— Rt I B N L S R R R T S R |
. : e R
I ' . . ‘ BN AR
= o~ - - > . st e M !
TR = G}
/ . 4 '
~ ! T N !
. B - -~
i \ .
.) .
Kl { . . ‘: (“:{‘. ! .
Coel T . :
2 i 1 * . - ' 3 s 4
- .. ’ ' L] " !
' ~ e -
k3
N - *
S T iy . : W
The Design and Implementation of CUENET: A Reconfigurable
N . i " Network of Loosely Cdupled -Microcomputers . 1
- C |
S 7 * . . .G
./,'/ « . C ““)
-~ - , ’ Clifford Grossner N)) ’
;. \ * . A Thesis .
.' - ’ [‘\
.) e . in .
~) M) N ’ .
. . The Department < -
N - N —/\-
' 0]
oL X of /
. . '] !
Computer Science. . .]
. . N . . : .
N Presented in Partial Fulfillment of the Requirements ' g
e . ‘ , AN j
Pob . i[i/or the degree’ of Master of Computer Science at 1
. N ’ N ' ’ '
. . Concordia University . :
| . , Montreal, Quebec, Canada . .
t . T ‘ . ' . - '
¢ . September 1982 , ’
/ . i
- t] -
. © Clifford Grossner .
n ' . . .
VI " ~ \\ +
. : - '
- O g = SN
o , , ‘
. ’ ' ' Y
| o ' '
’ y - ! . 5 '
. . AL_" _ ' “ v - BRI e

L%

- °

e . - RN i
- : (;

L Y * aBdTRACT | o -
» ' - - '
'Thé Design and Implementation of CUENET: A Reconfigurable

Network of ﬁoosely'Coupled.Microcqmputprs

’ a . Clifford Grossner - " .) oo
N ’ o ' :1' !

.
= . ¢

¢ % There have been many, -efforts made by yesearchers to Y

; ' design multiple microcomputer systems in order to increase

»

i) " the data throughput of the total *éystem.’*ﬁMm,esséntial .
.) . ‘
! ~ requirement for parallel processing. Iis an efficient A

integgonnection mechanism. In this thésis we present the
design and implementation of a multicomputer system based on . i

o i

— ' a time shared bq§ called C-bus. This multicomputer gsysten ’
| C — ¢) .
o SN is referred to as CUENET (Concordia University Educational

v

¢) NETworkf. . -

"' ‘ . - R ,0
-~ : - Phe computer - interconnection topology on CUENET is

reconfiqgurable under program cont;ol., A multicomputer .
system is said to be reconfigurable if it can assume severaf

Brchigectural confiqurations, such’ as, pipeline or/ MIMD . ;
“(Multiple Instrucpion Stream Multiple Data Stream), each of

‘which is characterized by its own topology, of

e .
F]

interconnections. . In the applications of a multicomputer

- system for parallel processfng of various algorithms it “is

-

desirable to have the power of reconfiguration. There are
. -

three fypes of functional wunits 'attached. to C-bus that

>

0
2 e LA e s

ES

comprise CUENET: a master computer, several slavé computers,

g R A e e

and network memory units’ (NMU) which are shared memory

iii

7

r

7

!

&

.
.
R SIS, G, T A TR 5
RN S s e i oo b o oon, i

-

.

.banks. " ¥he nmaster éompute:\ is “responsible for . ‘the

.

} . . .
coordination ,0f all other computers of CUENET, the

} . .
" computational tasks required by the end user are carried out

-

by the slave processors. \This' master slave apbroaéh is

, . o
intended +to simplify the complexity of the CUENET operating

-
-
-

system.

‘

A simulatlon mode}' was developed to examine the

different. alternatives, in the engineering design of C-bus.

This model was implemented using the . GPSS

™~

language. Upon examing the simulation results and our
prdjected needs,iwe found it possible to use. a general
purpose microprocessor with appropriate hardware extensions

as a central controller for C-bus.

simulation’

e e tas

- .
-

v

In -the }mplementation .of our 'networgﬁ tQ;~;iiﬁds ;%
boards were aesigned and developed: 7(a) a circuit board
conta{ning the hardware extensions required for the C-bus
con@roller, (b)‘one circuit board for each interface ngwéen

an off the shelf micrdcomputer and C-bus. In the

experimental prototype of CUENET there is one master, three

slaves, and one . NMU connected to—a C-bus. C-bus employs

twisted pairs of wires for signal transmission and is 50

feet long in its present form.’

There are two major potential applications for CUENET.
It is useful for parallel processing. of compute bound
aléorithms under ceértain conditions; and as a local area

network.

-

- 1 "
. N 3
4 + g .
- . ' . iy
\ . HETRL AR T
. ‘ . - ,a -
. 1 L N . - .
R . PO P A
» 1 N Pt
«
! [- , .
a . - ,
* . N
. - %
- - .
. " +
v
¥
. -
« ! % -
. -
-
; '
- ~ , ,7
v
Sv . ! o) v R
. i ’
) ‘
i 7

L / ot . :
B - e
‘ . ! ' . - v .
LI - ! e T - . . t
\

- [h

A\ d * . 0‘. . ’ N) X 3 . . ,
. A To my parents, Sidney and 1Ida, fol\' their financial
. support without which this thesis would i not have been
' possible. :)
' z
4 To Miss Jpohanne Sebek whose moral support and patient
: devotion to my studies were a large encoyragement.
F ' \ s ’
\ i 1
5 /) - ‘ef . \
)
M] ¢ .
O .
L .
Voo - S

&

. ACKNOWLEDGEMENTS -

I am greatly indebted: to my supervisor Dr. T.
Radhakr&shnan. RHis ' personal interéstg in my progress hés
made my stay at Concordia University a ﬁvery enjoyable
expétience. I'appréciatecthé effort he has‘takén to reduce
the bureaucracy tﬂat is ihcurred with a hardware project of

this nature. His assistance, advice, and encouragement weére

an asset throughout the entire project.

I would 1like to thank Dr. Terry Fancott for his
SUpporf, help, and the information he made available tb me

upon request.

I also wi§h to thank Mr. J. Blaison for the knowledge I
gained from observing him and his patience with my

‘questions.

Financial support for my graduate studies has also been
providied by the Governement of Capada through the National

Sciences and Engineering Research Council.

4 1 N

4
‘Mr. Chary Tamirisa spent many hours with me during the

implementation phase of the project. The software he

developed was instrumental in the testing and debugging of

C-_-bus..

vi, 3

. . R " N *
N .
if\ 4

e o et

v 1 S AN Wk

™

s A BT NN N IR

Py

o
%
R

e e ey AR T

PR,

II.

. vii

N A
vl
NS 3
. E »
. !
- oy ¥
v, + ' .
- N
.

TABLE OF CONTENTS R
TITLE PAGE ’ y i
SIGNATURE PAGE : P - : S
ABSTRACT I . R $ 8 1
ACKNOWLEDGEMENTS &/\ _ L v
TABLE OF CONTENTS . vit.
LISTS OEiFIGUhES AND TABEES " ix
INTRODUCTION _) o ~ 1
1.1 Multiprocessorsiand Multicomputérs .2
1.2 Reconfigurabilf{y and Decompos%ggdn i 7.
1.3 General Purpose. ICN h ' \ e 12
1.4 Optline .15
AN OVE#VIEW OF INTERCONNECTION MECHANISMS
AND MULTICOMPUTER SYSTEMS' l6
2.1 Interconnection Strategies 18
2.2 Application Specific Architectyres 21
2.3 Multi-Microcomputers 24
2.4 Interconnection Standards " 30
2.5 Local Area Networks Co- 35
'THE ARCHITECTURE OF CUENET
3.1 Design Objectives o o - o 38
3.2 Architecture of C-bus . . 40
3.3 ‘Message Communication ’ 52
3.4 C-bus versus Other Mdltiprocessqrs 'Sé

+

\ R e
, " IV. A S;MULATION OF CUB_NET CHARACTERISTICS ‘ ,
. 4.1 'Simul’atio'n.Objectives') . 61 .. y
4.2 Simulatio;s Model’ : ‘ - 68 - ‘
_ 4.3 FPSQ Simulation' Pr‘ogram ") N 72 o
”.,4'.4 Simulation Results : 78 .. (
* V. THE DESIGN AND IMPLEMENTATID_N -
OF CUENET | | e : \ L ?ﬁ
. 5.1 Design Tradeoffs h ' 91
5.2 Hardware Implementation ' o ‘ 99‘:
"T 5.3 C-bus Timing Requirements | 110
' 5.4 C-bus Co.qtroller Sof_‘ti\}:ax"e : . 120]
:V'I. APPIG.IC‘ATIONS AND FUTURE DEVELOPP?ENT o "l) ‘] :
] 6.1 ‘Evaluation of Decompositions o 128
' 6.2 Cu;:rént.Applications on CUENET . 131
6.3 Future Hardware'and Software Deveiopment : 134
g 6.4 Coqciusion | . :) 138
j , . RE‘I-FE;RENCES ‘ . .o 141
? APPENDIX I , | ' - 147
§ : ~° ApPENDIX II . .. _ . - 151
. ‘
g . f
¢ b "

N

| | . o vi

R

i / ‘
FIGURES =~ - -

i
s

1.1 Multiprocessor Solutions

1.2 Multiprocessor’ Performance Graph

1.3

2.1

2.2
2.3

2.4

‘3.1

3.2
3.3

"3.4

3.5
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
1.9

Decoﬁpo%iéion Process -
ILLIAC IV ‘
Cm*a(Five Clusterd)\
Micronet ‘
Ethernet Station

é-bus :

L-bus Controller

‘C~-bus Interface

CUENET

Communication Structure

-

Communicatioﬂ; Software Structure
Message Format)

Type I 1I -Messages ,
Typical Application Architectures
Simulation Model
GPSS FlowLDiagram
Simulation Graph
Simulation Crapﬂ

Simulation Graph

Simulation Graph

oW oW N

Simulation Graph

4.10 Simulation'Graph 6

_LIST OF FIGURES AND TABLES

10
14
23
26

- 28

28
41

42

44
47
50
53
55
65
67

70

74
80
81
83
84
85
86

et 3

e

(4

4.11 Simulation Graph 7'“ ‘
5.1 Bit Slice Bus Controller
5.2 Byte Transfer Cfcle |
5.3 Special Pu;:'pose Hardware

5.4 C-bus In¥er face

v

5.5 Special Purpose Hardware (Photograph)

5.6 C-bus Interface (P{\ocogr\aph)
" 5.7 Controller Selection Timing
5.8 Byte Read Timing

5.9 Byte Wfite Timing

5.10 Byte Transfer Timing

5,11 C-bus Control Program

v

>

¥ ¥

.
.
PR e b e Y 2

1

o

W

88
92

96

101
105
108

109

113

. 116

117
118
125

TABLES
©+ 2.1 Local Area Networks
- ;l.l Parameter Val ues
4.2 éPSS gro;ram.Variable;s - - (\ :
" 4.3 Queue Sizes.
5.1 Address Map (SPH) B _
5.2 Address Map (interface) T
5.3 C-—bus) Control Lines |
5.4 C~bus Debug Commands .

5.5 Error Message Format
| ' ' ’ . &

/
»

g s o Y S S pm s o e o

xi

37
64
75
89
102
106
111

121

123

: R . o
""‘};-.“., e e e e J:A.; - 2 A
'v - ‘ - .
»] - [)
. . . /-\ . .
) .
. 3 7 -‘ . ’
L]
- "- ~ o ¥ - , ' .‘ .
' TABLES P P
‘ . e : - ot ™.
0+ 2.1 Local Area Networks 37
‘ ~ .
4.1 Parameter Values,) ' P 64
4.2 GPSS Program Variables ') .75
N @ [y -
. . -~ . -
4.3 Queue Sizes' . 89.
. 5.1 Address Map (SPH) ‘ - 102
. » . o, ‘\ 1
. 5.2 Address Map (Interface) ~ 106
» '/‘ ' &ﬂ * N > b - 4 - '
. 5.3 C-bus Control Lines v 111
. : /
5.4 C-bus Debug Commands - . 121 -
. 5.5 Error Message.Format™ - " 123
" “ 0
. , .
-\ ') N c - -»
N : L] - W
-~ o . sv'))
. 5 ‘. . o . - \
< . © ~ N . \)‘ i
} . . o,
he et * -
& . v
. L] ‘| , L) * . . N
¢ .
. . X . .
«) ' - * -) ¢
. . |] ‘
- q v !
' ' L -
" - ' ‘ » ’)
,
. . , i i ' !
. e ' R : K «
. Yoo .‘\
. s ' - i) '
1] » ’.
v . 1] . : : ‘. .
’ ——t) Y,] '
v, s ® . - Pl . , - .) -
a1 " v ’ ' N h . ' !
. xii” '
: . Yo
P - / N i a i
] ’ v , ’
LU / R .

.o
- 5 P
R
L 0N
. 4
P
£ s e
13
-
0 he
-
.
N
PRl
«
)
N
.
.
5
P
-
.
.
e
.
o
'
N
W R
B
v
.
< L]
f
o
A
o

A1)

N
Py

v

» .CHAPTER'I

—

.

INTRODUCTION

’

-

'Intb}est in multiprocessor systems 1is not, a new

phenomenon. Lfomputer designers have been actively working

in this field for a variety of reasons [Adams 78, Clark 78,

Satya 80, Lam 82, and Thurbl 79]. Four basic motivations

for the continued development of multiprocessor systems

»

[Enslo 77] afe: co .

(1) the need for higher throughput of data than what is
obtainable from a uniprocessor system.

(2) flexibility to expand, or shrink, - the system in
., meeting dynamic work load requirements.

3

(3) reliability. & \

" A

(4) system availabiltity.

s

Q

v . .
Each attempt to design and develop a multiprocessor system
to date has focused on one or more of these four objectives
[Kuck 77]. The decreasing cost of LSI components, such as

processors and memoriesr has created further interest and

new ' directions ig multiprdcessor architectures [Arulp 80,

Kober 77, and Jones 80]. A sinFle low cost microprocessor

of today possesses substantial functionalities; but is
limited with respect to throughput capabilities. The main
objective of the 'desigh in the modular minicomputer project

(Arulp 80], for example, has been to increase the -data

thrpughput' of the system by using multiplé microprocessors.

o

w

N Nomey ot A s P R b o L

T N o AU o i BT et 7T it ¥ 1t

’
i TSI P 3 T S NRAIEY T

e R 3

f
i
]
:

n o o A SR AP AL S O
N

1.1 Multiprocessors and Multicompute:i\\

~

t

While multiprocessors and multicomputers each possess

multiple processing units (D-units), as

[Baer 80], their hardware configurations are different with

defined by . Baer

respect to .the sharing: of resources among the D-urits

J{Enslo 17]. A multiprocessor is' a single computer that

, .
contains multiple processing units which

system memory and input output devices. On the contrary, ;

share all the

multicomputers are a set of separate computers which have

direct connections. between thgm.' The interaction between

o

D-units in a‘multiprocessor is usually at the

data element

level rather than through the‘trénsfer of a complete data

[

set, or a message, which is the case with multicomputers.

In this thesis we treat the terms multicomputer, parallel

processor, and distributed computer as synonymous.

.Q

The major,aspebts of the design of a multiprocessor, or

A

multicomputer system, -and its application lie in the design

-or selection of the followﬁng:

(1) A set of processors and

memories

that are

interconnected. They may be homogeneous that is
functionally identicgl, or heterogeneous.

o

(2) An interconnection network . (ICN) that
connects the different subsystems [Siegel' 79j.

(3) Division of a "large" process

.

on the hardware structure ‘defi
above.

(4) An - operating - system that will
execution of different tasks,

into

ned by

coordinate the

allocate

physically

tasks or

computational units-that can be executed.concurrently

(1) and(2)

tasks to,

processors, and 'will manage other processess

-2 -

[y

¢

-,

e i v e s £l bt oot Aot Ve b Sl i e
.

R s -

e,

e i
4
/

PR

™~

e
-

A .wide wvariety of choices is available to a designer with
v \ = . ’{)

respect to the apove. four categories. 'Thus the design.,of a
- ‘ L]

multiprocessor system, and hence its success, i's much more

chqllenging‘ than the -design of a uniprocessor- systenm

[Karta 82]. As noted ‘by (3) above, it is not adequate to

design and construct a multiprocessor system; we need to . be

able to use it effecﬁ?éeiy. Jones and Schwarz observe.

parallel solutions is.
‘ \
generally -a more complex task than the design of their \

seVeral

[Jones 80] that understanding

sequential counterparts. There have been attempts

in- the past to design application specific multiprocessor)

systems. The ILLIAC 1V computer designed for picture’

.

processing applications [Barne 68], and the KENSUR project

at IRISA [Andre 80}, Francg, devoted to translation of

programming languages, are .two examples.’
: . _

’
»

A sequential algorithm can be split, or decomposed,

:

into subprocesses which can be executed concurrently on

separate computers. This collection of subprocesses,.which

we call a parallel algorithm, will collectively attempt to

?
solve the same. problem .as its sequential counterpart. . A

given sequential algorithm may be decomposed in several

-

different ways, each of which will require a specific type

"

of- interconnection structure between the processors. The
F 3

problem of arriving at an optimal decomposition for a giJen

. P
- sequential

in solved

a need for a

algorithm, general, is. far from

[Enslo 77].- This- indicates that there is

be

v

"research tool" upon which a proposed decomposition can

P] -3 -

o A e bt A P O

et dresenn e oa A ek P i

e vt W el o ¢
.

i
!
i

R T o s

amasceren

éxecuted aﬁd leValuatedﬁ Such a tool. is indispensable for
experi@eptal research on parallel' processing [Jones 80}. A
"research tool" for testing pérallel algorithms Qill be
comprised of'a combination of both hardware aﬁd software as
shm@n‘in Fig. 1.1. Such\a tool must allow the\researche; to
ptocessors‘in'o;dei to evalugte various decomposition§. Thé

A\,
ability to configure different topologies can be achieved
’ '

[N .
either through hardware, software, or a profitable

4 .

combination of both.
! - ‘)

Some time ago Flynn [Flynn 66] . classified parallel

—

. f . .
computers.into four categories: o

(1) SISD or single 1instruction stream and single data
stream. ' ’ ‘

.

(2) SIMD or single instruction stream and multiple data
: 2.

stream, :

. .
; £

(3) MISD or multiple instruction stream and siqgle data
stream, ' \

(4) MIMD or multiple instruction stream and multiple data
stream, ax

In this context, a stream means a sequence of entities (data

. \ : .
or instructions) manipulated by the processors. Parallel

computers may also be classified atccording to the degree of

coupling that exists among the computers [Fulle 78].° A_

loosely coupled parallel computer will be compriéed of
indebendent prdcessors £hat send and receive limited
commands or data between themselves. ‘Memory sgaring is not
pr;ctiéal in this type of sygtem where communications

usually take place through low speed buses. In tigﬁtly

kd
specify = different interconnection topologies among the-

PR

e e g S bt W et

w

e n et e e APRE L e 2T e e

’
°

PRy e, . e o A R

-

LY

d Ry
e

V

Solution-using
multiprocessors

emms

e e o e g 3 A o g <o i 5 0 emd

One or mor?wa.ys of

decomposing a
sequential: algorithnm

.
. \ .
.

Y

A tool upon which the
decompositions can be

tested and evaluated,

WHICH CONSISTS OF

\ Ha.rdware
s DIVIDED INTO

Physical inter-

connection network

,betveen processors
. Iwo TYPES

et

ot

Multiple
processors
or computers

Passive connection
Inflexible -

Softyare
pIVIDED® INTO

Front-end message
communications
software.

progranming
language

Active connection
" with user
programmable
controllers
[}
Figure 1.1 /

extentions

Operating system,

e B S bt

-
4 e o et Y

o

| : - .)
%oupled systems intercomputer communications take place
‘f&équently over onhe Or more high/speed buses, or common

memories [Hirsc 79]. Multiprocessor's that have an ‘SIMD

architecture will have a central>control unit broadcasting

. b

-

¥
instructions to a set of D-units. In this type-of struéture’

the'procéssing units are considered to be tightly coupled
Nem ' .
and are usually located - within a -single cabinet.

Multiproceséors‘that are classified by FlynQ "as MIMD tﬁpq

architectures are generally multicombuters. The indi;idual
.éomputers that are grouped to form a multiCOmputer may be at
short distances from each other 1or, physically "~ distributed
over a long distqnce. Multicomputer systems that are
locdlized within an office, a room, or a rack have been
proposed to support - a wide variéty of 1intercomputer
commﬁnication fopologies such as a pipefing [Stone 75], a
tree .structures {Buchb 79]; a cube [éayne 82,,and Adams82],
;nd' hybride struéture; (Andre 80]. These . multicomputer
systems are considered to be loosel? coupled ;rchitectéres.
Distributed multicomputer ‘'systems are further .subdivided

into short and long haul networks. Short haul networks are

t

intended for communications within a.single building while

}ong haul networks are capable of transmissions over

distances of thousands of miles. Two' major short haul

networks, algo "called local area networks (LAN), thaé have
~ been proposed are Ethernet and Wangnet (Techn 82].

» ' \

/"T

S e

o ap e

1.2 Reconfigurability and Decomposition

’

A computer system K is said to be reconfigurable if-it

may assume several architectural gonfigurations each of

which 1is charactérized by its own topology of activated

" interconnections between computers [Siegel 7§]. Viék et al

consider ' reconfiqurability as one of three approaches to

*adaptable architectures?; the other two being

microprogrammability and ‘dynamic architectures [Vick éb].

The primary objective of reconfigurable systems is to chénge
the system architecture so as to match it with the nature of

the problem being solved.

N
-

.)
Developments in LSI technology and interconnection’

structures have made it possible to reconfigure a system via /

/

software [Karta 79]. With respect to reconfigurability-

there are two broad classes:

- N '\

(a) Dynamically reconfigurable - the computer
architecture will change dynamically during the
execution of a process depending upon the
specifications of, the software designer.

'(b) Statically reconfigurable - the architectural
configuration is set at the start of a process and
will remain fixed until \the process terminates.

For the purposes of our discussion we will be concerned only

. with the static type of reconfigurabifity.

When an architecture *is well matched to a problenm,
throughput of the data stream is increased, and unwarranted
systedroverhead éan be reduced. For inst;nce, an'array type
architecture can be reconfigured to reduce the overall dumﬁ}

. s o
\ "
.

+ et St b kR b o o e e

B e g

O

_\.u‘—* R

v W

~

-~

time in the pideline, and so forth.

System parameters that can be changed for the . purposes
of reconfiguration may .be grouped into two categories:
(a) Intra prbcessor parameters or ISP (Instruction Set

?roceséor) level parameters [Bell 71]}.

(b) Inter processor parameters or PMS (Processor, Memory,
Switch) level parameters.) .
Adaptable architectures of [Vick 80, and Karta 791 that

change ISP level parameters such as word lrngtb, instruction

set and the 1like would fall into the former «class.

3

] Reconfiguration at the level of proﬁessors, memory modules,

- L

e e - and their interconnections would fall into the latter class.

By reconfigurability. in this thesis, we mean PMS level

. reconfiqurability.

{, . v
A basic prerequisite for reconfigurability is a
B flexible interconnection network, ICN, between the different

PMS components. We are aware of two types of

interconnections between components:

(a) physical interconnections provided by the ICN,

(b) logical interconnections controlled by the operatjng

I4

system. o

- !
¢

A logical interconnection from component i to component j
cannot exist witthout a physical path, direct or indirect,
e from i to j. simflarly although a physical connection from

i to j exists, the logical connection from i to j may be

R SV

et e e bt

T T s AT W o et
v

o

/
disallowed by the operating system 'software. Effieient

realization of logical interconnections is an important

»

design factor 1in reconfiqurable architectures. We may not
- N :
achieve an efficient logical ;;%erconnection without a well

designed. physical interconnection system.

An important feature of any ICN is the existence of a
!

"saturation 1imit" or a point of diminishing return with

respect to the number of processors'employed. The ideal
increase in procéssing speed obtainable with a multicomputer
{

' Fd

is called 1linear speedup [Jones 80]. Ideally, in a-

multicomputer that is comprised of n independent computers,
computations can bé performed at most n times as fast as on
one sequential coﬁputer. Unfortunately linearﬁgggéd up is
not achieved in present multicomputers because of overhead
generated in the control of parallel aagorithms due to task
synchronization and data transfers between’ computer;. The
total system degradation due to these factors is directly
affecped by the physical nature and topology of the ICN
chosen. The amount of overhead will increase as the number
of computers is increased until' the saturation point of the
ICN is reached. At this poifit the addition of computers

does not result in a significant increase in the speed up of

a parallel algorithm Fig., 1.2. -

-

Consider the division of a process P into modules, or

tasks {tl,t2,...tn}, each of which can be performed

concurrently on a multicomputer architecture. - These tasks

Gheae W

-

S s L - S R

SRR M e

Speed up

\

Idéal[Speed

*-

Loss dueé to
overhead

Condition similar

to thrashing

-

Figure 1.2

- 10 =

Number of Processors

(273

Performance of a process with
multiple processors -

Up

e 2

are also referred to as bldcks {Lecou 8l]. 1In general each
task ti will have some precedence c;nstraihté with respect
to other tasks. The tasks of a division may be simple, as
in floating. point multiplication, or as comp}gx as a

software process consisting of an arbitrarily long ‘sequence

of instructions [Jones 80].

e

It 1is possible that a given process may be divided in
more than one way and a particular division may be more
suitable to a particular architecture than others. Thus, we

I3

use the term decomposition D(d,a) to denote the association

of a division (d), - with a- specific architectural

N i

configuration (a). There are many different divisions:

possible for a éiven sequential process. Even though we may
finaliy wish to choose one division, we still have ' a large

number of possible decompositions to consider. '

As an example consider the division of a floating point
multiply instruction into tasks such as exponent adjust,

mantissa multiply, and post normalization. This division of

"'single machine instruction, is said to be of a "low

granularity®™ or small "grain size" [Jones 80]. On the other

hand division of the character recognition process

[vanke 77], into tasks such as nqQise elimination, which is a

division at the level of a software process, is said to be

of a "high granularity" or large "grain size". We can get a

~reasonable idea about the granularity of a d#composition if

we' examine each task of the corresponding division. We can
.

-11 -

L e TR 2, F

[

measure, or estimate, the average amount of time a task will

spend on a unit of data before the data unit is passed onto

another task in the system,.and this task starts execution
on a new unit of data. The grain size of any task is in

ditect-proﬁortion to the execution time mentioned above, but

it is difficult to assign an exact cut off point between

" small and lérge grain sizes. The - grapularity of a

.

particular decomposition will be determined by the minimum

of the grain sizes of the tasks that make up the division

associated with that decomposition. 1In this thesis we will

- be primarily interested in the decompositions of high

e
granularity.

1.3 General Purpose ICN

Clearly, the execution time associated with ‘a

~

‘particular task will be dependent on the data set, the

characteristics of the processor on which the task will

execute, and the properties of the division itself. For a

n

specific ‘Pprogram one could estimate, or measure, the

execution .time of vaJious tasks whéch’age important to the
* i

-

" evaluation process. When the granuIErit? of a decomposition

is high, each task 1is associated with conmplex state

descriptions and communication patterns with other tasks in

the system,

¢

We feel that in order to aid the current ‘research in

the area of ‘algorithm decomposition for parallel processing

i e € s = -

» '
st ol g vt gy,

B e LT R~ N

%

v

-a general purpose reconfigurable multicomputer would be

A

pelpful. If such a mdlticomputer could be p%odpced at a
reasonable cost thén it w;uld become feasiblg\ for many.
research centers to engage in experimental research. The
major applicatiop for a general purpose reconfigurablé
;@ulticomputer will be to provide a medium for testing ‘the
decomposition of an algorithm for parallel ©processing.
Presently, researchers . are attempting to decompose
algorithms that are CPU bound problems, and therefore
require a large amount of computing. An algorithm is
decomposed for. parallel ©processing with the intent of
inc;easing the throughput of data or reducing the execution
time. The actual speed up attained will be a function of
the manner in which the algorithm itself is decomposed and
the interactions between the .decomposed components. An
important factor that determines the suitability of~ a
particular decomposition to the capabilities of an ICN is
the ratio ofvintefprocessor communication time to the local
processing time for each microcomputer of tﬂe
“multiprocessor. ‘Since obtaining an optimal decomposition is
still an open research question we see that such a
multiprocessor can be used for expetimental research as
depicted in Fig. 1l.3. Some problem areas that -are
inJestigated for parallel processing include real time
processing of' speech signals, combinatoric computing,

sorting, character recognition, distributed compi;frs

[Andre B0], - office automatioh and distributed databases

- 13 =~

g

.

o

-

P S SN . B

.

'Decomposition,
Process

Sequential Algorithm |

t - r‘

-

‘Resources
Required

K

7
I

Voo
Consider a new decomposition of a
sequential algorithm and a suitable

topology of interconnection.

Execute the algorithm on a
multicomputer.

o urability "

Reconfig-

“n . .

Are the proposed decompos- 3
" ition‘:and topology satlsfaptory

¥

Yes

v

. D "

v

A

Choose the final method of
. implementation . N
(a) with a 'genetal pur-
pose ICHN a8
(b) with a speciaized ICN |
possibly produced as
a VLSI circuit

. -

Rs

D Aok

based on microcomputers, K

1.4 Outline

]
*

In Chapter II Wwe will examine some of the more popular

"interprocessor communication topologies. Several of the

multiprocessor and multicomputer systems are described.'-ln
addition some standard interprocessor communication
sténdérds are examined, C-bus, an ICN designed to support a
genéfal purpose reconfiguraﬁlé multicomputer system, is
pooposed in Chapter III. The features, benefits, and
limitations of é—bus are distussed and contrasted with the .
mufticomputer syséems described in Chapter 1II. In Chqpter
v al simulation .is described in order to determine the /
capabilities and the saturation uﬁoihts of C-bus under
differen£ load conditions. A simulation model is described

and the simulation results are presented. The details of

our implementation of C-bus are‘given in Chapter V. OQug

design approach is presented along with block diagrams and .

the timing requir?ments of the hardware. The software .

drivers for C-bus are also explained. Chapter VI is

concerned with the intended applications . of a multiple

ta

computeribaged .on the C-bus. The classes of parallel
algoritﬁms that are well suited for this Srchitggture are
enumeraggd. The possible applications and future hardware
developments(envisioned for C-bus are outlined. Finally,

the software development required to support a C-bus' based

“

multicomputer is described.. . {

7
&

. . /"15"",

o

R B ,
DPPTUURIRUPIPL. SUTmw S .

.~

d

R SR

s

-

%’,

CHAPTER II
AN OVERVIEW OF INTERCONNECTION MECHANISMS

AND MULTICOMPUTER SYSTEMS

A- wide variety of multicomputers have been proposed by

researchers and constructed by the computer industry. The

- computers that comprise a multicomputer system may be

separated by large distances or contained in a single
integrated circuit. Datapac and Arpanst are two .networks in
operation today that support transmissions over thousapdsnof
miles |[Weitz 80]. These networks employ a packet switched,
aessage bésed, bit serial transmission protocol. Local area
networks (LAN) have been announced by. ﬂmany computer
manufacturers in the . past year [Techn‘82]. These
communication systems are designed to operate Qithin one
building, office, or a siﬁglg room. For example Etherﬁet
[Metcal 76] is éapable of transferring information between
two computerg locatgd within one building and Micronet
[Witti 78] will provide communications between dbmputer

units contained on a set _of racks within a single room.

These networks employ 'a message based protocol and, the

. transmission mode may be either bit, or byte, serial.

Decnet has been designed by Digital Corporation to support

interprocessor communications between:'DZC mainframes.

Multicomputers, or multiprocessars, that are located a

’

" short distance from each other, usually within the same

cabinet, are generally tightly coupled architectures and use

- 16 -

N
ot S b W T ST S T Sebom o

R P o R

Vi o ovn anPAAE 3 A b TR A

o

.
[I R T T
=

e

,

some form of shared memory system. Several prototypes for
multiprocessors have been built at various research centers
such as Cm*, C.mmp, MP/C, and U* [Wulf 72, Swen 77, Arden 82
And Civer 82). 1In addition, several large multiprocessors,
also called supersystems [Swert 82], are available like the
CYBER 200, STARAN, \;nd Burroughs Scientific " Processor
[Linco 82, and Kuck 82}. In fact, sgveral of these
supersystems have found applications in military defence
systems [Berg 72 and Batch 82]). R. Arnold et 31 have

designed a modular supersystem architecture where basic

hardware modules can be assembled to provide various

configurations dependent upon the application [Arnol 82].

At Rockefeller University a reconfigurable laboratery
instrument:tion system, to be used, for monitoring
.experiments, has been constructed which K allows for tﬁe
definition of the functioning of the system based upon the
needs of the current experiment [Silve 82). The current
advances in VLSI technology will soon make it posiible to
create integrated circuits that contain iany individual

processors ([Mead B0, and Fairb 82]. Consequently many

researchers have proposed architectures comprised of many

‘processors with complex interconnection structures

[Hayné 82, Gottl 82, and Kuny\82]. A spec}alized structure
for performing matrix arithmetic was proposed by [Ahmed 82i
and a Fast Fourier Transform algorithm has been suggested as
an application. The. CHIP processor, designed at Stanford
University, is comprised of an array of processing elements

\

- 17 -

-

et ok ® n i

T TS b e s e

v A 3 sRr R

. b o e

i e

connected by a ‘switch lattice which is configurable under

software control [Snyde 82].

A processor interconnection scheme is an essential part

of a multiprocessor or multicomputer. system [Akkoy 74]. An
- [

ICN may be ~classified according to 1its topology or the

structure of its implementation. The entire spectrum of

!

"ICN's and multicomputers is beyond the &cope of this thesis.

In the following sections we will discuss the various ICN's

and multicomputers that are most relevant to our research:

4

2.1 Interconnection Strategies o . ~

/

The choice of an ICN.topology or implementation is one

-

of the most crucial. design considerations for a

Vi ' .
multicomputdr. Each -topology 1is best suited to some

specific applications rather than others. In addition, am

ICN will impose many restrictipns upon the final product.

' The choice of an ICN will be based upon many. factors such as

cost, reliability, response time, speed, throughput

i

capacity, and modularity. In this section we will introduce

some of the more popular ICN mechanisms. ’

Many murtgprocessors that are tightly coupled rely on a

shared memory scheme and can be implefiented using a number

of methods. In some multiprocessors one single‘bank of

primary memory is present that can be accessed by various

processors. This memory is wused to hold data but each.

processor will have its own ' private memory for storing

- 18 -

o

programs. A standard approach 1is to use a common bus

through which all system resources are shared. Although
1 - /

this is a simple interconnection structure, if it fails the

entire system canndt function and contention for the use of

the bus can be a problem. In fact, the speed of the

single path. As a possible solution to the contention

problem it has been suggested that multiple buses are .

possiblel As the number of buses increases the cpmplexity

of information routing wvia hardware switching 1is , also

’

‘increased 4 'In a crossbar ~matrix, or switch, there is a

. separate bus for each memory unit. All arbitration and

routing is the respoﬂsibility of the ICN. The switches
needed for this type of ICN are comple , costly and _large.
However, thé crossbar matrix can support simultaneous
information transfers bgtween differéht processors and

memory units.

In a loosely coupled multicomputer system the demands
made on the ICN by each computer are less fregquent but the
size of a transfer 1is generally larger than for tightly

coupled systems. The simplest ICN -that has been constructed

multiprocessor will be limited by the bandwidth? of this,

to date uses a single time shared bus to support .

interprocessor communicatioﬁ%. Information is usually sent
in the form of messagés of varying length. 'All modules that,
can access the bus will have a“hnique ID code which is used

for bus arbitration. Control of this type of ICN can be

4

either centralized, as in IEEE 488 [Gilbe 82) which uses a

'

4
"

- 19 -

¢

1
;

s . he -

1

central controller, . or distributed as with Micronet
[Witti 80]. For centralized systems the bus controller may
be a standard processor or a special purpose controller,

o . L
This interconnect structure allows for the easy removal or

') addition . of computers to the network. The cost of a.time

.shared bus is low but it will become a <critical component

which will degrade the overall system performance as the
demands on the bus increase. This can be overcome by adding

additional buses but the complexity of the ICN is increased.

- ‘
- o

In the United Kingdom there has Peen much interest in a
high speed unidirectional communication channel arfangea in
a closed loop. Messages are sent between computers by
placing them onto the loop-where they will circulate around
the ring until the déstination computer 1is reached.
Messages are either removed from the ring by the destination
" computer or allowed to continue circulating around the ring
until it reaches its sender, This structure has been used
ato transmit only diéital information but no mess routing
is required and many messages may be on the loop at a time
which allows for a 'high throughput. There are three

different protocols that have been proposed for ring based

ICN's.

LY

Farmer and Newhall :[Weitz 80] constructed a loop
structured ICN where a control token circulates around the

ring in a round robin fashion. A computer station that

wishes to transmit information will wait until it possesses

o

4

- 20 - '

ARt 5 7 e

-

RS RN 1 Ay B dur e e 5 AUt W DR KT

RIS BN A Y Res L grog w1 mer
s .

5

¢ e e e o« re Ly

the control token. The computer will then hold the token

until its message has been sent. Under this protocol only

one message can be transmitted at 5 time which will 1limit
the throughput. In addition, when a station wishes to
transmit it will be delayed until the control token arrives

4 :
even when no other station is using the ring.

In the Pierce type loop, space on the ring is divided
ihto‘fixed.size slots into which information can be placed.
Messages. are sent by slicing them into packets which can be
placed into empty slots on the loop as they pass. Each slot
will ‘conkain some control information which will indicate if
it is occupied. 1In the delay insert model variable rather
than fixed packet sizes are allowed. A message is inserted
into the loop by intercepting all information passing on the
loop long enough to place the desiged message onto the loop.
All the information that was intercepted is then placed onto
the ring folloﬁing the new message. In this manner all the

information circulating on the ring is delayed by the length

of the inserted message [Weitz 80].

2.2 Applicdtion Specific Architectures

Early attempts in deveioping‘mulﬂip;ocessors were aimed
at épecific problems. Consequently, these multiprocessors
are well matched to a specific problem area. They are rigid
in lstructure and useful only in a limited context

{Thurb2 79]. For example, 1Illiac IV is a multiprocessor

. 4

Vol -2 -

s

N

P

system designed primarily for image processing. The problem

T

" of ﬁand}ing/ large volumes of data arises in many data base

applications and data base machines have been proposed for

this purpose [Ozkar 77].

Iiliac IV was intended to solve problems that are based
on matrices of data’and have a potential for a high degree
of parallelism. Problems which fall in this category are
the solutions of differential equations, matrix operations,
and weather data processing. To this date 1Illiac IV has
been ; used to/ solve twé—dimensional aerodynamic flow
equations, to simulate weather and climate prediction

models, for signal processing, and linear programming

[siewi 82].

Illiac IV is an SIMD architecture and operates as an’

expensive and powerful attatchment to a central computer
system [Baer 80]. The global configuration 'is given in
Fig. 2.1. All communications fo; input and output are
handled by the central computer while the operating systenm,
compilers and assembler are resident in the satellite
computer. Illiac IV itself contains one control wunit, 64
arithmetic wunits, and 64 memory modules. All of the

arithmetic units operate synchronously under the control

unit. The control unit is also a small computer 6apab1e'of

performing scalar operations in addition to controlling the

vector operations of the other 64 arithmetic undts.

There are three major internal buses in Illiac IV; a

- 22 -

i i A e YA s St St R

File
Storage

-

Central Satellite
. ILLIAC IV System Computer
o ' PDP-T0 ' (B-6700)

End !
Users ,

4 7 A ‘ Ry

3 ' . . ILLIAC 1V
(From Baer 80)

P _ Figure 2.1

ey

e —

s

unidirectional link between the control and arithmetic units
through which the control wunit broadcasts operands, a
unidirectional 1link between the control unit and memory
units used to fetch instructions and operands, énd a routing
network allowing the arithmetic units to transfer
information among themselves. The routing network allows
each arithmetic unit to communicate with its four nearest
neighbours which are labelled north, sédth, west, and east,

This will facilitate high speed data sharing.

f

Data base machines have been proposed using SIMD, MIMD,
and back end type processors. In each case specialized
hardware was produced . to support the standard data base
management functions which red;ced the complexity of the
resident software. A data base machine using 'an MIMD
architecture called DIRECT [Dewit 79] has been constructed
where processing modules were connected to an array of
shared memory units through a cross bar switch' Data base
machines using a jﬁck—end approach ‘usually employ a
mini-computer to perform functions such as access
validation, storage management, concurrency control, and
inpup output control in order to support a large front end

main frame.

2,3 Multi-Microcomputers

The first major attempt tb,design a large multicomputer

was made by Carnegle-Mellon University in the cons®ruction

- 24 -

it i gt i

A S S B e

et E A atin

PHAT NIRRT P Rr Wy A it e

{3

et

PR 8 Y G RTR

P T R P

~

P RPN

sJ,"

AN :

of C.mmp [Wulf 72]. The C.mmp multicomputer system used a

t

16 x 16 cross bar switch to provide. processor interaction
through a set: of share&’memory units. The computefs used
were slightly modified PDP-11's. Besides using the cross
bar switch, each computer can send contr&T}information to
other computers over a time ghéred Q@s ‘called - the
"interbus". The interbus 1is wused by one computer to
interrupt another computer or as a global time saurce. The
Hydra opefating system was then written for C.mmp. However,
due to the cost and complexity of the cross Bar'éwitch C.mmp
was never expanded past 16 computers. As a resulf of their
experience with C.m:p the researchers at Carnegie Mellon

designed Cm* [Swan 77].

-

Cm* is a multiprocessor system whicﬁ consists of a set
of closely coupled LSI 11 microcomputers Fig. 2.2. The
communication structure between the LSI-1ll1l's is fixed in the
form of a hierarchy. Seté of LSI 1l's are grouped into
clusters and within a cluster they share la single time
shared bus called a Map bus. Into each LSI-11.a unit called
an S—Local (local switch) is inserted to give it acc?Ss to
the map bué. ‘fhe S-local will route the memory requests of

the local LSI-11 to either the local storage or onto the map -

bus and 'is also responsible for answering requests from any

of the external processors..

1

All clusters are linked together by another time shared;’

bus called an intercluster bus. Each cluster is connected

§
'

.-25-

WL

e

e

- st g 5 oS

e

T NI T

- Tz

SRR e

[
-
-

Legend
— Intercluster
-~- - Map Bus
—— PDP-11 Bus
<= DA Links
“— SLU to Host
y

3
O...

Cm*

Bus

Cm* (Five Clusters)
(From Swan 77)

Figure 2.2

- 26 -

1

O
<&
A

KMAP

oM

Disk

SLU

DA Link

[

e W

e

to the intercluster bus through a special purpose proéé'éé‘éi"
called a kmap. Tlae kmap is a special purpose microprogram
controlled bit slice processor. It.-can manage eight active

21N
requests at one time. In addition the microcode of the kmap

'is designéd to support various serialization primitives

required for distributed program control and operating
system functions. 1In effect these primitives will appear as

an extension to the LSI-11l's instruction set.

[

The LSI-1l's can access any data element independent of
where it is storea. The communication system for Cm* is

elaborate and expensive. Each memory access made by any of
4 ! '

the LSI-l1ls is monitored to determine if the concernéd

address is local to that computer, its cluster, or outside

0

of its cluster, A processor is halted if the information

must be obtained from elsewhefe in the network. This
4

monitoring will generate a measurable amount of overhead,
which is unnecessary' wher: the information is available
locally. Cm* does not allow for the‘ reconfiguration of the
intérprocessor commun.icati’on topology and all the comput®er

units are homogeneous.

o 4

Micronet is a network of loosely coupled microcomputers
intended for general purpose : applicati;ns [witti 78].
Fig. 2.3 shows tr“xe(structure of a Micronet node. Each
computer station ~ is | comprised 'of an LSI-11 and a

communications front end. The front end contains one

general purpose microprocessor, Zilog 2-80, and a speciai

- 27 -

<

L,

»

sl
.

o+

Y

TR AT TR s o
-
<

[
- OTHER

ETHER
. SEGMENT

NODES

’ [2

-
]

16-BIT CPU (LSI-11)
28KX16 RAM =~

| I'.a MB/3

'TASK PROCESSOR

DMA CHANNEL
LSLDMA | @

8-BIT CPU§(2-80) -,
4KX8 RAM, 1KX8 PROM
LOGIC CONTROL (8x300) .

PROCESSOR

XBUS-1

XBUS-2 ‘

&———————7 MB/S BUSES ¢

-

ONE MICRONET NODE-

: \ fiéure .2.§ v

5

THER
NODES

ot

TRANS-
CETVER

”

mom> mk—lZf—/c

amrro W—I;OO

STATION

' S °

. 'ETHERNET STATION

Figure 2.4

‘w28 -

FRONT END

o

[R

pEen S v eyl e

o

purpose processor s;gnetiés 8x300. In addition, the front

end cards have three high speed ports, and two -external

ports,. each of which provides access to an external bus and

one DMA channel through which the front end communicates
with the host computer.’ A DMA channel is also provided
between the ‘memory of the 8x300 and that of the 2-80. The

8x300 processor is responsible for the control of these four

transmission channels, The 2Z-80 processor contains the

\cdmmunications kerpel of the distributed operating system

~and -the queues of.messages awaiting transmission or transfer

to the host processor. The interface units of Micronet are
complex and expensive, in, fact, they have almost as much

processing power as the processor station being connected to

the network.

¥

. . \ -
The Micronet 1is reconfiqurable by a set of jumper

berdé but not under software control. Heterogeneous
stations are possible but none have been introduced to date.
There\\is ;o shared memory among any of th; computer
étations}\all processor interaction is performed through
meéssages, The control of message transmissions 1is
distributed over .all the nodes. Messages sent on the

~

Micronet are packet switched and vary in size from 16 to 256

B§tes. A computer station need not be directly connected to ?

"the station with which it wishes to communicate. The

-

message will automatically be relayed through other

intermediate nodes. T w

P —————d

ya

RIS AR gk g Gy Y ey i

A

v e . e

Upon wishing to send a message the sender in Micronet

must obtain one of the two communications buses using an

A

asynchronous protocol. Once the bus has been obtained the _

message is transférred in syn;hronized bursts. 1In order to
allow for synchronization all ﬁront ends contain a crystal
controlled clock which are all periodically synchronized.
Upon the receipt of a message, if a check sum efror is

detected the sender will be asked to retransmit.

2.4 Interconnection Standards ;

The various interconnection schemes that have .been
introduced by current industry standards or standards
organiéations, are useful interproce;sor "communication
tools. They can be applied to the ‘construction of
multiprocessors but the application of these buses is still
left to researchers. The major advantage attributed to
these methods is that off-the-shelf integrated ciréuits are
available to support them. This would reduce the cost and
development time of a multiprocessor. However, each scheme

has a fixed communication structure that cannot be readily

changed to meet the needs of specific applications.,

t .
\

Ethernet is a branching broadcast system and is

designed to <carry digital information between locally

‘distributed computers [Metca 76]. . The Ethernet node

contains an ethernet controller, an interface unit, and a

[} .

transceiver .(Fig., 2.4). The controller and interface reside

i
i
i
i

[

B

Sre e

ke Y e ey e R ST S 0%

S

o 2 e

within the host computer and provide access to the Ethernet

through a transceiver. The transmission of information

occurs in a bit serial fashion over a single coaxial cable.

The control . of Ethernet 1is distributed using a
collision detection and recovery strategy based on
statistical arbitration. This method 1is called carrier
sense multiple access with collision detection (CSMA/CD) .
Transmissions wait at the sénder until the sender detects
that no other packets are being broadcasted. During the
transmission of a packet, if interference with other packets
is detected due to two or more stations attempting to use
fhe network simultaneously, the transmission will be
aborted. After a period of interference free transmission
all stations recognize that the Ethernet is in use and the
current packet will run until completion. Ethernet
controllers in «c¢olliding stations will generate -random

retransmission intervals to avoid repeated collisiorns.

In the case of many stations, the overhead of this bus
arbitration method could become a 1limiting factor rather
than the transmission capabilities of the cable. Any
information transmitted through Ethernet is heard by all the
stations but only those who recognize the destination
address will read the message packet. A broadcast packet is
also permitted :so that one station may pass information to

all other stations by initiating only one message. Ethernet

has no mechanism which will permit reconfiguration of the

K
)

interconnection topology. Ethernet has been designed to
operate Iin a 1loosely coupled computer network and it only

1

attempts to maximize the probability of the correct arrival

. A4
of a message but in no way guarantees the arrival of a

message [Metcal 76). It is left to the software of the

sender and receiver to verify the validity of a message.

The cost of an Ethernet interface varies from $3000 to
$5000 depending on the type of device that is being attached
to the network. 1In the case that a microcomputer station is

to be connected to Ethernet, this cost is considerable.

The IEEE 488 bus standard, or General ,Purpose Interface
Bus, was designed to offer a wuniform method for parallel
transmission of data fGilbel 82, and Santo 81]. This

standard specifies the types of data and transfer protocols

2
-

that . are used to provide a communications medium. At
present the integrated circuits to support this bus standard
are commonly available [wWilli 79], but interfaces to connect

multiple computers are not. .

~

The IEEE 488 bus uses a central controller which
performs arbitration of which station will be permitted to
send the next message. Once a sender has been selected

control of the bus is relinquished by the central controller

" and the méssage transfer takes place under control of the

sender and receiver. The interface unit required for each
station provides three functions: it will prepare the

digital code for transmission in the driver and reclever

e o T e ORI Wt WAL arh ST ot s T O

P it

-

TP T

%

~ \

« v

pottfons of the interfasg, encodes and decodes the
information sent on the GPIB, and also performs all the
control functions required for information transmission‘ as
defiQed bx the IEEE standards. The actual transfer of
messages between the sender and receiver requires a

handshaking on every byte,.

The IEEE 488 bus standard has been mainly used for

instrumentation control up to this date. There are

-,

potential problems that could be encounteréE;S?:attemptiﬁg

to use this bus for high speed interprocessor message

‘communications. The IEEE 488 bus requires the sender and

the receiver to be actively tied to each byte transfer and
in addition the sender must wait for an acknowledge signal
from the receiver for each byte transfer. This could cause
large transmission delays if the receiver is a slow
processor, Finally, the address, data, and control lines
are all multiplexed over the same set of wires which reduces
the number of separate lines {equired in the transmission

cable but causes an appreciable reduction in speed.

The ring based communication network constructed by
Cambridge University consists of a set of links between
computing stations that form a closed loop [Cambr 80). Each
interstation link is comprised of two twisted pairs and |is
limited to a short distance. Many message packets, or
buckets, are constantly ;irculating around the ring. A

computer station can send information by placing its message

- 33 -

R

e —

PR

[—

in an empty packet as it passes on the ring. The size of
each packet 1is fixed at 38 bits, but only 16 bits are
available to'transport info¥mation because the remaining 12

bits are used for- packet control information.

o

Each station can only have one message packet
circulating on the ring at a time. After a message has been

placed in a packet and’the destination address 1is set, it

, will circulate from station to station around the ring until

one station recognizes its own address in the message header
destination field. The receiving station will acknowledge
the message by marking it as accepted, ignored, rejected, or
busy. The message packet will continue to circulate around
the ring until it reaches the sender where the packet status
is read, and £hen the packet is marked empty if it has been

received successfully.

In addition to computing stations there is a special
purpose station called a monitor station. This monitor
station will be resﬁonsible for removing packets in which
errors have ogcurred and checking for packets thatlare
constantly full because a message has been placed into them
but 1is never removed by the transmitter. These packets are
detected by including a monitor pass bit in each packet
header which is used to count the number of times a fuil
packet passes the monitor station without being reﬁoved by
its sender. The monitor station will mark these packets as

empty, and control the total number of packets in

- 34 - ' . o

RVPUSI

T R T TR P

O e L -

Pl e g ey e

e o e

L L ne e

circulation on the ring at a time.

The maximum transfer rate for the ring excluding the

packet headers, footers and gap bits is 4 M bits/second that

are shared among all the stations attached to the ring. The

‘ring structure is inflexible and the delay associated with

the delivery of a message can become considerable for a .

large ring since'every message passes through each station,

I

2.5 Local Area Networks

There have been numerous product aﬁnouncements in the
last yeér in this area [Techn B82]. Although Local Area
Networks (LAN) provide a communication medium between .-~
computfng stations, the interided applications wusually
require that most computing stations work independently with
only occasional intercomputer transmissions. The major
applications area for LAN's has been in 1linking
sophisticated office equipment and personal computeré to
form the backbone of an automated office. These LAN's are

capable of supporting communications within one building.

All of the* LAN's have uniqye architectures and
communications protocols but they can be grouped into two
broad categories called broadband and baseband. Baseband
communication networks can only transmit digital information
while broadband systems can support the transmission of

voice and video signals in addition to the digital data.

- 35 =

AN

L e b i ke e e e Y

le

Presently a large debate ‘is underway between various

manufacturers about which technology, broadband or baseband,

"is superior. The producers of LAN's using the broadband

technology claim that the baseband technology 1is limiting‘

because it cannot support video or voice tranmissions and
prophesise that it will become obsolete in the near future
[Kleel 82]. The manufacturers using baseband technology
claim that the broadband supported LAN's are exﬁensive,
complicated and "not ready yet. The merits of broadband vs
basgband systems is beyond the scope of this thesis and will

not be discussed further. ‘ ’

The major baseband LAN is Ethernet which-..uses CSMA/CD
and 1is described in section 2.3. Wangnet [Techn 82] is an
example of a broadband topology which has a bandwidth that
spans the 10 ts 350 megahertz range. Wangnet employs two
lcables, one for tranémission and the other for receiving.
The other prominent LAN's -are 1listed in Table 2.1

[Techn 82].

[P RO

1°C ?3lqel
(08 uyoal woxJg)

Abojouysaj pueqpeouq

Abojouyoa] puegqaseq

e mereer J\ - s s s

L d|qejLeae 30N G2 3 *ouy %934s Oy 38u|ed0]
08 oozt At) *du0) xepuuy 38N 3|qe)
Gl 0059 o2l @ "ouJ sajJojedoqe] Buey 33N buep
8 a|qe|Leae joN 6L x *JUl pLnoy
. 40 UOESLALQ UODLPOW Aempoy
0°2 662 8°0 * *oug boyyz 19N-Z
50 ¥9 . 0§ x duo) swsysAS yaomiaN | |Buueydy3IdAH
FAl | u:memwmmwom ¥ ¥ *oul sseg-uueuwuabup aug/3eN
= G2 v201 ol % *dJao) xou3x 38u49y33
: SA338Wo | 14 puod3s uad \ ..
‘s|eujuial usamlaq S|eujwaal jo mu_aume ‘ajeu . j40M33U
9oUeYIS|p wnWiXeW | JIQUNU UMW Xep ejep wnupxey |- . J0puayp eoJdR [®207]

U S ARV T S

{861 UL P3JNPOAIUL SHIOMIIU RAJR [BIO| BA}IeIUASILdRY

’

-1 - T Y

L PeatA o e o A E e L AN w2 T a4

37

8 e

A

St e e RNE

{—

CHAPTER III

° THE ARCHITECTURE OF CUENET

3.1 Design Objectives i .

-

‘C-bus is intended to support a loosely coupled
multicomputer, calléd CUENET, where the interconnection
topology is reconfigurable under software control. C-bus
will provide a high speed mechanism through which distinct

microcomputers can transfer information among themselves in

the form of messages. Since the capacity of C-bus will be

the major 1limiting factor for the speéd up obtainable in
parallel processing, we will attempt to minimize the bus
occupancy time for each message by minimizing the overhead
of each transfer. 1In addifion, we wish to obtain as large a
transfer rate as possiblé. However, a minimal cost is also
a requirement in order that an implementation could be
attemptedT These two object{ves are wusually in direct
conflict with each other where an increase in transfer rate
is usually accompanied by an increase in complexity and

cost.

When one is attempting to analyse the cost, or
complexity, of an ICN, all observations or measurements must
be made relative to the cost and complexity of the computers
that will be using the ICN. Naturally our goal was to
produce a low cost ICN and as a result the interface logic
needed to connect a microcomputer to C-bus could not be

logically complex. Secondly, this would make these

_’38-

4 St st b e

s o

2RI

A o Ay

g

}interface units more reliable and reduce down time due to

hardware failures.

-

Standard microcomputers do not offer the hardware or
software designer any mechanism for restricting access to
specific areas of memory. This feature, along with others
such as a supervisor mode, with its privileged instructions,
and user mode, are present in most larger computers. This
poses a problem because the interface of a microcomputer to
C-bus will exist as a portion of the memory ‘space and we
wish'to protect the C-bus interface from invaiid accesses by
user softwaref It 1is quite possible that a user program

might intentionally or unintentionally, due to a program
]

crash, damage a process on another computer by sending

invalid messages. Therefore the C-bus interface will
contain an : extra hardware mechanism by which the system
software can "lock" the interface from the user programs.
In addition, the lock will also make it difficult for any
user to sabotagke the operations of C-bus which all computers

depend upon for their operations.

The ICN we have christened C-bus is essentially a time
shared bus. This enables the cost and complexity’t§ be low
when compared to the cost of standard microcomputers and
other ICN's that have been constructed. However, the
transfer rate of C-bus will of course be 1limited but is
still fast enough to be competitive with other ICN's and

useful in a wide variety of applications. C-bus is

- 39 -

[

ey

o
o a W e s e | g

e

it el

controlled by a special purpose processo ,~ca11ed the C-bus

\
controller, which makes it ,possible t concentrate the
- i

- |
complexity of C-~bus in a sing reduce the cost and

The O-bus interface
¢

also contains an ‘access vector an ardware | lock. These
! i .

co:ﬁlexity %6f each C-bus /interf

hardware devices will support reconfiguration of the
communication topology between processors| and protection of
the interface from ipvalia access attempt¥.

\

3,2 Architecture of C-bus i

C-bus, a time—shared ' bus which can provide
intercomputer communications, is shown in' Fig. 3.}). ‘The
C-bus controller functions as a mailman guaranteeing the
=afe delivery of messages f;om one computer to another. The
logical block diagram of the C-bus controller is given in
Fig. 3.2. Essentially a programmable proces%or is augmented
with special purpose 'hardwére that will enable programs
running on the procéssor to control the' operLtions of the
C-bus. This is made possible due to the interface selection
logic, the data line tranceivers, and the Cﬁbus arbitration

!
and control logic. The real time clock moduﬁe will be used

for time stamping each message processéd by the bus

controller which is wuseful for certain |error recovery

'

i | -
procedures and synchronization control among concurrent

/

processes.,

The bus controller will play a cructal role in

"~
Al

- 40 -

can e e o o Sy e

et

o et i

' . . M T . / . i N .. -) .. . ’ M
- .,u p ° . .l' ’ 4.%
: - T°€ aunbiy u . A
. g . N - - LI . - S
’) .) i .vavn_.w aJdempaey asodand _m_.ummm ",._.zu .) ;)) - “
) J1UN 33e4433U] 40SS3I044 03 -Sng J. ‘ N
. L N i . m
[-~ . - .) mwn
. £ J93ndwo?) Z J31nduioy | 433nduwoy | = - m
A .) - U
- R o l m
. ’ ’ . , A '
. L
. B I . . |
S - ;
. . 105532044
-9 sng-3 . a|qe
X - S 1 -weabouy - - -
e ‘ NI \ T
. o . 431 toa3u0) sng-9
Y .

-
.«
»
- .
ceemtmsmtms s it B
So
.
e
. -
.
.
©
.
>
.
.
A
.i
.
L °
&
»
-
«
.
s
S,
S
.
.
-
»
-
e
"
[

o

) ' ‘ 3 N H \
. o [- C
o . . o h . [
- ‘ ’
. e
/«i
» NN
s . © -
- w
Programmable -
Processor o0 o
3 |m o |
« and . oty
ot p
. port > g8
logic
’ &
- : ot
o __J . C=bus
Real £ &
or, L
tine K
. . clock 3 E
. . 5 q
- < -
T ' o
d O 1 S
. - g g .
£ 5
AEE ‘
. -,
I P
R 9
S, .
o &
[N
: (]
<]
B .
. [N
¢ ™
A K)
P Figure 3.2
- . Controller : ’
‘ " . !
e =
. t

Al
' A
» i o
. .
. Al
! .
. .
° ¥ -
3
*
4 bl
’
Address,
Data, - ,é .
and 7 - .
Control
L .
4 g
v b
¢
' LY
1]
M
i)
’
|
o
/ ?
]
%
. \
M -1
N
i
LX) '
1]
‘ @
1
oo

v o

determininé the transfer rate of C-bus.: One éSvious
.parameter is the cycle time, or instruction execution speed,
of the programmable processor chosen which will be dependent
upon .the technology and complexigf of the processor.
Secondly, because of the ;verhead of a general purpose
processor, any control functions that are handled by the
other special purpose hardware ;an be performed much quicﬁer
than possible by the general purpose processor. Thus
another trade-off exists because as more functions are

performed ﬂby the additional hardware, the greater the épeed

of the bus controller, but the complexity of the speciaic

purpose hardware circuits is also increased.

The C-bus interface is shown in Fig. 3.3. Messages are
aeﬁt th[ough the input and output buffers. Contention
between the C-bus controlier and the host computer for the
use of the C-bus (interface 1is resolved by the interface
status and control block. The input and output buffers are
treated as distinct entities which make it possible for the
host computer to deposit a message in its output ‘buffer
while thé bus controller .dgliVers'a message to the input
buffer. The daisy chain logic module enables the interface
to identify 1itself to -the C-bus controller when the output

buffer contains a message to be sent. The parity control

hardware will generate or verify a single parity bit for-

each byte transferred on C-bus. The output of this hardware

is monitored by the C-bus controller arbitration and control-

module in order to identify when a parity error has

- 43 -

s i3 e <2

1
3
1

R A

e o e e e ot A & P R S ST S £

lp C~bus

£_ Host computer

. l’ Address and Control
- Data
¢ Parity BCOntrol
Hardware
Address. Daisy
i decode chain Interface
and logic |. status and
‘ control control
Output [Input
{ Buffer Jecess - Buffer
frounay
I_ :
: / . Address Interface
decode Lock
and Control
‘| control
. ' 1ifress and control .
Data ' o
/Figure 3.3
. .~ C=bus 'Interface
% . :
. - 44 -
t

[P

e 4 wan & o ot

DTS

Y

. T U NP

s v e
’

Rl Lokl

TR I

s e e e e e e e

occurred, The address decoders and control units are used
by the C-bus controller and host computers to access the

various interface hardware modules. -

Each C-bus interface contains an access vector. This
access vector is essentially a hardware table which can only
be read by the host computer, but not modified. One
computer connecteda to C~bus with an authorization from the
C-bus controller can initialize the access vector§ of the
other computers. The information COntaiqed in the access
vector of a computer will determine the cg;puters with whom

that. computer can communicate. In this manner one computer

can configure the intercomputer communication topology of

3

AN
all the computers attached to C-bus. The access vector will

be used in conjunction with the system software to guarantee
the integrity of the interconnection topology by disallowing
a request for communication with a computer not specified in

the access vector.

The interface lock control unit contains two registers
called lock ané key registers., The contents of the lock
register 1is set to a fixed predetermined value, calleqvg
combination, when the interface is constructed. A software
process will be allowed to access the interface only if it

unlocks the interface, which it may do by writing the

.combination contained by the 1lock register into the key

resister. Only when the value contained in the key register

is equal to the contents of the 1lock register will the

- 45 -

o e e i+ o ae v oo

.
R

interface respond to any read or write request directed to
it by a software process. Since the user program will not
be aware of the’combination, only the system software and

not the application program will be allowed to access the

interface area.

- Information is sent via C-bus in the form of messages
or packets. Once a computer.has placed its message in thg
output buffer of its interface the C-bus controller will
control the transfer of the message to the input buffer of
its destination. The bus controller transfers tﬁe complete
message as a single block and ensures its safe arrival. 1In
tﬁis manner, the sending computetr is free to perform other
duties once 1its message has been deposited into its output
buffer. Secondly, the C-bus controller can monitor message
flow and collect statistics for the pdrposes of
degomposition evaluation. This can be accomplished by

additional monitoring 1logic incorporated both on each

interface and in the C-bus controller.

A

CUENET is a reconfiqurable network of 1loosely coupled
multicomputers which uses C-bus as its ICN. Fig, 3.4rgives
an example where two C-bus structures are used. Each bus of
the ICN will have its own bus controller. In addition,
every processor will be connected to each bus through a

separate C-bus interface. In the case where the 1ICN

consists of two or more buses, each processor using the ICN

will have more than one C-bus interface, any of which could

- 46 -

- ————

|

g

TRER U ey

e e vy -

C-bus
cont-
roller

C-bus~1

C—~bus
cont-
roller

C-bus-2

[=]

]

Master

EP [ll,j Slave-..Z ' [ﬂ

Slave-1 NMU~1

f: C=bus Interface
NMU: Network Memory Unit

Figurs 3.4

CUENET: A Reconfigurable Multi-
processor based on C-bus

- 47 -

A e

e

[A

be used to send a2 message. It is left to the software of
each computer to attémbt to load all of the buses of the ICN
equally. In this manner, the controlling of the use of a
multiple bus ICN will be distributed among all the

' -
computers.

There are three types of functional units attatched to
C-bus that comprise CUENET a master computer, séveral slave
computers, and network memory units (NMU). The master
computer is responsible for the coordination of all other
computers in CUENET and also acts as the interface between
the multicomputer system and the end users. In effect, the
master computer contains the major portion of the
multicomputer operating system. The computational tasks
required by‘the end users are carried out by the slave
processors. The slaves will accept and perform commands
issued by the master such as load a user program, obtain a
hser' algorithm from some other leocation in the network, and
start or terminate a user routine. The network memory units
are accessible to all the Eomputers of CUENET as a common

memory bank.

The slave processors of CUENET need not be homogeneous,

in fact, a slave processor can be a special purpose

processor such as an associative procéssor [Kogge 80] or a
processor designed for signal processing [Intel 80]. Each
slave computer in CUENET will be assigned a PPN or Physical

Processor Number. A user task may require an interprocessor

- 48 -

o et § ek

P T S R]

oy R

2

s R T et Pedas AR TR N I

P o o T i

o A —rC—— T WG

configuration such’ as the one shown in Fig. 3.5. The user
indicates the interprocessor communicatien structure that he
requires as a part of his algorithm. 1In additioRA, the user
must indicate the characteristics of each processor that
will be used to execute his algorithm. These
characteristics will be primarily concerned with the
physical properties of the slave ©processors such as the
Yocal storage requirements, or the éossession of "a special
purpose computing facility 1like an arithmetic or fast
fourier transform processor. For the purposes of expreésing
an algorithm the user will assign an LPN or Logical
Processor Number for each processor he specifies. Mappings
between the LPNs and PPNs are carried out by the resource
management subsystem of the operating system which will try
to match the proceséor capabilities requested by the user

with the computers that are available within CUENET.

The master processor does not contain any special
purpose hardware and thus any computer in our computer unit

can function as the master as long as 1its internal

configuration is capable of running the master processor

software. The master processor has different rights than

the slave procesors. The loading of the user's progranms

into slave processors and setting up of the access vectors

are considered to be some of the responsibilities of the
master processor. By allowing the operating system (0S) to
perform the mapping from LPN to PPN the flexibility of the

operations of CUENET is increased. In addition to those
o

ok

eRwaima

D e P 5

PRV PR SIS VY

Y -

a -

) ! LP1
Lp2 | vLp3
LP4

-

Fig. 3.5 A'processor communication structure
in the form of a tree.

1 4
N\
@)
L - -
k
- '
,
! .
.
-
~ & o -
11
- 50 -

¢ e e ————

|
i

ea—

tasks
operati

the. fol

(a)

(b)
(C)
(d)
(e)

An oper
) an ope
thé cl

}
slaves,

performed by the 05 of a uniprocessor system, the
ng.systeh of the master processor is responsible for
lowing operations:

{

Aiding the user in decomposing a sequential
algorithm, .

Allocation of free slaves to user tasks, \
Loading of a user process into the slave's memory,
Initialization of slaves and their access vectors,
Handling exceptional conditions such as an attempt by
a user task to access a slave for which no access
privilidge has been granted.

ating system of this nature will be more complex than
rating system of a uniprocessor system. Because of

ear division of responsibilities between master,

and ICN, we believe the operating system will not be

as complex as in the cases of unconstrained multiprocessor

-systems [Wolf 74].

»

In. many multiprocessing applications, there is a need

for several processors to access different parts of a common

data bank [Jones 80)]. 1In order to centralize the storage of

such "shared data", network memory units are provided in

CUENET.

Suppose there is a large amount of data 'common to

many processors but only small segments of it are accessed

by a processor at a time. Such common data can be centrally

stored

and maintained in an NMU. Centralized storage and

maintenance of common data saves memory because we avoid

storage duplication and this will also save time because we

reduce

the number of update messages transmitted over the

S —

g -

P

ICN. For the pufposes of encoding ihe transmitted messages
and decoding the received message!! each NMU will contain a
microprocessor., By associating a processor with éach NMU, -
we can provide a uniform message transfer protocol as seen
by the C—-bus controllers among the processors and NMU‘; ;
connectéd . to the ICN.. Because these NMU's have an

intelligent controller, they can also bé used to provide

other functions such as synchronization control, searching A

lgcal data for specific elements and sending the results to

other processes, and arbitration between simultaneous read i

b

and write requests for the shared data.

3.3 Message Communication

The C-bus interface supports an interr;pt driven
message Ssystem. An interrupt request is issueh when the '
output buffer is empty, or when the input buffer has been t
filled by the C-bus controller. .,This will allow_the front
end communications software for each céa;uter of CUENET “to

use a message control system as shown in Fig. 3.6. The

software modules to create this control system cons{ft of an

interrupt handler, a message transmit, and a message receive
module. The interrupt handler 1is responsible for moving

messages from the send queue to the output buffer of that

computer's C-bus interface and moving messages from the

input buffer to the receive queue. The message transhit and

receive procedures will be responsible for maintaining the

o et St e e e
.
LS
.
l
0,
t
3
o -
—
-
.
#a
t
.
-
)
o
.

B o

- ;, L ;r f‘ N
* ¥
+ C~=bus Intercomnection]
N) Network '
s / \
e ——— \
" / [«
]
L)
Backlog . | Recedlve -
of ” Queune
messages f
. Send K
Queue -
Message
p , .. Decoded Lag
) » message
. buffer
- ‘ -
_ Host Computer.. .
— + y ’ '0
e .
= e === ! : 3§ upon interrupt request
' Figure 3.6 . ,
. E Y
. r “ l -
. ' 5
- 53~ . :l‘ n
. . l,‘i L C

/S

v e e

send quehe,*decoded message buffer, and the message l'og-\.

These procedures are given in detail later in this sectior?&.

Information is exchanged between computers through or;e
of the buses of the ICN, following a fixed message format..
The format as shown in Fig. 3.7 consists of three (sections:
message header, body, and footer. .The time stamp in the
message header indicatgé the time'a;: which t.he message was

.

mailed by the C-bus contrqller. The ordered pair < sender
aadress, time stamp > will uniquely identify each/ymessage
passed in CUENET. The addresses specified in a message will
correspond to physical processor numbers, or PPNs, rather
than logical processor numbers. The message body may vary
in length, but the overall message length should fit.into
the output and input buffers of the sender's and receiver's

interface respectively. The message footer will be used as

a checksum.

The verification of transmitted ;nessages is performed
in a two steé\@ocess involving the C-bus controller and the
message receive software. During transmission, messages are
automatically checked by the C-bus controller by means of a
hardware parity checker, and will be retransmitted if
necessary. If the é—bus controller, after several tries,
dec'i.des it cannot send the message, it will no‘tify lthe
master computer of CUENET about the error condition. The

second verification step 1is performed during message

A}
decoding when the checksum is processed. If a checksum

A - 54 -

e et bt

JPOTIRSY S

Heéder

Sender Address

Receiver Address | .

Maessage Length
Message Type

o

- TN

Message Type Byte

AlE LRI R AL N B

Time Stamp -
(3 Bytes)
-] Y . »
Body I
Message data I
(1-248 Bytes) A
. E
ek k ok

Footer

Check-Sumn

Figure 3.7

‘Message Format

»

Intercomputer Message
Access Vector Load
‘Exrrbér Message
Message Code o

error is trapﬁed by the message receive software, a special
message 1is sent to the originator of the message requesting

for ‘a retransmission. As noted in Fig. 3.6, each computer

maintains a backloqfi of the 1last 'k' messages it has

-

transmitted. If the message requested for retransmission is

found in the backlog it is sent a second time, otherwise the

. master computer is notified that an error has occurred.

’ .
f T

When a user task requests a message transfer, it must
supély th; iPN of the receiver, the starzing address of the
location the message, and the message length. .The message
transmit ;outines will then be invoxed to\ perform the

" following operations:

S1 Map the LPN of the receiver address to its PPN by
using the access vector. If access to the receiver
requested by the sending processor is not permitted,
create an exception condition and report this to 'the
master computer. d

§2 If the message to be transmitted is longer than the
maximum messade length, divide it into slices.
Prepare each slice according to the format
"specifications and place them into the send queue.
o \\ Message slices will be numbered as 1 of 3, 2 of 3f
etc., - . ‘ ' .
¥)) .

& The message receive procedure is 1invoked by the

scheduler when pﬁé receive queue is not ' empty. The steps

.

fol}owed by this procedure are as follows:

Rl Examine the message. header to 'determine if the
message, is a retransmission request or information
for some other software process. If the message
requests retransmission of an earlier message, then

e the backlog of messages is consulted to see if the
' required message can be found. If the message |is

found then it is plaged into the send queue to await

transmission, else an error messaje is sent to the

.

S os BN

™

E.
f
E
;
i
;.
1
£
¥
¥
b

meae Ceimy s oa e e

Ao a7 OSSO 0 Eauge 143

-5

master computer.

R2 If the message is not a retransmission request then
the check sum is verified. 1If an error is detected,
a retransmission request message.is placed into the
send -queue, else the message header and footer are
removed and t#e message body 1is placed into the
decoded message /buffer,

R3 Place an entry in the message 1log into which a
- software process will consult when it is waiting for
a message. The entry will be constructed from the
information found 1in the message header. The PPN
contained in the message header will also be mapped

to an LPN u51ng the access vector.
- T ..

The interrupt handler 1is activated when either the
inpit ‘or output buffers of,. the C-bus interfacé needs
servicing. This process is done under interrupt control for
the follpwiné reasons: The input and output buffers of the
interfaces are critical resources in'determining the delay
of message transmission because they are shared by the C-bus
controller and the host éomputer. No .ﬁessage ’can be
delivered to a computer if its input buffer is not free. 1In
an interrupt driven system, a received qessége in the input
Buffer is moved to the receive queue as sooﬁ as possible.

The steps followed by the interrupt handler are:

I1 Determine if the interrupt i due to an empty output
buffer or a full input buffer.

I2 If the interrupt 1is due to a full input buffer the
message is copjed into the receive queue. The input
buffer is marked -as empty which will signal to the
C-bus controller that another -message transfer to
this computer can be performed.

I3 If the interrupt is due to an empty output buffer the
next message in the send queue is placed into the
output buffer and backlog of messages. The status

register is then set to indicate to the C-bus

controller that a nessage is walting for
. b

A\

AT Sy

i

K B e RN

f
following operations:

Bl

B2

B3

B4

BS

transmission.

The C-bus controller will be responsible for the

»

When the controller is free, it signals the interface
units through the “bus-grant” line. all the
interfaces on a bus are daisy chained with respect to
the bus grant line. Thus the bus-grant signal will
be propagated from one interface .to another. With
each interface unit a mask bit is provided that can
be set or reset by the bus controller. If .the mask
bit of an interface unit is set, that unit will not
respond to the bus-grant signal. This is wuseful to
selectively mask certain interfaces to prevent them
from "hogging” -the bus.

Assume that a slave has placed a message in its
output buffer. When the interface unit attached to
this slave teceives a bus-grant signal, he does not
permit its further propagation. Then he puts-his
address on the interprocessor data bus to identify
himself to the bus controller.

The bus controller determines the destination or
receiver address from the header of tRe message found
in the output buffer of the sender.

If the input buffer of the intended receiver
processor is free,, the message 1is transferred.
Otherwise the bus controller will set the mask bit on
the sender's interface unit and enable the bus grant

line to propagate further so that another message may

be handled.

After transmitting a message, the controller checks
the validity of the ttanzhission via the parity bits
supplied by the interface units. If an error is
found, . retransmission is requested . before
relinquishing the bus frpm that particular interface
unit. After a <certain | number of trials, 1f no
reliable transmission 5. possible, an exception
condition is created and the master is notified. The
master in turn may notify the slave or take
corrective action. ,

)

+

E RPN I

-

>

B6 If a ansmissi i
control&ér ma%iglgge 1gutgagplgﬁ%gersuggesgﬁgllgénggg
"empty" and the input buffer of the receiver "full",
. This enables the interrupt flag of the interface unit
of the receiver to signal the slave processor that a
message is waiting in his input buffer.

3.4 C-bus Versus Other Multiprocessors

¢

As described in Chapter 2, many attempts have' been made
to ‘produce multiprocessors, or multicomputers, by various
researchers. Each of these systems has its own limitations
and the multic¢omputers that are similar to CUENET in their
functions were examined and their‘shortcomings outlined 1in
sections 2.3 and 2.4. We feel that C-bus is better suited
to the needs of current research in the decomposition of

algorithms for. parallel processing because of its

reconfigurability and reduced cost.

The computerg that are connected via C-bus are not
directly .involved with the transfer of messages. 1In this
manner!the speed of C~bus is not limited by the speed of the
computers. Because the informa£ion transfer is gchieved
through special hardware buffers which the C-bus controller
can éccess without affgq&ing the computers involved in Fbe
message transfer, théh‘delay due to contention between the
computer and the C-bus controller for memory adcess is
eliminated. Therefore, C~bus can support a wide variety of

heterogeneous microcomputers without being affected by the

L5 L Ll

L

AR 1 B A i

F————

R g e R e

A s a1

T

speed of eaoch individual computer. We have introduced a
hardware mechanism (access vector) in order to allow for the
reconfiguration of the communication topology between the

r
microcomputers under user program control. As a result, the

user is presented with a flexible intercoénection network,
This will allow him to test various possible decompoFiﬁions
for a given sequential algorithm. Since the control of
C-bus is centralized, our interface' unit is 1less compleﬂ
than the interfﬁce units in other systems. Consequently,
the per unit cost of our interface unit is 1low. Thus, we

~

expect that multiprocessors based on C-bus will be more

widely used. 1In C-bus the safe delivery of a meésage is .

automatically verified by hardware parity checkers and

automatic reéhg?smissién is initiated if required.
AA

The C-bus communication system offers two unique

security features which are not found in other systems: .

(1) The access vector: Apart from permitging
reconfigurability, it is also used to verify the access
privileges of each microcomputer. 1In this manner C-bus will
disallow a user program from sending a messagé‘to a computer
for which it has no access rights. This allows the C-bus
operating system to protect one user program from another.
(2) Lock and key registers: They protect C;bus from sending

illegal messages generated by unauthorized software.

..."50..

s o e mn e —— PR s

o2

P e L e

CHAPTER IV

A SIMULATION OF CUENET CHARACTERISTICS

4.1 Simulation Objectives

I 4

Before an implementation of C~bus could Se considered,
several alternatives and their impact on the operational
characteristics ’of C-bus’' and CUENET musﬁ be examined. 1In
additioA; the types and volume of messages that are expected
should be taken into consideration. The results of such an
analysis wggld allow us to estimate the capacity of CUENET
and determine if our prototype will be capable of supporting
the applications for which it is intended. The limitations
of C;bus are also interesting because they will be
responsible for a large part of the communications overhead
encountered by a parallel algorithm executing on CUENET. A
software analyst will wish to minimize this overhead and
therefore must have some estimates for the communication
overhead that can be eipected under a .g}ven set of

conditions.

Our immediate concern was to determine the volume of
messages that could be processed by a specific version of
C-bus. Faétors that we chose to examine under simulation
were the size of the input and output buffers, the speed of
the memory used for the input and output buffers, the
technology used for the bus‘controller, and the complexity

of the special purpose hardware used to construct the bis

controller. All these factors will directly affect the

f | - 61 -

e

v

~ e

N

e S A T i LR

S sy,

w3 e

et g s e s —

et o 3o ek e 7 o

message capacity of C-bus. The sizes and speed of the.inpﬁt

.
r

and output buffers will determine the largest possiBle
message size and directly affect the length of the message

queues at the sender and receiver.

We will consider two possible implementationé of the
C—bus’con;roller, one using a bit slice microprocessor and
the other wusing a general purpose microproceésor based
alternative. The details of each of these two alternatives
are given 1in Chapter 5. As expected the cycle time of the
bit slice microprocessor is smaller than that of the general
purpose microprocessor and will prov?de a faster C-bus
controller. Since the memory used on the input and output
buffers is one of the cost determiﬁing factors, we will
consider the wuse of 200 and 500 nanosecond access time
memory along with the bit slice based bus controller. With
the general purpose microprocessor, the speed'of the memory
is not an issue because the microprocessor will be the speed
determining factor. 1In this case, wgﬁ are left with the
choice of what form should the special purpose hardare take.
Table 4.1 summarizes the various alternatives we considered
for the bit slice and general purpose microprocessor based
bus controller. Special purpose hardware (SPH II) is a
hardware logic circuit which enables the micrdéprocessor
based bus controller to transfer one byte of data on C-bus

in one instruction cycle. Special purpose hardware (SPH I)

is a less complex version of SPH II where the microprocessor

based bus controller required two instruction cycles to

Pans B S Lo has et A A

FI O DA e st b o s O D it ST

transfer one byte of information on C-bus. The values
contained in Table 4.1 are estimates derived from analysis

of the components used in each particular implementation. ;

There are two types of messages that can be expected in
CUENET. An interprocessor, or type I, message which wil¥

normally carry some synchronization information .or the

PRAREE. GENL SR E S

output of one user task to be used as input to another. In
general, these messages will contain only a few bytes and
4 .

"occur infrequently with respect to the pfocessing time

required for a user task. Type II nessages occur because of

Uil e n Rk

a® computer's request for a transfer of a block of

A

information from a network memory unit. These messages
usually occur in bursts and generally have a message length
equal to the max imum possible message size, The :
relationship between type I and 1II messages is shown in
Fig. 4.1 wvhere:

S: Average gjme between two successive bursts of type II
message7,

U: Average time between two successive type II messages
within the same burst,

T: Duration of a burst of type II message which is a
constant,

V: Average time between two successive type I messages.

While the exact values for these variables are not known, we

expect that S > U and U < V. It is the interaction between

- 63 -

Table 4.1

4

Estimation of parameter values for different cases
(Time in microseconds)

& e

Alternative Clock | Transmission | Overhead
Speed time time
for one byte ‘
A) Micro with special hardware I 1 4 50
B) Micro with special hardware 11 1 2 50
C) Bit-slice processor with slow . «150 .750 10
500 nano second memory
D) Bit-slice processor with fast _.150 .500 7.5
200 nano second memory T 0
33

b

(e
[

Ll

i A O O S = S I &

—— i

! 1hoetd 1111 1 1
7 ——f—s—

Figure 4.1

Type I&1I1 Messages
V average time between type I messages
S average time between bursts of type II messages

. U average time between two type II messages
Y T time of a burst of type II messages

- 65 =

- - = - -

these variables that will determine the volume of message

traffic that will be generated by the comthers of CUENET.

Finally, the number of computers and types of jobs that
will be part of the CUENET prototype must also be
considered. Our expectation is that the CUENET prototype

would contain approximately 10 computers. Various user

algorithms will be running on these computers simultaneously

where each user requires certain access patterns between the
computers dedic?ted to his job. Some sample communication
topologies are shown 1in Fig. 4.2(a),4.2(b), and 4.2(c).
Algogithms that would require such pipeline and multiple

instruction multiple data stream (MIMD) architectures are
¢

considered in [Klein 75].

-

We are interested 1in determining how the wvarious
alternatives forathe implementation of C-bus will perform,
when we are given a set of user algorithms operating on
CUENET under varying message traffic patterns. - At this
point, we decided that the complexity of the interactions of
all these factors would make it impractical to use an

analytical method to arrive at estimates for the performance

of C-bus. Thus we decided to attempt to develop a queueing

model upon which an event based simulation could be

programmed. In section 4.2, we explain the model and in
section 4.3. the translation of this model into a GPSS
program 1is discussed. Section 4.4 will consider the

performance of C-bus as predicted by the simulation

- 66 -

S P

c7

(b) MIMD Structure

i ==

~

©

»
-— e e o e e o -
- ae aee e G S e -

(c) Combined Architecturg\

Figure . 4.2

Thfee user architectures possible
on CUENET -

‘ - 67 -

measurements.

4.2 Simulation Model

In order to study the communication ovgrhead, we will
attempt to model the message flow of CUENET on C-bus at a
certain level of abstraction. This model will attempt to
describe' the dynamic behaviour of the messages expected in
CUENET. However, the model wili be primarily concerned with
hgw efficienély C-bus processes each message and will nop
atteﬁpt to’' account for the prggram conditions under which
messages might be generated by any +«of the computers of
CUENET.. As a result, messages will only be considered from
the time they arrive at an input buffer of a C-bus interface

until they.are removed from an output buffer.

From the outset of the design of CUENET, we have made
the assumption that the time required to load a_;néw user
algorithm and reconfigure CUENET to the required
architecture is negligible when compared to the .computation

time of that algorithm. Therefore, we will not incorporaté?

any mechanism into the simulation model to account for the

termination or initialization of a user algorithm. We will
assume that all user jobs that are active at the start of a
simulation run will remain active until the simulation

measurements are complete.

We will attempt to model C-bus as a set of queues, The

transfer érotocol of C-bus is message oriented and therefore

- 68 -

e+ amat ¢

s o & awm AREe

TR | RN TS ¢ (TR T T By

~coprvy

g Ty

L YR GO T

T A P e = - AT

-

the basic transaction unit that will flow from one_queueN.tOw

another will represent . one message- on C-bus. Each
transaction will have a set of parameters associated with it

which will indicate the characteriétics of each individual

message. This parameter set will contain values to

repr?sent the‘Jmessage length, destfhatipn ‘address, and
sender's address. The message lenéth will be calculated as,
the sum of a constant, which represents the message heaé;F
and footer, and a random variablé which follows-a normal

distribution which represents the average type I messagé

length. Type II messages will be fixed at the size, chosen

for the C-bus interface buffers. , The message destinatiqp

“will depend upon the sender and _the current CUENET"

architecture. Under this scheme a messagé"‘g@ﬁgfated by a
sender will be sent to any of itgspossible receivers with
equal probability. During the simulation, this chéice will
be made using a random variable that follows a uniform

distribution.

The flow of transactions through the network of queues
modeling C-bus can be found in Fig. 4.3.. There-are three
major queueing points in the flow of a transaction from b;er
processor to another: (a) the output buffer of the sender.
which represents the time a message\ must wgit for Qbe
service of the1 C-bus controller, (b) the C-bus controller
which represents the time required tol perform the message

transfer, and (c) the input buffer to measure the time

required by the receiver to empty its input buffer. We will

4 - 69 - v

. 3} -
&.,'\ o Y
! ’ a 4
Ny [} 2 »
1 lo:xtimtf Buffer Queues ,l
‘ b
t
Py 12
N \
2 ,
- ‘ <«
' <
Bus controller ‘ N
Storage Unit) é)
o \ .
)
! “-l:; ot
. 4
P . .
A
¢
N : - 7’
Input Buffer Queues .)
. . ‘ . o
1 , ‘
: ,) ,
Tigure 4.3 A Modwl for si¥ulation
:‘ ‘\: . ’ “) -
. " (, ' - .
at
, Yoo, ‘ \ .
- 70 &/ ! a
' ! -~ - + N A
!] ' ~
) d— ‘I .{ NEARN ! "/ . L] > “\\
' I B Vo \

Numm“._.._w__ﬂ - - o ———————r T

-

LR

monitor these three queueing points to determine how well

f

C-bus is able to handle the message traffic given a specific

o

set of parameters. Our major interest will be in the C-bus

'

controller queue as we expect that this is the point that :

will be most sensitive to changes in the volume of message

PR

. traffic.. When transactions enter the system they are placed

ARDE

into one of the output queues. When the C-bus controller is

free, a single message will move from one of the output
i 4

queues into the C-bus controller queue where each output 1

| queue has equal priority. After a certain delay time

calculated from the characteristics of the C-bus controller

. T -~
“?y and current transaction, the transaction will proceed to the

L e

-
El

b input queue indicated by its destination parameter. Once a

transaction in the input queue has been processed, it exits

the system,

\ The input parameters to the si;hlation moéel will allow
us te-wsary the ﬁessage traffic and the ;apacity of the C-bus

i "o S cont;oller. In this manner we can study the operationgﬁ
characteristics of the variqus C-bus alternatives' under

| di}ferent message volumes. The message voldme will be
controlled by . holding the time of a burst of type;II
- messages (T), while changing the mean time beéween‘type IX
messages (U)‘ constant, 'and 'thé‘ mix bégween éype I and

P

7

type I messages. This variation in mix is controlled by

R 2y

s

] varying the mean time between a type I message (V) and the

timé between a purst‘of type II messajes (S). The random

variables S, U, and V are all assuned to follow an

1Y \ ' .

£ A g R A

~

[B Tt S

are two parameters that are used to control the speed of the
C-bus contreller: (a) the amount of time spent performing

\\ overhead operations for each message, and (b) the time

required to transfer each byte of a message. These i

parameters have been estimated for the four different }

. {
alternatives presented in Table 4.1 by analysing the speed i
of the hardware and the software drivers for the bus ' i
controller. ’ . %

\ The;out;}n: from the simulation model will be a set of
statistics describing the state of the queueing points. The :
relevant statistics we will examine for the input and qutput

, S
queues are the average number of transactions waiting in the

T

queues, the number of messages that are not delayed in a
queue, the wait timé for messages that do get delayed in a
queue, and the percent utilization of the C-bus controller.
From these statistics we <can draw conclusions about the
capabilities of the wvarious alternatives for a C-bus

. implementation.

4.3 GPSS Simulation Program

Once a model had been chosen we then had to consider
the feasability of programming the simulation from scratch

or attempt to use the constructs of a general\ purpose

simulation package such as GPSS [Gordo 75]. Since our prime

interest was to obtain the outputs from our model with as

little delay as possible, and it was possible to express our ug,'

& N '
- 72 - |

o

»

model as a GPSS program, we decided to use a general purpvse
simulation 1language such as GPSS. This section will
describe how the system of queues described in the previous

section can be expressed as a GPSS program.

The GPSS block diagram of the model 1is shown in
Fig. 4.4 and the key variables used in the simulation
prograﬁ are listed in Table 4.2. The C-bus controller |is
simulated by a STORAGE block that may éontain at most one
transaction. The time spent by each transaction' in the
storage block is governed by the ADVANCE block and the
variable BTIME. BTIME is the: variable that controls the
speed ofﬂ the C-bus controller during the simulation and is
used to switch the simulation between the different bus
controller alternatives presented in Téble 4.1. The valﬁes
l&sted in Table 4.1 are used to calculate the value of this
variable for each transaction that passes through the
STORAGE block during the simulation. Transactlons arrive at

the STORAGE block from the queues that represent the output

buffers of all the’computers of CUENET.

Transactions ‘are created by the GENERATE blocks using
the functions MGENI and MG NII. These functions ;re used to
control (fh; eneration jf type I and type II messages
accérding to an exponential distribution. The average time
between type I messages (V) is wused as the mean of the
function MGEN1l and by changing this mean we can control the

volume of type I messages. The average time between type II

- 73 -

oy nc el WS e

S

Processors

[usp;x_l_jl 0

Gz s |
G -

3,1,PH) 3

3,11,PH

e i e i —

4 | rnsssog KD OUTPUT Buffer
5 BUs - ,,0,1 ’ :
6 |FN$SNDQ OUTPUT Buffer : umqg

.7 $BTIME 126000 12

8 BUS : MEM11 [R]

9 FN$SRSCQ {(O) INPUT Buffer) vgl'ram'r 13

io FN$STIME] . .

oo FNsRscQ [0 INPUT Buffer

NMU_Control Transactions

‘ ’ .
14 (21 ;

Figure 4.4 GPSS Flow Diagraa

- 74 -

E

gl i e il A S e L ke

P PTESTREINPP

variable

BTIME

‘STIME

TBMT

SNDQ

RSCQ

LEN1

LEN2

MGEN1

MGEN2

DECi

[

L -

Description

Time required by the bus controller
to process a message. This depends
both on the message length and the
message transmission overhead.

Time required by a receiver to
remove a transaction from gts
input buffer. = .

This variable is used to control
the average time between two

bursts of typell messages and
follows an exponential distribution.

This function is used to trans-
late the sender number of a trans-
action into a send queue for the
collection of statistics,

e
s

Same as SENDQ but for the receive '
parameter of a transaction.

Message length for typel messages.
This function follows a normal
distribution with a.-mean of 15
and .a standard deviation of 5.

Message length for typeIi messages..

This function follows a normal
distribution with a mean of 64
and a standard deviation of 10.

This function is used to produce
\ transactions that represent typel
messages.)

This function is used to producé
transactions that represent typell
messages.

This function will use a random
number to choose one out of a
number of possible destination
queues, , ' '

t

.

L

Table 4.2

cn e

NI

e g - e

2

messageé’ (u) 1is fixed Dbecause we assume that a network
memory unit will attempt to send all the messages of a burst
as quickly as possible. Therefore, the mean used for this

function has been calculated according to the time required

by a network memory unit to prepare a message.

The time between a»bur;E{of type II messages (S8) is
controlled by GATE and LOGIC blocks which act as a switch
for the GENERATE blocks. The GATE blocks are actually used
to start and stop the flow of type II nességes under control
of the Loqic block. This 1is accomplished by creating a
control traésactioﬁ that will continuously circulate in- a

closed loop, alternately enabling ancd disabling the flow of

type II messages from the GENERATE blocks. This control

transaction -is‘generated at the start of the simulation and
as it passes through the "S" LOGIC block the GATE is enabled
and the "R" LOGIC block will be used to disable the GATE.
The ADVANCE block (12), the numbers refer to block numbers
in Fig. 4.4, which contains a constant value 1is wused to
represent the time of a burst of type 1I messages (T). We

«

assume that the average size of a block transfer is about 1

K bytes and therefore the value chesen is long enough to -

allow the required amount of type II messages to bq
generated. of éourse, the number.- of messages réquired to
transfer 1 K bytes wiil depend upon the maximum possible
message size. The variable TBMT and the second ADVANCE
block are used to control the time between a ﬁurst of

type II 'messages (5). By adjusting the mean of this

"'76" . z

By

%

po

i T MO T R (i Y

s ¥ AT H— b T TN 2

3

function we will be able to vary the volume of type II

- messages that are generated.

Each transaction has a parameter block associated with
it in which we use three locations to hold the parameter
values. that define the characteristics of a message. These
values are initialized by a set of ASSIGN blocks. The first
parameter contains the number of the queue that Fepresents
the output buffer of its sender. The second barameter is
used to hold the 1length of the message. This‘value is
obtained from the variable LEN1 for type I messages and LEN2
for type II messages. The ' means wused for these two
functions will depend upon the size of the input and output
buffers of the C-bus interface units and the average number
of bytes ‘expected 1in the type I messages generated by the
computers of CUENET. The third parameter contains the
number of the‘queue thag'r;presents the input buffer of its
destination. According to Fig. 4.2 we notice that in some
cases a Sender will be capabie of generating messages for
more than one destination. In order to realize this in the
simulation, a function (Deci) is used to determine the value
of this parameter. If a computer of CUENET can send

messages to more than one processor, we assume that the

probabilities of sending a message to each of thé possible

destinations are equal.

Upon generation, a transaction will pass through a set

of ASSIGN (1,2,3) blocks where the characteristics of each:

*

- 77"'\

PR A r—

F——

message are defined. The transactions then enter the quéug

" that represents the output buffer of the sender via QJQUEUE

L

block (4) and will wait there until the STORAGE ~block’

representing the C-bus controller is free. The transactions
will then enter the STORAGE 'block by passing through an
ENTER block (5), depart the output buffer of its sender (6),
and wait for a specific amount of time which represents the
transfer time of a message on C-bus in an ADVANCE block (7).
The transaction will then leave the STORAGE unit via a LEAVE
block (8) and enter the queue of the input buffer of its
destination (9). The transacpion will wait a certain amount
of time (10‘, which represents the time required by the
destination computer to empty its input buffer that is
controlled by the variable STime. Finally, ther transaction
is removed from the input” queue (ll1) and passes throhgh the

TERMINATE block (14), where it is removed from the

simulation.

The GPSS program listing can be found in Appendix I.

-

4.4 Simulation Results oo

The simulation was run for all of the four alternatives:
listed in Table 4.1 while varying the traffic of type II and

type II messages as follows:

A
.

e o e

mix of type I and?@ype I1I messages.

ALT1&ALT2: We hold the average time between type I
messages (V) fixed while the average time
between bursts of type II messages (S) is
varied. Then the same set of experiments |is
performed with the average time between type I
messages varied (U) and the average time
between bursts of type II messages (S) fixed.
Both of these two sets of experiments were
performed for the case when two user
algorithms requiring architecturés shown in
Fig. 4.1 (a&b), and three user algorithms
requiring the architectures shown in
Fig. 4.2 (a&bs&c), are active in CUENET
throughout the simulation.

. i

ALT3&ALT4: We hold the average time between type I
* messages (V) fixed while the average time
. between bursts of type II messages (S) is
‘- varied. Then the same set of experiments is
performed with the average time between type I
messages varied (U) and the average time
between bursts of type II messages (S) |is
fixed. For this alternative we considered the
case vwhere three user algorithms are active.
The two algorithm case 1is considered to be
less important because of the speed of the

alternatives being studied.

<

All the time scales used in the following graphs are in
units of milliseconds, wunless otherwise sbecified. When
type 11 messages are béing varied, the scale usedy is 1in
units of f (the . average time of a burst of type II
messages) . Tﬁe value plotted is S (the average time between

: burst of type II messages) which is used to control the

L)

Fig. 4.5 and 4.6 are two samples of the information
that'is obtained from a set of simulation runs for ;ne of
the p?ssible C~bus iﬁplementations. In both cases, the
average time between type 1 messages is wvaried while. the

average time Retween bursts of type II messages is fixed at

PRSI G

(spuodasoIOTW) DWTT

. S*p aanbTad (A) .°SSON ISJAL usam3sg SWL °IAV
75 1 05 00T
0 .
00z - o1
ITeM 0192 %
. - 0z
009 ,) - 0t
= oy
0001 . - 0§
< = 09
00%T]
t o8
o . UOTIVZFTTIN & !
:008T - .06
=~ 001
00zce
| meu._.,m QUTN .
d . (A) 18dAL AxwA (S) II8dAL paxT
002§ SWEL ITPM *(1TH4S)snq-) peseg I0883001dOIQTH
o \
N

usoIed

(SPUODISOIDTW) BWTL ITeMm

-

-

m.kusoﬁm\“. , (A) sobesson 1adAy usemisg sury ‘aay

IS

3usd3I8g

s S SL* T 0S 00T 00z 00§
: y ' t } ' !
X , .
oz T ‘ ; 9 Q < © - 0T
. UOTIPZTTITIN % :

o 1 ‘oz

w .
oo T - o.n ~

SWTL 3TeM
08 | - oy
00T t - 05
0T T - 09
0YT - 0L
09T § " Los
. v
08T T -— . - 06
JTeM 0I37 $
00z 1 i w L 00T
0zz {
B9ABRTS SUTIN
(A) TedAy Axep (s) IIadAL paxtg

sng-J .paseg 20TTS 34

ARN

- 81 -

~-

e e ——————————— T

-

0.2T. Each figure contains three graphs, the percentage of
transactions that gain immediate access to the C-bus’
controllér, the average wait time for those transactions
that are reguired to wait for access to the C-bus

controller, ‘and the percentage utilization of the C-bus

controller. As expected, the bit slice based C-bus
; performed better under the same load conditions as the ~
microprocessor based C-bus. In both cases, the relationship
between the three éraphs were similar where the waiting time

for a transaction and the number of transactions that nust

wait increases as the utilization of C—-bus approaches 100

percent.

]

H

% In Fig. 4.7, 4.8, 4.9, and 4.1C the results of the
¥ , .
other sets of the simulation runs are shown for the wvarious
!) possible C-bus implementations. Only the percent -

utilization of C-bus 1is shown, however, the relatidnship

[N

between these graphs and the percent zero wait and average
wait time are still the same as those of Fig, 4.5 & 4.6. 1In
all cases, the bit slice based C-bus exibited superior

performance however the microprocessor based C-bus is

LT ST

f capable of supporting between six and ten computers if their

usage of - C-bus is not extremely heavy. Both the

SR

microprocessor and bit slice based C-bus controllers showed

¥

greater sensitivity to a change in the average time between

a burst of type IIlmessages (S) than iB the average .time

»

% , between type 1 messages (V). -)

v

- 82 =~ ' ‘ .

MY

‘L*y danbrg (A) sabessen TodAf uaomyaeg oWyl ‘eav
cz* c.m oL 1 oS 00T 00T 005 .
’ { 1. | 1 1 | i 1
Kaouwsp su ' ¥
OUSW SU00T ot
, hkbOEwS wnwom — %on,
: L€
. : : Loy
109
04
. iR
\ ail]
06
. E9ARTS SUTN L.n%ﬁ
, (A) I®dAy Axep (§) *I19dA] poxtd :
. , ‘sng-) pasedg 90TIS 374
. ¢
. 2 d « .)
& H ¢ §

.

TE o= Wuae s T ke

-’ . i
. - " |\N s
o ‘s@Aels SuiN
) \~>u T9dAl, PaxXTad (S) - II=dAL Kxep
\ 0 snq-) p9sed 9OT7IS 3ITH
P .
. a
\\ By
it saRitidobiisaiNiiniey M

/ .\\\-
\\ - “ ~ ,
‘\I'..' . ‘ A . { _ , n
gy wusmﬁu ; sobessow TI9dXL :mmauwm SWIL °*SAVY
7o ’ : . :

/ \PQ\H . LL/e Lle/e PR £ 74 SR £ A A .

\ v 1 1 n- —‘ 1 1 1 >

v d 01

. R .

; “ ; , -0z -

\\ ‘ :

y Axowsyw suQog ﬁom

~ 05

“Fos.

06

-00T

UOTIBZTITIN ¥

wT

v 4 . s -. \\r _ N .
. RN / h
; -/ . : R -
w_,ﬁ ; _ 6°¥F oubbwh E sobessol TodAl usomilod SWIL ‘OAY
J ’ L 5) ’ . - . o .
e -~ PR ¢ . 00T 00z . 00E . - 00%. - 005 S
) - 1 : 1 — N 1 S 1 -)) - ;
S ﬁ y : - NE
\ . : . L oT S

: - .) - A
: . ~ ~ . . . - .-
- . J h Y -
. . - ; . . -
' , X B . / ‘. w - LY -
] : , .z
, . , N

. - / ’ \\,)
P / /' (IIHdS) saaels x1s = L of
| - Loy i
N > : . » . M
_ (IIHdS) S°A®RTS SUIN e !
\ . T —X -0 & \I//FW‘\.A
- 4 + r.r % ’
_ } «] ~
< - . .
. y (IH4S) soARTS XIS - Foo- g _
. / . . ’ . : . o
v . ; - " QN =) .
w]
4 ¢ | 4 . ’ — .
* . \ . \ . -~ Of
| | . K
m \ (Inds) soaels outN © . . .
| \ : | 5 - 06 ,
_ / .

N

Y- - T s co . . ’ \\ . >
» . < , - 00T - N
.) \ (A) 19d&L Kaep (s) IIodLL paxtd - :
R -)) . e sngq-) posed. X1088900XdOIOTH , :
- - » '3

M._. ‘ * - -

l

A
L3

o

~ . -
< ! ..
:

< pm et st w vt g . e e s

-

L

’

R o P

. - . . -
. -

ot ¥ musmﬂu, Amv.mmmmmmmz 119dX], :ﬂoBAum BT, °*9OAY

StIN IHA4S

s2AeTS
- S9ARBTS XIS

. IIH4S
’ BIARTS XIS .
' oot IH4S
iy ; : ' 89ARTS SUIN
A) 1°dAL pOxTd (S) IredAL Aawa - | \
8nq-D pesed 1088950XdOXOTH ; :

SR 74 SR 771 > /T 1 Iz . aglL Ly -’
J 1 . . 1 F, - 1 1
T . S -0T
°) 4 s . - l.cﬂp
' , .) \ N .) - .

.-. : “. ‘ , lO”

- - s,
. Loy

w7 : u -
-, - 7. ~ . c
) . , FOs o
) : . T~
[¥%
L] » HY
- - - -~ .IQQ “
v -
) - © 9
5 ' e) B

kb -) . o - 0L
Y - ... i ' -, ,) i

‘ s ~ - 08

- / / ' .

/ - . K .
/- , . IIH4S - 06

[N

.y e - L - - . - - - . P e e - N +

wrrsnames

b e " -

P b S e D

- » ‘ , - [}

ol -
Upon examining Fig. 4.7, a curious development seems to
occur at an interarrival time of one millisecond. It should

be noted that the axis represents the interarrival time

rather than the number of messages generated. Upon closer

\

inspection, one can see that the number of messages

generated by ehch slave processor increases very rapidly as-

the interarrival time approaches one millibecond, as shown
in \Fig. Q.ll. We a159 see that this~is follow;d by a large
drop in the number of messages generated by NMU's. This can
be e*plained bécausg each simula£ion run is complete when a
certain number of traqsacti&ns have been processed but not

at the‘end of a specific time period.

L) .
\ .

~ .
- As the average time between type I messages .sent by the
same sSlave processor tends towards one '.millisecond

(Fig. 4.9), the hfilizatipn curve reaches a saturation point

.

.]
and the waiting time (not shown) increases enormously.

0y A Al
! [y

Within this one millisecond time period there will be

oo F. .
approximatefy one interprocessor, or type I, -~ message

-

transfer request from each slave processor, each requiring

100 microseconds serQice time from the bus controller. When

the interprocessor message transfer.requests are combined

with the feqdests-from two NMUs ‘which .require about 175
e -)) .]

microseconds” of the bus cohtrollqrs time per request, the -
3

I3

total service time demand on the bus odntroller exceeds the
available time. It is well known in queueing theory
[klein 75) that under this- condition the waiting time

increases indefinitely.

‘

i ot R o HAI S

e e st et e =

q.:._v umw,mmﬁ.m\;,\z:it soBrssay Hm&ha. U99M38g SWT] ‘OAY
. 1 © 00T 002" 0ot) 00%
L 1 1 . & {)
e suoyjoesuexy 1odXy Jo.-zaqunN ° oAy .
- D .. |
. - 002
, . - 00Y
-] - y)
. [3 R
A | ‘ - 009
., N + . - . .)
; ™ 008
- 000T
b) - !) .
& .) a - 002T
- ~ 009T
§ " . s .
T o e Q09T
. W) . . -
C - SR S - - 008T
> coe
PR . (A) 18d&y Kxep (s) I10dAL poxtd .
. Snq-) pesed I05s900IdOIDTH ~ 0002
b e ’ 0022
\ @ ¥ y : . o i ol - ’
. : suotr3joesuel] ITodAL JO IOQUNN ° oAV oove
‘ . . ‘ =

l/

.- Average Message
. ~ 8Size

Typel - 25 Bytes

Typell 64 Bytes

~

Ave. Time

Betweers ender Receive

Typel Mess. . eue Queue

| 500 ms: /.001 .07

200 ms © .002 .07

100 ms , .002 .08

50 ms , -.005 .08

25 ms.’ ‘ .008 . .08

" 11 ms - | o .02 .08

1l ms 5.1 .12

4

' " Table 4.3
Averagé, Number of Messagéé‘
in Queues for Six Computers

\“

Using a Microprocessor Based

Based ‘C-bus (SPHII)

~ = B9 -

- . - ‘ »
- .

-
.

] . * \
A R0 0 it s vt ot = * - .- -

\,‘ .‘ . ' '.) . i -
Table 4.3 presents the:avetaqe number of transactiqné
in the queues representing the input and . output buffers

f \
. during ‘vﬂxious'simulation rfuns for the microprocessor based

' C-bus controller., The mean type I message lengtﬁ was set at

25 bytes and the mean lengtﬁ of a type II message is 64

bytes. The queues only became very large when thé

/

saturation point of' the C-bus controller had been reached,

otherwise a buffer size of 64 bytes is shown to:bg adequaté.

’
o

. One way to validate a simulation model is to- compare

~ the simulation results with actual measurements madg' on a-

crunhing' system. ~This approach in our,case is not possible

a

as the architectures we have simulated are not .yet

- Poerys
o —— R i o S N T

R = oL LU

completely-built-— However;wefind the bverall trend of the

ST simulation outéuts are in agqreement with the fact that v

: .] #
increasing load on the system results in decreasing response

v

timé and increasing utilization of the resources. Also, we
. find that the ‘épturation point of one millisecond is’
explainable as it is the‘point where the aQerage~transaétioﬂ
arrival fate exceeds the abérage serviee rate.. Since we
have " been a?lé to explain all the trends OEQSFV€§\aL\Ehis

point, we '‘assume that our initial model is valid and that

the .results obtained from the simulation runs are relevant. '

'
[
.

- 90 -

)
L . \ e

NP7

o et 1

- e

B nn o

a

.

CHAPTER V

THE DESIGN AND IMPLEMENTATION OF CUENET

Pes

" 5,1 Design Tradeoffs .

The desfgn-and—implementagion of a multicéhputer systen

involves several tradeoffs. In this section‘the various

o e ——

ttadeoffs that were analysed during the construction of

C-bus and CUENET are outlined. In‘'many cases when examining

- ®

a specific tradeoff the physical resources at our disposal

-

played a key role in choosing an alternative, in addition to

the desigh goals discussed in section 3.1.

\

find

A

We that there are at least three ways of

imprehenting the C-bus controller: (a) slice

using bit

4
; . Microprocessors,’ (b) using a general purpose microcomputer,

and (c¢) by means of dedicated special purpose hardware.

latter alternative would give rise to a very fast C-bus but

[

the controller circuitry would be complex and it would be

" “difficult to modify the functions of the controller. The

entire circuit would have to be designed, congtructed,

tested in house which would require a

< manpower and could not be ;achieved within .. the time

constraints of a master's thesis. ,

A .C-bus controller using bit'slice technology-could be
A Y v « .

constructed as shown ' in Fig. 5.1. The controller will

contain ' most of the standard components of\g CPU such as a

register file, an arithmetic and logic unit, a microprogram

.
N

=91

. m—— e e e

and .

large amount of

The

e v s - ot e s

PUUHISON S, § - o Ay Aoy it =

¥

SABD
SAL

‘Registér,

file .

RABD
RAL

.Seduenqe
&
g '} -Control
) o -
‘a
) L 3
y ' ROM
Real Time|
Clock
L]
,) DBTR-Data Bus Transceiver
RABD-Receive Address Bus Driver-
5 SABD-Send Address Bus Driver
RAL-Receive Address Latch
) SAL~-Send Address lLatch
/¥ "

. Figure 5.1

- 92 -

Bit Slice (Microprogrammed)
. Based C~bus Controller

PR

]

P R T A
3

n o amh Fe drme, - At et

,

[P OO SIS

e !

seduencer unit, and the microprogram ROM. In addition,‘ the

bus controller® will require registgfs and drivers through

LY

which it can drive the CJbﬁs address 'liﬁes, and interact

with the C-bus data lines.- The bus controller wlll‘bé able

to sense the stAtus of all units on C-bus Qia the status

lines connected to the microprogram sequencer unit and send
control signals through the control.register.
~ . .

. The C-bus controller cou{d also be implemented using a

.microcomputer with some special purpose adaptation hardware.

In this caseq we were faced with the problem of what
cést—gffectiv; fu;ctions shoﬁid be put inte the additional
hardware on‘perf;rmed by the microproceséor. 0f course, as
more functions are handied by extra hardware the faster the

[
bu;’ controller will operate but- the complexity of the

circuitry will also increase. The C-bus controller uses the -

programmable procegsor to co&rdinate the dperations of the
special purbose hardware modules. However, simple tasks
will be doﬁe as much as possibie using custom circuitry so
that a-reasonable bus'speed can be obtained. An example of
this is an auto incremeht feature added to the C-bus~$ddress

: *
control module. If the‘'incrementing of the C-bus address

latches were to be berformed by the programmable processor,’

several instruction cycles . would be required, while the

additional hardware can perform this function in less than
one instruction cycle. Because the incrementing of the
C-bus address latches must be performed for each byte

.

transfered on the C-bus, a major increase in the transfer

- 93 -

-

FNUPRPINIY

PR

e oz s

B - S

R R -

o

"hardware.extensions for it to function as a bus éontroller.

P

rate ig achieved by incotpérating this function into the

special purpose hardware.

a ES

As shown by the simulation described in the previous

Achapter}, the bit slice based C-bus controller is faster and

. \ . -
capable of supperting a greater transfer rate than the

microprocessor based C—bhs controller. However, with the
microprocessor based controller we could still 'support a
sufficient: amount of computers provided that each computer

limits its usage of C-bus. Since we did not possess. the

resources required for a hit slice implementation and the

simulation” had shown a microprocessor based controller to be
adequate for Qu; CUENET prototype, we have chosen to 'use a
general purpose microcomputer and constructed the required
/
The madifications invglved the additioﬁ of such functions as
address control, data transfer, and arbitration for C-bus.
All the extra hardware circuits fit‘ into a sinéle
wi;e—Wraéped board which in turn fits into one slot of the
mother board in the bus controller computer. A detailed

description of these extensions are found in section 5.2.

The choice of buffer sizes is yet another design issue.

‘In out design, the input and output buffers of an interface

unit are a reserved part of the memory address space of the
host computer. Suppose the buffer size is selected as large
as 1024 bytes. If the messages transmitted are mostly much

smaller than the buffer size, then the reserved adéress

i

- 94 -

|
%

o e

rd

i
7 AT S AP G SN T A LA s X heinpe WS
a

e iy mmm—— | ee

space will not be well uti;lized; On the other hand, a small
‘buffer size will requiré too many message packet transfers
for a given messagellen_gth. The simulation indicated that a
buffer size of 64 Fbytes would be adequate and after some
considerations, we chose a buffer size of 256 b)}lte's which is

also the sector size of the floppy disks in our computers.
l ‘ .

Since all thé computers connected to a C—bus are déis_y
chained together, it is possible to have 'the problem ;af
livglock or starvation ‘[Ullma 86] . We have provided a mask
bit in each interface that can be set or reset by the bus

© controller. The starvation problem is handled by p'rograms
'in the C-bus coqt(olier, described in section 5'.4, by
suitak;ly setting and ;esettiﬁg the mask bits. .In this
manner .the starvation avoidance mechanism is flexible -and

can be adjds’ted as\required.

How many address lines should be there in C-bus? If we
use one address bus and transfer one byte of data from the
. sender to receiver, it will require two steps as shown in

Fig. 5.2(a). In step 1 one byte is read from the output

buffer of the sender to a local buffer of the .bus'

controller, and in step 2 ‘the byte is placed into the input
buffer of the receibgr. Another approach 1is as shown in
Fig. 5.2(b). In one cycle of the programmable bus
controller one byte of data is transferred on C-bus.
.However, two distinct a\ddress buses are required. l‘ it is

also possible to use one set of address 1lines in a

»>

.
nf

- 98 -

T e tat e e ahi ey S

N

.

T U O s g S G A o (oo 48 o

Figure 5.2(b)

~Sing1e Step Transfer

) i . I -
2 ‘ /. '
; »
L ’ N
» In "} Receiver
" step-2 -
s ' 'C-bus
: ‘ Controller
, . _' o
1 /
' Figure 5.2(a) ,
Double step trarisfer :
' 3
3 //’ ' h
. .—/ °
Sender Out -3 1n Receivéi
‘ . .
) ‘ L .
~ /7 .~
\\ - 7/
LN /
) \\ o V4
A} 4
. C~bus
. Controller
;

. s \ '/ . B N

3
‘multiplexed mode so that‘they.éan carry both ‘the send and .

ieceive address - information.’ The nultiplexin of the
, o P g

address lines will gesult in a. reduction in the total gumber B

3

of lines requlred which will also reduye the cost per unit

length of the--C-bus cable.’ However, the hardwaag will be

' 7
v

more complex and the‘tbﬁnsmiSsion time for -a ‘Eihglé byte
oy - . ' R

.) ' -~ . .
will ™ be. longer than that of the two address bus solution.

A S, SRR R e o » e SR S iR e

We decided to use the two address bus option for C-bus.
C-bus 1is .not designed to run several kilometers and hence
. 3T

the additional cost due to the increased number of wires in - i

the address lines was not a significant factor in, our case. . :

£ Rebraochomd Yoprmtidisbin 3 RIS

In C-bus there are two sets of address lines each

Lo

containing 16 wires. The " 16 bits are divided . into two

segments, a most 51gn1f1cant segnent (MSS) and least

A
~ 4

significant segment (LSS). Theaqunber 2**MSS determines the
maximum number of c¢omputers that can be connected to one
C-bus and 2**LSS indicates the total size of the "interface

memory address space" br IMAS. The size of IMAS must be

o .
b e

iarge enough to accommodate the space required by the . input -

12
-~

o

and output buffer,' the access véctor, and the contrel and

-

.
SO L

status,registers. As per the present design, we can connect

a maximum of 128 computers to one C-bus. The number of

'l

address lines in the MSS'represents a trade off betwéen the

> Ly e
=S Iy

~

cost of extra address lines and the totag number of
. " . [

compﬁters. that can be attached to a.single bus. The choice

of the number of address yines'of the LSS is governed by.the Co

size of all the hardware"'modules“foun'd~ on -the interface

« -

A D A P i e b A b

- . [
RO, - o e e -

cafd.“ I1f the number of address lines is critical, the size
. ; © -) o) p

-0f LSS may be reduced by multiplexing.

The total nuqber of address lines on C-bus is 32.

[PRE=L

3

- .([: . (3 lo
- Besides which, there are nine lines used for ~ data

transmission and parity. There are eight control lines on ;
s _C-bus which are used for data transfer control and C-bus §
arbitration which are descriﬁed in secgion 5.3. This givés . j
: ’ . . us a total of 49 signal lines. In order to 'reduce éhe g
] N ' éiqnél degradatién over the length of C-bus,” we have |
;_' ‘° y -_eﬁplozed a twisted pair (signal and ground) to carr? each l P
(‘ éignal. l’ oo - |
b . ' . To choose a sypchrohous_or asynchronous data transfer
% /}(, : protocol gs yet another design probleg. The former is

fastgr,h simpler, and .less costly, whereas the latter

. provides gréater reliability. In message communicationﬁ

propocslé, the: bottom most layer that supports all other

. ‘ layers is the physical layek [Tanen 81], and it _shguld be
. . ’

implemented ' as efficféntly and reliably as possible. To

achieve this efficiency in the C-bus design; we use an

teme s A tb e

. asynchronous or handshake approach for the selection of the

.

‘next sender to be serviced. Once the sender and receiver _ 1

" are established, the entire message is transmitted using a “,\

éYnchronous protocol. Thus we atsgmpt to achieve a balance

between the reliability of an asynchronous protocol and the

o

o - speed of a synchronous transmission.

t IR
v

' . - , Both C-bus and CUENET employ centralized control
. .)) ~

v ' ’ " - 98 - '

© rnanr awa

R e e <,

mechanisms. The advantage of a centrall _controlled system

is a reduction in the software complexity, but ‘a certain

'

amount of reliabjlity is sacrificed. The bus controller

» ' . . s '
computer, in our case, is a general purpose microcomputer .

whose reliability is quite high. Also, the adaptation, or

hqdification, ‘ hardware is carefully designed and . well

tested.. If reliability ‘is extremely important in a

particular implementation, as our design permits, we could

use multiple C-buses in a . CUENET.. If the CUENET.master

fails .the down time>of the network is made minimal because

., the master §oftware can be quickly loaded into any other

computer and then , CUENET can be restarted. This
interruption in service is the price paid for the simplicity

gained in the software design.

-

5.2 Hardware Implementation.

/s

a

The C-bus controller' has been constructed using an
MC6809 single board computer and is augmented with~a special
purpose logic board. The MC6809 is currently operating at 1

ﬁHZ-but its speed will be increased to 2'MHZ upon completion
A\ N

.of the debugging phase without any changes required in the
L ,dt \ S J] '

special purpose ba;dwdre or C-bus interface units. There is
space for 4K of ROM and 1K .of RAM on the MC6809 processor

card which will be used by the C-bus codtroller software.,

‘Upon power ‘up, or reset; the MC6809 will perform an

~

initializateon~routine and then enter.a ready state waiting ;

—99-

.
b A AT A s S e e 2ottt e e ne

R S donsctatesicccs s o2

[

-

e

o~

S

A B Tl T e i i)

& Caduic s

v o mmxe-

Ny g .

o

for a message transfer requegt. 'A set of indicatdr lamps

are provided wh;chqwhen_lit indicate the current state of
3 . ' |)
the bus controller. This is used by the operator to 'monitor

the functions of the bus controlier.

The special purpose hardware block diagram is shown in
Fig. 5.3. The hardware moddlef are placed into the memory
space of the MC6809 and can be accessed by the processor at

the addresses-given in Table 5.1. 1In order to control the

16 1lines of each address bus, two hardware units are

Fan

~\\ ‘ *
required. The send and receive address latches are used to

drive the most significant’ 8 address lines which remain

constant when the . bus contrgller is accessing a specific

hardware module on a particular interface. The semd .and
1eceive address counters are ”used to, drive the least
significantﬁ 8 address lines, The counters can be loaded

with an initial value, incremented by the MC6809, ané will

. .
> : - . i e
S~ '"'%‘”‘"" SOV N S

be automatically incremented when a data’ byté transfer -

’,bétween two ,interfaces is performed. This flexibility is

P

introduced. because during a message transfer it is expected

’ v) .
that a large succession of -addresses will be 7accessed.

-

The status, control, and timing control units interact

to'allow the MC6809 to provide control information and sense

4

the status of C-bus. The status unit occupies several
memory bytes, each of which corresponds to one control 1line

that is an input to the bus controller. In addition, the

o

status unit contains a'latch through which it can sample.and

R . - 100 -

2

e Rt o S A A
R .

[N e

o —t— o

LT

< . , IDATSOURIL NUL

\ IIJUNO) SSIVIPPY PUdS IDVS

. yojeq SS2IPPY puds TS

) I93UNOD SSBIPPY SATI09Y OV

. Yol e SS8apPpY 9AT909Y* WY

) axempavH osodindg
Teroads xaTT0I3UO0) SNG-D

g°g @aanbra
4

¥o8Yd A3Tred MOd

. 23senbay sng OFud

sbpeTmouyoY BARIS NDVNIS

*3OY jueas sng MVYINOG
ITUn snje3ls Ns

| 859IpPpPVY pUSS DPTTEA VSA
‘PPU SAT205¥ DTTRA WA

}O00TD IO

3I9say snq-D° Lsyd
juexd snd LN¥O4

v

3TUN TOIFUCD D,

————

ToIIU0y -

v eTed
e o e e ws e Il\' - emm -— rl e - - - n', - o 1'. -— mm 1 L for ovn e - e me e e e e -
- ; 3
: | Y0010 '
s . R amty, . A oppoaq | B
| : TN i | Tesd - N3L $S8appy i T
. \ . - 1 .
B m o /ﬁ © - - [}
. . | //) . " . <« | TOa3UOD |
d I - butury \
m | ‘ s) snq-> i .
j 1 ¢ . NA L 41 -
— e A -
' | 11 j 1 |)
"1t L ous| |Aws | - | owa | | Twm ns no |
! | . 1
| - . - —
1 - | - N
\.\—ll nl\ - am s wn A en S e G - b G o Gups e am eEe am s - - oy s NS W we aptas TS == - -— amm S um e = = - |—
i sng-> .
- -) li\ b v
. —‘ -, g —— - -~ A \“L.fws it it St ok A »W.. - s - PR vfigbbxunr?’.hxsgttiiag‘@ﬁ?zﬂk.h‘»tiifl:a.i.i..(} "

-

r" 1“

T

B I e i it it
-

L er i TR A o T BT
- .-

ADDRESS - " FUNCTION ,
’ F000) Send Address Upper Byte Latch
T F0Ql -Send Address Lower Byte Counter

: " F002 Receive Address Upper Byte Latch
F003 | - Receive Address.Lower Byte Counter

, F004 " Increment Receive Address

r : FO005 - Increment Send Address
‘F006, Parity Status Bit
F007 Bus Request Status Bit
F008 . Bus Grant Issue -

5 Fo09 : Reset'Parity Status Bit .
* F00A « Reset Bus Grant "
[FO0OB . Master Computer's Address

' F00C C-bus Data Lines
F00D Bus Grant Acknowledge Status Bit -
FOOE Slave Acknowledge Status Bit A
F010 Data Byte Transfer Between Two Interfaces
FOll " Read Data Byte From Interface '
F0l2 Write Data Byte To Interface

. ¢ A

.

2 Table 511

Bus Controller Special Purpose
Hardware Address Map

PR .

8

| - . . ’

\ . ,
holq the parity information available during an

'intérbroceséor byte transfer operation. / The control unit is

used to drive the control lines that are an output from the

C-bus controller. This 1is performed by the MC6809 ié
conjunction with the C-bus timing co7¢rol, module. T%e
timing control module is comprised of a number of monostable

N ,
multivibrators which provide the various +timing pulses

required during thé C-bus read, write, and byte transfer
. . . , \ .

5

3perations. The real time clock module allows the bus

n
controller to provide a time stamp on each message it
transfers. The clock will contain. a battery back up to

maintain the time count during power down conditions.
! ‘ .

The MC6809 Qill‘be able to interact with the data lihes

df C-bus through the two transceivers on the special purpo§e.

'
hardware card. In effect, three memory locations act ™ as a

gate between the MC6809 data bus and the C-bus data lines.-

<@

This is accomplished by using the MC6809 memory access cycle
to initiate the C-bus timing control module to provide the

necessary C-bus timing pulses.‘ Therefore, the MC6809 can

interact with the C-bus data' lines:' using its memory

reference instructions because ho modification of its memory
access timipg ié required. Uging the Read Data Byte and
: wFite Data B;te loc§tions, the MC6809 can access the various
hardware modules of the interfaces connectgd to C-bus. The
C-bus Data Bus lbcation will also allow the MC6809 to read
the C-bus data lineé, but the C-bus timing control unit‘ is

not activated. This function is used by the controller to

13-

«

e L S R A

ST T TR TS ATRGARE T TR R AT T T
«

[

.l

¥ * -)
L

read the address of the interﬁace“kequesting the service of

the .bus controller dhring the selection sequence for thé)

next sender. The C-bus timing control module is not
4

required because it is the responsibility of the interface

%P control the C-bus data lines during this cycle.

The MC6809 will also be -able to activate the C-bus

H

timing control to ' provide the required control signals to

transfer a byte of information between two C-bus interfaces.

-

The information transfer will occur between - the two

locations selected by the C-bus send and receive address

»

lines. These send and receive drivers must be set to the
appropriate wvalue before the timing control wunit is
actiyated. The timing control unit will also provide the

signals used to sample the pafity chéck signal and increment

4

the send and receive address counters.
[N .

@ [

The C—bﬁs interface is shown in Fig. 5.4 and the
address ﬁap for all the modules on the interface is given in
Téble 5.2. The interface card will simultaneously exist in
the address épace of 1its host and the address space of
C-bus. The location of the interf;;e card in each iddress
space 1is controlled by thé Host and C-bus address switéhes.

These switches allow for easy relocation of the interface

card as the location of each interface will be éependent

‘upon the hardware configuration of the host it is currently

connecting to C-bus. All hardware modules that are shared
between the host computer and C-bus are isblated by tristate

- 104 -

%

TN

e
|

ST RS S P

et e ot

a F

'———.———f-——— - e o e am e o

2pooag mmwuvnc 3SOH,

P

L .

dyvH P0B3IIdJIUI snq-)
193sTboy KoY uM . p°Gc =2anbtg °
a93sTbay o071 u1T .
YO3TMS PPV 3ISOH. SVH + ..
yosjeT snjeis jndinp 1IsqQ - .
yo3 nje3s jnduIl 7ISI T .
LEEY. ‘PPY sngq-p SvO .
SpoDsQ SS9IPPY PUSS QVS perqeux - T T - T
8poOddQ °*PPY dSAT203Y AWY paTqestd - Q° Kadug - ¢
xo03eI8auUd L3raed o4 *3udd 3dnazajzur 3ndug 9d . I93ing 3ndur g9g
,AI9X09YyD Ajtaed Dd . perqeuy - | . g - 1
) 379 YSeW gW - - pa2Tqestd - 0 K3dug - o
o1bo1 uteyd &stea 10a *3u0) 3dnaapjui 3nding (g as33ng 3nding (4
, . N o . i :
. I93sTbay TOoa3uU0D W) I93sTbay snaeas ys
& . '
— TTeD
m — - SS9Ippe
alllul.llll.r.lllll r|||lll|.'|llll"||-..ll..".'ll"'llllluI..'"'.'
DI T T ¥d
- avH -
. : X0309A
I933I0g xajjng
¥l . . Indano ssaoowd andu; . us
. S I . I e—
T [- | TSI | IS0
- J L) | — ’
tl |
- SYO ; —
prang ©
perolel
-—eer e e w tw em e fe e e A e e e wpe] e = - - IAw"IL .l.|..|l'1....||l|~l'l..,.l'|l.l-
q = T Taus
¥ . vTICP
§ . SAlo00 "
) - - “Ppuos

P ‘_~ ares as

105 -

|

N

£hY

'

L-———-—-—————--‘--—-— —_‘*l‘-‘—-’

{

{
|
l
}
|
|
|
!
{
i
|
-
|
i
1
i

T“\g\\s - Address Bit ‘
_ FEDCBAY9876543210°
Send Address Bus) P:>

Output Buffer * ®x +#x * k¥ X X XXX XXX
Output Bit Reset * * & % * * %] 00000O0O0CDO
Mask Bit Set k& x & * %] 00000001
Mask Bit Reset # ® &k * *x *] 00000010 3
Read Input Bit * * + * * * x 1 00000011 3
!
Receive Address Bus ‘ . Lo :
Input Buffer . : * &k k & & x g ¥ X X XX XXX]
Aczess Vector _ ok k& k Kk x %] 0 X XXX XXX 3
Set Input Bit *#x x* ® x %1 10000000 §
Host - Address Bus t .) : i
Input Buffer e % k2 kx * x 0 0 XXXXX XXX ‘
Output Buffer - Xk k k k % 0] XXX XX XXX
Access Vector . * & %k x * &] 0 X XX XX XXX
- Qutpu it Set T * & x x * x 1111000000
‘Input Bit Reset * % * % * *1111000001
Status Register ~ * % x & *x x 1111000010
Interfade C-bus Add. * % % x x] 1110000111
Control Register * % x x x x 11110003100
Key Register * k k k ox x]] 1 } 001000
L]
! g ' ¢
1 \ !
Y ‘\ \ i
) \ !
: .1’ i
';: &8
3
;,‘ ‘. . i.,r“
y * Switch Select o .t
? X Don'tJCare - ”
‘g N * -
_ Table 5.2

C-bus Interface
Address Map

-.106 =

R e e e ks b ey v

u g apet © s
N

) VP st et s 2 2

IR

< [.

buffers. This will allow the variohs hardware modules of an

interface to be accesséd by either the host, .or C-bus
controller, independent of which other modules are currently

in use. . R

’
o

The daiéy chain logic module 1is controlled by the
output latch and mask bits. /When the output latch indicates
that the output buffer is fdll and the mask bit"is not set,
the daisy chain logic will activate the bus request line.
“When the bus grant signal is received by the interface, the
daisy <chain logic will either. place the address of the
interface on the C-bus data lines or propagate‘the bus grant
éignal to the next interface. The mask bit is gont;olled by
the C-bus controller. The various buffers on the interface

have been implemented wusing high speed static RAM chips.

The '‘status register allows the host computer and C-bus
L

* controller to sense thqﬂ state of the input and output

buffers and provides synchronigation control between the
two. The control register allows the host computer to
tailor the operations of its message communications software

by enabling, or disabling, the interrupt request 1line for

the input and output buffers.

In Fig. 5.5 and Fig. 5.6 we have shown the photographs

of the circuit boards that make up the adaptation hardware
for the bus controller, and the interface units to C-bus
respectively. These circuit boards are presently wire

wrapped and hence it takes many nan hours to produce one

+

~

- 107 -

A e, et

%
3
|
3
i
¥
J
i
:
k)
ié
:
!

LN

byl

@

-g*g 2anbtg

SRCETTE

108

« &}

T

$03 112008 11555 000G IMIIODI SOMIL IS IAL0E

P

9°g sanbrg

‘s

IYYYE ERRY T YT

gulrreerers ,
J~ ~ i i n.
h

“h

P e W~

e € v o

C e e n ey - A emoew T

Ao i i e e e

- :
set,. Each interface can be connected to any of the several

T-junctions available on the C-bus through a ribbon cable“
that plugs into an edge connector . on the circuit board. At
present, the transmission -w1res run over a distance of 50
féet and dre terminated by a resistive network which results
in some atteniation gf the signal. Although the C-bus
operation 1is satisfactory, we envisage many improvements in
the operational characteristics through the ~ use of
trapezoidal 1line drivers [Balak 82] and better términation.
Curgently, we have four computers connected to one C-bus.
Three of them are MC6809 computers and the fourth one is

MC6800.

5.3 C-bus Timing Requirementé

There are three data transfér and one control cycle

- . \
that are needed on C-bus: (a) C-bus controller sends a byte

of information to an interface, (b) C-bus controller fetches
a byte from an interface, (c) the C-bus controller directs a
byte transfer between two interfaces and (d) the selection
sequence for the next“interfacé to send a message. These
operations are carried out by the C-~bus controller with fhe
use of the control linés listed in Tablé 5.3. Each of these

cycles'has its own timing constraints which are described in

this section.

The selection timing for the next sender is shown in\

Fig. 5.7. The initial phase of this procedure is

- 110 -

P — * o o t——ry 1 A A

I R .
FUN — P RS FUDPRUN AN S,

e

Name

-

" . VSa
Valid Send Address
\ :

VRA
Valid Receive Address

.

CLK
Clock "

BRST
_\Bus’ Reset

BGRNT .,

‘Bus Grant

BREQ
Bus Reqhest
o

s BGNTAK
Bus Grant Acknowledge

/2 bus Control Lines .

.Function

3

The C-bus contéaller'will activa%e
this line to signal to the interface
send address decode unit that a valid

address is present.

~

The c-bus controller ‘will activateé
this ,line to signal te—the interface
receive address decode unit that a

valid address is present.’

-~

\

The clock line will be used to

¢

enable the interface hardware modules

that have, been selected during

the previous address cycle.

-

e

Thls line w111 cause

this operation.

f

The C-bus controller will dctivate
this lirie to indicate that C-bus is
free to send the next message.

: s

Coetum

An interface will act
when it contains a me

transfered. &

Vg
a

¢

An intexface will activate=this line
_when it receives the bus grant
‘signal and wishes to become the

next sender.

Table 5.3

-

. *

- 111 -

a master reset
of all 1nterface~hard@are modules.
All mask bits will be reset during

e tﬁis.line

ge to be

»

e

AN

D

Parity check

- Name
———

SLUACK
Slave Acknowledge

PCK

" c-bus Control Lines

-y

Function

An interface will activate this
line when its send address decode
unit detects that it is being
‘selected. ’ '

The parity checker will activate

_this line if a parity error is .

detected durring a byte transfer
operation. - '

»

ol

e~

« - .
v . -

" Table 5.3

-

mwﬂﬁﬂa uoT31081as XSTIOAIUOD sNG-D .

8xed 3,uoq.

L*g oanbryg - PTT®A 3ION

777777
RRXXA

/

Qo@l)/

-

A1O

006 /. . o

. P
1. /

~ _,

¥sSA

-

obpoTmouoy oaels

ANV

RIS (ML AN LR AR RN LA R AR RRARY

RRRRRR X FTee =o)X X X KKK KX KX KX PP 7o XXX KX X KKK

/ \

<

abpaTmoudyY JueIls wsm .

FJUeIn WQQIII)/

- 113 -

e e]

asonbsy sng) . \\ : A
Y
.) N .
Y
=] ? .
%ﬂlt o P BB 0 kol e ae IR S BT K e = - . ~ e it R s i o
Y-N.\ ﬂ} e v -

A ks dan e e [PR - ‘

Y

{
asynchronous and therefore no time values are shown, however
£

there is a specified period after which a time out error

will 'be declared by the bus controller when it is waiting

S A -
o
vl st e mn e 57

for an acknowledge signal from an interface. Because the

. rdud.

initial phase of this selection procedure is asynchronous .

and uses a handshake protocol, the C~bus controller can

Tt e %o P s

. _sense that a sender has accepted the bus grant signal and
that there 1is an actiwe recelver. Upon s;nsing a bug/,///jk i
>4
*\;\\\ request signal, the bus controller .will activate the bus‘ ;'
\\\\ grant line when it is free to sService the~next interface., '

t

The C-bus controller will then wait for a bus grant

acknowledge signal f{om the interface which has accepted the

bus grant signal and has piaced its address on the C-bus

data ¥ines. The controller then reads this aQ@ress 'on ihe
C-bus data 1lines, lowers the bus gran£ lipe, and the., .
interface will then deactivate the bus grant acknowledge
line. The bus controller will .then attempt to establish the

£

status of the interface that will be receiving the message

‘ by placirng the base address (most significant .8 add}ess ?
bits) of the receiving interface on the send address bus and é
waiting for the slave acknowledge 1line to be activated. lg
Once the receiving interface acknowledges its address, the i
bus controller places the complete address for the receive é
interfacé's status register on the serfd address bus. The %
valid .send address line 1is activated and afEfr an %

Ly

appropriate delay to allow for the address selection logic

to stabilize, the <clock 1line 1is activated to enable the
~

- 114 -

P R P

v s O

= oy Ty’

drivers on the receiving~ interface to place the value

contained by the status register onto the C-bus data lines.

The timing of a byte transfer from an interface fo the

bus controller is shown in Fig. 5.8 and the timing of a byte

transfer from the contréller to an interface is shown in

Fig. 5.9. The bus controller sets the send, or. receive,

addréss latch and counter to the appropriatg'values. In the

next cycle a memory load, or store, instruction is executed
using the address which will activate the C-bus timing

L)

control unit to provide the timing pulses to perform the

-

send, or receive, operation. The valid send, or - receive

' . - ,’-
address, 1lihe will become active and time is allowed for

settling of the address lines. Then CLK will become active
‘ \

to enable the interface hardware module that has been

selected to place information onto, or read, the C-bus data

L]

.lines. The MC6809 will either read from, or write onto, its

own data lines which for this operation are connected to the

il
-

C-bus data lines. .

v

The . timing requirements of C~bus for a byte transfer

between two interface cards is shown in Fig. 5.10. Thé.

'MC6809 of the C-bus controller will set up the send and

receive address latches and counters to select the send and
regeiée interface. In the next cycle, the MC6809 w{ll
activate the C-bus timing control module to produce the
desired timing signals. The valid send and receive address

lines are activated and the address decode modules on -the

- 115 -

/

-
et &

PPN (O P,

et

“ oy e ety

axe) 3,uoq

AN

PTTeA 3ION

IST[0I3U0D sng-D ay3z o3l Huusmﬁoo v wox3
ﬂ HOMmcmuaamahm e JOo TOa3u0) 6089
g°g 2anbtyg

(su) auty

TeT DTTOA

~

EESIPDY DILeA

i — : vuy - ‘ /ﬁ

S59IDDY - PHSS

006

ATO

EESIPPV PIieA

—m

§89IPPY 6089

T\ " 00

M I

~

.

116 -

ieian " ———_rouc At S
1
-~

axe) 3,uod

PTTBA 3ION

-
o<

-] v ‘ <

x33nduo)d e 03 I9TTOIIUOD Snq-) a8yl woxd
I9Fsuex] 93Ad © JO ,TOIjUO0) 6089
6°S 2Inbrg

(su) swrl N

ARSI I VRN O STNIIIVINY,

-
L}

S89IPPY PTTIBA XM Mm m
T SS9IPpPY S|ATSBD

e/
o
"
LY
>

SE91PPY 6089

.Pllllll)/. 00s /-

R S AT LSt ba%ﬁvﬁ?/ g e YT R ST SO IP U ST P TRt SRR L S Y

ﬂ \ 005

- (g
A Y

i,

- 117 ~-

axe) 3,uod

AN

PITRA 3ION

snq-) uo sxajzndwo) om] ussmiag y
Iagsuea] o3&g ® JO TOIJUOD 6089 e

0T°S @anbtg

(su) awrg .

—

LAAAANARARX X LXYVNAAN

e3eq PTIeA

T3ed Sng-)
00€ /.

ADd
SsodppyY PTTEA M“HNN
EESID ; .

\

-

00V

TI0 |

—

059 { :
YSA 3 YA

nd 0

00S

00s

L)

- 118

i

s .

‘controller which are discussed in the following section.

24

send and receive interface are adlowed 175 nanoseconds

deskew time. At this point the clock signal is activated

el

which will enable the sending interface to plage a data byte -

onto the C-bus data lines, allow time for settling of the
data lines, and the receiving interface to read the data
lines. In addition, the output of the parity generator of
the receiving interface is ;ampled during the perioa when
the C-bus data lines contain valid information. After the
valid address lines and the clock signal &re deactivated,.

the send and receive address counters are incremented in

* order to prepare for the next byte transfer. This operation

requires 150 nanoséconds for date line deskew.

H

The length of the byte transfer operation.? will
determine the maximum transfer rate of C-bus. This will be
dependent upon the speed of the memories used to implement
the input and output. buffers of the interfaces and the
length of the C-bus cable. 1In the present pfototype, the
time required to transfer one byge iof information s
app;oximately one microsecpndﬁ This would indicate that the
maximum transfer rate of the C-bus prototype is 1 M Bytes
per second. However, because the C-bus controller is based
on‘a general purpose microprocessor, this speed is not
achieved. Thé final speed of the C-bus prototype will
depend upon the cycle time of t;e microp?ocessor and the

e%fiqiency of the software algorithms devised to run the bus

' -2
’ - 119 -

-

L e ———_ =

5.4 C~-bus Controller Software

At present, the C-bus controller can be driven by two
separate'p;ograms. A debug program has been written which

will accept commands from a terminal and perform various

~operations that?will simplify the checking and installation

of an interface card. A C-bus driver has also been written
which will perform all the functions required to enable the
microprocessor“ of the C-bus controller to interact with the

special purpose hardware. Theﬂdesign of the C-bus driver

will be critical in determining the final speed of C-bus.

»

Because the microprocessor used in the C-bus controller |is
slow compared to the transfer delay caused by C-bus itself,

all operations of the C-bus controller must be performed as

efficiently as possible. It is expected that the debug -

package will run many times slower than the C-bus driver and

will not be used under normal load conditions.

-

The debug package will accept the 1list of commands
shown in Table 5.4. The first three commands allow the

operator to test the input, output buffer, and access

» vector. The next two commands offer a 1lower level of

verification where a specific address |is continuously

-, enabled. . This is useful once a problem with a specific

hardware module has been identified and a technician wishes
to investigate further using an oscilliscope. The next two
commands will essentially perform the same functions as the

C-bus drivers. However, a full trace of the message

- 120 -

s,
PR %

[UROREI——

Command

TH##

O##

A##ﬁ‘

Sk k
(CR) ~EXIT

Ri# 44
(CR)-EXIT

G
(CR) -EXIT

c L
(CR)-EXIT

Q

#-One hex digit

—~—

-

Function

‘Load the input buffer of the interface
whose base address is ## with a
test pattern:. -

Read the output buffer of the
interface whose base address is ##
and.display the contents at the’
terminal.

Lgad the access vector of the
interface whose base address is ##
with a test pattern.

Continuously send a byte to the
C-bus interface hardware module
at address ####. '

Continuously read a byte from the
C-bus interface hardware module
at address ####%.

Enter a message send mode. The C-bus
controller will now be actively sending
messages between the computers of
CUENET upon request. All the actions -
of the bus controller, including error
conditions, are reported to the terminal.
The C-bus controller will also halt
after each message transfer.

Same as G command but the controller
"does not halt after each message.

. Quit.

Table' 5.4

C-bus Debug Commands

13

121 -

a

e s e W e WoRER s w

R T

\ v

requests received, and processed, is displayed at a terminal
attached to the bus controller. In the "G" mode the C-bus
controller will stop_ after each message to allow fo%, y
stepwise debugging of ﬁhe CUENET operating system and to

monitor the flow of messages on C-bus. In the "C" mode the

o

e <ot N, P orse s

C-bus controller is not halted between each message. In the.

future it will be possible to have the C-bus controller

r¥rtng o i, W3k

enter a debug mode under control of the CUENET master and
‘ all trace information would also be relayed to the master.

This would allow the CUENET operating system to perform

o ot o™ e

tests on the hardware when a fault. is detected and report to’

ave

the operator if outside gssistance is required. t

’The C-bus driver will operate without the need for
outside assisﬁance such as commands iﬁput from a terminal.
In the case that the C-bus controller detects an error it
will prepare a special message to notify the CUENET master.
At present, there are three types of messages which the
C-bus controller will consider wvalid: (a) an interproceésor
message which would include the type I and type II messages
described in the. simulation chapter, (b) a request by the

CUENET master to load an access vector, (c¢) and an error

/ message transmitted from the C-bus controller to the CUENET
master. The format of an error message and a list_ of the .
valid error codes 1is given in Table 5.5. It is tbe
responsibility of the CUENET master to 'take the necessary
actions to recover from any error recognized by the C-bus

controller. As noted previously, C-bus interface contains a

- 122 -~

e Error Meséage Format

B*te Function
Sender Address
, 0l Receive Address
A 02 -Megsage Length.
' 03 - .Message Type '
04 . Time Stamp
05 Time Stamp
06 Time Stamp
. 07 Mesgsage Origin that
, caused the error
+ 08 Destination of the

" . message that caused
: the error
) ! . 09 > Error code
* 10 End of Message

Error Codes

Error Code - . Exror
01 No bus grant acknowledge

signal was detected in the
specified time period.

02 A message request was received
with an invalid message code.

03 » A parity error was detected on
: * several attempts to transfer
a message. '

04" ' A computer other than the CUENET
. . . master regquested the C-bus
controller to load aw access
vector.

" 0S : No slave acknowledge signal was

detected within the specified
time period.

e . Table 5.5

Exrror Message Format
and Error Codes

R

TR

7%y

Teon

© e e R

e o A

UL ey

mask bit which can be used by i:he controller driver to.

establish a priority in the daisy chain. The C-bus
controller driver uses a éof‘tware stack to establish a round
robin .[Liste 79] priority scheme. lEach message request éhat
cannot b.e\processed because the destination inter faces §nput

buffer is busy will be placed onto a stack. ‘When there are

no current requests, the C-bus controller will empty the

stack and then process those requests. It should be noted_

in times of ' heavy bus usage the requests that are stacked
may subject to large delays. This problem can be handled by
also placing a time limit each message request may spend on

the stack,

.The flow diagram for the operations of the C—bus driver .

is given in Fig. 5.11 and a listing of the software can be
fo'und in Appendix Ii. In the current version of the C-bus
driver, we have been able to estimate the speed of C-bus by
counting the number _<.>f machine cycle:.e. required to process
each message. This can be further broken down 'into the
overhead cost of each message plus the ‘timeddrequired to
transfer each byte. The' loop/ used to .transfer each byte on
C-bu..us requires 9 machine cycles, or 4.5 midroseconds, even
though, as mentioned in section 5.3, C-bus requires only one
microsecond for the actual transfer. The overhead cost for
each message, provided no errors are detected or retries are

required, 1is approximately . 200 méchine’ cycles, or 100

}nicroseconds. If we combine th®se two costs and assume a

message size of 248 data bytes, we arrive at a transfer rate

L

- 124 -

.

>

k.
-
-
Y
.
Y
N
Qo
.
<
.
.
N
k4
.
.
s
‘o
.
o
o
-
I
o
.
.
o
1 il
'
.

Message Header
in Output Buffer
of Sender)

) ~

Set up C-bus
Address to
Test Status of
Pestination
Inter face

L

Transmit.
‘o Message

Add sender to

wait stack,
set mask bit

-

Access -

Vector . G
Load

o M . . b . @
> ¥ Q- ‘J" ." - : : b
- - - Bk e
‘ o ot . t
., 7 .
. 1A 2 .
\ . T ,
. . Empty Stack .
: of Masked . .
. Interfaces
- o
' ¥
\9
fl >
Read Address. of TExrxor
sender, lower Routine -—l'
BGRNT, and Read .

— - 0-C~bus Control Program

Figure 5.11

Flqw Chart

-

B R

1

Transmit Access,
-Message Vector
' g ' Load

;

set send and

receive add.

latches and
- counters °

Py
Set the send
and receive
add. drivers

Transfer the
message one
byte at a time

.

O o 9 LN A

N

Transfer
checksum

. Set the con-

tents of the
receivers acc-
ess Yector

. e e

e n s e A

s e

: o Interface | [Error |
. Il Intexrface | Error Update + || Routine
| update Routine v —

Interface - ;
° : ﬁpgate ‘
b
1Set status | " % Wait for
i register of master to
sender be free
. L) \L . -
- |Set status send an Inter face
.. |register of erroxr’ Update
: . |recgiver message -

Figure 5.11
C-bus Control Program “
,Flow Chart

?

- 126 -

ot a2 e

of 1.6 mega bits per second that can be aéhieved for our
prototype with the speed of the current C-bus controller.
Of course, as the speed of the C-bus controller is increased
by increasing the clock rate%f the ﬁicroprocessor, or using
a faster technology, greater transfer rafes can be achieved

without any modifications to the cther ébmponenfs of C-bus.

Al

¢ B <7

, o ol ame wt o rams p

§

et e o n e maan g v = moime et o s e o s

CHAPTER VI

-

APPLICATIONS AND-:«FUTURE DEVELOPMENT

6.1 Evaluation of Decompositions

s

In order to determine the effectiveness of a particular
4 ‘aecomposition we would normally compare the expected speed
of the parallel algorithm with the time required to execute

the original sequential algorithﬁMon a uniprocessor. The

- expected speed of a decomposition can be éstimated as the

sum of the theoretically best possibla speed up and the
overhead incurred due ' to hmhltiprbcessing. For. a'given-
decomposition, this overhead will beé affected by many
factors, some of which are dependent on the architecture
chosen, and the characteristics of the multiprocessor used,

¢ ' while others are determined by the implementation of the’
\ . .

3 i e AT W WO 1Y S e ok

various tasks of the decomposition. These parameters are ‘as,

follows:

(V1*T1l): Thig product is a measure, in units of time,
of the overhead due to code loading that is
required in order to initialize an
architectural confiquration. V1 represents

) the amount of program code to be loaded, and

Tl is the effective time required to load a

unit of code. ’

ey mrn

(Vc*Tc) . Will give us a measure of the time overhead

due to data transfers between the tasks of a
division. Vc is the amount of data to ' be
transferred between tasks, and Tc represents
the effective time to transfer a unit of data

P . between any two tasks. -

gt P A T e T T Ay e o
L3
-
-

- 128 -

TP

PRI T SNSRI i i XA, 2T

e n L)

O

et i P % 2

(VA*Td) : This product 1is a measure, in units of time, :
of the wunused processing power of the }
processors during periods when they must wait :
in order to obtain access to a shared :
resource, or for the purpose of process
synchronizatipn. Vd represents the number of
times a task will need to access a critical !
region or wait for a synchronization signal
from another task. Td will be the average &
time wasted for each time a task must access a
critical region or perform a synchronization i
operation, .

The parameters Tc and T1 will depend' upon the
rchafacteristics of the multiprocessor upon which the’
decomposition will be executed. In the case of CUENET Tc
will be determined b& the.effective transfer rate of C-bus
while Tl will vary depending upon which computer of CdENET
‘'will be used to execute a particular task and where in the‘
network the code resides. The remaining parameters will
depend upon the particular é;composition because they are ;
affected by the -characteristics of each task and the

topology of interactions between the various tasks of a .

ok . A T o

decomposition. .

Gdnerally, we wish to minimize the three products,

-
(V1*Tl), (Vc*Tc), aﬁ% (vd*Td) . When they increase, the
effective data throughput of a decomposition decreases

accordingly. We can make use of the paramete} (VI*T1l) to

give us an idea of the time needed to configure the system

‘so the desired decomposition may be executed. 0f course,
this set up time should be small compared to the overall

execution time of the decomp?sition. In the performance

] "129"

T RTINS sttt a7 g e 3

~

measure of an optimized multiprocessor system, we may'assign

different weights for tbef“ throughput and - resource

utilization parameters. Two decompositions may be compared

with respect to their expected throughput and the amount of
anticipated unfruitful processor time. For a system sﬁch as
CUENET we would tend to asgign a higher weight to data
throughput, or speedup, than to resource utilization,

because the cost of the microprocessors and memory modules

"

s
'

are not overly significant. _ -

*

The Vd parameter can be expressed as a vector vdi

a3

i=1,2...n, where each vdi represents the expected number of
accesses to shared resource i by all processors that are
allowed to use that resource. This parameter can be further

described as
m

vdi = Y vij
) |
where:

vij: Is the number of expected requests by processor j
i for the use of shared resource i

“m: Is the number of processors
If we define Td as tdi i=1,3...n where
tdi: Is the amount of expected delay, for a request to
use resource i, that a processor will

encounter.

then in the worst case, where all the resource access delays

occur sequentially (there is no overlap of the waiting times

of any of the processors), we can evaluate the product

n
(Vd*Td) =):vdi*tdi
i

However , one must realize that in most cases the worst ‘case

L t

- 130 ~

PrASES Y

ek e by e,

o

"o

A — A - TS 6 g A A

£ e oA

e e

yalue is too pessimistic. The value computed can still be
useful in the following context:

(a). It will give the designer an idea of the upper bound
to which the throughput of his decomposition can, or
will, be degraded due to this type of delay.

(b) The designer can sometimes make assumptions about the
amount of overlap expected from the data set, or from
observation of the sequential algorithm. Secondly,
even if it is difficult to estimate the degree of
overlap, the system designer can assume a certain
amount of overlap, which can be wused for the
comparison of two decompositions. -

In order for a software analyst to decide between
various possible decompositions,/the effect of each of these
decompositions on the various overhead parameters must be

"evaluated. In many cases it will not be possible to find an
exact value for these ©parameters because of the dynamic
"nature of interactions between the tasks of a decomposition.
Therefore, the parameter values will have to be measured by
‘execution of the algorithm upon CUENET or from measurements

done " on portions of the original seguential algorithm

running on a uniprocessor.

»

6.2 Current Applications on CUENET

[N

As noted in [Fancot 80], partitioning a user job into

several coordinated tasks for the purposes of concurrent
. ¢

execution 1is still an open problem. In the use of CUENET,

we anticipate the user to «contribute in arrving at such

. partitioning. Consequently, we need a multiprocessor

~ 131 -

ey wha Ane an — = e o

e - e pem e

Ll

pennre e

e

3

»

language in which the user can easily specify the possible
concurrent executions and the necessary precedence
constraints, or synchronizations, among the concurrently
executed tasksl We are working on an éxtensiqp to Edison,
the new multiprocessor 1lanquage developed by Per Brinch
Hansen [Hanse 81]. 'In the exteﬂded Edison, a wuser can
specify the number of progcessors, the types of processors,
and the topology of interconnection between them that he’

requires to solve his problefi.

v

In one of the application orientgd software projects,
we are using CUENET as a local aréa network for the
implementation ‘of an office information system. We have
found that the alternative based langﬁage called ABL, to Dbe
well suited for déscfibing an office environment [Leben 817.
Thi; language has a potential to express the parallelism in
a problem:explicitly. Also, an interpreter for ABL written
in Pascal- is - readily available to wus. 1In the proposed
s?stem each computer connected to the CUENET will function
a; a work station of an office.” Interstation message
communication will be carried out over the C-bus. The work

station software, written mainly in ABL, will®be responsible

for local processing.

’»

An operating system is an essential part of a-computer
- L 4

.

system. Two operating systems, namely Star 0S and Medusa,
have been written for Cm* [Jones 79], and the operating

system MICROS [witti 80] has’ been developed for MICRONET.

- 132 -

o AN 3 vm Wtk

o R b ke

!
i
H
!

PRIV

& o v A e pans ot i oeme A S TS Cmpwe T as L

o e o e S b b i

At least at the initial stage; we are not attempting t6
develop a completely distributed operating system for
CUENET.“ Instead, a single machine operating system will be
augmented by an additional layer of software to account for
the functions explained in chapter 3. Currently, the master
software is being developed as an extension to the fLEX
operating system of MC6809 microcomputers [Flex 80]}. ’We are

also planning the development of the master software as an

. - ¥
extension to the popular CP/M operating system [Murth 80F.

x
\

\ In agother apblication of CUENET, we make use of ifs
parallel processing power for linear predictive analysis
(LPC) of speech signals. Analysis of speech signals in real
time to extract the LPC parameters requires a substantial
amount of processing power that 1is not available in one
single microprocessor. A complete LPC analysis involves
g;veral stages of progessing such as data acéuisition,
calculation of predictor coefficients, pitch extraction,
gain calculation, and voiced or unvoiced decisioﬁs
[Makou 75]. These operations must be repeated for every ten
miliiseconds of speech. A pipeline architecture could be
used for LPC analysis where each stage of the pipeline will
perform some of the above mentioned computations. Wwhen the
computations of different stages are arranged properly, it
is possible to minimize the 'timé loss due to message
transmission so that "the different computers“of CUENET can
be used to. perform the computations concurrently and achieve

a measurable speed up [Seeth 82].

- 133 -

ERT

S o A B i

PP

P e g

TN R A BT B 0ot B s e e w h - - .- B

6.3 Future Hardware and Software Development

At present, we have four C-bus interfaces that are
operational. GUENET is comprised of three computers, twé
motorola MC6809's and one MCGBOO. One MC6809 coﬁputer
system is now being used as a C-bus controller. A special
purpose dedicated single board computer will be constructed
to act as a C-bus controller. The MC6809 computer system

that 1is now g&;ing as a C-bus controller will then be added

. r -
to CUENET using the fourth C-bus interface. A fifth C-bus

AN

interface Hhas been designed for an MC68000 and will shortly
be wired. Then CUENET will contain five computers where the
master will be the MC68000, the three MC6809 computers will

be slaves, and the MC6800 will be used as a network memory

!
i

unit.

F'd
This C-bus prototype will be limited in speed b% the

microprocessor based C-bus controller. One possiple
extension to the cufrent network would be to construct a bit
slice based controller, as described in Chapter 5, which
would -now be feasible since the protocols chosen for the
microprocesscr based C-bus controller have been shown to
work. The simulations described in Chapter 4 indicates tﬁat
the speed of C-bus will be greatly enhanced by using such a
controller. The present C-bus prototype uses standard TTL

bus drivers which are only reliable for transmission of

- 134 -

< Aot e 4 W4 pAmna e e v i

VIRV Y

A e i o \#

e — e e e me m ok vemammmencne v —— O

v digital signaf§ over short distances but by switching to

trapedoidal type 1line drivers [Balak 22) and receivers the

3 length of C-bus could be significantly extended.

v

—
*
¢
[+
b o oy it A T RO

e

- In orde® to aid in the evaluation of a particular
1 decomposition executing on CUENET it would be very
conveniept if we could make measurements on the variety and
2 . volume of messages that are generated by eacﬁ computer. The

; results obtained from these measurements would then be

-

'l
B 1 e Tew s

« & ' displayed to the user at the end of each run of his job. If
s we were to attempt to implement this through software -
E routines in each computer ‘and the C-bus controller, the -

P

transfer.rate of C-bus would be seriously degraded. We
i could add additional hardware registers and couAteré to each
' ’ C-bug interface ‘which would autona:icglly recgrd various
A\ \ statistics about the ﬁességes received. At the termination

1

of a user algorithm, fthe CUENET operating system could
™

gather the information available at each C-bus interface and~

present it to the user.

- . Currently, the device drivers that are required to

transmit mesdages over C-bus have been written and tested

along with the C-bué controller programs described in

Chapter 5. An operating system can now be designed to

N hénq&e tLe problems that must be £fzced because of the
Y

multicomputer envirenment now that +the CUENET* hardware

i structure has been defined and tested. At first, a’

.multicomputer layer will be added <to the Flex operating

- 135 =~

2 et

e RE

VALY -4
B

Oy o SO

.z

PRSI

L T T
»

system. .which will enable the 6809 computer to act as CUENET
slaves. The software for the network memory unit will have

to be written as a stand alone program because only a

BT em——

primitive monitor is available for the 6800. Finally, the
major programming effort will be to create the CUENET master
software which will be targeted for the 68000 computer

system.

The CUENET slave software will be able to interpret and
execute various directives that it receives from the master.
These directives will instruct a CUENET slave to perform
opérations such as load a programifrom its own mass storage,
accepé' and save ‘a program send to it overlC-bus, start

¥
execution of a specific algorithm, terminate an algorithm,

‘and respond to status requests. If the slavé software, traps
an error of any kind it will Thotify the CUENET master of the °

condition and wait for further instructions from the master.

These . errors;:ﬁ??i/ include any errors related to the
operation of C-bus such as a request by a user algorithm to
seﬁé a message to a computer system for which it does nof

have access rights.

The CUENET master software will be responsible for

. interfacing with the users and coordinating the operations

of all the slave computers and network memory units. The
master will have to maintain information on the resources

and status of all the computer systems connected to CUENET.

This information will also be used for allocation of user

- 136 -

A,

e e U e RS B Sy, ST A

P RTISARYE

APTTICENS

s w wmm ¢ e ¥ %y

T s e vt

e e e e oo Cnn e e - . AR}

algorithms to the various slave computers. [This allocation
procedure will have to be based upon the ' resource requests
made by the usér and the resources a ailéble. Upon
terminéﬁ}on of a userp algorithm, _ the mLster\ will be
rgsponéible for gathering all measurements m%de*by the C-bus
interfaces and prepgre them for presentat?on to the user.
All errors that are encountered by the slave computers and
the C~bus controller must be recognized by tﬁe CUENET master
and recovery from these errors will be the résponsibility of

.

the master.

A programming language or operating system for CUENET
will have to include a mechanism through 'which the user can

make usé of the reconfigurability permitted by C-bus.

Essentially a language structure must be defined which will.

allow a user to define the characteristics of each computer
that is required to execute one of - the tasks of his
decomposition and the access patterns that ére expected
among all the CUENET slaves being used to execute his
algorithms. The c¢ode dgenerated by such a computer would
have to be a set of modules, each of which could‘ be 1loaded
into a slave and executed. Along with this module, some

|
identification information will be required to keep track of

which module corresponds to each task of a decohpos}tion'and
P |

the resources each module requires as specified by the user.

This information will be required during the slave

allocation aap loading process. The deﬁelopement of this

software is currently being carried out as a separate

N
- 137 - \

F R

P

!
4
b
4

. o

masters theslis.

o

6.4 Conclusion

We have fabricated a single CUENET prototype which
contains five combuters: one master, th;ee slaves, agd one
NMU. At the beginning of this project the resources at our
disposal were one MC6800 microcomputer with no mass storage
devices. A monitor program was writen which would allow us
to down load programs 'from a mainframe computer. This
microcomputer has now become our network memory‘ unit. We
then purchased an MC6809 microcomputer with 56K RAM. For
mass storagq we purchased a 10OMByte fixed drive and an eight
inch floppy drive from seperate manufatturers. The fixed

3

and floppy drives were then installed in a single cabinet

with a common power supply. The device drivers of the

oberating system that was available for the ﬁCGSOQ had to be
modified :so that it coyld function with this type of mass
storage device because it had been designed to operate Jwith
a different type of disk controller by its original authofs.
Once this pro;ytype system was operational we then proceeded
to produce a second version. These two .systems are now used
as slave computers for CUENET. The third CJ%NET slave is
also an MC6809 computei which was available wiﬁhin' this
department but required somé&* repairs to its power Supély
before it was operational. The CUENET mastem is an MC68000
microComputer whicbrhas been purcﬁased as a complete system

with a 20MByte fixed and eight inch floppy drives. We are

- 138 - ‘

"y

,
AN 4 e o ARG 5 o o AR 1Bt G Lk
.

-
B+ o b i A N A s £

LT

e DY SRS

s ¢ e bt b 3 < 4

€ A i e

v

'S

y
for
£

. : - .
presently installing and testing this systen. The C-bus

cable was installed and the appropriate termination network |

constructed.® At this point we were ready to build a

.

prototype of the C-bus interface and the special purpose

hardware for the C-bus controller. One prototype for each’

board was wire wrapped and tested. Once. our design was

shpwn‘to work, three more C-bus interfaces were assembled.

s . ‘ . . ~ : .
A fifth C-bus interface 1is currently under construction

which is desiggep for the multibus.,and will be uséa by the

CUENET master, A single board MC680% computer and power

supply have been assembled to be _used as the C-bus

controller when the C-bus prototype reaches its final stage.
We have also designed and fabricated an interval timer
calendar clock interface which will be, useful for

statistical measurements. Finally, the necessary software
¥ .

drivers for the.C-bus controller and communications layer of

the CUENET operating system have been written.

»
-

Throughout this project we have followed. an engineering

approach to wour design methodology. We assessed our

. immediate requirements and resources and then performed an

analysis, or simulation to determine if our design would be
adequate. Only when the preliminary analysis showed

positive results did we attempt to implement our paper

design. At each stage in the project the components under

construction were thoroughly tested by tests which had been

desighed during the analysis stage. We now have’ an

interactive debugger used. by the C-bus «controller for

>

- 139 -

R

»

B3 g T T ST RNt o G TN T RS TR RS T e

El

7

testing all theq interface units connected to C-bus. A
second thesis is now . in progress which will complete the

EUENET operating system.

1

We have built the foundation for the CUENET Iprototype.
This has made it possible™to conduct further research in
parallel processing, in the areas'bf«operatiqg systems and
applications software, and in the applicatioﬁs of local area
networks to office automation. The major contributions of
this thesis are the novelties in the design of CUENET, and
C-bus, énd the engineering approach we @opted in the

design, construction, and testing of our prototype.

The implementation of a project such as tﬁis in a
normal- university. environment with 1limited resourtes
involves many problems. While the solutions to these
problems may be technieally trivial the total amount of time

and. effort spent on such tasks are significant. (

- 140 -

o

{Adams 78)

{Adams 82)

~

{Ahmed 82]

[Akkoy 74)

[Andre 80]

[Arden 82]

[Arnof 82]

>

[Arulp 80]
[Baér 80]
[Balak B2]

[Barne 68]

-

F. Andre, J.P.- Banatre, H. Leroy,

IR A T AT Y ? RN P

S
. 4
' o
' ' -
-

,REFERENCES

G..- Adams, and T. Rolander. Design Motovations
for Multiple Processor Microcomputer Systems.
Computer Design, March 1978, pp. 81-89.

G.B. Adams, and H.J. Siegel. The Extra Stage
Cube; A Fault Tolerant 1Interconnection Network
for Supersystems. IEEE Trans. on Computers,
Vol.-G=31, No. 5, May 1982, pp. 443-454.
. 3
H.M. Ahmed, J.M. Delosme, and M. Morf.
Concurrent Computing Stuctures for ' Matrix
Arithmetic’ and * Signal ' Processing. IEEE

Computer, Vol. 15, No. 1, Jan. 1982, pp. ©5-82.

E. Akkoyunlu, A. Bernstein, and R. Schantz.
Interprocess Communication Facilities for
Network Operating Systems. IEEE Computer, June
1974, pp. 46-55.

: G. Paget,
F. Ployette, and J.P. Routeau. KENSUR: An
Architecture Oriented Towards Programming

‘Language Translation. Seventh Annual Symposium
on Computer Architecture 1980, pp. 17-22.

B.W. Arden, _'and R. Ginesar., ~ MP/C: . A
Multiprocessor “Computer Architecture. IBEE
Trans. on Computers, Vol. C-31, No. 5, May
1982, pp. 455-473.

R.G. Arnold, R.0O.. Berg, and J.W. Thomags. A
Modular Approach to Real-Time ° Supersystems.
Vol. C-31, No. 5, May 1982, pp. 385-398.

+J.A. Arulpragasam, R.A. Giggi, R.F. Lary,
D.T. Sullivan, and C.C. Wu. Modular
‘Minicomputers using Microprocessors. IEEE

Trans. on Computers, Vol. C-29, No,. 2, 1989,

J.L. Baer. Computer Systems Architectura,
Computer Science Press, 1980. — :
R.V. Balakrishnan. Eliminating Crosstalk Over
Long Distance Bussing. Computer - Deslign,
March 1982, pp.155-162.

G. Barnes,' R. Brown, M. Kato, D. Kuck,
D. Slotnick, and R. Stockes. The Illiac IV
Computer, IEEE Trans. on Commguters. Vol. C-17,
No. 8, 1968, pp. 746-757, C

+

- 141 -

Highly -

o mr em e o et .

[Batch 82] K.E. Batcher. Bit-Serial Parallel érocessing ' 3
Systems. IEEE Trans. on Computers, Vol. C-31,

[Bell 71] C.G. Bell, and A. Newell. Computer Structures _2
Readings and Examples, McGraw-Hill, New York,
1971. }
—[Berg 72} R.D. Berg et al. Pepe: An Overview of
" Architecure, Operation and Implementation.
Proc. of Nat. Electronics Conf., 1972,
pp.-312-317. . .) L

{Buchb 79] B. Buchberger, J. Fergerl, and F. Lichtenberger.
Computer-Trees: A Multicomputer Concept for
Special Purpose Parallel Processing.
Microprocessors- and Microsystems, Vol. 3, No. 6,
July 1979. _ .
[Cambr 80] =—————- Cambridge Digital Cdmmy%ication Ring. -
. Computer Laboratory, Cambridge University, U.K..
1980.
[Civer B2]) P. Civera, G. Conte, D. Del Corso,
) F. Gregoretti, and E. Pasero. The _U* Project:
» An Experience with a Multimicroprogéssor System.
) IEEE Micro, Vol. 2, No. 2, May 1982, pp. 38-50.

[Dewit 79] D.J. Dewitts DIRECT - A Multiprocessor
Organization for Supporting Relational Database ' -
Management Systems., IEEE Trans. "~ on Computers,
Vol. C~28, No. 6, June 1979.

[Enslo 77] P.H. Enslow. Multiprocessor Organization: A
Survey. Computing Surveys, Vol. 9, No. 1, 1977,
PP. 103-129.

[Fairb 82] D.G. Fairbairn. VLSI A New Frontier for Systems .-
, ' Designers. IEEE Computer, Vol. 15, No. 1, Jan. {
1982' pp. 87'—96.

{Fanco 80] T. Fancott. A Communications Process for a g
Distributed Multiprocessor Operating System.
Proc. of the Canadian Comm. and Power Conf.,
Montreal, Oct. 1980,.

2.3 Al o b Bt e S %

\

[Flex 80] ' —-——=—=~ . Flex Users Manual and Advanced

4 -Program&;rs Guide. Technical Systems
Consultants Inc., 1980.

[Flynn 66] M.J. Flynn; Very High Speed Computer Systems.
Proc. of IEEE, Vol. 54, 1966, pp. 1901-1909.

’

- 142:_

[Fulle 78] S.H.“Kuller, et al. Multi-Microprocessors: An
: Overview and Working Example. Proceedings of
- the E, Feb. 1978, pp. 216-228.

[Gilbe 82] 'R. GiJbert. The General Purpose Interface Bus.
IEEE Micro, Vol. 2, No. 1, Feb. 1982,
pp. 41—510 '

[Gordo-75] G.Gérdon; The Application of GPSS V to Discrete
System Performance. ACM Computing Surveys,
Vol, .10, No. 3, 1978, pp. 219-2214.

[Gottl 82]° " A. Gottlieb, and J.T. Schwartz. Networks and
: Algorithms for Very Large Scale Parallel
Computation. IEEE Computer, Vol. 15, No. 1, '
~ o Jan. 1982, pp: 27-36. J
. [Graha 78] G,S. Graham. Queuing Network Models of Computer
' System Performance. ACM Computing Surveys,
Vol. 10, No. 3, 1978, pp. 219-224.

[(Hanse 81] B. Hansen.. Edison - A Multiprocessor Language.
Software Practige and Exper;ence, Yol. 11, 1981,
PP. 325 -361.

(Hayne 82] L.S. Haynes, R.L. Lau, D.P. Siewiorek, and

D.W. Mizell. - A Survey of Highly Parallel

’ Computing. IEEE Computer, Vol. 15, No. 1, Jan.
- 1982, pp. 9-24.

R ety S PR TR e e R s 6 e S T S G e T S i s e S o St v
TR T DEPERYY S b R T o o e Ly Sl B ¥ > & Coiy

oF

(Hirsc 79] A.D. Hirschman, R. Swan, and G. Ali. Standarad
- Modules Offer Flexible Multiprocessor System
Design. Computer Design, May 1979, -pp. 181-189.

o
-

(Intel 80} ~----— 1Intel 2920 Analog Signal Processor
Handbook. Intel Corporation, Aug. 1980.

\s

[Jones 79] A.K. Jones, et al. Star-0S, A Multiprbcessor
Operating System for the Support of Task Porces.
Proc. 7th Symp. Operating Systems Principles,

< 8IGOPS, 1979, pp. 117-127.

[Jones 80)] A.K. Jones, and P. Schwarz. Experience Using
Multiprocessor Systems - A Status Report. ACM.
Computing Surveys, Vol. 12, No. 2, Juna 1980,

[Karta 79) S.I. Kartashev, S.P. Kartashev, and
C.V. Ramamoorthy. Adaptation Properties for
! Dynamic Architectures. AFIPS Conference

"Proceedings, Vol. 48, 1979, pp. 543-556.

§
[Karta 82) S.P. Kartashev. Supersystems: Current State of
" the Art Guest Editor's Introduction. IREE

AN

R e BT 3 SN, IR S R R

e et O

B cann A

B G o

[Klee 82]

(Klein 75]

[Kober 77]

[Kogge 80]

[Kuck 77)

[Kuck 82]

[Kung 82]

~

{Leben 82]
[Lecou 81]

[Linco 82]

[Makou 75]

[(Mead 80)

-

Trans. on Computers. Vol. C-31, No. 5, May
1982,

K. Klee, J.W. Verity, and J. Johnson. Battle of
the Networks. Datamation, March 1982,
PP. 114-117. '

L.Kleinrock. Queueing Systems I. John Wiley,
New York, 1975.

R. Kober. The Multiprocessor System SMS‘201
Combining 128 Microprocessors to a Powerful
Computer. -COMPCON Fall 1977, pp. 225-230.

P.M. Kogge. The Architecture of Pipelined
Computers. McGraw-~-Hill, 1980.

D.J. Kuck. A Survey of Parallel Machine
Organization and Prograpming. Computing
Surveys, Vol. 9, No. 1, March 1977, pp. 29-60.

D.J. Kuck, and R.A. Stokes. The Burroughs
Scientific Processor . (BSP). IEEE Trans. on
Computers, Vol. C-31, No. 5, May -« 1982,

pp. 363-376.

H.T. Kung. Why Systolic Architectures. IEEE
Computer, Vol. 15, No. 1, Jan. 1982, pp. 37-46.

J.”/Lebensold, T. Radhakrishnan, and

W.M. Jaworski. A Modelling . Tool for Office
Information Systems. Proc of SIGOA Conf. on
Office Information Systems. ° June 1982,
PP.141-153.

M.P. Lecouffe. A Multiprocessor Architecture
Using a Circulating Memory. Trends in
Information Processing Systems, 3rd Conference
of the European Cooperation in Informatics,
Munich,' Oct. 1981.

N.R. Lincoln. Technoleogy and Design Tradeoffs
in the Creation of a Modern Supercomputer. IEEE
Trans. on Computers, Vol. C-31, No. 5, May
1982, pp. 349-362, '

! '

J.fMakoul. Linear Prediction. A Tutorial
Review. Proc. IEEE, Vol. 63, 1975,

C. Mead, and L. Conway. Introduction to VLSI
Systems, ' Addison Wesley, Reading, Mass., 1980.

- 144 -

LA R b SN

A P i e s T o S
et

R

e

/‘_,:mr- -~

b = o o —_— TR,

-

[Metca

[Murth

(Oskar

[santo

[Seeth

[Siege

[Siewi
[Silve
[Snyde

\\ [stone

75)

80}

771

81]

82]

79]

82]

B2]

82]

75]

N [Swan 77]

[Swart

\
82)

R.M. Metcalf, and D.R. Boggs. ETHERNET ;
Distributed Packet Switching for Local Computer
Networks. Comm. of the ACM, Vol. 19, No. 7,
July 1976

S.M. Murtha and M. Waite, CP/M Primer. Howard
W. Sams Co., 1980.

E.A. Oskarahan, and K.C. Sevcik. Analysis of
Architectural Features for Enhancing the
Performance of a Database Machine. ACM Trans.
on Database Systems, Vol. 2, No. 4, Dec:- 1977,
pPP. 297-316.

L.F. Santora. IEEE 488 Error Handl ing

Techniques: Pros and C(ons. Computer Design,
June 1981, pp. 143-147.

S. Seetharaman, T. Radhakrishnan, and C.Y. Suen.
Real Time Linear Predictave Analysis of Speech
Using Multimicrocomputers, _Midwest Symposium on
Circuits and Systems, Sept 1982,

R.J. Siegel, R.J. McMillan, and P.T. Mudler. A
Survey of Interconnection Methods for
Reconfigurable Parallel Processing Systems.

AFIPS Conference Proceedings, Veol. 48, 1979,.

pp. 529-542.

D.P. Siewiorek, C.G. Bell, and A. Newell.
Computer Structures: Principles and Examples.
McGraw-Hill, 1982,

G. S8ilverman, A. Stundel, and J. Lehman. A
Model for Laboratory Instrument Design, IEEE
Micro, Vol. 2, No. 2, May 1982, pp. 51-62.

EN

L. Snyder. Introduction to the Configurable
Highly Parallel Computer. IEEE Computer.
Vol. 15, No. 1, Jan. 1982, pp. 47-56.

H.S. Stone. Introduction to Computer
Architecture. Science Research Associates Inc.,
1975.

R.J. 6wan, S.H. Fuller, and D.P. Siewiorek. Cmt
- A Modular Multimicroprocessor. Proc. AFIPS
Nat. Comp. Conf., 1977, pp. 637--644.

E.E. Swartzlander, and B.X. Gilbert.
Supersystems: Technology and Architecture. IEEB
Trans. on Computers, Vol. C-31, No. 5, May
1982, pp. 399-409.

- 145 -

o v M s 0 e 3 S

[Tanen 81]

[Techn 82]

[Thurbl 79]

{Thurb2 79]

fullma 80)

S e — s et st o o eann — . e e -

A.S. Tannenbaum. Computer Networks. Prentice’
Mal1l1, 1981, p287.

—————— Business Communications - Local Area
Networks Provide an Architecture for the
Expanded Use of Automated Office Equiptment.
IEEE Spectrum, Vol. 19, No. 1, Jan. 1982.

K.J. Thurber. Parallel Processor Architectures
Part 1l: General Purpose Systems. Computer
Design, Jan. 1979, pp. 89-97.

K.J. Thurber. Parallel‘Processor Atg?itectures
Part 2: Special Purpose Systems., ™. Computer

Design, Feb. 1979, pp. 103-114. \\\

J.D. Ullman. Principles of Database Systems.

. Computer Science Press, 1980.

[Venka 77]
(vick 80]

[Weitz 80]

[Willi 79]
(wWitti 78]

[Witti B80]

(Wolf 741

[wulf 721

K. Venkatesh. A Microprocessor Based Character
Recognition System. Master's Thesis, Concordia
University, 1977.

C.R. Vick, S.P. Kartashev, and S.I. Kartashev.
Adaptable Architectures. IEEE Computer, Nov,
1980, pp. 17-35.

C. Weitzman. Distributed Micro/Minicomputer
Systems. Prentice—-Hall, 1980. '

R.M. Williams, LSI Chips Ease Standard 488 Bus
Interfacing. Computer Design, Oct. 1979,
pp. 123-131.

L.D. wWittie. MICRONET: A Reconfigurable
Microcomputer Network for Distributed Systems
Research. Simulation, Sept. 1978.

L.D. Wittie, and A.M. Vantilborg. Micros, A

Distributed Operating System for Micronet: A

Reconfigurable Network Computer. IEEE Trans.
on Computers, Vol. C-29, No. 12, Dec. 1980.

W.A. Wolf, R, Levin, and C. Pierson, Hydra: The
Kernel of a Multiprocessor Operating Systea.
Comm. ACM, Vol. 17, Mo. 6, 1974, pp. 337-345.

W.A. Wulf, and C.G. Bell, C.mmp; A

Multi-Miniprocessor. AFIPS Fall Jt. Computer
Conf.' DEC. 1972. ‘

- l46 -

WS L el e 2 kS AR

)
{
¢

Ran

YV, CPSS V76000

T e e e R YT Ty v

APPENDIX I

TRM GPSS V76000 VER. 2.0

*L0C OPERATION AsBsCoDoEoFsGoHyIvJ . COMNENT S

*
: SINULATION OF COMPUTER BUS - SYSTEM ONE

. SHARED MEMORY BURST 20X OFF 80X .

SIMULATE LiC2s
__NORM FUNCTION RNl
09 ~5/.000039y=~48/.0013%9=37/e0062L9-2:.5/e022759=2/.0668Ly-1,5
eL15079=1,2/e158b69=1/7e211869—08/.274253=e674344589=447/4,4207445~42
09 90/e5792602 627 65542 004/ a725759 o6/ e 7881l4ve8B/:s8413491/88493,1.2
3/7.99997:4/71 25
EXP FUNCTION RN1,C24 EXPONENTIAL OISTRIBUTIUN MEAN 1
000/0) 90108/ 0a2 362227 «3903557 892509/ 0a5,4.09
o9 92e3/09292452/09492 81749 [e9633:2/ 097130
;98.3.9/.99;4.6/-995.5.3/.99816.2/-999o7/.999718
Ll FUNCTION RNleD2
3 e2/1,6 .
DEC2 FUNCTION RN1sD2
%5J’QLL16
DEC3 FUNCTION 2NL1,D2
;5,‘0/175
“DEC4 FUNCTION RNL+02
;51 171,42
Nl D3)
;3339’0/.66705/1»6 .
DEC6 FUNCTION RN1,yD2 ¥
Rl1.9
SNDQ FUNCTION PH34513,0
1+35MQ1/245MQ02/3,5MQ3744SHQAA/5ySMO5/64S5M0b
% s SMNO13
RSCQ FUNCTION PH1yS1040Q
4/75:RCSH/64RESH
'9 v ’ ’ 510 I
: GENERATE THE REQUESTS FROM THE SHARED NEMEORY UNITS
CMU1]l GENERATE 49091 GENERATE CONTROL TRANSACTION FOR SHARED MEMOR)
HIGH]1 LOGIC S MEM1] TURN ON MEMORY UNIT ONE .
ADVANCE 12600,0 WAIT THE TIME OF A BURST OF TRANSFERS
ADVANCE VSTBMT WAIT TINME BETWEEN MEMORY TRANSFERS
‘TRANSFER +HIGH] , \

irm et w2 et D S

€ o ¥ v

e

R~

e — ———

B e S S S S b

pe *»
X
r~
)
£
x|
[

- o
(g) 4
o

mm 2o mo)

T Y R s

{T¥. GPSS v76000 CRM GPSS V/6000 VER. 2.0
. _ . .
\;LOC OPERATION AsB osCoDsEsFeGoHe Iy) COMMENTS

O RTLE o PR AR T e e e me e

GATE LS MEMI1IL TESY IF UNIT BURST IS REQUIRED
ASSIGN loFNSDEC44PH ASSIGN DESTINATION

»
-4
b
L
w

GE LENGIH
N 1.PH ASSIGN SENDING QUEUE
UEUE sMdl
JTRANSFER 5 CTBUS
CAUL1Z GENERATE 530,1 CONTROL TRANSACTION FOR SHARED MEMORY UNIT Tul
HIGHZ LOGIC S MFM12 .
ADVANCE 12600, 0 :

- 3
mnN
[=}
(<]
-
o
!

700.FNSEXP GENERATE SHARED MEMORY WESSAGES FROM UNI

m
<
m
X e

O Ay =k

e o o

| eMgQlwm OfRwW

P
¢-<ﬂg
QW IMxzpor

-

T T vt v o T)
W

m VMmoo
- OE W~

E THE TRANSFER REQUESTS FROM THE SLAVE UNITS

m

Z! » mn

ERATE 1000002, GENERATE THE MESSAGES FROM S.AVE ONt
1s2+PH ASSIGN NATION SLAVE
2y VSLENLy PH AS ESSAGE LENGTH

ZzZm x

<

MESSAGES FOR SLAVE THREE

alal
m
4
”m
b
»
-~
m
[
Q
(=]
[~
o
[=]
&
-
m
r4
w
m
>
-}

N 1s10+PH

- 148 -

S e bk b N s S

BUPTER A GRO SR L A7 et kA S 3 mnraen v

$LOC OPERATION AsBsCyDoE4FoGoH, IR J COMMENT S
ASSIGN 2,VSLEN1,PH
ASSIGN 3, g o PH
. .ikESEFEE 26TBUS
SNGA GENERATE IOOOOOQEFNSEXP MESSAGES FOR SLAVE FOUR
IGN 29V$LEN10FH
ASS!GN 3945 P
QUEUE SMO4 us

SMGS GENERATE 1000000 yFNSEXP MESSAGES FOR SLAVE FIVE
ASSIGN 10%0FNSDECZ$PH

v T T T SN Tt %W‘ﬁf"ﬁmﬂfw.{m‘

EN]sPH
GN 3,54PH
QUEUE SMOb
‘TRANSFER s GTBUS
SHG6 GENERATE 1000000 FNSEXP MESSAGES FOR SLAVE SIX
ASSIGN 1,1 4FNSDEC3I,PH .
ASSIGN 2|V$LEN11PH - *
—_SSSIGN 3.6
UEUE Moo ,]
‘TR‘NSFER ’GTBUS e
¥ , “~
; _Sﬁg%TﬁENERAIE_lﬂQQQQQ4fﬂ1£1£_ﬂESSA§E1_EﬂK_SLAVE 7
* A GN l+84Pd
\ ASSIGN 2,VSLEN1,PH ’
ASSIGN 3,7,PH

SAGS GENER;IEHIOOOOOOQFNiEXP MESSAGES FOR SLAVE EIGHT

»VSLENL 9 PH
SSIGN 3,9,PH
UEUE SMQ9

_TIRANiEEB,-GTBJS

o»
mw
me
x

S glgENERATE 1000000 ,FNSEXP MESSAGES._FOR SLAVE NINE
1

+V3LEN1, PH

”3

"9 s Pri
QUEUE SME9
 TRANSFER ,GTaus

! ‘ : “PERFORM THE BJUS CONTROLLER FUNCTIONS —_
. GTBUS ENTER BUS

A SBTINE WAl HE S ERV ONTROLLER
,LEAVE BUS ~ FREE THE BUS CONTROLLER

. _® TRANSFER TO DESTINATION QUEUE

%

{

: l

£

K

i

A . - 149 -
‘ N .o
i »

-—

T D TR ST

- i

Yv. GPSS v/6000 ; CRN GPSS V/6000 VER., 2.0

L 0C OPERATION A8 sCeDosEosFoboHeled CORRENT S

[. — <
QUEUE FNSRSCQ ADD TRANSACTION TO THE RECIEVE QUEUE
_sgnu.gr_u? FART ENSRSCO TERVEAHNE OUTFUT uouewg E-MEEASTOCL x
JTERRINATE 1 THE TRANSACTION LEAVES THE SYSTEM
! WLMLES

TORAGE S38BUS,1
:CNTRL OF SINMULATION
START 304NP

- 150 - °

B B R i Lo il o ot ri o o o i it e

AT e g A T UL S WY Y s

J

B A i b e €23 S ke i g A

APPENDIX Il

] TP #0
|

& CONTRIRLER WHICH IS PASED ON

$ A 6809 NICROPROCESSIR

&

b ¢

% SYSTEN EQUATES
A .

FBIY PDATAl EDU FBID
FBOL POTRC EQU SFBOC

FBiY INCHE EQU #FBOS
FB808 INCHEX EGU $FBOB

FBOA OUTOH EQU $FBOA
CO3 WARMS EBU $CDO3

s
& BUS CONTROLLER HARIWARE ADDRESSES
%
FOO) SADMU EQU SFO00 SEND ADD LFPER RYTE
oM SANL EW SFOO1 SN ALD LR BYTE
! 0; YIE
FOO3 RAMDL EQU $FO03 RECVIEVE ADD LOMER BYTE
\ FOO4 RADINC EQU = $FO04 RECIEVE ADD INCREMENT

—FO0; SADINC FDU #FOQ5 SPND ATD THCREMENT

Fo06 PARITY EQU $FO06
FO07 BUSRED EGU $F007

FO09 PRSET EQU $FO09
FOOA BSGNTF EQU $F00A
FOOR MADD _EQU 0
FO10 BYTESS EQU #Fol0
FOll RUBYTE EQU $FOLL

—FO12 WRTBYTEER #7012 WRITE BYTF T0 PROCFER

T FOM RDADD EQU #Fo0C
FOOD BONTAK EQU #F00D

PARTTY STATIS BIT
BUS REOUEST STATUS

PARITY STATUS RESET
BUS GRANT OFF

SEND BYTE BETVEEN PROCESSORS
READ BYTE FKOM PROCESSOR

READ C-BUS DATA LINES
BUS CRANT ACKNOMLEDGE STATUS BIT

—EOOF SaOX FOI SFOOF S 4UF ACKMFICE STATS RIT
§
§ INTERFACE MSKS USED TO CALCILATE '
& A BASF ANIRESS
— ‘
. 0000 QUTPTK EQU 400 - QUTPUT BUFFER
— 0000 TNPUTN EQU A0 TAPACT REFER X
0001 ACCSH EOU: #0f ADCESS VECTOR

. .

- 151 -

A g PO

0!

3 N,
a r ‘
i 0008 RCVCTN EU #01 RECIEVE INTERFACE CONTROL—
, | : LEAST STGNTEICART RYTE (F ADTEFSS FIR IMTEREA
g & HARDMRE CONTROL STRUCTIRES
x 4
I o0 OUTLA ERU $00 QTPUT BFFER
3 000 INPTLA EDU #00 IWUT BUFFER
' % 0000 ACCSLA EQU 00 ACES VECTIR
% . | ool WETST EW L WK BIT 5T
§ b 0002 WKBTRSTEQU $02 . WA BIV RESET
Ly . 00B0 STIMT EDU . B SET INPUT BIT
i ¢ 0003 RDIMBT EDU . %03 READ TNPUT BIT
¥ - "
y , _& SYSTFM RFFER
“ 3
2 oo STAX RNB 3
3. 1001 STONPT KR 2
: 002 STCOND RNE |
$ 0021 TEWY KR 2
i z LCON KR 1
¢ 0024 CSALC RMB |
E | 0025 WOONT R |
i p 4
b by . & MATN CONMANT LODP
% %
" . 002 8F MES DRG LIX #SWT
' 00X AL 9F Falb JR (PIRTAL]
(007 9% 09 LM PRET RESET PARTIY
A 00F & 9000 T HSTACN
. 00D ¥ IF STX STINPT 6T STACK POINTER
OB TF_ 9020 R ST
= . [osmBs Fo LM #F
. 00 IF gk TR AP 5T DP REG
: 00X B 84F1 NP LIX 4PRPT
00F & 9 FAl ISk [PIATA1] CIVE PROMPT
5 004341 9F Faua SR CIKHET .
i 0047 Bl 47 oPA 'E
0049 1027 0114 LEER 600
) VOAR B! 49 oea ¥
y O4F 1077 002F LFD_ IWTR
% 0058l & wea ¥D.
| 005 1027 0049 LG OUTPT
£ 00 Bl 41 , OPA A
" 005k 1027 00BC LBED ACCES
¢ 00SF 8 S3 DWPA_ ¥8
% 0041 1027 00A9 LBER GENIP
; 0085 B1 43 oPA ¥
b Q04T 1027 MOF4 LBEQ CONTH
N 00&R Bl %2 Pa R
b, 008D 102 00CS LD REV ' .
0071 81 51 oPA ¥0

- 152 -

&
\
, ; . \N
N
3 0073 24 03 WE TNON -
- WTSTE X P RS
COOTREE 0504 TN LBX SIWION
(00T an W FBI0 IR [PDATAL]
- NFN R) W OWP
. :
7 & FILL THE IWPUT BUFFER OF THE CIVEN INTERF : .
3 ' .
{0081 BE M19 TWTR
000i AR % FBOC JSR [PSTRNG)
‘| oot B, ¥X3B = e
DOIES 1075 FFED LECS TNON ‘ i
. ooFen W ©OORA SDRUTN : * b
R B STA ° RAIU '
L0093 85 i W
0095 97 0 43 . STA RANL ADDRESS
Cwwme CLRA
00897 12 - LDOPL STA WRTEYTE ‘
Y T . LD RADIIC SEWD PATTERN
DT &C TNCA
Mm% R B LOPI
0¥ TE W3C 3 oW
' §
5 " & READ THE QUTPUT BUFFER ;
i
Ml QIPT LDX $5PAF i :
_ 0045 A’ % FBOC IR [PSTRNG] oo :
S 00M BD 4338 SR EEX : : :
X ' 0O BA W RA - SQUTPTH , . ;
: LU X/ STA SADOU SET THE SEND ADDRESS 3
x C ' |
o= /2T STA SAIL i
; . |00 AD % FBOE JR CPORLF) %
; \ OWTF W% . 0K BOUNT |
: O0BF 7F MW23 (UTER OR LCONT ,
i 00C2 Al % FOOE JR CPCRLFI
; |Loocs 94 £
{ N 100C696 {1 TMER LDW RDEVIE GFT NEXT BYTF : <
4 & 0008 B 4357 BK ' QUTHS TO TERNINAL
[0008 BE W19 LDX - #PACE . :
00f AD° % FBOC JR [PSTRNGY .
. 00w 96 85 LDA SADINC. / INC SEND ADD. C-BUS .
[QOM 7C @623 INC LOOENT -
00 B6 23 LDA LCOUNT -
0081 M oA #10 B0 OF LI
O0BE 7C K25 I BLDOUNT .
v BB W25 LDA' BLOOUNT
C |0k Bl)6 _OFh #10 ENDOF BLOX
[ooes 28 W T n &
{oom.7E w3C . Oulr (.
| oo . .
?
F- - 153 - o
N N > ‘n ! ‘/

J
:
%
&=

%
s
o
b

R 3 iy il A AL s e

o P Al AN

/

-

! AY
% LOAL THE ACCESS VECTOR WITH TEST PATTEN
|

OMBEE 9419 ACCES LDX 4SPACE
OEAD 9F FBUC T JR (PSTRNG]
0OF230 4338 JR e
00F3 1025 FF43 LECS OWLF
O A 01 ORA SACCSM
0B Y 02 STA RADDU | SET THE RECETVE ADDRESS
[00Fp 85 _ % TR T
OFF 97 83 STA RADIL
0101 4F CLRA
Jom w12 LOPA STA WRTBYTE
0104 B6 04 LD RADINC
| 0106 4C INA
010781 19 COPA #3510 . SEND PATTERN
N A 7 KT LO0PA
[0103 7E 003C OGP
 §
X
& SENIF T THE GIVEN' ATIRFSS *55"
. 4
O10EBE 0419 SENDP LDX #SPACE
0111 AD % FBOC JSR __ [PSTRNG)
0115 B 0338 JR INEX
0118 1025 FF0 LBCS ORLp
0L 97 @2 . ;
O1IEBD 0338 Jo& INEX ST THE ABDRESS
NA? 03 STA RADOL :
NBB =5 . L #55
Ol A oF FB0B LOP? JSR CINOHEX)
R 7 TOBEQ T K2
(4 JSR [INOHE]
OIF7E 003 N OmP
0Ny 12 02 STA \RTIVTE
¥R RA LOOP2
het R .
X RECFIVE FRON THE GIVEN ANDRFSS
% 0!
013686 0419 REDV UDX #SPACE
013y Al .9F FBIC JSR__ (PSTRNG] .« 2’
0IB K 0338 JR INEX
0140 1025 FEF8 LBCS OELP
144 97 0 STA SAMNI ST ADDESSS
0146 BU 0336 IR INDY b
014997 91 STA SANDL
0148 AD 9 FOO8 L _{INOHEX)
VT 0. M0 Kt
0151 A0 9 PO SR [(INDEY

OISTE o3C P (NP

0159 11 . OKI LDA RDSYTE

101A% EF A LDOP

(- | 8 9 . - ———

ne

Wt e b < e ot

i e A

- *
PR TP P ST T

oy wress

! & DATA BUFFERS
b 4
s ‘
01 RECIEVE KR |
.| OIS LENGTH BB | :
3 0¥ KTYPE RB |
; - 014 HOPE BB 1
f & ORTAIN ATDRESS OF SENDING PROCESSIR
) ' £
' ' 0161 7F . 0024 CONIM QR CSALE
: DOISA 7E_014C N, | I
: 0P8 B T
3 0160 B7 0024 S C¥LE
JJMWJ
§ R T 07 1]
| 0112 A 9F FBUG R [mm
% "OIBTE 0030 3 oup
, O AN OFFBIE OK JR [PORLF]
i 017D 8E 0449 X #ES
0160 AD_ 9F FBX JR___[PSTRNG)
{ 10184 96 07 LA - BUSRED
; [0168 B7 0160 A HIPE
. ’ 0189 B 0352 IR UTAS
TOICBS 0160 A HOPE
) L O1F 24 0B L COWI
0191 B6 0020 LA ___ STCOND . -
WY 1% CT BFTY STAX
L0198 KL 0397 JR_ ML OF UATTTNG HESS.
019 7E 0308]
; 0198 049C COWNI LI #R0
019 AD _OF FBI0 JR __ [PDATAL)
01A3 96 ¢8 LW DSINTD DUS GRANT ISSUE
0145 5 (LB ‘
‘ 0146 BE 04D4 BUSGRR LIX 4BSROCWN
L CIM AL % FBI0 B TPATAL
;o 018D 5T INC ,
; \O1A 95 0D L mm WITFRMS
; , fo1m 22~ oF L. CONC GRANT ACKHMLEDGE
; o1R2 L1 0P . 4304 ,
: 01 2D FO RT BUSGRE *
: A " 01K BE 4B (VL 1
: 0189 AD 9F FB10 CIR [PIRTAL L :
: WIW7E 0160 »_ |
. 0100 96 oC CNTC LW RDAD
‘ QK 01T §A SO
} 01s B & “OR\ OUTPTM
t Now » §TA SAU CET SEND ADORESS
= 010985 W LW UNA DRIVERS
; Cu0w W SISl
|01 96 oA LA DSNTF LOMER BUS GRWNT
; ‘ i I A

> o= 155 -~

e R

{,
{
b
¥
i
&
2
4
z

e

R

PP

.
- —t

o

& CET MESSACE INFORMATION -

PN PN NS

t
% 5 1h__ SANTNC :
o1l 96 11 LDA ROBYIE READ SELECTIVE DVIES
B o1Sh STA RECIEVE FROM THE MESSAGE NEADER

0108 96 05 . LW SADINC
018 96 11 A RIBYTE
OIMB7 . OIS - S LBEH ,
0100 96 05 LDA SADINC :
1010F 96 11 LW ROBYTE
YOIE1 B7 OIS STA NTYPE
\ O1E4 AD 9 FBOE J% [PRF]
| O1EB 8E 0434 W #6
OIBBAD 9F FBoC JR [PSTRNG)
OUEF B4 O15C 104 SENG
VOIR B 0352 JK UTAHS
OIFS BE 0434 W #R
| O1FB AL F FBOC
| OIFT BS 0150 LM RECIBK
| OIFF KD 0352 SR OOmAs ‘
10202 BE 0445 1O
"ON5AD 9 FBIC JR [PSTRNG]
|
lo2or 86 015 LM LDGH
ONC B0 02 JR OUTAS
O20F BE O44F i
| 0212 Ab % F8oC JR_ [PSTRNG]
(0216 B& Of5F - L NTYPE
0219 KD 0352 R 00T
021C AD 9F FBOF JR_[PIRUF]
 §
& CHECX IF DESTINATION INTERFACE INPUT BUFFER
. & IS FKEE
B

02% K 0150 L RECIEVE .
10273 84 0] (RA
02597 % STA SAIGU FOR INT BIT READ
027 5 CLRK '
0289 O SLNAIT (D6 SLACK
020 24 OF B OON
og 5C . INB
023CL o4 DFR #804
XN COBRT SURIT TIE QuT?
0231 BE 400 LB L

330} R [PIATALL
028 7E ¥B P AR
102 BS 03 CON___LD4 9R0DET
073 97 o STh SADML .
0F 9% 1 LM RISVIE]

JUTE I R . e

- 156 -

. POPRPEN Y

O e 2

SR

fo23 & o488

10X 4ESTB

i 0246 8 9F FBI JSR (PDATAL]

0244 0372 R PUSH
024D 7E 0308 B0

. b |
— % DEOX IESSATE TYPE :
 §
023 B O4AC ISE X #RK
023 A3 9F FBId JSR [PDATAL]
025 Bb OISF (DA NIYPE -
0254 80 BITA #®

A7 02 WM WA MITYPE TR
XX 14 KA TRWS
0260 B6 O1IF ()] DA NIVPE

(0283 8 4 " _BITA #40 .
028527 03 BEG RPTER
PO267 7TE 020D B ACESC TWWE TWO
026ABF O4F5 - RPTIR (DX JINTYP
024D A 9F FBIb JSR [PDATAL)

0271 Tt OXFR 2P ANC
X
,\ X TRANSNITT A NESSE'S WHERE THE SEND AND
__ % RECIEVE ADIRESSFS ARE FOMND IN TIE SEMD L
”\oml AND RECTEVE POINTERS

! 3

0274 k6 015C TRAMS (DR SEMD

Y0277 BE O4TF LDX 4IRNS

1 027A AD 9F FBLY JSR (PDATAL]

O27E(A 00 (RB #TPTM SET SEND ADRESS
028007 00 §TB SAMU ,
0282 84 00 1T
0284 57 0} STA __ SADDL
0285 B6 013D L% RECIEE
0289 8BA 00 ORA $INPUTH SET RECIEVE ADDRESS

| 0268 97 02 STA RADDUI
0280 86 00 DA HINPTLA
020F 97 03 STA RADDL

0291 F§ 015 _LD&__ LENGTH GET MUMBER (OF BYTES
0294 Ck 07 ADDB #07 MESSAGE HEADER
02949 10 LOP LDA BYTESND

28N _IECB JRANSFER MSSACF

0299 26 FE MNE LOOP
0298 96 10 LDA DYTESND SEND CHKSIN
029D 96 06 . DA PARITY
02%F 24 4D L TENDC N0 ERROR

Lo2nr 9 o9 1Dh MRSET RET PARIY FLAG
02A3 8 #45C DX ERR

0206 AD 9F FBIY JR [PATAL)

D02M TE 02EE ¥ THIC

- 157 -

s

e Y o L

et

02D 96 OB ACCESC LDA HADD

O2F Bl T oPh m__.xs_mmmu:_g:
W27 W BED CONT1 REQUEST

0B Bs 015D LD RECIEE
0NEBA 01 ORA $ACCSH
oMy 02 STA RADDU SET THE RECIEVE
W28 00 LIA 0L ADDREYSS '
024 Y7 03 STA RADDL
04 F6 015 s LBGH
02998 10 LOOPIA LDA ~ BYTESND
0208 54 DETB
020C 26 FE, BNE LOOPIA
O20€ 96 96 L4 PARITY [HFDX FIR PARTTY
0X0 24 19 BPL ADNC .
0262 9% 09 LDA PRSET -
X4 BE 04X _LDX $PERR ISSIF NESSACE
027 4D % FBlO JR [PDATAL]
NABTE OFE JP ADEC
i &
§7WARX MESSAGE AS SENT AMD RELEASE THE INTERFACES
" .
0 o150
oF1ea 01 ORA SROVCTN
10397 02 STA RADRU ,
|O5Bs 80 DA 4STINRT SFT THF INT RIT
02797 03 STA RADIL

0XBR 01X ADEC LA SED

0t 84 ol ORA 4SNDCTH
0300 97 00 STA SAMN RFSFT TIF AR KIT
030285 & LD SFWRRST :
034 97 01 STA SADL
o696 11 LA ROMYTE

O38BS 0024 DN LDA CSALL

0308 1026 FD2D L OLP

OMFE o6 P O

- - 158 -

S R T AR e

Y

ATy ™

—

|
& CET HEX DIGIT FROM SCREEN
o
0312AD OF FBO4 CGETHEX JSR [INCHED
0368 B SUBA #
0382 19 MR
03Bt o9 OFA #809
03CF oA MRE INHG
038 11 OPa 811
%A 1l T Rt
03281 146 ora #8146
SIUE op o K1 __ERL
032680 07 - SURA 7
[_o;za IF 8 INMG TFR AR
1 0324 4F . CLRA
| 03B IF 01 TR BX
‘03D F CLRE
03% 5C INCB
L0380 A #8500
033 47 _ASRA
03N W RTS
03B & Rl ORB © SET PARAY FOR ERROR
OTH BA 01 104 301
033 47 ASRA
03X 39 RTS
J . N
% INPUT A HEX BYTE FRON THE
- & TERNINAL RESULT IN A-REC IN BINARY
__ H
fOTBED 0312 IMEX JSR GETHEX
0IBS N KS Sw
03V IF 10 TR Xob
03¥ 84 10 A #8 "
0341 30 ML
\0342 Fb__ 002} _STb YOy =
YOUS B 0312 JR CETHEX
038 5 07 XS S
O3 IF 10 TR XD
OMLF3 0021 ACD TENV ’
QUFIF SR IR R
(om L) §TP RS
{
. & OUTPUT A RYTE IN HEX FTRN
OSRB7 0021 OUTHS STA TEMPM
DOIS R0 O3F SR (M 00 LEFT
038 B 0021 w TR
IR 0343 JR (UNR DO RIGHT
OTXE 3 — K5

- 159 -

e S Rt ats %k A RN et P are

PRNSIEN

R TIRE Py S, T o o mar T PN T X g5 T e & "o

o R e

e by

BT N PR K BT

[035 44 . OUTR LSRA
036 44 L5RA
| 0361 &4 _LSRA
YT LSRA
033 84 oOF GUTR ANDA #80F
0
U W OPA #39 ASCII
08B 2 BS oo
| OMBEBR 07 2 AIDA 47
0D FFROA GO JR [OUJH]
0T 39 RIS
X
& AID THE CURRENT SENDER TO THE STALX
% AND SET HIS MASK BIT
. X
028 ¢ISC PUSH LDA SEND STORE THE PROCESSORS °
0TS BE MIE LIX STOKPT ADRESS
Y A STA 0eX
T3 0l LEAX #1sX o
| 0L BF 001 ST STCXPT _ IPDATE STAX
03F BA 01 ORA 4SNDCTM POINTER
0381 97 00 STA SADOU
0383 8 01 DA HEKBTST 6T MASK BIT
0385 97 of STA SADIL
0387 96 11 LM RDBYTE
0389 7C 0020 INC__ STOOND . \m,
03 B 03 X $SPIESS T
035 AD 9F FBLO JSR [PDATAL]
0393 Bl O3RLI JR_ SPRINT
039 39 - RTS
4
$ PULL AL ADIRESSES FROM THE STACX
' & AND RESET THEIR'FULL BITS
e 3
03T %20 PAL CLR STCOND
103 B8 0FF4 LDX 45PLAESS
0390 AD__¢F FB10 JSR__ [PDATALI
N G DX STOXPT

03M BC 0000 CONTS (OMPX 4STALX STACK DFTYY
W 13

!

M A IF
03 30 IF
(O30 BF O0LE

"oz 8A o1
397
034 85 02
035 97 &1
0388 96 11
JIM20 8

SEEUEUBEEE

..

038C 39

»»

- 160 -

< s s A
v

TRy i TR R N TR RN

$ PRINT THE CONTENTS OF THE STACK

1

OJBDBE 0409 SPRINT LDX 4STACKC

M Fa0

I [PDATAIT

03C4 10BE M1E
!

WX 1080 0000 AGAIN ONPY 4STALK

Ly STORPT

OMF S W0 47

LT I BED ENDI o
XA ¥ < s 1Y
308 K0T JR OTHS UNIF
03I BE 0419 LY #SPACE ‘
035 AD 9F FBOL JR [PSTRMG] SPACE
033 ¥ LEAY -1»Y NEXT WALLE
03C 20 EA BRA AGAIN
03E BDt RTS
1
3 MESSAGES
B
[O3DF S3 54 41 43 SPMESS FOC *STACK PUSH (PERATION®
OEIAENHSS
0357 53 48 20 4F
OB 50 45 52 44
OF 54 49 4F 4F
0F3 04 FCR 04 ?
 OFF4 O3 04 41 43 SPLIESS FOL °STACK PIRL OPERATION™
OFB AR S0 55 : .
O3FC 4C 4C 20 4F ~
9 50 45 52 41
0404 54 49 4F 4E
0408 04 FCB _ $04
0409 53 54 41 43 STAXC FCC "STACX CONTENTS *
040D 4K 20 43 4F
0411 4E 54 45 4F
0415 5¢ ST 20
0418 04 FIR #04)
0419 2 SPNE FCC ** . ’
0418 04 FCB 04

OALR 4E 4F 20 42 NBGACK FCC °NO BUS GRANT ACKNOMLEDGE®

G S2 41 4E S
0427 20 41 43 4B

| 0449 4E 47 54 48

| 0428 4E 4F 57 4C
04F 45 44 47 45
0433 04 Y
0438 20 ‘
0439 04 FCB #04 :
I OEA N 0524 MR FOL _ * RE[FIVF® e e
MELIH O ' .
oM 45
0444 04 LR $04
052020445 W FCC * LDGTH®

- 161 -

e ST AT R S A T (R e P

.
w e h TvIgemammt e

i R L ot PSS IR Y SR T, T

044l 20
44T 04 CFCH $04
wﬁwuu&m FIC__° MNFSS TYPF
0453 53 53 20 54
0457 59 50 45 2
0458 04 FIB 04
04C 5 415249 PERR FIC *PARTTY ERRIR
0460 54 59 20 45
hmmmgm“ ,
0448 04 FCB 04
095741 4954 MES FCC O CWAIT-* o
0460 20 20 :
O46F 04 FCB 804
DAT0 49 4E 56 41 IMWAIC FOC “IMWALID ACCESS®
rﬂ_{u 42 44 N - 2y
0478 41 43 43 45
P4 3 5B
}_mm, FCE__ 804 _ e
{0477 54 52 41 53 TRNS FIL "TRASN MESS®
0483 4 20 4D 45
L04% 53 %
0489 04 FCB 804 \
|_048% 49 4E 54 45 wm_m“Jmmuﬁwwf e
| 043€ 52 46 41 43
L0492 45 D 49 53
ﬂﬂ%ﬁﬁﬁ
" A9 50
. 6493 04 FCE 04

$04

"OME A9 AESH 45 FRR FCC
V4BZ 52 46 41 43
04l 45 20 49 53

* INTERFACE 1S FREE'

O4Bs 20 46 52 45

U4RE 4

04k U4 FC
0400 4E 4F 20 53 NSL FOC
04C4 4C 41 56 45

| 04C8 20 4] 04 20

$04
*NO SLAVE AT ADDRESS®

0400 41 44 M4 52
0400 45 53 33

badd 42 T
1 0408 47

041G 04 FeR

04
"BUS CRANT GIVEN °

82
5241 &
DA 54 20 47 49
| 04E0 56 45 4E B
jodEe 04 FCB

L]

$04 |

- 162 -

4 A A AT e A AR PRI

- 163 -

M543 2M425 SR FIC °C-BUS DERUG®
04953 20 44 45
04ED 42 55 47
04F 04 FCB 04
04F1 ODDA PRWPT FIR $0D0A
G E - fec_ Bt e e
04F4 04 , FCB 04
(FS 49 4E 56 41 INTYP FCC “INVALID MESSAGE TYPE
| O4F9 4L 49 44 20
| 04FD 4D 45 53 3 .
——1 0501 41 47 45 20 ,
IOSMSB4 P 0 45 . S _
i 0509 04 FCB 04
* 0504 0D0A VDY FOR $0D0A ‘
\ 0L 49 4E 56 4t FCC__ "INMLID CONNVAND
(0510 4C 49 44 2
* 0514 43 4F 4D 4
" 0518 41 4E 44 .
L51B 04 FCB $04
. END _ DBIG _ }
/

"

