National Library
of Canada

i+l

du Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4

NOTICE

Thequality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microforms governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL 339 (1 B8/04) ¢

Bibliothéque nationale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfiimage Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion

Sil manque des pages, veuillez commumquer avec
funiversité qui a confére le grade.

La qualité d'mpression de certaines pages peut faisser a
désirer, surtout siles pages ongtnales ont été dactylogra
phiées A {'aide d'un ruban usé ou si Funiversdé nous a tait
parvenir une photocopie de qualité inférieure

La reproduction, méme partielle, de cette microforme est

sourmuise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

Canadd

The Design of PAAP:
Programmable Asynchronous Array Processor

Marco A. Zelada

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfiliment of the Requirements
for the Degree of Master in Computer Science at
Concordia University
Montréal, Québec, Canada

April 1992

© Marco A. Zelada, 1992

-

A+H

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licenca irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L‘auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-73669-0

Canada

ABSTRACT

The Design of PAAP:
Programmable Asynchronous Armray Processor

Marco Zelada

This thesis explores architectural features appropriate to massively parallel architectures such
as, Processing Element (PE) and Routing Element (RE) programmability within an array processor
environment, unrestricted data flow direction, and true array scalability. We illustrate these features

through an array design, which we term the Programmable Asynchronous Array Processor

(PAAD).

The PAAP proposes a methodology for mapping high-level computation into hardware structures. This
feature is shared with systolic and wavefront arrays. However, the PAAP differs in that its PEs can be
dynamically programmed to work in an MIMD fashion. They can also be interconnected via dyadic
programmable REs to form asynchronous pipelines. In contrast, most systolic and wavefront arrays work in
an SIMD fashion, have static interconnections and implement a single special purpose hard-wired instruction,
Those which are programmable and work in an MIMD fashion lack the interconnection reconfigurability and

data flow control present in the PAAP.

PE and RE instructions and data are not fetched from memory. Instead, the PE and RE are programmed
to execute the desired instruction and routing scheme during the program load phase, and data flows through
the complete array during the program execution phase. The essence of the architecture is captured by the
configurable routing which gives the PAAP its flexibility and power. The RE is a four way bidirectional router
which provides maximum flexibility in the definition of pipeline routes. It permits a pipeline to be defined in

any direction across the array, downward, sideways in either direction, and upwards.

The PAAP addresses the tiree main asynchronous circuit problems, namely, computational interference,
signal ordering, and transfer interference. It uses a modified two-phase signal protocol which allows the active
and passive end of the circuit to implement their own return-to-zero synchronization upon the receipt of the

proper protocol sequence [BrozozowskiJ 89}

i

Acknowledgment

I would like to thank some of the people that made this work possible through their patience and
understanding. First, I want to thank Dr. T. Fancott for his faith in me and his excellent guidance, which
helped me carry this project to completion. Thanks also go to Henry Polley, with whom I spent many long
hours discussing the architecture and design issues, and without which the thesis text revisions would not

have possible.
My deepest thanks go to my wife Li-Yuin Tam for her devoted moral support.

Thanks also go to Hala Tabl and Sam Alexander for their invaluable review comments. The list of other
people that have influenced my research and helped in one way or another is too long to mention here. I would

like to just say thank you all.

Acknowledgment
Table of Contents
List of Tables
List of Figures
Chapter 1

Section 1.1
Section 1.2

Chapter 2

Section 2.1
Section 2.2
Section 2.3
Section 2.4
Section 2.5
Section 2.6
Section 2.7
Section 2.8

Chapter 3

Section 3.1
Section 3.2
Section 3.3

Chapter 4

Section 4.1
Section 4.2
Section 4.3
Section 4.3.1
Section 4.3.2
Section 4.3.3
Section 4.3.4
Section 4.3.5
Section 4.3.6
Section 4.3.7
Section 4.3.8
Section 4.4
Section 4.4.1
Section 4.4.2
Section 4.4.3
Section 4.4.4

Chapter 5

Section 5.1
Section 5.2

Chapter 6

Section 6.1
Section 6.2

Chapter 7
References
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Table of Contents
... i
... iii
... iv
.. v
INTOAUCTION c.c.e i trrer et e et sesser e sre sttt ee st sorssersansessesusaesan 1
The Motivation of This Research........ocvieneernnenennrneesseesneenns 2
Thesis INTOAUCHION......cccviiiirier et resemerissresser venrestseses e sasenens 4
Parallel Architecture CONCEPLS......ccuvrerrerenrnrerirsensersemserosessesessosesns 5
Paralle] PrOCESSINGcocvnestieerrenncsemieeseeivisissmsesesssssessssesrsessssssssass 5
Parallel Architecture TAXONOMIESceveereenirmieensesrnersunivesensassssessesens 6
ATCRItECtUTAl ISSUESccoviiiiineeeerecriceneee e srentsnrensssessanesencsssssnssaessnenns 9
Parallel Processing Implementationsceeeeronminicenecnienens 11
MIMD Parallel Architecture OVerview.......ccoveieccvenenreinersesaesnseees 14
Systolic and Wavefront Arrays........ccce.... eeeeersrstereessearesenas 17
ASYNChIONOUS DESIZNcveveveriereceiienenetnecsnsinnes e eeoreensesssesssasassnens 19
The CHIP ArchiteCturevoceveiueaninineniessennenmssssesssnnnnssnassessesaseoson 21
PAAP Architecture OVEIVIEWciveecreenmennmmnriessenarnssorsssssssesssoses 22
Introduction 10 the PAAP AITayccocveviminmissccrnnneseoncrsssesessens 22
PAAP Array Building BIOCKS......vociiveirrmeniniinectricninensae e 24
The Smallest PAAP Array CONfigUIationeceecrvemvceccinrececsunsenens 26
The PAAP Programming Paradigmcccecovvmericrceenarereceneessersssone KH
Operational View of the ArChitecturecvncorirenmiminecssivsnsens K}]
PAAP Programming VANANtSccoveeeeeeeenmieerisasesserssiesens canssenes 41
Examples of Algorthmic Unis......cien i ccneennnncnnecsiine 42
PIE-INCTEIMENL ... veeviveeiveseirecrereeses e seisrseresseessbsnisssesessesssssassssssresssasenans 42
SWAD ettt et e e sb s iR s e e e 43
POSI-dECTEMENL ...t e et sassarnane 44
Arithmetic and Logic Expression Evaluationcccevvoveeeecnines 44
Inclusion of Constants in the COMPUtAION ..cveeeeenienniercnesennens 45
Boolean Expression EvaluQlion ... 46
High Level Language IF CONSIUCT....eviiicnircnencviniiencesserenns 47
High Level Language Looping CONSIUCLS ..iveeeevecnienisesneenenons 48
Examples of Complex Operations.........eecisesenscissiessaneversnens 49
Min/Max Search AlZorithmic URItS...oeereevreiciceresrecrnennseeecsescesenees 50
A Sort Algorithmic Umlil......cooeniemrieininnesse et e cesssnensesesaessenees 52
A Match Algorithmic Unit ..., 54
A Factorial Algorithmic Unil.......ccieeniminenrcnieniniieeneens 55
The PAAP PE and RF ARChUleCtUNE ..cuveeevircieneseesereisineisenscsneninas 57
A Processing Element ..o 57
A Routing EIEMENL.......cooeenmeercrimmnieimunessssnisinesssssmnes 73
PractiCal ISSUES ...uevuveverirecrsersrinnsessonsisesninesesssusssssansesssonsrssisinsssanssssenas 79
The Design Environment ... o 79
A Simulation EXAMPICcocceveverisienicsssnnineniesinsissnsesssssnes 81
CONCIUSION..1ovee e creererersrersssesrere st sressasseses st crsessasss e sssesssnsesnsssnnnsnsares 8S
... 87
Programming the PAAP ... e sanssssocssssionsns 91
Automatic Vector Generation Setup Files.....vveeceevrcinnernnseenisies 96
PAAP Detailed Circuit RNL Netlist........ccovmeniiieenernnincrcnsiiionen 108
Automatic Simulation Makefile ... e 125
Automatic Simulation Step OQULPULeveeevvirentccvverenn e 126

Partia] Simulation ReSUIS ..cueveiiiiiereie s veane s s sessesseannns 127

iii

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE §.
TABLE 6.
TABLE 7.
TABLE 8.
TABLE 9.
TABLE 10.

List of Tables

Feature Size ShAnk Trend.......covevvvecnenniinnincnniosessssssenees 3

Parallel vs. Sequential COMPULALONc..eerrieeseiieeseenseersnsesesnsinns 3

Addressable PAAP REZISIETSccciierermeereiienienesesesesisnresssessssonens 29
Byte Paralle] OPErations..... ..o iiesisssneeesesesrsneesssssssssssssssssssarsssssesen 32
The PAAP Array Control REgISIEr....ccueueeervereersisveresesnessssesnseesenenss 33
The PAAP Array Status Register w35
PE INSHIUCHON SEL.c.cvvrerrirenireererereressssrassassessossssesensisssassssee .39
PE QUIPUL ROULNGccuvverenneennnrinennencreseserroressiaessnesssssesesesesenssensossses 40
RE INSHUCHION SEL....cuecuceeneerenernnrienerereseessnessiesiaesssersessessassssssesensaseses 41
The ALU Status Bus BitS........cceuveieereeeerecrnennerenerssesessensssesssesssnnes 67

iv

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE &.
FIGURES.

FIGURE 10.
FIGURE 11.
FIGURE 11.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.
FIGURE 32.
FIGURE 33.
FIGURE 34,
FIGURE 35.
FIGURE 36.
FIGURE 37.
FIGURE 38.

List of Figures

Architecture and 1C Performance Growthccovveveevivnnnenienacens 1

Design Rule Shrink Trend.....c.oooricvieinniree e 2

A PAAP AITAY ..ot sssar st ssissises sassssssasinsasesns 23
PAAP Ruilding BIOCK ICS...cociniiiicrnncssnnnnisnensssisnescsnans 25
A 1089 PE PAAP Array Configurafion............cecemierconniirinnieneensanens 25
The Smallest PAAP Array Configurationceevimeinninienssenns 26
A Possible HOSYATTay INEIACEocvinirnviiiniinnnsnsssciesserenn K]
A Pre-increment IMpICMENtAtioneevciniviirsmienesssmmnssrereens LR
A Swap Implementation........ovveisiirerereennieceiensssnnsssnieasessnneesines 43
A POSE-AECTEMENLovrrreiecininnnnicenes st ettt e 44
An Arithmetic and Logic Expression Evaluation Implementation ... 45
An Inclusion of Constants Implementation.........eeevniniieencnnn. 46
A Boolean Expression Evaluation Implementationeeeeen 46
An IF Statement Implementationcveecmeninsnveiisssenen 47
A FOR Loop implementation...........ccevnnineniene s eneenens 48
Deadlock SynChIONIZationcccuierieiisimisnnsiessssnnsaasesses 49
A Max Algorithmic Unit Implementation............oeeecivninrenneenenn 50
A Min Algorithm Implementation ... cccinnnniennennns 51
A Max Algorithm Implementation........ccvivviicnninncnscana, 51
A Descending Sort Algorithmic Unit Implementation ... 52
An Ascending Sort Algorithm Implementationo..ccvivererenn 53
A Match Algorithmic URit.....c.eeeicinmiinin e 54
A Match Algorithm Implementation........cccvnieeenssinernieeens 54
A Partial Faciorial Program.......cuimmiicn e, 55
The Processing Element Block Diagramccviicciiininn §7
Inter-PE Synchronizationeeeeceeeecensiennnnnnescnmmnienens 59
Input Synchronization Module Schematic Diagram.........oiiieenn 62
Input Synchronization Module Timing Diagramocvennsenn. (X
Output Synchronization Schematic DIagram......eveevenvnniniinnns 65
Output Synchronization Timing Diagrameeininniccrnnees 66
PE Core Schematic DIaEram........cocovvveeeninminsiinsinssnsinsnncissnessens 68
PE Core Instruction Loading and Execution Timing Diagram 69
Control Unit Schematic DIagram......cc.coeovevninvninnccesnminenens T
ALU Schematic Diagramcoevsininssinniissssssmssssssees 72
RE Schematic DIagramcccevonineccnninnonenceeessnssssessnns 76
RE Instruction Loading and Execution Timing Diagram 77
Bit-route Schematic DIagram.......covcveeeceivenirsimseenssiiossnees 78

The Oct TOO! Set FIoW CRArT ...o.veevveveveeereerevesneensresssssesecvcsiiosseonons &0

Chapter 1 Introduction

The speed and power of computers is growing at a raie unimaginable a decade ago. Many factors have
contributed to this growth, such as improved 1C production techniques and architectural innovations. The
interaction between computer architecture and IC technology is complex and bidirectional. The
characteristics of various IC implementations affect deécisions architects make by influencing performance,
cost and other attributes. At the same time computer architecture developments impact the viability of IC
technologies by emphasizing different technology characteristics such as density, power and speed (see

figure 1) [Hennessyl91]).

100

=]

\
\
\

Performance
1

Mainframes .. "

. Microprocessor
1965 1970 s 1980 1985 1990 1995
Year

FIGURE 1. Architecture and IC Performance Growth !

This growth is also fueled by increased requirements placed on the hardware by new software
packages and by intense commercial competition, which forces IC manufacturers to continuously improve
their products. The coming of age or standards in operating systems. communications, and software
interfaces has thrown the market open to a broad spectrum of manufacturers who can concenti:te on
specific aspects of the industry without having to cope with all facets involved in producing an integrated
hardware/software system. Examples of such industry specialized products are: microprocessors (Intel,
Motorola), computers (IBM, Apple). CAD tools (Cadence, Mentor), etc. Nevertheless, such high growth
rate has brought the industry close to the physical barriers inherent in any given semiconductor material,

such as minimum teature size and maximum speed [RettbergR90][PeaseD91].

! Soure Hennesss J L and Joupr N P, “Computer Technology and Architecture An Evolving Interaction™, IEEE Computer Vol 24, No 9, pp 18-28,
109

[28]

1.1 The Motivation of This Research

As demands emerge for greater computer processing speeds and capabilities, traditional sequential
processors have begun to reach their performance upper bounds. Advanced IC fabneation technology
improvements have accelerated this computer revolution by constantly shrinking device sizes (see figure 2)

[VoltmerF85].

(25u)
- 0 Decreased by about
F % fyear
100]
-
=
I~
&
&
L*]
In A%
$
) ;
Year
1960 1965 1870 s s s 1490

FIGURE 2. Design Rule Shrink Trend 2

The major benefit of scaling down feature sizes is the ability to increase the number of devices that
can be integrated onio a single IC without changing the power supply requirements. This has lead to
exponential improvements in IC complexity, which translates into increased performance and cost per
function. The average die size has steadily increased despite the impact of periodic feature size reductons,
(see table 1). The feature size prediction for the end of this century 1n table 1 1s based on the current
research patterns and published papers from places hike IBM and AT&T Rescarch Labs. The literature
reports experimental devices made under very controlled conditions where they measure the feature size of
working devices in terms of the number of aligned molecules [WeberS88]. However, this improvement
trend cannot continue for much longer because current IC processing technologics are approaching the
physical limits beiow which silicon products become unrziiable. The current generation of processors are
being manufactured at around 0.8 micron feature sizes, and feature sizes of usable commercial devices

below 0.1 microns are expected before the end of the century [SantoB88] [SavariaY(a)86] [SavariaY(h)86].

2 Source VoltnerF W, andJones N W, “Factors Contnbuting to Increased VLSI Densuy™, VLSI Handbook, Chapter 1, Fagure 3, Flonds Academic
Press,p 4, 1685,

TABLE 1. Feature Size Shrink Trend’

Decade Chip Size Feature Size Transistors Per IC
1960) 1x1mm 30.0 Microns 20

1970) 2.5x2.5mm 10.0 Microns 1250

1980 6x 6 mm 3.0 Microns 80, 000

1990 12 x 12 mm 0.8 Microns 1,500, 000

2000 25 x25mm 0.1 Microns 10, 000, 000

Device feature size reduction alone will not guarantee continued performance improvements and thus
other avenues must be explored. Parallel processing is the obvious choice for continued performance
improvements beyond the current sequential architectures and physical limits of the known semiconductor

materials,

A typical example of the order of magnitude improved performance attainable by parallelizing
sequential algorithms can be found in general problem-solving techniques such as state-space search,
which are widely used in Al and VLSI CAD applications. Its sequential implementation is computationally
intensive; yet, it experiences an almost lincar speedup as the number of parallel processors increases. This
performance increase trend continues even with a very large number of parallel processors. The literature
shows that one of the best ways to improve performance is to adopt parallel processing techniques over
their equivalent sequential oncs (see table 2) [GottliebA82} (KumarV90] [KumarV87] [NagashwaraV87]
{ArvindamS90)].

TABLE 2. Parallel vs. Sequextial Computation * ®

Algorithm Parallel Time Sequential Time
Permutations of N objects O(logN) O(N)

Partial sums of N elements O(logN) O(N)

Merging 2 lists of N elements O(logN) OMN)

Sorting N elements O(log2 N) O(NlogN)

FFT O(10gN) O(NlogN)

3 Soune Forester 1, “The Microelectronies Revolution The Complete Guide to the New Technology and Its Impact on Society”, Cambndge MA: The
MIT Press, 1984

4 Source Gottheb A and Schwanz J T, “Networks and Algonthms for Very-Large-Scale Parallel Computation™, IEEE, Computer, Vol. 15, No. 1, pp. 27-
W4, Jan 1982

> This table assumes that there 1s an infinite number of processors to implement the algonthm.

1.2 Thesis Introduction

Architeciaral innovation is the path to pursue in order to ensure rapid and continued growth, In the
short term the easiest and most accessible route is a superscalar architecture which analyses instruction
streams and allocates processing units according to a special algorithm which ensures maximam
instruction overlap. Alternatively, multiple computer architectures can be used to distribute the sk to
particular server units; however, architectures must ultimately move to massive parallelism to afford

continued growth and computing power [Suaya90).

This thesis explores some new architectural features appropriate to massively parallel architectures,
and illustrates these features through a model processor array design, which we term the Programmable

Asynchronous Array Processor (PAAP).

PAAP is but a small element of an overall massively parallel architecture design. and consequently
many issues peripheral to the array design remain simply defined, but not illustrated. The full design of a
computer is beyond the scope of this thesis; however, array programmability aspects are explored and
demostrated by simulation. Relevant circuit elements designed using both university and commen <ial level
tools, such as the Oct Set of Tools from UC Berkeley and the Cadence Set of tools from Cadence Design

Systems, are illuswrated.

Advances in IC fabrication technology have made it possible for VLSI architectures such as the
PAAP array design to be feasible. We can conceive of large numbers of PEs and REs (sub-array units)
being buili as packaged ICs with current technology. These packaged sub-array units could then be used to
build larger arrays on standard extension cards that may be attached as peripheral co-processor cards to

standard compute engine hosts.

The thesis is organized into seven chapters. In Chapter I we find a general thesis introduction that
briefly describes the work and motivation. In Chapter 2 we compiled the relevant theoretical background
into a focused set of reference information points that span paraliel architectures and design, current
architecture implementations, an MIMD overview, systolic and wavefront arrays, asynchronous concepts,
and wafer scale integration. Chapter 3 describes the minimum computational environment that the PAAP
array requires, as well as its functional operation. Chapter 4 provides a programming example and looks at
possible related software issues. Chapter 5 describes the PAAP PE and RE design, schematic level and
timing diagrams are included for the most important subcomponents. Chapter 6 discusses practical issues
such as the design environment used, and overviews simulation results, Chapter 7 is the conclusion, which

summarizes the work and outlines design shortcomings and possible future enhancements.

Chapter 2 Parallel Architecture Concepts

The most relevant parallel processing concepts to this thesis are presented in this chapter. First we
look at the original computer architecture taxonomy by Flynn and an updated taxonomy by Duncan. The
reader may then be able to properly place the PAAP array design within the existing parallel architecture
taxonomiecs. We then examine the architectural issues faced in designing a massively parallel architecture
and examine currently available implementations. The reader should have an appreciation for the design
choices taken in the PAAP array design. Last, we overview the main characteristics of MIMD architectures
as well as wavefront arrays and asynchronous design techniques. This will give the reader an

understanding of the PAAP array as a reconfigurable-programmable-MIMD wavefront array.

2.1 Parallel Processing

The decades of the 80s and early 90s have seen the introduction of a wide variety of commercial
parallel architectures that complement and extend the major approaches to parallel processing developed in
the 60s and 70s. Their design motivation and market areas cover a broad spectrum: (a) Transaction
processing sysiems, such as parallel UNIX systems for data processing applications (i.e. The Balance from
SEQUENT), (b) Numeric supercomputers such as Hypercube systems for scientific and engineering
applications (i.e. The iPSC from INTEL), (c) VLSI architectures, such as parallel microcomputers for
exploiting very large scales of integration (i.e. The transputer from INMOS), and (d) Neurocomputers,
such as the Connectionist computers for general purpose pattern matching applications (i.e. The

Conncction Machine {CM) from THINKING MACHINES) {TreleavenP88].

Massive parallel processing can be thought of as a problem of event scheduling and resource
management. These resources can be memory or processing elements as well as communication channels,
and the events refer to computation requests. In order for any real computation to take place, in a parallel
system, operauons have to be properly scheduled on the available resources. Previously it was believed
that processing and switching elements were more i ,ctant and thus system performance was based on
measuring how well such units performed with no regard for how they were interconnected. At the present

time it is believed that interconnections are the ultimate performance limit on any type of architecture.

Minimizing the cost of Inter-PE communication and at the same time providing a flexible enough
communication scheme is always desirable. Unfortunately, striking the perfect balance between low
communication overhead and flexibility is not a simple task. If the algorithm being executed does not map
the physical connecuvity of the machine well, then we may find an excessive amount of idle processors
due to communication overhead. The ultimate communication scheme would adapt its connectivity

configuration to the algorithm being performed [KuckD86).

Parallel architectures have problems which have prevented them from being widely accepted.
[SakaiS90) makes reference to at least 5 different areas which need great improvements before general-

purpose parallel computers can achieve significant higher performance;

+ Extracting the maximum parallelism from a user program automatically,

Minimizing synchronization overhead,

» Minimizing communication overhead,

+ Obtaining the optimal load balancing. and
» Ensuring reliability.

Many proposed parallel architectures have addressed some or all of these issues, but there is still much
more work ahead because users still perceive parallel computers as being not general purpose. Another
problem is that they are difficult to program because either their programming environments still usc the
sequential model of computation adapted for the target parallel architecture, or one must learn the
underlying architecture in great detail before attempting to write any useful programs. Both approaches are
clumsy and time consuming, yet, attempts are underway to correct these problems by the development of
object-oricnted languages and of sophisticated software development environments that automatically

extract the parallelism embedded in user programs and optimize such programs for the target architecture.

However, general trends of research are looking forward to bringing general purpose parallel
processing and many commercially available parallel computers are beginning to show promising results
in their software environment implementations, in the adoption of standards on such crucial system
components as the Operating System and User Interface. Other factors influencing the proliferation of
paraliel processing technology are the advances in VLSI architecture and the emergence of new parallel

architectures [DenningP86] [KatevenisM84] [MelvinS87].

2.2 Parallel Architecture Taxonomies

In his classic paper, which still retains its validity, Flynn proposed a taxonomy for parallel computers
which defines four classes of Von Neumann-based computers depending on the multiplicity of the

instruction and data streams [FlynnM56]:

» Single Instruction Single Data (SISD) corresponds to the sequential Von Neumann machine we

all know, which can only execute one instruction and work on one data item at a time.

SISD computers are traditionally Von Neumann uniprocessors, but by a clever extension of the
concept of horizontal microprogramming it is possible to connect multiple uniprocessors and
control them simultaneously. The approach is called Very Long Instruction Word (VLIW). The
idea is that if a 32-bit uniprocessor can perform the required computation, by adding the proper
control structures, one may be able to extend the 32-bit to 64-bit or 128-bit word size.
Operands are thus properly partitioned to the appropriate section to work on their own section
of the word, and at the end, their results are collected and the result word is assembled from the
partial word results generated by each of the processors. The main difference between VLIW
and MIMD machines is in the very long instructions that control the machine, using words of

up to thousands of bits long [Fisher]84].

Single Instruction Multiple Data (SIMD) corresponds to the parallel execution of a single

instruction. This types of architectures include vector-arrays, array processors, the CM, etc.

SIMD machines are usually composed of a single Control Unit (CU) which fetches and
decodes instructions, and some N number of interconnected Processing Elements (PE). Once
the instruction is on line to the CU, it is either executed by the CU (a jump instruction) or it is
broadcast to the PE pool for execution. The PEs operate synchronously, but each has its own
memory which may contain different data items and individual partial results. SIMD
architectures can come in different arrangements: vector processors, array processors,
associative processors. This classification is done based on the CU’s complexity, the processing
power and addressing method of each PE, and the interconnection facilities between PEs. In
array processors the CU has limited capabilities and its PEs communicate through a connection
networ' . Array processors are thus well-suvited for grid problems and in some cases vector
processing. Other implementations make the CU a full-size computer which communicates

with PEs via message-passing schemes [HordR(a)90].

Multiple Instruction Single Data (MISD) corresponds to pipelined processors that allow for
consecutive instructions of a program to be in different stages of execution by advancing
through pipelines of functional units 1n a staggered fashion, one function at a time. Examples
of this architecture include machines based in high-end processors such as the 80486 or the
68040,

MISD-type architectures utilize consecutive program execution modules. At any given time, a
different part of an instruction is executing in stages and it advances through the pipelines of
functional units in a staggered fashion. The pipelined processor is an MISD processor which
partitions each instruction into simpler computational steps that can be executed ndependently

by functional units. Each one of these computational units is called a pipchne segment.

» Multiple Instruction Multiple Data (MIMD) could be betier described as a number of SISD

configured to communicate among themselves in the course of a program.

In MIMD architectures, several processors operate in parallel in an asynchronous manner and
share access to a common memory module. Each processor is capable of running its own
instruction, which allows for a problem to be subdivided and mapped onto an array of MIMD-
type PEs. Data also flows across PEs as initial data and partial or fully computed results. Data
can be used to synchronize the machine and some PEs may have to wait for other PEs to

generate the proper results [SutherlandJ89].

In 1990, Duncan updated Flynn's taxonomy by adding architectures that can not be easily
accommodated within Flynn’s taxonomy. For example, pipelined vector processors exhibit substantial
concurrent arithmetic execution and can work on hundreds of vectors in parallel. However, they lack the
single instruction execution property found in SIMD architectures and do not classify as MIMD because
their PEs are not asynchronously autonomous. Duncan’s taxonomy also excludes architectures that only
provide low-level parallel mechanisms such as instruction pipelining, multiple CPU functional unuts, and
separate CPU and 1/O processors. The reasoning behind this exclusion is that even though they contribule
to an increase in performance they do not muke the architecture paratiel. The complete taxonomy can be

summarized as follows [DuncanR90]:

» Synchronous: Concurrent operations are coordinated in lockstep via global clocks, central

control units, or vector unit controllers.

+ Pipelined vector processors: Characterized by multiple, pipelined functional units, which
implement the needed operations for both vector and scalar operands, and which can work

concurrently.
» SIMD: As defined in Flynn's taxonomy.

+ Processor armrays: Implemented as an array of special purpose processors with local

connectivity between them and the local memory associated with each processor.

» Associative memory: They use a special comparison logic to access and store data in

parallel according to its contents.

» Systolic arrays: Pipelined multiprocessors in which data is pulsed in a thythmic fashion

from memory and through a network of processors before returning to memory.
+ MIMD: As defined in Flynn’s taxonomy.

« Distributed memory: The nodes share data by explicitly passing messages via the
interconnection network which can be one of the following topologies: ring, mesh, tree,

hypercube , reconfigurable.

« Shared memory: Interprocess coordination is done via a global shared memory that each

prucessor can access via: bus, crossbar , multistage networks.

» MIMD paradigms: These architectures are considered hybrids which are based on MIMD
princ ‘vles such as asynchronous operation and multiple operation and data streams; however,

they aiso exhibit distinctive organizing principles which are attributed to other architecture

types.
» MIMD/SIMD: Selected paris of the MIMD machine can be controlled in an SIMD fashion.
+ Dataflow: Instructions are executed as soon as all of the needed operands are available.

+ Reduction: Instructions are executed when its results are required as operands for another

instruction already enabled for execution,

« Wavefront arrays: They combine the systolic data pipelining concept with an

asynchronous dataflow approach.

2.3 Architectural Issues

Parallel architectures can be classified by their granularity because it is the size of work units that are
allocated to a single processor. The main subdivisions are coarse and fine grain. Coarse-grain parallel
architectures can be distinguished by the low number of complex processors. On the other hand, fine-grain
parallel architectures utilize a large number of very simple processors. There are also some researchers that
would further divide parallel architectures by grain and define medium-grain architectures as a
compromise between coarse and fine grain architectures. Yet in a complex system, the actual delivered
performance s algorithmically-specific and not architecturally bound. This is related to how well a

particular architecture is suited for the particular problem being processed [MohanJ83].

10

Fine-grain parallelism has the potential of being faster. provided that the algorithm maps very well

into the mesh of processors present in the machine's architecture.

Coarse architectures are better understood because of their similarity to scquential processing, This
influences the state of software technology that is available for such parallel systems. It may also explain
why it is not uncommon to find parallelizing compilers that retarget languages such as FORTRAN, C,
PASCAL, etc.. to coarse-grain computers such as the Encore Multimax, and no parallelizing sottware for

fine-grain computers such as the CM [KruatrachueB&8].

Even though there is an attempt by some portions of the parallel architecture research commumty to
make their designs commercially acceptable via thei: ease of programming, most of the research effort has
concentrated on speeding up solutions to specific problems or classes of problems. As a result, the large

number of proposed parallel processing architectures exhibit such great diversity of concept combinauons.
The most important issues to consider while designing a parallel architecture are [BasuAR4]:

» Loosely vs. tightly coupled systems: The distinction here is based on how the memory system
is structured, whether each processor has access to its own local memory (loosely) or the

memory system is a global shared memory model (tightly).

« Parallel vs. distributed: The divergence point here is the way the computation gets done,
whether the computing elements are concentrated in one place and work in parallel with very
litdle communication overhead (parallel), or scattered around and have to ncur a large

communication overhead (distributed).

» Shared memory vs. message passing: This division follows from the memory system structure,
Depending on whether the system is tightly or loosely coupled, processor communtcation can

take place via shared-memory variables or message-passing.

« Synchronous vs. asynchronous: The distinction here is based on how the PEs synchronize with
each other. Synchronous systems utilize a general system-wide clocking scheme.
Asynchronous systems do not have a global clocking scheme, they utilize local clocking

schemes that ensure timing error-free computation.

« SIMD vs. MIMD: The main distinction here is the number of instructions that can be executed

in parallel by the system.

» Special vs. general purpose: This division is done on the basis of how flexible the PE

interconnection network is and the generality of the computation that cach PE can perform.

11

Some proposed designs such as systolic arrays provide static PE interconnections, others
provide programmable PE interconnections. Most PEs have some level of programmability, but

the issue is how general purpose such basic instructions are.

2.4 Parallel Processing Implementations

The advent of the supercomputer term occurred in the 1975 time frame when it was applied to the
CDC-7600. the Illiac-1V and other high performance machines of the day. The term became firmly
established with the introduction of the CRAY-1. This section briefly covers a few interesting parallel

computers that in most cases classify as today’s supercomputers.

We start with the Illiac-IV which was the first large scale array computer that incorporated high levels
of parallelism and pipelining. Operational in 1975, it consisted of a single CU that broadcast instructions to
its 64 PEs. Each PE has 2K 64-bit words of working memory and the main memory is implemented on

disk with a capacity of 8 million words at a transfer rate of up to 500 megabits per second.

The CU has access to all of the core memory with a cycle time of 60ns. The CU fetches and decodes
all instructions; afier decoding, some instructions are broadcast to the PEs for execution, while some other
instructions are executed by the CU. There are three data paths available for communication among PEs

and between PEs and the CU.

+ The CU can access all of the core memory so it can load or store data on any one of the PE’s

local memory.

» The CU can communicate with all PEs by broadcasting the same word to all PEs

simultaneously.

« The PEs can communicate with each other via the ROUTE instruction which transfers data

from a source PE to a destination PE.

The Hlliac-IV was capable of performing 300 MIPS in 32-bit mode, and even though it was built using
clectronic components from the late 60s, for certain important classes of applications it was the fastest

computer of its time [HordR(b)90].

A more recent computer, the CM, was first introduced in 1986. The 1000 MIPS CM-1, used up to 64K
4K-bit RAM, single-bit processors. The second connection machine, the 2500 MFLOPS CM-2, was
introduced in 1987, It still used up to 64K single-bit processors. but this version provided 8K-byte RAM

per processor, faster clock speed, and floating point hardware support.

The CM’s interprocessor communication network is called a hypercube. In this scheme there are up to
2N nodes. and each node has N directly connected nodes; the longest path between any two nodes
(diameter) has at most N steps through other nodes; in the CM's diameter is 16. The heart of the system is
the parallel processing unit, which consists of thousands of processors. each with thousands of memory
bits which can be considered as shared memory. The processors can process data stored in their local
memory, as well as form logical interprocessor connections so that data can be exchanged among
processors. An important concept is that the CM implements parallel programming constructs dircetly in
hardware. Paralle] data structures are spread across the data processors with a single element stored 1n each
processor’s memory. When parallel data structures have more than 64K elements, the hardware operates in
virtual processor mode, presenting the user with a large number of processors, each with a correspondingly
smaller memory. Scalar data is held at the front-end processor, which also controls the overall data parallel
program. Program steps that require parallel data are passcd over an interface to the CM parallel
processing unit, where they are broadcast for execution by all processors at once. Front-end controllers, of
which there can be up to 4. provide the programming environment for the CM; they also serve as network
communication gateways and for storing programs. For every group of 8K data processors there is one 1/0
channel. Each channel may be connected to either a high-resolution graphics display framcbuffer module
or one general 1/0 controller supporting an 1O bus to which several DataVault mass storage devices may

be connected.

Data processors are 1implemented using four chip types. A proprictary custom chip that contains the
ALU which can execute variable length operand instructions, flag buts, router interface, NEWS gnd
interface, 1/O interface for 16 data processors, and proportionate pieces of the router and NEWS grid
network controllers. The memory consists of commercial RAM chips. The floating-point accelerator
consists of a custom floating-point interface chip and a floating-point execution chip; one s required for

every 32 data processors.

The CM-2 parallel unut has a structured communication mechanism called the NEWS grid. In the CM-
1 the grid is a fixed two-dimensional grid, but the CM-2 supports programmable grids with arbitrarily
many dimensions, The NEWS gnd allows processors to pass data according to a regular rectangular
pattern. For example, in a two-dimensional grid each processor could receive data from its neighbor to the
east thus shifting the contents of the grid one position to the left. The advantage of the NEWS grid over the
router 1s that the routing overhead of specifying destination addresses 1s ehiminated. This is an optionad

optimizauon that some apphcations can use {HordR(c)90].

One of the disadvantages of the CM is that its computation gets done tn an SIMD single-bit fashion, as

well as the difficulty in scaling the machine beyond 64K processors without a major redesign effert. An

13

interesting alternative is the 32-bit INMOS wransputer, which was designed as a basic building block for
processor arrays of any size. It provides a direct implementation of a message-passing loosely coupled

architecture.

The transputer architecture was targeted for the efficient execution of programs written in the
OCCAM parallel processing language. In OCCAM programs, the basic computational modular component
is the process that communicates with other concurrent processes through channels. A transputer contains a
processor that in some models includes a floating-point unit, a 4K byte memory. and 4 standard point to
point communication hinks that allow direct connection to other transputers. Concurrency is supported by
hardware support for scheduling. The design philosophy is in accordance with the RISC approach;
however, repetitive operations such as multiply and block moves are implemented in microcode with

hardware assistance [DeCegamaA (a)89].

Another interesting implementation is the WARP machine from CMU, which is a high-performance
systolic array computer designed for computation-intensive applications. There are three major

components to the system: the WARP processor array, the interface unit (IU), and the host.

The WARP array performs the computation-intensive routines such as low-level vision routines or
matrix operations. The IU handles the 1/0O between the array and the host and can generate addresses and
control signals for the WARP array. The host supplies data to and receives results from the WARP array. In
addition it exccutes those code parts that are not mapped onto the WARP array. Each WARP ceil is
implemented as a programmable horizontal micro-engine, with its own micro-sequencer and program
memory for 8K instructions. The cell data path consists of a 32-bit floating-point adder, a multiplier and
two local memory banks for resident and temporary data, a queue for each intercell communication

channel and a register file to bufter data. All of these components are connected via a crossbar.

In a typical configuration, the WARP machine consists of a linear systolic array of 10 identical cells,
each of which is a 10 MFLOPS programmable processor; thus the peak performance is 100 MFLOPS. The
machine can be connected to any general purpose host machine running UNIX as an attached processor. It
is then acces ed via procedure calls on the host or through interactive, programmable command interpreter

called the WARP shell [DeCegmaA(b)89).

It1s a chalienge to provide a uniform address space that implements shared memory constructs with
mimmum access conflicts 1n order to maximize performance. Considerable research has been devoted to
developing interconnections schemes for array processors, which allow parallel, conflict-free memory

access [BalaknshnanM8R]. Contemporary shared-memory multiprocessors such as the BBN Butterfly-1

14

(GP1000). the Butterfly-I1 (TC2000). and the Sequent-Balance 21000 have implemented some of the

important concepts learned from this research.

The BBN systems are physically distributed-memory multiprocessors running a flavor of the MACH
operating system that offers a logically shared virtual space to the programmer. This is made possible by a
specially designed Multistage Interconnect Network (MIN) that allows any PE to access any memory
module. The MIN, known as the butterfly switch, is the key component that provides the BBN systems
with a scalable memory access bandwidth capable of supporting multiple memory accesses. A local
memory access directly bypasses the interconnection network, but a remote reference is serviced via the
network. Conflicts are resolved by dropping the conflicting requests and later retries. The GP1UKX) 1s built
using the Motorola 68020 CISC processor, and the TC20({) is built using the Motorola 88100 RISC
processor [GP88] [TC89].

The Balance is a truly shared-memory multiprocessor running the Dymix operating system. The
system is built around a high bandwidth bus to which all PEs. memory modules and 1/0 interfaces are
attached. All memory references are serviced through the bus, and multiple requests are pipelined onto the
bus sc that it is available for reuse while a memory access request is being serviced. The processor does
not hold the bus for the entire duration of the memory access cycle. Access 1o hardware locks 1s arbitrated

over a separate bus [Balance841.

2.5 MIMD Parallel Architecture Overview

The most common parallel processing approaches are: the Von Neumann-based, the dataffow-based,

and the reduction-based.

The Von Neumann approach consists of interconnecting two or more Von Neumann-type processors in
a variety of configurations. The main distinction is that processing takes place via a single thread of
control. Having more than one processor means that there may be multiple threads of control, and the

overall system control is a problem in this approach.

The dataflow approach executes instructions as soon as thewr operands are ready instead of following a

thread of execution, as in the Von Neumann approach.

The reduction approach consists of performing instructions when results are needed for other
calculations. Programs are viewed as nested applications and exccution precedes by reducing the

innermost applications, according 10 some semantics, until there are no further applications 1o reduce.

15

There s yet another appioach called hybrid which combines the datafflow and reduction
functionalitics. In this approach processors will work first on the instructions that have been demanded of
them 1f the operands for such instrucuions are ready. If operands are not ready then the processor will
demand them from other processors and work on lower priority items. This results in a more balanced use

of the resources because instructions are performed in order of importance.

One of the key elements in designing a general purpose parallel architecture is that users want 10 use
the extra compute power but they are not interested in how such performance improvement is delivered.

As a consequence, the new parallel systems must be able to appear completely transparen: ‘o the user.

MIMD architectures use a variety of interconnection mechamisms. Some use a bus structure and
handle all processors and memory modules from the bus. © Data transfer operations are controlled by an I/O
controller module that acts as a bus arbiter to resolve access contention problems. Due to bus conflicts,
memory access cycles will be increased, which results in lower performance. A way to aid in bus
contention problems 1s to provide the processors on the bus with some amount of cache so as to reduce
their dependence on the bus for data. The only problem here is that the distributed cache subsystems have
to be kept synchronized. Cache synchronization consists of the correct read/write shanng of replicated
data. This implies that processors must have exclusive rights to writing shared data elements. Processors
must also be able to get the latest version of a shared data item and they must be blocked from getting
transitionary data elements. If the required data is available, multiple read accesses should also be allowed.
Most of these implications can be implemented in software; however, there is a need for hardware support

by means of flags and counters for the memory objects that are shared [ButarPR6).

An alternative to the bus MIMD is the crossbar switch system interconnection, which provides the
best pertormance of any interconnection system at the expense of complexity, size, and cost. The
crosspoint switch must have major hardware capabilities such as including switching parallel transmissions
and resolving multiple requests with different priorities for access to the same memory module. A
representative system is the CMU C.mmp system, which has 16 processors and 16 memory modules

FullerS78).

The interconnection network of an MIMD machine can be either single-stage or multistage. The
single-stage network can be viewed as an interconnected set of N input units and N output units. The
allowable interconnections are determined by the way the input units are connected to the output units.

There are 4 ditferent ways to connect single-stage units: mesh, cube, shuffie-exchange, plus-minus 2'. The

6 At the present ime there are commeruially available sysiems that offer this type of configuration Vendors include Encore Computer’s Multimax,
Sequent C omputer's Balance, Alhant Computer’s FX/8, etc

16

plus-minus 2' network is a superset of the mesh network because it connects any given address X 1o
address X + 2' and X - 2'. A popular basic MIMD structure is the mulustage interconnection network. It
consists of multiple stages of intelligent switches capable of providing at least one path between any two
system elements (processor, memory modules) with mimmum complexity and cost. Mulustage networks

are butlt from stages of the basic single-stage networks [MapplesCRS).

Processors in loosely coupled systems (LCS) communicate by exchanging messages while ughtly
coupled systems (TCS) have their processors communicate via shared memory vanables. LCSs use local
memory. and if a processor requires access to datia tn another processor’s memory. it must request the data
via a message. It is up to the message receiver to send the requested dati, thus there s a large message-
passing overhead involved in this data access mechanism, because data cannot be accessed
deterministically due to the message passing delay. The process of getting the required data item may tihe
any number of tries before the data is actvally made available to the requesung PE. Every message
generated has to travel through the communication subsystem; if such a communication scheme 1s not well-

structured and controlled. this medium may become the system bottleneck.

TCS provide a global shared memory system which is accessible to any processor. Such a system may
be organized as a single memory module that is connected to a bus-like medmim with local cache modules
to improve performance. Another organization may put local memory modules with 1ts own secondary
interconnection mechanism to make the memory space look lItke 1t 1s consohidited when i reality st is
totally diswmributed, Each PE and its memory are located at a node. Collectively this configuration may
actually form a shared memory system; thus any processor can access any other processor’s memory by
using the secondary communication mechamsm. 7 From the programiner’s pont of view the only real
difference in memory access (o another processor’s memory is the response time. The miyor advantage of
communicating via shared memory is an almost unlimited buffer for asynchronous 1PC. At the same time,
the programming mode! for the machine becomes much easicr and this allows higher hardware utthzanon,
However. the overhead incurred by the secondary interconnect network can be sometimes out of reach,
except for very spectalized apphications. Using just one interconnection network for both memory and

processor communication leads to the vsual access conflicts and thus performance degradation.

The basic dataflow concepts were developed in the 60s mainly by compiler experts who used dataflow
graphs as tools to optimize sequential programs, A dataflow graph is a directed graph in which the nodes

represent primitive functions, such as add and multply, and the arcs sepresent data dependencies between

7 BBN Advanced Computers has already announced a commercial TCS computer with a hutterfly interconnected memory module which makes the
memory appear as a monoliic shared memory module This new system runs MACH 29, a messape passing (5. and no langer requires a front end b
communicate with users

17

functions. In the 70s it was realized that if the dataflows were executed directly in hardware the
architecture would be massively parallel. These machines are thus language-based; the architecture
implements the formal behaviors of the program graph and the compiler translates the source code into the
architecture’s equivalent program graph. When the machine is in an execution stage, it is activated by the
presence of an operand value in each operand field. The content of the execution template (instruction)
defines the operation packet (result) <opcode, operand, destination>. Such an operation packet specifies
one result packet with the information <value, destination> for each destination field of the template.
When a result packet is delivered, the result value is placed in the operand field defined by its destination
field. To this date, no commercial dataflow machine has ever been constructed. There have been several
rescarch projects, but critics argue that they will never really make it out of the laboratories becaus: the
designs have trouble dealing with large arrays and incur an excessive computational overhead. Another
problem of practical importance is that debugging both the hardware and software on such machines is still

not well understood [SniniVE6].

2.6 Systolic and Wavefront Arrays

A synchronous array of parallel processing elements under the supervision of one or more control
units is called an array processor. In most known designs array processors are STMD. In some cases all PEs
will get the instruction and execute it; in other cases PEs will be selectively ~ctivated to execute the current
instruction. All PEs not selected to execute the instruction will then be inactive for this execution cycle.
The array processor is usually interfaced to a host computer through the CU. In most cases the host
computer is a general-purpose machine whose function is to manage the array processor resources. The
array CU dircctly controls the execution of programs on the array and the host computer takes care of thel/O

funchions required to complete the task.

It is of paramount importance to be able to transfer data among memory modules after computational
steps. The number of data transfer steps must be minimized by lowering the possibility of memory access
conflicts. In message-passing array processors, the interconnection network is made up of interchange
boxes that are capable of setting themselves up dynamically to establish a desired connection. This is done
by examining message header packet field.. These fields must be setup by the compiler; however, this type
of machine level control may require the compiler to know detailed information about the computational
and data transfers of the particular application. The application domain of array processors covers image
processing computer vision, nuclear physics. structure analysis, speech, sonar, radar, seismic, weather,

astronomical, medical signal processing applications, ete. [SchendelU84],

18

An interesting array processor is the systolic array, which consists of a set of simple processors
interconnected in a regular manncr to perform a simple instruction. The interconnection is usually static
and the PEs are not general purpose; instead they perform hard-wired instructions geared towards a
particular application. The PEs in a systolic array are typically connected in the form of a pipcline, array
mesh, triangular, etc., and communication with the outside world occurs only at the array periphery. The
basic principal in systolic arrays is that the standard CPU can be replaced by a systolic array. Therefore,

this can increase the processing power without increasing the memory bandwidth.

A problem with systolic arrays is that cell synchronization in very large arrays requires long delays
between clock signals due to clock skew problems. At the same time, the synchronizauon of large data
transfers leads to large current surges as the array elements are simultaneously energized or change state. A
simple solfution to the synchronization problem is to make the arrays data-driven or asynchronous; these

arrays are called wavefront arrays {KungHg2].

The main difference between systolic and wavefront arrays is how their particular clements are
synchronized. In a wavefront array, the information between PEs follows a simple protocol. Whenever data
is available, the transmitting PE informs the receiver PE, which accepts it when it is ready. Once accepted,
the receiver communicates with the sender to acknowledge that the data has been used. The scheme can he
impiemented by a simple handshaking circuit and ensures that computational wavefronts propagate in an
orderly manner without crashing into one another. The biggest advantage over systolic arrays is that since
there are no clock delays, a wavefront array is scalable, exhibiting a lincar increase in performance as the

array size increases.

Programming wavefront arrays involves the definition and assignment of computation to cach PE.
Systolic arrays require in addition scheduling computation. Fault tolerance is imphed in wavefront arrays
because if one PE fails, all subsequent computation that depended on the faulty PE will stop automatically.
In order to perform the same type of fault tolerance, systolic arrays must make use of global crror-halt
signals, which 15 not desirable because of the added wire area. This particular feature makes wavefront
arrays good candidates for Wafer Scale Integration (WSI), where one may be able to reroute around the

faulty PEs.

The massive concurrency in systolic/wavefront arrays is derived from pipeline processing, parallel
processing, or both. Although most of the current array processors stress only word-level pipelining, the
new trend is to exploit the potential of multiple-level pipelining (i.e. at the bit-level, word-level, and array-

level granularity) [KungH78].

Systolic arrays and wavefront arrays are characterized by inflexible and highly dedicated structures.

Hard-wired dedicated processors offer high processing speed but suffer from long redesign time as one
attempts to accommodate for necw algorithmic requirements. With the advent of modern algorithm/
architecture analysis, the programmable array processors will become not only rore economical but also

more appealing in coping with constant changes of system specifications [KungS85].

A very desirable quality of array processors is reconfigurability. Here the term is used to mean the
ability to alter the interconnection patterns between the PEs for certain intended applications such as
multifunction or fault tolerance. Two types of reconfiguration strategies are applicable: Static
reconfiguration is used to establish a preprocessing step wherein the network is configured prior to the
initiation of the tasks, and dynamic reconfiguration is used to reconfigure the execution paths during run
time. This latter capability is particularly desirable in applications where the communication patterns are
non-determinustic. The choice of either siatic or dynamic reconfiguration is constrained by application-

specific goals, such as real-time response, reliability, or both [YungH88].

[KorenI88] proposes a data-driven programmable array processor, which was designed and fabricated
with good results. DFG algorithm mapping techniques and performance results are also presented. Much
of the other research on wavefront arrays has concentrated on the scalability and synchronization, but
neglected the general purpose PE and reconfigurable connection concepts. [KungS88] presents work that
suggests programmable systolic and wavefront arrays are being researched, but the inter-PE connections

are still statc.

2.7 Asynchronous Design

Asynchronous design techniques have the advantage of being free from the lockstep constraints. At
the same time they map very well the distributed computation system requirements and even provide
embedded self diagnostic capabilities. Synchronous systems operate on a central clocking scheme where
the clock period must be greater than the slowest combinational path possible during a clock cycle. This is
in contrast to asynchronous systems, which operate at varied computational rates. Asynchronous systems
synchronize their PEs by a special synchronization circuit that is local to each PE. Delay-insensitive
circuits are defined as circuits that implement the synchronization function by a logical behavior which is

independent of the driving module and wire delays.

The protocol definitions presented 1n [BrozozowskiJ89) describes a four-phase or two-phase signaling
protocol used 1o synchronize two or more systems. In order to use such type of protocol two or more
svstems are connected via a synchronization channel that consists of two signals request (req) and

acknowledge (ack). The end of the channel that initiates the synchronization is called active and the other

ey o

end is called passive. The four-phase protocol at the active end is as shown in eq I and the onc at the

passive end is shown in eq 2:
o req’; ack*;: req’; ack’ (eq ¥
» 1eq*; ack*; req’; ack’ q2)”

These two equations describe the complete four-phase signal protocol, which is sometimes called the
return-to-zero protocol. Note that the last two signal representations in each signal sequence are bringing
the req and ack signals back to zero after the computation has taken place. In the two-phase protocol, the

interface circuits skip the 1eturn-to- zero phase (the underlined signal identifies a wait)

Asynchronous circuit design has a number of problems which must be properly addressed. One
condition that may arise in delay insensitive circuits is transmission interference. This occurs when the
active end of the circuit places two conflicting signal levels on its channel. For example a req* followed
shortly by a req’, the passive e¢nd of the circuit would get confused and malfunction because of unstable

synchronization signal values.

Another problem is signal ordering. Modules must be capable of receiving their synchronizing signals
in any particular order, proper computation must not be tied to signals arriving only in a specific order.
This is due to possible transitional delays induced on signal lines. For example, the passive end expects its
synchronization to be done by signal a* followed by signal b* and both signals are properly generated by
the active end. Yet, due to extra delays on the wire the signal order gets reversed. The result would be that
the passive end would not work properly. If signal sequencing must be used, then all possible signal order

combinations must be allowed.

A synchronization problem may also arise if the active end sends inputs to a passive end that is not
ready to utilize them. If the previous inputs were not properly latched, then one computation step will
interfere with the next computation step by contaminating the next step’s input data. This problem is called
computational interference because there is a mixing of current and previous inputs. The way 0 overcome
this problem is to have the inputs latched by a signal sequence that implics that the current computation is
finished and that there are more inputs to be latched. much like the protocol shown in equation 2
fGopalakrishnanG90).

8. The active side sets the req signal high, then it waits for the passive side to make the ack signal have a low to high transitiun Once the ack sagnal has
been receved by the active side it sets the req signal low and waits until the passive side makes the ack signal have a high to low transition

9 The passive side waits for the active side to make the req signal have a low to high transiion Once the req signal has been received by the passive side
it sets the ack signal high, then it waits for the active side to make the req signal have a high to low transition Once the req signal has been reset by the
active side the passive side sets the ack low

21

2.8 The CHIP Architecture

The CHiP architecture is of particular importance to this thesis due 1o its relevance. We refer back to
this architecture in later chapters as we describe our work. Some of the PAAP architectural features are
based on concepts introduced by the CHiP architecture. Only the most important architectural highlights

are included here, for a more complete description refer to {SnyderL82].

The CHiP is a loosely coupted MIMD architecture composed of a collection of homogeneous PEs
placed at regular intervals in a two-dimensional lattice of programmable switches. Each PE is capable of
performing floating point operations, and has its own local memory bank for programs and data. There is
no concept of a global memory, and access to secondary storage is accomplished via the perimeter of the
lattice. Switches are used to connect PEs in different ways, each switch has enough memory to store

several different pre-loaded configurations such as binary-tree, hypercube, mesh, etc.

Large computational problems are implemented on the CHiP by decomposition into a sequence of
parallel algorithms called phases. Each phase is described by a graph, which is directly implemented on the
computer by programming the switches; the processes are implemented by writing sequential programs for
each PE. The ability to configure the parallel machine dynamically to match the algorithm topology

enables this type of computer to be a universal paraliel computer [SnyderL81] [KungH82].

The CHiP approach to general purpose MIMD computation was shown to be feasible. The main idea
behind it was that at different times during the execution of a parallel algorithm, processors may need to
communicate in a varicty of ways. For example, during one step a tree configuration may be needed to sum
a set of numbers, in another step a rectangular mesh may be required to execute a systolic-like operation,
|GannonD86] shows how the SIMPLE computation algorithm, which can greatly profit from the flexible

routing mechanism provided, can be mapped onto the CHiP architecture. !0

The CHIiP's switch provides a set of predefined routing configurations, This feature turns into a

restriction when a new or partial switch configuration that is not in the predefined routing set is desired.

Each CHiP PE implements a loosely coupled memory model because it has access to its own local
memory. Data and programs are first loaded into the local PE memory and fetched as they are needed. This
implies that the PEs may work independent of one another, but memory access cycles have to be
synchronized, which limits the design’s scalability. At the same time, no provisions are made for fault

tolerance, and its implementation would require extra circuitry.

10 The SIMPLL algenthm simulates the flow of a pressunzed liquid as 1t moves inside a sphencal shell.

Chapter 3 PAAP Architecture Overview

The PAAP array proposes a methodology for mapping high-level computation mto hardware
structures. This feature is shared with systolic and wavefront armays: however, the PAAP architecture
differs from standard systolic or wavefront arrays in that its PEs can be dynamically programmed and
interconnected via programmable REs. In contrast, systolic and wavefront arrays have static

interconnections and implement only a single special purpose hard-wired instruction.

In Flynn’s taxonomy, the PAAP architecture would be classified as an MIMD because each PE can
execute its own instruction in an asynchronous autonomous manner, and data can flow in parallel to the
PEs; data may flow as initial data and partial or fully computed results. A further MIMD classification
places the PAAP array as a tightly coupled MIMD architecture because cacu PE does not have its own
local memory, and relies on a host processor for both its instructions and data. The only problem with this
classification is that Flynn's MIMD taxonomy does not fit well on array processor architectures, and the
PAAP array is a wavefront-type architecturc. [KungS85] discusses the different features that qualify
wavefront arrays; however, there is no real definition for arrays that can be built using the PAAP
architecture as a building block. Based on Duncan’s taxonomy, the PAAP architecture classifics as a new
type of MIMD Paradigms, the Configurable-Routing-Programmable-Element Wavefront Array (CRPE
Wavefront Array).

The PAAP array addresses the 3 main asynchronous circuit problems by design, Our asynchronous
approach uses a modified two-phase signal protocol which allows the active and passive end of the circuit

to implement their own return-to-zero synchronization upon the receipt of the proper protocol sequence.

Transmission interference is not a problem because both the acuve and passive sides of the circunl
depend on each other for resetting their synchronization signals. Once a signal has been set by the active
side, the active side will wait until it receives its acknowledge before it attempts to modify the value of the
protocol signal. Signal ordering is not a problem because all required synchronization signals are buflered
upon arrival, thus computation only takes place when all required signals are present. Computation
interference is addressed by buffering all of PE. The output synchronization mechanism makes sure that

outputs are only latched in at the appropriate times in order to guarantee data consistency.

3.1 Introduction to the PAAP Array

A PAAP array is built by arranging 8-bit PEs in a regular lattice interconnected via 8-bit polymorphic
REs as shown in figure 3. Each PE and Routing Element (RE) can be programmed to exccute its own
instruction, which makes the PAAP design an MIMD-type array processor. The PE implements an integer

RISC-like instruction set. Programming e¢xamples in a later chapter, will show how the PE almost supports

23

high-level constructs without an assembler or a microcode decode stage. The RE implements a

bidirectional-2-in-to-2-out instruction set. !

| - J L J | L]
L= epmn | |
@ Routing Elemant [-——. PE PE foveceona MYyerconreaad PE PE ——[
H : - '
PE H ' H ' ! p—
Elerrent 2
| RO O O S OERORRC
...... Indirect Connncuon : : Z : : =
» [l ' :]
e Direct Connrecuen —{ re _,4@-..‘ PE fpoocrrncca @ PE p--@--- PE |
J : [: —
3 M ' M ’ A
: ; : : : : :
4 ’ : ' ' 4 1
" L] H [N ' L
H H . H i ' !
[' ' H ' H H ' »
_@@@ IO R O B O O
[
R : e
'] 4 ' H H '
’ ’ H [' !)
. ' ' ' ' . '
’ : H ‘ H i '
i 1 L : : : H p—
' ‘ 1
}_ e @ N @ PE @ pE j—
¢ H ‘ -
. : H ' ! —
DERO; ® OZRO;
H H ! ' ! -
; ' : ' : M
PE PE conovsecnl pf lrsscanscea PE PE —
r_lﬁ r_-l—l éj é:)

FIGURE 3. A PAAP Array '

The RE's functionality is based on Snyder’s switch lattice concept, but its implementation is original.
This PAAP RE improves on the CHiP’'s switch predefined routing configurations restriction by allowing
individual port direction and source to target controllability. This means that the compiler can build any
switching network it requires and is not restricted to H-tree, Binary-tree, Mesh, etc. configurations. Any
RE port can be programmed to be an input or an output, and can flow to any one of the remaining ports.

The switch implementation is novel and unique to this work.

The PE implements an original programmable wavefront array element, as such, instructions and data
are not fetched from memory as in the CHiP design. Instead, each PE and RE is programmed to execute
the desired instruction and routing scheme respectively during the program load phase and data flows

through the complete array in wavefronts during the program execution phase. The PE provides built-in

11 This strategy allows any two buses to become either an 1nput or an output, Once their direction has been chosen, then the buses can be connected to
any other uncommutted input or output buses

12 The wmdirect connection signifies the existence of many more PEs and REs that are not shown

fault tolerance without incurring extra hardware overhead. The host should be able to dynamically map-out
groups of PEs that do not reply 10 request signal chains and reroute around them. However no real
hardware support for this feature is provided for it is an inherent capability in the reconfigurabthty of the

REs and the asynchronous timing of the PEs.

The PAAP array implements a tightly coupled memory model and the shown penphery regsters serve
as buffers for the host to provide input data to the array and to receive calcutated results from the array.
The PAAP array is truly scalable because it does not suffer from clock skew synchronization problems,

which may limit the array size.

3.2 PAAP Array Building Blocks

We envision a PAAP array being built by using a combination of the PAAP building blocks as shown

in figure 4. These building blocks should be fabricated as separate ICs as follows:

+ PAAPI targeted to be a member of the array which provides RE capabilities on all of its output
busses. This would allow us to tile the PAAP1 and create an array of any size with ready to use
inter-PE connections (see figure 5). However, if this were the only IC we could use, there

would be extra REs on all of the periphery output busses. which may or may not be desirable.

« PAAP2 targeted to be a periphery array element. It would be used to form the left-most column

or bottommost row of the array.

» PAAP3 targeted to be used in conjunction with the PAAP2. This IC would be used o add
routing elements in between the bottommost row elements. As a result the bottommost row
elements will have inter-1C routing to the left. The 1C would also be used to add routing
elements in between the left-most column elements. As & result the left-most column elements

will have inter-IC routing to the bottom.

The PAAP! IC would use 24, 10-bit buses, therefore it would require 240) pins, plus 2 pins for gnd and
2 pins for vdd. This totals 244 pins, which can now be achieved in some advanced PGA packages to
provide us with full parallel I/O to/from all busses. The PAAP2 IC would use 204 ping and the PAAP3 IC

would use 124 pins. "

A PAAP array that contains 1089 PEs would be build as shown in figure 5. Notice that the first 10
rows from top to bottom are composed of 10 PAAP1 ICs arranged from left to right. The night most

column is composed of a PAAP2, which provides the right side of the array with connections to periphery

13 We need two separate vdd and gnd pins, one of each for the logic and one of each for the pad nags This helps reduce the signal noise level

25

PEs. In order to provide inter-row routing for all right-most column members, we use the PAAP3 element.
The bottormmost row is composed of a PAAP2, which provides the bottom side of the amray with
conncctions to periphery PEs. In order to provide inter-column routing for all bottommost row members,

we use the PAAP3 ¢lement.

PE & PE G PE PE & PE & PE
Iy
rE PF PE p——gi PE PE FE
rE re e —g PE @ PE &) PE
FIGURE 4. PAAP Building Block ICs ¢
. PAAP Building Block ICs
PAAP2
PAAPI PAAP] PAAPI PAAP! Paap! PAAFP! PAAPI PAAP! PAAPI PAAPY
PAAF3
PAAP2
PAAPI pPasri PAAS) PAAPI PAAP! PAAP! PAAP! PAAP! PAAP) PAAPI
PAAPY
PAAP2
FAAP! PaAP! PAAPI PAAPI PAAFPL FPAAP! PAAPI PAAP! PAAPI PAAP}
PAAPY
PAAF2
PAAPI PAAPI PAAP! PAAF!) PAAP] PAAP} FPAAP! PAAP! PAAP! PAAP)
PAAP3
PAAP2
PAAPL PAAP! PAAP! FAAP] PAAPI PAAP! PAAPT PAAP! PAAP! PAAPI
PAAP3
PAAP2
PAAP! PAAP! PAAP! PAAF! PAAPI PAAP! PAAPI PAAP! PAAP} FPAAP}
PAAP3
PAAPY
FPAAPI FAAP! FAAF] PAAPI PaAP] PAAP! PAAP? PAAP! PAAP! PAAPI
PAAP3
PAAP2
PAAP PAASR) PAAF} PAAP} PAAP! FPAAP} PAAP? PAAP] FAAP! PAAPI
PAAP}
PAAP2
FAAP! PAAP! PAAP} PAAPI PAAP} PAAP? FAAPE PAAP] PAAP] PAAPL
PAAPY
PAAP?
PAAPI PALPI PAAP! PAAP] PAAP! PAAP! PAAPT PAAP! PAAP? PAAPS
FAAP3
~ - - - - - - - - -
ranrz| 2 [Paara] 3[raar2} 3| ruare | 3 [panrz)| 3 [rnr] 3| panra] 3| Panee| 3 |rasea| 2loanr2| 3] paar2
N N & & 2 2 g N N &

FIGURE 5. A 1089 PE PAAP Array Configuration

14 The fabncanion of these buiiding blocks 1s heyond the scope of this thesis

3.3 The Smallest PAAP Array Configuration

This section presents a sample array configuration as a means to show how the PE and RE can be used
to form arrays. The presented ideas are possible solutions to building PAAP arrays, the decisions involved

in designing an actual array are beyond the scone of this thesis.

The smallest PAAP array configuration is a single PAAP2. We will discuss how a host computer

(HOST) would communicat: with a single PAAP2 as a means to show the necessary interaction (see

figure 6).

S_ o - r ©
|} g - T |
L3l <] | 2 3l 3 gl
E * él &l &) o] &2
1 3 o Mu
€| —
Mu
G
Controller 5 \§
viux
)]
IR R —] "} —{ R R
Adares, 1R = R9 L yrrmeey
Daa& 5§ 2 3 Data &
Control Bus B 2 Bl contreBu
-} -] =
Ry
[o A bus C bus A bus C bus A bus C bus e
2 PES] 7 KL PER zH
2 2 E
[=] [c
REY RE1 3 3 L1]
» L 4 L4
£ 2 2
= = =
A bus Chbus A bus Cbus A bus C bus -
=] PE3] 7, PE4 RL& PES =
£ 2 2
=] [=] [}
o
RE2 RE3, RE4, RES RLb =
> L] "
£ £ B]‘:
= ™ @
A bus Cbus A bus C bus, A bus n C bd!’ P
2 PEO REQ PE1f REL PL2f =
4 2 H £
= = =) -
Address, Address, %
Data & tais & Zlz
Control Bus Control Bu. &
R21 R20 R19 R1s R17
u
=

2

Dualius]

FIGURE 6. The Smallest PAAP Array Configuration '’

27

A PAAP array may be build onto an extension card that can be connected to a host computer. The
PAAP cxtension card will add the necessary logic to implement an 1/O policy, as well as add the periphery

registers,

A possible I/0 policy could be as follows: The HOST communicates with the PAAP array by writing
to its periphery registers. It sces the PAAP array periphery registers as a contiguous register file upon
which it can perform 1/O operations. ¥vhen the HOST needs to move data into the PAAP array, the HOST
provides the startine ~3dress of the memory block to be transferred and issues either a read or write signal.
If the requested operatuon 1s WRITE, the PAAP array will either sample its parallel data busses or its 1/0
bus for valid inputs depending on the addressing style. The HOST will be acknowledged by the PAAP
array once the input data has been consumed. If the requested operation is READ, the PAAP array will
make sure that there are results ready for HOST access and it will provide the data along with its
synchronization. The HUST will usually select a PAAP array. request the needed operation and go on to its
next task. 1t will come back later and check the selected PAAP array’s status register to determine if the

requested operation has finished.

In figure 6, the processing elements are numbered from bottom-left to top-right. The bottom PE row
contains PE (), 1 and 2, the middle PE row contains PE 3, 4, 5 and the top PE row contains PE 6,7 and 8§
counting from left 1o nght. The routing elements are numbered much in the same way as the processing
clements, except that there are 16 REs as opposed to just 9 PEs. REQ is the one between PE0Q and PE1, and
RE15 is the one between PE7 and PES. For programming purposes, we refer to collections of elements in

terms of columns or rows. This should be intuitive since figure 6 a matrix-like structure.

Logically, the 4 1/O busses for both PEs and REs are arranged clockwise; the left side is the A bus, the
top side is the B bus, the right side is the C bus and the bottom side is the D bus. For the PEs, busses A and
B are strictly inputs, and busses C and D are strictly outputs. The fact that PEs have fixed locations for
their 1/O busses in no way limits thewr data flow to that of systolic or wavefront arrays. This is due to the
routing element’s ability to virtually redirect its busses, so the D bus output of PE4 in figure 6, could be

connected to the A bus input of PE7 by properly configuring a connection path,

One may question the PE to RE ratio and the reasoning behind having almost twice as many REs as
we have PEs in a single PAAP2. We could have reduced the amount of REs to 12, by eliminating RE3,
RES, RE10, and RE12. However, this would reduce the PAAPs data flow capability to that of systolic and

wavefront arrays, namely, data flows only in a single direction. PEs could no longer use programmed paths

15 Note that the bus mulipleser, array controller, and periphery registers have been added to the onginal PAAP2. This allows the HOST to have full
control over the array

to communicate with any other PEs in the PAAP amray, they could only communicate wath their immediate
neighbors. We concluded that the 9 PEs to 16 REs ratio is needed in order to provide the desired system

level functionality.
The PAAP array has two modes of data transfer operation:
» Address range: Where data is transferred to/from the PAAP's 10 data busses in parallel.

This in effect allows parallel access to all periphery PEs” input or output registers. lts main
purpose is to provide for maximum data transfer rates. The architectural implicauon is that
depending on the requested 1/O operation, we can read from all stricty output registers or wrile

to all strictly input registers at once.

A block transfer must only be done by the HOST after having checked the appropriate block-
transfer-ready bit in the status register. All involved registers must be ready for the transfer, If
the HOST attempts a block transfer without checking the status register, and any one of the 1O
registers is not ready for the transfer, a synchronization problem may occur and the HOST will
have no way of knowing about 1. As a result, input data placed on the data busses could decay
while all input registers are getting ready, and thus invalid data could be consumed by the
array. The HOST could ttme-out and re-transmit. but it would be best to avoid the problem by

establishing a check-first procedure.

« Single address: Data is transferred byte serially to/from ihe register address specified by the

address contained in the address bus.

This mode should be used when the HOST requires access to a particular register that is not
accessible via a block access. The HOST would place the desired register’s address on the
address bus, set the chip select active high, and the read/write bit 10 the desired operation. The
PAAP array would then decode the address and select the appropriate register for the operation.
At this point, operation checks would he made to determine whether the requested operation 1s
allowable on the currently selected register. The HOST should address the status register
directly to obtain its contents, when atempting to determine if another block transfer can be

performed.

The 1/O registers are arranged in 3 groups (see table 3): strictly input registers, 0, 2,4, 6,7, 9, and 11;
strictly output registers, 1, 12, 14, 16, 17, 19, and 21; and flexible input/output registers, 3, 5, 8, 10, 13, 15,
18. and 20. Each register has a tag bit that identifics what function the HOST can perform on it, read from,

write to, or both. The bidirectional register’s direction tag is written by controller circunt after gencerating

29

the desired regaster’s address and checking that it is safe to overwrite its contents. The fixed-direction
register's direction flag is not accessible to the controller circuit for writing. This prevents erroneous data
direction setings, and he!ps the address decoder circuit determine when an addressing exception has

occurred.

The reason for restricting the operations that can be performed on certain registers, can be better
understood if we consider the periphery PE input or output synchronization. In figure 6, PEO has its A
input bus connected to R2 and its D output bus connected to R21. R2 can not reroute its output connection
to any other PE’s input or output bus. This by design restricts R2 to be a strictly input register. R21 can not
reroule its input connection to any other PE’s input or output bus. This by design restricts R21 to be a
stricdy output register. There is no way that the PEs or REs can modify the contents of input only regicters;
they are only writable by the HOST. The same applies to output only registers, we assume that they are to

be written with results generated by the local PEs and REs.

TABLE 3. Addressable PAAP Registers

Address Register name Side of the IC Direction
0 RO Control Register - In

1 R1 Status register - Out

2 R2isPE 0's A BUS Left In

3 R3isRE 2's A BUS Left In/Out
4 R4isPE3's ABUS Left In

5 R5isRE 9's A BUS Left In/Out
6 R6isPE 6's A BUS Left In

7 R7isPE 6's B BUS Top In

8 R8 isRE 14's B BUS Top In/Out
Y R9 isPE 7's B BUS Top In

10 RI0isRE 15'sBBUS Top In/Out
11 R11is PE 8's B BUS Top In

12 R12is PE 8's C BUS Right Out

13 RI13isRE 13’sCBUS Right In/Out
14 R14is PE 5's C BUS Right Out

15 R15isRE 6's C BUS Right In/Out
16 R16is PE 2's C BUS Right Out
17 R17is PE 2's D BUS Bottom Out
18 RI18isRE 1's D BUS Bottom In/Out
19 R19is PE 1's D BUS Bottom Out
20 R20isRE 0's D BUS Bottom In/Out
21 R21is PE 0's D BUS Bottom Out

The strictly input register implements the proper input synchronization protocol required by the PE 1o

which it is connected. Its implementation emulates the presence of an input partner to the connected PE.

The strictly output register implements the proper output synchronization protocol required by the PE o
which it is connected. Its implementation emulates the presence of an output partner to the connected PE.
The flexible input/output register has to be able to implement the required input or output synchromzation
protocol, based on a programmed tag setup by the HOST. This dircction tag acts as a control and 1s
assigned a value during the PAAP array program loading stage. The flexible register implementation

emulates the presence of either an input or an output partner.

The only way to convert R2 and R21 into flexible input/output registers would be to connect them to
an RE, located between the respective register and the existing bus connections to PEQ. This design change
to all restricted registers would add 12 more REs to the PAAP2, at a great cost in chip area with no real

functionality gain.

An addressing exception is present in the following situations:
« If the address is invalid because it does not select a valid /O register or block transter.
« Anaddress corresponding 1o an input register is provided and the requested operation is read.
« An address corresponding 10 an output register 1s provided and the requested operation is write.
- Anaddress corresponding to the control register is provided and the requested operation is read.
« Anaddress corresponding to the status register is provided and the requested operation is write.

A synchronization exception is present in the following situations:

- An address corresponding to an output register is provided and the requested operation is read,

but the data contained in the addressed register is not valid yet.

- An address corresponding o an input register is provided and the requested operation is write,

but the data contained in the addressed register has not been consumed.

These synchronization exceptions are considered to be temporary in nature, because they will
eventually be cleared when the register becomes available. Still, they are considered exceptions in order 10

provide a means of communicating to the HOST that the requested register is not ready for transfer.

The PAAP array requires the following single-bit control signals to carry out all of its functions: '

16 Both Reset and CS signals require a falling (1 te 0) transition to be activated

31

Reset: The reset signal is used primarily to reset all of the registers to a known state on power

up.

It is not advised to assert this signal while there is a program running because it will clear all
PE and RE instruction registers as well as all control logic latches, along with all periphery

registers’ synchronization tag bit.

CS: The chip select signal is simply used to activate all I/O operations within the PAAP array.

The PAAP armay provides the user with the following 10-bit I/O busses:

Data Bus 1 - 10: These 1/0 busses are meant for block data transfers to and from the PE‘s /O

registers.

This allows us to load all strictly input registers in parallel or be able to retrieve data or results
from all strictly output registers in parallel. The Input and Output registers are multiplexed
depending on the value of the desired READ/WRITE operation bit (see table 4).

However, this host connection is impractical for large arrays. A solution may be to arrange all
periphery registers into a memory block that the host reads or writes. The memory block would
have a standard memory behavior as it interacts with the host, but each memory word would
cither drive or be driven by the array periphery elements in a block multiplexed fashion. As a
result, the array could grow without affecting the host to memory interface. Thus every time

the array grows more storage locations would be added to the memory block (see figure 7).

g Mo L
Interface

P Memory -t >
Interface

HOST ARRAY

| Memory g

Interface

FIGURE 7. A Possible Host/Array Interface

LS |
2

+ 1/0 Bus: Tlus is a byte serial data /O bus that can access all registers for both input or output

depending on the allowable operation on the selected register.

This bus has a special purpose when block data transfers are enabled. While doing a block
read, by default it carries the contents of the PAAP array satus register. This technique does
not apply to the block write operation and therefore the control register does not get written to

by default, because it could be destructive on already-siored data. The control register must be

addressed directly.
TABLE 4. Byte Parallel Operations 7

R/W Bit Data Bus Register Name
WRITE Data Bus | R2
WRITE Data Bus 2 R3
WRITE Data Bus 3 R4
WRITE Data Bus 4 R5
WRITE Data Bus 5 R6
WRITE Data Bus 6 R7
WRITE Data Bus 7 RS
WRITE Data Bus 8 R9
WRITE Data Bus 9 R10
WRITE Data Bus 10 RI1
READ 1/0 Bus R1
READ Data Bus 1 R21
READ Data Bus 2 R20
READ DataBus 3 R19
READ Data Bus 4 R18
READ Data Bus § R17
READ Data Bus 6 R16
READ Data Bus 7 RI15
READ Data Bus 8 R14
READ Data Bus 9 R13
READ Dat» Bus 10 RI12

+ Address Bus: This is a n-bit address bus which provides the address of the target or source

register for the requested operation. In our case n=5.

The internal controller will make sure that the HOST is allowed to perform the requested
operation on the selected register, and notify the HOST of any addressing errors via a status bit

in the status register. Block 1/O takes place when all bits in the address bus are set to active

17. RO and R1 have their intenal bits arranged as Least Sigmficant Bat (LSB) on bit 0 and Most Significant Bat (MSEjonbit?

33

high (11111); once this address 1s selected the controller will carry out a block read or block
write if all synchronization checks did not encounter any problems. The two most important on-
board registers are RO and R1 because they provide the user with a simple-effective ir terface
for the PAAP to receive commands for execution and for the HOST to be able to interrogate

the PAAP on its current machine state.

The array implementation must include a simple way to communicate with the host. We propose a
control register, which would allow the host to provide commands to the array, and status register, which
would allow the array to communicate processing status information back to the host. The possible

contents of the control and status registers are described in tables 5 and 6.

TABLE 5. The PAAP Array Control Register

Bit Position Meaning or Use

C0 LOAD Program

Cl Re-Synchronization Request
C2 CLEAR Synchronization Error
C3 REQ Synchronization Signal
C4 Setup Pooling

Cs Read Operation

Ccé Write Opcration

Bit CO is used to program the array. When this bit is active, the PE has the pass_ab instruction forced
into its logic core. This overwrites the present contents of the Instruction Register (IR). The effect of
runmng pass_ab on all PEs is that the input busses A and B arc buffered and then mirrored onto the output
busses C and D respectively. The RE is also forced into the straight pass switch configuration which in
effect connects input bus A to output bus C and input bus B to output bus D. This bit is not destructive of
the data stored n the PE or RE IRs. In order to change the value of the PE or RE IR, you must also have

the appropriate bit turned active in the B bus of the column being programmed.

Bit C1 is a specific request by the HOST for a HOST-to-PAAP synchronization. It is meant to be used
by the HOST to clear hanged PAAP array elements. The possibility of undetected synchronization errors
arises due 1o our asynchronous design. Should there be a transient malfunction in any of the internal
circuitry and the synchronization protocol be broken, then the PAAP array involved would be locked up.
The HOST should then be able to restart the PAAP array by re-synchronizing its wnputs. If the HOST
mahes multiple re-sink atterpts and fails, 1t should then make a decision to signal the operating system of
a faulty unit or just disable the address range 1n that unit. This bit is thus destructive in the sense that all

registers have thew synchronization-tag bit reset,

Bit C2 clears synchronization errors treported previously. However, it is specific in nature o a
particular register and does not clear all synchrenization as does C1. When C2 is enabled, the desired
register address should also be provided on the address bus. Should both C1 and C2 be set, then C1 takes
precedence over C2. If the provided register address generates an addressung exception, then this request

will also generate a fatai error flag in the status register.

Bit C3 is the array global synchronization signal, it 1s the means by which the HOSTprovidesglobal /O
synchronization to the PAAP array. It takes on a different meaning depending on which 1/O operation is
being requested by the HOST. If the operation is a READ, then the HOST must want to retricve results
from the output registers. This means that the PEs attached to the selected registers, block or single register
address. need to obtain an ack signal. This will tell them that they are allowed to latch their results onto the
output registers as soon as the results become available. Therefore, on a READ this control bit hehaves as
an ack signal. If the operation is a WRITE, then the HOST must be placing new data ento the input
registers, therefore this signal is interpreted as a global req on a WRITE. Given that the peniphery registers
emulate an input, output, or input and output partner to the PE they are connected, then this req or ack
signal may take on a synchronization meaning, which is particular to the /O registers. This fact must be
determined by the machine architect after the periphery registers have been designed and properly

simulated.

If a byte transfer is being requested, then the selected register output is placed on the 1/0 bus on i
READ, or the contents of the 1/O bus is muxed on the selected register. If block transfer is being requested,
then all input or output register req or ack signals are used to derive the global status or control

synchronization bit.

Bit C4 is a request to remember the currently-provided address. 1ts purpose 1s to allow for a simple
pooling mechanism. The first pooling request would then be set by properly setting the control register,
register address and control signals. Later pooling requests would only require the chip select signal to be
properly toggled, which would then set in motion the requested operation. Once this bit is set, the address
bus can change value and its new value will be stored when the chip select signal is toggled. This mode
might be used by the HOST when pooling the status register for a particular condition. The HOST sets up
pooling on the status register, and then toggles the CS signal when it wants to access the status register

contents via the 1/0 bus.

Bit C5 and C6 are the READ and WRITE operation request. The ultimate /O operation that the PAAP
array will perform is decoded by looking at both the value of the Read and Write signals and the desired
address.

35

TABLE 6. The PAAP Array Status Register

Bit Position Meaning or Use

S0 Synchronization Error

S1 Addressing Error

S2 Fatal Error

S3 ACK Synchronization Signal
S4 Processing State

S5 Block Transfer Ready

S6 Wait

Bit SO signals that there has becn an intemal synchronization error. It is up to the HOST to
determine how to handle the error. The notification is made and the data meant for the register in question
is thrown away. There is a chance that the synchronization chain across PEs has been broken. In such case,
the HOST will get a synchronization exception multiple times from the same address. The HOST should
be able to determine that there is something wrong with the PAAP array and attempt to either reprogram it
or re-synchronize it. This is a very crude way to implement blocking read/write operations. At the
operating system level, we can only see that a read is blocking our process maybe because it is waiting for
data to be available. At the micro-architecture level, the same is true, except that it is up to the HOST to
keep pooling the desired address for a valid result to read. The HOST should time-out on an 1/O operation
after a predetermined number of tries, and thus return control to the calling process at the operating system

level.

Bit S1 notifies the HOST that there has been an addressing exception. It is up to the HOST to
determine how to handle the error. It could be that the HOST will choose to ignore such errors, and just
keep track of how many it gets until it reaches a certain number and then raise an exception to the

operating system, 13

Bit S2 notifies the HOST that a fatal error has happened. The HOST must have been trying to read
from the control register, write to the status register or an addressing exception was detected while

attempting to clear a previous single register synchronization error

Bit B3 is the array global synchronization signal, it is the means by which the PAAP array provides
global 1/0 synchronization to the PAAP array. It takes on a different meaning depending on which 1/0
operation is being requested by the HOST. If the operation is a READ, then the HOST must want to
retrieve results from the output registers. Given that the previous results have been consumed, then this bit

signals a req or vahd data ready on the selected register(s). If the operation is a WRITE, then the HOST

1§ The implementation of emor handling policies 1s left up to the architecture designer

36

must be placing new data onto the input registers, therefore this signal is interpreted as a global ack on a
WRITE.

Bit S4 signals the processing state in which the PAAP array has been sct. The possible values are
(active high) which means that the PAAP array is running, and (active low), meaning that the PAAP array

is not running. It is a means for the host to check before attempting to restart an array element,

Bit S5 signals that the PAAP is ready for another block transfer. This is not the same as the S3 because
S3 will only be generated when all output registers have valid results; however, the HOST needs to be told
when it is safe to provide another block of input data so as to keep the input data flow constant. The main
difference between S3 and S5 is that S3 may be signaling a condition related 1o a specific register, and S5

always relates to the block of registers.

Bit S6 signals that the requested operation is in progress and the HOST must wait for its completion.

The HOST can use this signal for performing primitive scheduling.

Because bit S7 is not in use in this version, the status register is only 7 bits wide. This bit is always

tied low for data transfer purposes.

In order to program the PAAP array, PEs and REs are configured to form two busses through the array.
One of these is used 1o pass the instructions to the PEs and the other is used as a set of control lines to load
data into the desired row of PEs or REs. This means that the instructions for an entire column of PEs or
REs are loaded in parallel. Programming the PAAP array should be done as follows (see appendix A for a
detailed programming algorithm);

*

Set all internal registers 10 a known statc

Write control word to the control register

Initialize all Input registers to 0

Fori from jdown to 1
» Set the column instructions on data buses 1..j
+ Signal column i to begin sampling its IR input bus
» Wait for (i - 1) column propagation

- Signal column i to finish loading the IRs

37

Following the completion of loading all of the registers, the load bit in the PAAP control register is

returned to zero to place the array in an operational mode.

Chapter 4 The PAAP Programming Paradigm
An architecture is a hardware representation of a computing paradigm. The architecture's relevance is

a reflection of this paradigm’s capacity to encompass a range of computation, and the case with which this

range of computation can be mapped onto the hardware.

A Von Neumann architecture accepts the mapping of any computation, as long as it can be expressed
as a sequential set of primitive operations. An array processor can accept the mapping of a set of events in
parallel, but lacks the capacity to execute such operations by itself, without the help of an outside
controller. Systolic and wavefront arrays are special purpose and non-programmable, and also require a
host environment to provide them with data and instructions. This is contrast to the Von Neumann

architecture which can fetch and execute its own instructions and data.

The computation paradigm of the PAAP architecture can be expressed as the parallel execution ol a
set of interacting operations. It is analogous to a set of programmable asynchronous pipelines which may
interact with their neighbors. The term neighbors in this context does not necessarily imply proximity, as
the programmable path mechanism provided by the RE allows any PE to connect its input or output busses
to any other PE in the array. Routing is deterministic in that a connection path must be programmed along
with the programming of the PEs. The PAAP is not capable of sustuning 11s own instrucuon/datit stream,
and hence it is not a “computer”, but is a computing element which operates in conjunction with 2 host

computer (in the same sense as an array processor or systohic/wavefront arrays).

The PAAP architecture draws 1ts design from concepts such as programmable PEs and REs, self-timed
circuits, wavefront, pipeline and array processor architecture. The novelty of this architecture is the way in

which such concepts have been combined tor massively parallel apphcations.

The PAAP exhibits an unrestricted data direction via 1ts programmable RE. This capability 1s available
even if the PE can only take its inputs from the right and top and place its outputs at the bottom and left

directions. The unrestricted data flow direction 1s all implemented by the RE and not the PE.

4.1 Operational View of the Architecture

The architecture can be viewed in terms of simple and complex operations. We define simple
operations of the PAAP array as the primitive operations that can be performed by its constituent elements,
the PE and the RE. The PE’s main computational clement is a standard ALU [TTLBook&S] modified to
generate an asynchronous clocking signal and extended for this work to mclude some fundamental

computing functions. The PE’s instrucuon set provides 44 instructions, listed n table 7.

TABLE 7. PE Instruction Set

39

Operands Instruction Op-Code Function
0 CLEAR 0x13 F=0
SET Ox1c F=FF
NEG 0x23 F=-1in 2’s complement
1 INC_A 0x00 F=A+1
DEC_A 0x2f F=A-1
SHIFT_A 0x2c F=A << by 1, with Os padding
SHIFT_AC 0x0c F=A << by 1, with 1s padding
SHIFTR_A 0x3f F=A >> by 1, with Os padding
NOT_A 0x10 =~A
NOT_B 0x15 F=~B
PASS_A 0x20 F=A
PASS_B Oxla F=B
2 OR Oxte F=AORB
ORC 0x01 F=(AORB)+1
NOR Ox11 F=ANOR B
AND Ox1b F=AANDB
NAND 0x14 F=A NAND B
XOR 0x16 F=AXORB
XNOR 0x19 F=A XNOR B
ADD 0x29 F=A+B
ADDC 0x09 F=(A+B)+1
SUB 0x06 F=A-B
COMP_SUBC 0x26 F=(A - B) - 1,and Status is A comp B
PASS_AB Ox1f F=A and status is B
PASS_ABCOND 0x0f F=A and status is B if cond is met, else F=0
Compound INST1 0x02 F=AORNOTB +1
INST2 0x04 F=A + (A AND NOT B)
INST3 0x05 F=(A OR B) + (A AND NOTB)
INST4 0x08 F=A + (A ANDB)
INST3 0x0a F=(A OR NOT B) + (A AND B)
INST6 0x0d F=(AORB)+A
INST7 0x0¢ F=(AORNOTB)+ A
INSTS 0x12 F=NOT A AND B
INSTY 0x17 F=A AND NOTB
INST10 0x18 F=NOTAORB
INST11 Ox1d F=A ORNOTB
INSTI2 0x24 F=A + (A ANDNOTB) + 1
INST13 0x25 F=(AORB)+ (AANDNOTB) +1
INST14 0x27 =A AND NOTB-1
INSTIS 0x28 F=A+(AANDB)+1
INST16 0x2a F=(AORNOTB)+ (A ANDB) +1
INST17 0x2b F=AANDB-1
INSTI8 0x2d F=(AORB)+A+1
INSTI19 0x2e F=(AORNOTB)+A +1

40

The PE'’s instruction set is implemented by both the ALU and CU. The ALU implements 41 distinct
instructions and the CU implements 3. The extended PE operations include the generation of a status word,
conditional pass, shift to the right, and mirror inputs. along with the capability to internally route the result

and status words in a switch box manner. 1°

With the extensions provided in this design, the status word from a PE may be used as input to other
PEs which can control data flow based on any one of the status bits. Pipelines of PEs can implement
processing segments which include conditional altemation, a fundamental property of both sequential and
parallel computation. Complex computation steps can be built using a combination of shift left or right,
increment, subtract, decrement, add, etc. Mirroring inputs is useful in broadcasting data and making the PE
appear as a buffer. Switch box routing on the outputs allows the PE to provide an even richer instruction

set for every one of the original instructions can be configured in 4 ways as shown in see table 8. 3¢

TABLE 8. PE Qutput Routing

Controll Control2 Configuration Comment

0 0 r->cands->d Straight

0 1 s->cands->d Broadcast Status
1 0 r->candr->d Broadcast Result
1 1 s->candr->d Cross

The essence of the organization presented here is captured by the configurable routing which gives the
PAAP array its flexibility and power. The RE is a four way bidirectional router which provides maximum
flexibility in the definition of pipeline routes. The RE permits a pipeline to be defined in any direction
across the array, downward, sideways in either direction, and upwards. In an extreme example, a pipeline
can thread down and up through all the PEs on the chip. The router acts as a switch which together with
other routers form 1/O paths that connect PE input and output ports. The RE instruction set 18 dyadic in that
two distinct paths are programmed onto it with each instruction. These instructions define two of the RE
poris as inputs and the remaining two ports as outputs, as well as which input is connected to which output.
Note that any one of the RE ports can be programmed to be either an input or output, but not an 1/O port.

The RE’s simple instruction set is shown in table 9.

19 The added instruchions pass_ab, pass_abcond, and shiftr_a aliow the PE 10 implement data flow capabilities

20 The output routing controls arc part of the PE struction its, controll = IR bit 7 and control2 = IR bit 6

41

TABLE 9. RE Instruction Set

RE IR Bits 1/O Bus

76543210 Configuration Hex Value
11101110 a->c, b->d 0xEE
11101011 b->c, a->d 0xEB
11110101 a->b, c->d OxF5
11010111 c->b, a->d 0xD7
10100101 a->b, d->c 0xAS
01100110 d->b, a->c 0x66
11110000 b->a, c->d 0xFO
11001100 c->a, b->d 0xCC
10100000 b->a, d->c 0xAO0
00101000 d->a, b->c 0x28
01000100 c->a. d->b 0x44
00010100 d->a, c->b 0x14

A complex operation is constructed from a set of simple operations. Complex operations consist of the
concatenation of PE operations in pipeline segments, and their combination through RE routing, which can
Join these segments in dyadic operations, broadcast outputs. or permute them through the RE/PE cross
switching capabihties. The PAAP provides flow-through routing only. Iteration requires intervention by the
controller of the PAAP. which may provide successive data elements through the unit, or the same data

clements if the program so requires.

We define as an algonthmic unit, a step in a program which is implemented using simple operations,
but can be viewed as a subprogram entity within the complex operation. It may range from the

concatenation of simple PE/RE operations to any set of possible concatenations.

4.2 PAAP Programming Variants
The PAAP architecture is designed for parallel processing. This implies that data structures and

computational steps be defined for parallel execution either by language constructs or by a compiler.

A program counter (PC) in a sequential architecture implies that there is a central thread of contro} and
that the PC is keeping track of the instruction being executed. This concept is not needed in the PAAP
archatecture because each PE works in an MIMD-type fashion, and the host controls data flow rather than
instruction flow. The computational aspect of a program is imprinted on the PAAP in the form of
instructions for the PEs. and routing between the PEs programmed into the REs. The program imprint must
be prepared by a compiler and loaded by a loader which runs in the host and uses the loading procedure

descrnibed in Chapter 3 and appendix A,

A jump instruction implies a particular thread of control is changing from its present memory address
space to a new one or just to a different location within its own address space. This notion implies a
sequentiality about the algorithm because it assumes that the instruction found at the destination address
will sequentially follow the instruction at the source address. Since instructions are executed as a
wavefront in our architecture, there 1s some merit to the sequential jump instruction, but we can redefine it

slightly as follows:

In a sequential architecture a jump means that the current thread of control will be changed and that
the next instruction to be executed is at the jump target address. In our case, we do not have a central
contro} unit, and thus changing a thread controt flow only involves properly programming conditional
passes so that if the jump instrucuon is to be executed, data will flow to the new target address.
Otherwise data will have its normal flow and the target address will get a zero. This means that a jump
instruction in our architecture is an abstract concept that can be built out of the original instractions by

properly ordering the data flow on particular address subspaces within the PAAP array.

4.3 Examples of Algorithmic Units
In any application, one must always map an algorithm onto the architecture. The design goal of the

PAAP architecture is to provide a capability of having general purpose algorithms mapped onto 1t. This

process involves the allocation of PEs and communication paths.

Even in an architecture which can perform general purpose functions, there is & certan type of
algorithm that it suits best. In the case of the PAAP architecture, it is best suited for apphications that
require a reconfigurable PE interconnection network and an MIMD-type data flow. We may even suggest
that the PAAP architecture can be programmed to implement characteristics that are atinbuted to the
massively parallel connectionist architecture. In such a model, system knowledge is stored as a pattern of
connections among the PEs so that the stored knowledge dictates how the PEs interact and thus their
response to incoming data. Lookirg closer at how our PAAP implementation can fit into the connectionist
model, we can see that programming a PAAP with all of its PE and RE 1nstructions could be considered
equivalent to the process of storing knowledge in the connectiomst model. Once stored, data will he

processed in a particular way as it flows through the network {FahlmanS87]{ AbelsonHg4].

4.3.1 Pre-increment

The following high level statement can be implemented as shown in figure 8: m = ++n. Notice how

the PE's B input is uncommitted because INCA is a 1 operand instruction. The CU adjusts the 1/O

43

synchronization to account for the number of expected operands. The same instruction can have 4 different

output configurations depending what the program requires.

b
N M
—-————’q a INCA < \-———>
d
Status
(Strargh)
b
N M
e e I INCA ¢ e

{Broadcast Result)

4.3.2 Swap

Status

—bt el oA f———

Status

(Broadcast Statas)

Status

—t—l s e

(Cross)

FIGURE 8. A Pre-increment Implementation

The following high level statement can be implemented as shown in figure 9: k = swap(iy). In this

case k is a list containing 2 elements. Using a combinatinrn of PE instruction and output routing we can

accomplish a two element swap using only 1 PE. Note that the k list data structure is completely mapped

onto the architecture without the use of standard storage elements.

b

2 PASS_AB ¢ |

4

l,

FIGURE 9. A Swap Implementation

4.3.3 Post-decrement

The following high level statement can be implemented as shown in figure 10; m = (~n)--. This
example shows the concatenation of three PEs into a small pipeline. PE1 negates its B input and send s
output as the B input to PE2 via the shown programmed path. Notice how the ~n result travels down, to the
left, up, to the right, and down until it reaches its destination. This illustrate the powerful programmability
of routing paths and data flow direction control. The RE feeding PE1's B input implements the dyadic
route instruction that allows n to be routed to PEI and ~n to be routed 1o PE2. In a post-decrement the
variable value is captured first and then the variable is decremented. PE2 mirrors its B input onto the
output busses thus broadcasting it to each one of its output partners and implementing the variable capture
part of the post-decrement. PE3 then takes its A input and decrements it by 1. The inter-PE path needed to
send n from the PE2 to PE3, shown as a thick shaded arrow, can be as simple as a single RE programmed
path or as complex as necessary. The output n generated by PE3 is a different n than the input n obtamnced
by PE1. The data storage statement implied by the “=" has in a sense been mapped onto the architecture,
for every time the input n changes, the output n will change with it. If in a sequential algorithm, a step
requires the value of n before the post-decrement statement, then the input n would be provided, should the

value after the post-decrement statement be needed then the output n would be provided.

|h
w“ 4 A

N v* v
b gy b pE2 b ppy

{ Satus N N

31 * NOTB ¢ * PASSB ¢ |||uumnlml"“""|.‘ I »
4 d d
F

, S

‘ “ M Status

=

FIGURE 10. A Post-decrement Implementation

4.3.4 Arithmetic and Logic Expression Evaluation

Arithmetic and logic expressions can be evaluated by using simple or compound instructions. The
following expression can be implemented as shown in figure 1l:m=n=((c ~ldl~e)-(~a b)) & (g h)
+ (g & ~h) + 1). In the previous example we showed a single pipeline which exhibits a sequential behavior
because all operations need to be synchronized on a single put variable, namely the vanable n. The
current example has 7 input variables and thus can be expressed in a more parallel fashion. Nouce how

data dependencies dictate that there be 3 evaluation states. In the first stage, all inputs are operated on and

45

partial results are generated for the 2nd stage. The second stage evaluates the first half of the complex
expression using intermediate results as its inputs. The third stage combines all partial results into the final
cvaluation and broadcasts the result on both its outputs to map the double assignment in the expression.
Compound instructions are very powerful because they allow multiple operations to be done on their
inputs in once computational step. The same compound expressions can be built by using simple

instructions, but require more time and processing elements.

B D H
b b b b
A c E G
* INSTIO < & NOR ¢ s NOTA ¢ & INSTI3 ¢
b b
s SUB ¢ ——ppia OR <
d

FIGURE 11. An Arithmetic and Logic Expression Evaluation Implementation

4.3.5 Inclusion of Constants in the Computation

Itis of crucial importance to be able to generate arbitrary constants as part of the computation. The
following expression containing constants can be implemeited as shown in figure 12: i = ((j=1) + (k=4)).
The set instruction can be used to initialize the constant generation at Oxff instead of 0x00. The strategy for
generating constants should take into account the shortest path required to generate the desired constant
values and start with a 0x00 or Oxff. Shift, dec, inc instructions can be used to create any 8-bit desired
constant. The constant generation shown here is static in nature because no triggering inputs are required.
In this case, the outputs i, j, k will always have the same constant value, thus the shown mapping is in fact

a constant generator.

46

b b 3
1 3 2
—gpel * SHIFT_AC ¢ bl # DECA ¢}l ¢ sFT A
i d 4
4
b b b b
o 1
' CLBAR ¢ —P» ¥ SHIPT_AC ¢ ! , PASS A ¢© ' opASS B«
s
b
s aDD <
4

1 ‘ 1 [4
FIGURE 12. An Inclusion of Constants Implementation

4.3.6 Boolean Expression Evaluation

Boolean expressions can be evaluated as shown in figure 13; flag = (j >= Oxfe). Note how the clear

and set instructions are used to gencrate the comparison constant and the boolean operand.

te damgt dosit

s s P, swFr A < Ll s <P, SHIFTR A ¢ —, SHIFTR_A ©

'] q d 4
‘4-, domey
b b b b
o 1 1
4 CLEAR ¢ ——> 8 SHIFT_AC ¢ 8 PASS_AB ¢ L PASS AB ©
COND COND
‘]

FIGURE 13. A Boolean Expression Evaluation Implementation

47

4.3.7 High Level Language IF Construct

We must remember that in this architecture, flow control refers to data flow control as opposed to

instruction flow control. The following if statement can be implemented as shown in figure 14.
if(a<b)thenc=a
elscc=b

Note how the pass_a (broadcast A) instructions makes sure that we broadcast the input values in order
o make the required data streams and thus allow for maximum parallelism. The comp_subc instruction
provides us with a full comparison of its inputs, and we then shift the resulting status work to get at the
desired comparison bit. Once we have the < status bit at position 0, then we pass A conditioned on the
value of the < bit, else we pass a zero. This will implement the “then™ branch. We then implement the
“clse” branch where we want the < condition negated so that we can pass B only when A is not passed.

Finally we OR the results of both conditional pass instructions and provide the ored result on the output

bus C.
-—-'-‘——-» pass_a —()-—.» ":‘;’f e shiftr o
do=h

A
f '\ pass_ab
\ J -1 cond

not_b l or
dy=NOT It
(o
” 3

esnalled pass_a pass_ad B

-—(rI » cond

FIGURE 14. An IF Statement Implementation

48

4.3.8 High Level Language Looping Constructs

Looping constructs such as the “for” and “while™ are not supported by the PAAP architecture due to
synchronization problems in their implementation. However, a for-loop can be implemented by properly
folding it, and either program a repetitive stage that generates partial results or program the complete
folded loop as an algorithm. The while-loop can only be implemented via a repetitive stage that generates
partial results. This is due to the fact that the occurrence of the stopping condition on a while loop can not
be predicted as it can for for-loops. The following for-loop can be implemented as a folded loop. as shown

in figure 15:
for(i=0; i <= 3; i++)

A=A<<1;B=B>1;C=A+B

.
N
3
N
N
)
\
\
\
)
s
N
N
N
\
.
\
A
1)
N
\
13
[
N
\
3
\
N
\
N
\
.
3
¥
[
~
3
v
)
N
[
3
N
\
(]
1
-

-l

1 4
’ ’
' ’
’ ’
¢ Ed
: ¢
{
A 0 shift_a _-9 add ——‘,—-’-
’ .
: :
¢ .
: 1 :
0 ’
'] ’
: :
14 ¢
-—&—4—-—» shiftr_a Stage 1 ’
: z
Yorerevomnons J vrsmrorssasaes rososssssecoseroncs s
pr—————
¢
4, shift_a add —-—-—->
L—’ shiftr_s | Stage 2
¢
» shift_a | add ———-—-’
e} shiltr_a Stage 3
¢
1 shin_a add
__" shiftr_a Slage 4

FIGURE 15. A FOR Statement Implementation

49

The compiler would use the starting and stopping conditions to determine how many stages to create
and would synchronize them either by having them as four consecutive stages implemented in hardware so
that the values of A and B that the second stage gets are the already-adjusted values from the first stage and
so on. An alternative would be to build just one hardware stage, provide its inputs, collect its outputs and
re-submit the previous outputs as the new inputs as many times as the loop requires. This would be a

preferred implementation, but it is left up to the compiler’s discretion to make that decision.

The loop synchronization problems come from the fact that our architecture is asynchronous and thus
feedback loops make it almost impossible to guarantee the proper synchronization of the array. Once a
seed input has been placed in a loop, it may propagate through the loop with almost no control by the host.
At the same time the synchronization dependencies are recursive in nature and there is no real way to get
the loop started. To illustrate the point, we examine the above mentioned folded loop as if we were to map

it onto a feedback loop (see figure 16).

T
— wox el s (-

g
l_n

A)

\

\

\

N

Contro} \

\

\

\

X A

§ —> MUX -————» shiftr a N

\ - \

\ \

. \

. \

} !

N B, N

N \

\ \

\ \

N B \

! \
N

N Recursive Dependency N

L N Y Y N Y N N R N N T R PR PR TR R P R R R PR T Y O RN wessteresssesases -

FIGURE 16. Deadlock Synchronization
We want to multiplex the input to the shift_a instructions so that they get the original value of A and B
the first ume and all successive times they get the shifted values of A and B. One way of doing it would be
to have a Boolean flag set to false onginally. This flag would control the mux to provide the original values
to the shift operations; however, the flag must be reset to true so that the shifted values can be used, but the
resetting of the flag depends on the a previous value already being done. However, this will not get done

uniil it gets its inputs, and thus there is a deadlock synchronization problem.

4.4 Examples of Complex Operations
The complex operation examples will build up algorithmic units by using simple opcrations. These

algorithmic units will then be used to map data structures and computational steps.

4.4.1 Min/Max Search Algorithmic Units

The IF statement mapping shown in section 4.3.7 is in fact implementing a Min Algorithmic Unit
because the output C will always be the smallest of its inputs A, B. The Max Algorithmic Unit can be
implemented by modifying the mapping shown in 4.3.7 as shown in figure 17. Note that the only change 1s

related to which status bit we are interested.

—:——-’ pass_a ——qb—b ":::
do= gt
A
f \ pass_ab
\f > cond
not b ‘ > or
dg=NOT gt
[4
-—-2——-’ pass_a \ pass ab V]
. J - cond

FIGURE 17. A Max Algorithmic Unit Implementation
Searching for the smallest or largest element in a list of elements is reduced 10 the parallel mapping
shown in figure 18 and 19. The implementation shows how an inverted binary tree data structure cian be
mapped. This data structure allows as to implement a binary search algorithm. If we assume that cach min/
max algorithmic unit takes n time vnits to generate its result, then the algonthm has a run tme of at most

depth of tree * n time units: this run time calculation assumes that all inputs are avatlable 1n paraliel.

Note that the mapped data structure is capable of handling a steady stream of hists composed into data
wavefronts for maximum parallelism. The asynchronous nature of the PAAP guaranties that while Iist, is

being processed by the stage 3. list, can be processed by the stage 2 and list,, j can be processed by stage 1.

51

We are thus using as many levels of parallelism as the algorithm mapping allows. In this case particular we

have a 2 lzvel pipelining implementation one at the algorithmic unit level and one at the stage level.

This example also shows how simple operations are integrated into algorithmic units, which are then
integrated into algorithm implementations. The level of integration is only limited by the programmer’s
imagination and the availability of a large enough PE/RE pool for the needed implementation. The Min/
Max algorithms shown here can be considered as compound algorithmic units to be used as single entities

in a higher level program.

Stage 1
Stage 2
Stage 3
0
FIGURE 18. A Min Algorithm Implementation
Stage 1

Stage 2

Stage 3

FIGURE 19. A Max Algorithm Implementation

4.4.2 A Sort Algorithmic Unit

The process of sorting involves the comparison of incoming inputs and based on their relationship (<,
>, =) an action must be taken to generate the results. A descending sort step can be implemented as shown
in figure 20. An ascending sort step can be implemented by simply deleting the PE that is implementing
the shiftr_a instruction from the pipeline (shown shaded). Note how this algorithmic unit has two inputs

and two outputs.

v

a b
pass b pass b
l a b
a docigt dowgt
pass b prmmmncaaliie. comp shiftr_a prewmecle-| pass_a
a ldm:gl do=gt
a
noth L> pass ab
cond
ldo=apt ld“!’ O/a
b o on
.
P pass b - P‘",".d‘b — pass ab [l or
co
d ozee gt l‘”‘s' ¢
]
a
——3d pass_ob pass ab
cond cond
Ola d
.—.——-——» or ———>

FIGURE 20. A Descending Sort Algorithmic Unit Implementation
The binary son algorithm can then be implemented as shown in figure 21. The algorithm requires

depth -1 phases and partially sorted results must be collected and fed back to subsequent phases.

53

;
2 / 1

Stage 3 @
Stage 4

Phase 1 1 12 Partially Sorted List

(L L L L L L4 4

Partially Sorted List

Phase 2

COGIOTIIETE IO OIIIIT IS ”

Phase 3 0 1 7 7 9 1 12 20 Sorted List

L LL L L L L L L L2 LI L L L L L L LT TLLL LTI I LI IV ITTILL L LR L LTI 2NN VI

FIGURE 21. An Ascending Sort Algorithm Implementation

34

4.4.3 A Match Algorithmic Unit

Searching for a match in a list of elements can be implemented as shown n figure 22, This
implementation requires that the element index be pant of the inputs in order o provide the index as s
main output when a match is found. The index may not be zero because the match found mechanism rehies
on the fact that if a panicular match algorithmic unit does not find a match, it will output a zero. If a match
is found then the unit’s index is placed on the output; however if the index is zero then match found and

not found would be the same value, which would be inconsistent.

key do=gt do=lt

—] o e shiftr e o

wndex Ohindes

et o 0 e

cond

FIGURE 22. A Match Algorithmic Unit Implementation
Searching for a match in a list of elements can then be implemented as shown in higure 23, In this
example k is the key we are looking for and d, is an element of the list we are searching for a match. The
input constants are the unit’s index. The Gen algorithmic unit is responsible for determining whether or not
there is a match. Its implementation can be as simple as an oring of all inputs or as complex as required.
The simple implementation would provide the index of the unit that found & match. This implementation
assumes that all input list elements are unique because if more than one match is found the resulting index

would not be valid.

/" Q/ "\/‘/\ L/

FIGURE 23. A Match Algorithm Implementation

55

4.4.4 A Factorial Algorithmic Unit

The following factorial algorithm requires a multiply function which the PAAP does not support
directly; however, the multiply operation can be built by using simple operations and defined as an
alporithmic unit. Let us assume that we have a defined multiply algorithmic unit and attempt to implement

the following factorial algorithmic:
func factorial(numbei, result)
if we have worked on all numbers
then return with the result
else factorial(number - 1, result * number)

The factorial algorithm implies a recursive mechanism, but the PAAP is incapable of implementing
such a mechanism. Instead, the PAAP can be programmed to generate partial results which would be
picked up by the host and given right back to a PAAP element for further processing. Such partial results
could be considered to be equivalent to one stage of a folded loop or one level of a folded recursion (sce

figure 24),

lvlh'

Hlae— §

Parcial Result », -1
paid ——ﬂ-—’ " w—;
dynpt
e B
P

Resstt R

R
Inpu R >- pass o |

Partial Result R* N

FIGURE 24. A Partial Factorial Program

56

We must point out that not providing direct looping capabilities or not having a built-in stack for
recursion was a conscious decision we had to make in order to better exploit the inherent paraliclism in the

architecture.

Both N and R are inputs and N - 1, R * N, and R are outputs. The multiply subprogram s denoted by a
PE sub-array executing the multiply instruction. The compiler should be able to develop standiard
implementations for the most-used routines such as multiplication, and use them at will. The stage
compares the incoming N value to () in order to make sure that the recursion is not at its last stage. If the
current stage is not the last, then the incoming N is decreased by 1 and the N-1 partial result 1s generiated.
The incoming R is also multiplied by N and the R * N partial result is generated, as well as the fuil result R
is set to 0 because we are not done yet. If the current stage is the last one, then the current incoming R s

the result and the result is set to factorial N.

Chapter 5 The PAAP PE and RE Architecture

5.1 A Processing Element

The processing element is the center piece of the design. It is a fully programmable core, with an
asynchronous data flow. In figure 25, we can see that the PE is composed of three sub-modules, the sync-
input sub-module, which generates the required input timing signal for the PE core to camry out its
computation, the PE core sub-module itself, which implements all of the PE’s functionality, and the sync-

output sub-module, which gencrates the required output timing signal for the neighboring PEs.

B Bus

Ack Bus B

; R
=
1
- Reiults on Bus Cand D
A B Have Been Consumed
us il C Bus
Daa Bus A

Core

Ack Bus A

Done

Sync-output

Dass Bus D

FIGURE 25. The Processing Element Block Diagram

3R

The inter-PE communication is totally asynchronous and follows the timing diagram shown in figure
26. The idea is that when PE(ij). in a PAAP array of N by N elements, has results ready for consumption
by the PEs connected 1o its output busses. it will generate a request signal (req) for each output partrier, o
signal its partners that they should consume the results. The PE(1,j) does not necessarily have to connect its
output 1o its nght and bottom neighbors. The PE(iy)’s output partners could be anywhere n the PAAP

array where it 1s possible to make a connection via the programmable on-board REs,

Once the req signal has been generated. PE(i.j) will wait for a signal from both its output parters
telling it that they have consumed the given data and that PE(1y) should go on to its next operauon, In
reality, PE(1) will process its next data set if present, while waiting for its output partners to consume the
previous results. However, the new results will not be latched 1nto the results register unul PE(iyg) has
received the proper signal from its output partners. This allows us to maintain the maximum level of
parallelism without compromising the uming constraints. Its implementation is accomphished by having
the core’s input busses always sample the PE input busses; when new values are present in the core’s input
busses, the instruction stored in the IR is applied to its inputs and a set of results is generated at the core's

outputs, but not latched onto the output registers.

Atter PE(i,j) has received both ack signals from its output partners, it resets its reg signals and goes on
to process its next data set. It is possible that PE(ij) will have a new result ready soon after the consumed
signal appears, in which case the cycle will start again. However, if there are no avalabie mnputs to process
at the time the consumed signal arrives, it will remember that it is ready to go, and as soon as there are any

req sign Is on its inputs it will carty out 1ts instruction on the input data and generate its next set of results.
Inter-PE synchronization can be viewed as a five step process as follows:
+ Input data is valid (Step 1 in figure 26).

Input data is present in both data busses A and B and it is signaled by the arrival of the rega

and regb respectively. Computation of the next set of results begins.
+ req*: acka®:
s reqb”; ackb™;
» The previous result are consumed (Step 2 in figure 26).

The previous results are acknowledged by the output paniners, which causes the rege and reqd
signals to be reset, reqe and reqd. This begins an output synchronization cycle and 1s signaled

by the arrival of the ackc and ackd synchronization signals.

59

¥

6¢

S

1 3O

vopey

T v

95 "dwo) ¥ Bupesudul

0

UDHDZIUOIOUAS Jg—I0W]

92 eanbyy

25UPS MW | Iewpodeq

0853504 ADuY SNOUCHOULSY BIDWWOIB0LY dyVd 10 UbiIseQ syl

ouioN smay)

MY BN

1,05uD4 Kse} "X sospsedng

£}ISI2ATU[] BIPJIOIUO)

opoez odiop seubreq

abe

snyois

PIIOA

NI

SNIDIS PIIOA

HNsay

PHOA

}Nsay PHOA

/

—

—

1\

\

QYO0 ‘D320

pbai

obau

=
/

.

PX20

/ 2%9D

qgbau

\\:|||||mmmu

LT

puosado g i

w:o>

N

buoiadQ v |

PIIOA

i

i

NSintte

Y

T4

i

60

« ackc™:reqc’;
+ ackd*; reqd":
» New results are ready (Step 3 in figure 26).

New results are present on both output busses C and D and their respective request signals are

set. The input partners are acknowledged so that they may go on to their next computation,
» reqcts jeket
+ reqd*; ackd*;
+ The input partners reset their reqa and regb (Step 4 in figure 26).

The input partners were acknowledged for their data in the previous step. This resets their
respective request lines and ends an input synchronization cycle. It implements the retum to

zero part of the synchronization protocol on the input side.

The acka and ackb reset the input partner’s output req latches. These signals are derived from
an internal acknowledge signal that is generated by the PE's core and reset as soon as the
syncout block sets its output req latches. In effect, this implements a reset pulse for the input

partner’s output req latches. 2!
+ acka*;reqa’;
» ackb*; reqb’;
» The output partners reset their ackc and ackd (Step 5 in figure 26).

The output partners reset their acknowledge signal once their input request signal is reset. This
ends an output synchronization cycle. It implements the return to zero part of the

synchronization protocol on the output side.
» acke’;
+ ackd:

This protocol reduces the signaling delay by not requiring that the req and ack signals be returned to

zero as part of the protocol. Once the current results are generated and the previous results have been

21. The duration of this pulse 15 always guaranteed to be larger than the setup and h ! umes needed by the input partner’s output rey latches (therwise
the protocol may collapse

61

consumed, the previous request signal is acknowledged. Each req signal is automatically returned to zero
as s00n as its respective ack signal 1s received, but this is not a specific uming requirement imposed on the

PE synchronization.

The sync-input module schematic diagram and timing diagram are shown in figures 27 and 28
respectively. This module requires inputs from the core to tell it the type of instruction it has stored in its

IR, this is related to the available instruction set which includes zero, ore and two operand nstructions.
The control unit in the PE core generates the following signals for this purpose:
+ (op The instrucuon in the PE IR has zero operands.
= lop The instruction in the PE IR has one operands.
« 2op The instruction 1n the PE IR has two operands.

These signals are needed 1o make sure that the sync-input module can know when to properly generate
the core req signal. The sync-input module can not always expect the same number of req signals because
this depends on the number of operands that the instruction stored 1n the IR needs. Such signals also allow
the PE to detect when the instruction stored in the IR does not correspond to the number of operands
recetved However in some cases, where the number of received req signals is less that expected, the sync-

input module has no way of knowing when the missing req signals will come in.

The PE has no time-out mechanism because it is asynchronous, and it may get into an endless wait
cycle due to a problem on its input PEs. There 1s no easy way to 1estart a broken req <-> ack chain; it has
to be restarted by the host after it realizes that it 1s not receiving any replies from the a malfunctioning
PAAP eclement. The synchronization circuit is not sensitive 1o input signal ordering because all input
stgnals are buffered by therr dniving circuits. Therefore, once a signal is present. it will remain active until

the driving circuit changes its value thus avoiding signal ordering problems.

Computational interference 1s avoided by the use of the consumed signal. This signal becomes active
when results have been properly consumed by the output partner PEs. Once a PE has generated its results it
must be made 1o wat for thewr consumption because otherwise new results could overwrite the previous
results This also ensures that the PE core has as few feedback paths as possible which adversely affect the
consstency of the stored data in the output registers. The penalty one pays is that 100% concurrent

COmMPULRLION, as 10 svstolic arrays, 18 not possible by all PEs.

The req ines from both busses A and B are tihen as nputs to the sync-input module. These signals

provide nter-PE svachronizauon by telling the current PE that it has valid input data on its input busses

62

v

1 JO T Y

29 sBog I oy s s

(wauds) anpon uoHBZIUOIIUAS ndu(
LT by

JOSED0)4 ADiry SNOUOADUASY QDWIWCIB0Id dyvd 10 ubisag sy
SPLION SROy)

A}1SI9AIU() BIPJIOJOUO)

3§ Gwo) B Duueevdvi b\.unu_
#0805 WNOWe) | Iuewiodec
RN SN anoss

novoy Ley 208 pIeanS
0pORZ 020M nubeeg
Pusde

e
i

4 dop1

ba: @ a7 A u:

>

L1 3 ory
FI 4
»Ac

1]

@ doyy

@ dogt

4 qbau
4 vbou

0113

4 peo|

63

v

€9 oyl T emp| ' YO T ...m_ Vol s o n et || A
{u1aufs) wosboq Buruly NPON UOHOZIUARIUAS Pnduf 13808 Minduoy | e

9z eanbyy snpeY SN anom

J0889304d Ay SNOVONIUASY BIQDWLDIB0sY JyVd 10 ubisag ay) nosuoy Ly "X 0spsedng

Suow sesul OpO#2 OYIOHN subseq

£}1S19A1U) BIPJIOOUO) o

\/ \/ \/ e
\/ \/ \/ -
\ / \ / \ / /«l\&
7\ { \ / /l\ Jon3a
ll/’ \ / \ g baJ
|I'/! obay

64

and to go ahcad and consume them. The PEs which are providing the reqa and regb signals along with data
on their respective busses will then want until the current PE signals them that o has consumed the mput
data. The sync-input module also takes the load signal and uses it to force 1ts output high This 1s done to

do away with synchronization reguirements while the PAAP is being programmed.
The sync-input module may generate a synchronizaton error in the following situations:
» We have both reqa and regb present and the CU does not signal a two-operand mstruction,

+ We have at least one input req signal, cither rega or regb, and the CU signals a zero-operand

instruction.

If the CU signals a one- or two-operand instruction and only one or no req is present, we do not signal
an crror because 1t 1s possible that the remaining req signal will armve later on. All 1t means s that the
current PE has to wait as long as it takes for the required reg to armive. The sync-input module may detect a
synchronization error and sull produce its req signal. This is to ensure a continuous data flow, but the
synchromzation error will be included in the core’s status word to make it avalable tor other PEs to
examine or for the host to use. In the case that two operands arrive and only one is expected, then only one
of them will be used and the other will be ignored. The choiee of which operand 1s 1ignore depends on the

one operand nstructien being executed.

The sync-output module schematic diagram and uming diagram are shown an figures 29 and 30
respectively. This module is simple in its operation: it takes both ack signals coming from the C and D
busses as its main mputs and keeps track of when such signals armived, so that it can know when both ack
signals have been received. These ack signals also serve to reset the req signals that were placed on therr
respective busses along with valid data. The consumed signal meant for the PE core s generated when

both req signals have been cleared.

The cycle 1s set 1n motion by the done signal generated by the PE cores this sets up the req signals on
the C and D busses. The SR flip-flops used n this design are spectal in that they tahe the Joad signal into
account and automatically set their output high when the load signal is high; the S=R=1 mput combmation
sets the output Q=1 1nstead of setting it to the unknown state. We have been very caretul to design both
synchronization units to make sure that they will work properly when the PAAP 15 being programimed Itas
crucial that these synchronization units become transparent when loading the PAAP because loading 15

done columns at a time and this synchronization scheme does not allow such a scheme,

The sync-output sub-module makes sure that the core sub-module does not execute anothicr instruction

until the previously generated resclts have been consumed.

65

i

@ pyoe

©25 dwo) ¥ SuueeuBul Anaoy
S9 abogd ! UOKIASY ! .«o ! 1eus v o
(noauhs) anpopy LOHDZIIOIYIUAS IO * ¥
6z aunby snpayuIY EW dnos
10883205 ADily SNOUOKDIUASY BIQOWWOIB0IY dVYd JO uBisag au) HOduDy Ase) "a) | wspedng
AWON SR8Y]
NA 0Pz a2ion submeq
JISI3AIU) BIPJIODOUO) e
»
= 2 e
phbaz @ b e s
pooy
pPowWInEI02 9
o
3
oba &—1b v e
1 . -y s
pooy

4 peo[

4 19831

4 o)oe

peeQ

@ 2uop

66

VA

oo 8 B i Airan,
09 1 b ¢ .—O 1 Y b 3 Sumeu3 3

oboy GO AD Y P -] as
SILBIS MINALC) | IUBLIIOCeC

{(102uhs) wos80ig Bulun] 3NPON LOHDINGILNAS INDNQO

X nby eADHRON BN anoss
1083220:d ADisy SNOVONSUASY BIGDWWODIBTIY gvve 10 LDisag B4y ueoausy A, 0 208NN
O e ooomz 030 | seubseg

A)1sI9A1U() BIpPI0ODOUO) pevs

Y

poot

, ooE‘n:ou

VAR /
AW/ L/

67

The core begins 1ts computation as soon as 1t receives the req signal from the sync-input module;
however, it requires that the req signal be kept high until it finishes its computation. This is assured by only
acknowledging the PEs connected to busses A and B after the core has generated its done signal. The PE
input consumed sent on busses A and B are gencrated by the core done signal. Thus. by the time the input

PEs receive an ack signal and reset ther req signals, their respective req signals are no longer needed.

The core schematic and tuming diagrams are shown in figures 31 and 32. Instruction loading starts by
resetting all fatches. All core registers get reset on the falling edge of the reset signal. The instruction to be
loaded 15 placed on the A bus. This 1s an 8 bit number that uses bits 6-7 to setup the output broadcast
configuration, and bits ()-S5 10 determine the instruction to execute. The hex value 0x02 1s set on the B bus
1o signal that the PE IR is being loaded. Then the load signal is toggled from 1 to 0. The IR 1s loaded on
the falling edge of the load signal. The core instruction execution is quite basic and dictated by the PE 1/O
synchronization outhned carlier. The core takes its input data from busses A and B which are 8-bit-wide
busses. It also requires the load and reset global signals to properly set its operational mode. The req and
crror signals come from the sync-input module and serve as the means of PE synchromization. The error
signals a synchronization error and thus s placed on the status bus of the core so that this information is

made available to other PEs and host.

The core outputs 2op, lop. and Gop are generated by the core’s control unit. They are just passed along
as core outputs to the sync-input module. The done signal is used to generate ack signals on both input
busses, and to generate reg signals on both output busses. The output bus C from the core's ALU contains
the results of the operauon performed by the core on the input data sets. The output data bus D from the

core’s ALU contans the status of the instruction just executed. 1ts bits can be interpreted as shown in table

10.
TABLE 10. The ALU Status Bus Bits
ALU Bit Purpose Meaning
D7 Z Result was Zero
D6 cout Carry out of arithmetic operation
DS I\ The PE G term used for carry look ahead
D4 p The PE P term used for carry look ahead
D3 eror There was a synchronization error
D2 eq Operands were arithmetically equal
Dl lt Operand A was arithmetically < operand B

DO gt Operand A was arithmetically > operand B

68

v

!
g9 1 * 1 .«O Y w 2§ o) § duuseudu] 4in30 4
aboy Vo ¢ g (111
03u8I5 MNG0S | IeuwiDde]
rpoM 2407 Wawd] Bussadoiy
[T Y] s rLNNON BN drorn
J0883504g ADisy SNOLOADUASY MHGDWWOD0IY dvye 10 WDisaC By woduny Kep A3 108 nanS
PN SE
opDY oop)
A}1SI2AIU[] BIPJIODOUO) — |

pawINsuod

T

3 _
“o bes 4 baua
F
2] op :M wr
“ bt b o <C #§>s a i
m v M 3 m™as e
S be
53 o a
TR o 48 <>
M a—{ ino2 <80 —e
- z
4
o = hadl \r
2 5 & ™—a @ 10113
- hicd (] ur
N h ~J b
X _
W. «Ue>0 <18 < whyue
[~ oo <L @>3 ~ 1 y: & qo”ssod
N ~me e dogs - <L-8>5) |—
v a a ki M”".. i s uq) - J
B —e—ie = e bl 00|
~ []
v 5 m v *nqoue £ < @>4
A 4 -
P—a—{% [8—a—jusa mein JYOTe) M- 3 & puoy
a v J sRpUS oot
2 < grol—o o 1> b
M <89 imetey ieses | o Y RETEY
\ auop @
</8>0 p
<z:p>puusado @ a <sp>e
a <Lp>q

69

¥

88 1

obog

4

vorspey

Jo T

weus

v

”ns

35 dwo) 3 Buiseupuy

Anaoy

(2492 34) wosborg Bunuy LOHNEX] PUD BUPDOT UOHINLISU| BINPON 810D

€ eanbyy

U875 Mnduo? | JuewDdeq

40883201y ADisy SnouoIYIUASY BIOWWDIB0IY dvvd 10 ubisag ayg

suwDy sEey

A}ISI2ATU[] eIPJOOUO)

SNDAIN B dnoig
nodvo 4 Liey g sotniedng
oPOMZ Oi0N subesg

pusbay

/ auo(]

1 awinsuo
\ \ P o]
/ / bay

smoys piipA /// sn1oyg pHPA // ~\ \vhm_ pooq XN\M\M\E a sng

Hnsay _u:u>x / Hnsay puba // \ \Xco;o::mcg 9 sng

[LIIITHfIN peolpoo 8 pren puotado & pon W/ /X #t poor X///[]]]] @ s

W \ \ W \ W \ puolad(v PIIDA puopadg v pYOA %o:o::mc_X\\\\\\\\ v sng

}asay

Buioig Bundwoy Suioig 6unndwoy /,l.\'

UoIIN2ax3 UoIONISY|

UOIIND3X3 UOI}INIISU]

buipoo uoioniysyl

70

D0, D1. and D2 only have meaning when the executed instruction is - omp_sube, which means that the
ALU will place a full comparison result on the appropriate status bus bits. This instruction also generates
A - B -1 as its result. D7 in this status bus always means that the value of the result bus 1s zero, ths
meaning is consistent for all instructions. Bits D6, DS and D4 only have any meaning dunng anthmetie

operations, and D3 is only present when there has been a svnchronization error.

The control unit is so simple that it does not use any instruction decoding for the purposes of
execution; however, there is instruction decoding for synchronwzation purposes. The values stored in the IR

are fed into the control unit for several reasons:

+ To be able to force instructions on the PE core.The CU 1s able to force different instructions on
the ALU by taking in the loaded instruction bits and properly modifying them to achieve the

desired result.

« To implement extra instructions. The ALU does not provide the pass_ab and pass _abcond. The
pass_ab mirrors its inputs onto its outputs. The pass_abcond does the same, provided that the
bit O on the B input bus is high. These mstructions are needed to be able to implement il

(condition) then (statement) else (statement)” primitives at the compiler level.

+ To decode the stored 1nstruction and signal the sync-input module This 1s how the sync-mpan

module can be told how many operands to expect (see figure 33 for the CU schematic diagram).

The ALU takes its carry in, mode selection and operation selection bits from the IR. There 1s no way
to have the ALU take its control signals from the input busses. The ALU has internal circuitry that takes
the input req signal and uses it to denve an internal core done signal. This internal done signal can be
looked at as the longest path through the ALU, so by the time thas signal is active, the ALU wall have vahd
results on its output busses (see figure 34). The longest measured delay path through the ALU &s the
calculation of the ALU's carry out signal. By properly tapping into the mput lines used to denve the carry
out signal, and using the input req signal to make sure that we account for 1nput decode delays, we can

gencerate a core done signal that guarantees to be the longest path through the ALU. 22

The ALU is composed of two 4-bit ALU joined with a carry look ahead circuit. The ALU 1s based on
the T1 74181 part. We modified the ALU to take care of the internal done generation and to add all of the
necessary status hits. For example, the result = 0 status bit, or the A > B, and A < B status hits were added

to the original design [TTLBook8S].

22 Note that we had to boffer the lower it signals used to denve the done signal because the extra circuitry exceeded the imitially aryeted gate fanout

71

y

N

3§ Swoy 3 Supssudul Aunsoy
1L sdog ! vospay 1 10 ! s v 2
Jun 10509 23uePRS MNdwo) | weuniooeq
£ anby smpPaMIN 5N dnory
108830054 AD1sy $NOUDIYIUASY 91QOWWIDIB0IY dYYd 10 UBiISaQ By) noduoy Awp “ag | sospsedng
SWON SEOUL
% opOPRZ 030 seubraeg
JISI2AIU[] BIPJOOUO)) pvess
qu-ssed @ @i G0 S5O0 w 4 uq
pooj 4 puoj
. o ot
<L821 & G 8> iy v 0
<L-B>i0u"a <
A:V'J o B
_ -
JU3Tiys @- oct
a <G-Br0vH W
N U] M0
dort @- a—1 ot o i
ke
dogy .
1] <t Br10u"4 e
a1 ¢ 1
QO@— P & / o 8 & dog 90000 Pusl) 07 carn o
b
<
.- <o> > 4 <:g>an
vease <100 N rarers

i

9§ auwo) B duumeudul Ayrao g
cL ab0gy ¥ e d ho weus v s
SILBIIS MINALOD | IWSuRIO3RQ
Ny snovosuuisy vg §
< wnby sANNON KA drasn
F0883304g AD.iiy SPOUCAIDUASY MQOWWDIBCid dvvd 10 UBEaQ uy woouoy e X 208 ANING
SwoN ey
oDMY odson ubseQ
A}1ISI9AIU(] BIPJIODUO)) o
< e w 4w
a <-g>8 a
o wo v ng v maw) <« 8>9 o —
[y <c 430 e -3
.TJ d
< b o
< a—158 E 2—a- 4 uto
o2
s
a
b
aunop & o %
Ty O] <€ 8% g
" «.etfg —@ <g:g>6
asow L a “ v v st I €0
d s <C-8>a e
2 w80l —o v ﬁ
be
€ <L9>q
a<ug>e
baux

<Lip>) &

73

When the pass_ab instruction is requested, the B bus is forced onto the status bus; otherwise the
ALU’s status bus will contain the status bits generated by the previous instructions. This function is

achieved by having an 8-bit multiplexer that has the B bus and the ALU’s status bus as its inputs.

The PE ALU can perform 48 instructions. Of the 48, 41 are included in the PE’s instruction set, § are
repeated instructions and thus not used, and 2 repeated instructions were modified to implement extended
instruction functionality such as pass_ab, and pass_abcond. The pass_abcond instruction allows us to test
for particular conditions before producing a result. The pass_ab instruction lets us implement either a jump
or buffering capability. In addition, we also added a shift right instruction in order to support a primitive

division algorithm.

For our purposes, the ALU instruction is composed of only bits O through 5. In some algorithms. one
might find it uscful to utilize a switch-box-type of routing on the ALU outputs. After the ALU outputs are
latched they are routed to the core output busses depending on the value stored in bits 6 and 7 of the IR

(sce table 8 for the PE output routing configuration).

We must be aware that each instruction executed by the PE is done totally independently of the values
found in the IR bits 7 and 6. The instruction implemented by the PE is purely dependent on the values
found in IR bits 0 to 5; the opcode values shown in table 7 are in hex format and represent the values for
IR bits § to 0 in that order. There is no real no-op instruction in this instruction set; instead, on¢ of the pass
instructions should be utilized (pass_a, pass_b, or pass_ab). On reset, the PE is initialized to the inca

instruction,

5.2 A Routing Element

The RE does not have any restrictions on any of the busses and any of them can be either an input or
an output at any one time, nor does it need any synchranization because it is static in nature. However, the
RE l/O busses are not bidirecuonal, once an RE has been programmed with a particular routing scheme,
each one of its 4 busses will be set to being either an input or output bus. In order to change the state of a
bus from input to output or vice-versa, the routing element must be reprogrammed with the new desired

configuration.

The routing element is what allows the PAAP to have a programmable data flow. The actual circuit
size of an RE is 339 smaller than the circuit size for a PE. 2* We have implemented a very efficient routing

mechanism and thus the area 1s well-utilized.

2% Tromsmol non, wehave been able to calculate that a Pk which includes the core, and both sync-input and sync-output modules, can be implemented

using approvumately 2934 devices, and an RE can be implemented using 1890 devices

74

The RE executes its instruction in a static mode; there is no need fur any synchronization on the RE or
instruction decoding. The RE schematic diagram and timing diagram are shown in figures 35 and 36
respectively. The RE instruction loading gets done in much the same way as the PE IR instruction loading,
the only difference is that the B bus has the 0x04 valuc instead of the 0x02 for the PE IR loading. We
decided to use different instruction loading values on the B bus. in order to allow for separate PE and RE

programming. This permits the host to dynamically reconfigure data flow without disturbing the PE

programs. %4

The RE IR is 8-bits-wide, which provides 2* possible rouung combinations, but for our purposes only
12 are allowed (see table 9). The reason for such low number of routing configurations is that each bit in
the RE IR contains positional data that controls a routing bit’s flow. Therefore, only those RE instructions
shown in table 9 must be used, otherwise, unpredictable routing results will be obtained. It behaves much
like a large switching element that can be programmed to twelve different configurations. It is lelt up to the

compiler to properly program the RE.

The RE uses one bit-route element per routed-bit. Since cach bus is 8-bit-wide and cach bus also
carries an ack and req signal then the RE needs 10 such elements to properly route all data bits. The
settings stored in the RE's IR are used to properly configure each bit-route element. The configuration
placed in the RE IR applies to all 10 bits on each one of the 1/O busses. There is no way 1o configure
ranges of bits instead of configuring the complete bus. The values in the RE IR are ignored when the load

signal is high; the RE is by default placed on the a->c, b->d 1/0 configuration.

The bit-route circuit is where the actual switching takes place. Its schematic diagram in shown in
figure 37. The idea behind this switch is to provide a path from any bus to any other bus. The tunctionality

can be explained as follows:
» Inputs coming from the PEs arc collected and switched by the demultiplexers

Depending on which path needs to be created from an input to an output, the appropriate

demux gets its control signals and sets itself to pass its input to one of three outputs.

» New outputs are generated from the merged inputs

24 Because PE and RE IR loading gets done wath different settings, the PE IR values are not disturbed whele the RE: IR values are being luadea The PE s
forced mto the pass_ab instruction, which makes the PE appear as a buffer on the input busses This heips in row and wolumn programmang The sume
applies to dynamucally reconfigure PEs, because the RE 15 automatically configured into the a to ¢, bt d muting when the load signal 1s present

75

The demux’s output 1s then ored with all other demux outputs to form a single set of outputs,
The direcuon control circunt then isolates those busses configured as outputs, which creates a

set of two inputs and two outputs.

Implementing the “a->¢, b->d” struction would be done by setting the bit_route bus to “0xEE",
which would set demux4(1) to pass “a” to “e”. demux4(2) to pass “a” 10 “f", demux4(3) to be off, and
demux4(4) w be off. All demux4(1-4) outputs that are not selected generate a 0, as well as all outputs on a
demux that 1s turned oft. This means that the output of the OR gates 111 and 112 would only have logic
values present on input “a™ or “b” respectively. The outputs of OR gates 113 and 114 do not affect the
iputs “a” and b because the direction flow circuit has tn-stated them, The 127 allows 111 to drive the
output bus ¢, thus implementing the “a->¢™ connection, and 126 allows 112 10 drive the output bus d, thus

implementng the “b->d” connection,

Darecuon flow on each bit is controlled by a pair transmission gates and bit direcuon signal provided

by the RE logic. This direction signad 1s denved from the different RE IR bits as follows:
o arl = 0,1} = O then A is an output
o ir3= 0,12 = | then B 15 an ontput
« S = 1ord = Othen C s an output
« 7 = L irb = 1 then D ois an output

When a hit 15 an owtput. 1t must be dnven by the RE. However, if the bit is an input then a PE is

driving 1t and the RE must tristate it

We found that this particular circuit breaks most swatch level simulators because of charge sharing or
node storage mitanons they have. Almost all switch level simulators we tned on this circuit faled to
produce the right results imtially. However, after researching the particular simulator’s documentation, we

always tound wavs to getasound therr matations and thus got the proper sumulatton results.

Our tunctional simulation of both PE and RE showed us that they work well at around 6.67 MHz. This
vitlue wits obtaned by changing the system clock period in the logic simulators until the circunt broke. The
PE signal propagation delay is hmited by the longest path defined as the path that generates the
syichromzation signal and has an upper bound ot 80 delay units. The RE signal propagation delay has an
upper bound of 10 delay units. A delbay units is used here as a measure of delay time for comparison

Purpases.

76

% Sue) § buuesab} Aurom g
L ., _.!....m st JO e, V.

SRBOG BVt | Wt DA
wewn buwrcy

HE e W] crAmta by A o
08882G.y 4D, 1Y BNOLOAIUMY 8GDLWD.00.4 Jrvg 0 LDET &y NORm g A, o LY -
Wasbing & S

oeomy s w Py

£}1SI2AIU[] BIPJIOIUO) o “3EsaillﬂA&dvﬂ|&=ss_
inojasadt “l&s‘ATc.'IH,\HI‘ unjaiaa

<L @2
4

an
29 < g - <« #>a oty
LL

1
i
1Y

<z #>i|—4

P

[qu———«——TH
I3
p
i

]
w é m H 2 <ok e
”N u < e>|—w ~w
adead << #>q ~rwr
RENRISANN. e D i
$HI14804 148411 -
4P <«se>»
—@p <>
P b
1 gD <se>e
b
—@ <ee>e

77

Y

LL

4 1 JO

obog g pay

¥ v

g as

25 Gwo) B Bupesuduj

Aundo

woiborg Gunu uoRNBX] Pud BUIPDOT UCHINISY] Ty L5 Moy |wmeneda
LT neIN B anory
J088220u4d ADuY BNOUDYDULSY QOWWDIB0IY gYVd K Lbisag auy noauoy Awy ag sosvsedng
Swon smay|
opoWwz 030N wubseq
£}1SI2A1U) BIPIODUO)) powres
_peosedo on XYY i eoor W eesedo o X7/ s eoer YJ/[7T][] o =

puosadg o/] X\\
puoJadgo 0/1 x\\

puo.adQ O/l x \ \
P

NNXco:u::mc_

NX ¥l POOT

pupsadQ o_lxNNNNx i pooT x\\\\\\\\ g sng

§CO;U::mcm

puosadQ 0/l

[N I TT]T] v =

-

\

Buiyoymg

a.nbjuooay

Buiyoymg

/'\| 1953y

buippo uconusuj

78

y

84 ooy ,m

¢

T
I

—

30

25 B0l B Sube.bi] Aoy

"oy . 8

(£ 0t

10583305y AD1iy BNOUCADWASY 3160 wOIB0.g d¥yd 10 WO83C dug

SwOn SR,

A)1s13A1U] BIPJIOOUO)

'
834825 ANOLOD | 1B 008_

4
]

a0, N BN | gncm
4

MOJDy Le) A0 _ OB AN

1
opOWwI 0I0m _ nubseC
i

R4

14

@ <L:g>41

{4

]
—oar

= P

PR

=

Chapter 6 Practical Issues

6.1 The Design Environment

The design environment for this project has remained constant even though the compuung
enviromnent changed dramaucally. We started to do the logic design and RNL simulation while sull at
Concordra Umversity. RNL 1s an event-dnven uming logic simulator for digital MOS circuits, which uses
a sunple RC model 10 estenate node transition tmes and the effect of charge-sharing. The user interface 1s

a stmple LISP nterpreter, which allows for the programming of complex simulations [RNLR3).

As the design process progressed, we implemented minor RNL source code modifications to improve
1ts pertormance and output formatung capabilities. At the same tme. we decided to develop an automated
way for stiimulus vector generation. The implementation consists of a number of C language header files
that describe the desired input sumulus to RNL. Input stimulus generation ts thus reduced to wriung a C
program that descnbes the Device-Under-Test's (DUT) behavior. This allowed us to generate very
complex sets of test patterns that can be retargeted to different simulators. Each simulator would require s
own speaalized header file to account for s specific 1/0 tormat. but most of the header fiics are common
o all simulators for they describe the stmulanon environment. The same sumulus program s used to drive
ditferent simulators: once 1t s compiled for a particular simulator the executable 18 used to feed the input
stmulus to the sunulator via a UNIX pipeline. The € program also provides excellent documentiaton of
the DUT's behavior, and more amportantly 1t could be used o develop IMS-tester test programs to

N 3
charactenize the prototype 1C when it 1s built (see appendix by, 28

Later i the design process, we obtaned the Oct-Tools from UCB and discovered 1ts sch:matc entry
capatliies The Oct-Tools is a collection of programs and hbrianes which together form an integrated
sstem for FC design, The system ancludes tools for PLA and muluple-level logic synthesis, standard-cell
placement and routing. and custom-cell design, and a varnety of uwulity programs for manipulating
schematic, symbolic, and geometnie design data. Most tools are integrated with the Oct data manager and

the vem user interface (see tigure 38) [HarnsonDR6).

We used the RNL circint deseripuons as a documentation aid and entered the design into the vem
schenuitic editor so that we could Tater use circuit synthests techniques on it (see appendix ¢). The Oct-
Tools has ats own logic simulator called MUSA. It 1s a muliilevel simulator, whose primary mode of
operation s switch-level simulation of MOS transistors, The key feature in MUSA was that it mahes direct

provisions to allow the simulaton of lgher level constructs such as logic gates, latches, and memory cells;

S8 AnIMN speaiti header tile would huve to be detined which maps the ¢ macre defimmions into proper IMS commands

80

it also reads the OCT schematic database as one of sts input nethists. However, MUSA treats every node as

N
a storage node. *°

Revision Path

e by proTosecssssssccccconioonan IOt e]

P’ . " /, v

4 4 A a g
FSM HDL Schematic Truth :
Description Description Capture Table :
bdsyn rem H

State Assignment Polygon
PLA-Based FSM Layout ;
nova \ Logic vem !
Optimization :

misll ;

State Optimization /
Multi-Level FSM .
mustang '

Switch-Level
Simulation
musa

' -

PLA Gate-Array Standard-Cell
Implementation Implementation Implementation
oct2pla gem

!

Hierarchy
Composer
hdnet

Y

Automatic
Place And Route
mosaico or wolfe

Y

\

/

Encapsulated Final Design
Posteript Layout Statistics
act2ps vem chipstats

FIGURE 38. The Oct Tool Set Flow Chart
Our strategy at this point was to utlize both RNL and MUSA as a mean of validanng the design, Thas

approach helped us in catching a signal strength problem with MUSAL which was not detected by RNL,

The simulated circuits could then be synthesized and mapped onto a particular standiud cell hbrary.
We could then use the misll tool (o amomatically generate the layout from the already entered schematies,
Misll 1s an algorithmic multilevel logic synthesis and mistmization program. It stants from a descriptuon of
a combinational logic macrocell and produces an optimized set of logic equations which preserves the 1/0

behavior of the macrocell. The program includes algorithms for minumizing the arca required to snplement

26 Onceanode s charged high or low, it will remain that way unti] the nixde 15 driven by aninstance or set by the user §t1s important 1 note that MUSA
does not model charge shanng

81

the Togie equations, and a technology-mapping step to map a network into a user-specified cell library. This
allowed us to concentrate on architectural issues rather than circunt 1ssues, and would help in obtaining the
smallest possible layout. Since we lack the ability to fabnicate the designed IC, we did not follow this

avenue any further,

Later in the design process, we deaided 1o use indusirial level CAD tools such as the Edge toolset
from Cadence, Lsim from Mentor Graphics, and Hspice from Metasoftware. The main driving force
behind redoing the schematic entry and simulations was the need to ensure that the university level tools
previously used had not hidden any circunt problems. The complete set of schematics 18 now n two

different database formats: Cadence and Oct. The <imulations showed that the circuit works as expected.

6.2 A Simulation Example

The sunulation step was automated so as to allow for multiple runs with as litde user intervention as
possible: The Maketile shown n gppendix D was used to run all RNL simulations, a similar Makefile was
also written for running MUSA and Lsim sumulauons. A sinulaton step output is shown in appendix E. In
1t we can see how the Mahetile 1s used to translate the nethst into a format readable by RNL, and how the
vector generator program is compiled. The vector generator 1s then used to stant a pipeline of programs that

N I
will produce the simulation results, 27

The following data was extracted trom actoal simulaton results, Some results have been annotated to
mithe them readable and some have been condensed to a general case that conveys the same information as
hundreds of vectors. We will go over the general simulation format of a PE instruction, in particular, we

begin with the instruction loading cycle,

The required 1/O signals were spht into signal groups. called vectors, to make them manageable, The

following simulation vectors were defined for all runs:
o reset= Signal used to clear all internal latches and set them to a known state.
+ load = Signal used to load the IR ona 1 t-> 0 edge transition.
+ ctl= A control vector formed by the reset and load signals in that order.

= Buts that control ALU output routing. They only have routing values when the IR is being

loaded. otherwise they have data values placed on the corresponding bits of the A bus.

27 Note how the RNE simulator prints out the number of desiees found in the wnput netlist

* i = Bits that control ALU instruction. They only have valid op-codes when the IR 1s being

loaded, otherwise they have data values placed on the corresponding bits of the A by,
+ req = The request vector formed by the rega, regb, rege, and reqd signals 1n that order.
« regin = The input request vector tormed by the rega and regb signals w thit otder
+ reqout = The output request vector formed by the rege and regd signals in that order.
s ack = The acknowledge vector tormed by the ackha, ackb. acke, and ackd signals i that order.
+ ackin = The input acknowledge vector formed by the acke and achd signals in that order
» achout = The output acknowiedge vector formed by the acka and ackb signals in that order.
« a=Inputhus A
+ b=Inputbus B
» ¢ =Output bus C
+ d=Output bus D

The sumulation step s composed of a vector value assignment step and & node value evaluation step
The evaluation step allows the simulator to propagate the mput vector vidues across the entise areat
network. The fiest step 0 programmang the PE 16 1o biing all tches o o known state, so we toggle the
reset syl from high 1o Tow and set all needed ainput lines o low for consistency purposes These two

simulation steps generate the followmng resalt:
o 1 ctd=0b10 r=0x01=0x0 reg=00XX ach=XX00 a=0x0 b=Ux0 ¢=0x0 d=0x{)
o 2 cti=0h00 r=0x0) i=020 reg=0bO00D ack=0bDO0N a=0x0 h=0x0 ¢=0xD d=0xD)

Line | sets the ¢l vector to the hex value 0x2. which means that the reset signal is lngh, Note how the
req vector is set 1o 0xX because bits O and 1 are set o X, This 18 due to the bits being driven by the output
of rsif latches. which are in an unknown state. The same 1s true for bits 2 and 3 i the ack vector. Line 2

shows how the X states are set fow after the reset has a falling edge.

At this point the control unit in the core is seeing a 1 operand instruction in the IR, The instruction in
the IR is Q0000000 after the reset, which is the inc_g, route outputs straight opeode (refer to table 7 tor a

list of valid op-codes, and table 11 for a list of ALU output routings).

83

Everything seems to be working well because reset succeed and the inc_a is a 1 operand instruction.
The next step is to load the IR with a valid instruction. Our sample simulation worked on the ADD
instruction. The load instructon cycle begins when we set the load signal high, set the a bus to ADD
(0x29), and set the b bus 10 LOAD_PE_IR (0x2). Then we toggle the load signal from high to low which

latches the contents of the a bus into the IR:
« 3 etl=0b01 r=0x0) i=0xU reg=0b0011 ack=0b1100 a=0xU b=0x2 c=0x0 d=0x0 3
e 4 ctl=0b00 r=0x0 i=0xU reg=0b0011 ack=0b1100) a=0xU b=0x2 c=0x0 d=0x0

We can now try different combinations on the inputs and examine the outputs for correctness. Since
our computation takes place in an asynchronous manner, we first want to make sure that the
synchronization is working fine. We start by placing dafferent invalid synchronization vectors along with
different operand values on the A and B busses. When the reqc and reqd signals are tumed on, along with
the acka and ackb: No synchronization is taking place therefore no activity is shown on the outputs, even if

the mputs change:
o Sctl=0b0O0 r=0xV 1=0xW req=0b0011 ack=0b110) a=00Y b=0xZ c=0x0 d=0x0 9

The results show that even though we changed the input values. they were ot reflected on the output
because the /O synchronization s not right. The current synchronization tells us that both the req and
consumed signals are low, meaning that there is no data to be consumed and that the previous result

generated by this core has not been consumed.

Then the achd signal armives but nothing changes, except that the reqd and ackb get reset by the arrival

ot the ackd signal:
s 6 ctl=0b00 r=0xV i=0xW req=0b0010 ack=0b1001 a=0xY b=0xZ c=0x0 d=0x0

Later the ache signal arrives but nothing changes, except that the reqe and acka get reset by the arrival

of the acke signal:
o 7 ctl=0b00 r=0xV 1=0xW reg=0b0000 ach=0b0000 a=0xY b=0xZ c=0x0 d=0x0

There is no change on the output busses because the arrival of the consumed signal only mesns that
the previous result was consumed. Since the req signal is not present, the core assumes that any data on its

input busses is not valid. The arrival of the second ack completes the output synchronization and the output

28 Where Uis a hen digit in the instruction set For this sample simulation U = 29

29 Where Vis ahex digtan {0 D), Wisa hex diptin (00 3F}, Y 1s a hex digst in (K., FF), and Zisa hex dignin {00 FF}

84

synchronization latches are returned to zero. The syncout module generates a consumed signal tor the
ALU, based on arrival of both ack signals. The output synchronization is also vahd of the acke amves
before the ackd or they both arrive simultancously. The synchromzation protocol 1s not sensitive 1o signal

ordering.

Given that the output synchronization is already complete, then the following two general vectons

should bring us to the required 1/O synchronization:
« 8ctl=0b00 r=0xV i=(xW req=0b1000 ach=0b0000 a=0xY b=0xZ ¢=(x() d=0x0)
o 9ctd=0b00 r=0xV i=0xW req=0b1100 ack=0bl000 a=0xX b=0xX ¢=0xX d=0xX

Input synchronization 1s also insensitive to signal ordening. This step bnngs us 1o the required
synchronization: however, the path shown above for getting to the required synchronization is only one of
many possible paths. A path in this case 1 defined as the order in which the required synchronization
signals arrive, and since our protocol is completely insensitive to signal ordering then all possible paths are

equivalent.

The last step is to show the PE executing an instruction with all of the required synchronizanon

present;
o 10 ctl=0h00 r=0xV 1=0xW req=0bl111 ack=0b1100 a=0xY b=0xZ (=0xR d=(x$
o 11 ctl=0b00 r=0aV 1=0xW req=0b0011 ack=0b1100 a=0xY b=0xZ ¢=0xR d=x$ *"

Line 10 shows how the core starts an output synchronization cycle, by sctting the reqout vedtor high,
The core also acknowledges the current inputs being used 10 its input partners, thus concluding the iput
synchronization cycle by setting the ackout vector high. Line 11 shows the nput partners bringmg the
regin vector low, which allows the core to become ready for more inputs. The core can penerate resulls,
have them latched 1nto its output busses. and go ahead to worl on the next set of inputs even as 1t
wailing to have the previous results consumed. Refer 10 appendix F for a more complete, but partial set of

simulation results.

30 Where R1s A + B, and S 15 a Partial Statue

Chapter 7 Conclusion
We beheve that the contents of this thesis can be successfully used to build a prototype array
architecture. The main thrust of the rescarch should now focus on software-related issues such as

developing a compiler for this architecture and also fabricating a prototype PAAP ICs.

As this project goes forth, and a detuled model for the PAAP machine architecture is explored, the
restrictions placed on the machine architect by the PAAP element may be well-understood. It is at this
pomt that further research might be done to provide better hardware suppont for the proposed architecture.
Any enhancement to the onginal PAAP element design is beyond the scope of this thesis, however, we will

discuss possible areas for improvements:

+ The available on-board register file may be better used if it were consolidated into a FIFO-type
cache. This way, multiple data bytes could be received from the PP and distributed to their

destination only when it is safe.

In the current design, the HOST has to communicate with the PAAP addresses one address
range at the tme. While it is true that a block of addresses and data could be sent to the PAAP

by the HOST, there s currently no cache system to aid 1n the possible transfer bottleneck.

« The routing element should be provided with an extra capability so that it can broadcast the

contents of one ot its busses 1o all other busses connected to it.

At the moment this capability 15 not present and 1t might require a complete RE redesign in
order to provide it. There should also be a way to determine when the RE has a bad instruction
setting. The present design assumes that a valid instruction is stored in the RE’s IR, but will fail

with no warning if the value stored in the IR is not valid.
» The PE's output busses should have a tri-state capability.

This 1s usetul while trying to optimize the usage of routing tracks. If the status is of no interest

to the next computation then it should be tri-stated.

+ The instruction set could implement a controlled shift instruction that would take one of its

inputs as the parameter that tells it how many bits (o shift its other parameter.

In the current version, the PAAP provides both shift left/right instructions, but they are single-
it shitts of the A operand. There might also be the need to provide a rotate instruction derived

trom a moditied shift operation,

36

The following points are concerns that must be addressed by the machuine architect in order to properly
use the PAAP design:

» The reset and CS circuitry should be activated on a rising edge.

This is a matter of preference on the architecture destgner's part. The PE does not make use ol

the CS signal for it is meant to select a sub-array.
+ As the design is proven 1o be useful, we may want to expenment with a 32-bit system,

The current design implements an 8-bit system, but a 32-bit system might be more appropriate
for large applications. Every circuit element included in the PAAP design can be extended from

8 to 32 bits because most circuit elements were designed with expansion in mind.

+ Our row and column loading techniques are vulnerable to WSI faults.

WSI techniques could be used to construct large PAAP arrays, but there is a Large possibility
that faulty PEs or REs will be found at the wafer sort stage. This would break our program
loading technique because there would be a break in the continuous row or column buses. As 4
result. only partial program loading could be done. The solution may volve a rethinking on

our loading methodology, but this work is bevond the scope of thas thess

The PAAP Array illustrates the use of computation and routing units o make o highly parallel flexible
architecture. Many questions remain, such as the relationship of data storage and 1/O control for the amay.

The work has also raised even more fundamental points:
« What is the optimal size of an array?
+ What is the optimal size of a PE and RE?
+ What is the optimal RE flexibility?

The present work explored the concept, and demostrated its programmabtlity. The next step will be ta
explore the above questions, and to determine whether extensive sets of PAAP type arrays could be an

effective use of silicon in a future computer.

[AbclsonHE4|

| ArvindamS90)]

[BalukrishnanM&8|

| BalanceR84]

[BasuA8R]

| BitarP86}

[BrozozowskiJ8Y)

[DeCegamaA(a)8Y|

| DeCegamaA(b)RY)

[DelzompoARY|

[DenmingPRO)

[DuncanRY0)

[FahlmanSR7]

[FisherJ84)

[FlvnnMS56|

[FullerS78]

87

List of References

Belson H., and Susman G., “Structure and Interpretation of Computer Programs™,
Cambridge, MA: MIT Press. 1984.

Arvindam S., Kumar V., and Nagashwara V.R., “Efficient Parallel Algorithms for
Search Problems: Applications in VLSI CAD", 3rd Symposium on the Frontiers of
Massively Parallel Computation, IEEE, pp. 166-169, 1990.

Balakrishnan M., Jain R., and Raghavendra C.S., “On Array Storage for Conflict-
frec Access for Parallel Processors”, Proc. 17th International Conference on Parallel
Processing, pp. 103-107, 1988.

The Balance 8000 System Technical Summary, Sequent Computer Systems Inc.,
1984,

Basu A., "A Classification of Parallel Processing Systems”. Proc. of the IEEE
Conference on Computer Design, pp. 222-225, 1984,

Bitar P. and Despain A.M., “Multiprocessor Cache Synchronization-Issues,
Innovations, Evolution”, [EEE Conference Proc. on Computer Architecture, pp. 424-
433, 1986.

Brozozowski J. and Ebergen J.C., “Recent Developments in the Design of
Asynchronous Circuits™, Technical Report CS-89-18, Department of Computer
Science, University of Waterloo, 1989,

DeCegama AL.. “The technology of Parallel Processing”, New Jersey: Prentice
Hall, pp. 308-316. 1989,

DeCegama A L., pp. 463-466

Delzompo A., “UNIX Networking: NFS and RPC™, Hayden Books, Indianapolis,
Indiana, pp. 93-120, 1989.

Denning PJ.. “Parallel Computer and Its Evolution”, Communications of the ACM,
Vol. 29, No. 12, pp. 1163-1167, 1986.

Duncan R.. “*A Survey of Parallel Computer Architectures™, Computer, pp. 5-16,
February 1990,

Fahlman S.E. and Hinton G.E., “Connectionist Architectures for Artificial
Intelligence™, IEEE Computer. pp. 100-109, January 1987.

Fisher JLA.. “The VLIW Machine: A Multiprocessor for Compiling Scientific Code™,
IEEE Computer, pp. 45-53, 1984,

Flynn M.J.. “Very High Speed Computing Systems”, Proc. IEEE Vol. 54, pp. 1901-
19V, 1956,

Fuller S.H. and Harbison S.P.., “The C.mmp Multiprocessor”, Technical Report
CMU-CS-78-146, CMU, Computer Scince Department, 1978

{GP88]

[{GannonD86}

{GopalakrishnanG90}

[{GottliebA82]

[HarrisonD86]

[Hennessyl91)

[HordM(a)90]

[HordR(b)30]
[HordR(c)90)

{KatevenisM84)

[KruatrachucK88]

(Korenl88]

[KuckD86]

[KumarV87]

{Kumarv9o0}

[KungH78]

[KungH82]

a8

List of References

Overview of the Butterfly GP10(0), BBN Advanced Computers Inc., November
1988.

Gannon D., “Restructuring the SIMPLE for the CHiP architecture™, Parallel
Computing Vol 3, North-Holland: Elsevier Science Publishers, pp. 305-326, 1988.

Gopalakrishnan G. and Jain P, “Some Recent Asynchronous System Design
Methodologies™, Technical Report UU-CS-TR-90-016, Department of Computer
Science, University of Utah, 1990,

Gottlieb A. and Schwartz J.T., *Networks and Algonithms for Very-Large-Scale
Parallel Computation”, IEEE, Computer, Vol. 15, No. 1, pp. 27-34, Jan 1982.

Harrison D.S., et al., “Data Management and Graphics Editing in the Berkeley
Design Environment”, Proc. of the Intemational Conference on CAD, IEEE, pp. 20-
34, 1986.

Hennessy J. L. and Joupi N.P., “Computer Technology and Architecture: An
Evolving Interaction™, IEEE Computer Vol. 24, No. 9, pp. 18-28, 1991

Hord R.M., “Paralle] Supercomputing in SIMD Architectures™, New Jersey: CRC
Press, pp. 5-9, 1990.

Hord RM., pp. 17-84
Hord R.M.. pp. 205-300

Katevenis M.G.H., “Reduced Instruction Set Computer Architectures for VLSIY,
Boston, MA: MIT Press, 1984.

Kruatrachue K. and T. Lewis, “Grain Size Determination for Parallel Processing™,
IEEE Computer, pp. 23-32, January 1988.

Koren 1., Mendelson B., and Peled 1., “A Data-Driven VLSI Array for Arbitrary
Algorithms™, IEEE Computer, pp. 3043, October 1988.

Kuck D.J. et al., “Parallel Supercomputing Today and the Cedar Approach™, Science,
Vol. 2, pp. 967-974, 1986.

Kumar V. and Negashwara V.R., “Parallel Depth-first Scarch Part 11: Analysis”,
International Journal in Parallel Programming, 16(6), pp. 501-519, 1987,

Kumar V. and Negashwara V.R., “Scalable Parallel Formulations of Depth-first
Search”, New York, NY: Springer-Verlag, 1990,

Kung H.T. and Leiserson C.E., “Systolic Arrays for VLSI", Sparse Matrix
Symposium, SIAM, pp. 256-282, 1978.

Kung H.T.. “Why Systolic Architectures?”, IEEE, Computer, Vol. 15, No. 1, pp. 37-
46, Jan 1982.

[KungS82]

[KungS85]

[KungS88]

[MapplesC85]

[MelvinS87]

[MohanJ83]

[NagashwaraV87]

[PolleyH91]

[PeaseD91]

[RettbergR90]

[RNL83]

[SakaiS90]

[SantoB88]

[SavariaY(a)86]

[SavariaY(b)86]

[SchendelU84]

89

List of References

Kung S. Y. and Gol-Ezer R. J., “Synchronous vs. Asynchronous Computation in
VLSI Array Processors”, IEEE, SPIE Proc. pp. 232-243, 1982.

Kung S.Y. and Kumar VKP., “Wavefront Amay Processor and Beyond™, 1EEE
Conference on Computer Design, pp. 176-179, 1985.

Kung 8.Y., “VLSI Array Processors”, Englewood Cliffs, New Jersey: Prentice Hall,
1988,

Mapples C., “Pyramids, Crossbars and Thousands of Processors”, Proc. IEEE
Intemational Conference of Parallel Processing, pp. 681-688, 1985.

Melvin S.W. and Patt Y.N., “A Clarification of the Dynamic/Static Interface™, Proc.
20th Int’1 Conf. System Sciences, IEEE, pp. 218-226, 1987.

Mohan J., et al., “Granularity of Paralle] Computation”, CMU, Computer Science
Department Technical Report, April 1983,

Nagashwara V.R. and Kumar V., “Parallel Depth-first Scarch Pant Lk
Implementation”, International Journal in Parallel Programming, 16(6), pp. 479-499,
1987.

Polley H., Unpublished Doctorate Seminar Presentation, Concordia University,
Department of Computer Science, 1991.

Pease D.. et al., “PAWS: A Performance Evaluation Tool For Parallcl Computer
Systems”, IEEE Computer Vol. 24, No. 1, pp. 18-28, 1991,

Rettberg R.D. et al., “The Monarch Parallel Processor Hardware Design”, IEEE
Computer, Vol. 23, No. 4, 1990.

UW/NW VLSI Consortium, “RNL 4.2 User’s Guide”, University of Washington,
Scatile, WA, pp. 1-33, 1983,

Sakai S., Kodama Y. and Yamagichi Y., “Prototype Implementation of a Highly
Parallel Dataflow Machine: EM 4", Proc. of the 5th Int’l Parallel Processing
Symposium, IEEE, pp. 278-286, 1990.

Santo B. and Wollanrd K., “The World of Silicon™, IEEE Spectrum, Vol. 25, No 9,
pp. 30-39, 1988.

Savaria Y. et al., “Soft-Error Filtering: A Solution to the Reliability Problem of
Future VLSI Digital Circuits”, IEEE Proc. Vol. 74, No. §, pp. 669-683, May 1986.

Savaria Y. et al.,, “A Theory for the Design of Soft-Error-Tolerant VLSI Circuits™,
IEEE Journal on Selected Topics in Communication, Vol. SAC-4, No. |, pp. 15-33,
Jan 1986.

Schendel U., “Introduction to Numerical Methods for Parallel Computers”, Ellis
Horwood Ltd., Chichester, England, 1984.

[SnyderL81}

[SnyderL82]

[SriniV86]

[SUayaR90]

{Sutherland]89]

{TC89]

[TTLBook8S]

[TrelcavenP88]

[VoltmerF85)

[Webers88)

[YungHE88]

90

List of References

Snyder L., “Programming Processor Interconnection Structures”, Technical Report
CSD-TR381, Purdue University, 1981.

Snyder L, “Introduction to the Configurable Highly Parallel Computer”, IEEE,
Computer, Vol. 15, No. 1, pp. 47-56, Jan 1982,

Srini V.P,, “An Architectural Comparison of Data Flow Systems”, Computer, pp. 68-
87, March 1986.

Svaya R. and Binwistle G., VLSI and Parallel Computation, San Mateo, CA:
Kaufmann Publishers, 1990.

Sutherland J.E., “Micropipelines”, Communications of the ACM, Vol 32, No. 6, pp.
720-738, 1989.

TC2000 Technical Prodcut Summury, BBN Advanced Computers Inc., November
1989.

Texas Instrumets, The TTL Data Book, Dallas, Texas, pp. 3-709 - 3-720, 1895.

Treleaven P.C., “Parallel Architecture Overview”, Parallel Computing Vol 8, North-
Holland: Elsevier Science Publishers, p. 59, 1988.

Voltmer FW. and Jones N.W., “Factors Contributing to Increased VLSI Density”,
VLSI Handbuok, Chapter 1, Florida: Academic Press, 1985.

Weber S., “Will Quantom-Effect Technology Present a Quantom Jump in ICs?”,
Electronics, Vol. 61, No. 16, pp. 143-146, October 1986.

Yung H.Y. and Singh A.D., “A Highly Efficient Design for Reconfiguring the
Processor Array in VLSI”, Proc. of the International Conference on Parallel
Processing, pp. 375-38, 1988.

91

APPENDIX A
Programming The PAAP

« Initialize the hardware
« Toggle the Reset signal from 0->1->0

This will set all internal registers to a known state. This is only supposed to be done upon
power-up programming. If the PAAP is being reprogrammed it is not necessary to do this

step.
» Write control word
» Set the hex value 0x00 on the address bus
We are addressing the control register RO.
« Set the hex value 0x41 on the /O bus

This will effectively set CO = 1 (we are loading), C6 = 1 (Remember address values), and

C7 =0 (we are writing).
» Toggle the CS signal fromQ ->1->0
This will load the value on the 1/O bus into RO (The control register).
« Initialize all Input registers to 0
» Set the hex value 0x1F on the address bus.

This will signal that a block transfer is being requested. Since the address has been

latched, no more address setting is required during this block transfer.
» Set the hex value 0x00 ondatabus 1 - 10
» Toggle the CS signal from 0 ->1->0

This will load the value on data busses 1 to 10 into registers 2 to 11 respectively. In effect

they will all be initialized to 0.
» Load instructions for PEs and REs in column 5

« Set the instructions meant for the PEs in column 5 into data busses 1, 3, and 5.

92

» Set the instructions meant for the REs in column 5 into data busses 2 and 4.,
» Toggle the CS signal from0->1->0

This will load the value on data busses 1, 3, and 5 into registers 2, 4 and 6 respectively. It

will also load data busses 2 and 4 into registers 3 and 5 respectively.
« Set the hex value 0x06 on data bus 10

« Toggle the CS signal from0->1->0

1

This will set the instruction registers in the PEs and REs in column 5 to begin sampling

their input bus A for values to be stored.
* Wait for 4-column propagation delays

This will allow for the values stored in registers 2, 3, 4, 5, and 6 1o be propagated all the

© el et e by Yo e

way to the input busses of all elements in column 5,

« Set the hex value 0x04 on data bus 10
» Toggle the CS signal from0->1->0

This will load the value on daia bus 10 into register 11 and load all instruction registers in

all PEs in column 3.

» Set the hex value 0x00 on data bus 10
» Toggle the CS signal from 0->1->0

This will load the value on data bus 10 into register 11 and load all instruction registers in

all REs in column §.
+ Load instructions for REs in column 4
» Set the instructions meant for the REs in column 4 into data busses 1,2, 3,4, and 5.
» Toggle the CS signal fromQ0->1->0

This will load the value on data busses 1, 2, 3, 4, and 5 into registers 2,3, 4, 5and 6

respectively.

» Set the hex value 0x04 on databus 9

93

» Toggle the CS signal from0->1->0

This will set the instruction registers in REs in column 4 to begin sampling their input bus

A for values to be stored.
*» Wait for 3-column propagation delays

This will allow for the values stored in registers 2, 3, 4, 5, and 6 to be propagated all the

way to the input busses of all REs in column 4,
« Set the hex value 0x00 on data bus 9
» Toggle the CS signal from0->1->0

This will load the value on data bus 9 into register 10 and load all instruction registers in

all REs in column 4.,
« Load instructions for PEs and REs in column 3
» Set the instructions meant for the PEs in column 3 into data busses 1, 3, and 5.
» Set the instructions meant for the REs in column 3 into data busses 2 and 4.
» Toggle the CS signal from0->1->0

This will load the value on data busses 1, 3, and 5 into registers 2, 4 and 6 respectively. It

will also load data busses 2 and 4 into registers 3 and S respectively.
« Set the hex value 0x06 on data bus 8
« Toggle the CS signal from0->1->0

This will set the instruction registers in PEs and REs in column 3 to begin sampling their

input bus A for values to be stored.
« Wait for 2-column propagation delays

This will allow for the values stored in registers 2, 3, 4, 5, and 6 to be propagated all the

way to the input busses of all elements in column 3.
+ Set the hex value 0x04 on data bus 8

» Toggle the CS signal from0->1->0

94

‘This will load the value on data bus 8 into register 9 and load all instruction registers in all

PEs in column 3.
» Set the hex value 0x00 on data bus 8
» Toggle the CS signal from0->1->0

This will load the value on data bus 8 into register 9 and load all instruction registers in all

REs in column 3.

» Load instructions for REs in column 2

« Set the instructions meant for the REs in column 2 into data bus 1, 2, 3,4, and 5.
» Toggle the CS signal from0->1->0

This will load the value on data busses 1, 2, 3,4, and 5 into registers 2, 3,4, 5 and 6

respectively.
+ Set the hex value Ox04 on data bus 7
» Toggle the CS signal from0->1->0

This will set the instruction registers in REs in column 2 to begin sampling their input bus

A for values to be stored.
» Wait for 1-column propagation delay

This will atiow for the values stored in registers 2, 3, 4, 5, and 6 to be propagated all the

way to the input busses of all REs in column 2.
« Set the hex value 0x00 on data bus 7
» Toggle the CS signal from0->1->0

This will load the value on data bus 7 into register 8 and load all instruction registers in all

REs in column 2.

» Load instructions for PEs and REs in column 1

« Set the instructions meant for the PEs in column 1 into data busses 1, 3, and 5.

« Set the instructions meant for the REs in column 1 into data busses 2 and 4.

95

+» Toggle the CS signal from0->1->0

This will load the value on data busses 1, 3, and § into registers 2, 4 and 6 respectively. It

will also load data busses 2 and 4 into registers 3 and 5 respectively.
+ Set the hex value 0x06 on databus 6
+ Toggle the CS signal from0->1->0

This will set the instruction registers in PEs and REs in column I to begin sampling their

input bus A for values to be stored.
» Wait for 0-column propagation delay

This will aliow for the values stored in registers 2, 3, 4, 5, and 6 to be propagated all the

way to the input busses of all elements in column 1.
+ Set the hex value 0x04 on data bus 6
« Toggle the CS signal from0->1->0

This will load the value on data bus 6 into register 7 and load all instruction registers in all

PEs in column 1.
« Set the hex value 0x00 on data bus 6
» Toggle the CS signal from0->1->0

This will load the value on data bus 6 into register 7 and load al instruction registers in all

REs in column 1.

96

APPENDIX B
Automatic Vector Generation Setup Files

main.h
/*t**&****t***#**********t******#*t#**tt#*****t**********t**#***&**#*******#*#********
The Programable Asynchronous Array Processor (PAAP) project is my research thesis. The work herein
contained is submitted in partial fulfillment of the Master of Computer Science degree by Marco Zelada to
the Computer Science Department, Engineering and Computer Science Faculty, Concordia University,
Montreal, Canada.

38 0 s e aje sfe o e 3 afe e e ol e e s e o ok sk sk o o af e e s e sk ok sl ok 2 e e e e ol e sk o o 3k ok e 3 s o ok e 2 e ok 3ok ok ok 3 afe e sl s ok e s sl s 3k ae sk ol ok sk sk ok ok ok ok kK

This work was donc under the supervision of Dr. Terill Fancott, Associate Dean, Engineering and Computer
Science Faculty. The work was conducted while at three different location, Concordia University, Intel
Corporation, and Microchip Technology Inc. The companies involved were notified of the work in progress
for this thesis when Marco A. Zelada joined. All Copyrights to this work are reserved by the author and
Concordia University.
*#***‘**#***#****t*********#**t**/

/* These conditional statements are here to be able to use the same code to generate simulator inputs for both
mi and musa. */

#ifdef MUSA

#include <musa.h> /* Get the musa macro definitions */
#else

#ifdef RNL

#include <rml.h> /* Get the ml macro definitions */
#else

#include <lsim.h> /* Get the Isim macro definitions */
#endif

#endif

#include <instructions.h> /* Get the instruction definitions */
#include <route.h> /* Get the routing definitions */
#include <stdio.h> /* Get the standard 1/O stuff */

#define LIMO 0
#dcfine LIM1 1
#define LIM2 3
#define LIM3 7
#define LIM4 15
#define LIMS 31
#define LIM6 63
#define LIM7 127

P o W T TR W I TR WO Ty T

#define LIM8 255
#define LIM9 511
#define LIM10 1023
#define LIM11 2047
#define LIM12 4095
#define LIM13 8191
#define LIM14 16383
#define LIMIS 32767
#define LIM16 65535
int value;

char *type;

char *types;

char *signal;

char *signals;

char *signals2;

char *signals3;

char *signals4;

char *signals5;

char *signals6;

char *signals7;

char *signals§;

/* Value to convert in the hex macro */
/* Type of vector, bin, oct, hex, dec */
/* Type of vector, bin, oct, hex, dec */
/* Signal name in the hex macro */

/* Signal name in the hex macro */

/* Signal name in the hex macro */

/* Signal name in the hex macro */

/* Signal name in the hex macro */

/> Signal name in the hex macro */

/* Signal name in the hex macro */

/* Signal name in the kex macro */

/* Signal name in the hex macro */

musa.h

/* Create the general setup */

#define setup(signal){)

/* Quit because we are done */

#define quit(){ printf(“*exit\n"); }

/* Take the signals out of the input list */
#define unset(signal){\

printf(** se %s HOOO\™, signal))\

printf(** ev\n")\

printf(** se %os Hxxx\n");\

printf(** ev\n™); }

/* Evaluate the result after having set the signal values */
#define evaluate(}{ printf(* ev\n™); }

/* Set up the vector naming convention */
#define vector(type, signal, signals){ \
printf(“makevector %s %s\n", signal, signals);}
/* Set the input vector */

#define set(value, signal){\

97

08

if (value <= IS\
printf(** se %s HO%x\n", signal, value))\
else\
printf(** se %s H%x\n", signal, value);)
/* Set up the output report format for signals */
#define format(signals){\
printf(*‘show \"™\n\"\n™); \
primf(*“show %s \n”, signals);
#define format2(types, signal){\
printf(*show \"™\n\"\n"); \
printf(*“‘show %s %s \n", types, signal);}
#define format3(types, signal, signals }{\
printf(*'show \"™\\"\n"); \
printf('show %s %s %s\n", types, signal, signals);}
#define formatd(types, signal, signals, signals2 }{\
printf(**show \"™N\\"™\n™); \
primtf("‘show %s %s %s %s \n", types. signal, signals, signals2);}
#define formatS(types. signal, signals, signals2, signals3) {\
printf(*show \"™\n\"\n"); \
printf("*show %s %s %s %s s \n", types. signal, signals, signals2, signals3);}
#dcfine format6d(types, signal, signals, signals2, signals3, signals4){\
printf(**show \"™\\n\"\n™"); \
printf(“show %s %s %s %s %s %s\n", types. signal, signals, signals2, signals3, signals4);}
#define format7(types. signal. signals, signals2, signals3, signals4, signals5,){\
~rintf(*show V™N\\"\n"); \
printiy shiow %s %s %s %s %s %s %s \n”, types, signal, signals. signals2, signals3, signals4, signals5);}
#define format§(types. signal, signals, signals2, signals3. signals4, signals$, signals6){\
printf(*show \"™\n\"™\n"); \
primtf(“show %s %s %s %s %s %s %s %s \n", types, signa!, signals, signals2, signals3, signals4, signals5
signals6):)
#define format11(type, types, signal; signals, signals2, signals3, signals4, signals5, signals6, signals7,
signalsg){\
printf(**show \"™\n\"\n"); \
printf("show %s %s %s %os %es %s %s %s %s %s %s\n". type, types, signal, signals, signals2, signals3,
signals4, signalss signals6, signals7, signals8); }
/* Set up the output report fortmat for signals and vectors */
#define formats(signal, signals){\
printf(*show \™\n\"\n"): \

printf("show 9 s %s\n", signal, signals):}

rnl.h

99

/* The incr value described here is the simulation step time interval in 0.1ns units. A value of 150 is a clock
period of 15.0ns

The clock frquency is thus f = 1/15.0 E-09 = 66,7 MHz ¥/
#define setup(signal){\
printf(**;\n; RNL initialization files\n:\n", signat)\
printf(*‘(load \"uwstd.N"\n™)\
printf(**(load \"uwsim.I\N")\n")\
printf(“‘(read-network \"%s.mI\"\n”, signal)\
printf(“*(setq incr 150)\n");}
/* Set the input vector */
#define set(value, signal){\
printf(*(invec \'(%s %d))\n", signal, value);}
/* Take the signals out of the input list */
#define unset(signal }{ printf(*(x \'(%s))\n", signal);}
[* Quit because we are done */
#define quit(){ printf(*‘exit\n"™); }
/* Evaluate .. = result after having set the signal values */
#define evaluate(){printf(“(s '()\n"); }
#define evaluatep(){ printf(*'(step incr)\n");}
/* Set up the vector naming convention */
#define vector(type, signal, signals){ \
printf(“‘(defvec \'(%s %s %s))\n", type, signal, signals)\
printf(“(chflag \'(%s))\n", signals); }
/* Set up the output report fortmat for signals */
#idefine format(signals){ \
printf(*(def-report '(\" TEST\" newline \"MARCON" %s) \n", signals);}
#define format2(types. signal){ \
printf(““(def-report '\ TEST \" newline \"MARCON” (vec %s) (vec %s)) ™, types, signal);}
#define format3(types, signal, signals }{ \
printf(“‘(def-report\'(\" TEST\" newline \"MARCON" (vec %s) (vec %s) (vee %s)) Nn”, types, signal, signals
%) .
#define formatd(types, signal, signals, signals2){ \
printf("(def-report '(\" TEST \" newline \"MARCO\" (vec %s) (vec %s) (vec %s) (vec %s)) " types,
signal, signals, signals2);}
#define formatS(types, signal, signals, signals2, signals3){ \
printf(“*(def-report \'(\" TEST \” newline \"MARCON" (vec %s) (vec %s) (vec %s) (vec %s) {vee %s)) \n",
types. signal, signals, signals2, signals3);}
#define formatSs(types, signal, signals, signals2, signals3){\

printf(*(def-report '(\” TEST\" newline \"MARCON" (vec %s) (vec %s) (vec %s) (vee %$) %s) N, types,
signal, signals, signals2, signals3);}

#define format6(types. signal, signals, signals2, signals3, signals4){\

100

printf(“(def-report \'(\” TEST \" newline \"MARCON” (vec %s) (vec %s) (vec %s) (vec %s) (vec %os) (vec
%s)) \n”, types, signal, signals, signals2, signals3, signals4);}

#define format7(types, signal, signals, signals?2, signals3, signals4, signals5){ \

printf(*(def-report '(\" TEST \” newline \"MARCO\" (vec %s) (vec %s) (vec %s) (vec %s) (vec %os) (vec
%s) (vec %s)) \n”, types, signal, signals, signals2, signals3, signals4, signals5);)

#define format7s(type. , signal, signals, sigrials2, signals3, signals4, signals5){ \

printf(“(def-report \'(\" TEST \" newline \"MARCON" %s (vec %s) (vec %s) (vec 7s) (vec %s) (vec %s) (vec
%s)) \n”, types, signal, signals, signals2, signals3, signals4, signals5);}

#define format8(types, signal, signals, signals2, signals3, signals4, signals5, signals6){\

printf(“(def-report \'(\" TEST \" newline \"MARCON” (vec %s) (vec %s) (vec %s) (vec %s) (vec %s) (vec
%s) (vec %s) (vec %s)) ", types, signal, signals, signals?, signals3, signals4, signals5, signals6);}

#definc format9(types, signal, signals, signals2, signals3, signals4, signals5, signals6, signals7 }{\
printf(“(def-report \'(\" TEST \" newline \"MARCON” (vec %s) (vec %s) (vec %s) (vec %s) (vec %s) (vec
%s) (vec %os) (vec %s) (vec %s)) ", types, signal, signals, signals2, signals3, signals4, signalsS, signals6,
signals7);}

#define formai8s(types, signal, signals, signals2, signals3, signals4, signals5, signals6) {\
printf(“(def-report \"(\" TEST \" newline \"MARCON" %s (vec %s) (vec %s) (vec %s) (vec %s) (vec %s) (vec
%s) (vec %os)))\n”, types, signal, signals, signals2, signals3, signals4, signalsS, signals6); }

#definc formatl1(type, types, signal, signals, signals2, signals3, signals4, signals5, signals6, signals7,
signals8){\

printf(‘(def-report \'(\" TEST \" newline \"MARCO\" (vec %s) (vec %s) (vec %s) (vec %s) (vec %os) (ver
%es) (vee %os) newline \"'MARCON" (vec %s) (vec %s) (vec %s) (vec %s)))\n”, type. types, signal, signals,
signals2, signals3, signals4, signals$, signals6, signals7, signals8);}

/* Set up the output report fotmat for signals and vectors */

#define formats(signal, signals){\

printf(“(def-report '(\” TEST \" newline \"MARCON" (vec %s) s })\n", signal, signals);}
#include <stdio.h> * Get the standard /O stuff */

Isim.h

/* Create the general setup */

#define setup(signals){ \
printf("VANNNGenerated stimulus for the %s circuit\nNA\n”, signals)\
printf(VARNNClear all previous signal definitions\n\n™))\
print{("Purge\n”); \
print{(""VAnN#NEnvironment Setup\ivAn™)\

printf("startup set Spike_Detection = OFF\n"))\

print{("startup set Simulate_Spikes = OFF\n™");\

printf(“startup set Charge_Decay = NO\n"™)\

printf(“startup set Decay_Time = 15 ns\n"):\

printf(“startup set Decay_Messages = OFF\n™):\

nmntf(startup set Propagate_Unknowns = ON\n");\
printf("startup set Reduce_X_Pessimisin = ON\n\n"):\

printf("startup set RC_Timing = ON\n");\
printf(“startup set Parallel_Trans = OFF\n"))\
printf("startup set Timing_Checks = YES \n");\
printf(“startup set Initial_Simulation = YES\n™)\
printf(“startup set Simulation_Interval = 500 ns\n")}\
printf(“startup set Printer_Name = LaserWriter\n™):\
printf(“startup timescale 20\n");\

printf(“startup set Useri0 = (\n");\

printf(“startup set Useril = 10\n");\

printf(“startup set Useri2 = 160\n");\

printf(“startup set Userd0 = 10\1™))\
printf('¥An\#\tSet the simulation clock period to be 15 ns\nvAnR™)\
printf(“clockdef system 15\n™);}

/* Set the input vector */
#define set(value, signal) {printf(*'setbus 0x%x %s\n”, value, signal);}

/* Quit because we are done */
#define quit(){ printf(“exit\n");}

/* Evaluate the result after having set the signal values */
#define evaluate(){ printf(*‘simulate \n\n""); }

/* Set up the vector naming convention */
#define vector(type, signal, signals){ \
printf("bus %s %s %s \n", signal, type, signals);}

/* Set alist of single bit probes */
#define probe(signals) {\
printf(“probe %s\n”, signals); }

/* Delete the list of probes from the display */
#define delete(signals){ \
prind(“hide %s\n”, signals);}

/* Stop forcing a value on the list of probes */
#define unset(signals){ \

printf(*release %s\n”, signals):\
printf(“simulate \n"); }

101

102

instructions.h

/* This file has the definitions of the instructions the core can perform. The decimal numbers in the define
statemets should be interpreted as follows:

i5 4 i3 i2 il i0

Cin M S3 S2 S1 N

0 0 X X X X The value is between 0 - 15, and we are in the
arithmetic mode with carry.

0 1 X X X X The value is between 16 - 31, and we are in the
logic mode.

1 0 X X X X The value is between 32 - 47, and we are in the
arithmetic mode with no carry.

1 1 X X X X The value is between 48 - 63, and we are in the
logic mode.

Once M = 1, Cin = X, because the mode is logic and there is no need for the carry. */
/* Zero operand instructions

IR

543210 Hex Dec
CLEAR X10011 0x13 19
SET X11100 Oxlc 28
NEG 100011 0x23 35%/
#define CLEAR 19 /* The result is all 0’s regardless of A or B */
#define SET 28 /* The result is all 1’s regardless of A or B */
#define NEG 35 /* The result is -1 in 2’s compliment */

/* One operand instructions

IR

543210 Hex Dec
INC_A 000000 0x00 0
SHIFT_AC 001100 0x0c 12
NOT_A X10000 0x10 16
NOT_B X10101 0x15 21
PASS_B X11010 Ox1la 20
PASS_A 100000 0x20 32
SHIFT_A 101100 0x2c 44
SHIFTR_A 111111 0x3f 63
DEC_A 101111 0x2f 47 %/
#define INC_A 0 /* The resultis A + 1 */
#define SHIFT_AC 12 /* The result is A shifted to the left by one position

with 1 filling in the empty position */
#define NOT_A 16 /* The result is A inverted */

#define NOT_B
#define PASS_B
#define PASS_A
#define SHIFT_A 44

#define SHIFTR_A

#define DEC_A

21

32

47

/* Two operand instructions

ORC

SUB

ADDC
PASS_ABCOND
NOR

NAND

XOR

XNOR

AND

OR

PASS_AB
COMP_SUB
ADD

#define ORC
fidefine SUB
#define ADDC
#define PASS_ABCOND

#define NOR
#define NAND
#define XOR
#define XNOR
#define AND
#define OR
#define PASS_AB

IR
543210
000001
000110
001001
001111
X10001
X10100
X10110
X11001
X1101
X11110
011111
100110
101001
1
6
9

15

17
20
22
25
27
30
31

/* The result is B inverted */

/* The resultis B */

/* The recultis A */

/* The result is A shifted to the left by one position
with O filling in the empty position */

* The result is A shifted to the right by on¢ position
with O filling in the empty position */

/* The resultis A - 1%/

Hex Dec
0x01 1
0x06 6
0x09 9
0x0f 15
Ox11 17
0x14 20
0x16 22
0x19 25
0x1b 27
Oxle 30
Ox1f 31
0x26 38
0x29 41 %/

/* The resultis= A ORB + 1, Or with Carry */

/* The resultis A - B */

/* The resultis A + B + 1, Add with Carry */

J* The result is A and status is B, if status bit 7 is set, 0
else. This allows us tobe able to test for any condition
in the status bus by just shifting the bit we arc instercested
in into the 7th position. Multiple test can be done since
both A and B are passed if the condition is true. */

/* The resultis ANOR B */

/¥ The resultis A NAND B */

/¥ The resultis A XOR B */

/* The resultis A XNOR B */

/* The resultis A AND B */

/* The resultis A OR B ¥/

/* The resultis A and status is B */

#define COMP_SUBC 38

#define ADD 41

/* These are repeated instructions. */

#define R1 3
#define R2 7
#define R3 11
#definc R4 33
#define RS 34

104

/* The status is the result of a magnitud comparison is
placed in the status bus and. The resultbushas A-B - 1,
Subtract with borrow */

/* Theresultis A + B */

/* Repeated CLEAR instruction */

/* Repeated Misc 5, F = A AND NOTB */
/* Repeated AND instruction */

/* Repeated OR instruction */

/* Repeated Misc 6, F = A ORNOT B ¥/

/* These are by-product instructions with no meaning for our purposes */

#define M1 2

#define M2 18
#define M3 23
#tdefine M4 24
#define MS 29
#define M6 39
#define M7 43
#define M8C 5

#define M8 37
#define M9C 4

#definc M9 36
#define M10C 8

#define M10 40
#define M11C 10
M1l 42
#define M12C 13
#define M12 45
#define M13C 14
#define M13 46

/* General purpose constants */
#define CONDITION 0x01
#define LOAD_PE_IR 0x02
#define LOAD_RE_IR 0x04
#define STRAIGHT 0x0
#define BROADCAST_B 0x1
#define BROADCAST_A 0x2
#define CROSS 0x3

/*Misc2, F=AORNOTB+1%*/

/* Misc 3, F=NOT A AND B */

/* Misc 4, F = A AND NOT B */

M Misc 5, F=NOTAORB*

/*Misc 6, F = AORNOT B */
/*Misc 7, F=AAND NOTB-1*
AMisc8,F=AANDB- 1%

/*Misc 9C,F=(AOR B)+ (A ANDNOT B) + 1 ¥
/* Misc 9, F = (A OR B) + (A AND NOT B) */
* Misc 10C,F=A+ (AANDNOTB)+ 1 */
/* Misc 10, F=A + (A ANDNOT B) */
*Misc 11C,F=A+ (AANDB)+ 1%

/* Misc 11,F= A + (A ANDB) ¥/

/* Misc 12C, F = (A OR NOT B) + (A AND B) + 1 */#define
/* Misc 12, F = (A OR NOT B) + (A AND B) */

M*Misc 13C,F=(AORB)+A+ 1%
/*Misc 13,F=(ACORB)+A*/

*Misc 14C,F=(AORNOTB)+ A+ 1%
/*Misc 14, F=(AORNOTB)+ A */

/* The pass on condition is checked on b0 */
/* Loading the PE IR is on bl %/

/* Loading the Router IR is on b2 */

/* Output Routing */

/* Output Routing */

/* Output Routing */

/* Output Routing */

105

route.h

r* The values here can be interpreted as follows:
D C B A Comment
17 6 5 4 r3 2 rl 0 1/O config Hex Value
1 1 1 0 1 1 1 0 a->c, b->d 0xEE
1 1 1 0 1 0 1 1 b->c, a->d 0xEB
1 1 1 1 0 i 0 1 a->b, c->d 0xF5
1 1 0 1 0 1 1 | c->b, a->d 0xD7
1 0 1 0 0 1 0 1 a->b, d->c 0xA5
0 1 i 0 0 1 1 0 d->b, a->c 0x66
1 1 1 1 0 0 0 0 b->a, c->d 0xF0
1 1 0 0 1 1 0 0 c->a, b->d 0xCC
1 0 1 0 0 0 0 0 b->a,d->c 0xA0
0 0 1 0 1 0 0 0 d->a, b->c 0x28
0 1 0 0 0 1 0 0 c->a,d->b 0x44
0 0 0 1 0 ! 0 0 d->a,c->b 0x14 %/
#define AtoC_AND_BtoD OxEE
#define BtoC_AND_AtoD OxEB
#define AtoB_AND_CtoD OxF5
#define CtoB_AND_AtoD 0xD7
#define AtoB_AND_DtoC OxAS
#define DtoB_AND_AtoC 0x66
#define BtoA_AND_CtoD 0xF0
#define CtoA_AND_BtoD 0xCC
#define BtoA_AND_DtoC 0xAQ
#define DtoA_AND_BtoC 0x28
#define CtoA_AND_DtoB 0x44
#idefine DtoA_AND_CtoB Ox14

Lsim pe.c

#include <main.h>

main()
{
int c0, cl,c2, c3, c4, c5, cb;

Semp(npen);
probe(“load reset reqa reqb acke ackd reqc reqd acka ackb™)

/* A and B are input busses, C and D are output buses */

106

vector("x", "a”, "a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0]");
vector("x", "b", "b[7] b{6] b{5] b[4] b[3] b[2] b[1] b[0]");
vector("x", "c", "c[7] ¢[6] c[5] c[4] c[3] c[2] c[1] c[01");
vector("x", "d", "d[7] d{6] d[5] d[4] d[3] d[2} d[1] d[0]");

/* We need to set the circuit into a known state, so we initialize
all of the input signals. All registers in the PE and Router will be
cleared to O when the reset signal toggles = 1->0 */

set(1, "reset”);
set(0, "load");
set(0, "a");
set(0, "b");
set(0, "reqa");
set(0, "regb");
set(0, "ackc");
set(0, "ackd”);
evaluate();

set(0, "reset");
evaluate();

/* The value of cO controls the instruction to be executed */

for(cO=ADD; c0 <= ADD ;c0++)
switch (¢0)

case CLEAR: /* Zero operand instructions */
case SET:
case NEG:
case INC_A: /* One operand instructions */
case SHIFT_AC:
case SHIFT_A:
case SHIFTR_A:
case NOT_A:
case NOT_B:
case PASS_B:
case PASS_A:
case DEC_A:
case ORC. /* Two operand instructions */
case SUB:
case ADDC:
case NOR:
case NAND:
case XOR:
case XNOR:
case AND:
case OR:
case COMP_SUBC:
case PASS_ABCOND:
case PASS_AB:
case ADD:

107

for(c1=0; ¢l <=0:cl4+)
{
set((c0i(cl << 6)), "a");
set{ LOAD_PE_IR, "b"):/* Setbl=l1, load IR */

/* Togle the load signal so that the IR gets loaded */

for(c2=LIM1; c2 >=0; c2--)
{

set(¢2, "load");
evaluate();

}

for(c3=LIM2; ¢3 <= LIM2; c3++)
for(c4=LIM2; ¢4 <= LIM2; cd4++)
{
set(c3,"a");
set(c4,"b");

for(¢5=0; ¢§ <= LIMI; c5++)
for(c6=LIM1; c6 >=0; c6--)
{

set(c5, "rega"),

set(c5, "reqb");

set(¢6, "acke");

set(¢6, "ackd");

evaluate();

)

}/* end of for on c4 */
}/* end of foron cl */
break;
default:
break;
}/* end of switch */
exit(0)

APPENDIX C
PAAP Detailed Circuit RNL Netlist

H Non-inverting buffer
(macro buf (out in)
; in = Input
; out = Strenghten input
(local internal)
(cinvert internal in)
(cinvert out intemal))
; Transmission gate that requires only one control signal
(macro ctgate (out in ctl)

: in = Input

) ci = control signal

; out = Qutput = input when ctl = 1
(local bar)

(cinvert barctl)

(tgate out in ctl bar))
; The 2 Input AND gate
(macro cand (outa b)

: a,b = Inputs
; out = output
(local bar)

(cnand barab)
(cinvert out bar))
; The 3 Input AND gate
{macrocand3 (outabc)
; a,b, c = Inputs
; out = output
(local bar)
(cnand barabc)
{ cinvert out bar))
: The 4 Input AND gate
(macro cand4 (outabc d)
; a,b, c,d =Inputs
: out = output
(local bar)
(cnandbarabcd)
(cinvert out bar))
: The S Input AND gate

108

109

{macrocand5 (outabcde)

; a,b,c.d.e=Inputs
; out = output
(local bar)

(cnand barabcde)
(cinvert out bar))
; The 2 Input OR gate
(macrocor(outab)
5 a,b = Inputs
out = output
(local bar)
(cnorbarab)
(cinvert out bar))
; The 3 Input OR gate
(macro cor3 (outabc)

; a, b, c = Inputs
’ out = output
(local bar)

(cnorbarabc)
(cinvert out bar))
The 4 Input OR gate
(macro cor4 (outa b cd)
: a, b, ¢ = Inputs
: out = output
(local bar)
(cnorbarabcd)
(cinvert out bar))
: The XOR gate
(macro cxor (out a b)
H a,b = Inputs
4 out = output
(local pOpl p2)
(cnandpOab)
(corplab)
(cnand p2p0pl)
(cinvert out p2))
; 1 Bit Switch box
(macrosbox (cdabclc2)
: c,d = Outputs
V a.b = Inputs

110

; cl,¢2 = Control lines
(local cinc2npl p2p3pd)
(cinvertclncl)

(cinvertc2nc2)
(cnandplac2n)
(cnandp2bc2)
(cnandc pl p2)
(cnandp3 bcln)
(cnandpdacl)
(cnanddp3 pd))
: 8 Bit Switch Box

(macro switch (r112c0cl c2c3cd4c5c6¢7d0dl d2d3 d4 d5 d6 d7a0al a2 a3 a4 a5a6a7b0 bl b2 b3 b4
b5 b6 b7)

; rl,r2 = Route control lines
H a0-a7 = A Data (usually the result from the ALU)
: b0-b7 = B Data (usually the status from the ALU)
; c0-c7 =
; d0-d7 = Outputs
(sboxc0d0a0b0rls2)
(sboxcldlalblrlr)
(sboxc2d2a2b2rlr2)
(sboxc3d3a3birir2)
(sboxc4ddadbdrlin2)
(sboxc5d5a5b5r1r2)
(sbox c6d6a6b6ri12)
(sboxc7d7a7b7rir2))
Look-ahead Carry Generator
(macro lacg (coutcinp g)
: p. g.cin = Inputs
B cout = Carry for the next stage
(local pOplp2)
(cinvert pOcin)
(candplpg)
(candp2p0g)
(cnor cout pl p2))
; A 2-1 MUX
(macromux2(crab)

r = Mux control

ab = Inputs

c = Outputs
(localmpl p2)

(cinvertmr)
(candplma)
(candp2rb)
(corcplp2))
V 8 Bit 2-1 Mux
{macromux (c7c6cScdc3c2clcOra7abaSad a3 a2al a0 b7 b6 b5 hd b3 b2 bl b))
; r = Mux control
; a0-a7 =AData
; b0-b7 =B Data
: c0-c7 = Outputs
(mux2c0radb0)
(mux2cliral bl)
(mux2c2ra2b2)
(mux2c3ra3bl)
(mux2cdrad b4)
(mux2c5rasShbs)
(mux2c6rabbb)
(mux2c7ra7b7))
: The 74181 1 bit decode
(macro decode (dout low high abs3s2 sIs0)
; dout = The output of the decode circuit
; low = The output of the lower 3 ands and nor gates
; high = The output of the upper 2 ands and nor
; a.b = Data inputs a(i) b(i)
; s0-s3 = Function selection bits
(local bn pOpl p2p3 p4)
(cinvertbnb)
(candplaa)
(candplsOb)
(candp2sl bn)
(cand3p3s2bna)
(cand3ipds3ba)
(cnor low p0 pl p2)
(cnor highp3 p4)
(cxor dout low high))
; The 74181 4 bit ALU
{macro aludl (3 f2 f1 f0c zeq p g cin m a3 a2 al a0 b3 b2 b1 b0 $3 5251 50)
; f0-f3 = Result
¢ = Carry out or Overflow

111

.
’

7. = The result was Zero

¢q = A = Bsignal

p, g = Carry generation for next stage
cin = Carry in

m = Mode selection Arithmetic/Logic
a0-a3 = A data

b0-b3 = B data

s0-s3 = ALU Function selection

112

(local pO pl p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16p17 p18 p19 p20 mbard0d1d2d3 1011
1213 h0hl h2h3)

(cinvert mbarm)

Generate the FO signal

(decode d0 10 hO a0 b0 s3 52 s1 s0)
(cnand p0 mbar cin)

(cxor f0p0do)

Generate the F1 signal

(decodedl 11 h1 al bl s3s2s1s0)
(cand pl mbar10)

(cand3 p2 mbar cin h0)

(cnorp3 plp2)

(cxorflp3dl)

Generate the F2 signal
(decoded212h2 a2 b2 535251 s0)
(cand p4 mbar 11)

(cand3 pSmbar 10 hl)

(cand4 p6 mbar cin hO hl)

(cnor p7 p4 p5p6)
(cxorf2p7d2)

Gencrate the F3 signal

(decode d313 h3 a3 b3 s3s2s1s0)
(cand p8 mbar 12)

(cand3 p9 mbar 11 h2)

(cand4 p10 mbar I0 h1 h2)

(cand5 pl1 mbar cin hOhl h2)

(cnor pl2 p8 p9 pl10 pll)
(cxorf3pl2d3)

Generate P

(cnand p hO h1 h2 h3)

Generate the G

(cand4 pl410h1 h21h3)
(cand3plS11 h2h3)

oo TR

Fo oo e m v

R T G L TR WA SR e

AR

*

(macro alud (ackreqf3f2f1 fOczeqp g cinma3 a2 al a0 b3 b2 bl b0 s3 52 s1s0)
req = Request signal used for synchronization
ack = Acknowledge signal used for synchronization

.
.
.

-
*

.
»

(cand pl1612 h3)
(candp171313)
(cnorgpl4 pl5pl6pl7)
Generatethe A=B
(canddeqfOflf213)
Generate the Result = 0 flag
(cnorz fOf112f3))

The 74181 4 bit ALU

fO-f3 = Result

¢ = Carry out or Overflow

z = The result was Zero
eq=A=Bsignal

p. g = Carry generation for nert stage
cin = Carry in

m = Mode selection Arithmetic/Logic
a0-a3 = Adata

b0-b3 =B data

s0-s3 = ALU Function selection

(local p25 pO p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 pll1 p12 p13 p14 p1S p16 pl17 p18 pl9 p20 p21 p22 p23 p24

mbar d0 d1 d2 d3 d4 10111213 14 h0 hl h2 h3 h4 10b 11b 12b 13b hOb h1b h2b h3b cinb)

(cinvert mbar m)

Generate the FO signal

(decode d0 10 h0 a0 b0 s3 s2 sl sO)
(cnand p0 mbar cin)

(cxor f0p0d0)

Generate the F1 signal

(decode d1 11 hl al bl s3s2s1 s0)
(cand pl mbar 10)

(cand3 p2 mbar cin hO)
(cnorp3plp2)

(cxor flp3dl)

Generate the F2 signal
(decode d212 h2 a2 b2 s3 5251 s0)
(cand p4 mbar 11)

(cand3 pS mbar 10 h1)

(cand4 p6 mbar cin hQ hl)
(cnorp7 p4 p5pb)

(cxor f2p7d2)

Generate the F3 signal

(decode d313 h3 a3 b3 s3s25150)
{ cand p8 mbar 12)

(cand3 p9 mbar 1l h2)

(cand4 pl0 mbar 10 h1 h2)

(cand5 p11 mbar cin hOhl h2)

(cnor p12 p8 p9 pl0 pll)

{cxor f3pl2d3)

Generate the intemal done signal

{ decode d4 14 h4 req req req req req req)
Buffer all crtitical path signals because we are exceeding some driver fanout
(buf h3b h3)

(buf13b13)

(bufh2b h2)

(buf12b12)

(buf hibhl)

(buf11b11)

(buf hOb h0)

(buf10b10)

(buf cinb cin)

Create the longest path calculation
(cand p13d413b)

(cand3 pl4d412bh3b)

(cand4 p15d411bh2bh3b)
(cand5 p16.d4 10b h1b h2b h3b)
(cand5 p17 d4 hOb h1b h2b h3b)
(cand p18 pl7cinb)

(cnor p19 pi3 pl4 p15pl6pl8)
The ack signal depends on the req signal as well as the longest delay path
(cxor p25p19d4)

(cand ack p25req)

Generate P

(cnand phOhl h2 h3)

Generate the Cout & G

(cnand p20 hO hl h2 h3 cin)
(cand4 p2110h1 h2 h3)

(cand3 p2211 h2 h3)

(cand p2312 h3)

(cand p241313)

(cnor g p21 p22 p23 p24)

114

115

(candc g p20)

: Generate the A=B
(cand4 eq fOf1f213)

\ Generate the Result = 0 flag
(cnor z fO f1 f213))

H The 8 bit ALU

(macro alu (ackreq £7 f6f5f4 3 £2 f1 f0c z1teq gt p gcin m a7 a6 a5 a4 a3 a2 al a0 b7 b6 bS b4 b3 b2 bl
b0 s3 s2s1s0)

; req = Request signal used for synchronization

; ack = Acknowledge signal used for synchronization

; fO-f7 = Result

) ¢ = Carry out or Overflow

: z = Zero result flag

: 1t = A < B signal *****These comparisons are only valid
; eq= A = B signaj**+**

; gt = A > B signal*****when the cin m s3 s2 s1 s0 = 38
; P> £ = Carry generation for next stage

; cin = Carry in
: m = Mode selection Arithmetic/Logic
; a0-a7=Adata
b0-b7 =B data
; s0-s3 = ALU Function selection

(local eqQ cOp0 gOeqlcinl pl p2 p32021)
(aludl 3 £2 £1 10 c0 20 eqO p0 g0 cin m a3 a2 al a0 b3 b2 b1 b0 s3 52 s1 50)
(lacg cinl cin p0 g0)
(alud ack req 7 f6 f5 f4 ¢ z1 eql p g cinl m a7 a6 a5 a4 b7 b6 b5 b4 s3 5251 s0)
H Generatethe A=B

(candeqeqOeql)
; Generate the A<B
(cinvertpl c)
(cinvertp2 eq)
(cand3 It cin ps p2)
; Generate the A >B
(cinveitp3 1t)
(cand gt p2 p3)
: Generate the Zeyo result flag
(cand 220 z1))
: 1 Bit bistable latch, it loads on a falling edge
(macro rsff (q s r load reset)
: s, 1= Inputs

3 load = Loading and sync is not needed

.
*

.
L3

reset = Reset all latches to 0
q = Stored data

(local pO p1 gnot)

(cnor pUsioad)

{ cnor pl rreset)

(cnand q p0) gnot)

(cnand gnot pl q))

1 Bit bistable latch, it loads on a falling edge, with reset

(macro dff (q cleard c)

.
’
’
»

.
y

d = Data

c = Enable

q = Stored data

clear = Reset the value stored to 0

(local pOpt p2p3p4 p5)

.
)

(macro register (b7 b6 b5 b4 b3 b2 bl b0 reset r0 a7 a6 a5 a4 a3a2 alal)

.
3

(macro s

(cinvertp0d)
(cand pl cp0)
(cand p2p3 p3)
(cnor q pl p2 clear)
(candpddc)
(candp5qq)
(cnor p3p4 p5))

8 Bit register

resct = Clear the register to all 0
0 = Load Control

a0-a7 =Data to be stored
b0-b7 = Previously stored data
(dff b0 reset a0 10)

(dff bl resetal 10)

(dff b2 reset a2 10)

(dff b3 reset a3 10)

(dff b4 reset ad 10)

(dff bSresetaSr0)

(dff b6 reset a6 10)

(dff b7 reset a7 10}))

8 Bit Shift Right register

register (b7 b6 b5 bd b3 b2 b1 b0 reset ctl r) a7 a6 a5 ad a3 a2 al a0)
reset = Clear the register to all 0
ctl = Shift Right

0 = Load Control

116

.
’

.
L3

.
’

a0-a7 = Data to be stored
b0-b7 = Previously stored data
(local ctinot pO pl p2 p3 p4 p5 p6 p7 p8 p9 p10 pl1 p12 p13 p14 pl5 a0r alr a2r a3r adr aSr a6r a7r)

(cinvert ctinot ctl)

If shifting right fill in with Os

(cnand pO ctlnot a7)
(cnand plctl gnd)
(cnand a7rpOpl)
(cnand p2 ctlnot a6)
(cnand p3 ctl a7)
(cnand a6rp2 p3)

(cnand p4 ctlnot a5)
(cnand p5ctl a6)
(cnand a5t p4 pS)
(cnand p6 ctinot a4)
(cnandp7ct as)
(cnand adrp6 p7)
(cnand p8 ctlnot a3)
(cnandp9ctiad)
(cnand a3rp8 p9)

{ cnand p10 ctlnot a2)
(cnand pllctl a3)
(cnand a2r pl10 pl1)
(cnand p12 ctlnot al)
(cnand pl3ct a2)
(cnand alrpl2 p13)
(cnand p14 ctinot a0)
(cnandpl5ctd al)
(cnand aOr p14 pl5)
(dff b7 reseta7rr0)
(dff b6 reset abr10)
(dff bS5 resetaSrn0)
(dff b4 reset a4rr0)
(dff b3 reseta3rr0)
(dff b2 reseta2rr0)
(dff bl resetalrr00)
(dff b0 reset a0r 10))

Control Unit, Generate the internal control signals
(macro cu (i71i61 14232122 12 i02 pass_ab shift_right Oop lop 20pi7 i6 i5 i4 i3 i2 il iU bn load)
load = Load register signal

117

i7 -0 = Instruction register contents.

i71 1614232 22i12i02

118

= Adjusted instruction register value to force the

PE to do a specific action, regarless of the

instruction register contents,

shift_right= Shift A right 1 bit instruction
pass_ab = PASS A and B instruction control

bn = Condition value to test by the pass on

condition instruction.

Oop, 1op, 20p= Signal the number of operands needed by

the current instruction.

(local sr int_pass iOnot i Inot i2not 13not i4not iSnot p0 p1 p2 p3 p4 p5 p6 p7
p8 p9 p10 p11 load_clear loadnot clearnot i2a i3a pass pass_acond i21 i31 bnnot i6not i7not)

(cinvert i0not i0)

(cinvertilnotil)

(cinvert i2not i2)

(cinvertidnotil)

(cinvert idnot i4)

{ cinvert i5not 5)

Decode the 0 operand instructions

(cnand p0 i4 i3noti2not i1 i0)

(cnand pli4 i3 i2 ilnot i0not)

(cnand p2 i5 i4not i3not i2not i1 i0)
(cnand Oop pOpl p2)

Decode the 1 operand instructions

(cnand p3 iSnot i4not i3not i2not i1not i0not)
(cnand p4 iSnot i4not i3 i2 i1not iOnot)

(cnand p35 i4 i3not iZnot i1not iOnot)
(cnand p6i4 i3not i2 ilnoti0)

(cnand p7i4 i3 i2not il i0not)

(cnand pR i5 i4not i3not i2not i1not i0not)
(cnand p9i5 i4not i3 i2 ilnot i0not)
(cnand p10i5idnot i3 i2 i1i0)

(cnand sri5413i2i1i0)

(cnand top p3 p4 p5 p6 p7 p8 p9 p10 sr)
Decode the 2 operand instructions

(cnor 2op Oop lop)

(candS pl1 id4not i3i2i110)

(cand pass_acond i5not p11)

(candS pass i4i3i2i1i0)

; The CLEAR instruction is present
; The SET instruction is present

; The NEG instruction is present

; Zero Operand instruction

; The INC_A instruction

; The SHIFT_AC instruction
; The NOT_A instruction

: The NOT_B instruction

; The PASS_B instruction

; The PASS_A instruction

; The SHIFT_A instruction

; The DEC_A instruction

; The SHIFTR_A instruction
; One Operand instruction

; Two Operand instruction

: The PASS_ACOND instruction is present
; The PASS_AB instruction is present

119

(cor pass_ab pass load) ; Force PASS_AB if load or pagss is high
(cinvert shift_right sr)
: Force the CLEAR instruction when the pass_acond instruction is present and bn = (),
(cinvert bnnot bn)
(cinvert loadnot load)
(cnand clearnot bnnot pass_acond loadnot)
(cand i22 i2a clearnot)
(cand i32 i3a clearnot)
(cor load_clear load pass_acond)
: Force the PASS_AB instruction
(cor i02 i0 load_clear)
(coril2 il load_clear)
(cori2ai2 load_clear)
(cori3ai3 load_clear)
(cori42 i4 load_clear)
; Force the Route a -> ¢, b -> d on the PE core’s output switch box, not on the RE
(cinvert i6not i6)
(cinverti7noti7)
(cnor i61 i6not load)
(cnor i71 i7not load))
; The PE core

(macro core (done Oop lop 20p ¢7 ¢6 ¢5 ¢4 c¢3c2 c1 c0 d7 d6 d5 d4 d3 d2 d1 dO reset load req consumed
error a7 a6 a5 a4 a3 a2 al a0 b7 b6 bS b4 b3 b2 b1 b0)

; a0-a7 =Inputbus A
; b0-b7 =Inputbus B

; reset = Software reset of all registers

; load = We are programming the RIPP

s req = Request for computation to be done

: error = A synchronization error has been detected
: consumed= The previously generated result has been used up
; ¢0-c7 =Output busC

; d0-d7 = Output bus D

; 20p = The IR contains a 2 operand instruction

H lop = The IR contains a 1 operand instruction

: Oop = The IR contains a 0 operand instruction

; done = The core has completed its computation

(local int_done shift_right errorq p0 p1 p2 p3 p4 p5 p6 p7i7i615i4 i3 i2i1i0i61i71i42i32i22i12i02
load_reg pass_abr15r14r13r12r11 109 r8r7r6rSrd r3r2 1l rO €7 £6 {5 {4 f3 2 {1 f0couteq gtitpge
fq7 fq6 £q5 194 fq3 fq2 fql fq0 s7 s6 554 s3 5251 s0 gq pq liq gigeqqcqzq z)

: load = 1 and bl = 1; This means that we are loading instructions
(cand load_reg load b1)

120

(register i7 i6 15 i4 13 i2 11 i0 reset load_reg a7 a6 a5 a4 a3 a2 al a0)

Generate the PE internal control signals

(cu i71i61 i42 132 i22 i12 i02 pass_ab shift_right Oop lop 20p i7i6 i5 i4 i3 i2 i1 i0 b0 load)
Hookup the ALU to the input.

(alu int_done req f7 f6 15 f4 {32 f1 f0 coutzlteq gt p g i5i42 a7 a6 a5 a4 a3 a2 al a0 b7 b6 b5 b4

b3 b2 bl b0 322212 i02)

.
’

Should we force B onto the status bus ?

(mux s7 s6 s5 s4 s3 s2 51 s0 pass_ab z cout g p error eq It gt b7 b6 b5 b4 b3 b2 bl b0)

Buffer the value in the Result and status buses only when

(cand done int_done consumed)

Latch the results at the right time

(sregister fq7 £q6 fqS fq4 fq3 fq2 fql fqO reset shift_right done 7 {6 5 {4 {3 f2 f1 f0)

(register zq cq gq pq errorq eqq ltq gtq reset done s7 s6 s5 s4 53 s2 51 s0)

Route the Result and Status buses to the corresponding output

(switch i71 i61 c7 c6 c5c4 c3 c2 cl c0 d7 d6 d5 d4 d3 d2 d1 dO fq7 £q6 fq5 fq4 fq3 tq2 fq1 fq0 zq

¢4 gq pq errorq eqq liq gtq))

110 3 Demux

(macro demux41 (defr0rl a)

.
)

.
]

d.e,f =Outputs

(local rtOnrln)

a = Input
0, rl = Control
(cinvert rOnr0)
(cinvertrinrl)
(cand3drinr0a)

(cand3erirOna)
(cand3 frir0a))
1to 3 Demux

(macro demux42 (cefrlrl a)

c.e,f =Outputs

a = Input
:), rl = Control
(local tOnrin)
(cinvert rOn Q)
(cinvertrinrl)
(cand3crinrOna)

.
3

(cand3erlrOna)
(cand3frlr0a))
1 t0 3 Demux

(macro demux43 (¢cdfrlrl a)

c.d.f =Outputs

: a = Input

; 10,11 = Control

(localOnrin)
(cinvert 1On10)
(cinvertrinrl)
(cand3crinrOna)
(cand3drinr0a)
(cand3frlir0a))

H 1to 3 Demux

(macrodemux44 (cder0rl a)

: c,d.e =Outputs

; a = Input

: 10, rl = Control

(localOnrln)
(cinvert rOn10)
(cinvertrinrl)
(cand3crinrOna)
(cand3drinr0a)
(cand3ertrOna))

: 1to 4 Demux

(macrodemux4 (cdefrOrlta)

; ¢, d, e, f = Outputs

; a = Input

: 10,1l = Control

(localOnrin)
(cinvert tOn10)
{cinvertrinrl)
{cand3crinrOna)
{cand3drinr0a)
(cand3erlrOna)
(cand3frlr0a))

: 1 Bit Route Box

(macro bit_route {abcddiradirb dirc dirdr7r6 151413121 10)

; a, b, c, d = Input/Output

: dir* = Direction for each bus a, b, ¢, d
; 10-17 = Control the data flow groups
(local al a2 a3 b0 b2 b3 c0 c1 c3 d0 d1 d2 p0 p1 p2 p3)

(demux41b0c0dOrOria)
(demuxd42alclidir2r3b)
(demux43a2b2d2rdr5c¢c)

121

122

(demux44 a3 b3 c31617d)
{cor3 p0ala2al)

(ctgate a pO dira)

(cor3 pl b0 b2b3)

{ ctgate b pl dirb)
(cor3p2cOclc3)

(ctgate ¢ p2 dirc)

(cor3 p3d0did2)

(ctgate d p3 dird))

8 Bit Routing Element

(macro route (a0 al a2a3 a4 a5a6a7b0bl1 b2b3 b4 bSb6 b7 cOclc2cIcdc5c6c7d0dl d2d3d4 d5d6
d7 load reset acka ackb ackc ackd reqa reqb reqc reqd)

.
’

a-a7 R

b0 - b7 ,

c0-¢c7 .

dg-d7 = Inputs/Outputs

ack* = Sync signal

req* = Sync signal

load = Routing Element Instruction Register load signal
reset = Signal to clear the RE IR

(local load_reg loadnotr0arlar2ar3ardarSar6ar7arOrl r2r3
r4 15 r6 17 dira dirb dirc dird p0 pl)

.
»

load = 1 and b2 = I; This means that we are loading the RE IR

(cand load_reg load b2)

(register r7a réar5ardar3a r2arla r0areset load_reg a7 a6 a5 a4 a3 a2 al a0)

Make sure that the a-> ¢ & b->d instruction (OxEE) is enabled when load = 1

(cinvert loadnot load)

(cand r0 r0a loadnot)

(cor rl rlaload)

(cor r2 r2a load)

(cor r3 r3a load)

(cand r4 r4a loadnot)

(cor r5 r5a load)

(cor 16 r6a load)

(cor 17 r7aload)

The rl =0, and 10 = 0 then signal a is an output, else it is an input. When it is an output
it must be driven, else it must be left alone because it is being driven by some PE.
(cnor dirarl 1))

The 13 =0, and r2 = 1 then signal b is an output, else it is an input. When it is an output
it must be driven, else it must be left alone because it is being driven by some PE.
(cinvert p013)

- TV

(cand dirbp0r2)

The rS = 1, and r4 = (then signal ¢ is an output, else it is an input. When it is an output it
must be driven, else it must be left alone because it is being driven by some PE,

{cinvert pi rd)

(cand dirc p115)

The r7 = 1, and 16 = 1 then signal d is an output, else it is an input. When it is an output it
must be driven, else it must be left alone because it is being driven by some PE.

(cand dird r716)

(bit_route acka ackb ackc ackd dira dirb dirc dird r7 r6 1S4 r3 12 11 1))

(bit_route reqa reqb reqc reqd dira dirt dirc dird 17 r6r5r4 1312 r1 10)

(bit_route a0 b0 ¢0 dO dira dirb dirc dird r7 r6 15 r4 r3r2r1 10)

(bit_route al bl c1 d1 diradirb dirc dird r7 r6r5r4 r3r2r1 10)

(bit_route a2 b2 c2 d2 diradirb dirc dird r7 1615 rd r3r2ri r0)

(bit_route a3 b3 c3 d3 diradirb dircdird r7 161514 131211 10)

(bit_route ad b4 c4 d4 diradirb dirc dird r7r615r4 r312r1 1))

(bit_route a5 bS5 ¢5 d5 diradirb dirc dird r7 r6 1S rd4 r3r2r1 r0)

(bit_route a6 b6 ¢6 d6 dira dirb dirc dird r7 6 rSr4 3121l 0)

(bit_route a7 b7 ¢7 d7 diradirb dirc dird r7 r6 15 r4 131211 1}))

Sync Output PE

(macro syncout { consumed reqc reqd ackc ackd done load reset)

acke = Computation on data in bus C has completed

ackd = Computation on data in bus D has completed
done = The core has completed its computation

load = Programming the RIPP

consumed= The previously generated result has been used up
reqc = Request for computation on output data in bus C
reqd = Request for computation on output data in bus D

(rsff reqc done acke load reset)

(rsff reqd done ackd load reset)

(cnor consumed reqg reqd))

: Sync Input PE

(macro syncin (req error load reqa regb 2op lop Oop)

v
.
)

.
’

load = Programming the RIPP

reqa = Request for computation on data in bus A
regb = Request for computation on data in bus B
2op = The IR contains a 2 operand instruction
lop = The IR contains a 1 operand instruction
Oop = The IR contains a O operand instruction
req = Start the next computation on the cor¢

error = A synchronization error has been detected

25
)

124

(local notload pO p1 p2 p3 p4 p5 p6 p7 p8 p9)

.
)

(cand pO reqa regb)

(cnand pl p0 20p)

(cinvertp2pl) : The cu signals a 20p and we have two incoming requests
(corp3 regaregh)

(cnand p4 p3pl lop) ; The cusignals a lop and we have at least one request
{cinvert pSp4)

(cand3p6p4 pl Oop) ; The cu signals a Oop and we have no reqa or reqb

(cord req p2 p5 p6 load); It is OK to generate areq even if there is a sync error
(cinvert p7 20p)

(cinvent notload load)

(cand3 p8 p7 pO notload); We have 2 reqs but the cu does not signal a 20p instruction
(cand3 p9 p3 Oop notload); We have 1 req, but the cu signals a Qop instruction
(corerror p8 p9)) ; There is a sync error unless we are loading

Put together the PE with a core and both sync in/out units.

(macro pe (reset load a7 a6 a5 a4 a3 a2 al a0 b7 b6 b5 b4 b3 b2 bl b0 c7 ¢6 ¢S5 c4 c3 ¢2 ¢l c0 d7 d6 d5 d4
d3 d2 d1 d0 reqa reqb reqc reqd acka ackb ackc ackd)

(tocal req error 20p 1op Oop done consumed)

(syncin req error load reqa rgb 20p 1op Oop)
(core done Oop 1op 20p c7 c6 ¢S5 ¢4 c3 c2 c1 ¢0 d7 d6 d5 d4 d3 d2 d1 dO reset load req consumed

error a7 ab a5 a4 a3 a2 al aDb7 b6 b5 b4 b3 b2b1 b0)

(syncout consumed reqc reqd acke ackd done load reset)
(connect acka reqc)
(connect ackb reqd))

e $TTE TR T

125

APPENDIX D
Automatic Simulation Makefile
#
Packages to use
#
DIR =src
SRC =../src

TARGETS = alu alu4 alu4l bit_route core cu demux4 dff lacg mux mux2 register route rsff shox
switch sync syncout syncin tgate sregister pe row

SUFFIXES: .result .rnl .sim

.sim.rnl:

presim $*.sim $@

.rnl.result:
./$* 1 ml | grep MARCO | sed > $@-e “1,1d" -e “s/MARCO/ /g"
rm -f $* $*.rnl $*.sim $*.ai

targets: $(TARGETS)

all:

cd $(DIR); make all; cd ..;
bin:

cd $(DIR); make bin; cd ..;
clean:

cd $(DIR); make clean; cd ..;
rm -f *.result *.rnl $(TARGETYS) *.log *.out *.sim *.al

veryclean: clean
cd $(SRC); make clean; cd ..;

$(TARGETS):
cd $(SRO); make clean $@; cd..;
cd 3(DIR); make clean $@; cd..;

mv $(SRC)/$@.sim $(SRC)/$@.al .
make $@.rnl $@.result

126

APPENDIX E

Automatic Simulation Step Output

nu.mzelada % make pe
cd ../src; make clean pe; cd..;

rm -f alu alu4 alud] bit_route core cu demux4 dff lacg mux mux2 register route rsff sbox switch sync
syncout syncin tgate sregister pe row *.sim *.al *.names *.nodes *.log *.rnl core

make pe.sim
netlist pe.net pe.sim -tcmos-pw
cd src; make clean pe; cd .

rm -f alu alu4 alu4l bit_route core cu demux4 dff lacg mux mux2 register route rsff sbox switch sync
syncout syncin tgate sregister pe row *.0 core

cc -w -l../../include -DRNL -0 pe pe.c

install -c -s -m 0755 pe ..

mv ../src/pe.sim../src/peal.

make pe.mnl pe.result

presim pe.sim pe.ml

Version 4.2

1507 nodes; transistors: enh=1477 intrinsic=0 p-chan=1477 dep=0 low-power=0 pullup=0
resistor=0

Total transistors eliminated = 2954

./pe | ml | grep MARCO | sed > pe.result -e “1,1d” -e “s/MARCO/ /g"
RNL Version 4.2

rm -f pe pe.rl pe.sim pe.al

OO0~ O B W N e

o R T L S R Y T S I S I S S I S B S R S A S I I S I i e et ca i
N = © O 0 IO N DW= OO 0NN B WRN O WY 00NN R W —= O

APPENDIX F

Partial Simulation Results

ctl=0b10 r=0x0 i=0x0 req=00XX ack=XX00 a=0x0 b=0x0 ¢=0x0 d=0x0
ctl=0b00 r=0x0 i=0x0 req=0b0000 ack=0b0000 a=0x0 b=0x0 c=0x0 d=0x0

ctl=0b01 r=0x0 i=0x29 req=0b0011 ack=0b0000 a=0x29 b=0x2 c=0x0 d=0x0
ctl=0b00 r=0x0 i=0x29 req=0b0011 ack=0b0000 a=0x29 b=0x2 c=0x0 d=0x0

ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x0 c=0x0 d=0x0
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x0 c=0x0 d=0x82
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x0 ¢=0x0 d=0x8§2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x0 c=0x0 d=0x82
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x0 c=0x0 d=0x82
ctl=0b00 r=0x0 i=0x0 reqg=0b0011 ack=0b0000 a=0x0 b=0x0 c=0x0 d=0x82
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x1 c=0x0 d=0x82
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x1 c¢=0x1 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x() b=0x1 c=0x1 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x1 c=0x1 d=0x2
ctl=0b00 r=0x0 i=0x0 reg=0b0011 ack=0b0000 a=0x0 b=0x2 c=0x1 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 c=0x1 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x2 ¢=0x1 d=0x2
cti=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x2 c=0x2 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x2 c=0x2 d=0x2
ctl=0b00 r=0x0 i=0x0 reg=0b0011 ack=0b0000 a=0x0 b=0x2 c=0x2 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 ¢=0x2 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x8 ¢=0x2 d=()x2
cli=0b00 r=0x0 i=0x0 reg=0b1111 ack=0b0000 a=0x0 b=0x3 c=0x2 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x3 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x3 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x3 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x6 ¢=0x3 d=()x2
ctl=0b00 r=0x0 1=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xc c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x4 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x4 ¢=0x4 d=0x2
cti=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x4 c=0x4 d=0x2
ctI=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x8 ¢=0x4 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x10 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x5 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x5 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x5 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0) b=0x5 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 rea=0b0011 ack=0b00) a=0x0 b=0xa c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0%0011 ack=0b0000 a=0x0 b=0x14 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x6 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x6 c=0x6 d=0x2

128

43 cti=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x6 c=0x6 d=0x2
44 cti=0b00 r=0x0 i=0x0 reqg=0b0011 ack=0b0000 a=0x0 b=0x6 c=0x6 d=0x2
45 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0rc c=0x6 d=0x2
46 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x18 c=0x6 d=0x2
47 ctl=0b00 r=0x0 i=0x0 reqg=0b1111 ack=0b0000 a=0x0 b=0x7 c=0x6 d=0x2
48 ctl=0b00 r=0x0 i=0x0 req=0b1111 ack=0b1111 a=0x0 b=0x7 c=0x7 d=0x2
49 cti=0b00 r=0x0 i=0x0 req=0b1111 ack=0b0000 a=0x0 b=0x7 c=0x7 d=0x2
50 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x7 c=0x7 d=0x2
51 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xe c=0x7 d=0x2
52 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x1c c=0x7 d=0x2
53 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x0 c=0x7 d=0x2
54 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x0 c=0x1 d=0x2
55 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x 1 b=0x0 c=0x1 d=0x2
56 ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0bC000 a=0x1 b=0x0 c=0x1 d=0x2
57 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=050000 a=0x0 b=0x0 c=0x1 d=0x2
58 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x0 c=0x1 d=0x2
59 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x1 c=0x1 d=0x2
60 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x1 c=0x2 d=0x2
61 ctl=0b00 r=0x0 i=0x1 reqg=0b1111 ack=0b0000 a=0x1 b=0x1 c=0x2 d=0x2
62 ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x1 c=0x2 d=0x2
63 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x2 c=0x2 d=0x2
64 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 c=0x2 d=0x2
65 ¢tl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x2 c¢=0x2 d=0x2
66 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x2 c=0x3 d=0x2
67 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x2 c=0x3 d=0x2
68 ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x2 c=0x3 d=0x2
6Y ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 c=0x3 d=0x2
70 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x8 c=0x3 d=0x2
71 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x3 c¢=0x3 d=0x2
72 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x3 c=0x4 d=0x2
73 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x3 c=0x4 d=0x2
74 ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x3 c=0x4 d=0x2
75 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x6 c=0x4 d=0x2
76 cti=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xc c=0x4 d=0x2
77 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x4 c=0x4 d=0x2
78 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x4 c=0x5 d=0x2
79 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x4 c=0x5 d=0x2
80 ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x4 c=0x5 d=0x2
81 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x8 c=0x5 d=0x2
82 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x10 c=0x5 d=0x2
83 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x5 c=0x5 d=0x2
84 ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x5 c=0x6 d=0x2
85 ctl=0b00 r=0x0 i=0x1 reqg=0b1111 ack=0b0000 a=0x1 b=0x5 c=0x6 d=0x2
R6 ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x5 c=0x6 d=0x2
87 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xa c=0x6 d=0x2

88 ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x14 c=0x6 d=0x2

89

90

91

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x6 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 a=0x1 b=0x6 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x6 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x6 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x0 reg=0b0011 ack=0b0000 a=0x0 b=0xc ¢=0x7 d=0x2
¢ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x18 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x7 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b1111 4=0x1 b=0x7 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b1111 ack=0b0000 a=0x1 b=0x7 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x7 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xe c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x1c c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=020 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x0 c=0x2 d=(x2
cti=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x0 c=0x2 d=0x2
ctl=0b00 r=0x0 i=0x2 1.q=0b0011 ack=0b0000 a=0x2 b=0x0 c=0x2 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x0 c=0x2 d=0x2
¢i1=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x0 c=0x2 d=0x2
¢tl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x1 c=0x2 d=0x2
¢tl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x1 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x1 ¢=0x3 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x1 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0C 11 ack=0b0000 a=0x1 b=0x2 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x2 c=0x3 d=0x2
ct1=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x2 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x2 c=0x4 d=0x2
¢tl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x2 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x 1 req=0b0011 ack=0b0000 a=0x1 b=0x4 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x8 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x3 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x3 c¢=0x5 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x3 c=0x5 d=0x2
ctl=0b00 r=0x(i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x3 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x 1 reqg=0b0011 ack=0b0000 a=0x1 b=0x6 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xc c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x4 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x4 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x4 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x4 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x 1 req=0b0011 ack=0b0000 a=0x1 b=0x8 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b000) a=0x0 b=0x10 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x5 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x5 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x5 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b000 a=0x2 b=0x5 c=0x7 d=0x2

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
1SR
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xa c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x14 c=0x7 d=0x2
cti=0b00 r=0x0 i=0x2 reg=0b1111 ack=0b0000 a=0x2 b=0x6 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x6 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x6 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x6 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xc c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x18 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x7 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b1111 a=0x2 b=0x7 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b1111 ack=0b0000 a=0x2 b=0x7 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x7 c=0x9 d=0x2
¢tl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xe c=0x9 d=0x2
ctl==0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x1c c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x0 c=0x9 d=0x2
ct=0b00 r=0x0 i=0x3 req=0b1111 ack=0b111} a=0x3 b=0x0 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x0 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x0 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x0 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x0 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x1 c=0x3 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b1111 a=0x3 b=0x1 c="x4 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x1 c=0x4 d=0x2
¢tl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x1 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x2 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x4 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x2 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b1111 a=0x3 b=0x2 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x2 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x2 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x4 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x8 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x3 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b1111 a=0x3 b=0x3 c=0x6 d=0x2
cti=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x3 ¢=0x6 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x3 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x6 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0xc c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x4 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b1111 a=0x3 b=0x4 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x3 reg=0b1111 ack=0b0000 a=0x3 b=0x4 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x4 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x8 c=0x7 d=0x2

cti=0b00 r=0x0 i=0x0 reg=0b0011 ack=0b0000 a=0x0 b=0x10 c=0x7 d=0x2

ctl=0h00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x5 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x3 reqg=0b1111 ack=0b1111 a=0x3 b=0x5 c=0x8 d=0x2

130

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x5 c=0x8 d=0x2
¢ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x5 c=0x8 d=0x2
¢ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xa c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x14 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x6 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b1111 a=0x3 b=0x6 c=0x9 d=0x2
ctl= 0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x6 ¢=0x9 d=0x2
cti=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x6 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xc c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x18 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x7 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0bi111 ack=0b1111 a=0x3 b=0x7 c=0xa d=0x2
¢tl=0b00 r=0x0 i=0x3 req=0b1111 ack=0b0000 a=0x3 b=0x7 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x7 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xe c=0xa d=0x2
ctl=0b00 r=0x0 i=0x0 req=0b0011 ack=0b0000 a=0x0 b=0x I¢c c=0xa d=0x2
cti=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x0 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b1111 a=0x4 b=0x0 c=0x4 d=(x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x0 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0000 a=0x4 b=0x0 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x0 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x0 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x1 c=0x4 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b1111 a=0x4 b=0x1 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x1 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0000 a=0x4 b=0x1 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x2 ¢=0x5 d=0x2
ctl=0b00 r=0x0 i=0x1 reqg=0b0011 ack=0b0000 a=0x1 b=0x4 c¢=0x5 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x2 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x4 reqg=0bl111 ack=0b1111 a=024 b=0x2 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x2 c=0x6 d=(x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0G00 a=0x4 b=0x2 ¢=0x6 d=0x2
¢tl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x4 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x8 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x3 ¢=0x6 d=0x2
¢tl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b1111 a=0x4 b=0x3 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x3 ¢=0x7 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0000 a=0x4 b=0x3 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x6 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xc c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x4 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b1111 a=0x4 b=0x4 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x4 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0000 a=0x4 b=0x4 c=0x8 d=0)x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x8 c=0x8 d=x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x10 c=0x8 d=0x2

cti=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x5 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b1111 a=0x4 b=0x5 c=0x9 d=0x2
cti=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x5 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x4 reg=0b0011 ack=0b0000 a=0x4 b=0x5 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0xa c=0x9 d=0x2
cti=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x14 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x6 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111! ack=0b1111 a=0x4 b=0x6 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x4 reqg=0b1111 ack=0b0000 a=0x4 b=0x6 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0000 a=0x4 b=0x6 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0xc c=0xa d=0x2
ctl=0b00 r=0x0 i=0x1 reqg=0b0011 ack=0b0000 a=0x1 b=0x18 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x7 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x4 reqg=0b1111 ack=0b1111 a=0x4 b=0x7 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b1111 ack=0b0000 a=0x4 b=0x7 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x4 req=0b0011 ack=0b0000 a=0x4 b=0x7 c=0xb d=0x2
ctl=0b30 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0xe c=0xb d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x1lc c=0xb d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x0 c=0xb d=0x2
¢tl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x0 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b000) a=0x5 b=0x0 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0x5 b=0x0 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x0 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x0 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b00C0 a=Ux5 b=0x1 c=0x5 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x1 c=0x6 d=0x2
c11=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x1 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0x5 b=0x1 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x2 c=0x6 d=0x2
¢tl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x4 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x2 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x2 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x2 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0x5 b=0x2 c=0x7 d=0x2
cil=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x4 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x8 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x3 c¢=0x7 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x3 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x3 b=0x3 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0x5 b=0x3 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x6 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xc c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x4 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x4 ¢=0x9 d=0x2
ctl=0b00 r=0x01=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x4 c=0x9 d=0x2
ctll=0b00 r=0x0 i=0x5 req=0bu011 ack=0b0000 a=0x5 b=0x4 c=0x9 d=0x2

132

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
208
299
300
30t
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0x8 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x10 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x5 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0xS b=0x5 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x5 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0x5 b=0x5 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b(000 a=0x2 b=0xa c=0xa d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x14 c=0xa d=0x2
ct1=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x6 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x6 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x6 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0xS b=0x6 c=0xb d=0x2
cti=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0xc c=0xb d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x18 c=0xb d=0x2
¢tl=0000 r=0x0 i=0x5 req=0b1111 ack=0b0000 a=0x5 b=0x7 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x5 req=0b1111 ack=0b1111 a=0x5 b=0x7 c=0xc d=0x2
cti=0b00 r=0x0 i=0x5 req=Ub1111 ack=0b0000 a=0x5 b=0x7 c=0xc d=(x2
ctl=0b00 r=0x0 i=0x5 req=0b0011 ack=0b0000 a=0x5 b=0x7 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x2 req=0b0011 ack=0b0000 a=0x2 b=0xe c=0xc d=0x2
ctl=0b00 r=0x0 i=0z1 req=0b0011 ack=0b0000 a=0x1 b=0x1c¢ c=0xc d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x0 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x0 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x0 ¢=0x6 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b0011 ack=0b0000 a=0x6 b=0x0 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x0 c=0x6 d=0x2
cti=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x0 c=0x6 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x1 ¢=0x6 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x1 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x1 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x6 reg=0b0C 11 ack=0b0000 a=0x6 b=0x1 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x2 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x4 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x2 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x2 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x2 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b0011 ack=0b0000 a=0x6 b=0x2 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x4 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x8 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x3 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x3 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 u=0x6 b={x3 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x6 reg=0b0011 ack=0b00X} a=0x6 b=0x3 c=0x9 d=0x2
¢ct1=0b00 r=0x0 i=0x3 reg=0b0011 ack=0b0000 a=0x3 b=0x6 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x1 reg=0b0011 ack=0b0000 a=0x1 b=0xc c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x4 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x6 reg=UL1111 ack=0b1111 a=0x6 b=0x4 c=0xa d=0x2

LS
-

319
320
321
322
323
324
325
326
327
328
329
330
33
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
382
353
354
355§
356
357
358
359
360
361
362
363
3o

ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x4 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x6 reqg=0b0011 ack=0b0000 a=0x6 b=0x4 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x8 c=0xa d=0x2
cti=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x10 c=0xa d=0x2
cti=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x5 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x5 c=0xb d=0x2
¢tl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x5 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b0011 ack=0b0000 a=(x6 b=0x5 c=0xb d=0x2
¢tU=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0xa c=0xb d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x14 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x6 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x6 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x6 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b0011 ack=0b0000 a=0x6 b=0x6 c=0xc d=0x2
ct1=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0xc ¢c=0xc d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x18 c=0xc d=0x2
¢ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x7 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b1111 a=0x6 b=0x7 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b1111 ack=0b0000 a=0x6 b=0x7 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x6 req=0b0011 ack=0b0000 a=0x6 b=0x7 ¢=0xd d=0x2
ctl=0b00 r=0x0 i=0x3 req=Cb0011 ack=0b0000 a=0x3 b=0xe c=0xd d=0x2
¢ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xI¢ c=0xd d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x%0 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x0 ¢=0x7 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x0 c=0x7 d=0x2
cti=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x0 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x0 c=0x7 d=0x2
ctl=0b00 r=0x0 1=0x1 req=000011 ack=0b0000 a=0x1 b=0x0 c=0x7 d=0x2
cti=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x1 c=0x7 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x1 c=0x8 d=0x2
cti=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x1 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x1 ¢=0x8 d=0x2
¢ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x2 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x4 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x2 c=0x8 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x2 c=0x9 d=0x2
cti=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x2 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x2 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x4 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x8 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0z7 req=0b1111 ack=0b0000 a=0x7 b=0x3 c=0x9 d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x3 c=0xa d=0x2
¢ti=0b00 r=0x0 i=0x7 req=Ub1111 ack=0b0000 a=0x7 b=0x3 c=0xa d=0x2
¢t=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x3 c=0xa d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x6 c=0xa d=0x2
cti=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0xc c=0xa d=0x2

134

365
366
367
368
369
370
371
372
3N
374
375
376
377
378
379
380
351
382
383
384
385
386
387
338

ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x4 c=0xa d=0x2
¢ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x4 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x4 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x4 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0x8 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x10 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x5 c=0xb d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x5 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x5 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0xS5 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0xa c=0xc d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x14 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x6 c=0xc d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x6 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x6 c=0xd d=0x2
¢ctl=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x6 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0xc c=0xd d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x18 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x7 c=0xd d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b1111 a=0x7 b=0x7 c=0xe d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b1111 ack=0b0000 a=0x7 b=0x7 c=0xe d=0x2
ctl=0b00 r=0x0 i=0x7 req=0b0011 ack=0b0000 a=0x7 b=0x7 c=0xe d=0x2
ctl=0b00 r=0x0 i=0x3 req=0b0011 ack=0b0000 a=0x3 b=0xe c=(xe d=0x2
ctl=0b00 r=0x0 i=0x1 req=0b0011 ack=0b0000 a=0x1 b=0x1c¢ c=0xe d=0x2

