open-chain mechanism.

It follows from the above discussion, that the amount of redundancy, or,

number of multiple sol.utions; is for the most part. proportionalto the nurnber of

‘ o ‘
degreés of freedom of the mechanism. For example, the manipulator in Figure
2.1b is capable of rcachmg a specific location within-most of its workspacc wnh

cither an elbow-up or clbow-down solution. Rcdundancy is a desirable property

"The first step in contr lling a rigidly-linked body, physically constructt:d with’

1
f

10

o \
since it gwcs a mampulator added ﬂcxxbtllty of manoeuvnng, as in colhsion
avoxdance and the abﬂny to produce more cncrgy-cfﬁcxcnt motions. - -

v B) N

Robot performance is measured by resolution, repeatability, accuracy,
’ . \ ' . - -

-

’maximum acaeleration, velocity and load capacity. These geometric and dynamic

parémetcrs are mandated by-the digital nature of tfc control system which must .
compensate for the robot dynamics. The problcrﬁ posed in ﬁanipu!ator,gbntrol
involves the compensation of the dynamic PCSPOHSCS'dl;C to'kinetic and potential
energies in the robog motion [3]. The term used to describe the "sollition rclatigg

actuator forces and torques to the resulting world space velocities and accelerations

. of the end effector is the forward dynamics solution. The solution to the

- . ‘&Y.«‘
converse problem 1is called the inverse dynamics solution. Dynamics analysis i

: h s .
4s useful for modelling dynamic constraints (such as forces and torques) when

planniné optimal perforrr;ancc trajectories and when designing controllers based on
a robot's dynamic rﬁéde! [4].. Thils Sroi)lcm bccbmcs complicated by ‘the ‘ .
computational issues in solvir;g tHe Jacobian matrix, which has singularitics for
certain angular combinations. Much rcsearch has been devotccf to this subjcct and

.

will be revncwed in ghapter 4..

.

-

.- < . '

2.2 Homogeneous Transformations .

The mathematical basis for the development of the forward and inverse

’,‘..'01 v
¥

kinematic solution is the manipulation of homogeneous transforms. A:review of

the basic 3D transforms is given below. Assumin g a right-hand coordinate.system,

these transforms represent rotations about a coordinate systemi'by anangle @ anda -

- ’

translation along a vector (;, y, z). The rotation matrices are: .. :
v 7 R P

st e L - 11
-, ". . ; :
1 0. 0 0
; ‘ 0 «<os(8)- :sin@) 0) d
rot (x, 0) = - .
N "0 sin(®) cos(0) *,O)
’ 0 - 0 0 . .

‘cos®) O sin(B)

1 0 L]
. 0 10 0,
rot (y, 0) = . . f
-sin@) O cos(® O . '
RN
e , "
c’os(ﬁ) -sin@ O 0
rot (z, 0) = , s:n(?) ~ cos@ -0 O
3 0 0 1.0
0 0 0 1 ».
. P ,
The translation matrix is; L.
= 10,70 x s ‘ ‘
(;0 ’ 1 . O y) '
trans (x,y,z) =] = -
. x.).' z)’ 0:- 0. 1 =z -
Y ’ ' —)
0 &0 1

’
IS

5 v . -
" The right-hand coordinate system is shown in figure 2.2. The left-hand-

coordinate system results in similarmatrices, with appropriate sign interchanges.

» A4 v .
. . .
1

-~

B T REE W AT 3 e, IR

-

Ll

-

Figure 2.3: Orthogonal orentation and position vectors.

»

.

I3

»

»~

‘¢

a

I3

-
g
v
-
3
£
-
]
s

! - ’ ‘ 13
g . : . .
s, % " ~
e : The order of transformation ma}nx multiplication defines the unique course of

motion, since, in general, for any two homogeneous 4x4 transformation matrices

T, and T, the product is not commutative, T; * T, # T, * T). The ogdcr of a

——

transformation matrix product has a significant geometric interpretation.

Transformations in the order

X 2 ' . - e
where d is the number of transformauons are made with rcspcct to the base frame

AR To In other words, if the basc frame Tq is pre-multiplied by the transformation -

’ matrix Tg4_i4, then,that transformation is made with respect to the base frame TO.
J ‘ \
1

ations made in the reverse order

o T=T, HT, =T0*T',*...*Td_'13*T~d .
B] - . v

-~ -

+

are made with Tespect to the coordinate frame T4 In other words, if the current

o

frame T;_, is post-multiplied by a transformanon Tl, then that transformation is’

made with respect'to the current frame T; ;.

A homogeneous transformation matrix T consists of both orientation
. [A

information ‘¥, 3 and positional information p 4,; as shown below.
€ : Lo T R

-~

: v L e |
’ 4 "] ’ t A-L'E‘
14 . o
{ ' \ .)
. o ‘ - . '
More specifically, .) . ¢ ~
—— - o .
I © Sx @~ Py o
n, S, ‘
S R A =
n S . Js.ﬁz P "
z ?ﬂ‘ z
. At
L&
. 0 0 =0 1 .

N
. L

° e

where n is the unit normal vector, s is the unit slide vector, A2 is the unit approach
vector and p {s the position vector. Figure 2.3 depicts the orthogonality of the

orientation vector. Since matrix \¥ is an orthogonal matrix, the inverse transform

T-1is defined as:) :)
. ') e W" . -
Y e
/ ny Ny N pen \
1 - Sk Sy Sz "Re§ - f
| \ G.
4 8y & " P-4 . SN
\ 0 0 0) v

where the dot "."represents the vector dot product. When many matrix inversions

* are required this way of computing\~hé_in£{crsc homogeneous transform represefts a

great computational saving over a general matrix inversion method.

) _ R .

15

2.3 Kinematic Equations

The homogcncou; transformation matfices introduced in the previous section are
used to specify the motion of the manipulator between its end effector and the
objects in the robot's cn;zironmcnt. The placement of objects is described by the
4x4 transformation matrix with respect to some global reference cogrdinate system.
The concept of a directed tran'sform graph (DTG) is usc’d to aid thc;
s"peciﬁcaxion of robot start ang goalﬂ motions. In the scenario described by Figure
2.4, the manipulator is located with respect to the base coordinates by the .
transformation Z, the last link of the manipulator is related to the robot base by the
transformation R and the end effector is refated to iast link by the transformation E.
The object is located with respect to base coordinates by the transformation O and
the proper gripping position for picking and placing the object is regresented by the
transformation G with respect to the first vertex of the object. If the task to be
performed by thé‘robot is the pick-up of an object, the end effcct(?r and object
gripping position sl}ould be equagd, ie.

* : ZRE = OG

Since it is the robot configuration which must produce the motions required for the

[v

accomplishment of the desired task, the kinematic equation is re-arranged as

R=210GE!

a—

g

The use of a DTG 'simplifo'xes the formulation of transform equations and may be
implemented by linked lists of transforms. It is this c:)nccpt l\pavhich forms the basis
of many robot program;mng languages {1,5,6]. The corresponding DTG for the
scenario of Figure 2.4 is shown in Figure 2.5. The solution to the DTG can be

graphically visualized in Figure 2.5. In order to obtain an expression for R, the

graph is traversed from the arrow side of R in a backward direction until R is again -

——

£

AN

Y

D

16 E
reached, A simple rule applics here, that is, when a graph segment is traversed in a
direction opposite to its mdlcatcd dlrcctlon\nkhas the-effect of post-mulnplymg the
current refercncc frame by an inverse transform. Intermediate vertical lmcs mark

the individual coordinate reférenqg frames.

a

T
f
«
*
.
-
»
- ! * .
i
! -~ ‘\-
'
- *
- T
he)
-
—
/
R -
Q—;—;{\J
]
"
.
N '

. S
«
]
® 7
-
\
3.
.
1 .
i
-
< - ,
"
L 4
©om ;
-
."\?
+3,
- 1
‘
L R .
{
,’l
r
.
* 4
¥ T
e . =
N i 3
. .
.
{
PR 4
T e R
v n

e SR
e

)

s

[<Wike

[TAM
T

e
\
A

2.4 Survey of Manipulator Solitions .
The most common method of establishing\geometric relationships between two

rigidly-linked objects Es to develop kinematic equations of A matrices (a historical

name) An A matrix is the product of a link angle rotation and a link offset
translauon followed by a link length translano'n and a twist angle mtanon In the A
matrix techmque, the forward kinematic equation is simple to computc. but the
inverse k'incmati.chcqnation is difficult to formally express$ and requires quite a lot of
insight to sequentially isolate each joint varieble‘fror&,the equation. The theory of A
matrices has been well documented in [1,7] and will hot be repeated in this thesis.
A VLSI chip has been deyeloped which computes king:;i}z;lic solutions using the A
matrix method [8]. A wch{xth of kinematic solutions exists for many types of aélual
industrial robots as well as some hypothetical manipulators. »

Closed-form kinematic solutions may be obtained by means of brute force

application of classical vectorial mechanics for a particular manipulator structure
.. L& . ‘e '
—f9]. One such example where kin€matic expressions for positions, velocities and

; z;ccclerationé are derived for the PUMA 560 [10] robot is given by Elgazzar [11].

Another iniverse kinematic solution to the PUMA 568Pobot using brute force

analytic géometry has been suggested by Crog:hcticfc [12).

o

~ Due to both the lack of closed-form solutions and the trigonometric singularfties

involvcd in the inverse kincmatic solution, researchers have evolved various‘

iterative numcncaL techniques that are not sub_)cct to such inherent kinematic

difficulties. Goldenberg, et al. [13] dcvclopcd a numerical method based upon a

constrained-nonlinear optimization algbrithm using a modified Newton-Raphson

19 S .

tochmquc 0 solVe a system of nonlinear equanons This mcthod can be used for a

'
.

manipulator having a genera] structure.

J. » ... - . M --
There is one class of open-chain manipulators where the end effector axes

intersects two-by-two rather than having three intcrsgcﬁng axes at the cnd effector |
4o 9t '

(roll, pitch, yaw). In thxs particular case, itis very dsfﬁcult to obu}m a closed~form
‘ inverse kinematic solution. Lumelsky [14] proposed an iteralve procedure based
.on A man‘ceé. Sciaviéco and Siciliano {15] later demonstratéd a novel Jacobian’

formulation technigue to solve, the problem.
» .

v Ly i .
Solutions for forward and inverse kinematics based on the link transformation .

.matrix.method have been developed for maﬁy differ'ent types of ihdustrial“robots,

ie. ’ . , . ‘ l

| PUMA 560 or 60017, 16-18],

. Stanford arm [1], - ‘ & : ‘_ - .

~— ‘Rhmoxaz[m) o] - .
hypothcucal 6 DOF elbow mampulator . : N)
Yasukawa Motoman L-3 (7). !

/

The complete closed-form dynamic model for the PUMA robot has also'been- -

derived [20]. Anothe'r type-of robot consists of multiple arms (dual gnppcrs) with a
common robol controller. The kinematics of such a mechamsm have been
discussed in [21]. g ' _ , S ‘

X

4
<

In summary, homogcneous transformauons may be USed to describe the

N ~

position and oncntatlon in space.of coordinate’ frames. Objects can be gcorncmcally

. N,)
related to each other by homogcneous transformation matrix cquanons and directed.
transform graph'é, thus allowing forward and inverse kinematic solutions to spatial

<

placement problems. Links of rigidly-linked bodies ¢an be mathémqtiqally related .

-

- A}

-

By transform equanons of A mamccs In tcrms of tnuccfo:y gcncranonnhe dcsucd .

K

‘ R ' task of the robot can be exprcssed in Jomt space as a séquence of j Jomx revolutc .

.

. angles and pnsmauc lengths. - S ’ . : :

v ' A R R ~ "

[" v

e !

.
0yt
va

A

3.1 Collimo&é‘Avoudance

Chapter 3 . Task-Level Planning

The problem of transforming a task-level description of an assembly task into

a manipulator-level program, the cxccunon of which will make the robot

accompllsh the task, 1nvolvcs trajcctory generation, colhsxon avondancc automatcd
graspmg, fine- motion synthc51s coordtnatcd motion and task-level programming.
Trajcctory gencratton is discussed in Chapters 4 and 5. This chapter provxdcs an
overview of the current research in each of the other topics tnvolvcd in task
planning, as well as alist of historical references. |
. s N N

¢

&

¥

Colhsnon avoidance is the ablll[y to prcvent uncxpected COlllSlO‘nS between

_the robot arm and the real’ world or between payloads and obstaclcs that are'inside

“the work cnvclopc of the robot. A closely related topic to colllsxon avoidance is the ’

fmd-path problem the ability to synthesize a collision-free path amohg
obstaclcs This problem becomes very complcx whcn a rigidly- lmked body must

navrgatc its way and protect each of its ‘links fromi obstacle . t:ontact Most

commcrcxaf robot systems opcratc on the assumption that their work envxronmcnt is

well-known and completely preprogrammcd Such systcms are not flex1ble bcmg

mcapable of adaptmg to unexpected situations, It is csumatcd that 80% of. thelr cost

Its 1ncorporat'cd in unifunctional jigs and fixtures heeded to pick or place parts [22].

Flexibility makes robotics easier to cost-justify, as systems that allow changin-g

" product designs let mannfacturcrs react qu1ckly to shifts in the markct placc An

extensive collection 6f papers on the many tcchmques for collision av01dancc and

the find- path problcm are comamcd in the rcfcrcnce llSt {23 53] Most attcmpts to~

¢

* K3 ’ ’ N ’ u\

.

22

L

- -

solve thc general collision avmdance 'problem become burdcncd by the enormous
amounts of computation involved in the generation of global models of ‘obstacle
- surfaces and the search for collision-free regions in which the manipulator may

move. : ' ') ®

" 3.2 Automat{ed' Grésping" o | v
Another closely-rclatcd problcm is automated graspmg This problem
consists of finding surfaces on either known- or unknown Ob_)CGtS whuh are suitable
for grasping with a grip,pcr or aniculatcd ﬁngers.- The Ob_]CCt must not slip during)
collision- frce mgovement and the objecl surfaccs must bc accessible to thc gnpper

geometry: ,Handhng rules must be mcorpOratcd into the grasp planner forhandlmg,

Ob_]CCtS e. g a pin to be mschcd should fot be grasped lengthwise. Graspmg ismr

- form of margmal gollision where the robot touches thc obstaclc. Few attempts have
. . " P ‘ *

been. made to find a-genéral solution, although some results exist 154-60].

¥

» 4

3.3 Fine .Motion Synthesis ,

Tne term fnne motion synthesus dcscnbcs thé mcthods uscd in hlgh
tolerance apphcauc')mo provide mcremcntal ¢orrective motions to thc end cffcctor/
ThlS type of motion 1s often synonymous with the term complnanze [61), but is
differentiated from gross mouon planmng which involves the mampu}auon of [
payload to and from fine motnon acuvmcs Compliance- can be thought of as the

/]iosmve force being applied whnlc a scrcw i§ being driven imo a hole so that thc .

scrcwdnvcr keeps in contact with the screw. Part maung is one of these

apphcanons, requiring several sensor—bascd feedback mechanisms, The most

- common?y researched ﬁne motxon synthcsxs problcm is that of inserting a pm into a N

El

. N ,
. < . ‘

roe

oy

-
&3
.y

23 , .

t
> . » i
\ - . .
' e . -
- . r - P

hole. Rii the pin hits the hole chamfer (surface edge of hole) first, a fm’ce sensor

-

should mdlcate this and trigger a corrective, mouon to dxsplace thc pm s approach
vector towards the hole center. Until reccmly, very lmle work cxxstcd that was.

aimed at the automatic synthesis of ﬁnc motions {62, 63].

%

14

.
. . s
- .

3.4 Coordinated Motion

In situations where mulnplc mampulators use an overlappmg workspace, stud1es '

have shown that 1ndusmal robots waste most of their time wamng for the other = - -

o

robot 10 leave the workspaco\[M] One team of rcsearchers has been cxammlng.
mampulator to- mampulator coordination for two cyclindrical, stick- ﬁgure, twa
DOF robots with one revolute and one prismatic joint [65]. J\Actual collision space
is ﬁrat computed, then a‘ri ght-of-way precedencc is establishcd. Adderailed, three-
lcyelhhierarchical decision system is devised, mixing global information v'vith local
information about the,assembly task. Other techni:ques for coordinating two robots
have been investi‘gatcd [65, §7i_. . . ‘
. . S .
3 5 Task-Level Programmmg Languages
Many styles of user—mtert‘aces for robot programming have been developed
'I;hls section covers the explicit programmmg language aspect of robot opcrauons.
In ’high-‘level task-oriented langiages, 'pla.)‘wsical objé&ts 'are'rcfcrred to with nouos
that,x'epresent the object (example:'ﬂange, bolt, ;;late_handlo) and manipulated by
"action verbs (cxamplc insert, move_up, twist) w1th optional modifiers (cxample

The literal speci

-straight_line, slo ly) and are subject to constramts (example until_max; torque)
‘Lons are compxled into much lower forms where objects are

r rcw:sented as 3D coordinate frames and mampulated by spanai transfonnanons

[. - . <

S R

24

On a‘yc.t low'er‘motio'n ievel the joint angle movcmcn;s‘arc calculated from thC‘3D
cooiBinate frarﬁ; representation. At this level joint motio;; constraints are applied to
th;: manip}llator ir; terms of joim rates, loads and allowable positions of the
individual joint actuators. -Go;)d,cxam;;lcs of such types of maﬁipulator-spcciﬁc
langi)agcs are AL [68, 69] and VALH (70]. .

}

The other approaéh to robot programming is to govxdc a framework in some

€

existing computcr language, and provide the furicnon library which suppons the

- control primitives required for task-level programming. Examples of this are:

JARS [71] developed by JPL, which is based on the Pascal programming,
'y .

language, and RCCL [5] using the C programming language and™@-modified

version of the UNIX kemnel to support extra communications-hardware interaction

with the robot controller. It has been proposed that Ada would be a suitable -

language {72] since it supports concurrency, a real-time executive and the most

advanced data abstractions available. T o
¥
. ° N " € .
Some work has been done in the ability to infer positions of bodies from

specified spatial relationships using a language called RAPT [73). Given a

'manipulator and some geometric rules about its cnvironmcm the systcm

vautomaucally forms scqucnces of motion equations whxch are applied agamst any

task spccxﬁcd by the user.
N) ",

A number of powerful task-oriented robot programming languages are

Rl
-emerging that allow external sensors to be interfaced with the robot controller so

that intelligent performance can be obtained. With such a state-of-the-art,
controllers must be able to react quickly to a series of changing directives. .One

approach, that of Hendcfson. Fai and Hansen [74],.is to provide a UNIX-like

- e

w '

25

)

1

interface that can be logically reconfigured via a sensor operatinig system kemel, to ,
- i s .

real-time data acquisition elements. Other rétent pﬁb]jcations exist on languages
<. « ot .

for sensor-based control [75]. .

(Y

Many detailed reports and surveys on commercial-and reseafch laboratory

" lahguages exist [76-79]. 'Although most robots are still programmed usiné guide-

through with a teach pendant and playback of learned points, complex asscmbly
and part mampulatm g tasks will demand hlgh lcvcl task-oriented languages which
peed to interface thh a variety of factory networks that link CAD/CAM systems,

and’ suppon concurrent sensory data acquisition and proccss planning. Researchers

| surveying this area [76, 77]-have concluded that in such an app_licatioﬁ as robotics,

w

where program execution concurrency should be at its highest, this issue has been

F.)

ignored by robot programming language developers. Asa ;,vjholc, links necessary

for the formation of a complete framework for task planning are missing at present.

-

Chapter 4 -° Geometric Modelling for Trajeh_ctory’
' “ Generation

S
.

. ~
This chapter is divided into two parts. The first section provides an overview

of the methodology of fitting-joint space robot‘ trajcctories‘. and investigates various
geometric appreximating techniques to determine that appro tion function which
best suits the requirements of a trajectory generator. Th:,z:ond part presents a
cor.nparative survey of the most significant research work in trajectory géncrétion,

* along with a brief discussion of the strengths and weaknesses of each.

» The desired robot trajectory may be specified in either Cartesian (world space) .

l : .
or robot joint space coordinates. Both methods require transformations between the

o

twe coordiﬁat;: systcmé. During path tracking, the end effector is usually required
to travel between adjacent Samplin g ;;oints along straight line segments for high
tolerance applications. The piece-wise linear path along which the end effector

* actually moves inscribés the desired paath. The amount of error between these two

paths depends on the sampling rate. As path inscription error is caused by the non-
4 L
- ,
Cartesian motion of joint actuation, it is directly dependent upon the particular

physical construction of the manipulator. A more detailed description of ‘the

techniques that can be used to reduce path inscription error are presented in section

s

4.2. For now, we proceed on the assumption that path plz;nning is performed in

joint space coordinates. .

The concept of the homogeneous transformation matrix was discussed in
SLESS

section 2.2. In robotics, this concept is more commonly referred to as a hand

—_—

matrix H(t) at some instant in time t along the trajectory of the end effector. The

<
w

- b 27

hand matrix is obtained from the given task in world space coordinates. Joint
] : . _ '
values correspond'w g to H(t) can be generated by the inverse kinematic solution.
Letting the set (H(t;), H(t,), ... H(ty)} be the collection of haad" p_osmon
fnatrices for a sequence of m sample points, or knots, the joint solutions will bc a

—series of joint vectors for d degrees of freedom, as in

[41i 9210 9 b 1952, 925 0 Am2 b - [414 Dds +» Amd]
. where Gij is the'displacement of link-j of a ﬁgid body at knot i corrcsporiding to H;
y (). An appfoximatin g curve is then constructed for each link j to fit the sequence
Qyj: Q2j» - A The trajectory of the rigid body will be represented in joint space
as a function of ime Qi (1).

4

4.1 Evaluation of Geometric Modelling Functions
To determine the type of interpolanng function which best fits a-jc;i;t trajcctéry,
various geometric modelling techniques from.simplczpolynomi;xls t0 parametric

splines are investigated. One important concept often used is continujty. A ciirve

.®(x) x; € x S x; is said to'be C' continuous if P has a continuous rth derivative

’
with respect to x on the interval [x,xp].

.
Pol a6,
A polyriomxal p(x) of degrec r has a number of desirable propemes lt is Cr

condﬁuods (no sxngular points), may be differentiated and can bc easily evaluated

-for any value of x (unlike trigonometric functions which require reference tables).
A ' P N

- If the joint trajectory has m intermediate points, the minimum degree of the

. polynomial that passes through all the points is m-1. Such polynomials have m-1
2

ol

N3 28
minima and maxima [80]; their oscillations cause problems in position control, N
given the limited work-space of the robot. Infact, interpolating functions of low
degree are available which do not oscillate as much.
Piecewise Pl "
. By connecting a series of low-degree polynomial segments, the overshoot and
- , wander may be reduced. Unfortunately, the slopes at the ends of the curve
segments are usually discontinuous [81], In robot trajectory forrhulation this
manifests itself as discontinuous velocities or acceleratior'E,h resulting in jerky and

Aa energy-inefficient motion of the robol.

Hermite Interpolation ~

-

Although these low-degree éolynomials prcrwidc bettc-r’ curve segiment blending
capabilities than piecewise pblynomials', they require a cohmprchcnsive advance
khowlédgc of both the function)to be intcrpol_a;cd and its first derivative. chﬂite's
== + . 777 formula'is very sensitive to changes in derivative values which are not always
available in advance for gobot path planning. Hermite interpolation also exhibits
local path interpolation. In this sense, although the alteration of any pi;:cc_of data
has influence over a limited region of the curve, it is at the expense of a

4
: * discontinuous second derivative (jerky motion){82}.

—_—

Spfings o - -

Cubic and quartic splines are quite common in computer graphics. First and

second derivatives are always continuous, and result in smooth-looking curves and
surfaces. Quartic splines allow additiona} boundary point constraints to be placed .- -
L . on the imerpolatin’g function [81, 83]. In addition, the spline function basis allows -
. curves to,be fitted with little computation, Manjf&rms and applicatidns .of si:linc

3 Lop

\ 29 -

generation have been .investigated by researchers in the field [84]. The
disadvama‘gé of using these natural spline functions is that a local modification to
any section of a trajectory involves the recomputation of the entire trajectory [81].
-This is a computational burden, particularly when the desired trajectory contains

hundreds of points.

Bézier Curves
The natural Bézier curve possesses global interpolation capability only (the

e . .
movement of a single control vertex affects the entire curve), whereas an alternate

Bézier curvé formulation permits local control at the expense of slope continuity
<&
[82]). The resulting curve segments simply share end vertices and possess a jagged

appearance (jerky motion.).‘
&)

B'SE. lines _ . »

These are lo}alty supportive splines which are non-zero functions over some
finite s;')an [83]. B-splines (basis spline) of degree r-1 are cr-2 éontinuous, thus
allowing low-degree B-splinc‘.‘s to ac,hievc a continuous acceleration profile (C2).
Similar to hatur_al splines, B-spl/incs rcquirc; little computation to fit a trajectory.
‘Their major advantage, however, stems from their lacal support basis, i.e., local
changes in a trajectory may be performed bsr simple arithmetic formulas, without

the need to recompute data for the entire spline function.

- I \Mﬂﬂ
B-Spline ~
The B-spline (beta-spline) [82, 85:8]]. a generalization of the B-spline, was
developed for computer graphics and CAD applications.‘ Ratfier than the traditional
constraints of first and second dcn'vativcs for obtaining geometric continuity (whx‘cl’l

results in a smooth-looking function), the constraints here are more appropriate unit

b ©

o e

o

based on the ability to make local modifications easily, maintain C2 continuity,.and -

_in the following section.

" .30 -
tangent and curvature vectors. These are formulated in such a way that two new
shape parameters (bias and tension) can mani‘pulatc the shape characteristic of local
regions of curves. The tensjon parameter allows the curve to be tightened in such a

way that the graph segment between two adjacent knots becornes a-straight line,

rather than the usual rolling curve.

-Splin
-~ The v-spline (nu-spline) [88, 89] is a generalization of the B-spline. The local
modification of a B-spline tension parameter is a computationally expensive

procedure. The v-spline was developed to overcome this difficulty. These splines
use more tractable piece-wise cubic curve segments that are as smooth as standard

cubic splines. The resulting curve is a global representation with Yespect to its

knots but has a distinct tension value at each knot.

- '
-~

)

The consideration of evaluation of various geometric modelling functions,

'
o
/

_introduce bqun‘dary,(conditions, has led us'to choose B-splines as the best possible

curve-fitting technique to meet the requirements for approximating robot
trajectories. Both the V-spline and B-spline curve representations are overly
sophisticated’for trajectory generation and are more computationally expensive than

B—s})lincs. To understand better thc‘spécific demands placed upon rqut
» ' .

_ trajectories, we have provided a sammary of previous trajectory generation schemes

o I3

4.2 Review of Trajectory Generation Research
Many of the methods currently used in industrial applications are based on
bang-bang trajectories [90]. In these trajectories, the robot joints are forced

between full velocity and full stop for each desired location of the robot end

effector. In between desired locations, the manipulator is programmed to move

‘along the path with constant velocity and acceleration. The magnitude of these

velocities and accelerations is usually chosen at the factory by trial and error so that

the actuators will not saturate at any point along the path. As the actuators may be

near saturation at only a few points along the path, they will operate-at most pbims)

at less than their full capacity. This extremely inefficient trajectory generation

method is a by-product of the simple modelling techniques and control algorithms

3 N

used in the design of current rdi:)ot controllers. In an éarly comparison of trajectory
generation me;hod's, Mujtaba {91] looked at the quinlié polynomial, cosine
function, sum of a si,m: f!&ction and a linear trajectory, sum of decaying
exponentials and other ‘bang-bang mctl]ods. This section provides a réw’ew of

many of the more recent efforts to develop a more sophisticated and efficient robot

’

trajectory plafm‘cr. -

” ¥

-
] -~ -

As stated earlier, the generation of robot motion may be broken down into two

Y

stages: trajectory generation, or the determination of those time functions which

specify a course of time-dependent actions, such as manipulator joint angles; and

) trajcctor; tyac.kir;(the implémcnta‘}ion of the motion through feedback control.
: <

This section focuses primarily on trajectory generation, but, also includes an
account of some research efforts to combine the IwQ stages into a unified theory.
Thc'gtudies reviewed represent the major contributions to trajectory generation up to

0

LY

k24

‘

3

P4

32 ’) * r " -~

-

" the present time, and is organized according to the type of trajectory approxfmafion

function employed. * ' /
Piecewise Pol ials

Path planmng may be_achieved by spccxfymg the path of the robot arm by
means of Cartesian coordinates or by joint angle positions. Planning in-Cartesian
coordinates usually requires the robot end ef fectbr to follow straight line segments
between adjacent sampling points. However, the acluél‘ path traversed by the robot
inscribe:s the desired path. This is the re3ult of both the compl.éx geometry of the
robot joint linkages and the‘ distance bctween‘ the points at which Caﬁcsian to joint

transformations are¢ performed. Some applications, such as part insertion, tracking

a conveyor belt, transportation of liquid in opén confiners, and seam welding o

Tequire straiéht li\nc motion. To achieve the straight line motion, Whitney [92,
93] sgggestéd a method by which velocities and positions in Cartesian space are
repeatedly transformed into joint space rates and angles by means of a nonlinear
Jacobian matrix equation. This method has been shown to be too time-consuming
for any type of real time computation.

-

A different approach to straight line motion was reported by Paul [1, 94]. In

. this approach, only sselected points on the straight line segments are transformed to

joint space coordinates. Assuming a three segment curve consisting of acceleration,

constant velocity, and deceleration, a fixed time in which the transformation

calculations may be computed is allotted during the course of the trajectory.”

T

Although this procedure eliminates the stopping at each linear segment transition -

inherent in Whitney's method, it reduces the sampling rate of path contro™~Paul's

approach does not lend itself to arfy type of optimal control, or any other type.of

1] N

PRSI

&

- more advanced sensory ability. This is because of the computational requirements

&R'

of the method.

.
.

4

’I'(:o avoid the online coordinate transformation of the sampling points, Taylor
[95] selected sufficient intermediate points on the Cartesian straight line segments,
then transformed them into joint coordinates during an offline plannixig stage. This
iterative algorithm adds sufﬁcient,intermcdiate points to allow the pat!l inscription
error to become smallerthan some prescribed value. In his method, Taylor
as§urr:cd that the maximum inscription grror occurs at segment midpoints. This has

since been shown to be untrue.

Khalil attempted to develop online straight line motion planners [96, 97] by
composing a path of straight lines connected by circular arcs. Maximum velocity
and acceleration constraints are satisfied, but the path is only C! continuous

because quadratic interpolating functions are employed. Again, the velocity is

assumed to bc a trapezoxdal shapcd function (accclcratlon cruise, deceleration),

resulting in a jerky motion causmg excessive wear and tear on the monon
mechanisms. Castain and Paul [98] have presented a} online trajcctory fitting
mcthod similar to Khalil's. Their interpolating functions are of hlghcr degree, so
.that the acccleranon waveform resembles a trapezoid. To properly satisfy all of the

velocity and accclcrauon constralnts a combmauon of (cubic - quadratic - cublc)

. polynomials were used. The resulting path is C? continuous and may be formed

with knochdge of only a few of the next points along the desired path.

4

The minimum-time path planning problem was mvesngated by Luh and Lin

[99] They prcsentcd a method for achncvmg the desm:d position and velocities

" * along a path with miriimum travelling time, subject to 'esmn space constramt§ on

- -

s [

a

. » ’ - .
linear and angular velocities and accelerations. The difficulty with this approach

lies in the computational effort required to continually transform Cartesian

-

coordinates into joint space coordinates. Like most optimization procedures, this
one requires complete advance knowledge of the entire path before the algorithm’

gin to generate a trajectory. : ‘ .

lines . '

3 -

Lin, Chan, and Luh [100] used cubic‘splincs to approximate joint movements,

and a time interval scheduling algorithm to traverse the trajectory in minimuin} umr\ :

¢

while still satisfying the velocity and acggeration constraints. A nonlinear |

optimization lechniquc was adopted to search through the:complete set of points for

each joint, locating the minima/maxima of the Jomt velocity, acceleration and jerk

profiles. The txmc intervals between each palr of adjacent points were adjusn:d to

" ensure that none of the specified constraints on velocity, acceleration and jerk of the

robot arm were violated during the'cp sc of the trajectory. This procedure also
requires a knowledge of all sampling/ points pnor to execution in order to dctcrmmc
the optimal approximating spline knot p]acemem thus makm 1g it unsuntablc for any
sort of online collision avoidance action. ln a later papcr, Lin and Chang {101}
modified this approach to include the dynamic responsc of the manipulator so thal
the method minimizes the travelling ume in a more precise manner. The practice of
mcorporatmg thc dynamic response with thc trajcctory gcﬁcrr:tor is discussed in the
next section. ,_ , S

,.,

One approach to the online fitting of spline functions to a robot path was

developed by Lin and Chang [102]. Two types of intcrpdla&ing functions, quartic

splines and X-splines, are necessary to meet all of the constraints. The X-spline is

a generalization of the cubic spline in which the second derivative is allowed to be

' , ! -

°

B - 35 T
dispontfnuous at the sample points. By using the X-spline, the local joint trajectory

can be determined for the néxt two or three joint valués without requiring a

~ knowledge of the cdmplctc set of pointsc This is suitable for online trajectory

generation. The effect of the discontinuity of the second derivative may be reduced
by decreasing the time intérval between sample points. Using quartic splines,-it is ¢
possible to set the velocity and acceleration €0 'sbg,ciﬁed’values at the end points of .

the trajectory, while at the same time ensuring Czl‘continuity. Lin and Chang claim

.that, at most, only three successive points are required to fit a segment of the

I3

. approximating curve.

“*

The problem of applying spline functions to achieve straight line motion was

addressed by Luh and Lm [103]. A combination of cubic splines and quartit

. splines, with a least- squarcs error criterion for "best fit" was uscd to suggest many ‘

possible variations on a basic method. Conditiens were imposed on initial and final

velocities of each curve segment as well as path inscription error. The resulting,
L]

AN .
cubic spline function is C2 continuous. This is an exariple of an offline approach."

-

A more refined method of online spline interpolation without complete
[

discontinuous accclcratign was demonstrated by Chand and Doty [104]. The

authors accomplished this by a new spline construction technique in which only

- partial look-ahead knowledge of the total paih was available. A trade-off between

the amount of look-ahead knogvlcdgc, derivative continuity and the prescribed path,
deviation error value had to be established in order to fit a curve.

i nse with Splines
Other contributions to robot trajcctory gcneranon fall into the category of

trajccmpy optimization for somc criterion wnh the dynamlc rcsponsc of the

b

J

36

-

.manipulator being considered. The mbtivatio’n for this approach is the fact that the
usual assumption ofico‘ristant velocity and acceleration uppc.r ‘bounds is in many
cases npt vaiid. In practice, these quantiticsAvary with angular position, payload
mass and even payload path geometry. All other research approaches are based on -

a chosen worst case constant bound, and tend to underutilize the full capability of

-
’

the robot. The approach of Vukobratovic and Kircanski [105] is an example of a

robot trajectory optimization technique with optimal total energy consumption
mlmmlzauon for the actuators (hydraulic or electric DC motors). Using the
Lagmnglan formulation of robot dynamics [1], g}ysx&l constraints on velocity are
satisfied. Acc\clerauon limits are not specified and the function is only C!
continuous. Most optimization methods in dynamic response path planning use

minimum-time c?riteria similar to those of Kim and Shin [106], Shin and McKay

[107], Bobrow, et al. [108], or Lee and Lee {109]. '

The principle common to these algorithms is the assumption of a three-piece
movement curve of constant acceleration, constant velocity and then constant

’ » [.
deceleration around each sample point. Using approximate Lagrangian

formulations of the robot dynamics (omitting some dynamic terms, such as coriolis
LY

‘ (\‘

and centrifugal fbrccs}, ti]é minimum time problem is decomposed into a local
optimization for each point. These methods differ in their pa;1icular approach to
the search algorith;n for switching points, geometric path description, and manner
of imposing constraints. In the dynamic response épproach, it is more natural to
first ;efcr to torque and velocity constraints, then convert them into local ang}llar
acceleration and velocity bounds using the Lag;afgian formulation. Another
ime{esting scheme [110] incorporate\s the minimum-time optimization of pre-
defined baths within the contrgl loops on the robot joint actuators. This icdpccs the

problem to one of the choice of path segment times between given sample points

_ obtain a solution.

- 37 ' S

while the robot is operating under closcdlloop feedback_'comrol (trajectory

tracking). -’
IR

-

»
"2

Shin and Mé:Kziy (111, #12] presented an improvement tp the minimum-time
motion problem using dyna‘mi,c programming 40 find the optimal phase plane
trajectory. In their previous work [107],-they made the assumption that joint
torques (acceleration jump or jerk) can be changed instantaneously. The ad\;anta'gc
of this approach is that the high-dimensionality that is normally associated with

dynamic programming is avoided. Unlike most formulations, this method does not

require specific assumptions about a particular manipulator structure in order to

a

\

Except in avery few of the onlineoyrajcctory generation procedures, the collision
avoi’dance problem has in general not been treated, Most of the schemes presented
do not allow for a pre-computed trajectory to be.quickly updated by an outside
source such as a sensory feedback centre. ' '

Based on the above discussion. and the advantages and shortcomings of the

various methods Qexa;xlined, the fbllowing list has been compilgd for the
requirements thzit should be satisfied by a robot joint trajectory formulation scheme:
- auniform imcrpol.ating function (as opposed to a mix of many types of
splines or polynomial functions of varying dégrees,
- an ability to constrain first and second derivatives (velocity and acceleration)
10 somie finite values at the end p(l)ims of a curve segment,
- an ability to satisfy upper and lower bounds on the magnitudes of the first

-

and second derivatives over the range of the compléte trajectory,

8

- an efficient offline and online formulation technique,

£

LY

~ .

oo

el TR T8 MRy e
STE Y -

N

LT

:,

AL e

¥ e T
3

an overall CZ continuity, -

t

®

.

As we shall see in the next chapter, these requirements ¢

use of B-splines.

£

38

a negligible positional deviation limit.

@

an ability to locally mddify a preplanned path without total

.

)

omputation

an be satisfied by the

-

.
LN Y

.

RNy
et ke

L SO

i

ey o

.

.
alr
'

s

;Cpapter 5 - Trajectory Generqtioh using B-Splines
b S - 2 \

The first section details the geometric theory of B-splines. Partjcular emphasis
is given on how B-splines may be used to model the pimysical simationé which arise -
during the control of robot joini actuators. Properties such as derivatives, end point
constraints, and boundary conditions of B-spiincs are discussed with a
mathematical dcvclopn;cnt of each. Two methods are described for making local
modifica:ion; to a B-spline trajectory, tweaking and 'dynamic trajectory
injection. 'i’hese are uscfulgb&developing the scheme for online generation of .

robot trajectories. The procedure for constructing robot trajectories was described

in (113, 114].

5.1 General B-Spliné Theory

. ‘ ~The B-spline 8r spline of minimal support of order k (or c{egrec k-1) is

characterized by two fundamental properties: it is nonzero over only k consecutive
spans, and within this range it is positive definite. This results in two features'that
are extremely useful in geometric appli%ations: the restriction of the values that a B-
spline function can assume in a gi'ven pamn;eter range to the convex hull associated
with that range, and the possibility of making strictly local changes to %—spli_nc
functions {115]. B-spline hulls are illustrated in figure 5.1. The method of
inducing strictly local changes by modif;;ing selected vertices of the B-spline basis

@ -

is called tweaking.

l},spline is defined analytically as a set of polynomials over a knot vector. A B-
o : .

|
spline curve of order k at a given point lies within the convex hull of its neighboring

l ' .

»

40

k knots; in other words, all points on a B-spline cu}:vc must lic within the union of
all such convex hulls formed by taking k successive knots. To begin our
discussion, we introduce some nomenclature. A data point is a point through
‘which the approximating spline function must pass, whereas a knot is a point
within the data point set at which the ﬁ-splinc function formulation algorithm is

applied. As it will be shown in equation (5.1), knots and contral vertices
completely describe a B-spline curve. A data point is denoted by the symbol x; and
a knot by n;. The concept of an extended knot set will be introduced in which

o~

we réfer to ant extended knot by the symbol &;.

It is possible to make a trajectory approximation using B-splines of order k over

m knots T4+ ., Ty ON some open interval of data points (x|, Xp4k) . The m+k

data points must be distinct and nondecreasing with a corresponding function value

set f1, ..., f4k- The placement of the knot set within the data set will be

discussed later. I general, any spline of order k can be expressed as a sum of

products of B-splines defined on the origihal knot set N1, ..., Ny, extended by k

@

additional knots at each end of the knot.set. The additional knots are added for the
sole purpose of defining a complete set of m+k successive B-splines; the value of
these may be chosen arbitrarily, but for our purposes, they will be chosen in
specific ways. A full'm+k successive B-spline basis, in which each B-spliﬁe is
nonzero over-just k consecutive spans, allows the extra freedom in .positioni['lg the
knot set over the open interval of data points, and in specifying some boundary

conditions. - 1

verw . ' - r". . -
ARrEh
’ 2
. \
- ‘
A]
M
*_4’ n"\ .,.".\\ "-.".
‘."‘\n-u..' ‘/ - ‘.‘o-. L ""'--m .
T T T
(b) Function Approximation with Weighted B*Splines
’])
VAR - .
A ,)
—- . Figure 5.1a,b: Bspline hulls.
o : o . "
1 - A ! .
sy @ ' .

21 -
NN

42

iplicity ‘

" One important- factor that should be discugscd is multiplicity. The strict
monot'onicity in the B-spline knot set can be relaxed to allow multiple knots, i.c.
two or mlore identical consecutive parameter values, at the expense of cohtinuity.
The number of identical values is called the multiplicity h of a knot. If all knots are

| simple (h=1), the basis functions are ck-2 continuous, but if the support on the
interval (M;, Mj4x) of Ni ; (M) contains a knot of multiplicity h (2 2), the continuity

of N j (n) is reduced-to Ck-1-1 4t that knot (where negative values denote a simpl;c

- o " discontinuit}). This is the reason for the requirements that the knot set should be

monotonic and norfdecreasing [83).
* il

-«

" B-Spline Basis
~.All the B-splines used in thns development are normahzzd B-splines and will bc e
denoted as Nk (X) where k is the order of the B- splme at the ith data pomt, such

»

; that

‘ . mik ’
' ‘ Z Ny i (x) = 1 for all X cont.uned in {x,, "m+k)
:) i=f - .

@

Thc m+k successive B-splines of order k form the unique composite spline

o

‘ function:
v T

A}

. m+k oo « ‘
- ®(x)="Y aj Ny i (x) ' CR))

!
The coefficients {a;, ..., arﬁ+k‘ are determined by equating ¢ (x), where x is

A © - comained in (X} Xai)s 1o the function being approximated (), .., fyy,x) and

solving the resulting set of linear algebraic equations. The coefficients, otherwise
N -
. : N

- s e

gy T
 ma- .
%

3

.
e
—

&

43

Tt

known as confrol vertices, serve as the controls to manipulate how the B-spline = o

curve is required to pass through the knots, A B-spline approximates, but does not

interpolate a set of control vertices. .
. N

{

To ensure that a solution for the a;'s can be found in an efficient manner, some

-

conditions must be satisfied [83]: - : - -
i) the number of knots m must be 2 2, o .
ii) the order of the spline function x;uugt be within the range
1<k<m+k,- ¢
' ii).the points musi be ordered so that

. X)SXy S SXmtko

iv) the knots must be ordered so that

p . LTER PN

v) the Schoenberg-Whitney conditions

Xj <Ny <Xk . G=1,...,m)

To write @ (x)'as.a~ linear combination of mtk B-splines an add.itionaL 2k knots

are added to the origiral knot set to form ﬁE‘eﬂended knot—sert, givenby &;,i="

1, ..., m+2k. They are dexchﬁined as

Sk=bk-1=-=&1=x G
and .. - B (¥
Sm+2k = §m+25-1 = = Emaker = Xmtk, X (5.3)

and the intermediate values of &; by

§J+k = T‘J »G=1,) m) 5.4)

“The normalized B-spline Nki-is now dcﬁned over the e‘xetcnd‘ed knot set léi,

b

Em-+2k)+ but we refer to'the B-splines as being defined over the data point set for ’

- L]

convenience, -since there are exactly m+k B-splines spimniug the extended knot set

44

~
<

. P . = /
and thére are also exactly m+k data points. Also, the B-splin¥s must-satisfy the

’ : . ’ ‘ .
condition Ny ; (x) =0 for all x not in [X;, x;4x]. The spline function is evaluated® .

only at the'original data points fj, G=1,.., T+k). This results in a set of linear

algcb% equations :
.ot

‘m+k .
Z ai,Nk,i (XJ) = fj =1, L, mik) (5.5)_
1=1 . ‘ : ‘

Y)

A

which’can be written as N g =f . The expressions for Nk,i will be given shortly.

Becawse the knots, 1; satisfy the-Schoenberg-Whitney conditions, the spline
/ ¢

function at a point depends only on k B-splines. It follows then, that there are at
most k non-zero elements in each row of the coefficient matrix N and that these

occyr in adjacent positions. The general form of the coefficient matrix N is

o
[Nk x) Nk2) Ngmak 09)
N (x2) o N (%) -0 N myg (%))
s N= -t
4 ¥ \ Nk,l.(xn:+k) “Ngokmak) - Nk,m+k(xm+k) /
R - (5.6)

3
a

In-addition, the fi¥st nonzero element of each row is either in the same column as,
or to the right of the first nonzero element in the previous row. It can be shown ¢
from equations (5.2) and (5.3) that the first and last rows of N contain only one

nonzero e]émcm, namely Nk,,(x,) and Nk,m+k (Xm+k) which have the value 1}

-due to the ndrr_nalized nature of B-splines.. The'matrix N is therefore a band matrix.

~in them. A B-spline ‘approxlmatlon is a local approxxmapon scheh)e and posscsscs

\. ~ ". 45 -'
| s
\ N

Y

~

The Schocnbcrg Whnney:condmons xmply that N is a nonsingular matrix so that
(5.5) has aunique solution for the aj's. “)
. ? ’ ‘ ’

" It now remains to show how the B-spline basis function Nk,i (x) 1s formed. At

: , _ %
a given point x, only k numbers are needed. The recurrence relatior of de Boor

. [116] and Cox [117] allows one to compute Nk j (x) by repeatedly fognﬁn g positive

linear combinations of positive quantities dccording to
’ \

N i (%) = 05D e itk) (x) <5£}
X B e X J
M g - &) “\ Givk-Eis) Ne-vis1

starting with -
Nﬁ(x)z{l 8 sx <biyy -
: 0 otherwise. .

ISy

-
The formulation of B-splines is based on tl'ﬁ proccdure used in [83] EQUanon

-3

(5.7) implies that-the B-spline of order k in the 1th span is the wcxghtcd avcragc of -
the B-splines of order k-1 on the ith and (1+1)th spans, each wcxght bcmg the ratio
of the dxstance between the parameter x and-the end knot to the.length of. the k-1

spans [115]. It should be notcd that the matrix N depends only'on the data pomts
Xjwi=1,..,m+k and the extended knot set &, j = 1, - m+2k.. Therefore, if the

@ 1]

function values (prdinates) being approximated are changed and the knot set

(abscissas) remains the sime, then the matrix N does not need to be recémputed for

) ’
. e

. each new function set. ' . C <’
- TN ' _—
- q ’ ' \’ 2

(% 4

A B-spline has locally linear segments smoothly (Ck 2) connmlous embcddcd

. .
.

. R Q » - .

o ; > . ca

- [}

. .48

the property that the approximation is always smoother tha\n the primitive function.

It is possible to compute the derivatives Qi (x) of a B-spline for j = 1, ..., k’namely

P
[:4

-1 m+k :]
¢J1(x> za, Nij ® 1<jsk,

-

: , .
for a value of x in the range &y < x <& k4. The theory of derivatives of. B-

splines is given by. deBoor (83). The derivatives can be obtained as follows:

s

a ‘(x)_ ZaIJNk J+11(x) ’ 7 {5.8)

i=r

Far any value of x we let ¥ be that integer value which satiifies the Schoenberg-

Whitney condition, i.e. &YS X < EY“' Thenr = ¥-k+j, and the constants aj j are

calculated from the recurrence relation

(Ul all_]])

~~(1\.J+1* iz2 ' A (59)
§1+k-3+1 &) M :
staningqv»"ith
4159
5.2 Trajectory Generation - ' u o

-

v

. N [. Q .
Once a trajectory has been fitted to a set of B-splines, the proglcm remains to
adjust the time intervals between JL"C knots so that the maxirhum velocity and
acceleration of each jbint is not exceeded. To do this we require the velocity and

acceleration curves from the position curve of the B-spline approximation. When

-] o
several trajectories consisting of a sefies of position points are to be spliced together-

into a smooth trajectory, it is necessary that the velocity and acceleratipn profiles

< e

47

» Ve .
>

" must be joined in such a way as to ensure a smooth operation of the robot through

the entire trajéctory.

a

If only one stand-alone trajectory is considered, a practical constraint that

AR

should be satisfied is . . -
®M)=® (M)=0 (initial constraint)
) Mm) =) M) =0 (final cénstraint) P . _

which implies that the robot starts moving from rest and comes to a fiill stop at the
end of the trajectory. Each of the path constraints can in general be set to any
arbitrary constant. It should be mentioned that the jerk in this case is not

constrained, i.e. it is allowed to have some arbitrary finite value at the end -knots.

Time Dilation . . - .

. ®

Given the coefficients for velocity and acceleration at all data points, within an
: -

open interval (xq, xm+k),'it is possible to ensure that the B-spline fit is a feasible

4

one by adjusting the speed of 'operation, i.e. the wravel§ing time for the robot. By)
adjusting the time intervals between each pair of adjacem‘ knots it is always poséible

to obtain a feasible solution to the trajectory planning’problcm. 'i‘his technijue is
rcfcrrc@i- to as time dilation, and may take two forms: uniform or n'onuniform.
Uniform time dilétion is the easiest to implement, but nonuniform dilation resultsin
a better solt;tion, i.e. in a faster robot travelling time. We shall be concerned with

“uniform time dilation only. References to n(;nuniform time dilation, especially for

A}

generating minimum-time trajectories are in Chapter 4.

\
—————————

Let <Dj(x) rcprcscr;t the position of a ji)int j in terms of the variable x. It is

 desired to replace x by the time variable t. Let

t=Ax or X=t/A

48 -
" where A is the time dilation factor.
For the velocity of the joint, ‘
’ do, 1 do; . A
?tl =i— = (5.10) -
P For the acceleration of the joint, ,
- —fdzm L8 s
e dt —.F dx< . : o

1Y

The feasibility problem is then mathcmatically formulated as matching velocities and

a%ccleranons to prespecified constraint values for cach of the links of the rigid

-

bod) The constraints are spccxﬁed as:
; @, (1)4 SVG (velocity)

" and ‘ . r)
d{j (t)‘ sACj (accclcratipn) Co.

Ca [

for all tand j =1, ...-d. The time dilation factor A can thenbe Chosen in the

following way:

axy =yl o (5:12)

= max 'maxx':"KC-'._ - ‘ (5.'1.3)’

with A = max (kl,-\j—fz). _ LT

%

& — hd 49

If a uniformly spacca B-spline set is used, the method-for locating the maxima in
equations (5.12-13) is trivial. If there exists some positive real number u, such that
&+ - & =uforall k<1< m+k then {€;) is said to be a uniform vector, otherwise
“it is nlonuniform. For the velocity profj]é, starting from zero, the. approximate
maxima ogeur at the odd knots and the apprd;(i:ﬁatc minima occur at the even knots.
Similarly, for the acceleration proﬁlc. the approximgte extréma are located at one
half a knot, l;ehind the corresponding extrema of the vclocfit\y profile, i.e. when
velocity crosses the x-axis. Examples of the curve extrema pattern are visualized f)y
the examples présentcd in Chapter 7. ‘In the next section where end point
conS{aints aré.imposed on the B-spline curve, this simple and accurate search
algorithm becomes inaccurate ‘for the first and last k-3 knots. Due to the simple

" recursive method of evaluating derivatives using equatioris (5.8-9), no major

. difficulty is introduced by the constraints.

End Point g;_o_n§gaiﬁtc) ' }

‘ " One meth?d“ to achieve the end point consiraints is to ‘in:troduce a quintic
polynomial at both ends of the. B-spline curve. The quintic polynomial is c4
continuous which permits position, velocity, and acéglcration to be constrai.hed 1o
'be cor;tinllous [1]. The polynomial is a patametric or;e in which some parameter is
varied from 0 to 1 in order to traverse the polynomifxl curve. By calculating Qic

- derivatives of the B-spline curve at 15 and N, 4k.1 points, the quintic polynomial
.is able to merge with the @, o, <D curves. However, \thcrg is wasteful oscillation
occuring between the end knots at each end of the polynomial curve. A better way

1o satisfy the velocity and acceleration “constraints at the end points is to

-

incorporate the constraints into the B-spline linear equation (5.5), so that the

coefficients a;, i = 1, ..., m+k automatically yield the desired end point conditions,

<

50

A

and maintain a homogeneous B-spline implementation. Barsky [118] also suggests
setting up other ways of boundary and end point conditions.

- 3

Tile first and second derivatives of the B-spline curve are t‘akcn at the first and
last knots, M;and Ny, at which the velocity and acceleration are required to attain
some specified value, say zero. The rcsultiné equations for the derivatives can be
manipulated jnto a form which allows them to be inserted into the linear cquation
(5.5).

o,
@epend’ing on the number of end point constr'aims, the approximate value of k
(order of the B-spline) is chosen. The order must be sufﬁcigm]y high to offer
enough f;cedom to satisfy. Yarious constraints, but should be kept as low as

~]
possible to reduce the tendency of oscillation and to increase computational

efficiency. The value of k affects the structure of the matrix N given by cquation‘

- (5.6): as k incréases, the width of the diagonal band increases. Based on the
¥

natural B-spline theory that has been presented, we obtain the matrix "structure
" shown in equation (5.15) for k = § (quartic degree B-spline), which serves our
purpose. The nonzero elements of N which correspond to knots are highlighted in

_bold. .

a

57

it
-

.

-

»

.

m‘.‘k.m+k .

= = (5.15)

In order to be able to insert the end point constraints and still ensure an exact

. unique solution for the a;'s, the resulting coefficient matrix must be nonsingular.

For our purpose, we wish to set velocity and acceleration constraints for n; and N,
[

which means that four rows of (5.15) must be replaced by constraint equations.

- Four "dummy" knogs are added to the original m knots to produce a set of m+k+4

linearly independent equations. It can be shown that proper placement of 'the
N %

* "dummy" knots (with k > 5) ensures the nonsingularity of the coefficient matrix

whensthe equations. corresponding to the dummy knots are replaced by the

constraint equations.

The placement of the dummy knots is critical to the proper evaluation of the
constrained trajectory. Recalling that the knot points only are fitted, two duw

knots can be mscrtcd before the first knot. To introduce two rows between rows

three and four of (5.15), corresponding to knot N for constraints d)(nl) and
Y ('nl). Introducc the <D (My,) and Y (nm) constraints, we place two dummy

knots between knots) ,.; andny,, resulting in two rows being added between

rows m+k-3 and m+k-2 of (5.15). We insert them in the set of linear equations.

1

52

SLtax"ting with expression (5.8) for the derivatives of B-splincs' fork =5 (quax‘tic:~ B-

sﬁlines), we havé - N

, Y v T .)

D (x) 3 Z a; 9 Ngj (%) - . , (5.16)
S :

and ’

"o, R ‘Y ' %\‘ . ' . PN
L@ (x)= E 33 N3 ; (x) | T N (5:17)

A=y ' ‘

Expanding equation (5.165 yields .

@ (x)=ay37Ngy3+ay 290 Ngy 2 tay1 2 Ngy 1 +aya Ngy (5.18)

Applying the relgtion of (5.9), we get

Q

4 (ay.3 - 2y.4) N . 4 (ay.0 - ay_3)'

P)= 4.y-3 N4 y-
. Gy+1 < 8y.3) "Y (Ey+2 - &y-2) Y2 \
4.8y 1 - By.n) 4 (ag-ay.q) - :
' z -1 .372." N4‘Y_1‘.+——J-—:a—y-l—' Nay - ‘ (5:19)
Y+3° gy-l) o (§y+4 - gy)! .

The abSve expression can be factored as : o O&

© (e ar o[N4r3) 4Ngys - 4Nayo
= .-4 Y ——————— ‘3 - - - - s -
¥ §y+1 - gy-3 “r Fsy+1 - "'57-3 §Y+2 i ;Y'z
N 4 N4,'Y-2 4 N4,'Y*] [
2 -
Y g‘y+2 i g,'Y-2 E"Y‘*'3 ’gY‘l
- ' B/ . .
‘ ¥ o 4 N4 y-1) 4Ngy + 37 _i_rjf_._‘Y_ o ('5_2())
VT By - By Cy+d - By §Y+4) g‘Y ’)

|

Following a similar procedure for (5.17), we get —

(

O (x)=ay33N3y2+213N3y.1+2y3 N3y ' (5.21)

Expanding (5.21)'and factoring, we get

®'(x) (éy;l “By2) G- Br)Cpa -Gy =

12 (Bypp - byo) Gyas - &) N3y, ‘
» Sy+2 T 5y-1715y+3 ~ Sy "3,‘y 2 + 1237’3(%3-57) R
(§y+1 '5.,7.3) ‘

cop] |
“Gy+2 - &y-1) N3 y. " *
{ T+27 %Y 32 ((§y+2 } 57-2)~ (§Y+l) E"Y'3))

i +1-§ 2) (€v42 - &y.1) Byyz -.&4)
3 Y __X___J__ + 12 &Y.z N3,'Y,2 Y ‘Y, .«‘ Y ‘Y y
(§y+2 éy 2) ' (§y+2 - ;Y'z)

1 1

~ + 12 ay.2 (§Y+1-§Y_:')_){'(éy+3 . iy) N3,'Y 1 ((E’Y+3 E-*Y 1) (F;Y+2 gy 2)
’(‘
o .
(§Y+2 _ gy-l) (€Y+3 - g‘y)
+ Ny =t by 128, Bpp - Ev) ’ N3 =1
3 Gye3-&y.1) | 1 Gpe1Sp2 Gy+3-8y.1) ik
N3Gy [”7-1) 1 l }
| (§y4o4 ay) (§7+3 - g'Y'l)
e '
. - oy /- o - | | . | " |
I e T R U) N
o : Gy+a- &y f ' ' R
~ ¢ .'G
» - ")

54 =

'We can see from equatiohs (5.20) and (5.22) that the velocity and acceleration
constraint equations depend on the same a;'s as the position equations for the first

rd

and last knots. Insertifig the constraint equations into (5.15) then yields a set of
- ‘ o linear equations N© a© = {0 of dimension m+k-+4, with the matrix structure shown
' in equation (5.23). Dumm): knot elements are represented by the character d, and

. : the rows of N© corresponding to knots are highlighted in bold. T

= N LR T S

o A m+k+4,m+k+4 : R

- dddd
. . ! o - dddd

a « & & & 0

- ' 14 (5.23)

An algorithm for solving a linear system with a bané]-diagonal matrix has been
- implemented. - The resulting routine requires storage of oﬁly those k*(m+k+2)
*+ . elements of N° which are nonzero. *It is worth | noting that NO depends only on the
extended knot set. Therefore, if these are fixed, the mﬁu NO does not changc, 50

thal any change in the desired qajectory £°, or end peint constraints, can be carried
- .
o -, out by resolving the lmcar system, without having to repeat the entire procedure for
S s .forrmngthcmameo ' ‘ S

°
ENES -
* . ~ L3 v Il >

s

55

a
-

-~ bl

It is worth noting that if constraints are to be placed at only one of the initial or

final knots, thert the order of the matrix can be reduced by zeroing the

corresponding rows of NO cxcépt for‘.a one on the diagonal element(s) of the

cubic B-splines (k = 4). Then only two dummy knots are neeéded; but, the
complckity of fnaintaining a curve consiéting of two different B-spline bases (k =4,
5) may not be worth th; effort tﬁis would ix;posc on Ll;c software implementation.
{) ' : ~
‘The general procedure for constmcting n'qjec'torfis for multi-linked rigid bodies
is summariied by the pseudo-co&e shown in figure 5.2, appropﬁate equations are

. ‘ 3 ’ j !
given within brackets.

P

" row(s), and a zero in the corresponding location(s) of fO. Itis a;sd possible touse

-~

“d

56 ' ' -

/*
o Funcnon to generate a simple B- splmc trajcctor)
*/) R
GenerateTrajectory() i
/* Set up the constrained system matrix. */ ‘
get number-of knots in trajectory; *
form knot set; ' ‘ ! .
add dummy knots;,
form extended knot set;
form constraint equations (5.20 and 5.22);

form the matrix N© (5.23);

/* Approximate the trajectory for each joint with time dilation.*/
WHILE (not all joints done) {
get joint constraints; .
get joint trajectory,
form right hand side vecjor;
solve linear system for trajectory coefficients;
FOR (complete knot set) |
find maximilfm velocity along trajectory using (3. 8)
find maximum acceleration along trajectory using (5,8),
calculate time dilation factor for present joint;
: } '
)) .
compute overall time dilation factor .

)
,*

** Function to evaluate a simple B- cplme trajectory.

** Note: To move along the trajectory, only the extended knof set, the
** trajectory coefficients, and the.overall time dlldnon factor are required.
*

EvaluateTrajectory ()

(, : |

FOR (complete knot set){ —
WHILE (not all joints done) { ’ - \

At evaluate position on trajectory (5.5); °

. evaluate velocity on trajectory (5.8);
evaluate acceleration on trajectory (5.8);

e e e

Figure 5.2: Trajectory gcncrafion pseudo-code) .

e - oA
S I . .

~

57

" 8.3 Local Path Modifications -

Two methods exist for creating local modifications ta a B-spline trajectory. The

first method has alread;' been referred to as tweaking, a procedure where selected

control vertices are perturbed by some amount to produce the desired deflection in

the trajectory curve. The motivation for tweaking is that a new linear system of
equations need not be solved every time a path modification is required. The
second method allows an existing ‘path to switch to any other path by dynamic
tra jectory injection. In this method a preplanned path\ is temporarily suspended

while an injection trajectory is entered. When this is completed the control is

transferred back to the original path. Both methods can be accompiished withoxsn .

5, ;
relaxing any of the constraints or losing curve continuity.
. 4 . ((-v 4.

‘,From the bahd' structure of N° and equation (5.5), a following relation exists

for any given fj, j=k+1, ..., m+k-1:

‘fj = 3. Nk,j-2 (XJ) + -1 Nk,j;‘l (xj) * 8 Nkaj (x.l) ::" aj'*:l Nk’jH (}J)

By perturbinge or tweaking certain aj's‘iﬁ equation (5.24) from their calculated

P

values for a preplanned trajectory, a corresponding deflection in fj results, Agairj,,

) ‘ . - . . . ' ’ . .
- by observing the matrix structure of N it is evident that each colummin the strictly

band matrix region hds at most k non-zero ¢lements; therefore, each 3 is involved

in at most k lihear equations. From this we can conclude that control vertex will
affect at most k-1 adjacently neighboring knots along the path. The control vertex

perturbation has greater effect-on velocity and acceleration curves. From the

L3

' R (2.24)

P

= a4 o

@/

modification using control vertex tweaking,

L)

58 ' o
deriyative recu?sivg: equations (5.8-9) we see that the velocity and acceleration
’

profiles posess a greater interdependency on each control vertex. In addition, sincic
new minima/maxima will occur over the tweaked interval, a rescaling of the
tweaked knafs'is necessary to ensure fcasibilit;’ of the solution. Many interactive
computer-aided surface modcling systems display the actual location of control
vertices with respect‘to the, curve (surface) bc-ing approxjmated, so that the user is

free to edit the curve (surface) by dragging a cursor about ecach control vertex

. (polygon). At'this time no suitable interface exists in RIGID to produce local curve K

Dyn ami% Tr'a]'ectog"elnjection
If the evasive action involvestacktracking or entirely new trajectorics,.a more
édépti\;c épproach is required than tweaking. It is possible to temporarily suspend
the pﬁ'rpary trajectory and enter a second injection trajectory-that is‘capablc of the
v - N - ’
¢vasive action, and then return control to the primary trajectory from where the
detour began. By a,ppl&ing the theory presented in section 5.2, injection of feasible

trajectories into the primary path is possible. A path segment jump\able is used to

_contain information about the next segment to be executed and its relation b the

primary segment. Depending on the details of the evasive action, the locations$ at -
o - .) S . ’ .
which the robot departs and returns to the existing path are determined and
4

registered in the jump table. In addition, the injection trajcctor); is independent of

the primary path, except at its end points.

< P

59

e

o

' - 4
This property can be usc&l to ensure that none of the physical constraints on the
_ joints are violated. The respeétive scale factors must also' be stored in the jump

(table. Followqum for end point constraints, the posmon velocity, and

acceleration at the end points of thc m_]ecthn trajcctory are madc equal to the

departure and return knots of “the pnma.ry traJectory The greatest advantagc of

using B- splxncs is that onlzy thc coefficients of the injection tra_;cctory need be .

o

calculatcd none of the existing path coefficiengs are modlfi . 3
~% e :
’ ~ Since trajectory aajecnon is only meamngful in an ohlme settmg. it has not een

1ncorporated into RIGID.- Although somcthmg qulte similar exists, Jommg

2

piecewise B-spline scgmerﬁs together and mc]udmg a prevxously

as par of a new tra;ecwn_y Thc 1mplcmcmanon

latter sections of Chapter 6.

'

$ormed trajectory

tails of these are prcsémcd in the

L0

43
]

. .

..\

¢

L]

Chapteri6 - RIGID Language Implementation Details

!

, oz . S * ?
®) The fundamcntal objective in a robot programming language is to be able to

4

; ') accuratcly and realistically model the cvents of the rca] world Dlscrepcncncs

. between interna} and external rcahty result in a ;(oor rcprescntanon of the robot

»

|

|

| e o workspace and physmally impossible movements. A
‘ :

{a A ' Manipulator programs require the prbg'rammet to supply the initial conditions,
\ ‘specifications of robot and object placements and a general idea of -how the
manipulator should proceed through the task being programmed. Initial conditions

- have a great influence on the velocity and acceleration of the trajectory. A

. .
» . :) . /

]
It is imberative to check thc manipulator's rtach during the cqursc of the

'

U'aJCClOTV A ng:d’ body with suffxcnem degrees of freedom may be able‘to recovcr '
\ffom an unreachable command by a conﬁguranon inversion, such as'flipping the

. < . wristxlink. RIGID allows the programmer to control the.manipulator conﬁguratio_n. -

° o -
< : - . . °

. RIGID.is basically an offline brogramming' system which allows thefiser to
'y .

dcvclop an apphcauon without mvolvmg the actual physical equipment. RIGID i is.

P capablc of working with many dlffercnt robot modcls
) s
i ,) Q

. ¥’ N ‘ : - ' |
- ° 6.1 Review of the C«Programhling Langu?nge -

Every attempt has been made to make the user interface of RIGID as seamless

|
p y and easy to use as possible,’but usipg RIGID does require somesknowledge of the

. C programming 'language. For this reason, some of the features of the C

programmin g language are_re‘viewcd to assist in the explanation of RIGID. The C

-
K

»

S ..
61
)

language is well known for its portable and structured programming environment,
- * t

‘and is the language in which the UNIX obellatin‘g system is implemented.[119].

" The portability of RIGID is demonstratcd by its unplcmcmanon on three different

hardware.systems: IBM PC/AT (chrosoft C compiler ver. 4. O (120]), MacIntosh
(Think nghtspecd C compiler ver, 2.03 [121]) and DEC VAX 11/780 under UNIX
4.3BSD.

For the 'most part, the act:xal statcme;nt's, commands for control flow and
" function calls are welrcxplamed inmost C programmmg language text b({ks [122-
125]. Appendix B provxdes a summary of the C programmmg language syntax
Excellent agcounts on data structure design and advanced algonthms can be found

in [123, 126; 127]. The review provided here concentrates orrdat'a'strhqiurc—é and

complex C language declarations, to assist in explaining the RIGID user interface

and language implementation details. In the examples some specific notation will
) ‘ .

be used:-keywords- and standard liBrary function calls in the C_programming .

A
language will appear in bold; explanations and program comments will appear

within the C program comment characters (/**/). . .
v * .
Pata Types '

A comparison of the data types on IBM PC/AT, Maclntosh and DEC VAX 780
is provided. Itis worth noting that the PDP-11 and-the IBM PC/AT have the sfafn?‘f

word sizes for-each of the C language data types. ' *

w

62

IBMPC/AT (bits) Maclntosh (bits) ~ DEC VAX 780

Signed integers:
Yo int -16 f 16 32
long T3 . 32
short . 16 6. - 16
Unsigned integers: - : . 3
Voo 4 '
¢ char 8 - 8 g - v

Use of the keyword unsigned before a signed intgger type declares £hc variable to

be unsigr]ed. This has the effect of doubling the positive integer raﬁgé while not

permitting any negative integers.
\ .

: Lo
Floating point: -, '
. L]

‘ﬂoat 32 . 32 . 32)
double 64 (10% 307‘) 80 (1014932 64 ¢10+38)

‘ In iht‘implcmcmation of RIGID, all functio‘hs use double. The reasonin g lies in the

fact that C uses douple in all of its internal floating point operations. In fact, there
is often more computer overhead in converting.to and from double to float than in

consistently being double.

A data type may be declared static, meaning that its value is not to be’
destroyed once program c§ntroi is passed outside the function from where the
variable is declared. In a header file or before the main program, the static kcyword '
allows variabjes to be mmalxzcé pnor to programni execution, J

A variable may be specified as register to@ptimizc its use. A register variable
is usually assigned to a variable which is the counter in a loop and often appears as

an index for an array. Register directs the compiler to contain the variable in a

) |

e

63

computer register, rather than on the stack which needs to be loaded into a register

_before its value can be used by the program. .

-

Am2ys

An atray is a collection of elements of a single data type. The array subscripts

»

T

are each dcélarcd within square brackets ’([]). Arraya subscripts ;m: icronbased,

which means that an array declaration of length n has subscr’ipts which range from

FORTRAN for example where arrays are interally stored column-wise. Example
1 is a six row by three column array of signed integérs "Example 2 is a static array
of length four floating- pomt numbkrs whxch are being preset to thc values w:thm

the (3urly btackets. Example 3 is a character string whose dimension is being set to

-

the length of the character string between double quotes, plus one more character
for the NULL character which must terminate all strings.

Q

~1)- int code[6][3]; .
: J

2) " static double vect[#] = {-0.7, 1.0, -2.3, 4.9);

3) char name[] = “platform_base";

Structures
A structure s a collecuon of elements of diverse data types. - The struct
keyword identifies what data type variables come next as a structure. Often, the
typedef kcbyword is associated with structures to cc;nvcnicntly define new dat;l
type names. A union lets differém data types use the same memory addresses.
Unions aré. treated in much the same way as structures. Example 1 defines a type
N .

. . .' . < 3
of structure containing a floating-point array of length four, a union of three

variables spanning two differént data types: char and int. Note that the data types

‘0 to n-1. Multi-dimensional arrays aré internally stored row-wise, unlike |

do not have to bc the same length since the compiler will perform the byte alignment
and paddmg neccessary for dxfferem data types. The union pcrmus the user to
- access the data thhm the union option via the three mcthods shown in examples 4
through 6, but first a vanab'le of type object_t must be created. Examples 2 nqd 3
declare variables of typc.object_t and initializ:c them to some constants. A careful
look at the cxa‘mple‘s‘rev‘éa]s that 2 and% are eqL:ivalq:m declarations since ascii(i) =
73. Exﬁplcs_4 and 5 shm:v_how to access data without a union. Initializations like
those of e;(an;ples 2 and 3 must be ‘per‘formcd outside the main program.

4

2

1) typedef struct { :

- double vect[4], -
- union |

int AND,OR; !
r char id;
} option;
} object_t;
) 4

2) object_t paptl = {1.0, 0.0, 0. O, 0.0,73
3) object_t part2 = {1.0, 0. '
4) partl.option.AND
5) ° partl.option.id

Pointers

Pointers allow addresses to be used in a symbolic way. Pointers ére especially *
efficient for arrays and structures. An array name is also a pointer to the first
element of the array. The ampersand (&) is the address operator which obta.ins the
address of a variable. The asterix (*) is the value operator which obtains the w.(algc '
contained at.an address. For scalar variables, pointers are easy to demonstrate.
Examp]e 1 transfers the data in variable taé to atag using the intermediate step of
using a pointer. Example 2 dgmonstratcs the cquivalcni:c of usfng pointers.
" Example 3 shows aliernative ways to access structure elements using pointers.
Example 4 declare$ an.array of pointers fd char values. Example 5 declares a

pointer to an array of char values. The next two examples demonstrate how

‘65 -

t
)

complex some data type declatations involving pointers can be. Example 6 declares
an array of arrays of pointers to pointers to ohject_t data types, i.e. variable part is
an array of five elements where each element is a five-element array of pointers to

v poimérs to object_t structures. Example 7 declares an array of pointers to arrays of
» : . A
pointers to object_t data types, i.e. part is'a five-element array of pointers to five-

element arrays of pointers to object_t structures. Note the subtle differences in

. meaning between example pairs 4,5 and 6,7 by placement of brackets.
. . 5

1) intf tag, *ptag, atag, **pp;
tag =10; - /*initialize value of data */
ptag = &tag; /* point to address of data */
atag =*ptag, /* get value from address of data */ R
pp =ptag. / pointer to pointer to address */
2) int sizes[8][2], *psizes;
psizes = &sizes[0][0]; .
*(psizes + 1) equivalent to sizes[0][1]
*(psizes + 5) equivalent to sizes[2](1]
o *(psizes + 10) equivalent to sizes[5][0]
3) “ object_t *pan;
part = &partl; /* part] previously defined *.
part->vect| 3] equivalent to partl.vect[3] °
part->option.OR equivalent to partl.option.OR

- 4 char *tzone[2];
- char *izone[2] = ("EST", "EDT"};

5) char (*menu)[5]; : '
: char *s ="QUIT", Ny
*menu = §;

6) object_t **part[5][5];
7 object_t *(*pant[S)[5];

location
Dynamic memory allocation provides the flexibility for data to be created and

destroyed as needed at run-time. Structures and unions 'f)rovide an excellent

66

\ framework for dynamic memory allocation of complex data associations such as

K linked-lists, trees and graphs. Since a pointer to a data is only a pointer and not the '

" actual data, no memory is allocated for the data being pointed to until a directive to
allocate memory is given. {ln some instances where two or more pointers point to
the same data, memory needs to be allocated just once. The C language ;')rovi_dcs a

»couple of methods for doing this. The following éxamplc nuses the calloc()

function to allocate for memory for an object_t data structure, tests to verify

I

successful completion of the calloc() function, then again destroys memory for the

object using the free() function. A block of memory can also be expanded or
‘comprCSScd using the realloc() function. Character arrays or best allocated with
the malloc() function, but calloc() is more suitable for integer or floating-point

numnbers because calloc() initializes the data values to zero.

\ » object_t *part:

L part = (object_t *) calloc (1, sizeof(object_t));
~ if (part == NULL))
T~ fprintf (stderr, "Can't allocate memory for object\n");
~Jree (part); :

\\
“~
~.

. \ . "/___,_/«
— .

Functions ’ ‘ o

Example 1 declares a function which has no return'value. Example 2 declares a.
function which returns a long value. Example 3 declares a function that returns a-

pointer to an object_t data structure. Example 4 declares a five-clement array of

pointers to function's where each function has no return value, this declaration is

especially useful for function menu-selection applications. Example 5 declares a

* . function returning a pointer to an array1 of five double values. Note the differences
that the placement of the brackets makes o the interpretation of the declaration.
- . 1) void ExitPgrm();
2) long GetAddress();

“' ,‘In 67 ’ <

3) object_t *AllocateObject(); /
4) ‘void (*PrinterTypes[5])();
5) " double (*Evaluate (){5};)

Using. dynamic memory allocation, .the function i:orrcsponding to the
declaration of example 3‘can be realized as shown b}.low. The function is
generalized to allocate n consecutive object_t data structures. Notice the typecast
operation to ensure that a positive number n is passed as the argument for the
calloc() function call.

object_t *AllocateObject(n)

int n;

{
object_t *part; ,
part = (object_t *) calloc ((unsigned int) n, sizeof(object_t));
if (part == NULL)

return (NIL); . ‘ ‘)
return (part);)
Q)

6.2 Programming with the RIGID Language

* This section ties together the mathematical constructs presented in the previous

- /;chaptc}s of the thesis and explains how they are unified and represented in the
RIGID language library. ' .
<
Erames '

" The term frame refers to the homogeneous coordinate tfansformation,
introduced in éhaptIer 2. Frames are used to model objects in the world,- or the
work ‘envelope of arigidly-linked mechdnism. Frames are specified by standard

.‘ rotatigns and translations presented in many tcx§s on geometry, such as [1,7].

Appendix C givesa ésmmafy of the formulas used by RIGID to transform frames.

?

i

68

Relatipns |) \ .

A relation is a kinématic relationship used to affix frames to a closed kinematic
chain. A relationship exists between twg affixed frames, and remains a valid
relationship even if either of the two affixed frames changes its location throughout
the model of the world. Relations can have two purposes: to solve for an unknown
relationship between any pair of known frames; to form macros which represent a

grouping of frames for simplifying program coordinate specification in RIGID.

Trajectorjes

A trajectory is described by some displaccrhcm of frames under some form of
optional velocity constraints at sbeciﬁcd knots. Trajectory generation is available in
two modes: Cartesian or joint-interpolated. In Cartesian mode, the-joint spac\c
motions are obtained using the inverse kinematic solution of the robot arm each time
the trajectory in Cartesian space is sampled. Joint-interpolated mode directly
gené:rates the trajectory in joint space so that no inverse kinematic solution is
required at each sampling interval. Smooth and feasible trajectories are generated in
the RIGID system in both cases using the B-spline theory presented inuthis thesis.
The Cartesian mode generates robot trajectories which possess straight-line
segments, but require more computing resources to complete; whereas, the joint-
intcrbolatcd mode is more efficient kincmaticall)./. but makes the intcrmcdiat.c path
segments of the fobs;t harder to predict. A trajectory is highly sensitive to initial
conditions, especially the initial robot arm position and orientation. The initial
position of the arm also influences the vclocit); with which the arm will be moving
durin g a segment. Increasing the speed introduces a different trajectory due to the

£
mathematical nature of the derivative-constrained splining method used.

I3

’
A}

6.3 Implementation Details

" Examples of the C programming'lan'guagc excerpis are highlighted in bold type. - ’

* A full description of the RIGID function calls and data structures mentioned in the

discussion is given in Appendix A.) ‘ \

' Coordi fefiniti
- Each-coordinate function has a forward (*ffun{0]) ard inverse (*ffun{1])
coordinate transform furnction pointcr: The character string cname field is the
‘de,scﬁp,tidn name of the coordiKnatc transform function which is used to aid thca .
interpretation of program output (SIZENAME is a constant). The coord_t data

¢ structure is:

[

-typedef struct coord {

char *cname;
3 void (*fun[2])(); -
} coord_{; : . . .

>
[3

Frame definition

" The most fu-r}damcqtal data type in RIGID is a—co'ordinatc ;ramc, known as a
frame_t data structure, used to describe some feature of an object. Each frame_t
contains both the forward (fwd) and inverse (inv) homogeneous transformation
matrices of the coordinate frame spcciﬁcd. Both relations and trajectories use data
in the matrices fwd and inv when pcrfoﬁning calculations involving the frarr;c.

The translation/rotation vccto(vec stores the transformation matrix equivalent of

' &;h: fwd field. The character string fname field is the description name of the

me. Depending on the type of geometrical coordinate system (i.e.: RPY, EUL,

OAT,)' ﬁsed to describe the coordinates of a frame, the ffun field maintairi§

‘,

°s

L — primary list is a list itself. In such an ai)plication as RIGID the number of frames,

e e

70 : ‘

L]

A

pointers to the forward and inverse coordinate functions used to transform

translation/rotation vectot's into matrix form. 'S'he frame _t data structure is:

y—

. typedef struct frame {
- * char fname[SIZENAME];
double vec[6]);
double fwd[4][4];
double inv[4][4];
str rd *ffun;
} frame_t¥—=- - .

Vel int definiti

L]

) The veloc}ty-constraint data type, known as a velocity 't data‘structure, has

| many fields similar to those of a frame_t. Trajc;:tori_cs pojim to the vélociiy data in
the linear/an gular velocity vector vel when imposing the velocity censtraint to.somc
trajectory segmcnt The fname ﬁcld contams Lhc description name of the vclocny
constraint. The ffun field maintains funcnon pomters to the coordinate system

used to transform linear/angular velocity vectors into matrix form. The velocity_t

l\, N [.

data structure is:

'

typedefl struct velocity {
\ . char name[SIZENAME],
- - - "double vel[6]; -
-struct coord *vfun;
} velocntv _t

. Ligtsof lists
Relations and trajectories are implemented by various types of dynamically
~ allocated linked lists of lists. The central idea of lists of lists is that each node of the

! ’ -

contents of relations and size of trajectories cannot be predicted prior to run time;

1 - .
hence, an implementation of dynamic linked lists is the most efficient. List
processing algorithms are best designed by pointers to data structures, rather than -

dccléring a fixed number of arrays. A list is constructed using sélf-rcfé'rcncing' data

>

71

o

a
9

structures, a data structure which contains an element that points to the address of
3 . s . - N
the next data structure of itself, or node of a list. The lists uss_df in RIGID are based

on sipgly-linked lists, where each node in the primary list serves as a head node

r
Al

which has two pointers qohtrolling the addxcss/ bounds of the list - a pointer to thex

first and last node of the secondary list. ‘ g
/ . I

.

Ina rclatioﬁ, the primafy list is referred to as the rslation-list and the scconda;y
list as the part-list. The rélation-list is composed of relagion_t data s;juémres and
the part-list is composed of part_t: data structures. For each new relation
#htroduced, a new node on the relation-list is created, this relation-list node serves
as the header df the part-list.. The rdata and reol fields of relation_t point to the
bégjnning and eﬁd, réspectivcly, of the ;;an-list. The ne’xtrel field points to Bthe

address of the next node of the relation-list.
° : . \A‘

-

The part-list uses 316 part_t dafa structure to catalogue the sequence of frames
specified in the relation. The part-list is hiddcnﬂ from the usc'r. The part_t data
structure is desi gnéd so that the prograrﬁ can switch from one data type to ;mother
‘ by following Edinters and allowing the same generic operations to be performed on
mixed data types, i.c.: frames and relations: This is accomplished using thé gnion
pptr which r;lay address either the relation_t-or frame_t data types. Depcncbi\i{ig
on the side argument value of a call to either EquateFrame() or
EquateRelaiion() the side field is assigned its value (either RHS or LHS). The
integer ptype indicates which data type the part_t points to: a relation (ptype =
RELTYFE) or a frame (ptype = FRMTYPE). The nextpart field points to the
address of the next node of the pan;ﬁ Th;: part_t data structure isr .

typedef struct part {

—

-

B

, o -
‘ 72
’ ~a ot)
int side;
’ int ptype; . . s .
union { - . e . -
struct_frame *frm; e /
. Struct "elation *rel;
. } pptr;
struct part *nextpart;
} part_t; >

5

The relation_t data structure is: B

typedef struct relation { ’
" char rname[SIZENAME];® .
‘ . struct part *rdata;
struct part *reol;
struct relation ‘nextrel; .
} relation_t;

¢

As can be seen byﬂ the nature of part_t and relation_t, they do not contain
gcomél;ic,data themselves; rather, thcy”rﬂaimainoaddrcsscs and sequencing .
c,il‘;for'rnation of frames and other recursive ;clations.
, ke

~ To further assist the cxplan@non of the formanon of complcx llSlS icon
schematic dnagrams of data structurcs are used. In most cases, the icons with their
pointc;rs labelled are th:: currently active data structures in the diagram. The top linc
m ﬁgure 6.1a represents a pointer to a-data structurc the bottom line represents a
NIL pomter or terminating pointer. The frame t icon in figure 6.1b has two.

small boxes labcllcd 'f and 'i' which represent the forward and inverse

. tnansformanon mamccs, rcspccuvely A frame_t icon may have its frame name

v

g ,
written beside the icon.” A part_t icon, shown in figure 6.1c, has two pointers of
signiﬁcapcc represented by two small boxes, the lcfl box corresponds t6 the
nextpart ﬁcfd and the right box to the union pptr field. The icon for a

relation_t, depicted By figure 6.1d, has three pointers of significance shown as

three small boxes. The leftmost box corresponds to the nextrel field,.the h?ddlc

 box to reol field and the right box to the rdata field. Figure 6.1e shows a relation

. .-
.) LEE . \
.

Co Co ' R . L
inverter which is used to indicate that the relation is to be inverted upon its
et) - A AN L ’

) . N

* £ \ ’ ' cvaluation, . N) \
N , ,? - .
. Figures 6.2a,b show the effect OpenReIatmn() has on the relation-list. No

_\c..

part t daga structures have becn allocatcd yet. Figure 6.2a 1llustrates the case

rd

where the ﬁrst new node in the relanon hst is mserted wh11e~ﬁgure 6 2b isthe ”
{ . gencral case where a new nodc u;n the relation-list is mserted In both cases, the two
- L4 N
.) ‘ . péxgnters to the part-hst are NIL at this time. - ~ . .

.
B . . - ~ . n
- B o . ;

P : . When a czilll is made to e:ther EquateFrame() or EquateRelation() a partéb
data stTucture is allocated and added to tQhe pan-hst, either the rdga or-reol pointer P

X of t‘he&curremlv active relation-list node gets updated. The -pdintgr from the

) curremly acnvc pan “list node is dx/rected to the sclected frame or recurswe relation.

. If the side argument of EquateFran;e() is set to the nght hand sxde (RHS), then a

’ , node 18 appended to the tax] of the part-list and dxrecgslthe pptr. frm pomter to, thc

T L - address of the frame This can be seen in figures 6 3a,b.” A left hancﬂs:de (‘LHS)

' argument causes a node to be inserted at the head of Lhe part- llS[and a]so directs the

-

pptr.frm pointer to the ad‘dress of the frame. This can be seen in ﬁgure 6.%. The
* kine‘r‘naiiC eduations reali2ed by ﬁgu?e 6.3c are < \ . b . .
» N 5L

> T REE*PRES ONEXTWO ~* ' .. ,
s 'I'HREEI*ONE*TWO T - a o

Yo, where PRES 1s themnknown transformanon matnx solution, or relation. The ‘ . .

e fconespondmg RIGID program segmea‘tp for this cxample is:
T S OpgRelauon(NULL), T L . . .
. S St EquateFramt(LHS, THREE); : ' -

v - EqﬁateFrame(RHS ONE); -
’ N EquateFrame(RHS TWO); ' - ¢
{ ¢ PRES =, CloseRelation(); .- - . ¥ : .

. .)
- ; 74
1] . - , \
- .
\ . !
&
I3 o
' N , f] ? =3 PART REL
. : o ‘ .L. iILP, 7]: :l!l:

v DeXtpAt PPlr nextrel n!ol Rm .

+ - 'ﬁ) b b) < :> C)) d)‘ L
Figure 6.1 a-¢: Relation icon definitions
. g Co »
) *
b
A
. %; . L

. . 5 » “ . [REL
» \ o . - b &]" IT

) ' SRS v O
, ' . REL Y , l :

. & - . viv iy riata ' — REL I;
.) uxmll 1_ ! 11' e -

v » . * a

. , Figure 6.2a,b: OpenRelation() icon schematic.
.) 4 ; - . P \\i Lo » .
;“ '; ;/HI “ " ! . / ¢

'y ' - 75 °
al \ ' .
» . .
! ’ :
PRE§ |REL
. O s .
: . 4 PART) QMR pe
o sextrl | | O | LB | one
) \) ! reol . | naxepant \
N) ' \ :] “ = . sr -
N\ \‘)
¢ | ,
I | o .
. _ e A3
prEg [REL , qE
1yl rlats .
T IPaRT] | PART] helm e
Y { nextrel L il (K] , TIL—-)
3 h ! reol - J_N*'Pm ’
| b)) ,
. , V
A ! f p f
__pptrrm R T] ,
7\ L ¢ - ’
- l ¢ g {. -
: ? P
f PRES | REL | y gt
- riala g -~
: . e : '——[PART| | : P|PART PART i3
;’ wml" -]L_ | 1 (B r-nlc
’ - ol pedpant’ ! '
. ' C .
'7 -)

ONE

TWO

THREE

ONE

TwvO

.76

.]
-rm-::*‘
i
)) ‘ |
o \
- T o THREE
pptr.rel F :’LI . P
; s . JH
| PRES , % - .| ONE
REL 4\ 191 ¢
K2 K R nextpant :
L————3|PART ., PART] - J—» PART PART , TWO
K] 1y 1y vl -[¢
T i] ? P
reol ! - . TT&-*
h ZERO
7 -
| PREV ./’\ %I:ﬁ
REL | . % 1
ylvlyl - , '
1 | Y———>[PART] PART (
: Ty) r (NN} Q
= || =
Figure 6.4: BquateRelation() icon schematic.
3 s : »
N ‘ : ,
’ ~\
: . \ o B
’ v N
s \ o

i)

77

The icon schematic of figure 6.4 illustrates the effect of the EquateRelation()
function on the part-list. The pptr.rel field in.the currently active part_t data
structure gets directed to the}odc in the relation-list corresponding to the recursive

relation selected. The same'RHS, LHS argument logic for appending/inserting

part-list nodes applies when pointing to relations. The triangle with an '’ inside
indicates that the inverse of the relation is desired. When a solution for the PREV -
relation is computed, its solution matrix will be mvcr;ed and premultiplied to matrix
THREE- L. The‘ kinematic equations realized by figure 6.4 are: - |

PREV = THREE * ZERO
and . \
. THREE * PREV * PRES = ONE * TWO

which can be manipulated into the forms:

PRES = PREV'! * THREE'! * ONE*TWO *
or
PRES = (THREE * ZERO)'! * THREE'! * ONE * TWO

The corresponding RIGID program se:gmcnt is:

OpenRelation(NULL); \ .
EquateFrame(RHS, THREE),
EquateFrame(RHS, ZERO); .
PREV = CloseRelation(); ‘ -
OpenRelation(NULL);
EquateFrame(LHS, THREE); -
EquateRelation(LHS, PREV); & o
EquateFrame(RHS, ONE); . .
EquateFrame(RHS, TWO); :
PRES = CloseRelation();

Notice how the RIGID program expresses the mathematical formulation of the
geometric problem in simple terms. A function call to CloseRelation()
terminates the definition of the current relation by mqnipulafing some global list

\

building variables. . | ' T

oy

78

Once a relation has been formed it can be evaluated at any time by a call to
EvalRelation(). The matrix solution for a relation i$ computed by traversing

each node of the part-list and multiplying together the appropriate matrices of the

frames pointed to by pptr.frm. If a node of the part-list points to anotl'(er relation

then EvalRelation() is recursively invoked on the data at the address pointed to

by the pptr.;‘el field. , The transformation matrix operations make use of the

orthogonal nature of the homogeneous transformation matrices' to manipulate .

frames, by employing such strategies as the matrix inversion method described in

A '
section 2.2, and multiplication involving onlynofizero elements of each matrix.

1

. - '

Building trajectories ' . ,

In a trajectory, the primary list is referred,to as the trajectory-list, the secondary

o

list as the segment-list, and the tertiary list as the knot-list. The resulting data

" structures form a linked list of lists of lists. The trajectory-list is composed of

trajeé(ory_t data structures, the segment-list of segment_t data structures, and
the knot-list of knot_t data structures. For each new trajectory introduced £new
node in the trajectory-list is created, this node becomes the header of the segment-
list. The seément-list c6ntajns segment nodes which themselves contain pointers to
a list of knots and one optional initial velocity constraint for the current segment.

Therefore, each trajectory may consist of one or more segments where each

segment is a sequence of knots optionally bounded by velocity and accelgration’
% . . . 3 . L. .
constraints. The intermediate Segment-list is a necessary construct used to provide

a systematic algorithm for organizing velocity constraints within any gi‘vcn'
- Ky

sequence of knots. The knot_t data structyse is:

typedef struct knot {
int ktype; :

aZex

LR R S
ER A RN

PURERNN
ATTA T

i

T

-
%

79

union { :
double *bpos;
struct frame *frm;
struct relation *rel;
struct trajectory ‘tray
} kptr; “ .
struct knot ‘nextknot, T
} knot_t;

The segment_¢ data structure is:

typedef struct segment {
int numKnots;
boolean isvel;
boolean isacc;
o struct spline *path;
- ~ int stype; ’
. union { '
' double *bvel;
struct velocity *vel;
} sptr; -
double *bacc; '
struct knot *sdata; v .
struct knot *seol;
struct segment *nextseg;
J segment _t; ‘

2 The trajectory- t dala structure is:

typedef struct trajectory {

char tname[SI.ZENAME],
int numSegs;

int mode; \
double dilation;

struct segment *tdata;
struct segment *teol;
struct trajectory *nextra;,
} trajectory t;.

, -
.] 480
60 " . N
* o A i
° =3[KNOT SEG TRAJ -
. ' - 'I; 'J!IVQ :hl: u
T, - . ‘nextknot kptr mextseg Lsptr mxnj | tdata |
. H
' * seol * tecl
' : -
8) b) c) d)
® f
[4 -
Figure 6.5e-1: Trajectory icon definitions
4.
N . ; , ’
J
‘ .)) l TRAJ
] : L1 tdara
+ 2 | b———] BEG
.-) DeXtra) teol ylelely
! .
x :
. , - |IRAJ - ot sdati
:‘. - . . ° HHE e TRAJ | . +
i : axtnj L———] 8EG : Iylvl - seol
I t teo) eivivly .er
‘ o " mextseg < | s :
T st ' s
L3 N “
. : seol - ,)
‘ . :. A ’ ©oa) b)
) ‘ Figure 6.6a,b: OpenTrujectory() icon schematic, -

e)

Y

81

.
- o
[
e
,

g

Figures 6.5a-f dcﬁnc a new set of icons wh~ich are uséd to descri-t:g'lhc
trajcctory“building process. Figures 6.5a-c represent the !mot_t, segment_t and
trajectory_t data structures, respectively. A velocity constraint (velocity_t) is
represented by figure 6.5d. Another type of velocity constraint, generated by the
BodyVelocity() function, is dcpictcd by figure 6.5¢; similarly, a joint position

vector, generdted by a call to Bod‘yPosition(), is shown in figure 6.5f. The

- acceleration constraint, generated by BodyAcceleration(), is not shown since its”

T

operation is identical to that of BodyVelocity(). The tdata and te:)rl fields of
these data structures are consistent with other data'structures in that they point to the
beginning and end of lists. - Some icons may have labels, or description names

associated with them.

The action of ({penTrajeclory() is shown in figures 6.6a,b.- One
segmem_t'data structure is allocated and linked to the active trajectory-list node,.
forming the beginning of the segment-list. Figure 6.6b shows the general case

where a new node in the trajectory-list gets inserted. Following a call to

OpenTrajectory(), an optional proceding call to SetVelocity() will attach the

sptr.vel pointer of the segment-list node to the velocity constraint matrix specified.
A call to BodyVelocity() ‘will.attach the sptr.bvel pointer to the argument list
vector of the BodyVelocity() function, and ahcajl 10 BodyAccgleration() will
attaéh the bacc pointer to the argument list vector of the BodyAcceleration()
function. The stype field indicates which data type the union sptr points to:
veloci(y__t‘ data structure {stype = FRMTYPE), or joint velocity vector (stype
= BDYTYPI::).: See figure 6.7a. Subsequent calls to either MoveToFrame(),
MoveTéRelation(), MoveToTrajectory() or BodyPosition() add new

nodes to the knot-list. As figure 6.7b shows, if a repetitive call is made to

82

SetVelocity() within the current trajectory, then the current segment is ;crminatcd

and a\ new node is appended to the segment-list, upon which the knot-list is

) subsequently built. Figures 6.8a,b show the similar list bfiilding effects for calls to

the BodyVelocity() function; thc‘ BodyAcceleration() function is not shown

since its operation is identical to that of BodyVelocity() except that the bacc
pointer is manipulated. The knbt_t is similar to the part_t data structure used in
relation building, but has the extra provisions that the union kptr may be uséd to

point to a joint position vector or a node in the trajectory-list. Correspondingly, the

ktype field may indicaie that the knot_t data structure points to either a joint

» position vector (ktype = BDYTYPE), or another trajectory (ktype =
TRAJTYPE). Unlike the relation building process, it is only required that nodes

' in the knot-list are appended to eacﬁ other monotonically in the order they are
specified after the call to Op-enTrajeclory(). Examples of MoveToFrame() are

‘given by figures 6.9a, b. For each new knot in the trajectory segment, a knot_t

data structure is allocatc;d and the appropriate pointer in the union kptr is assigned

the address of the knot data.- The integer numKnots contains thc;, number of

knots, or length of the knot-list, for the B-spline curves generated for this segment.

The B-spline curves that are generated, at a latér stage in the trajectory generation
process, become stored in a' spline_t data structure and are pointed to by the path

field for this segment_t. Splines are explained in the next subsectidn.

For each trajectory_t, the attached segment-list and their knot-lists continue to

, , be built-by the appropriate function calls discussed above, until a terminating call to
| Clo'seTrajectory(l), causing certain global list nbuilding variables to be reset for
the next trajectory. Figures 6.10, 6.11 and 6.12 demonstrate the list bililding

procéss for calls to MoveToRelation(), MoveToTrajectory() and

BodyPosition(), respectively. During the call to CloseTrajectory() thé B-

L]

- . .83

spline trajectory generation procedure is invoked for the tfajcctor_y and the B-spline
curve data is stored in the spline_‘_t structure, for each segment of the trajectory.

An important note conceming the trajectory building fu“ncgons should be
repeated here. After a function call to OpenTrajectorWY(,), any of the
SetVelocity(), MoveToFrame() MoveToRelation() or
MoveToTraJectory() funcnon§ can be intermixed until the terminating call to '
CloseTrajectory(). However, since the BodyPosition(), Bo,dyVel_ocuty)
and BodyAcceleration() functior~15 directly indicate joint displacements of a
rigid-body through their argument lists, they may not be mixed with any other
trajectory generati ng function calls within a given trajectory. Likewise, a uajéctory
formed with BodyPosition(), BodyVelocity() and BodyAcceleration()
functions should not be included in any another trajectory speciﬁcatic;n using the
MoveToTrajectory() fun‘ction, unless the included trajectory has also been
formed using only and BodyPosition(), BodyVelocity() and

BodyAcceleration().

A

T

84 , . .
o '}.
k!
& «*
J
. TRAJ
T -
u'nnjl | L 9EG |
H -)]
! ' iyiely I u . .
TRAJ SRR . ‘
vIv]) - . / . 'L KNOT
‘ tdata, / J:i—-
. ey sptr.vel ’ __'—'_t____iii
nextnj 3| 8EG ¥ - T ;
P teol vIy]ely |~ . F&-—. . ‘l 1~ sptr.vel
: 1 _LM . WRELITEEG) K
mnser' 1 { ‘ | vlv.hlv
e wase| || o
’ . . seol
&) ‘ : D , S
" —Pigure 6.7 8, b: SetVelocity() jcon schematic.
!
. TRAJ
v1v] .o
’ | nextnj ' s 8EG |
. E B nj ey P
! | ‘ . v Ty l O Q
; : A o
R4 8 : , +| KNOT
’ LY
, tiats, sptrdvel " ‘———L_____t:::
nenj | L1 SEG l_—_" O 9 ere
: - ‘Qol Iel -’ (Qol Sp!f.)“l .

-

S| e 2] o

mnsng' =
|s¢°1 n”“‘l ’m‘
L ' se0]
0 - -) !
Figure 6.8 &; b: BodyVelocity() icon schematic. .

-
2
.
-
«
L]
.
™ .
.
/
-
¢
. R
N ,
- -
.
» L
%
~ @
»
T
f
o.
.
R .
i t
* »
" - - .
«
f
. a
V.
’ A .
-
, . .
i .
I
T Al -
7 < n
.
i .-
8y,
3

kS

] 8 5]
o . X !) % ol
. T N \
l ‘ -
TRAJ i -
L] I' {) R -5
) -1 ftdata . . ’ .
‘-—-—-’; sEG L] Y - '
¢ teol vy - ;
- ‘ sdala / .
. : 3 KNOT & -
y 4 frecer——) = N l
: nexiseq seol O Ly e |£ P | oNE . '
- n ‘—— 1 °
.- % kptr.fm
: ’ * naxtknot J
. . _
. a) ‘
i > > £ (' -
) T e) . . . / o 4
4/, R
l ~) ' 7{7 -
“TRAJ . o / . . g
vyle| B - ’/\ '

tdata

i

teol

'

- aéxtknot)

. "Fizuxe 6.9 ?\,b: !&IoveTanme(‘) icon schematic. S o "

.

8EG || [T, 3 / ‘ :
nnn i L. ONE J

*[XNOT 3[XNOT X - .

sdata 4 !_ P -

-, 1 L— (A ‘ i N :rvo ,’y":

seol > kr(r,(m . -

N .~ v B

% - y:

Y
E
:
i
3

Y
e
LN
At
"

" ! : ¥ L
' I d b
v . 86 . t .
-] . R \
)) _—
. N
- . - ¢ -
;) . .
3 N 8 R
l : . ’ T
> + Vi
pol , K .]
L - d
v TRAJ ° . , L
viel : DA .
o 1 - > 3 s
o ‘“_‘. H t/
14 8EG | .| ‘ ‘ ‘
v wol QThiy l o 3
. s PR "
—3[xNoT| <P
nnseg seol v v o s \
’ ' ‘? l _]_ — | WP
» T [— ‘ /
nextknot
l l) 2 ' 3 B
s N % . “
|) N
: . .) i .
TRAJ ¢ . -
[BK3T] ‘) - .
m H 3 N
c— JEG . ¢ il -5 f
: teel plelely l .- i [[_ »] ORE -
' ' e KNOT —IKNOT k e
s Gl 11t seprnd { .
o . L————] REL
auseg| |seol £\ : s TS i
' - oo \ g | S , .
T aaxtknot i . ;
[. Ky v
| B g -
Figure 6.10 &, b: MoveToRelation() icon schematic,
+ s, 1 ' “ c. ‘ N]
- ‘ \ n I 2 . " -
) l & % ’ . :
; K R - i ~ . Sy
4 + P _ i

R

—Pigure 6.12 o, b: BodyPésition() icon schematc.

.

o f \ \ o N N
Ny -
2 - 87
— .
J .
TRAJ , T .
(AR ‘ .
. lhu_ . g?}
l‘ 31 BEG ’__l
. teo lviel . —
: t t s&ala k !
[el ptr.tmy
2 | KNOT TRAJ
axtseg seol v 1y 131y
QQ.' ! = _L ..
. aextknot -
l
TRAJ .
RKA - %) {
.
tdata : .
—3| BEG | | — =
teol GT]!ILJ ’ : [L.P‘ ONE
sdats l(b}o"r [?’isuLO!T kptr.tra i
Dexdseg | | seol l T}RA.T! '
= = —...
nextknot .
b)
<4 . ;-
Figure 6 11 &, b MoveToTrejectory) icon schematc
. .
1 ; T .
TRAJ
(BHI
{T13Y :
—3 sec] ; ’ .-
: teol I I
N Sdl“ R rd
' 31 KNOT R
Dextseg seol T Loy O 8
. -l- kptr.bpos
’ MmxXtknot
! -
TRAJ
yIv] 0)
tdala ¥ g
- —3[8EG | | —
. teol [TvTeTy N o ,// O *Q S
' ———[xporl | =3[KNoT] — =
N ’i‘“/ Iy r (R V8
nextseg | 4¢e5l l kptr-bpos
T . 23tk not ’
% 4 b) } - -
M] L
X
-~ %

- A Bespliné curve for a complete trajectory is generated Qy travérsing each node

. Building splines

4

of the segment-list and its branching knot-list nodes. For each segment-list node, a
trajectory segment is constructed which spans all the knots of a knot-list using the

= B-spline construction algorithms presented in Chapter 5. The endpoint velocity

constraints for segment i are obtained from the union sptr of segment_t; and—

segment_t;. 1 which bound the knots comprising the tr§jcctofy segment i;

. .) . ' . ‘ . ' R ..
similarly the bacc field specifies the end point accelerations. By examining the
isvel and isacc fields of the bounding segment-list nodes, the presence or absence

of endpoint constraints for segment i is detected arid relayed to the B-spline

trajectory generation modules. RIGID automatically imposes constraints on

.

adjacent segments of a trajectory if no constraints are set, to ensure a C2 continuous

!

B-spline curve throughout the trajéﬂc’tory.
, { .
A cali x(‘)'lii'valTrajectory() begins a process which fits a trajectory to each
. segment. The knots from each segment are qucued‘info a generic queue which

provides the mechanism to dequeue and transform all the knots of a segment into a

common coordinate system. The theory of queues is, explained in many

programming texts such as [123], so only a few imp}émcntation details will be

given here. The qucucaimp}ememgd here is comprised of two data structures,

E ° fifo_t and node_t defined as follows= - ¥ % .)
. typedefl struct fifo { , ‘
" f . :) int length; - ' /* length of queue */
struct node *front; -~ /* front of queue */
_ struct node *rear; /* rear of queue */
1 .) ﬁfo_t-; | . S
typegef struct node { - .
. . char *item; *= /* enqueued data */
+ , " struct node *nextnode; /* next nodé in queue */

-/

-\

) mode R

'

The spline_t data structure is:

typedef struct spline ?

int iumKnots;

int dof;

int numPts;

double *knots;

double *coef;

double *basis;’ -
} spline_t; * ’

~

.

t . —

B-spline curv;: generation is applied to a trajectory using a segment-by- ,
segment algorithm. For segment i of a trajectory all knot_l"s pertaining to the
segment i are queued. If there is a look-ahead knot_t into the next segment i+1, 0t
is also queued at this tim; so that the last knot‘qof segment i will smoothly join the
first knot of segment i+1. The al?:sence of a look-ahead knot indicates the last
segment of the trajectory. With the exception of the first knot of the trajcctory,aif

velocity constraints are imposed they are always effective-on the look-ahead knot.

In general, four combinations of velocity constraints are possible given any two

segments (8, Sjy}), they are: (U, U), (U, C), (C, U))'(C, C) where/'C = '

»

constrained, U = unconstrained. Figure 6.13 illustrates the action of the trajectory
queue mechanism, note how the look-ahead knot-of the next segment becomes the

o~ last knot of the current segment in the queue.

ONE

224
REL
1vyle

TWVO
L!
THREE
HLE
FOUR
i
2
?

90

[os 4 et 4]
__ 1 T
= -
m.ln Y - . -
N ‘KLIJ__. . . {
LHI -)
= . F . m 2 i
B \ -
m.u.vq\a“ . . W,P M.P_ O_P, —‘mh : .PH
A i -
) & R E - . m -] - o]~ Ang == " , m ~
]_‘ u-..------:.\a & SR B iy S el
r . R) ol £ & !
ol il . = 3 |el] al’l al’l al’ alrrT
. m . @ W.. o) ~.m vm vm vm Lvm!l. \
& JQ“ ml \ T 4 "
o> HLI . ' L — ['
. o ' ~—v ¢ T e Y]
m-v - 'I— wu ’
= m Z ¢
m . G|

{vle]e

BEG
ylviviey

1y

L4
e
'—""~SEG

TRAJ

-Pigure 6.13 a, b: Action of tmjectorﬁ; queue.

[%

91

Aftcr knot data is quéucd, the trajectory generatior; module dequeues czgeh
knot_t and transforms it into a' set of coo;di,nates for the n:gid body selected. If
-the current i.gnot has :;‘;/;:locity constraint, it is also transformed into the rigid body
coordinate system. If a dequeued kndt__t data structure points to a relation, the
relation is evaluated and the resulting matrix solution becomes another knot in the
segment. The complete segment is transformed into joint space, as shown in figure
6.14. ~

T T

The transformation from world space task specification to joint space-
coordinates of the rigid body are accomplished using a body: t data struélurc.y This
structure contains all the necessary parameters and vectors to accompli'sh the
t/’qgv_a}-d/iri'verse kinematic and dynamic transfonn'at‘ion. A 'parg;gular rigid body
(body _t) is assigncfi 1o antrajectory with the SetB‘(')dyType() function. Tl}e
body_t fields contain: the degree g,f freedom (dofy, the number of conﬁgurétion
parameters (numiConfig), used to contré] redundant joint solutions, tl;c
cbnfiguratién vector itself (config), the world spac;: position; velocity and
accehleration vectors (p, v, a), the joint space joint positions, velocities and
accelerations (qp, qv,\qa) and‘ most 1mponantly, the pointers to the kmcmaue
transformanon funcnons (bfun fun[O] for the forward bfun. fuﬁ[l] for mvchC

kinematics). The physwohdmt velocxty and acceleration limits of the rigid body dre

set using the SetVelConstraint() and SetAccConstri‘ml() funcuons,

N,

v

respectively; the associated boolean flags (isMaxVel and isMaxAcc) indicate the
A,
‘presence of these constraints for the time djlation calculation. Memory is allocated

to all the vectors in,the body_t data structure during the SetBodyType() function

call. The time dilation factor for a trajectory is stored in the dilation field in each

» » . 'Y

*

»

o!

. WriteTrajectory(). N T T

- . .) g2

,
S

trajectory_t node and can be obtained prior to trajectory execution or evaluation
by the En(iuilje'l‘ra jectory() function.

The body_t data structure is:
typedef struct body {
int dof;
. int numConﬁg; . .
int *config; A —
double p[6], v[6], al6];
double *qp, *qv, *qa;
struct coord bfun;
boolean, isMixVel;
; double *maxVel
boolean” isMaxAcc;
double *maxAcc; .
} body_t;. Lo
Ohce the joint° coordinates of each knot of a segment have béen calculated, the
, trajectory generation algorithm presented in Chapter.5 is cfarricd out for that
Segment. First, an extended knot set is formed, then the a})propnate constraint
equaﬁons which match the segmcnt are inserted into thc B-spline system mamx
and finally a set of B-spline coefﬁc:cms 1s'gcncratbgi which descnbe the B-spline .
curves of qggh of the Jomts ofnﬁe ngld body mcchamsm for the current segment.
‘ -

Thc time dxlauon factor is computed for the segment, and cventually for the enurc
hY

-trajectory. Referring back to the splme t data structure, the B-spline coefﬁcxcnts

are stored in coef the cxtended knot» set in basxs and the original . knot set in
knots The data in each spline_t structurc is used when it is requested to execute

the traJcctory usmg functions such as EvaITraJectory() and

.o . ’ o
5) . ’ . . W .
. . ' Y ./
. ’ ' ‘ . «) 3
. . 0o
’ N /" N
- K ,,('”_" LI v -
*. ‘ ', " - ’ Cora . ‘ .
‘ ' ‘ . oo B:spline control vertices, .< ., =
) . o e ‘knot vectors
: N 2 L R ' 3% puns)
.) R . o
- knotl ! - . - . qld qu qmd? vt L
[} — - . N o - .
"L |: P ’ \ . . ‘
M . 1 »
. . koot . N L
.) —— f - ” . a?) . . L.
. . s 'P K, uc L] op—— L . N -
_ . L ,[L.‘ inematc) /7 . LTTET ; = ’
i ’ p Arm Solution 5 = 9920%22] - |'m2 .-
= — " w " / . iy e , ’
" knO(nl-’ ~) - ‘ 1) . " ; . \ -
o 07, B , S .
~ < J1 . . PR !
e .11 q‘Zml ‘ qm‘l_ .
4 B < LI
/ ‘ ‘ ‘
» A - i " "
e T ,
. . . Y
o ° v . -
M ' -
C K i
TN A v . B
" .] ¢
. ' . ¢ ‘“, ¥t
‘) . . SN IR
. A - »
: \: 7 v
N ' . §
' - "’-/~ ‘\ , . . _,,:
L <. . FILE .
. - ‘ a" L !
~ 'l ’ M
' . "
. A
[iy
- - .
- ‘ /e, .
=t . - [N

ALY

s

S

Chaptér 7 - Ilustrative Exa;nples

N
N
-l'

. : .
, i?mc examples are given in this chapter to illustrate the use of relations and the
Eapabilitics of trajectory generation for different types of manipulators. From
experience, the development of an ap‘plic@tion in RIGID can best be summarized by

th({ollowing four steps: . Y

1
B L]

. Step1 Define the pidblerusing objests dnd establish object coordinate

° systems, .

“

-2

. - ‘ \
step 2 Plan piecewise motions in world space ‘between coordmate systems
and intermediute via points, L

-, B
< [g

step 3 Select a rigid body and set its conﬁgurauons examine trajcctones
_by checking for a sufficient frequency of knots,

step 4 Integrate all motions to get the complete operation, -,

- .
* P [
.

-7;1 Relation Examples j N '

t Relations are useful to dcscribe ;’catures‘ o'f_ an object such as those show;- in
figure 7:1 where the approach' stack and grasp ¢oordinates for each block type
object ina scene are the same. Two cx?mples are gwen example 7.1 demonstrates

‘ the use of a simple relation to group frames together, example 7.2 demonstrates a

" complex interaction 1o show how relauops can be used to establxsh dynamic

rclanons between gbject coordinates and: fcature coordmatts ,)

¢

g

3

Approach coordinates Opject coondinates

s

—

2 .

-

237

o

Ty

" #include "rigid.h"

A block is defined at coordinate frame blo@kﬂ;bmc grasp transform represents

the relative coordinates between a block and its graspin'g coordinates. Referring.to '

[

figure 7.2 the task is to determing where to grasp block B from the conveyor belt,

L)

The frames of interest are:

world" the world coordinate system (not declared),

cony coordinates of the conveyor belt with respect to world,
blockB coordinates of block B relative to the conveyor belt,
grasp . grasping coordinates relative to any block definition.

In geometrical terms, the task of grasping block B can be written ast,

obtainB = conv * blockB * grasp
where relation obminB is the solution that expresses the grasping coordinatcgof
block B \'avith respect to wprld coordinates. The RIGID program and results for thi§

task are given below. The program results are printed in both, matrix' and vector

forms, arepetition of the input problem js printed and the solution to refation

N

—

obtainB is given.) '

.

/* S : b {
** Determine where to grasp blockB; -

*/ - ’ .

r{;fain() : ‘

frame_t *conv; /* location of conveyor belt w.r.t. world */, |
frame_t *blockB; /* location of block B w.r.t. conveyor belt */
frame_t *grasp; /* relative grasping locatjon w.r.t. block B */

relation_t *obtainB; /* location where to grasp block B */

conv = BuildFrame("Conveyor", RPY, 80.0, 10.0, -20.0, 0.0,-0.0, 0.0;; [——_
" “blockB = BuildFrame("Block B", RPY, 15.0, 10.0, 5.0, 0.0, 0.0, 90.0); -

++ grasp = BuildFrame("grasp at", RPY, 5.0, 5.0, 5.0; 180.0, 0.0, 0.0); A

[

| OfaenRelation("obtainB"); S - Co

EquateFrame(RHS, conv); S
EquateFrame(RHS, blockB);
EquateFrame(RHS, grasp);

“

P

"

. obtainB (RP
- 0.00 1400 O

%

A"

obtainB ="CloseRelation(); .

SetCodsdSys(RPY);

-

97

WriteFrame("%6.21f", 3, conv, blockB, grasp);
WriteRelation("%6. 211‘ 1, obtamB)

SetOutputMode(VECTORY); .

WriteFrame("%#6.21f", 3, conv, blockB, grasp)

‘;VntcRclanon("%é 211, obtamB)

Conveyor (RPY)
forward transform:

=
F
l
253
8888?
L —wSG
2333

.%’f’

forward trans

-—-o_o
=3

.00
-1.00 .-
0.00 0.00 -
0.00 0.00

2o
S8 383

90.
1.00 -0.00 -0.00 25.00
0.00 0.00 -1.00-10.00
0.00 000 000 1.00
Conveyor (RPY)

80.00 10.00 -20.00 0.00 0.00 0.00

Block B (RPY)

2282

1.00 0.00 0.00 -8?0
0.00 1.00 0.00 -10.00
0.00° 0.00 1.00 20.00
0.00 0.00 '0.00 1.00
" inverse transform:

0.00_ 1.00 0.00 -10.00
-1.00° 0.00 0.00 15.00
0.00 0.00 1.00 -5.00
0.00 0.00 0.00 1.00

inverse transform:

1.00-0.00 0.00 -5.00
000 -1.00 0.00 5.00
0.00 -0.00 -1.00 5.00
0.00 0.00 0.00 1.00

-

Y

1500 1000 5.00 000 0.00 90.00

grasp. at (RPY)

5.00 5.00 5.00 180.00 0.00 0.00

obtainB (RPY)

90.00 25.00 -10.00 180.00 0.00 90.00

L 3

]

3

)

L.

98

£

Example 7.2: Robot stacking two blocks IR TN
Two blocks are defined at coordinate frames blockA and blockB,
respectively. The grasp and stack transforms represent the relative coordinates

between a block and its grasping and stacking coordinates. The frames of interest
are:

\

world -the world coordinate system (not declared), N N
cony coordinates of the conveyor belt with respect to world
. block A coordinates of block A with respect to world,
" blockB coordinates of block B reldtive to conv,
base robot Base coordinates with respect to ‘world,
gnppcr . end of robot arm relative to robot gripping coordinates,
“grasp grasping coordinates relative to any block definition,
© stack stacking coordinates relative to any block definition.

By constructing relations between object features, task description primitives can be
R \

-

formed. < e : -
igrasp inverse sense of grasping coordinates (gvrasp), .
graspB grasping coordinates of blockB relative to blockB, -
stackA stacking coordinates for blockA with respect to world,
N . stackBA ' relative displacement bettveer blockB and stackA, -
depart gripper coordinates to grasp blockB relative to base,
arm_depar{ arm displacement to grasp blockB relative to base, ¥ 4
deposit gripper coordinates to stack blockB on I}}oekA relative to . .
base,
. arm_deposit arm dlsplacemem to staclpblockB on blockA relative to
base. ' »
The arm_depart and arm_deposit. solutions represent the necessary .

. displacements of the robot arm to achieve the correct coordinate placements, with

L

*

the robot gﬁppcr\thn into accouny.
s

To demonstrate the dynamic nature of frames and.relations, the blockB

coordinates are changed to simulate the advancement of the conveyor belt. Upon’

subsequent evaluation of any relations involving blockB, the results show that the

" -~

+

o

>

equations can be written as’

100 ®

/
l

I
L —

graspB = blockB * grasp
stackA = blockA * stack
conv * blockB * stackBA = stackA
base * depart = conv * graspB
arm_depart = depart * grnpper
base * deposit = stackA * lgrasp
arm_deposit = deposit * gripper

f

-~

The driver program and results are given below.

#include "rigid.h"

/*
*/

. |
main()

{‘,

L)

** Robot transfers block B from moving conveyor belt onto block A.

static.char *FMT = "% 6.21f".

frame_t *conv, *block A, *blockB, *base, *gnppcr
frame t*grdsp, *stack;

relation_t *graspB, *stackA, *stackBA *igrasp;
relation_t *8epan. *arm_depart, *deposit, *arm_deposit;

/* Define objects. */

conv = BuildFrame("Conveyor", RPY, 80. O 10.0, -20.0, 0.0, 0.0, 0.0);
blockA = BuildFrame("Block A' RPY, 30.0, 40.0, 20.0, 0.0, 0.0, 0.0);
" blockB = BuildFrame("Block B", RPY, 15.0, 10.0,:5.0, 0.0, 0.0, 90.0);
base = BujldFrame(""Robot’ base" RPY, 40.0, 0.0, 20.0, 0.0, 0.0, 0.0);
grippér = BuildFrame("Robot gn'pper",RPY 0.0,0.0,-5.0,180.0,0.0,0. 0);
grasp = BuildFrame("grasp at”, RPY, 5.0, 5.0, 5.0, 180.0, 0.0, 0.0);
stack = BuildFrame("stack at", RPY, 0.0, 0.0, 10.0, 0.0, 0.0, 0. O),

/* Define object relations. */) y

OpenRelation("inverse: grasp"); /* easy way to get frame' inverse */
EquateFrame(LLHS, grasp); .

igrasp = CloseRelation();

Opechlatlon(grasp B"); ~ i - -

iquateFrame(RHS blockB)
‘EquateFrame(RHS, grasp);
graspB3> CloseRelation();
OpenRelation("stack A");
EquateFrame(RHS, blockA); . <
EquateFrame(RHS, stack) B) : .
stackA = CloseRelation();)
OpenRelaton("block B to stack A dlsplaccmcnt)s
EquateFrame(LLHS, conv); s
EquateFrame(LHS, blockB); : y

9

relations have been updated. For an equivalent mathematical analysis, the kinematic

5

§ BN 101

EquatcRclanon(RHS stackA)
stackBA = CloseRelation();

" /* Define tdsks of robot. */

OpenRelation("robot depart with block B");

EquateFrame(LHS, base);
. . _ . EquateFrame(RHS, conv);

EquateRelation(RHS, graspB);

depart = CloseRelation();

OpenRelation("arm depart motion");
EquateRelation(RHS, depart);
EquateFrame(RHS, gripper);

-, arm_deparn = CloseRelation();

OpenRelation("robot deposit block B on block A"),

EquateFrame(LHS, base);
¢ EquateRelation(RHS, stackA);
EquateRelation(RHS, igrasp);

deposit = CloseRelation(),

OpenRelation("arm deposit monon D
EquateRelation(RHS, deposit); * '
EquateFrame(RHS, gripper),

-arm_deposit = CloseRelation(),

- /* Print results. */ -

o SetCoordSys(RPY); .
. SetOutputMode(VECTOR);, (_/
.) - printf("INPUT TASK:\n");
WriteFrame(FMT, 4, blockA, conv, blockB, base);
" WriteRelation(FMT, 3, stackA, graspB, stackBA),
printf("\nROBOT SQLUTION:\n");

WriteRelation(FMT, 4, depant, arm_depart, deposit, arm_deposit);

. printf(""\nCONVEYOR BELT-ADVANCES BLOCK BM\");
\ UpdateFrameRel(blockB, 0.0, 20.0, 0.0; 0.0, 0.0, 0.0);
WﬁtcRcl‘atidn(FNT, 2, arm_depart, arm_deposit);
} ,

INPUT TASK:

_ Block A (RPY)
<~ 30.00 .40.00 20.00 OOO 0.00 .0.00
a . Conveyor (RPY) "
. 80.00 10.00 -20.00 0.00 0.00 0.00 i
- L Block B (RPY) :
15.00 10.00 5.00 0.00 0.00° 9000 ‘
Robot base (RPY)
40.00 0.00 20.00 000 0.00 OOO
stack A (RPY)
30.00-40.00 30.00 000 OOO 000

grasp B (RPY) (e

v+ 410.00 "15.00 10.00 180.00 0.00 9000 ,
. block B'to sta Adlsplacement (RPY) -
20.00 65.00 500 000 000 -90.00

: ROBOT SOLUTION: - _ -
robot depart:with block B (RPY) .

-

102

@

5000 25.00 300018000 0.00 9000

arm depart motion (RPY) ™

50.00 25.00-25.00 -0.00 0.00 90.00 - . .
robot deposit block B on block A (RPY) . °
-15.00 45.00 15.00-180,00 0.00 OOO

-arm deposit motion (RPY), 3
~15.00 45.00 20.00 0.00 0.00 0.00 -

CONVEYOR BELT ADVANCES BLOCK B:
arm depart motion (RPY)

50.00 45.00 -25.00 -0.00 0.00 90.00
arm deposit motion (RPY) L
-15.00 45.00 20.00 0.00 0.00 0.00

-+

7.2 Trajectory Examples

) Ethplg of C programming language excerpts are highlighted in bold type. A
‘ C b ’

full description of the RIGID function calls are given in the RIGID reference library

in Appendix A.

Example 7.3: Simple PUMA 560 trajecto N \
To demonstrate the most simple use of the trajcclory generation, an example from
Lin, Chang and Luh [lOOJ for a PUMA 560 robot is used. Figure 7.3 lists the joint

displacements for each of the c1ght knots of the trajcctory The robot is mmally at
rest, and comes to a full stQp at the nd of the trajecxo\l'y.‘ The trajectory is specified g
to the trajcctgry génerator givén in the program listing Below A summafy of the
“maximym joint velocny and acceleration.limits for the PUMA 560 are provxdcd m |
the Appcndxx D Thc -overall time dilation factor was computed to be 4. 56 A

closer examination of the joint profiles reveal that:
.

6™ | =238 deg/sec 8 1'“”| = 658 deg/sec?.
foom| =t32demsee Joym| =365 deg/sec?)
k4 f .
- |8™| =252 degsec 037t = 634 deglsec? -
* o . ')] - <. '
- [‘ u ‘, £] ’ . \‘“‘ «

£

N
6,M3| = 307 deg/sec 8,4™*| = 1455 deg/sec?
0™ | = 153 dégisec |B5™*| =742 degsec?
\ * N v
8™ | = 112 deg/sec 8| =291 deg/sec?

The overall time dilation factor is then obtained from A = max {(2.38, 3.82y,
(1.38, 3.02), (2.52, 2.90), (2.04, 4.56), (1.17, 2.87), ‘(1.01,' 130)) =4.50. Itis
obvious that thé acceleration profile of joint #4 is primarily responsible for the

magnitude of the overall time dilation factor A. Thc total travelling time for the

feasible trajectory of the robot is therefore 32 seconds. The complete trajectory for
——

—

each of the joints of the PU&A 560 robot is given in ﬁgurcs 7.4 a-f.

>

The éimpli'city of e?gtr‘?ple 7.3 is useful to demonstrate some B-spline curve

‘characteristics. The-derivative boundary constraints introduce tension in the B-

. \ .
spline cyrves forming the robot trajectory, as shown in figures7.5,6 for two roboy,” .

- -

joints. anures 1.5, 6 are not ime dilated so that a companson ofB splmcs with

‘and withdut constraints can be compared. in general, the con\tr.nncd B- splmu

curves dscillate more than the unconstrained curves bctwqcn knots It is also
¢vident from figures 7.5, 6 that the acceleration profile lags the velocity prbﬁlé by a

909 degree phase difference, and that curve' maxima/minima occur at uniformally

. spaced intervals,

« -
L 4 . -

<+ . L4 -

* The dfiver. program for example 7.3 is gwcn below.

#include ' ngldh" , ‘ _— X
#define FMT -~ "%6.2If* |
main() .- _\')
'trajectory _t *path; o 1) o) o
J* Apphcauon setup. "'/ ©o . .
SexSampleStcp(O 1); o) e
Y . “

/\

. 104
SetMotionMode(JOINT);
SetOutputMode(VECTOR);
SetBodyType(PUMAS60);

SetVelConstraint(100.0, 95.0, 100.0, 150.0, 130.0, 110 0);
SeU\ccConstramt(45 0, 40.0, 75.0, 70. 0, 90.0, 80 0);

/* Build trajectory. */
OpenTrajectory("Luh path”); -
BodyVelocity(0.0, 0.0, 0.0, 0.
BodyAcceleration(0.0, 0. 0. 0.
BodyPosition(10.0, 15.0,
BodyPosition(60.0, 25.0,
: BodyPosition(75.0, 30.0,
BodyPosition(130. 0‘ -45.
BodyPosition(110.0, -5S.
BodyPosition(100.0, -70.
BodyPosition(-10.0,"-T0.
BodyVelocity(0.0, 0.0, 0. 0 0.0,
BodyAcce}erauon(O 0, 0.0, 0.0, 0. 0,.0.
10.0, 50.0, -30.0

Opo

OO)'
00 20.0):

__p'

" . BodyPosition(-50.0,
path = CloseTrajectory(); .
)
, /* Print results. */
printf("TOTAL %lf\n" EnquIreTraJectory Path)),
WriteTrajectory{"%6. 21F 1, pathy;

&

105

@
>
ity 2 3. 4 s g
Knot (degrees)
1 10 15 4 S5 10 6
2 60 25 180 20 30 40
3 75 30 200 60 -0 80
4 130 --45 ‘120 110 60 70
5 110> 55 15 20 10 -10
6 100 -70 -10, 60 50 16
7 | -0 -10 Joo -100 -4 30
8 S0 10 50. -3 10 20
; .
Figﬁrve 7.3 Joint«gpéce ;:xamp_le
5
<»

4

’
:
;
e - ’
: : 106 -
J -
- + - -
. .
'y - 3
o
.
.
(i e ma e a o S e

o 64 8 12 16 20 24 ..28 32
. - e I

Positon
Velocity
" Acceleration
|‘ R

- = Positon /
AY - 5 i /
= Velocity -, / - .
: SR > Acceleration’
. . PR
/
A » .
* " /l/ "
‘ -80 AT T , " 2
: . 0 4 812 16 20 24 26 3 -
¢ , . - _,(' . . . ' ,. . N ~ 4
LT . + Time C T . L . -
. . . . * » M /\ -
z !)y | - . 4
¢ . K. . , /, .
, - , Figure 7.48, b: Angular position, velocity and acceleration profiles.
.- / . - . , . . ‘) Y N 2
* - ' . 3 4 ~ R ’ L '
.) . A] L '
hY Lo i N i . ’
\ l; " ’ 4 ! * ’ ‘ ’
’ S S) I ’,

1]
.
-

-

o

LY
————

4

o

S

-100 T e

0 4 8 12 .16 20 24 28 32

120

80

—-= 'Pgsi'tio'n
= Velocity
> Acceleration

Position

= . Velocity

-

-

Acceleration

£

o}

2

— Positon .
== Velocity
=% Acceleration

_E

" = Positidh
— VYelocity

40 T

O 4 8 12 16 20 .24 28 32
‘ Time e

- L]

,(Pigun 7.4¢e, f: Angular position, velocity, acceleration pmf‘i]e‘s‘ "

—_——

= Acceleration .,

}
i

_ Angular velocity (degisec)

. =0~ Unconstrained
" =+ Constrainad

Figure 7.5: Constrained and unconstrained joint velocities.

-, -,

y
-

Anguler accelerat:lon {degisecisec)

" Angular acceleration (deglsecisec)

AY

4

~

-;’3‘

111. ' '

- 53
Example 7.4: Spr aintin

-

Thi§ ‘&xample sunﬁatcs the motion of a PUMA 560 robot along the surfacc of a
hypothctxcal car b@}g shown in ﬁgurc 7.7. Eight points are selected, ﬁvc forming

a stralght -line segmcm and three forming a curved segment with an initial constraint

o0

on vclocxty and acccleranon. The desired robot configuration.is a right shoulder,

[y

elbow up and flipped wrist. Time dilation is ignored in this example.

The eight frarr;cs are converted into joint displaccmcms, then B-spline
trajectories are gcneratcd for &ach joint of the PUMA 560 robot-. Whg;a the* joint
space B-spline trajéctories are evaluated, the B-spline derivatives (;mm veloc'nies
and accelerauons) are computed and plotted as shown in graphs in figure 7.8 e- 1

To examine how well the robot inscribes the desired world space frames, the joint

-

space trajectories are trarisformed back into Cartesian coordinate sat 3 high sampling
rate. The graphs in figure 7.9a,b depict the actual path of robot supcrimp;sed on
the eigl‘ht specified frame coordinates. Since the orientation vectors are maintained
constant throughout the trajectory they are not shown.. Figure 7.9a shows a +6.0
mm inscription error in the Yia;c'iﬁ. Figure 7.9b demonstrates ayery smgll Eurve
oscillation within the desired trajectory. The am'oum of inscription error is not very
meaningful, since it is subject to robot configuration, initial concKitions and
frec;ucnc&o'f 5nots within a particular trajectory.

v 0

112 ’

113

A
The driver program and nongraphic results are given below.

N

#include "ngid.h"
#define EMT "%6.21f"

void main(argc, argv) ‘
‘ : int argc. c a
Y char *argv(];

trajectory_t *paintPath;
_— —~ velocity _t *rest;
| ‘ ’ frame_t *straight[5], *curve[3].
‘ l ‘ int pt. :
\ double xt, yt. zt, inc;
: ' char name[SIZENAME]|.

/* Application setup. */
- SetSampleStep(1.0); ‘

% SeBodyType(PUMAS60),
SetMotionMode (JOINT). . '
SetQutputMode(VECTORY):

SetCoordSys(RPY); o
SetBodyConfig(-1, 1, -1).

" - - [* Generate straight-line part of path.”*/
. = -150.0; yt = 6(000.0, 2t = 85.0:
or (pt =0; pt < 5; pt++, xt -= 50.0) { '
.-, ‘ sprintf(name, "straight #(%d)", pt + 1);
' . C ? straight|pt] = BuildFrame(name, RPY x1,yt,2,-50.0,50.0, 50.0);
y
Generate curved part of path. */,
xt = -400.0; yt = 600.0; zt = 85.0; inc =.P1/4.0;
for (pt=0;pt < 3; pl++, Xt -= 500){
sprintf(name, "curve #(%d)", pt + 1),
o g curve[pt} = BuildFrame(name, RPY, xt, yt, zt + 50.0 *
~sin(PI - pt * inc), -50.0, 500 50.0);

} ,
. rest = BuildVelocity("Robot at rest”, RPY, 0.0,0.0,0.0,0.0,0.0,0.0);

OpenTrajectory("Car Paint Path");
- SctVelocity(rcst)
for(pt=0; pt<5;pt++). . _
Movc'i“oFrame(stranht[pt])
for (pt'= 0; pt < 3; pt++)
- . MoveToFrame(curve{pt});
paintPath = CloscTrajectory(); ‘
. [* Print results. */
WriteFrame(FMT, 5, straxght[O] stralght[1], straight[2], stmght[‘%]

B

¢

v

straight #(1) (RPY)
-150.00 600.00 85.00 -50.00 50.00 50.00
straight #(2) (RPY)

straight[4]);
WriteFrame(FMT, 3, curve[0], curve[1], curvc[2])
WriteTrajeciory(FMT, 1, paintPath);,

114
“

-200.00 600.00 85.00 -50.00 50.00. 50.00

straight #(3) (RPY)

-250.00 600.00 85.00 -50.00 50.00 -50.00

straight #(4) (RPY)

-300.00'600.00 85.00 -50.00 50.00 50.00

straight #(5) (RPY)

-350.00 600.00 8500 -50.00 50.00 50.00

curve #(1) (RPY)*

-400.00 600.00 85 00 -50.00. 50.00 501

curve #(2)1RPY)

-450.00 600.00 120.36 -50.00 50.00 50.00

curve #(3) (RPY)

-500.00 600.00 135.00 -50.00 50.00 50.00

IN

o

d

—

,m\.

Angylar Measure (Leg}

. Posaion

115 Lo

Joint ¥1 profile
S0 '
0)
-50 -
-0 Position
& Velocuy

-,

-150 TM)

{* & Accelintion
b

N
T
0 1 2

|

T
-
-

3

T
4 S

6 . 7

Tx& . L

’ Joint ¥2 profile

“?,‘ Position

- Velocuy -
& Accelartion

hY

<

\ : .
- Figure 7.8 ¢, b. Angular position, velocity end acceleration profiles

-

Ny ow

Position

/
i 4
A«
-0 Position
~ Velocity.
-8 Accelention

RS

-2~ Position
=+ Velocity -

-1

-20 T T v)
%0 1 2 3 4 S € !

k ,Time\

B Accelaration

n Y

(N

m

: - % Q .
- ' “ 117 - .
-4') h
‘ Joint ¥#5 profile- .
. o ¥
14
‘ k: "~ Position
a <* Velocaty
K i & Accelanlion
1 \ ")
, 1
EY N . ¢
.. ; . o
2 125 4 > Posuion
£] - . ' ’ « . ™% Veloeny
. = 1 ‘ - & Accelention’,
75 1 . ' P : e
{. . T
7 K . . ’
Figure 7.8 ¢, f: Angular position, velocity and acceltration profiles

3 . s

e

Y-coordinate (mm) '

~

5% 1.

118

606 1
. 9

604 -
602 -

600 -

596 -

594 -

© PIab of rodot
& desired path

-

5

T Y

92 1 v r T T T T .
-5,?%? =450 %350 -250- -150, o

X-coordinate (mm)

s ' : PUMA 560 path inscription .

160 . -
I S
¢ ’ H ’ .
2 1 -0 path of robot
E‘ # ldesired puth
Q
© i
N ‘ *
\\ t . ‘
- 80 +——————————————— ”
« _-550 ' -450 -350 -250 ~150
_ X-coordinate (mm) ‘
£ y B
\ Figure 7.9 8, b: PUMA 560 path inscription error
N . - ~
S K i
" : ") \' . ’ + ‘\\

4

Chapter 8 - Conclusions

- - '
.
.

-

Robot research encompasses a variety of areas including robot task planning,

trajectory generation, kinematic -and dynamic compensation in controller design,

collision avoidance, multiple manipulator coordination and sensor feedback. “

N

-~

’

Rot:;ots must be dble to perform independently and ';intelligcntly" if they are to
be better introduced to many sectors, ,§uch as manufacturing, medical tec'hnolog?'.
hazardous'chcmicalexperime‘ntation. oceanography and space cxploratigﬁx‘ 'I'h;'
. accomplishment of such directives nebessitates'sol'utions to the' many current

research problems discussed in-this thesis. 1

v

AN

An attempt to bridge the gap between robot task planning ;lnd trajectory
generation has been made in'thé programming environment. called R!GID This

environment alJows a user to describe a scene consisting of rélations of coordinate .

frames using the RIGID'language library and the standard C programming
- . M " ‘ ' '

language. RIGID allows quite a ~variety. of mation constrai}us .and B-spline -

i'ntcrpolation modés to;t)e specified within each given trajectory. Both velocity and

acceleration constraints can be applied to selected knots and may ‘;)e specified at

either the joint level, or in Cartesian space. -)
Bl T ' ~
A - v

* A mathematical development of & new formulation of B-splines is given which

is suitable for constructing robot trajectories subject to certaini boundary constraints

and derivative extrema limits. These B-spline trajectorygeneration algorithms have

been imp]c.mcntcd in'RIGID. It has b@cn'shown that 'cxlchsip’ns to the offline

2

Lo S
. -

[

- trajcctory gencranop tcch*rqucs may beé useful’ for online perturbations to perform

complxam and COHISIOH avoidance: man%uvrcs

9

by . ’ R Ay
Future possible extensions to RIGID include:

A 4
- support of more 'types of rigid-bodies, .-
abilityto specify tasks involv’mg multiple and imeracdng ‘manipulators,

- graphical réprcscmalon and/or interface usmg a hbrary packagc such as
GKS[128],

- an interpretof vers ‘n usmg tools'such as YACC {129], LEX {130} and
compiler, tcchmqux [131] allowin g higher levels of abstracuon to specify
robot tasks,

- areal time executive which communicates with some type of hardware
allowmg cxtemal devices such as physical robots 0 be controlled. -

AN RS
- .
—_— - =
)
v
\ .
L
N o ‘
v
’
* .
. N
'
\
- -
. .
Y
N\, , - *ﬁ\
\
¢ -~
-
) N
v »
‘ . 4

(2]

L (3]

[4]

- [6] °

Referencés/

R:P. Paul, Robot Manipulators: Mathemancs Programming and €ontrol,

MIT Press, MIT, Cambndgc. MA, 1981.

J. Denavit, R'S. Hartenbcrg, "A- Kinematic Notation for Lower-Pair

Mechanisms Based on Matrices,” ASME J. Appl. Mech., June 1955, pp. *

215-221.

S. R’hmad “Second Order Nonlinear Klgcmanc Effects, and Thcfr
Compensation," JEEE Int. Conf. Robotics and Automat., St. Louis, MI,
March 1985.

C.A. Balafoum 'P Misra, R.VsPatel, "Recursive Evaluation of Linearized
Dynamic Robot Models,” JEEE J. Robotics and Automat., vol. RA-2, no,

+ 3, Sept. 1986, pp. 146-155.

V. Hayward, R.P. Paul, "Robot Mampulator Control under UNIX RCCL:
A Robot Control C Library,"” Int. J. Robotics Res., vol 5, no. 4, Winter
1986.. \

R.A. kacl "Construcung and Debugging Manipulator Programs,”

Stanford Umvemty Computer Science Dept., Réport no. STAN-CS-76-
567, Stanford, CA, Aug. 1976.

-

J.J. Craig, Introduction to Robotics: Mechanics and Control, ¥ddison-
Wesley, 1986 . ‘

$.S. Leung, M.A. Shanblatt, "Rcal Time DKS on a Single Chxp," IEEE .
Robotics Automat., vol. RA-3, no. 4, Aug. 1987, pp. 281-290.

B.C. McInnis, C.K. Liu, "Kinematics and Dynamics in Robgtics: A

. Tutorial Based Upon Classical Concepts of Vector Mechanics," 1EEE /.

Robhotics Automat., vol. RA-2, no. 4, Dec. 1986, pp. 181-187.
Unimate PUMA Mark 11 500 Series, vol. I: Equipment Manual, Usisation

' Inc., Shelter Rock Lane, Danbury, CT{)6810, April 1984

S. Elgazzar, "Efficient Kinematic Transformations for the PUMA 560
Robot," IEEE J. Robotics and Automat., vol. RA-1, no. 3, Sept. 1985 PP
142-151. 3

W.J. Crochetiere, ' Locanng the Wrist of an Elbow-Type Mampulamr,
IEEE Trans. Syst., Man, Cybern., vol. SMC-14, no. 3,-May/Junc
1984, pp. 497-499. ‘

AA. Goldcnbcrg, B. Benhabib, R.G. Femon "A Complctc Gcncrahzcd
Solution to the Inverse Kinematics of Robots," IEEE J. Robotics and
Automat., vol, RA-1, no. 1, March 1985, pp. 14-20.

%

4

- e
s

o [14]
(15]

:ll6}

7

»

(18]

[20]

[21]

P 122

"

23]
24]
[25]

(26]

v [27]

(19)

122

-

V.J. Lumelsky, "ftcranvc Coordinate Transformation Procedure for One :

Class of Robots,” IEEE Trans. Syst., Man Cybem vol. SMC-14, no. 3,
May/June 1984, pp. 500-505. ™ .

L. Sciavicco, B. Siciliano, "Coordinate Transformation: A. Solution »

Algorithm for One Class of Robots," IEEE Trans. Syst Man, Cybern.,
vol. SMC 16 no. 4, July/Aug. 1986, pp. 550-559.

A. Bazerghi, AA. Goldenberg, J. Apkarian, "An Exact Kinematic"-Model
of PUMA 600 Manipulator," JEEE Trans. Syst., Man, Cybern., vol. SMC-
14, no. 3, May/June 1984, pp. 483-487. .

R.P. Paul, B. Shimano, GE\ Mayc’r “Kinematic Control Equations for

' Sxmplc Mimpulators " IEEE Trans. Syst., Man, Cybern., vol. SMC-11,

6, June"1981, pp. 449-455.

C.S.G. Lee, M. Ziegler, "A Geometric Approach in Solving the Inverse
Kinematics of PUMA Robots," 13tk ISIR/Robots 7 Proceedings, August
1983, pp. 16.1-16.18. :

M. Shahinpoor, "The Exact Inverse Kinematics Solutions for the Rhino .

XR-2 Robot Manipulator," Robotics Age, vol. 7, no. 8, Aug. 1985 pp. 6-
14, .

C.P. ‘Neuman, J.J. Murray, "The Complcte Dynamic Model and
Customized Algorithms of the Puma Robot," /EEE Trans. Syst.,"Man,
Cybern., vol. SMC-17, no. 4, July/Aug 1987, pp. 635-644.

A. Hemami, "Kinematics of Two- Arm Robots," IEEE J. Robotics
Automat., vol. RA-2,.no. 4, Dec. 1987, pp. 225-228:

t

W.P. Seering, "Robotics and Manufacturing - a'Perspecuve in Robor
Research: First International Symposium, edited by M. Brady, R. Paul,
MIT Press, 1984, pp. 973-982. .

T. Lozano-Perez, "A Simple Motion-Planning Algorithm for General Robot

+Manipulators," IEEE J. Robotics Automat., vol. RA-3, no. 3, June 1987, .

pp. 224-238. : . /

T. Lozano-Perez, M.A. Wesley, "An Algorithm for Plznmng Collision-Free
.Paths Among Polyhedral Obstacles " Commun.*ACM, vol. 22, no. 10,
Oct. 1979, pp. 560-570. -~ . }

T. Lozano Perez, "Automatic Pla'nrung of Mampﬁlator Transfer
Movements,” [EEE Trans. Syst Man, Cybern vol SMC-11, no. 10,
Oct. 1981, pp. 681-689.

T. Lozano-Perez, “Spatial Planmng A Configuration Spacc Approach ,"
IEEE Trans. Computers, vol. C-32, no. 2, Feb. 1983.

R.A. Brooks, T-Lozano-Perez, "A Subdms:on Algorithm ih Configuration

>~-Space for Findpath with Rotation," JEEE Trans. Syst., Man,.Cybern., vol.

SMC-15, no. 2, March/Apnl 1985, pp. 224-233.
T N

-

“

(28]

(29]

(30]

(31

(321

[33]"

[34)

[35]

[36]
[37]
[38]
[39]
[40]

[41]

" Winter 1984, pp. 51-65.

123

S.M. Udupa, "Collision Detection and Avoidance in Computer Controlled
Manipulators," Proceedings of 1JCAl-5, Cambridge, MA: MIT Press,
1977, pp. 737-748., ' ~
R.A. Brooks, "Solving the Find-Path Problem by Representing Free Space
as Generalized Cones," Al Memo #674, Al Laboratory, MIT, Cambridge,
MA, May 1982, i o ‘
J.Y.S. Luh, C.E. Campbell, "Collision-Free Path Ptanning for Industrial
Robots,” Proc. 21st IELE Conf. Decision Contr., 1982, pp. 84-88.

&
D.C. Pieper, "The Kinematics of Manipulators Under Computer Control,"
ARPA order #957, Stanford. University, Stanford, CA, 1968.

.C. Widdoes, "A Heuristic Collision Avoidance for the Stanford Robot
Am," C.S. memo #227, Stanford University, Stanford, CA, June 1974.

H. Ozaki, A. Mohri, M. Takata, "On the Collision Free Movement of a
Manipulator,” in Advanced Software in Robotics, ed. A. Danthine and M.

‘Geradiri, Liege, Belgium, May 1983, pp. 189-2(X). .

Hans P. Moravec, "Obstacle ;\voidancc and Navigation in the Real World
by a Seeing Robot Rover,*-PhD dissenation, Stanford, CA, AIM-340,
"Sept. 1980. . -

Hans P. Moravec, Robot Rover Visual Navigation, Ann Arbor, Mi; UMI
Research Fress, 1981.

J. O'Rourke, N. Badler, "De‘composition of Three-Dimensional Objects

into Spheres," IEEE Trans. Pau. Anal. Mach. Intell., vol. PAMI-1, no. 3,
July 1979, pp. 295-305. -)

B.I. Soroka, R.K. Bajcsy, "A Program for Describing Complex Threec- B

Dimensional Objects Using Generalized Cyclinders as Primitives,” Proc.
IEEE Conf. Paut. Recognition-Image Processing, 1978. °

G.T. Toussaint, "Some Collision Avoidance Problems Between 'Spheres,“
Proc. IEEE Int. Conf. Cyhernetics and Society, Tycson, AZ, Nov. 1985,
pp- 291-295. ’ . .

L.E. Hopcroft, J.T. Schwartz,, M. Sharir, "Efficient Detection of
Intersections-among Spheres,” Int. J. Robotics Res., vol. 2, no. 4, Winter
1983, pp. 77-80.

Y.C. Kim, J.K. Aggarwal, "Rectangular Parallelepiped Coding: ‘A

. Volumetric Representation of Three-Dimensional Objects," JEEE J. .

Robotics Automat., vol. RA-2, no. 3, Sept. 1986, pp. 127-134.

L. Gouzenes, "Strategies for Solving Collision-Free Trajectories Probleins

for Mobile and Manipulator Robots," Int. J. Robotics Res., vol. 3, no. 4,

",
M)

-

o

[42]

(43]

(44]

[45]

[46)

 [47]

[48]

[49]

[50]

15y

152)
(5%

[54).

" 1983, pp. 345-398.

124

*

R.A. Brooks, "Planning Collisien-Free Motions for Pick- and-Place
Operanow Int. J. Robotics Res., vol 2, no. 4, Winter 1983, pp 19 44,

N. Hogan, "Impedance Control: An Approach to Mampulatlon Amerzcan
Control Conference, San Diego, Aug. 1984. o

- N. Hogan, "Impedance Control: An Approach to Manipulation. Part I:

Control of Mechanical Interaction. Part II: Control of End-Point
Impedance,” ASME J. Dyn. Syst., Meas. and Contr., 1983,

O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile

. Robots," IEEE Int. Conf. Robotics and Automat., St. Louis, March 1985.

K. Kant, S.W. Zucker, "Trajectory Planning in Time-Varying
Environments I: TPP = PPP + VPP,"” TR-84-7R, Computer Vision and
Roboucs Laboratory, McGill University, Montreal, 1984,

J.T. Schwartz, Micha Sharir, "On the Piano Movers Problem I: The Case of
a Two Dimensional Rigid Polygonal Body Moving Amidst Polygonal
Barriers,” Communications on Pure and Applied Mathematics, vol. xxxvi,

A\

J.T. Schwartz, M. Sharir', "On the Piano Movers Problem II: General

" Properties for Computing Topological Properties of Real Algebraic

Manifolds,” Repi. 41: New York University Department of Computer
Science, Courant Institute of Mathematical Sciences, N.Y., 1982. »

J.T. Schwartz, M Sharir, "On the Piano Movers Problem III: Coordinating
the Motion of Several Indcp&dem Bodies: The Special Case of Circular
Bodies Moving Among Polygonal Barriers," Tech..Report New York
University Department of Computer Science, Courant Institute of
Mathematical Science, N.Y., 1983. ‘

E.K. Wong, K.S. Fu, "A Hierarchical Orthogonal Space Approach to
Collision-Free Path Planning,"” ‘Proc. IEEE Int. Conf. Robotics, March
1985. P .

B. Faverjon, "Obstacle Avoidance Using Octrec in the Conﬁgurauon Space
of a Manipulator," Proc. Int. Conf. Robotics, March 1984.

S. Kambhampati, L.S. Davis, "MulnprcsoluuomPath Planning for Mobile
Robots," IEEE J. Robotics Automat., vol. RA-2, no. 3, Sept. 1986 PpP-
135-145. : -

E.K. Wong, K.S: Fu "A Hierarchical Orthogonal Space Approach to_
Three-Dimensional Path Planning, " IEEE J. Robotics Automat., vol, RA-
2, no. 1, March 1986, pp. 42-53.

M.A. ‘Peshkin, A.C. Sanderson, "Reachable Grasps on a Polygon: The
Convex Rope Algorithm,” IEEE J. Robotics Automat., vol. RA-2, no. 1,
March 1986, pp. 53:58. ..

'

n

[55]

[56]

(57]
(58]
[59]

[60]

[61]

[62]

[63]

[64)

(65] -

[66]

[67]

“168]

Dearborn, M1, 1979, pp. 249-262.

"32.-

125

e A

1.D. Wolter, R.A. Volz, A.C. Woo, "Automatic Gcncrauon of Gripping
Positions,” IEEE Trans. Syst.,, Man, Cybern., vol SMC-15, no. 2,)
March/April 1985, pp. 204-213. ' |

T. Lozano-Perez, "Task Planning," in Robot Motion: Planning and Control,
Cambridge, MA, MIT Press, 1982, pp. 490-493.

J.M. Abel, W. Holtzman, J.M. McCarthy, "On Grasping Planar Objects
With Two Articulated Fmgcr‘s " IEEE Trans. Robotics Automat vol. RA-
1, no. 4, Dec. 1985, pp. 211-214,

J. Barber, R.A. Volz, et. al.,, "Automatic Evaluation of Two- -Fingered
=§}np§ "IEEE J. Robotics Amoma: vol. RA-3, no. 4, Aug. 1987, pp.
56-361.

e
R.S. Fearing, "Simplified Grasping and Mahipulation with Dextrous Robot
Hands," IEEE J. Robotics Automat., vol. RA-2, no. 4, Dec. 1986, pp.
188-195.

J.W. Jameson, L.J. Leifer, "Automatied Grasping: An.Optimal Approach,"
IEEE JTrans. §yst., Man, Cybern,, vol. SMC-17, no. 5, Sept/Oct. 1987,
pp. 806-814.

D E Whitney, "Qua51 Static Assembly of Compliantly Supported Ridig
Parts,” in Robot Motion: Planning and Control, edited by M. Brady, et. al.,
MIT Press, Cambradge, MA, 1982, Pp- 439-471.

B. Dufay, J.C. Latombe, "An Approach to Automatic Robot Programining
Based on Inductive Learning,” in Robot Research: lrst International
Symposium, edited by M. Brady, R. Paul, MIT Press, 1984, pp. 97-115.

T. Lozano-Perez™ M.T. Mason, R.H. Taylor, "Automatic Synthesis of
Fine-Motion Strategies for Robots," in Robot Research. 1rst International .
Symposium, edited by M. Brady, R. Paul, MIT Press, 1984¢pp. 65-96.

"M.J. Dunne, "An Advanced Assembly Robot,” in Industrial Robots, vol. 2:

Applications, edited W.R. Tanner, Society of Manufacturing Engineers,

E.-Freund, H. Hoyer, "Collision Avoidance t:or Industrial Robots
Arbitrary Motion," J. Robotic Sys., vol. 1, no. 4, 1984, pp. 317-329.

B.H. Lee, C.S.G. Lee, "Collision-Free Planmng of Two Robots," Ii'EE
Trans. Syst., Man, Cybern., vol. SMC- 17 no. 1, Jan/Feb. 1987, pp. 21-

P

Y.F. Zheng, "Collision Effects on Two Coordinating Robots in Asscmbly £

_ and~the Effect Minimization," JEEE Trans. Syst., Man, Cybern., vol.”

SMC-17, no. 1, Jan/Feb. 1987 pp. 108-116.

S. Mujtaba, R. Goldman, "AL Users' Manual,” Third Edition, Stanford
Dept. of Computer Science, Report No. STAN- CS- -81-889, Dec. 1981.

o2

[69]

ad

[70]

7 [71)

[72]
) (73]
[74]

3175)

[76]

(77)

79]
fs0)
(81]

(82]

! 5

. 5 126

ﬂ.
-4

R. Goldman, Design of an Interdctive Mampularor Programming
Environment, UMI Research Press, Ann Arbor; MI, 1985.

User's Guide to VAL 11, Part 1 Control from the System Terminal, Part 2 :
Communications with a Supervisory Computer, Part 3: Real-Time Path
Control, version X2, Unimation Inc., Danbury, CT, Apr. 1983.:

J.J. Craig, "JARS: JPL Autonomous Robot System, Robotics and
’;'clcopcrators Group, Jet Propulsion Laboratory, Pasadena, CA, 1980.

R.A. Volz, T.N. Mudge, D.A. Gal, "Usinf”“Ada-as a Programming
Language for Robot-Based Manufacturing Cells," IEEE Trans. Syst., Man,
Cybem., vol. SMC-14, no. 6, Nov/Dec. 1984, pp. 863-878.

R.J. Popplestone, A.P. Ambler, .M. Bellos, "An Interpreter for a
Language for Describing Assemblies,” ih Robot Motion: Planning and
Control, MIT Press, Cambridge, MA, 1982.

TOC Hc?faerson, W.S. Fai, C.-Hansen, "MKS: A Multisensor Kernel
System " IEEE Trans. Svst Man, Cybern., vol. SMC-14, no. 5,
Sept:/Oct. 1984; pp: 784-791.

Proceedings of the NATO Advanced Research Workshop on Languages for
Sensor Based Control in Robotics, Ciacco, Casgglvecchio Pasco/ltaly, Sept.
1-5, 1986 also published as Languages for Sensor-Based Control in
Robotics, Springer-Verlag, Computer and Systems Science, vol. 29, 1986

A. Zwarico, "Robot Programming Languages: Issues of Concurrency and
Real-Time," Proc. IEEE Int. Conf. Syst., Man, Cybern., Tucson, AZ,
Nov. 1985, pp. 291-295.

K.G. Shin, S.B. Malin, "A Structured Framework for the Control of
Industrial Manipulators,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15,
no. 1, Jan/Feb. 1985, pp. 78-90. -

W.A. Gruver, B.1 Soroka J.J. Craig, T.L. Tumner, "Industrial Robor
Programming Languages: A Comparmve Evaluation," /EEE Trans. Syst.,"
Man, Cybern., vol. SMC-14, no. 4, July/Aug. 1984, pp. 565-570.

T. Lozano-Perez, "Robot Programmmg Proc. IEEE, vol. 7, July 1983,
pp- 821-840.

R.L. Burden, JD Faires, A.C. Reynolds Numer:cal Analysis, Prindle;
Weber&Schmxdt MA, 1981.

1.D. Faux, M.J. Pratt, Computanonal Geome:ry for Design and
Manufacture, John Wiley & Sons 1979.

B.A. Barsky, "A Description and Evaluation of Various 3-D Models," ;}E
Computer Graphics and Applzcatxons. vol. 4, no. 1, January 1984, pp. 38
52.

-

v -

127

[83] C. De Boor, A Practical Guide 10 Splines, Applied Mathematical Scncnccs '
vol. 27, Springer-Verlag, New York, 1978.

{84] R.T. Farouki, J.K. Hinds, "A Hierarchy of Geometric Forms," IEEE
Computer Graphtes and Applications, vol. 5, no. 5, May 1985, pp. 51-78.

[{85] B.A. Barsky, J.C. Beatty, "Local Control of Bias and Tension," Computer
- Graphics, vol. 17, no. 3, July 1983, pp. 193-218.)

[86] G.M. Nielson, "A Locally Controllable Spline with Tension for Interactive
Curve Design,” Computer-Aided Design, vol. 14, no. 3, 1984, pp. 199-
205:)

{87) T.N.T. Goodman, K. Unsworth, "Manipulating Shape and Producing

Geometric Continuity in B-Spline Curves,” IEEE Trans. Computer
Graphics and Applications, vol. 6, no. 2, Feb. 1986, pp. 50-56.

[88] G.M. Nielson, "Computation of v-Splines," technical report NR 044-433-
11, Dept- Mathematics, Arizona State Umvcrsuy,'l‘empc Arizona, 1974,

-~
[89} G.M. Nielson, "Rectanguldr v- Sp]mcs IEEE Trans. Computer Graphics
- and Applications, vol. 6, no.2, Feb. 1986, pp. 35-40.

{90} » M. Brady, et al "Trajectory Planning," in Robot Motion: Planning and
Control, MIT Press MA, 1982, '

[91] M.S. Mujtaba, "Discussion of Trajectory Calculation Methods," in
Exploratory Study of Computer Integrated Assembly Systems, T. O:
Binford, et. al.; Stanford Umvcrsny Artificial Intelligence Laboratory,
AIM 285.4, 1977.

[92] D.E. Witney, "Resolved Motion Rate Control of Manipulators and Human -
Prostheses," IEEE Trans. Man-Machine Systs., vol. 10, no. 2, June.
1969, pp. 47-53.

{93] D.E. Witney, "The Mathematits of Coordinated Control of Prostheses and
Manipulators,” ASME J. Dynamzc Syst., Meas., Contr., Dec. 1972, pp.
303-309. -

[947 R.P..Paul, "Manipulator Cartesian Path Control," IEEE Trans. Syst. Man,
Cybern., vol. SMC -9, no. 11 Nov. 1979, pp. 702-711. .

[95] R.H. Taylor, "Planning and Exccunon of Straight Line Maripulator
- Trajectories," IBM J. Res., Develop., vol. 23, no. 4, July 1979, pp. 425-
. ™436. .

[96]. W. Khalil, "Generation of Straight Line Motion for Robots," 2nd IASTED
Int. Symp. Robotics and Au@mauon Lugano Switzerland, June 1983, pp.
133-135.

: L

[97] W. Khalil; "Trajectorics Calculations in the Joint Space of Rob%ts." in
Advanced Software in Robotics, Liege, Belgium, May 1983, pp. 177-187.

@ \

(98]

[99)

[100]

[101]

[102]

[103]

- [104]

/

[105]
[106]
[107)
[108)
(109]

[110j

" Path,” IEEE Int. Conf, of Robotics and

128

R.H. Castam R.P. Paul, "An On Line Dynaric Trajectory Generator,"
Int. J. Robotics Res., vol. 3, no.'l, Spring 1984, pp. 68-72.

J.Y.S. Luh, C.S. Lin, “Optimum Path Planning for Mechanical
Manipulators,” ASME J. Dynamic Syst., Meas., Contr vol. 102, June
1981, pp. 142-151.

C.S. Lin, P.R. Chang, J.Y.S. Luh, "Formulation and Optimization of
Cubic Polynomial Joint Trajectories for Industrial Robots," /EEE Trans.

. Automar. Contr., vol. AC-28, no. 12, Dec. 1983, pp. 1066-1074.

C.S. Lin, P.R: Chang, "Approximate Optimum Paths of Robot
Manipulators under Realistic Physical Constraints," IEEE"Int. Conf.
Robotics and Automation, St. Louis, Missouri, March 1985, pp. 737-742.

C.S. Lin, P.R. Chang, "Joint Trajectory of Mechanical Mani;;ulators for
Cartesian Path Approximation,”" IEEE Trans. Syst. Man, Cybern., vol ~
SMC-13, no. 6, Nov/Dec. 1983, pp. 1094-1102.

J1.Y.S. Luh C.S. Lin, "Approximate Joint Trajectories for Control of
Industrial Robots along Cartesian Paths,” IEEE Trans. #)st., Man,
Cybern., vol. SMC-14, no. 3, May/Junc 1984, pp. 444450

S. €hand, K L. Doty, "On-Line Polynomial Trajecloncs for Robot
Manipulators,” Int. J. Robotics Res., vol.. 4, no. 2, Summer 1985, pp.
38-48.

M. VukobratoWe, Kircanski, "A Dynamic Approach to Nominal.
Trajectory Synthesis for Redundant Manipulators,” [EEE Trans* Syst.,
Man, Cybern., vol. SMC-14, nc. 4, July/August 1984, pp. 580-586.

B.K. Kim, K.G. Shin, "Minimum-Time Path Planning for Robot Arms and
Their Dynamics," JEEE Trans. Syst., Man, Cybern., vol SMC- 15 no. 2,
March/April 1985, pp. 213- 223 .

K.G. Shm, N.D. McKay,a"Minimum-Time Control of Robotic’
Manipulators with Geometric Path Constraints," JEEE Trans. Automat.
Conir., vol. AC-30, no. 6, June 1985, pp. 531 541.

J.E. Bobrow, S. Dubowsky, JS Gibson, "On the Optimal Control of
Robotic Mampulators with ‘Actuator Constraints;," Proc. 1983 American
Contr Conf., San Francisco, CA June 1983, pp. 782-787.

r.""
C. S~G Lee, B.H. Lee, "Planmng of Straight Line Manipulator Trajectory
in Cartesian Space with Torque Constraints,” Proc. 23rd Conf. Decision
Contr., Las Vegas, NV, Dec. 1984, pp., 1603 1609.

G.H. Seeger, R.P. Pdul, "Optlmlzmg ﬂot Motion g\lo&g) a Pﬁldeﬁned
omauon 1 uis ssouri

March 1985, pp. 765-77\0. .

L '

wy

T

(111}

[112]

,.[1131

[114]

[115]

[116]

[117]

(18]

(119]

[120]
[121]
[122]

[123]

[124]

' [125]

[1 2.6]

[127].

o
1 2 g ‘ - ° = 7 o
~ Lz 7

K.G. Shin, N.D. McKay, "A Dynamic Programming Approach to

Trajectory Planning of Robotic Manipulators,” IEEE Trans.’ Automat.
Contr.,-vol. AC-31, rio. 6, June 1986, pp. 491-500.

'K.G. Shin, N.D. McKay, "Selection of Near-Minimum Time Geometric

Paths for Robotic Manipulators,” IEEE Trars. Automat. Contr., vo] AC-
31, no. 6, June 1986, pp. 501-511.

S.E. Thompson, R.V. Patel" "Formulation of Jom{ Trajectories for
Industrial Robots Using B-splines,” IEEE Trans. Ind. Electron., vol. IE
34, no. 2, May 1987, pp. 192-199. ' ‘

S.E. Thompson, R.V. Patel, "Generation of Callision-Free Trajectories for "
Industrial Robots," Proc. IEEE Int. Conf. Syst., Man, Cybern Tucson,

" AZ, Nov. 1985, pp. 300-304.

W.J. Gordon, R.F. Ricsenfeld, "B-Spline Curvcs and Surfaces,™ in
Computer-Aided Geometric Design, eds. R.E. Barnhill and R.F. s
Riesenfeld,Academic Press, New York, 1974, o ,
C. De Boor, "On Calculating with B-splines,” * Approx. Theory, vol. 6,
1972, pp. 50-62.) N

M.G. Coxa, "The Numerical Evaluation of B-splines," J. /nst. Math.
Applic., vol. 10, 1972, pp. 134-149. - SN -

B.A. Barsky, "End Conditions and Boundary Conditions for Uniform B-

. spline Curve and Surface Representations,” Computers in Industry, vol. 3,

1982, pp. 17-29.

-

M.J. Bach, The Design of the UNIX-Operqting System, Prenncc Hall,
Englewood Cliffs, NJ, 1986.-)

Microsoft Corporauon,MzcrosoﬁC Compitt?, Redmond, WA, 1986. T

T hink Technology, Lightspeed C User's Mgnual, Bedford, MA, 1987.-

M. Wanc S¢ Prata, D. Martin, C Primer Plus, Howard W. Sams & Co.,
]ndxanapohs IN, 1984.

G.E. Sobelman, D.E. Krekelberg, Advanced C Techniques & Applications,

"~ Que Corporation, Indianapolis, IN, 1985.

S.P. Harblson G:.L. Steele Jr C Reference Manual, Prentice-Hall
Software Series, 1987. | a , . LD

Augie Hanscn Proficient C, Microsoft Press, Redmond, WA 1987*1\

AM. Tenenbaum, M.J. Augenstein, Data structures usmg Pascal Prcnncc-
Hall, Englewqod Cliffs, NJ, 1981.

L4 ¢
\

Robert Sedgewick, Algorzthm.f Addxson-Weslcy. Reading, MA 1983.

130

[128) ISO, Graphic Kernel Sysie'r'n, (GKS) - Function Description, Draft
International Standard ISO/DIS 7942, 1982.

[129] S.C. Johnson, "Yacc: Yet Another Compiler-Compiler”, Bell Laboratgries,
= Murray Hill, New Jersey 07974.

[130) M.E. Lesk, E. Schmidt, "ch - A Lexical Analyzcr Gcncrator" Bell
Laboratories, Murray Hill, New Jersey 07974.

J[131] A.V. Aho, R. Sethi, JD Ullman, Compilers - Principles, Techmques and
Tools, Addison-Wesley, Reading, MA, 1986.

[132] Convergent Technology Inc., "The C Programming Language,” CT/X
Programmers Mdanwal, 1986, pp. 19-34-38.

, \
Appendix A - RIGID Reference Library

Some common constants used throughout RIGID have been predeclared in the
3 \ o
rigid.h header file, which is normally included as the first line in the user's

program, i.e. the #include " rigid.h" statement. The rigid.h header file is listed”

at the end of Lhis.appendix. The following is a list of the consiants included:

~

Pl ~ value of pi (n), set o 3.14159

DEGTORAD - degree to radialrmeasure conversion, set 10 1t / 180
. RADTOREG radian to degree measure conversion, set 1o 1800 / 1t

TWOPIL, PIBY2 valueof 2 i, valueof /2 «

TRIGERR - trigonometric tolerance limit, set to 0.001 |

TRUE, FALSE boolean data type values i

NULL chdracter string terminator, set to ascii ()

NIL pointer terminator, set to OL

SIZENAME maximum number of characters in a name, set to 80

RPY, EUL, OAT coordinate transform functions)
MATRIX , VECTOR parameters for: Sel()utputModc()
JOINT, ARTESIAN (g:x(r;mctcrs for SetMotionMode()
RHS; LHS parameters for EqualeFramc(), :
EquateRelation()
. NOBODY, PUMAS60 parameters for SetBodyType()

Dats types . ;
The following data types have their d:ita structure fayouts given in Chapter 6.
: ' &
~ All other data types which occur in the follqwing pages are considered standard C.

‘boolean makeshift boolean data typc (typedef int boolean)

coord_t coordinate function type
v frame_t coordinate frame type _: 7.
. velocity_t velocity constraint type S .
relation "t kinematic relation type)

trajectory_t trajectory specification type .

X

S 132 -

[

" The follow'mg data types are private, or internal to RIGID, but should be noted to

preserve uniqueness of data structure names. . \3
errtrup t error trap type:
spline_1 spline function type
body T *_ npgidbody type
par(_t relation part type |
knot_t trajectory knots type
sc:.,mcnl t - «trajectory segment-type
fifo_t - generic queue header type
node_t generic queue data type

4
Functions ,* - ot - -

The funcuons Whl(h compnse the RIGID language library are described in lhe

foll(m ing pages. These funcuons are partitioned infQ four catet_nnes wo orld

,pnmmve operators (WP), kinematic relanonshjps (KR), trajectory generation (TG)

’ t

and reporting functions (RF),

r

\

[

3 ' - i . > '
Functigns pentaining to world primitive operd®rs allow coordinate frames of

objects and locations to be transformed between vector and matfix representations.

Velocity constraint specification functions are also inctuded-in this category. The

v

>

category on kingmatic relations provides the functions used to construct and |

5 -

ev.aluate kinematic relations betweén frames. The trajectory generation category
encompases all the functions required to generate najectéries usi‘ng‘ frames, relations
and velocity constraints. Functions used for selecting and configuring the modes of
motion for the rigid body types are also considered part of the trajéctory generation
category. Reporting functions allow convenient output of results di}ectly from
yafrious ddta types in RIGID. These functions incorporate the format specification

of the C language standard input/output (stdio) library. |

]

-

\

RIGID Function Summary

" void SetMotionMode(int)

| ‘. 133
~. .

e rato

frame_t *BuildFrame(char *, coord_t,double,double, double ‘double, double, double)

void UnBuildFrame(frame_t * doublc* ,double* double* doub\c“ double* double*) "

«void UpdateFrameReliframe _t. ' . double, double double deuble double double)

void UpdateFrameAbs(frame_ t"‘ double, double, double, double, double, double)

velocity_t *BuildVelocity(char "‘.' coord_t,double.dnuhlc.doublc.doubl,c.doublc.douhle)’

vqéd UnBuildVelocity(velocity_t *, double*,double* double* ,double* double* doublc*)
, :

Iy.\ 'l" l{‘l'l. l.\ ‘ ..

boolcan OpenReIanon(chdr *). < ; *
void EqualeFrame(mt frame_t *) " if

void EquateRelation(int, relation_t *)

relation_t *CloseRelation(void)

void EvalRelation(double *, relation_t *)

1‘('1‘ N ‘lrl .’|)

boolean OpenTrajectory(char *)) '
void MoveToFrame(frame_t *) : .) R
void MoveToRelation(relation_t *) s , S

void MoveToTrajectoryv(trajectory _t *)

void BodyPosition(doublt, . .).

. void SetVelocity(velocity t *) T ‘ '

void Body Velocity(double, ...)
void BodyAccelerationfdouble, .. L ' ’
trajectory_t *CloseTthectory(voxd) «
void EvalTrajectory(trajectory_t *) . ’ .
double hnquxreTrdjectory(trd;ectory L*) . ‘
vaid SetCodidSys(coord_t):) B~
void SetSampleStep(double) :

void SetBodyType(void (*)())

void SetBodyConfig(int, ...)

void GetBodyConfig(int *,...)

void SetVelConstraints(double, ...) *
void SetAccConstraints(double, ...)

',7.'\,* o - .
Reporting Functions . A

Veid SetOutputMode(int) \
void WriteMatrix(char *, double *) . .
void WriteVector(char *, double *) e . 5)
void WriteFrame(char *, int, frame_t *, ...) -
void Write Velocity(char *, int, velocity_t *, ...) ‘

void WriteRelation(char *, int, relation_t *, ...)

- void WriteTrajéctory(char *, int, trajectory_t™*, ...). ,

Al

>
x,

#include "rigid.h"

where these are the actual functions:

134 -,
BuildFrame (WP) L
. “‘ ® 4 , [
.éfl' 3

’

frame t *BuildFrame(fname, ffun, , ¥ 4, a, b, ¢

char *fname; . . -
coord_t flun; . ‘
double x, 3, 7, a, b, ¢; . ’

Description ; ‘ \

- v

The BuildFrame() function creates a homogeneous transform, which is made up of a
translation vector v, ¥, 7, and a rotation vector of angles a, b, ¢ (in degrees). The units

‘ot position throughout the world primitive operators are uitimately interpreted by the

rigid-body transformation. functions which are mm for PUMAS60, see
SetBody Type() for more details. The geometry of the rotations depend upon the type
of*transformation selected by ffun. The ffun argument is an array of pointers to
predefined routines Which convert the translation and rotation argument vectors into a
homogeneous transform matfx. The ffuf: argument may be set 1o one of the following
predefined arrays of functions:

RPY roll-pitch-yaw rotations and standard translduon

UL Euler angle rotations and standard translation,

OAT Unimation rotations and standard translation.

€

The fname argument 'is a character string used b) some output functions for
identification and for tracing program execution. The fname may” be at most
SIZENAME, characters. The inverse transform is also computed at this time using an
orthogonal matrix inversion techmque which avoids the numerical instability problem
caused by some types of matrices.

The user may provide some other type of transformation function for.frame coordinate
specification by using the following steps. The example supposes that functions
FwdNEW (), InvNEWY() are the forward and inverse kinematic transformation
functions, respectively. RIGID expects the description name of the transform function as
the first parameter (NEW.cname), the forward transform function pointer setond
(NEW.fun[0]) and the inverse transform function pointer (NEW.fun{1]). Declare
these before the driver program declaration (main()) so that the driver program would

‘then.refer to just NEW as the new ffun argument.

void FdeF.W(doublcf",double,double.duublc, double,double,double); -

void InvNEW(double*, double*, double*, double*, double*,
double*, double*); N)

static coord_t NEW = {"NEW angles", FWANEW, InvNEWY};

void FWdNEW@m, x, v, 7, a, b, ¢) T o

double *m: T ’

double N M Zd, b. cs

o

‘\‘

135 .
> .
a *= DEGTORAD;
: ‘ +
*m + 3) =\ . ‘
*m + 7)) =y, ' .o
} .
~ void InvNEW@m, 1, ¥, 7, a, b, ¢)
double *m; . ’
double *a, *y, *z, * . *b, *¢; . s
{ R ; . »
o= *m o+ 3);
Xy = *tm o+)
ad '*_ Rz\l)1()Dl (l.
} .

. Kgmrp Valuc -) %

A pointer to the frumic_t data structure is returned. A NIL. pomter value is returned and
an error message gencrdted if the flun argument is undefmcd

8 . b
s <y { - 7 - ' - ’ % o
UnBuildFramet), SetBodyTypeo) :
N
| [
Aample ", 'S
R . , » »
#include "rigid.h" .
3
main()
framc_t *rest; : : N

= L]

rest = BuildFramé("Resting”,RPY,50.0,30.0,0.0,90.0,0.0,-45.01;

» ¢

4

r-4

.

136 7.

UnBuildFrame .(WP) | | ‘ \

#include "rigid.h" B
void UnBuildFrame(f, x, v, 7z, a, 'b, c) :

frame_t *f; _
double *x, *y, *z, Ya, *h, *¢;

- a

The UnBuildFrame() funciion\performs the inverse of BuildFrame(). The f

argument contains a homogeneous transform, which gets decomposed into a translation

vector x, ¥. 7, and a rotation vector of angles a, b, ¢ (in degrees). The
translation/rotation values are returned in the same coordinate system as they were
specified in by the call to BuildFrame().

If the { argument is undefined, the call 1o UnBuildFrame() is ignored. ° .

. » .\" (I
A retum value of FALSLE indicates that the f argument is undefined.
' % '
See Also -)
Buildl'rame) ‘ N , '
) %, T X -
I.. ’ ! . k) .]
#include "rigid.h?
o S . b
——main())
{ L o -
frame_t *rest; .
double x, v, 7, a, b, ¢; ‘
. ' * ® \\"‘-
UnBuildFrame(rest, &x, &y, &z, &a, &b, &c); ,
B -
e .
)]

©-

-

« 137,

UpdateFrameRel (WP)
S r- ’ . . N | V’
#includ‘c "rigid.h" .

void Updalel rameRel(, dx, dy, dz, da, db, dc)
frame t *f:
double dx, dy. dz, da, db, dc,

o
Description) .

During execution the transformation of a previously defined frame may be updated toa
new set of coordinates using the UpdateFrameRel() function. ‘This function updates
the frame f relative to its previous coordinates. Since RIGID consists entirely of dynamic -
data structures, the updated framg affects every occurance of itself among all relations and
trajectories. The translation/rotation values are updated in the same coordinate system as
they were specified in by the call to BuildFrame(), resulting in the coordinates (x+d\,
yv4dy, z+dsz, a+da, b+dh, c+dc). -

- —

If the f argument is undefined, the call to UpdateFrameRel() is ignored.

. ¥
See 0
g ' .

BuildFrame(), UpdateFrameAbst)
. \

ample o e
#include " rigid.h" , .o . \
main()
{ B

frame_t *rest: S

rest = Buildirame("Resting",RPY,50.0,30.0.0.0.90.0,0.0,-50.0);
UpdateFrameRel(rest, 10.0, O'Oﬁ 0.0, 90.0, 0.0, 45.0); -

R

4

o —

UpdateFrameAbs (WP) .

'#lncludc 'rigid h"

w:d UpdateF rachbs(f X, ¥, 4, a, b, ¢)
frame { *f; .
double », ¥, 7, a, b, ¢;

N

. * L)

During execution the transformation of a previously defined frame may be updated to &
new set of coordinates using the UpdateFrameAbs() function. This function u;glates_
the frame f to an absolute location with respect to world coordinates. Since RIGID
consists entirely of dynamic data structures, the updated frame affects every occurance of
igself among all relations and trajectories The translation/rotation values are updated in
the same coordinate system as they were specified in by the call to BuildFrame(),

resultmg in the coordinates (\. y, . a,.b, ¢).

<

If the [argument is undefined, the call to L'pdalelfranchl)s() is ignored. ,
T " o -
Q0 0
\) , .

"BuildFrame(), UpdateFrameRely) “ -

A at f . . 1

: N " ,' " '

#include "rigid.h ! .
main() - \, : -

{ , -

frame_t *rest; , ,
- PR AR .

;'cst = . BuildFrame(" Resting" ,RPY,50.0,30.0,0.0.90.0.0.0,-50.0);
UpdateFrameAbs(rest, 120.0, -20.0, 0.0, 90.0, 0.0, 45.0);

L)
.

R

“BuildVelocity (WP) -

4
[t d

. 139

1mar —
. g
#include "rigid.h"

velocity _t *BuildVelocits (vname, vfun, x, v, 7, a, b, ¢)
char *vname: i} '
coord _t viun;

double x, y, 7, a, b, ¢;

descriplion - %

The BuildVelotity () function creates a velocity constraint specification, which is made
up of a linear velocity vector with elements x, y, 7, and an angular velocity vector with
elements a, b, ¢ (in degrees/sec). The geometry of the rotations depends upon the type
of transformauon selected by vfun. The vfun argument is an array of pointers 10

. ‘predeﬁned rqutmeQ which are capable of converting the 9pec1ﬁed rotational mfonndtmn o

a matrix representatlon

The vname argument is a character string used by some output functions for
identitication and for tracing program execution. The vhame may be at most
SIZENAML churacters.

= o

.

Refer to.BuildFrame() for providing user-defined transformation functions for velocity
coordmate spemhcat:on ”

Return \ aluc

A pointer to the velocity _ data structure is returned. A NIL pomter value is returned if
the vfun ar;_.umcm is undefined.

-

-

v |"

BuildFrame()

Example . N

AN 4

#include "rigid.h"

main()

{

velocity_t *slow; ~

.- .'slo\\ = Build\’élocil)("Appfuach",Rl’Y,l0.0,l0.0,0.0,0{0.0.0,'0.();;

y BN
1

“ ' i

‘UnBuildVelocity (WP) o
:‘ . ! - . .

#include "rigid.h" .
. J '

void UnBuildVelocit¥(s, x, y, 72, a, b, ¢

velocity *v; s

double Fx, *y, *z, *a, *b, *¢; ,

|!$‘:‘£[imi!!!‘ A

»

The UnBuild Velocity () function performs the ‘inverse of Build Velocity (). .The v
argument contains a matrix transform, which gets decomposed into.a linear velocity
vector with elements x. ¥, 7, and an angular velocity vector with elements a, b, ¢ (in
degrees/sec). The translation/rotation values are retumed in the same coordinate system
as they were specified in hy the call to BuildFrame().

L

If the v argument is undefined, the call to l'nBuildF\rumc() is ignored.

Build Velocity ()

I4ar]n!n|!. " - N TN
HOON LM, " o .\ S
N #inclade “rigid.h S

maing)

“ { .
velogity _t *slow: .
double x; v, 7, a. b, ¢ 7
\
l'nBuild\'éﬂ»ci(y(slo“,‘ &x, &y, &z, &a, &b, &c); -
N ' . ‘ \ R
} N N -, ‘ > ®
!]
¢
L) [' -, —_—
¥ -)
. :

' . . 141
’ v [
OpenRelation (KR)
. , f LY
#include ™rigid.h" \
boulean. OpenRelation(rname)
char *rpame:

Description

A ,
A call to OpenRelation() opens a new kinematic relation to be built by subsequent calls
to either EquateFrame() or EquateRclation(). The rname argumentis a character
string used by some output functiors for identification and for tracing program execution.
The rname may be at most SIZENAME characters. The relation is not caimpletely
linked into the mtemdl data structures until the terminating call to CloscRelationt),
usualJy afier all the frames in the kinematic equation have been spec ified.

Only one relalion at a time may be open while frames are being equated to the Kinematic
relation so that the system can discriminate which relation is currently opcn ‘

The nuntber of relations possible per application depends upon {hc amount of main
memory available for d)"namxc allocation

O

1V alue . .

y
{
See Also o~

@ h _N . . B .
CloscRelation(), EquateFrame(), EqualcRelation()

A return value of FALSE indicates that another relation has not been closed

N - | \
aaniple . .
#include "rigid.h" .
main() { $
(.) . . - ..
i)penRelulion(" Find Unknown'"); ' - '
) - .

EquateFrame (KR) ., ?
#include "rigid.h" . AN v
void EquateFrame(side, f) : »

int-side; . <
frame_t *I;

’ &)
The Equatelrame() function equates the f argument to the currently open relation.oThe

framé must be previously created dsing the BuildFrame() function. The side
argument indicates which-side of the relation equation the frame should appear on by

setting it to one of the following constants: - 8
RHS right hand side of kinemaric equation.
LHS left hzmd side of kinematic equation. . B
- In general, fragggs equated on the left hand side (LHIS) have their inverse transformation

* matrix premultiplied, while right” hand-side @R1S) frames have their forward

transformation matrix postmudtiplied. -~ » w?

1

The number of trames which may be part of a relation depends upon the amount of main -
memory available for dynamuc allocation. ,
If no relation is curently open when a call to Kquatel r:}mc() is made, the caJl 1S

ignored. If the I'drgument is undefined, the call to Lquatcl rame() is ignored.
}

See S0 o~
BuildFrame(), OpenRelation() L B
+ . l l. R % -
, , S . N &
#include "rigid.h"- . ~ | B Co
main() C \) ; N
frame_t *resl; ° T é
- \ . .28
()pcnRelahun("hnd Unknown");] v Yo
Equatel rame(RUﬁ rest); N -
) , o
A " &
of A v ' / t
. .) " ’ ‘ . 8
o ‘ L g
% . .

t

. 143

EquateRelatiqn (KR) . - ~ .

Summary
: N 1 R " 3
#include "rigid.h i s
- . . i'
void ' EquateRelation(side, r) 1
int side; .
relation_t *r;
Description . .

The EquateRelation() function equates the r argument to the currently open relation,
The relation r must be previously created using the CloseRelation() function. The
side argument indicates which side of the equation the relation solution should appear
on by setting it to ope of the following constants:
RIS right hand side of kinematic equation.
LS left hand'side of kinematic equation.

In general, relations equated on the left hand side (LIIS) have their inverse
transformation matrix premultiplied, wHile right hand side (RHS) relations have their
forward transformation matrix postmultiplied. When relations-are ey:gg%:,\be matrix
solution is intenally substituted as a frame in the kinematic equation reprsented by a
refation. The number of relations which may be included within a relation depends upon

the amount of main memory available for dynamic allocation. Due to the recursive”

structure induced by this function, when evatuating the kinematic equations, it may be
necessary to increase the stack size at link time fo prevent stack overﬂuw during program
execution."Again, this is hardware depcndenl

If no relation s curent)y open when a call to l;'quul(-ReI:nion() is made, the call is
ignored. If the r argument 1s undefined, the call to EquateRelation() is ignored. -

{

See -Also . ‘ Q.
CloseRelation() ’ - 4

‘ s 0% [S . A
rg € I,‘

#include "rigid.h" '
<
nrain()))
’rel‘alion_t ¥soln:

soln = CldscRelation();
OpenRelation("Find Unknown");
EquateRelationtsoin);

. «“ . > Al

.t

a

o

144 ’ X

i) .
CloseRelation (KR)
S ary)
#include "rigid.h" . .
relation _t *CluscRelalion(voi,(i)
I!!.:s-[inlipu 4 B + . , .)
A call to CloseRelation() tenninates the definition of the currently ‘open relation.

If no relation has been opened prior to CloseRelation() an error condition is generated
and a NI§. pointer is returned. v

F ' A
\f furn Value

1+ A pointer to the newl\ formed relation i¢ returned. A NIL pomter value is returned if no
reldtion is currently open. .

See _Also - . .

OpenRelation) | ' : . , \
@ ‘ | .

4‘, am I ’ *) * . o

#include "rigid.h" : ‘ , .

main()° . » '

(' \—J ' . A

vy

relation_t *unknown;

- OpenRelation("Find Unknpwn");

unknown = CloseRelation();

145

EvalRelatiqn (KR) . .

#include "rigid.h" .
\
> void EvalRelationim, r) ' ‘
double *m;
relation_t *r;

"‘"9 . .
A call to EvalRelation() solves the kinematic equation represented by the r argument.
The solution matrix is returned in the m argument. Normally the user writes the sofution
matrix to a file (or screen).using the WriteRelation() function, but EvalRelationt)

allows the user 1o access the solution matrix data from within a RIGID program. Refer to
Build Frame() for more details on the transformation funcuon options.

If the r argument is undefined, the call to EvalRelation() is ignoged.
t &, .

- '

J -
Seel Also : .
OpenRelation()
4" 13 I 3 - h
#include "rigid.h" ' Py
main() .
relation_t *unknown: : v
double Tes[4][4]: 4 c , , -
.) . ,
: s, . .
unknown = CloseRelation()s . .)
EvalRelation((double *) res, unhnown);
Do L . "
} ~ g
A
Y ,
. \ [3
v ~ . s

146 -

‘OpenTrajectory (TG) .

#include "rigid.h"
\ o

boolean ()pcnlraJector;(lnamc) . .
char *tname; .

+ >
P

A call to\i)pcn'l‘raiedor\() opens a new trajectory to be built by subsequent calls to
either MoveToFrame(), MoveToRelation(), MoveToTrajectory(),

SetVelocity(), l!ud\l’osmon() BodyVelocity() and BodyAxcelerationt). .

The (nawie argument is a character string used by some output functigns for
identification and for tracing program execution. The tname may be at most
SIZENAMUE characters. The trajectory is not completely linked into the intemal data
structures until the termmatmg call to CloseTrajectory(), usually after all the frames
and velocity constraints have been specified.

Only one trajectory at a time may be open while frames and velocities are being epecnﬁed
in the trajectory so that the systcm can descriminate Wthh trajectory is currently opeh. .

The number of trajectories possible per appllcatlon depends upon tﬁ’b amount of mam
memory avmlahlc for dynamie allocauon -

¢ . o

4

+

a

A retum value of FALSE indicates that another trajectory has not been closed.

v 1

See 0 ’)

-

CloseTrajectory (), Scl\’clm‘:l\() Mo\el‘ol*ramc() MoveToRelation?),

Mmolulranc%n() Body Position(), BodyVelocity(), BodyAcceleration() -

hal <
_ #tinclude "rigid.h")
: &
“main() ‘ .) . :
{ '% ' " T] o °
: . T s . " N
OpenTrajectory("Good Move"); R
} . .
- - 2 1
* r
1 o T)
. Q ‘ '

" 147
MoveToFrame (TG) “ ’
Summary * o » ' v

#include “rigid.h"

void ‘MoveTolFrame(f)
frame_t *f;

D:ss.up.!.um - ’
o

e ¢ . 3
.

The Mov cTol‘ rame() function equates the f argument as the next frame in the currently
open trajectory. The frame [must be previously created using the BuildFrame()
funcuon : .
s . l , o
R) .
. The number of frames which may be part of a trajectory depends upon the amount of

¥ main memory available for dynamic allocation. ,

If no trajectory is currentl; open when a call to MoveToF rame() is made, the call is
1gnored If the { argument js undefmed the call to MoveToFrame() is #nored.

- =~

See Also ' N 3
. Y . N
BuildFramey), ()})cn'l‘ruﬁpcmr)()

“

R € ll] ° ? v
#mdudc Mrigid.h"- . . o v
) ceat ’ ot N
main() T ' .
¢ S
. frame_t *rest; . :
[} \“ Y
OpenTrajectory(™Good Move"); et
MoveToFrame(rest); :
4 . a e' - ' e,
} -

148

MoveToRelation (TG)

t
'

#includé "rigid.h" | \J “ ' '

void ‘MoveToRelation(r) -
relation_t *r;

)CSCT
The MoveToRelation() function equates the solution to the kinematic equation

represented by the r argument as the next frame in the currently open trajectory. The
relation r must be previously created using the CloseRelation() function,

.

The number of relations which may be part of a trajectory depends upon the amount of
main memory available for dynamic allocation. Due to the recursive structure mduced by

this function, when evaluafing the kinematic equations, it may be necessary to increase
the stack size at link nf e 10 prevent stack overflow during program execution. Again,

thls is hardware depcn nt. ‘

If no trajectory-is currently open when a call to MoveT ()Rclallon(i is made, the call is
ignored. If ther argument is undefined, the call to Mosel oRelation() is ignored.

»

See Also '
3 . °
*° .
CloseRelation(), OpenTrajectory() Y -

. . ,

-
»

#include "rigid.h"

main()) .
. .
{ . \ 1
relation_t *soln; ‘ a
: . e

soln = CloseRelation();
OpenTrajectory("Good Move");
MoveToRelation(soln);.

-
CE

.

1

~ OpenTrajectory("Good Move");

“ 149 -

MoveToTrajectory (TG)

#include "rigid.h"

void MoveToTrajectory(t)

trajectory_t *t;. 2

Descripti

The MoveToTrajectory() function equates the solution to the kinematic equation
repfesented by the t argument as the next frame in the currently open trajectory. The
trajectory t must be prev:ously created using the Llosc'l rajectory() functlon
‘y

The number of trajectories whnch may be part of a trajectory depends upon the amount of
main memory available for dynamic allocation. Due to the recursive structure induced by
this function, when generating trajectories, it may be necessary to increase the stack size
at link time to prevent stack ovcrﬂow during program execution. Again, this is hardware
dependent. -

N ¢

If no trajectory is currently open when a call to MoveTo'Trajectory () is made, the call
is ignored. It the { argument is undefined, the ca]l to Mo\cl(ll rdlL‘(l(H‘\ () is 1gnorcd

o

- -

Iso : ‘ . ’
o f ‘ : .
CloseTrajectory () v ' /
oW I , - . .
#include "rigid.h" ‘) :

main()

n.{ s -
0y N '
:

trajectory_t *soln;

soin = CloseTrajectory();

Mové'l‘oTrajec(ory(soh}%); . ‘~

. - -

S

Prs

150

BodyPosition (TG) .

#include "rigid.h"

void Body Position(p,)

double p; % ‘ .
I!‘lss'[in'isl[l ‘ " .- R

It is possible to construct trajectories for rigid- body mechanisms by. directly spec1ﬁymg
the individual joint displacements of the joints of the rigid-body’ using the

"BodyPosition() function. A variable number of-p arguments is expected, equal to the

number of degrees of freedom of the rigid- -body type selected using QL(Bodw'] vpe().

Since the Body Posmon() funcnon directly indicates joint displacements of a rigid-
body through its argument list, it may be combined only with the Body Velocity () and
Body Acceleration() function calls within a given trajectory.. More spgcxflcally this

- function should not be used with any of the following functioris MoveToFrame(),

MoveToRelation(), MoveToTrajectory()-or SetVelocity().

-

If no trajectory is curremly open when a call is made to Bod\l’osmon(i the call is-

1gnored If no rigid bod)/ has been selected using SetBodyType(), thecall is lgnored

(¢ S0 ¢ . \ L7 .
SetBodyTypet), Openlrajectory(), Bodi Velocity(), Body Aceeleration()
Iq‘! cln]nl!. — 1 ') N ‘ ' :
#in'("iudc, "rigid.h"x '
" main() . . E .
{)) “
trajectory_t *soln; ° C
:Selliod\’] ype(PUMAS60); , ’
OpenTrajectory("Good Move"); ’
BodyPosition(10.0, 15.0, 45.0, 5 0, 10.0, 6.0);
B |
. s .

"ri

-

o ——

] - 151 " ,

-SetVelocity (TG)
Summary |
#include "rigid.h" | : o

void SetVelocity(v) ' . K ? -
velocity t *v; ‘

l) . |- ' .

The Set Velocity() fuhction constrains the next knot with the velocity given by the \

argument in the currently open trajectory. The velocity v must be previously created-

using the BuildVelocity () function. The velocity constraint does not take effect until
the next frame in' the_trajectory is defined either by MoveTolFrame(),
MoveToRelation() or MoveToTrajectors(). A call to SetVeloeity () without a
proceeding call to one of the previously mentioned three functions reshits in a fatal
execution error. o

The number of velocity constraints which may be imposed on a trajectory depends upon
the amount of main memory available for dynamic allocation. '

kY
>

* If no trajectory is currer)ily open when a call to SetVelocity () is made, the call is
ignored. If the v argument is undefined, the call to SetYelocity() i$ ignored. '

" a

Sce_Also ' , “

<

“\

Build Velocity (), OpenTrajectory()

4 » 3

;‘ ‘ .-
#include "rigid.n"

main() -
{
& frame_{ *restipom - _ -
© velocity_t *slow;

i)&n’l’rajccmry(" Good Move"); o .
SetVelocity(slow);
MoveToFrame(rest);

e A) ‘-" LN

.

-

\,’l

© 152 ¢

BqdyVelocityr (TG)

Summary --
#include "rigid.h"

_ void Body \’elocm(\, N
double v, s

n. - l- I

The Body Velocity() function constrains the next knot with the joint velocities given by
the v argumefts in the currently open trajecfory. A, variable number of v arguments is
expected, equal to the number of degrees of freedom of the rigid-body type selected using
SetBodyType(). A call'to Body Velociti () without a proceeding call to
Bod» Position() results in a fatal execution error; although one _call to
Body Auclcranon() is permitted for each call to Body Velocity().
Since the Body Velocity() function directly indicates joint rate dx.splacemems of arigid-
body through its argument list, it may be combined only with the BodyPosition() and
BodyAcceleration() function calls within a given trajectory. More specifically this
function should not be used-with any of the following functions MoveToFrame(),
MoveloRelation(), Mo\c'l‘o’l'rajcclorv() or SetVelocity().

3 A a"-
If no trajectory is currently open when a call is made to Bod\\clouhl), the call is
|gnored If no rigid body has been'selected usmg SctBody: l vype(), the caJl is 1gnored

Sce { ‘ . ’ . s
SélBt;d);'l') pe), OpenTrajectoryt), BodyPosition() Y ‘
. X - p

I!‘a 'Illln!s. ’ .
#include "rigid.h". ’)

. . ‘v %
‘main() .. ™ (e
{ ‘ e : . -

trajectory_t *soln; . _ , ;

SetBodyType(PUMAS60);
OpenTrijectory("Good Move");
Body Velocity (0.0, 10.0, 0.0, 0.0, 0.0, 00), .

. BodyAcceleration- (TG)

#include "rigid.h"

void BodyAcceleration(a, ...)
double aj

\

[!,‘..n

The BodyAcceleration() function constrains the next knot with the joint accelerations
given by the a arguments in the currently open_trajectory. A variable number of a
arguments is expected, equal to the number of degrees of freedom of the rigid-body type
selected using SetBody'1 ype(). A call tofBodyAcceleration() without a proceeding
call to Bud\l’osmun() results in a fatal executipn error; although one call to
Body Velocity () is permitted for each call to Bud\/\ucleralum()

v
Since the BodyAcgeleration() function directly indicates joint velocities of a rigid-
body through its argument list, it may be combined only with the Body Position() and
Body Velocity() function calls within a given trajectory. More S'peufncally this function
should not be used with any of the following functions Movelokramet),
MoveToRelationt), Movc'l'o'l‘rujcclorv() or SetVeélocity ().

1f no trajectory is currently open when a call i is made to Body Acceleration(), the Cdll s
ignored. lf no rigid body has been selcctcd using Setliod\ I vpe(), the call is ignored.
Sce: Also

SetBodyTypet), OpenTrajectory(), BodyPosition(), Bod) Accelcr‘aiiunt)

v .
- k3

I- L, | 3 L) . ° “ - =
. #include "rigid.h" ‘

main() ‘ '

{ BN Vi e

trajectory_t *soln;.
=

SetBody Type(PUMAS60); -
OpenTrajectory("Good Move");

Body Velocity(0.0, 10.0, 0.0, 0.0, 0.0, 0.0);
BodyAcceleration(0.0, 30.0, 10.0, 0.0, 0.0, 0.0);
y :
. S

153 —_—_—

’ 154 Ty

CloseTrajectory (TG) _
Summar ‘
. Minclude "rigid.h"

-

= {rajectory_t *CloseTrajectory(void)

Descrinti o X
A call to CloseRelation() ferminates the definition of the currently open trajectory.

If no trajectory -has been opened prior to CloseTrajectory() an error condition is
gcneraled and a NIL. pointer is retumed.

13 ‘ ‘.' » .
- 3

A pointer to the newI) formed trajectory is retumed A N IL pointer value is returned 1f
no trajectory is currently open. ° :

% OpenTrajectory () ~-
[‘ "I
#i;llcludc "rigid.h" S

main() . . .

{

trajectory _t *path;

IX4

()pen'l r.ucclar\("(,ood Move"); | ' . .

p.nh Closelra jeclor.\();

¢« . .

2

R

155

EvalTrajectory (TG) :
Summary
#imclude “rigid.h"

’ Py g t
void EvalTrajectory(t) .
trajectory t *(; °

*

'seription

EvalTrajectory(} splines the trajectory specified by the (argument using a constrained
_B-spline fortnuiation. The trajectory is evaluated at a rate set by the SetSampleSize()
function. The trajectory is formed in either CARTESIAN or JOINT-interpolated mode
dependng on the SetMotionMode() function parametérs. The output is reported in the
- coordinate system selected by the SetCoordS)ys() function. Finally, the
SelectBody () and SetBody Config() functions determine the geometry the trajectory

posesses. Each SetVelocity () is internally used to split the total trajectory: into

segments of knots.— Each MovePFoFramce(), MoveToRelation() or
MoveT oTrdjectors() creates a knot in the B-spline function.

If the (argument is undefined, the call to l-lvul'l‘ra}cclury() is ignored.

< See 0 .

OpenTrajectory ()

2
zample @
Hinclude "rigid.h" . N .
main() ’
{ . /\) b
* trajectory _t *path; .
! - e
L . N 2
path = ClosceTrajectory(); -
EvalTrajectory(path); .
M ' B]
‘ s o
.] o
¢ o .
. . Y
< “ a
R 2
~y
Q
. .
. N -
] v N ° ’ . e
’ e . o) ‘

]

#include "rigid.h" = - N R P
N | . e) . e

maint} . , : . - .

N { 3 R)

$ N
. 156
t T > S
_EnguireTrajectory (TG) .
S ars ' o . '
P 4 M 8 .
#includc "rigid.h")

double EnquirelFrajectory(t) : ;) 3

trajectory_t'*{;

.. . i é d .
o n ‘ .

anbire'l'raicclon()‘ makes a pass through the B- spline ctra_jcctory spegified by the
argument to make an estimate of the time dilation factor required to satisfy thie velocity

and acceleratiott constraints of the rigid body spemﬁed by the- QelVeI(,onslrdmm and a~

SefAceConstraint() functio®s. The* computed time dilation facfor value is returned by

. the function call. Fhis function also serves as a switch to indicate to WriteTrajectory()

that time dilation should be activated when generating output results and plots.
»° *'%

If the dr;_.umem is undefined, the call 1p K nqunrc T ra|cunh() 18 lgnéred

.\s 's /\ I ‘2() . ‘ .C—‘ ‘r- °
OpenTrajectory), SetdelConst raint(), SetAccConstraint();

. ° ’ . . £ °

4‘ . +
N t"/ #
gample ‘ ,

trajectory _t *path:
:) . ' - v ‘ . -
path = ClosceTrajectory():
printf("Dilation: %IMAn", EnquireTrajectory(path));

A]

i
. . - M
% ‘ X A)
" - i ’
.9 -
\ by ¢
o
'
)
.
) -
[
- > - \
\d ‘ o r '
’
& .
N -q‘
H
s o .
* ~ - * -
a] N
o
~ M - @
-
& .
o -
Q
L/ 3 . -
! . " .
‘
Yo
- - -~ -
- he . . !
- [V
‘ ’ ¢
I - . - 4 L]
N o M l
-
P
~ t

ald

‘ o ‘
y . 157) > .
SetCoordSys (TG)- - S e
¢S ‘ ' , i
#include "rigid.h" ' o
void .SetCoordSys(fun) . :
coord_t fun; . -

A call to SetCoordSys() selects the coordinate system tp be used in reporting functions

such as WriteRelation() and WriteTrajectory(). Since the input frames may be of

mixed coordinate system types from BuildFrame(), it is desirablc to view the output in

‘one consistent coordinate system type. Refer 10 BuildFFrame() for more details on the

transformation function options for the fun_argument,’and procedures for providing .
user-defined transformation procedures. :

If the fun argument is undefined, the default coordinate system (RPY') is maintained and:
» the call to SetCdordSyst) is ignored

t '

; N L
Rl ‘., . R
N . ¢ ¥ =
. See Also .
» . .
Evul'l’{gicclor.\'(), BuildFrame()
. ‘ ~ ’ ' .
xample - } .
' . .« e g - " ’
.~ #include "rigid.h"
. . ¥ \) LN

- main{) . - i _ #

{ ' . >

b L . . <y

© T Set€oordSys(EUL):
Y. (3 . \ : s

'} K N - . - L. . N

.) .
-~ . [N .
"
.‘0
’ ; /-r . \
]
- e
AN ‘
,P’ ' n 1 S
a -

1568
" * . ’ '

SetSampleStep (TG)
#include "rigi‘d.h") vt ‘ v

-~

void SelSamplcS!cp(lep)
o double step;

Description | '

A call to SclﬁamplcSlcp() selects the frame frequency for which the EvalTrajectory()
function reports motion aleng the splined trajectory. The valid _range of ghe step
argument occupies the range 0.0 to 1.0. The default step, 1.0, reports cach fr in the
» trdjectory smaller step values allow reporting mbetween frames. .’

lfthe step argument is beyond the allowable range, it is maintained at the default of 1.0
and the call to Sel\amplc\lcp() is ignored. .

: Sce Also (
. oo)
Evallrajectory() : . . ,
1 .
]
>
. .'\. | N . . “ - .
#include "rigid k" .
main{) ! M
o { N, - ¢ A . . / l- "-].
e SetSampleSiep(0.25); N
4 : . ‘ ' » e
} . -
e . ' *
u, ¢ 3
. ' . .
. : ¢
Y
[... X
~ .
-'—“" .
[0 ¥ .
’ , .’:.
> ! S

159

S¢tMotionMode (TG)
Einmnl.lr! -~) ‘ “ '

-

#include "rigid.h" ' \
void SetMotionMode(mode) ‘ < .
int ‘mode; o
3

fon - , . .

A call to SetMotionMode() determines whether to spHffe the trajectory in straight-line

mode or joint-interpolated mode. The mode argument indicates the trajectory splining

mode by setting it to one of the following constants: -
CARTESIAN ‘straight-line interpolation -
J()”\"l'a joint-interpolation

%

ooy
If the mode argument is undefined, the default modé (CARTESIAN) is maintained and
tl:c call 1o SetMotionModeY) is ignored. - ‘

v
195'5' Aléu ' ,
cvalTrajector L T R
. Evall ",-'.%' Yoo , .
Example PRI -
.. 3
#include "rigid.h"" "
main() “ . .
| . ; .
" SetMotionModce(JOINT);
¥
X
4 . '
. X)
: ° /> - ’ et 4
-
. .-
, — —9
A]
. LY 'f, , 2]

<« 160

SetBodyType (TG)

#include "rigid.h" T \

void ,‘s‘c(lt;xd;\'[ypc(bfun) Y
void (*bfun)(); .

I!Ilas:[illli!!!l , /
]] .)] / .
The geometry of the rigid body RIGID generates a trajectory. for must be selected by
SetBodyType(). 'ﬁle’bfun,ar‘gumem may be set to one of .tite- following predefined
bodies; - i
NOBODY . the default one-to-one correspondence C
PUMASGO the PUMA 560 robot model (mm) . ’

The user mayFprovide some other type of kihematic‘rigid body model by using the

following steps. Define the forward and inverse kinematic model functions of the nigid

body. Define the macro which selects the functions and sets the degrees of freedom and

the number of configuration parameters used by the inverse kinematic function. Refer to

the rigid.h header file for examples.

The PUMAS60 bod;r ac&epts mea,sm:e‘mcm in mm, NOBODY uses dimensionless -

units. ‘ : .

If the bfun argument is undefined, the call to SetBod)'l':\'pg;() 1$ ignored: .
. : o

- ¢

9

See Also |

: _ , .
EvalTrajectory(), Scil&odp()onfig() . ‘) '
I.‘a-lnlnlp
#include "rigidh" ~ LT
n;ain() . o o

SetBody Type(PUMAS60); : . .
} : ‘- .

' &‘ / s
Y ’

: . 161
SetBodyCornfig (TG) I

LY

#include "rigid.h" 7 -
void SetBodyConfig(p, ...) °
int p; i _ Y
-] .)“
I! . '|- s . b . - ‘

For those ngxd bodies that may contain many multiple Jom{ -articulated configurations to
any given point in Cartesian ‘space, a call to Set BodyConfig() specifically selects on¢’
initial rigid body configuration. A variable number of p arguments is possible. Refer to
SetBodyType() - for details on the allowable configurations and number of
configucation parameters for each of the rigid body types.

For user-defined rigid body kinematic models, the inverse model supplied must have the
necessary provisions for the configuration parameters specified in the argument list for -
the SetBody Lonhg,() funcyon to have any ‘releyance.

¥,

. ' &
: 50 ©- b

SetBod}']'}'pc(),(;eiliod)Confi[g() -

Y le

#include "rigid.h"
. .
main()

{ . . . \ . .

SetBody Type(PUMAS60); . °
SetBodyConfig(-1, 1, -1);

} : v <, ’ -

" 0 4e2 /
| L | /
GetBodyConfig (TG) '
#include "rigid.h" | ' , ‘ - ’,
5\ , .

void GetBodyConfig(p, ..).
int *p;

) umnnmm g .
For those ngnd bodies that may contam many multiple Jomtramculatcd conféurattons to
any given-point in Cartesian space, a call to GetBodyConfig() specifically selects one
. initial rigid body configuration. A variable number of p arguments is possible. Refer to
‘GetBodyType() for details on the allowable configurations and nuihber of
. conﬁg.uranon parameters for each of the rigid body typés. -

l

For'user-definéd ngld body kinematic mode]s/;;w inverse model qupphed must hmve the
necessary provisions for the configuration parametess specified in the argument list for
the GetBodyC onh;.,() function to have any relevances

[

~

[See N6 .o T o

SetBodyType)sSetBody Configt)

“#includ'c‘ "rigid.h"
nl;xill()
! it h1LK2, K3; .) B |

SetBody Type(PUMASG0):
GetBodyConfig(&hl, &K2, &Kk3)

&

e
5, .

| A 163
SetVelConstraint (TG) —_—
#include "rigid.h" °
. N N
void SetVelConstraint(y, ...)
int v; \ | .

l!.. (3 .-

t

" The velocity constraints for each joint of a rigid body may be sp&c:ﬂed with the
~ SetVelConstraint() function. The _velocity argument list v accepts as many values as
" there are degrees of freedom (DOF) in the rigid body

It is assumed that a rigid bodv has no physical velocity con$traints unless each call o
SetBodyT \pc() is followed by a call 10 Set\ clConstrainti).

~ %, s
. . .
y s l 0

~SetBodyType()

’ I:aﬂnlpl!r . R
#finclude "rigid.h"

main()

SetBody Ty pe(PUMAS60); ‘
SetVelConstraint(100.0, 100.0, 100.0, 80.0, 80.0, 80.0):

.
M °

-}

164

SetAccConstraint (TG) .
Summarsy
#include " rigid.h"

.
void SetAccConstraint(a, ...)

int a;

The accéleration -constraints for each joint of a rigid body may be specified with the
SetAccUsnstraint() function. The acceleration argument list a accepts as many values -
as there are dcgrces of freedom (DOF) in the rigid body.

It is assumed that a rigid body has no physical acceleration constraints unless each call to
SetBody Type() is followed by a call to Sc Au(onslraml()

See 0 v ' - | |
SetBodyTypety ’ . i . : t <
X “ . .

I“! “"l’p !!. ‘
#include "rigid.h"

main()

{ ‘ ‘ 2 ' . .

St Body Ty petPUMASG0);
SetAccConstraint(60.9), 60.0, 60.0, 40.0, 40.0. 30.0y;

s "':Q

165

SetOhtputMode (RF) " —
Summary - ' .

#include "rigid.h"

- void S,el()utp‘u,lM,yéc(omodc) <

int omode; ,

Descrinti

“The style of output is determined by SetOutputMode(). The omode argument may be

set to one of the following modes:
MATRIX output in matrix style
VECTOR (- - outputin vector style A

+ After a call to SetOutputMode(), all subsequent calls to either WriteRelationt) will

print results from RIGID jn matrix form, or vector forn depending on the status of
omode. - . . - .

The default output mode is MATRIX. ,

: S0 .

WriteRelation(), WriteTrajectory ()

: ‘
[l.
. .

#include "rigid.h"
. .
main()
{ .
- SetOutputMode(VECTOR); . .
} - . S » o
. .
N\ s
‘-
- “ . f
1;»"\ . ’.
SRS -

S ; 166 -
WriteMatrix (RF) .

#include "rigid.h!

void WriteMatrix(fmt, m)
char *imt; " .
double *m;

oo

The WriteMatrix() function is similar to the prm(f() function but is desig
sspecifically for printing a 4x4 transformation matrix. It is derived from the stdio (C
language standard input/output) library, and prints to the standard output (sfdouf). For = _
, the matrix specified by the i argument the proper 4x4 memory space of rype douhlc)
" must be allocated.

- Theé fm(argument is a character string that contains the output format speciﬁcation for the
data in the frame . The first character of fmt should be %, followed by:
a) dn optional flag: - left justify field,
+ always print numeric sign,
always print decimal point, :
3 0 zero-padd numeric on left, . ~ -
' b) an optional mjnimum width field width integer
¢) an optional precision integer specifying the number of dxgns after the decimal
 (including 0) this integer must .be preceded by a decimal point . .
d) conversion type:lf doublé premsmn style [-|ddd.ddd, default precision 6, ’
- le double precnslon style [- Jd.dé¥dce+dd, default precmon 6

More details on all of the possible formats for printf() can be found in C prograrmnmu
texts [120, 123, 125, 130} ‘

In geneml errors ir the specnﬁcatlon of the fmt argumem are not gracefully handléd by

the stdio library. 4
. “#include "rigid.h" -
e %y -
main() ' 7 \
A : \

double test|4}{4];

*

iivachlat' m((ddublc *) test, unknown);
WriteMafria(" %6.31", (double *) test);

}. . ..

PO

167

WriteVec‘tor (RF))
Summary

#include "rigid.h"

void WriteVector(fmt, y),
char *fmt; Cﬁ

I

double *v; s
. -
I!sl’s!:[in‘i!!ll . N
“The WriteVector() function is similar to the printf() function but is designed for
printing a 6 element positional/rotational vector.]

In general, errors in the schLﬁcauon of the fmt argument are not gmccfully handled by
the stdio lxbra.r) ;

vee_Also

WriteMatrin()-

pample . -

#include "rigid.h"
main()
" double p[{)J;

UnBqudl ramc(rcsl RPY Apl0].&pll], &pl’],&p[l] &pld).&p(5]:
\ane\’ec(ur("%ﬁ 21, (douhk *) p)s

P

168

WriteFrame (RI) , —
#include "rigid.h"

void WriteFrame(fmt, nf, f, ...) “ 1
char *fmt; -

int nf; ’ .

frame_t ™*f; .

description

¢

The WriteFrame() function is similar to the printf() fungion but is designed for

" . printing frames. It is derived from the stdio library, and.prints to the standard output

(stdout). A variable number of f_arguments is possible, the exact number of frames 15 ~:
specified in the nf argument. For each frame specified in the [argument space the
complete frame data is printed, including name. forward and inverse transformation
mdﬂ'lCCS Dctails on the hm"argumcm are described in WriteMatrix() .
In general, errors in the specxﬁcatmn of the lml argument are not gracgfully handled b}
the stdio library. :

-

Sce Also ' . - i
. . B -~

WriteMatring, BuildFramet)
avfple b

#include "rigid.h"

main() ' ’ o

{ T ” !
frame_ l irest, *run; ‘ , ' “‘\
resl..liuLIdI rame(" Reshn}_" RPY.50. g, % 0.0,0.0,90,0,0.0,-45.0);

~ " run=RuildFrame("Run", RPY,10.0,- 30 0,0.0,0.0,0.0,-45.0);

WritcFrame(" %6.2}", 2, rest, run),~

@

? gt

R\

. | 169

WriteVelocity SRF)%?

Summary
#include "rigid.h" . - -

yvoid WriteVcelocity(fmt, nv, v, ...)

chagr *fmt; . \ g
int nf; . o .

velocity _t *v; A

Description ‘ ' N

v

The WriteVelocity () function is similar to the printf() function but is designed for
printing velocity constraints. It is derived from the stdio |1hmr), and prints to the
standard output (stdoul). A variable number. of v arguments is possible, the exact
number of -velpcities 1s specified in the nv argument. For each velocity constritint
specified in the v argament space the complete constraint data is printed, including name
and linear/angular velocity vectors. Details on the fm(argument are described in
W riteMatrin(). |)

In general, errors 1n the specnﬁcm:on of the mt argument are not gracefully handled by
the stdio library. .

Sce _Also, B
\}'richu!ri\H, BuildV elocity ()

cxample
#include "rigid.h‘: ' , C e
main() ‘ ‘o

= velocity _t *slow, *fast; :] .
slow=BuildVelocity("Slow pace" ,RPY,50 0.30 0,0.0,90.0,0.0,45.0);
fast=BuildVelocity("Fast pace" ,RPY,10.0,-30.0,0.0,0.0.0.0,-45.0); .
WriteVelocity(" %6.211", 2, slow, fast);-

f -] 170‘ \\\ - \
' ' . A' v [‘\‘\\ ’
\ WriteRelation (RF) . N
Summary | ' o

inclide: "rigid.h"

E N " L- . . “
‘oid erlcRufu?ion(l‘ml, nr, r, ..)-) .
: char *fmt; - C -
inl nri | . i}
telation 't Ay Y- . A L
l . ‘ ‘g) i . / « .
' o LS o o \
’ Six s N « .) b
. - The-Write tion(y function is similar to the printf() function but is designed for
» printing relations. 1t is derived from the stdio library, and prints to the standard output
" (stdout).” A variable number of r arguiments is possible, the exact number of relations-s
specified in the nr argument. For each relation spelified in the r argument space: the
. complete ‘relation data 18’ printed, including naine and transformation sbiution matri-
Details on the Ym(argumem are described in Wrritelatriv). %

t

J1n general, errors in the("spcciﬁcélion of the fmt argument are not gracefully handled by~

Lo thcsuyxﬂibrwy.~ .) . .

See Also . ’ . . p
r . . ' . , Lo q-,‘;

'\\’rilc!\lutri}.(,).Sc:l()u!;)um'l(fdc(;,Scl('fp'()rdS_\s(),Clobékclulionn rd

-

. -, I bt
e o~ *
. . - » . N . ” - . d 3
¥ Laamplc \ -1, ‘ _— . L »
’\, N ‘e, v ' ' .
#include "rigidh" . ¢ : .
. t . A R o R i .
A It B ' (”\S : .
main() . I . '
. { . . o o . «
<, . o! - :) +
* relation_t "\"I\Jmuum'n; ' e ' s
R 5> \ . '» , o
N X . " . I - i v) *
unhown = "CloscRefation(); S ’ .]
WriteRelation(" %6.21", 1, unknowg); " -t
. R . v' - - 3 . 1 .
,} . S : ‘ et » Lo
. I i . e .. e N)
NN , . J . o ‘ a ¢ -
v -, z . ‘_. , ' -
e . . ‘ > ¢
d ' > !
~ . ' o 1
{ . .1.‘ g _ l R "_‘ - i
e . + s w .} - ' ; ' ’ ¢
- ‘ ° «
4 - - '
. a . # - . v
o Lo U 2 Y -)
. .y, a , ’ . :
- ’ ¢ s - @ . ~ ’
m‘ : N ‘" ‘ M < ’ *
R -!‘M I :“ ’ . S 4
At "' ;': . . _\ , * p l \‘ \

.WriteTrajectory (RF)

Summary , \
#include "rigid.n"

o
void WriteTrajectofy(fmt, nt, t, ...) °*
char *fmt; -

int pt;

trajectory_t *t;

Y

ripti S ’ .
/ ‘ ‘
The WriteT rawclon() functlon is similar to the printf() function but is designed for
printing trajectories. It is derived from the stdio library, and prints to the stahdard output
(stdout). A variable number of { arguments is possible, the exact number of trajectorics
is specified in the nt argument. For each trajectory specified in the { argument space the

_complete trajectory data is printed; mcludmg name and foint motmm Details on the fml

a:gumenl are descnbed in W rlleMalrn() ,
. \

In general errors in the specification of the fmit argumem re not gracefully handlc,d by
the Stle Library.

. @ i i
See Also. -+ o
WriteMatrix(), SetOutputModc(), CloseTrajector) ()

‘e

cygmple -~ %

#include "rigid.h" - 2
b .)) . <
main() ' . .’ ﬂ
¢ | - AN
trajectory _(t *path;
path = CloseTrajectory(); . i
WriteTrajectory(" %6.21f", }\path), [. "
} 7 Yr ‘ R ® N e
_ . . . NS " A \‘; . " ~—
’ Y P , ’
+) - ¢
/z - - }‘ - 7 *’l
. \
4
'u - =5 s a
| o . Y-
N > - ‘ '

e

~y

.
‘)J
|
\

.‘5’

172
/* N ’
** - File: rigid.h
** Date: March 1, 1988 .
** Author: Stuart E. Thompson
*x Purpose; RIGID data types and function declarations
*/ .
#include <stdio. h>
#include <string.h>
#include <math.h> ,
- #include <malloc.h>" . ‘ \
/* RIGID keywords. */
#define RHS 1 /* side of relation */
#define LHS. 2 [* side of relation */
fidefineMATRIX 1 /* reporting mode ¥/ -
#define VECTOR 2 /¥ reporting mode */
#define CARTESIAN 1 , ¥ [* interpolation mode */
#define JOINT - - 2 , [*interpolation mode */
/* Rigid-body types. */ ' , b
#define NOBODY 1 /* NULL rigid-body */)
- #define PUMAS6() 2 - /¥ PUMA 560 robot */
/* Data structure identifier types. */
#define FRMTYPE o1
" #idefine BDYTYPE .2 /* body type indicator */
#define RELTYPE - 3 0 /* Rlatongype indicator */,
" #define TRAJTYPE 4 f* trajectory type indicator */
" #define NIL OL /* linked-list terminator */
#define SIZENAME - 81 /* length of name vanables */
#defme SIZEMSG 81 /* length of message variables */
[*. Common mathematical constants. */ =
" #define P 3.14159 /* constant FI */ - .
#define TWOPI. ’ 2.0%PI - .. /*constant 2P1*/ . Cot '
#define PIBY2' P1/2.0 - [* constant P1/2 ¥/ - .
#define DEGTORAD ~ P1/180.0 /* degree to radian */ .
#define RADTODEG ™ 180.0/P1 /* radian to degree'*/)
#define TRIGERR O 001 /* trigonometric-tolerance */ ~
/* Simulate booleandata type */
typedef int boolean; :
#define TRUE ' 1
- #define FAL§E 0 9
/* Fake data types. */ S
* #define private - . LT
Ydefine public - i - » "
- A
/™ -cphne of order (deg:ee«r 1) ﬁve *
" #define DRDER 5
#define ORDERPI (ORDER +1)* N ' :
- ¥ - L l'h N\

[4
/* RIGID data structures. */
typedef struct coord {
char *cname,
void (*funi2))()

Al

} coord_t;
#define SIZECOORD sizeof(coord_t)
typede'f struct frame | .

! char fname|SIZENAME];

double vec|6]; .
double fwd[4]{4];
double inv|4]{4];
struct coord *ffun;
} frame_t;
#ddfine SIZEFRAME

typedef struct velocity |
char vﬁamelSlZENAMﬁ
double vel{6}:
struct ‘coord *vfun;
} velocity_t;
#define SIZEVELOC ITY sizeof(vclocity
typedef struct pant {
int side;
int ptype,
" union { :
- struct frame *frm;
struct rélation *rel,
" %) pptR .
struct part *nextpart;
} part_t;
\ #idefine SIZEPART sizeof(part_t)
Y
typedef struct relation |
char mame[SIZI:NAME I,
struct part *rdata,
stmct part *reol;

elation "‘nextrel
} relation_ tcg ' »
#define SlZEBEL sizeof(relation
typedef struct knot { N
~ € : i ktype;
.~ <wunion { -

R B
‘. w b 3
-~ wed ,' e
N

"double *bpos;
struct frame *frm;

+ struct refatior *rel;
struct trajcctory'*traj;

o ISR 1
_struct knot *nextknot;
J kaot_t; | -
. #define SIZEKNOT sizeof(knot_t)
\ -~
1Y

/¥ coordinate specification function ¥/

- [* pointer to-a frame */

173

J* coordinate function naine */

.

A

¢ ,

[* frame name */

[* translation/rotation angles */ *

[* forward transformation) matrix of frame */
[* inverse ‘ransformation matrix of frame */
/¥ coordinate specification function */ |

‘sizeof(frame_t)
D .

/* velocity name */
/* linear/angular velocity ¥/
/* coordinate specification function */

N

L3

N

__l)

/ ld appears on LHS or RHS */
tr type indicator for union */

t

/* pointer to another relation */

/* pointer to next part in par-list */

v

y_ [relation name ¥/
/*'pointer to first part in pan-list */

/* pointer 10 last part in pan-list */
/* pointer to next relation in rel-tist A

_t) X

/* kptr type indicator for union */'
/* pointer to a body vector */
/* pointer to a frame */

/* pointer to apother relation */" .
[* pointer 1q @ trajectory */

/* pointer to next knot in knot-Ipst */

174

+
typedef struct spline { . _ ’
int numKnots, - /* number of extended knots in curve */
+ int dof; . /% number of curve families */ -
int numPts; S /* number of points-along basis vector */
double *knots; /* knot locations along the basis vector */
double *coef; /* the B-spline coefficients */ ~
double *basis; /* the B-spline basis vector */
) spline_t; - . /V' N
#define SIZESPLINE sizeof(spline_t) . ’
typedef struct segment | , , , '
int numKnots; /* number of knots in knot-list */
boolean isvel; /* TRUE if velocity set */
boolean isacc; ' /* TRUE if acceleration set */
struct spline *path; /* the knots in splined form */.~ B
int stype; 7* sptr type indicator for unjon */
union |
-double *bvel: /* pointer to hody velocity */
struct velocity *vel; - . 1* velocity of first knot in knot-list L7
} sptr; !
double *bacc; o /* pointer to body acgeleration */
struct knot *sdata; /* pointer to first knot in knot-list */
struct knot *seol; /* pointer to last knot in knot-hst */
struct segment ¥nextseg; ‘ /* pointer to next segment in seg-list */
} segment_t; @ ’ :
#define SIZESEG sizeof(segment_t)
typedef struct trajectory { .
char tname|SIZENAME];, - [* trajectory name */
int numSegs; " [* length of seg-list */ -
int mode; " /* CARTESIAN or JOINT ¥/
Lt s double dilation; [* overall time dilation factor ¥/

- struct segment *tdata, /* pointer to firsksegment in seg-list */
struct segment *teol; : f* pointer to]as?\segment in sep-list */
struct trajectory *nextraj; /* pointer to next traJemory in traj-list */

} trajeclor) 1. -
«#define SIZETRAJ sizeof(trajectory_t) . .
typedef struct node { ' ’
char *jtem; [* data to be queued */
struct node *nextnode; ' . [* pointer to next node in queue */
} node. t;
#define SIZENODE sxzeof(node 1)
typedef struct fifo | \ S) &
int length; , | /* length of queue */ LN
struct node *front; /* front of queue (dequeug) *7’
’ struct node *rear; " [*rear of queue (enqueue) ¥/
=) fifo_t; - - b T ¢
"#define SIZEFIFO sizeof(fifo_t) ! R
typedef stiuct body: | - ’
int dof’ Co- /* degrees of freedom */ :
int numConfig; : ", /[* number of confi guranon parameters */

‘(‘l .
*

5 -
1,

int *config:
double plol;
double v|6].
double a[6];
double *yp; .
o doubie *qv;
double *qa;

,

-~

struct coord bfun;

o

175

r* conﬁguranon paramelers */

/* Cantesian position/orientation vector "'/
J* Cantesian linear/angular vel. vector */
/* Carntesian linear/angular acc. vector */

. {* joint displacement vector */

/* joint yelocity vector */
/* joint acceleration vector */
/* motion transform functions */

boolean isMaxVel, /* velocity constraints set flag */
double *maxVel, . [* ve\}ocny constraints ¥/ .
boolean isMaxAcc; J¥ acceleration constramts set flag */
double *maxAcc; /* acceleranon constmmtq "'/

} body_t; }

#define SIZEBODY sizeof(body_t)

¢

typedef struct errtrap {

char emnenglZEMSG]

int numErrors;

. * error description */

/* error count */

, boolean fatal; /* fatal error flag */
J ermtrap_t; '
. " . 4
/* Function definitions on a per file basis. */
[*relc*/
public boolean OpenRelation():
public relation_t *CloseRelation(),
‘public void - EquateFrame(): -
public void EquateRelation(); .
public void EvalRelation(); . .
/* options.c */ - v -
public void SetCoordSys(), ' .
public void SetSampleStep(). °
public void SetMotionMode();
public void SetBodyType()
public void - SetBodyConfig(); .
public void GetBodyConfig(); A i
public void SetVelConstraints(); -

.- public void SetAccConstraints(); : '

_ private’void SetError(); < S v
public void ReponError(); - L
public void ClearError(), ,
[*trajc*/
public bootean OpenTrajectory(); ‘
pubjic trajectory_t *CloseTrajectory();
public void SetVelocity(); . . o
public void BodyVelocity(); : ' W
public void BodyAcceleration(), * ' o
public void, MoveToFrame(), s o
public void MoveToRelation(), . - N T
public void, MoveToTrajectoryX); ’ : - :
public void BodyPosition(); s
private void FormTrajectory(); : - N
private void SplineTrajectory(), . T .
private void ExtractPos(); ' < b
public void ‘

EvalTrajectory(),

-

public double
/* queue.c */
private boolean
private char

- private void

. private fifo_t
private node_t

- [* prim.c */
public velocity_t
public void
public frame_t
public void

Jpublic void
public void
J* xforms.c */
private void
private void
private void
private void -
private void
private,void
private void
private void
priyate,void
pri&ate‘void
private.void
/* report.c */
public void

. public void

public void
public void
public void

_ public void
public void

_ /* evaluate.c ¥/
private void
/*fillrow.c */ .
private int
/* formset.c ¥/

. . private void

/* formsys.c */ -

. , privatevoid

/* solvesys.c */
- private void

/* spline.c */

private void

private void o

private void
private double
public void

/* instance.c */
private coosd_t

. .~ private relation_t

private part_t

[

R

N

Enqt; ireTrajectory();

EnQueue();
*DeQueue();
ClearQueue();
*InstQueue();
*InstNode();,

*BuildVelocity(); .
UnBuildVelocity();

' *BuildFrame();

UnBuildFrame();
UpdateFrameAbs(); -

' UpdateFrameRel();

FwdRPY();
InvRPY():
FwdEUL.():

AInvEUL();

FwdOAT(); -
InvOAT();, - .
HMMul(),
HMlinv();
HMCpy():

- HMA4d(),

) HME_ye()

)
SetOutputMode(),
WriteVecton()..
WriteMatrix(),
WriteFrame();
Write Velocity();
WriteRelation();
WriteTtajectory(),

’ Evaluaxc();
FillRow();

. FormSet();” *

ZADUDS)'S();
olveSys();
FormSpline();
UnCnstrTop();
UnCnsteBot(); .

DilateSpline();
EvalSpline();

*InstCoord(); -
*InstRelation();

“*InstPart();

)
~

176

-

-

A 177
private frame_t . *InstFrame();
private velocity_t *InstVelocity();

. private trajectory_t . *InstTrajectory();
private segment_t *InstSegment(),
private knot_t *InstKnot();, -
private body_t *InstBody(); ct
private spline_t *InstSpline();
private double *InstDArray();
private int *InstlArray();

/* utils.c */)
private int imax();

_ private int™ imin();) '
private double dmax();
private double dmin();
private void OpenPlotFiles();
private void WritePlotFiles();
private void ClosePlotFiles(); ‘

. /* bodies.c */ . n,
private void FwdNULL(); ‘
pnvate void InvNULL(Q); . ‘.
pnvate void FwdPUMAQ;

- private void InvPUMA);

/* Initialize some predeclared data strucmre/s‘ */ ‘
static coord_t RPY = {"RPY", FwdRPY, InvRPY};
static coord_t EUL = {"EUL", FwdEUL, InvEUL};
static coord_t OAT = {"OAT", FwdOAT, InvOAT);

+ [* Set g]oba] variables for RIGID */ -)
/* CARTESIAN or JOINT */

int motionMode;

int * outputModec; . /*MATRIX or VECTOR */ *
double motionStep; * . /*range 0.0t0 1.0 %/
.coord_t motionXfun, /* RPY, EUL or OAT */

body_t - bodyType: - [* NOBQDY or PUMAS60 */
staffic errtrap_t- emgnd {NULL,0 FALSEI [* errds handler®/

FILE *fp, *fv, *fa; /* plotting file pointers */

Ll

\
1
.

Appendix B - C Programming Language Syntax Summary

A d

This syntax summary [132] is intended for aiding comprehension of the syntax

keywords are hlghhghtcd in bold :

ol

Expressions

The basic expressions are:)
: expression: '

pr:man

-

primary . g

*expression

&lvalue

-expression
lexpression’
~expregsion

4++lvalue

--lvalue

Ivalue++ .

lvalue--

sizeof expression
(type-name) expression
expression binop expression .

N

expression 7 expression : expression

lvalue asgnop expression
exprcssxon expressnon

.,

identifier
constant
string

- (expression)

primary (expression-listop!)

- primary [expression]

primary .identifier

primary->identifier

* identifief - -7
primary [expression]
Ivalue.identifier -
pnmary->1demxﬁer
*expression

w (lvalue)-

of the C programmmg language it is not a tutorial-by any means. C language

n

179 .

The primary-expression operators have highest priority and ,gfoup left to right.
0 n . >

The unary operators have pnonry below the primary operators but h:gher than any
binary operator and group right to Teft.

-

L& - ! ~ T4t - sizeof (type-
name) Y :)

Binary operators group left to right; they have priority decreasmg as mdlcatcd

below. The conditional operator groups right to left. e
" _binop: _ '

* / %) >
. !)
>> <«
< - > <= >= . .
_ !.’: .
& ‘
A ~
l.
I ,

e

Y

.Ass‘ignm,ex'lg operators all have the same priority and all group right to left

asgnop: . :
o += e e /= Y= ’>>= <«&L=
&= A= = : o

“The cormma operator has the lowest priority and groups left to right.
o . -

Decl: 'ioru;
- declaration: ’
decl-specxﬁers nm-declarator-hstop,

. decl-specifiers: . o N
type-specifier decl-spemﬁersopt) 2y

- sc-specifier dccl-spcmﬁers‘)p -

C-speafer - - 7 = ST : ~e
auto)) ‘ :
static
exfern
register ' . , o
Aypedef . : T

o

st ud—dcvlararmn) :

180 ' -

type-specifict
char ,
- short ; '
int ’ .
long .o Y
unsigned :
Tloat
double >
void .
struct-or-union-specifier ;
s \
typedef-name enum-specifier S .
enum-specifier:
enum {enum-list}
enum identifier {enum-list}
enum identifier

.

enuni-list*

enumerator

enum-list, enumerator
enumerator.
* identifier s

identifier = constant-expression

L 4 * .
mit-declarator-list

init-declarator

mxt-declarator mlt-declarator-hst ..

init-dec. Iararm :
declarator imtialimropt ' . .

dec Iaram;

identifier

(declarator) y
*declarator ‘
declarator()

declarator [constam-expressionopt] D

3

. Struct-or-union-specificr:

struct (struct-decl-list}
struct identifier {struct-decl-list)
=~ rstruct identifier
union (struct-decl-list} ;
union identifier {struct-decl-list}
union identifier -
struct-decl-list: ,
. struct-declaration))
struct-declaration smlct-decl-hst

type-specier struct-declarator—lm' - N

P

XY

“0

181

struct-declarator-list
struct-declarator
struct-declarator, struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression
initializer:
= expression
= (initializer-list} (
" = (initializer-list,)

1 [y

initializer-listo—~——""
expression
initializer-list, initjalizer-list
{initializer-list)
1ype-name:
type-specifier abstract-declarator

abstract-deéclarator:
empty
(abstract-declarator)-
*abstract-declarator
abstract-declarator()

~

abstract-declarator IComtanhcxprcssionoptl
4
npedef-name:
identitier
hd ' '
Statements -

compound-statement. y
: {declaranon-lxstopt s:atement-hsxoptl -
declaration-list. .
declaration ' .
declaration declaration-list

statement-list. _
statement
statement statement-list

-~ . - - -

4

Statement: .
coimpound-statement
expression, -

il (expression) statement

'ty - » . -

182

if (expression) statement els¢ statement
while (expression) statement
do statement w hile (expressxon)

for (expression-1 opt’ expression- zopt' expression- 30pt) statement

swifch (expression) statement
casc-constanmt=expression: statement
default : statement

_break;

continue;

return;

refurn expression; R

goto identifier;

identifier: statement

Extemal Definitions

program. :
extémal-definition
external-definition prograny

external-definition-
function-definition
. data-de ﬁnition

A}

-

funcnion-definition
type- speuﬁerop, functinn-declarator funcuon-body

.

function-declarator :
declarator (parameter—lisxopt) R

parameter-list:
’ identifier
identifier, parameter-list

)

function-body:
declaratiop-list compound-statcmem

- data-defintion;
externg ,type-spectﬁcropt um-declarator-hstopt:

slam opt YPe- -specifi °ropt um-declarator-hstopt.

- - - -
- ~ \ .

1 “~

. e #deﬁne identifier token-string &
#define ldentlﬁcr (1dcnuﬁer, ey 1dent1ﬁer) token-string

v

e

W

e

> 183
#undef identifier
#include "filename"
#include <filename>

- #if constant-expression

#ilfdel identifier -
#ifndef identifier
#else

. #endif v

#line constant "filename”

%

o

oy

B |
Appendix C - Frame Transformations e

- L4

il

L

A summary of the equations for the frame transformations are given. Morc
specifically, the forward and inverse kinematic equations for Roll-Pitch-Yaw

(RPY), Euler (EUL) and Unimation PUMA (OAT) angles are given. Morc

claborz;te explanations of the transforms are pm\tidcd in{l, 7}.

Roll-Pitch-Yaw

Eaclf of the RPY rotations takes plau, about a fixed refcrcnu. frame (A). 'IhL

Totation about)(\ by angle vy is called goll, rotation about \9 bv B callcd itch .md
Y ,:E_ p

about Z\ by o called yaw. See figure C.1. Thereforc

CaCp CaSBSy-SuCy - CaSPCySuSy
R (yBa)=| SaCPp SaSPSy+CaCy SuSPCy-CuSy
~-SB CBSY » CBCy

Y= aun2(rsy, 133)

B = atan2(-r4y, 4 /rin + r:m)

»”

o = atan2(ry;, 1y))

If B = 90.0 degrees, then y = atan2(,,. réz). B =90.0, a =088. Conversely, if

_ B =-90.0 degrees, then y = -atan2(r;,, r-,), p =-90.0, o« = 0.0.

-

- ' 185

Euler Anglit: S
A

Each of the EUL rotations takes place about a moving reference frame (B .)
) .

. ¥
The rotations are consecutively made about about iB by «, rotation about \93 by B

and about 2}3 by Y.l See ﬁguré C.2. Therefore,

o !
P - -

CuCBCy-SaSy -CaCPSy-SoCy CaSPp

R(upy)=| SaCBCy+CaSy -SaCPSyCaSy SaSp
-SBCy - SBSy - Cp

a = atan(ry,, 1)7)
2o 9 »

B=al€u12(r:'” + 32, r:"‘)

Y= atanZ'(r32. -I3;)

If B = 0.0 degrees. then y=atan2(-r5,1,,).B= 0.0, =00.

If B.= 180.0 degrees, then y = -atan2(r |, -1,). B = 180.0, o = 0.0.

¥

-

Unimation Angles '

Y

i

Each of the Uni.matfon angles are élosely fclatea to the EUL angles. The OAT

angular measure for the PUMA 560 robot are defined in 110). They afe defined as

.
N

. ! : « .
O = a+90.0 degrees . . R
Lo« - e -
: a - ¢ ‘v
A =P -90.0 degrees . .
.) -
) >
f R ¥
T=y . .
N 1y
‘ .
.
<
7
n .‘
*
- \ £
.
t -
(-
, - .
i} . ’ ’ -
» » ©
‘1
v . .
- .
L1
1] 1 . .
: . >)
\ . B h
*
. .
<.
" v
!
1
’ } ‘
* " 1
, .
A 4] \
. . v N
. - . o ,
)
~ e . R
- I3
N .
« . o
» 1
a
.

[y
'
@

187

v

Appendix D - Puma 560 Robot Model

A complete summary of the closed-form equations of motion for the PUMA ¢ -

-

560 robot manipulator are given in a paper by Eigazzar [11]. These results are 0o,

_lengthy to ’inclucle' in this.thesis. The physical characteristics of thc’PUl\‘dA 560
robotiis given.
'

7

he PUMA 560 robot has six revolute joints. Joints 1 through 3 form the ann « '

——— —

!

- of theTobot, joints 4 through 6 fofrp a sphc'ﬁ'ca‘l wrist. Th‘c shoulder may be used. ™~

LT3

in a leftor right shoulder eonfiguration. The elbow can have two configurations:
elbow up'{elbow above shoulder) and elbow down (elbow below shoulder). The
wrist may also assumeé two solutions: the flip wrist (joint 5 angle positive) and flip

wrist (joint 5 angle negative), :) o,
’ ' L { ' N

The configuration control parameéters are defined as: ‘ i

) 3 {.;1 left shoulder
I'= | -Iright shoulder

1
t

¢

+1 elbow up

'k2 = 1 -lelbow down
© kg +1no-flip wrist -

-1 flip wrist

\

s

1
a) | . . 189 ~ .
FY - ! -~ ‘ '
, —-
1Y
ro v \
’ v
LN
1 ! . . -
- - 4 ,
\ .
] «
waisT 320°
(JOINT 1)
s 6 UPPER ARM SHOULDER 266°
’ . K . . T
. . \. / 5 . {JOINT 2) ‘
=
g . G .« .
! . ouu.’“ ELBOW 284°
’\ {JOINT 3)
N LN
WRIST ROTATION 280°
. | (JOINT &)
. [: wmisY
1) 1T BEND 200°
TRUNK ——]. Az ‘ (JOINT §)
s
. Ik ,
. i o J'
o } [» FLAMGE 832° _ ~
. N ﬁ\}/ (JOINTY @)
o VA ‘
3
/
0\ - ?
‘ v '
~ ‘i ’ ’
, . .
o - - .) ‘ - .
§ . Figure D.1: PUMA 560 Robot.
» 7 A)
‘/
A .
- o
N \ 4 .
. .
. ~
. 3 * A
’ .
\ d
N v v a! *
" .
t\, 0 P ’ &
. . . . ‘ ‘)

Sy

Lo

These parameters are passed to SetBody Config(), in respectiv/c orller, wheni

calculating the inverse kinematic solution for manipulator joint angles, A summary

190

R

.
v

of forward and invers¢ solution ‘operations is given below. The aYnamics operation

count assumes that the kinématics has been calculated.

‘ dynamix:s/ =

- velociry

/ accceleration

forsrard

Aerse -

193 2Sm + 17(

.

~ 2% $lm'+ 161

N

218 + 30m

-

[)

. Zé;a. + 35m + 61

/ 44a +52m ¢

I »

454 + 59,

. (s:addmors, rrrrrm.luplicaﬁons, ftrarscendental functs

2

The ranges for joint angles

\

'

solutions which voilate any of t

trajectory generation.

1420205 < 14
-“00504 <1 1138

-250° < 8y < 70°
-133° < 65 < 133°

672 mm

432 mm
. o~
13) . 433 mm
) 14 56 mm
d = dl - d2 149.i
o 2.72°. T

(waist joint) -
(shoulder joint)
(elbow joint)

(wifist rotation joint)

~100° < 85 </100° * (wrist bend joint)
“T76° < 8/Z356° . (flange joint)
e
(s .
=) /
’-*_ ‘/w
' . / s

nz)

14

A

o

~ ey, - L3 ‘
‘ .
. . \ "r .
- ' |
. - Eovgd
] 7/
X o 191 '
N
3 ‘-‘
L
. >
) ,
5‘ = : ‘ b |
- ' ’ \ |
- . | ’ | |
. ¢ \ L4
- ¢ |
) . 1 .,
' ~
g \
« & - ”
+ »
.
£ 2) |
.
&
1
| .
. g
.
- ‘\ | ;‘
.
| ,
¥, . | -
. v -)
Figure D o |
igu : Li i
sigure D.2; Link representation of PUMA 560
—_— Y)
) . - ' -
. . “ ‘} | |
Lo : L
- ’ :
- a . - "
-~ - * .-
. 3 A o '
.
« ‘ "
N 4 ’ i
- e “
s » ' |
, S * ’
2 B u .. R | e
,t\ ‘ ’
) [
» ' v \\ | "'
| ' N " . .o R " B
e . T,) ' - .
.
- . ’ ’
) ’
.

-

K4

- . .
-
-

L]
LIEEY .

Wrist optimization
If 64 and-/ or B¢ pass beyond their joint limit, the wr'ist conﬁfm_'ation parar.f\ctes

k3 changes to al}ow thée joint angles to stay within limits. If inpgp flipping t}lc wrist-

in the altemate conﬁgﬁ{ation, the joint limit for 84 and / or By is still exceeded then ¢

the solution is definitely out of range. Two solutions may exist for 8¢, 360° apart

in the region -176° < 8¢ < -4%or 184° < 64 < 356°, which must ?e decided based

on the joint's previous value.

. ‘ [
. .
. ™ 4 .
. N
. .
' % ;
- s k\.\' .
t (A -
< - ‘w < (i
J
f ° . ’
-~ ‘ - .
. ‘a
- ("‘
N
-
LN
AN
1
- -
.) \) —
® . f ¥
\ . ¥F 4
L}
, .
.
K
* -
- J - .]
|
& - .
v I
.
.
.]
2 - .] -
- R N L]
) < 2
> ~ '
%
[} - - -
{ ‘
. . - ° -~
- * N
14 ‘ Y
‘
} .) o) ‘ P
o ! "
. - »
L ! : . &
) "(-
. = -
L] < ’

-

