National Library
of Canada

i+l

du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Orttawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependentupon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduclion possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1870, ¢. (-30, and
subsequent amendments.

i NL-339 (r 88/04) C

AVIS

La qualte de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage Nous avons
tout fait pour assurer une qualité supérieure de reproduc
tion.

Sl manque des pages, veuillez communmiquer avec
université qui a conféré le grade

La qualité d'impression de cerlaines pages peut laisser a
désirer, surtout si les pages oniginales ont été dactylogra
phiées a l'aide d'un ruban usé ou si Fumiversiié nous a fan
parvenir ung photocopie de qualité inféneure

La reproduction, méme partielle, de cette microforme es!

soumise a la Loi canadienne sur le droit d'auteur, SIHC
1970, c. C-30, et ses amendements subséquents

Canadi

The Design, Development, and Evaluation of a Prototype Expert
System for Achievement Test Design.

Yan Feng

A Thesis
in
The Department
of
Educational Technology

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Arts at
Concordia University

Montreal, Quebec, Canada

July 1990
©Yan Feng, 1990

National Library
of Canada

Bibliotheque nationale
du Canada

i+l

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exciusive iicence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa these. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59160-9

Canadi

ABSTRACT

The Design, Development, and Evaluation of a Prototype
Expert System for Achievement Test Design

Feng Yan

One application of Artificial Intelligence (Al is to use an expert system as an
“intclligent” job aid to support on-the-job performance. Many of such expert systems
have successfully performed complicated tasks requiring specific expertise, but few are
capable of improving their users' overall understanding of the domain. An expert
system-Test Authoring Assistant (TAA)- was designed, prototyped and tested. The
resulting system was designed primarily to help its users to solve open-ended design
problems and to assists the users in becoming domain experts themselves. TAA assists
teachers, traincrs and researchers in developing paper-pencil tests to measure people's
achievement in the cognitive domain (Bloom, 1956). The study constructed the
knowledge of the achievement test design process, and its underlying concepts and
principles into a computable model, using Reigeluth - Merrill's Elaboration Theory of
Instruction (Reigeluth & Stein, 1983). Computer experts, subject matter (domain)
experts and end-users participated an formative evaluation. The results of the evaluation
show that the operating TAA has presented the major features of the intended TAA, but
it is still to be considered a prototype. The results of the evaluation also indicate that the
intended TAA can be a very useful tool for the targeted users to design achievement tests
of quality and to understand "how to" and "why" issues in the design process.
Furthermore, the experience drawn from the study can be used in expert system
development for open-ended design applications or for the expert system design with a

concemn for developing users' expertise.

iii

Acknowledgements

I would like to extend my deepest gratitude towards the following people who
assisted me i1 completing this study. To my advisor, Dr. Richard Schmid, for his
invaluable guidance, assistance and encouragement. To Dr. Roger Shanghal and Dr.
Gary Boyd for their comments and supports.

I would also especiatly like to thank Dr. Robert Bernard for his much
appreciated advice.

I am also indebted to my classmates who gave me suggestions and participated
in the evaluation of this study.

Finally, I would like to thank MS. Beverley Boyle for her continuous support

during my studies of the past few years.

v

TABLE OF CONTENTS

Chapter 1: INtroduction ------seeeeemecmescomemmmsmmmmnrmecmeneane s raacecaan cae
Context of the Problem =----eermemeeemaccccmcmmmceninnes neeeas
Purpose of Study ------seecemmemmmmmmmmm e

Expert Systems to Solve Design Problems ------er-veemcmconee-eee
Consistency Between Job Aid and Expertise Development ------

Chapter 3: Achievement Test Design As Knowledge Domain ----------seeeeee 14
Application of Achievement Tests --------com-romesmocmemmecnenanas 14
Nature of Test DeSign ---------ceeeeeemmmmmmmces e 15
Practice in Test Design ---c------messmsmmmmmmsomeermcocooensione 17
Development of Expertise in Test Design -----------erccesuemmenes 18

1

1

2

Chapter 2: Literature Review --------eeeeseeomcmmsmmmsommmmcemmme e eeeenceceneee 3
3

5

Chapter 4: System DesCription -----eccc--ceesmcmmmmmmmmocsmceermre o e 19
Development and Delivering Environment -------s--e--auoeeeee 19
Description of End User -----=e-eeemmeemcommmmmmmenonieneccneeee
System Requirements ----e---ececcemasemmmmrmmmeeomeamaaoaaoee e
System Functions -----es-cccecmmoommmmommmmemaon oo

21
21
24
Chapter 5. System Design and Development «---eeeec=ssmmseeemsemcanomccemeeeanns 27
Content and Scope of Domain Knowledge of the System --------- P4

Test Authoring Assistant to Solve Design Problem -------eeeveee 32
Knowledge Organization -------e-eeeeemmmemcmmmmonaaceeeeee 33

- Procedural knowledge as epitomizing content ---------------- 33
Theoretical knowledge as supporting content -----------=-=--- 37

Prerequisite knowledge as supporting content ---------eeee--- 38

Knowledge Representation ---s-ceeeioeommmmmmmmommomoaeees 41
Architecture of System ---eeemommmmmmoom o 43

Problem Solving Strategies -----eee-eeeemmemmmemmmmemmaeeeaoes 45
Communication With User --coeoomommmmimmee e 48

System Development ------eeeoemmmommomm L 53
Development of individual knowledge bases ------------ees--- 56

58

58

51

62

64

64

64

66

66

68

73

T

Ciapter 6: Evaluation --eceecooommmmmm e
Expert System Evaluation -----eceemeommmmomoommimceee e

Evaluation QUestions ---ecemceommommom e

Evaluation Design ----eseeommmmmmmmm e

Evaluation With Subject Matter Experts -------c-eeeereeeemeaaa-

Evaluation With Computer Experts --eeeeeoeeemmmceeeananeens

Evaluation With End Users ---cc-----cesemremmacocaaeceeaeee

Chapter 7: Results And Discussion «--e--eeecmcocmeeeoooimmio s
ReSUIES ~o-rvemacmmmmmmmceecsceesrescmmes—cece e cmeme e
Recommendations -e-ceemee--cmcsecccmccccecccccemeecceeeeneneoann
Discussion and Conclusions ----coeeomommmmmoii e

ReEfETENEE ocsemmmmmemm s oo oo oottt ekt ecma e

Appendix

Task Map of Test Design Process ------seeecmeommmmcoimimi e eeeneeeeeee 80
Samples of Knowledge Representation -------eeme commomeomminmioieeeeet 97
Formative Evaluation Questionnaires -------e-ceecommmmmmmoeeees 123
Evaluation Results «--ceecoesom e 127
User's Manual --ceeeeommmom oo e 136
Objects and Their Values -------eseeemesemmmmcmremimn oo 142

RNl e

LIST OF FIGURES

Page
Figurc 1. Design Test Instrument As Part of Evaluation Process 16
Figure 2. Information Dependency of Achievement Test Design Process 29
Figure 3. Concept Structure and Scope of The System 30
Figure 4. Integration of Problem Solving and Instruction in Choosing Test Format ---e---eeceeee- 39
Figure 5. Intcgration of Problem Solving and Instruction in Constructing Test Specification --- 40
Figure 6. System Architecture 4
Figure 7. How The Assistance Is Given 50
Figure 8. Matrix of Evaluation Design 63

vi

CHAPTER 1

Introduction

Context of the Prcblem

Computer software has been used to reduce the burden of calculation and other
repetitive tasks for a long time, but it is only in the last decade that people can use artificial
intelligence outside of laboratories, specifically via expert systems, to solve problems
which require reasoning and judgement (Walters & Nielsen, 1987). Expert systems,
developed as "intelligent” job aids in business and industry, clone and disperse valuable
expertise in various types of tasks (e.g., diagnosis, planning, design, monitoring and
control). Many expert systems can produce "intelligent” judgement on how to perform the
domain tasks, yet, they are often incapable of giving the user overall and heuristic
explanations for their advice and actions. Many of such expert systems do claim that they
can explain the "why" and "how" of their decisions, however, what they actually do is to
track the path of the rules fired and present the path to the user. Often the messages
generated in this way are too shallow and too fragmentary to enable the user to gain cither
a deep or a comprehensive understanding of the domain. Expert systems developed for
educational purposes systematically teach the vsers to gain a deep and comprehensive
understanding on a subject, but they usually cannot be used as tools to solve "real life"
problems. The reason for this is that the knowledge representations of such systems only
weakly reflect the alternative paths and effective control strategies of how the knowledge
should be used to solve "real life" problems. More specifically, the knowledge used for
educational purposes is constructed and communicated to learners using learning
prerequisites in terms of "what must be learnt first”, contrasted with "what must be done
first” as a major concemn in a "real life" problem-solving context.

Compared with the types of problems subjected to an expert system's solution (c.g.,

diagnostic, planning, monitoring, configuration and control), it is difficult to build real

"intelligence" into an expert system solving a design problem because the design problem
is rather intractable. It is intractable since the rules used in a design process are too
situationally dependent to be economically recorded into a computable model for expert
system development. In other words, it renders the search space too large when design
specifics are included i1: a system, therefore, practically, the possible final product of a
design task noimally cannot be predetermined and programmed .

Purpose of Study

The purpose of the present study is to examine some of the problems raised by
attempting to construct a prototype of an expert "coaching” system which attempts to deal
with an open-ended design problem. The system created here is a computable model that
primarily helps to solve "real life" problems and at the same time teaches the user the deep
and comprehensive knowledge involved.

The 1opic selected is a very practical one: to provide assistance for instructors and
researchers in designing achievement tests. It was chosen because it is time consuming to
design and develop a valid and reliable test instrument. Also, a test designer must have
good knowledge and experience in the field so that s/he is able to produce an achievement
test of high quality. Often, because of time pressure and/or lack of training, instructors
develop tests with low levels of validity and reliability. The prototype represents an effort
10 make the expertise of test design more accessible to the enc-users, and expert systems

may prove to be good tools to assist them in designing kigher quality test instruments.

CHAPTER 2
Literature Review

The purpose of this study is to explore the design strategies of an expert system
which is able to assist a user in becoming an expert in the domain while the system is
used as a tool to solve a development problem. According to the purpose of the study,
Text Authoring Assistant (TAA) should have at least two functions: one is problem-
solving and the other is coaching. For the first function, TAA is supposed to assist the
user in performing design tasks; therefore, the key issue of this function is how an expert
system can be designed to perform the design tasks. For the second function, TAA is
supposed to help its user in becoming an expert in achievement test design,; therefore, the
key issue for this function is what are the content components that should be included in
TAA. The two functions are not independent, but they should work coherently; thus, the
third issue is that how these two major components, in a form of user-machine
communications, should be integrated. These issues are elaborated below.

Ex stem lve Design Probl

TAA is an expert system application to help its users to perform design tasks.
Some researchers in the Al field put design and configuration under the same category
(Waterman, 1986). Design is similar to configuration in that both are tasks of combining
suitable components harmoniously, based on a given set of constraints to satisfy a goal.
Usually, in configuration and design problems, the combination of components - a
possible final product - cannot be predetermined; on the other hand, the possible
solutions of diagnostic problems (e.g., the names of possible diseases and the
prescriptions to treat them) can be predetermined. Although they are similar in the
general approach used to solve the problems, there is a significant difference in their
nature and tactics: a design process relies on very few fixed rules at a concrete level, thus,

itis a highly unstructured task; since the knowledge of components and their

compatibilities (e.g., the models of computer parts and their compatibilities) can be
expressed explicitly through production rules, configuration is a well structured task. To
solve a configuration problem with an expert system, one will select pre-specified
components and combine them; however, to solve a design problem with an expert
system, one has to create components, and then combine them.

The difficulty in creating components on-line by computer is one of the major
reasons behind the fact that expert systems to solve design problems are used mostly in
the areas of "hard" sciences or technology, such as digital or microelectronic circuits
design: e.g,.PALLADIO (Brown & Tong, 1983), PEACE (Dincbas, 1980), REDISIGN
(Mitchell & Steinberg, 1983). Those expert systems have sophisticated simulation and
graphic features, so that the user can visualize the process and results of the design. The
simulation is used to verify or test design ideas when a user constructs a partial design.
Because the features, functions and compatibilities of the components can easily be
specified in the microelectronic circuits design, the expert systems do not need to create
individual components, rather, they help the user select a good combination of
components to serve the purpose of the task. As a matter of fact, most expert systems of
this sort are actually just doing configuration, but called it "design". That is why it is said
an expert system used to solve a design problem is nothing more than a "compiler",
which does very little real "design" (Waterman, 1986).

Compared with the number of expert systems developed to solve design problems
in "hard" sciences, fewer expert systems have ever been created to perform design tasks
in "soft" sciences. One of the major reasons is that it is far more difficult, in a design task
of "soft" science, to describe the nature of (ae components and their compatibility at a
concrete level thar it is in a "hard" science. To illustrate this point, it is practically
impossible for an expert system to assist in judging the validity and reliability of a test by

reading test items created by a user; however, it is a standard practice for an expert

system performing microelectronic circuits design to simulate the consequence of a
product designed by a user or partially designed by the system.

For expert system development, the difficulty associated with formulating explicit
solutions in the form of production rules is due to the wide gap between the explicit
solutions that an expert verbalizes and vague heuristic control approaches that are actually
used. In the case of achievement test design, principles are well documented and
researched by educators and psychologists, but the domain heuristics at a concrete level
are 100 situational to be transformed into production rules. For instance, if an expert is
asked why s/he includes certain tasks/behaviors/performance in a test, s’he may say that
the purpose of the test is to see whether or not the learners are ready for instruction. The
tasks included are the minimum skills in order to start the instruction. The gap between
the conditions (if) and the actions (then) is obvious in the above case, as the condition
part of a production rule,"learners' readiness for the instruction" is concrete, but
"minimum skills" as a conclusion part of a production rule is very abstract. From that "if-
then" rule, one can hardly see any logical connections between leamners' readiness and
what the expert has decided to be tested, except what has been included in the test as
minimum skills. With such a gap between conditions ("if ') and actions ("then"), it is
unlikely that this type of knowledge can be directly transformed into production rules so
that an expert system can give explicit and ready-to-use solutions to its user. Another
difficuity in developing an expert system for a design task in "soft" science is the wide
knowledge scope a system has to cope with. For instance, a system designated to
perform test design tasks should not be restricted to a particular subject matter, e.g.,
math, social science, language, computer science; nor should it be restricted by
characteristics of testees, €.g., university students, first graders in elementary school.
Consequently, in expert system design, the coverage of the expertise, the level of
abstraction and the possible searching space must be well balanced.

nsistency Between Aid and Ex ise Developmen

The designed expert system - Test Authoring Assistant (TAA) - will function as a
job aid. The job aid has a long history in the working place (e.g., procedures and
manuals). Although traditional job aids are widely used, they often have weaknesses
embedded in their construction. For instance, traditiona' job aids are often too complex
10 use (Harmon, 1987): i.e., a novice usually is not clear at all about where to look for
solutions from an manual, and when s/he is faced with non-standard cases, s/he does not
know how to generate new solutions by reading a standard case from a manual. Expert
systems used in industry are very similar to traditional job aids in the sense that the
purpose of both is to prompt the expected performance by giving the user the guidelines,
regulations and information about the tasks. However, expert systems as job aids are
superior to traditional job aids in that they can save users' time in searching for solutions
and in that they can give solutions according to situations.

Although expert systems are superior to traditional job aids in terms of making
expertise much more accessible to the inexperienced practitioner, there is concern about
the de-skilling of the end-user and also about the danger of incorrect performance due to
blind acceptance of the advice from the system (Elmore, 1986; Woolf, 1988}. If expert
system technology is expected o improve on-the-job performance in a long run, it must
have certain features to affect its user's overall understanding of a domain. Research
studies on the development of human exgertise may give some lights on this issue.

One way of helping novices to become experts is to enhance their reasoning
processes through representing the experts' reasoning processes to them. In order to
reveal the experts' reasoning processes to the user, it has recently become a trend to
establish the psychological validity of the knowledge representation in the expert system
design. Psychological validity refers to the consistency between the reasoning process of
an expert and the program (Clancy, 1987). The cnncept of the psychological validity
might be used in a broader sense: it can refer to the consistency between the

communication of a system with its users and the expertise development in that field. The

6

issue of psychological validity manifests itself whenever one creates an interface between
the communication design of an expert system and the development of human expertise.
In terms of human expertise development, researchers in the field agree that it is
acquired in two complementary ways: schooling, and practice in the field (Keravnou &
Johnson, 1986; Harmon, 1987). Another way of expressing these two components is
that theoretical knowledge is gained in the educational process and that heuristic
knowledge is developed from working experience. Of them, the latter can be further
categorized into rules of thumb and global problem-solving strategies for a domain.
Although there is general agreement that extensive practice in the field is essential
for expertise development, there are different views on how this process occurs.
eravnou and Johnson (1986) state that knowledge represented in education has two
features: one is that it is static and that it is others' knowledge instead of learners’. It is
common that the knowledge represented in text books or other educational media for
schooling are structured by learning prerequisites concerning "what should be learnt
first". In schools, practice assigned to students is created according to the students’
knowledge level: they are common problems and ideal cases to illustrate how a newly
learnt piece of knowledge should be used. Because the knowledge representation in
formal education is usually very weak in illustrating alternative paths, key patterns and
strategies in "real life” problem-solving, Keravnou and Johnson (1986) consider that in
order to become an expert, one has to deeply internalize and restructure basic concepts
and theories derived from: others. This process requires a person to have a solid
knowledge structure to do intensive cross-referencing. S/he also needs consistent
feedback during "real life" problem-solving; therefore, basic and theoretical knowledge
gained from education, and heuristics compiled through practice in the field are two
interdependent instruments which affect the development of the human expertise.
In contrast with Keravnou and Johnson's point of view, Harmon (1987) feels that

expertise developed in education and in the field represents a division of cognitive

7

psychology. That means one can develop expertise without formal education or without
extensive practice in the field. Examples cited by him are skilled technicians and master
crafts persons who start as apprentices, observe mentors and become experts within their
domain without benefit of formal training; on the other hand, some academic specialists,
like logicians or theoretical mathematicians, compile general theories without benefit of
experience. Therefore, he considers knowledge structure in an education setting to be
irrelevant to the design of an expert system as a job aid. Knowledge communicated by
schooling is primarily declarative in nature and knowledge in practice is more procedural.
The formal knowledge of schooling usually fails to indicated exactly how one should
proceed when faced with a specific problem because it is too large to search. The
expertise built upon experiential knowledge shows the practitioner to look for the key
patterns or important relationships that indicate how to approach the problem which
becomes the base for designing a job aid; therefore Harmon (1987) promo.es a type of
intelligent job aid which prompts performance rather than asking employees to memorize
procedures or learn the theory, or deep structure, underlying a procedure.

Harmon's (1987) assumptions are reflected in common practice of expert system
applications for schools and for business in a sense that expert systems in education and
business are very distinctive. Most of the expert systems used in business and industry
incorporaie rules of thumb, and their output messages are ready-to-use solutions. Some
expert systems are able to communicate with its user about: partial problem solving
strategies. Usually, the expert systems used for on-the-job performance include little
theoretical knowledge structured according to a logical classification scheme; and very
few of them have an overlay model to monitor the users' understanding of the task. On
the other hand, the expert systems used for educational purposes have the theoretical
knowledge structured according to a standard or a popular classification, and the
knowledge is communicated to the user according to the learning prerequisite of a topic.

So far expert systems for educational purposes have been mainly concerned with how to

teach basic concepts and principles and how to apply them in standard or common cases.
It is very common that an expert system for educational purposes has an overlay student
model and the expert's model to monitor the users' progress. Also it has the component
of teaching strategies to give feedback to the students’ actions. The features of expert
systems created in these two settings reveal that neither of the standard models fit with the
purpose of TAA: the model of the expert sysiems created for the educatior~! purposes are
very weak to solve "real life" problems, and the model of the expert systems created for
improving on-the-job performance hardly do anything to help their users to become
experts.

If the studies of the development of human expertise are used as guidance to design
an expert system, Keravnou and Johnsons' model of expertise development makes more
sense than Harmon's model. Forma! education and field practice are proportionally
different at each learning stage of various expertise development. Patterns of Keravnou
and Jonhsons' model of internalization of theoretical knowledge can be evident in most
occupations, such as medical doctors, engineers. To become an expert in such an
occupation, one must go to formal schooling to get the basic and general education, and
then, practice extensively in the field. The internalization of the external and staiic
knowledge is also evident even in the examples cited by Harmon (1987), e.g.,
craftsmen, locksmith: although this type of expertise (psychomotor skills) development
requires mainly practice in the field, there are principles and concepts (cognitive
components in psychomotor skills) which can be expressed verbally. On the other hand,
academic expertise seems always developed in a formal education setting, however, it
does not imply that no experience in the "real-life" problem solving is required. For an
academic specialist, like a logician or a theoretical mathematician, the formal education
and field practice are intertwined and overlapped, because real world problems can be

created and treated in a laboratory.

Although aims of expert system applications in industry and education are very
different, the underlying principles of expertise structure are consistent: that expertise has
both heuristics and theories, and it has structures for both factual knowledge and problem
solving. It might be very difficult to verbalize the heuristics precisely or state underling
theories in one or the other case, but it shoold be seen as proportionally different rather
than capability specific to one environment. Therefore, a good expert system either as an
educational instruction or as a job aid should have three well balanced components . The
three components refer to theoretical knowledge structured as logical chains of the
domain knowledge, problem solving strategies and tactics structured according to key
patterns of real world problems and a user's model (in an instructional expert system
program it is often called as student model). "To be well balanced” means the weight of
each of the above components is consistent with the purpose of an expert system
program. With the purpose of improving users' on-the-job performance, an "intelligent"
job aid should be problem-solving oriented and backed up by underlying theories and
concepts. Also it should reflect the experts' problem solving at a more abstract level in
order to communicate with the user how to produce optimal solutions in a non-standard
situation. The value of this approach extends beyond appropriate solutions for the user,
but improves the users' competence in that domain. An expert system as a job aid should
have a user's model, but it certainly will be very different with that of most expert
systems used for educational purpose. In other words, an expert system design should
reflect the features of its purpose.

To summarize, expert systems applications used for formal educational instruction
and job performance assistance should not be viewed as two distinct classes if the
ultimate aim of the applications is to improve users' or students' competence. Therefore,
expert systems used in educational and business settings should have three basic
components:

1. theoretical knowledge including concepts and principles;

10

2. problem solving strategies; and
3. user's model/student model. Furthermore, the content and weight of these components
should be selected and balanced to serve the prioritized purposes of a system.

Based upon the above beliefs, a theoretical model of design is useful as a tool in
creating such an expert system. Such model helps in organizing and sequencing the logic
and concept development of the system. An ideal model should be flexible enough to
serve different kinds of purposes, and simple enough to be technically feasible to
implement.

A model which has these features is Reigeluth-Merrill's Elaboration Theory of
Instruction (Reigeluth & Stein, 1983). The theory extends and integrates Ausubel's
subsumptive sequencing, Bruner's spiral curriculum, Norman's web learning and
Merrill's component display theory . It deals with organizational strategies at the
macro level: selection, sequencing, synthesization and summarizing of subject-matter
content.

One of the advantages of Reigeluth-Merrill's Elaboration Theory of Instruction
(Reigeluth & Stein, 1983) is it has a great flexibility in organizing program content and
constructing operation sequences. According to the emphasis of an application, one may
use one of the three types of knowledge as the epitomizing content: theoretical,
conceptual and procedural. For example, if the purpose of a system is to improve users'
understanding of theoretical knowledge, like in economics, then theoretical knowledge
can be chosen as the main structure of the program, and conceptual and procedural
knowledge will be incorporated as supporting components. If the problems a system
deals with are procedural-decision intensive which are common in expert syste. :s as job
aids, the procedural knowledge can be chosen as its epitomizing content, and related
concepts and principles will be structured in the forms of explanations and instructions as
supporting components. Obviously, using Reigeluth-Merrill's Elaboration Theory of

Instruction (Reigeluth & Stein, 1983) as the guideline will make an expert system design

11

more rational: in the process of choosing epitomizing content as the main structure of the
program and in the process of balancing the weights among the components, a system
designer has to match the prioritized purposes of the system and the design of the system.
Also, defining the epitomizing content and its supporting content will enhance its
coherence and consistence where various types of activities have to be integrated in a
program.

Another advantag:s of the Elaboration Theory of Instruction is that it has a powerful
capability to aid the selection and sequencing communication with the user. This is
controlled by an elaborative sequence, which is a simple-to-complex sequence where:
a) The epitomizing is done on the basis of only one single type of content, and it is used
throughout a learning unit. Either concept or procedure or principle can be used as the
epitomizing content;

b) The ideas are epitomized rather than summarized at the beginning of each learning unit.
The epitomizing allows the user to get started at a c-yncrete level with a manageable
amount information. The simple-to-complex sequence leads a user to zoom into details as
s/he wishes and go back to the main track at any time. Very different from a popular
instructional format, only at the end of each learning unit, the epitomizing content is
synthesized in a larger knowledge context. The "zoom into" and "zoom out" methods are
very suitable for a computer program because the screen of a computer monitor can deal
with only a small amount of information at a time. Background information has to be
stored in the computer memory and to be represented to the user when it is required. The
"zoom into" and "zoom out" methods can help a user to make effective and structured
cross-referencing without an overload of too much information.

One thing which needs to be mentioned is that Reigeluth-Merrill's Elaboration
Theory of Instruction (Reigeluth & Stein, 1983) was developed originally for instruction
in formal education environments. Seldom has this model been used in expert system

design which helps its users to solve "real life" problems; therefore, the structure of

12

procedural knowledge defined in the elaboration theory of instruction (e.g., "state the
proper steps of a chemistry experiment") is too sketchy to be used as the epitomizing
content when the purpose of a program is to solve "real life" problems. Furthermore, the
model is not meant to assist expert system design; therefore, the communication of TAA
with the end-user has to be structured more specifically than the model described. (Refer
to Chapter 5, Design and Development to see how Reigeluth-Merrill's Elaboration
Theory of Instruction was adapted in this study.)

To summarize, in this chapter we have discussed two major issues: development
of expert systems to solve design problems and implications of expertise development in
designing an "intelligent" job-aid. We also described Reigeluth-Merrill's Elaboration
Theory of Instruction model which was adapted for this system design. In the next
chapter we will review the nature of achievement tests, the practice in the field and the

expertise development in achievement test design.

13

Chapter 3

Achievement Test Design As Knowledge Domain

Achievement test design, which measures knowledge and skill acquisition in the
cognitive domain (Bloom,1957), is chosen as the knowledge domain for TAA. The
application and nature of it suggests the coverage and the scope of TAA; the
circumstances of field practice and the expertise development of the profession
rationalizes why this expertise is chosen as the knowledge domain.

lication of Achievement T

As the target of a test insti :ment, performance is defined as human behavior and
accomplishment, both overt and covert. Overt behavior is often used as an indicator of covert
behavior. Based on Meherns & Lehmann's taxonomy (1978), which overlaps with Bloom's
(1956) performance category for structuring educational objectives, six components can be
classified in human performance for measuring purposes:

1. Knowledge acquisition & understanding in the cognitive domain
2. Psychomotor skills

3. Communication skills

4. Attitude, values and preference

5. Behavior patterns

6. Aptitude, potentials and competence.

These six dimensions of human behavior are often measured in the educational
field and in the work environment. Different types of test instruments are used to
measure different targeted performance, although they may all be constructed on paper
requiring that testees use pencils to complete them. For instance, according to the
standard definition, an achievement test measures testees' acquisition of knowledge and

skills in the cognitive domain (Bloom,1957) while an aptitude test measures a person's

ability in terms of his or her potentials. An achievement test is different also from
attitude survey which investigates a person's opinion to infer that how s/he will act ina
given situation.

Among test instruments (e.g., aptitude test, personality assessment and attitude
survey), achievement tests are the most widely used human performance measurement
tools and they touch all aspects of our lives. For instance, in schools educators and
teachers use performance testing to give grades on students’ achievement, classify
students for placement or modify learning materials and activities; in business,
management uses performance measurement to make decisions on training, promotion
and compensation. Classroom testing, performance appraisal and formative or
summative evaluation of learning are but a few examples of using achievement tests for
performance measurement.

Nature of Test Design

The design and construction of a test instrument are critical tasks in an evaluation
process (sze Figure 1). Like any problem solving process, the test design process
consists of identifying the goals, searching for alternatives and making decisions within
constraints and/or altering the constraints. Constructing a test instrument belongs to the
design category. Similar to the nature of other design problems, the test design process
includes choosing levels of measurement, test type, test format, deciding its length and
constructing the test items. All these decisions are made with consideration for the
testing purpose, subject content, testees' characteristics and resource availability.

In a test design and dev:lopment process, an expert will clarify or make
decisions for the following questions:
1. What type of decision do we want to make based on the information generated by the
measurement?

2. What are the performances or accomplishments that can be used as the indicators to

what we want to know?

15

r._____._.p Design Experiment

!

Decide Level of Measurement

Design Test Instruments «g
L reliability feasibility

Pilot Test Instrument validity

Interpret Data T

Administer Revised Test

— Interpret Result

Figure 1. Design Test Instrument As Part of Evaluation Process

3. What are the constraints and opportunities in using the different methods or formats?

4. What are the methods and formats we should use to measure the performance or
accomplishments we are interested in?

5. In what manner should test items be constructed.

All these decisions in designing a test are governed by the principles of validity,
reliability and feasibility.

Although these three factors are overall concerns in test design, the relationship
among them is complex. For instance, reliability provides the consistency; however, a
test instrument with a high degree of reliability does not guarantee a high degree of
validity of the test (Gronlund, 1981). Thus, the spirit and also the difficulty in test

design is to ensure an optimal balance of the three. For instance, the degree of reliability

16

will be increased if the number of items for an objective is increased; however, because
of limited test time, only a ceriain number of items can be included in any given test.
Considering this, a test designer has to decide how to distribute the number of items
among tested objectives so that the reliability of an objective and the reliability of a test as
a whole will be balanced.

Even though the above three principles applies to any test design situations, with
different purposes of using test instruments, people will have different emphasis or
concerns regarding validity, reliability and feasibility. For instance, the reliability of a
test instrument for a research purpose will carry more weight than that of a test
instrument used for grading learners' achievement at the end of a term. In Chapter 5,
System Design and Development, how the domain knowledge being structured into a
computable model is explained in detail.

Practice In Test Design

The concepts and principles for designing a valid and reliable test instrument are
not difficult to understand, but tests are often poorly designed. For instance, according
to the 1975 study supported by the U.S. Office of Education, 20 percent of adult
Americans are functionally illiterate. This figure contrasts sharply with earlier traditional
statistics in which the illiteracy rate was described as being only 1 per cent. The sudden
leap was explained as follows: up to 1969, literacy was measured by reading behavior;
but in the 1970s, literacy was measured by reading accomplishment (Gilbert, 1978). The
discrepancy between the purpose of evaluation and the performance to be measured is
one of many serious problems existing in achievement test design.

It is time consuming to design a good instrument to measure human performance,
because a test designer has to make extensive cross-referencing from a great deal of
information and continually balance many factors throughout the design process. It is
said that an experienced person cannot write more than ten test items a day (Mehrens &

Lehmann, 1978). During this process it is almost unavoidable to overlook some

17

important elements that should be taken into consideration. Because of the time required
to design a high quality test instrument, an instructor made test (vs. a standard test) is
often produced by sacrificing quality to the development efficiency.
Devel (E ise In Test Desi

Expertise in test design belongs to the cognitive domain. Like any skills in the
cognitive domain, expertise development requires a good understanding of the subject.
This understanding includes both theoretical knowledge and heuristics. Also, the
development of expertise requires sufficient practice in the field, but practice will not
have much effect unless it is supported by timely and clear feedback on the performance.

Although there is a body of knowledge and methodology on human behavior
measurement which is well researched and documented, this knowledge is largely
restricted to psychologists, professional testing writers and evaluators. In either a
business or school setting, most tests are designed by practitioners, and few of them
have adequate training in designing high quality performance measurement instruments,

Even for those who have previous training, the opportunities to practice are
insufficient to develop expertise unless the individual is a professional test developer.
For instructors and trainers, the design of tests and appraisal instruments is only a small
proportion of their daily tasks.

Furthermore, it seems that years of experience in the field dose not necessarily lead
to better expertise, as practitioners in the field seldom get clear feedback externally from
peers and supervisors or internally from the consequences of the designed test. Often,
feedback emerging as a consequence of inappropriate measurement is too subtle to have
an effect on the designers' future performance, because it is very difficult for people who
do not have special knowledge in the area of test design to recognize that an
inappropriate decision has made on the basis of the information generated by an

inappropriate measurement.

18

Chapter 4
System Description

At present, the designed system (Test Authoring Assistant) has not reached its final
stage of development. To varying degrees, TAA has met some of its requirements
defined below. Please refer to Chapter 5 "Design and Development” for a detailed
explanation on the present development stage and Chapter 6 "Results” for
recommendations for further development.

vel n Delivering Environm

TAA was developed to assist teachers, trainers and researchers in achievement test
design. Achievement test design is a mixture of algorithmic (at procedural level) and
heuristic (at decision making level) tasks. Expert system technology was chosen because
it can accommodate both types of tasks. The conventional computer technology may be
efficient do perform algorithmic tasks, but it is not optimal to do pattern matching for
heuristic reasoning and inference.

TAA was built by using Intelligence Compiler version 2.1, an expert system shell
for the IBM PC. The prototype of TAA was developed on an IBM PC with one megabyte
of memory. Because a monochrome monitor could not show the difference when a
predicats was defined, a color monitor was used for the development. TAA, as a
prototypz, can be delivered on an IBM PC with one megabyte memory and on eithera
monochrome monitor or a color mcnitor.

The programing tool for TAA's development was chosen among three expert
system development shells available in Concordia University: M.1, Exsys and
Intelligence Compiler. In choosing a development tool for prototyping TAA, some
authoring language shells available in Concordia University were aiso considered,
namely, Hypercard and Course of Action. The decision to use Intelligence Compiler as

the programming tool of TAA was based upon the compatibility between the requirement

of TAA's development and the capabilities of each expert system development shell.
Based upon the following facts Intellisence Compiler was chosen as the development tool
for TAA:

a) Intelligence Compiler has a greater variety of knowledge representation schemes,

(e.g., frame, list, backward and forward chaining rule, table and static text) than the other
two shells do. For instance, the other two shells do not have frame and table
representation schemes which are essential for the targeted test design problem: three
tables are needed when TTA is constructing test specifications.

b) Intelligence Compiler has a tracing function which reveals how the inference process is
proceeding, at a chosen speed and a level of detail. Neither of the other authoring
languages has a tracing function which allows a programmer to see how the rules are
fired. The tracing function of Intelligence Compiler is superior to that of the other two
shells in terms of its convenience and flexibility. Without such a tracing function, the
efficiency of the systemn development is compromised.

¢) In order to read users' input accurately, TAA needs various types of menus from
which a user can make his or her choice(s). Intelligence Compiler has sets of built-in
commands which allow such menus to be constructed easily, but the other two shells do
not have similar buiit-in commands.

d) When it helps users to develop an achievement test, TAA needs to rec.ganize and
refine a set of data iteratively; therefore, an appropriate development shell must have
corresponding built-in commands (e.g., no-backtracking, recursion, variable
substitution) to perform such tasks. Among the three expert system development shells,
Intelligence Compiler has the richest variety of such commands.

e) The operation of TAA requires efficient variable svbstitutions because many inference
procedures and the structures of screen displays will be used several times. Neither

Hypercard nor Course of Action suppori efficient variable substitution.

20

Because of the above technical weaknesses with these two authoring languages
neither of them was chosen as the development tool for TAA although they enable a
programmer to build a high quality user interface easily.

Description of End User

TAA is designed for teachers, trainers and researchers who will design and develop
test instruments to measure achievement in the cognitive domain. TAA is supposed to
meet the different needs of different people: from those who have a minimum amount of
knowledge in teaching and evaluation to those who are experts in test design. TAA also
accommodates the user who has little knowledge about computer programming.
System Requirements

The primary purpose of TAA is to assist the user in completing the test design task
successfully. Furthermore TAA should help the user gain a deeper understanding of the
design process. In order to fulfil these two purposes, TA A should be able to:

1. lead the user through a process that an expert will go through in
his/her design process;

2. give easy access to alternatives in designing a test;

3. be used partially for a particular task;

4. assist the user in making systemic decisions in choosing
alternatives along the design process;

5. offer the user the background knowledge in the domain of
designing a test instrument;

6. give the user its justificatior: and explanation about its advice.
The justification should reflect the overall concern or strategies
in the professional design process;

7. communicate with the user in a natural way;

8. give assistance to the user tailored to the users' needs;

9. substantially reduce the design time required if they are done manually and properly.

21

TAA has two major limitations: one is that it automates only the procedural and
technical, but touches little of the ethical (philosophy) and aesthetic (artistic) aspects of
test design, and second, it cannot help its users to produce graphics as a part of a test
item.

Although the tasks in different phases (e.g., design an experiment or evaluation,
design testing instrument and interpret results) of an experiment or an evaluation are
governed by a single set of principles (validity, reliability and feasibility), TAA deals only
with the test design stage of the overall evaluation process: it does not touch the tasks and
its related issues in experimental design or in the analysis o1 test results.

TAA helps the user to complete six major sequential tasks (See Appendix 1, Figure
1). The flow charts in Appendix 1 show how the procedural tasks are performed by
TAA. Please refer to Appendix 6 to see the objects and their values used by TAA to
perform these tasks. The following discussion explains the task sequence and the overall
strategies of TAA operation. If you want to see how the decisions and advice are made,
please refer to the coding of the backward rules on one of two diskettes attached to the
thesis.

The six major tasks that TAA performs are :

1. gather background information about the test;
2. formulate performance objectives;

3. choose test format;

4. develop test specifications;

5. decide the length of the test;

6. write up test items.

In the first phase of the design process, a user (test designer) defines the purpose
and preconditions of the test. The purpose of the test refers to what types of decisions
will be made from the results of the test. The preconditions of the test will be the external

constraints of the test. Some of the constraints cannot be changed for the test (e.g.,

22

testees' education level); while others can (e.g., length of test time or method of scorin g
the test). Factors which will influence the decisions in the test design process will be
gathered and recorded in this stage (See Appendix 1, Figures 1.1).

In the second phase, the user (test designer) will consider what types of
performance (Bloom, 1956) shouid be measured for the purpose of the test. From there,
the test designer will formulate the behavioral objectives as targets of the test. In this
phase, the importance of different types of performance defined according to the purpose
of the test and benefit for the testee will be clarified (See Appendix 1, Figures 2.1, 2.2
and 2.3).

In the third phase, TAA and the user (test designer) will jointly decide which of the
six test formats will be used for a pa:ticular behavioral objective. The analysis is based
upon the compatibility between the type of performance that an item format can measure
and a particular typc of performance to be measured. Having decided what type of test
item will be used for a particular behavioral objective, TA A will decide the time needed
for a testee to complete the test item (See Appendix 1, Figures 3.0, 3.1 and 3.2).

In the fourth phase, by using a matrix, TAA will help the user to develop a test
specification as a blueprint for the test. The blueprint is drawn based upon the intentions
of the test. 3y defining a score distribution among the tested topics with the
corresponding levels of performance, a test specification should express the comparative
importance of levels of performance corresponding to the topics. In the process of
constructing a test specification, TAA will present the matrix of a test specification on the
screen with topics displayed in the first column and performance levels on the first line.
Based upon the purpose and the type of the test, TAA will advise the user about the
appropriated focus, difficulty level and coverage for the test, and then TAA will require
that the user puts in the subtotal of scores distributed at each level of performance and
with each topic. TAA will calculate appropriate cell values and assign them to each cell

which represents the score value for each topic at a particular performance level. The

23

e

calculated cell values are the closest ones to the user's desires, which is based upon the
score distribution subtotals put in by the user on the performance levels and the topics.
While calculating the score distribution, TAA adjusts the inconsistency of the subtotals
that the user has put in. Please refer to Appendix 1, Figures 4.1, 4.2, 4.3 and 4.4 for
detailed calculation formulas.

In the fifth phase, TAA will help the user to decide which objectives and how many
test items for each objective should actually be included in a test. The decision is based
upon the test time available and the test time required for objectives (testing time required
is calculated by TAA). The actual score distribution among levels of performance with
topics are balance according to the test specifications developed in the fourth phase. The
discrepancy will be identified by comparing the planned value and the actual score value
at each level of performarice within each topic. The discrepancy occurs when too many or
insufficient objectives are included in a test according to the test specifications. The
difference among them would be balanced by adjusting the number of objectives or the
test items of a particular objective or the test specifications (See Appendix 1, Figures 5.1
and 5.2).

In the sixth phase, TAA will assist the user in writing individual test items
according to the types of test items (See Appendix 1, Figure 6.1).

These six major tasks are further decomposed into more concrete subtasks. At each
stage TAA is able to give advice on how to perform the task and on how to use the
computer. The related concepts and principles are ready for the user to review along the
test design process.

ten ions

To assist the user in completing the six major tasks mentioned above, TAA plays
three roles. The user can choose any combination of them. The roles it plays are:
1. an adviser

2. an instructor

24

3. acompiler.

As an adviser, TAA draws conclusions and makes decisions as other expert systems do.
Since the design of achievement tests is an open-ended process, TAA sometimes tells the
user upon what factors a decision has been made, and then it asks the user's opinion
about the decision. That means the user has the final say on the decision, provided that
the principles and examples of making a decision on a particular task are presented to the
user. Besides the explicit conclusions that it will give (e.g., decisions on which item
format should be used), TAA also gives the user advice in a rather directive manner. For
instance, TAA will look «ut the purpose of a test and then suggest difficulty level,
coverage and focus of a test be used. Such suggestions are subjected to interpretations of
the user (e.g., focus in a test to measure prerequisite skills should be the minimum skills
that a learner needs in order to start instruction). More specifically, it is the user's (test
designer's) responsibility to decide what are the minimum skills to be tested.

As a compiler, TAA handles the basic administrative tasks in test design. The tasks of
book-keeping and administration for an expert system dealing with a design problem 15
heavier than that with a diagnostic problem, because a test design program, like any other
design application, is not only advisory but also constructive in nature (Freksa, 1986).
That means, in its process of continuous refinement, a great proportion of data and
information has to be processed and reconstructed several times before the test is
completely developed. For instance, after general objectives are formulated, all of them
will be retrieved and refined into specific ones. Also, when a test designer writes test
items, it will be easier for him or her to write them according to the topics; however, the
developed test items of a test should be rearranged according to their test types (e.g.,
starting with true-false type, followed by multiple-choice items, and then essay type
questions), and only after that can the test be implemented. This order reflects how most
tests are arranged (Mehrens & Lehmann,1978). To reduce this burden of trivial, but

important and time consuming, tasks for the test developer in writing test items, TAA

25

presents the objectives to the user by topics and under the heading of a topic the test items
are developed. TAA will later reorganize the test items according to the format as a ready-
to-use test. Besides retrieving and reorganizing data, TAA does many calculations in the
test design, such as calculate score values and develop test specifications.

As an instructor, TAA gives the user instructions on the concepts and principles
which a test designer should understand in order to develop a validate and reliable test.
The instruction also puts the immediately related cnncepts and principles into a larger
context in terms of how these concepts and principles are related to the others. Please
refer to Chapter 5. "System Design and Development" for a detailed explanation of the

TAA's instructicn function.

26

CHAPTER 5
System Design And Development

nient an main w
The most general way to describe expert system design is to state the scope of the
domain knowledge in which the system operates and then to decide how a knowledge
representation should best be structured for easy understanding, and for effective and
efficient operation. Both decisions (the scope and the structure of knowledge
representation) depend upon a good understanding of the domain knowledge.

The sources of the domain knowledge are mainly Bloom's (1956), Mehrens &
Lehmann's (1975) and Gronlund (1981)'s works; as well as the subject matter experts
(domain experts) associated with the project at Concordia University.

Basically, the knowledge of any domain can be modeled in two ways: either by the
information dependency for the problem-solving process or by the formal structure of the
principles and concepts. The model of information dependency concerns "what task
should be completed first" and "how decisions are made in each task” while the model of
theoretical knowledge concerns "how the concepts and principles of a domain can be
logically classified”. With an expert system solution for improving on-the-job
performance purpose, domain knowledge is mostly modeled only by information
dependency for decision making. With an expert system for educational purposes,
domain knowledge is modeled by the formal classification of concepts and principles.

If an expert system purely gives advice on how to perform the task, it will be
sufficient and effective to model the domain knowledge only according to the information
dependency of the decision process. Since TAA has a second function, that is, to teach
the user the deep and overall knowledge underlying the task, it is necessary that the
theoretical and background knowledge is incorporated into the information dependency

model and structured by the learning prerequisite .

Based upon the above consideration, for TAA's operation, the domain knowledge
is modeled from two angles: one according to the information dependency for the
decision making, the other according to the formal concept and principle structure in
achievement test design. Because the primary purpose of TAA is on-the-job problem-
solving, the theoretical knowledge is incorporated within the structure of the information
dependency module. The most important principles of achievement test design (i.e.,
validity, reliability and feasibility) are used as the overall control strategy, and they are
modeled within the theoretical knowledge structure as a learning content. Figure 2
illustrates the information dependency of the test design process. Figure 3 illustrates the
logical structu-e of the theoretical knowledge and how it is integrated into the decision
making model of what to measure and how to measure; and its overall control.

From the decision-making point of view, a test developer will specify "what to
measure” and eventually arrive at the decisions regarding "how to measure". "What to
measure” refers to what type(s) of performance will be chosen as the target of a test and
this decision should be derived from an analysis of the purpose of the test and
characteristics of the testees. Concerning the compatibility of the two, the decisions on
"how to measure" depend upon the "what to measure”, and the external constraints of a
particular test. In terms of "how to measure," the test designer must decide:

1. what combination of test item types (e.g., multiple choice, restricted response),
should be employed:
2. the length of the test (e.g. how many items are needed for each performance
measured) and
3. the wording of the items (which refers to the actual construction of individnal test
items).
The decisions on "how to measure" questions are not isolated ones but rather are

interdependent. For instance, the decision of choosing an item format depends on the

28

5522044 USISa(] 7591, FJUIWAAIYIY JO Aoudpuada(] uorewLIoju] "g a3y

(9INSBI 03 MOK]

!

mES 353, Jo SurpIom

swiay] 3597, Jo sadAL, 331, Jo QI3uyy

(9INSBA 0 MOK] ;9INSBA] 07 MOK

PRyoadxy moiaryag yondxy
{9dNSBIP 03 TBYM

X

fouBWLI0A] JO By
2UBULIOHAJ Jo [eAd] ~@———— SUIBLSUO) [BUINXY

!

1S9, JO [3AdT Koy 1S9, JO SN0

}

159, jo sedLy,

i

- }5S9] JO asoding

+

uorjen[eAq jo asoding

29

wa9s4g 3y, Jo jo 2dodg puy ainpnyg 3daduo)) g andiy

\
1591 e wpouU
pue Jajswurwpe ‘dofaasp

(.) 03 awI) %3 350
Surynew Amqiseay
astoyd apdrymuz asuodsal popuadjxa
as[Bj-ant} JaMsuB 10ys asuodsad pajouysal £>ua3sISu0d [eusAUl
aouseammba
Apqiqess
Amqerey
JALTIATRSNO JURY ABTTI A3pi[BA JONIISUOD
30X PIS AT A[GANS Ay1pi[eA paje[aL-uoLaILId
Ayppifea judju0d
jBuLIO] 9IS ApigeA
r \ (H k
SIEIELIS [ONUT] [CI5A0 0F Pateey STaaud)y
9593 paads
7sa3 Jamod
30UBULIOLI] JO paodg
é) PIJURIAJAI-UOLIAILID SUHS [Bryuesss 1o EWEEWE
:o_uws_mw% PaUBIaJAL-ULIOU ~ﬁ=m” o[aAap
sisayjuss s 0 aumE 3s9], 3y, jo siseyqduy
uonjedijdde L N
sisA[sus ’ \ J
uorsuayaidinod 153} sAnjewIwIng JUIWBATYIB ISINOD JO PUI SUTWLIZIIP
a3pajmou 7593 dysoudelp wafqo.d Suruleay Jo 3SNBI AUTWLIN}DBP
urewio(] dAnIuio) oy} ur 1593 aAljBULLO} ssaso1d Sutuseaj auturia}ap
@ﬁ-mﬂos 30UBULIONIDJ JO [IAIY 3593 Juawaoeid Jomeyaq A1jua auturialap
_/ 359, Jo sad Ay, 159, 9y, jo asodmg
\. J/

30

performance it measures; ar«d the decision on the length of the test is based upon the
degree of reliability required, formats the test employed and the test time available.

From the classification of theoretical knowledge point of view, the concepts and
principles of the achievement test design are modeled under three titles corresponding to
the structure of the decision making in the achievement test design :

a) what to measure;
b) how to measure; and
c) overall control strategy.

Regarding the concepts and principles under the "what to measure" category,
Bloom's (1956) taxonomy is adopted as the scheme to represent levels of performance to
be measured. The taxonomy consists of six levels:

1. Knowledge

2. Comprehension

3. Analysis

4. Application

5. Synthesis

6. Evaluation

The knowledge level is the lowest level and the evaluation is the highest. A higher level
encompasses lower levels of performance.

The six most popular test items formats are classified under the "how to measure”
category. Choosing an item format, like true-false or multiple choice, is based upon a
particular performance in focus and what level of performance the tester is interested in.
Figure 3 shows the classification of the test item format. Also "difficulty level", "focus”
and "coverage" are the concepts and principles in the "how to measure” category.

The most important principles which affect the test design process as a whole are
those of validity, reliability and feasibility. They are the overall control strategy in the test

design. Validity refers to the extent that the results serve the particular uses for which

31

they are intended. Reliability refers to the consistency of measurement (Gronlund, 1981).
Feasibility is a practical consideration in the design of a test, such as test time available
and resources available to construct and score the test. Validity and reliability are
governed by the purpose of an evaluation; they are both constrained by the feasibility in
the situation of a particular test and affected by how the test items are structured and
worded.

The above discussions describe how the practice and the static knowledge of
achievement test design are conceptualized for the TAA's operation. In the following
sections, the discussions focus upon the implementation issues of TAA.

ing Assi % i

Text Authoring Assistant (TAA) is an expert systzm application to help its users to
perform design tasks. Because of the disadvantages (the impossibility to pre-form explicit
solutions and the wide coverage of the subject matter) embedded in the nature of design
tasks, the major challenge of TAA's design is to balance the coverage of the expertise, the
abstract level it should operate at and the search space the operation requires.

To reduce TAA's huge searching space required to deal with the wide coverage of
the subject matter of a test, TAA is designed to operate at a more abstract level of
principles when concrete solutions are practically impossible to be formulated. For
instance, TAA does not always deal with the subject matter specifics (e.g., math,
language, social science) of a test, while the type of subject matter will affect the global
approach in the test design. Considering the relationship between the subject matter of a
test and the performance to be tested, TAA may advise its user not to overemphasize the
knowledge of names, dates, places, and the like, if the subject matter of a test in social
science.

To overcome the impossibility of formulating explicit solutions on-line, TAA is
designed to communicate with its user about the abstract principles which are illustrated

by examples. For instance, TAA does not always deal with test specifics, such as word

32

test items; however, when a user/test designer is writing an test item, TAA will explain
the to her/him the components of a particular itera type (e.g., the meanings of the answer
and the distracters in a multiple choice item) and how to construct a test item of quality
(e.g., avoid using double negatives in a question).

TAA, which does not produce explicit solutions at every point but guides the user to
make informed decisions, is very beneficial to its user, because such a sysiem forces its
user to use his or her own judgement. In a joint decision making process, the users'
understanding of the task will be improved if the program has appropriate coaching
capabilities. As a result, a user may detect errors embedded in the system rather than
blindly accepting the system decisions. With the above approaches (communicating the
principles of achievement test design with its user and by guiding its user to make
informed decisions instead of feeding her or him the ready-to-use solutions), hopefully,
TAA will accelerate the process of that user becoming an cxpert.

Knowl nization

In order to accommodate various needs of the end-usecrs, TAA is designed to allow
the user to use it as an advisor only, or as an advisor with instructions on theoretical
knowledge, or with a proportionai combination of different types of assistance. To meet
the above various users' needs, the domain knowledge is organized adopting the
instructional model of Reigeluth-Merrill's Elaboration Theory of Instruction (Reigeluth &
Stein, 1983).

Procedural knowledge as epitomizing conten. The tasks which TAA performs are
procedural-decision oriented. Thus, according to the Elaboration Theory of Insnuction,
the procedural knowledge of the achievement test is chosen for the operation structure
(epitomizing content) of TAA because it appears more natural to the human expert(s) and
TAA designer if the theoretical and background knowledges are used in the supporting

components to help users reach optimal solutions. The essence of this approach is to treat

33

the decision process and theoretical knowledge as a unified whole with the decision
process as the primary structure.

The model of procedural knowledge represents the order in which experts work
through different levels of abstraction. The concept of this top-down analysis is simple:
reduce the problem down to manageable subproblems and deal with them locally.
Appendix 1 represents the primary structure, or more precisely, an optimal task sequence
in the achievement test design. The six major tasks are further decomposed into subtasks
until no further subdivision and specification is necessary. Although there are alternative
paths among subtasks, the relationship among these six major tasks is sequential: it is
appropriate to complete all the subtasks of a major task re proceeding to the next
major task, even though the decision may not be valid or optimal. In other words, a test
designer may go back to revise the decision made before, a normal practice even with
professional test developers, but s/he will try to complete certain task(s) before s/he move
on to another.

Although technically there are not very many alternative solutions for each
individual task, it is complicated to choose among alternatives consistently and coherently
with the whole test in mind. For instance, there are a finite number of test types (e.g.,
norm-referenced test, criterion-referenced test, power test, skill test ... etc.) and item
formats (true-false, multiple choice ... etc.) that the test designer can choose from;
however, it is a subtle matter how these can be arranged in good combinations
considering validity, reliability and feasibility. Unlike computer configuration tasks and
architectural designs, compatibility among the components in designing an achievement
test is not clear cut, but falls in an approximation range of balance. To reduce the
difficulty of the system design and opcration, one should use procedural knowledge as a
primary structure with inference knowledge embedded in it.

Although Elaboration Theory of Instruction fits TAA's purpose as the primary
structure of TAA design, the procedural knowledge as defined in Elaboration Theory

34

deals with only elementary steps in performing a task (e.g., to know the steps of a
chemistry experiment); thus, it is too simple and too general for the design of an expent
system to perform achievement design tasks. In TAA's design, therefore. the structure of
procedural knowledge is re-defined in order to be used in the application. As a result of
this re-definition process, the procedural knowledge of TAA contains the following
components:

a) Task - gives a definition of a task;

b) Purpose - refers to why a task has to be completed in test design,

¢) Procedure - contains steps required to complete a task;

d) Advice - explains in what manner a task should be completed;

e) Example - illustrate ideas that TAA expresses

f) Conclusions - output results of TAA inference.

Messages in the "task" category give a user/test designer the name and its definition
of a task. For instance, the definition of a table of the test specifications states that itisa
blue print of a test design which indicates the relative emphasis given to each aspect of
evaluation (Gronlund, 1981).

Messages in the "purpose” category are very simila. to "cognitive-strategy” as
defined in Elaboration Theory. The messages in this category are supposed to bring the
users beyond an operational level and help them to understand the advice given by TAA.
To achieve this, TAA tells its user why a task to be performed is necessary in
achievement test design. For instance, before s/he constructis test specifications, TAA
will tell a user/test designer the purpose of constructing a test specification: "The table of
test specifications are used as a tool to obtain a representative sample, because a test, no
matter how extensive, is almost always a sample of the many possible test items that
could be included. That means that our limited samples must be selected in such a way
that they provide as representative a sample as possible in each of the various areas for

which the test is being developed".

The messages in the "procedure” category tell its user the necessary steps to
complete a task. Usuaily, it can be expressed by step 1, step 2 For instance. the
steps in building the table of a test specification are:

Step 1. obtaining the list of performance objectives;
Step 2. outline course content;
Step 3. preparing a matrix specifying the nature of the desired test sample.

The messages in the "advice" category will tell its user the strategy(s) or the
method(s) that should be employed in a task. A piece of advice can be very abstract and
concrete examples are impossible to create. In this situation, TAA will direct its user to
consider certain factors and draw their own conclusions. For instance, when a user/test
designer is constructing a test specification or s/he is choosing what items should tested,
TAA will tell her or him what difficult level and the coverage should be. Because it is
impossible to give concrete examples to illustrate what a test with a high difficulty level
will look like, TAA will advise its user to include both easy and difficult test items to
permit scores to spread out over the full range of the scale (provided that the testis a
norm-referenced test). To make this advice as specific as possible, TAA will tell its user
to eliminate those items that all testees are likely to answer correctly or wrong, and
include the items that half of the testees may answer right. Sometimes, when a piece of
advice is abstract, a concrete example can be cited. For instance, when a user/test
designer is writing a short- answer type test item, TAA will advise her or him not to just
copy a statement from a text book, because it is usually too general and ambiguous to
serve as a good short-answer item (Gronlund, 1981). For instance, the example
(Groslund, 1981) that TAA cites to illustrate the point of the above advice is the
comparison of a statement taken from a textbook and a revised form for a short-answer
test item:

Poor: Chlorine is a (halogen).

36

Better: Chlorine belongs to a group of elements that combine with metals to form salt. It
is therefore called a (halogen).

The textbook statement version will more likely solicit the answer "gas". The revised
version measures important knowledge which does not depend on the specific
phraseology of any particular text book.

The examples, such as the one mentioned above, belong to the fifth component of
the TAA's procedural knowledge. Examples are used not only in performing the design
tasks, but also they are used in the instructions.

The sixth component of the procedural knowledge is the concrete solutions that
TAA formulates, such as deciding an item format of an test item. The conclusion is
suggestive, which means that a user can revise it. The revision of TAA's solution should
have some restrictions, e.g., a user may be advised not to revise TAA's solution in a
particular way under certain circumstances. At this stage, such restrictions have not been
defined.

The above described six types of TAA's output messages belong to the procedural
knowledge which is the epitomizing content (operation structure) of TAA; the next two
sections describe the supporting content of TAA. The "communication with user" section
of this chapter will describe how the procedural knowledge is related to the other types
knowledge.

Theoretical knowledge as supporting content. In terms of “epitomizing", at the
beginning of each of the six major tasks TAA presents to the user the definition of the
task, its purpose and procedure. The advice on how to complete a task is inserted
whenever it is necessary. Above mentioned are the components of the procedural
knowledge. The theoretical knowledge is the supporting content to the procedural
knowledge, which consists of the concepts and principles of achievement test design.

The theoretical knowledge is communicated with a user/test designer as

instructions. Several characteristics of the instructions should be mentioned: first, the

37

messages as instructions do not summarize or overview all the content involved at the
beginning of a particular task, but rather, at the beginning of a task, the content of an
instruction is restricted to a concrete, meaningful, application level. Only at the end of a
task, does the instruction systematically review what has been leamed in a major task and
the messages of this type are classified under the title of "summarizer". Only the
immediately relevant content of the task is included in "summarizer".

In order to increase the retention of the users, it is important that the instruction help
the user to create additional links among the parts of the knowledge, and between the new
knowledge and a user's relevant prior knowledge. Based upon the above consideration,
important concepts and principles of more complexity and further distance from the core
knowledge are organized under the title of "synthesizer". At the end of each task, the
knowledge in a "synthesizer” will be presented to a user showing how the newly learned
ideas are related to other concepts and principles. Actually, a "synthesizer” is an
extension of a "summarizer” since it places what has been leamed in a larger context.

Summing up, the theoretical knowledge is organized as supporting content to the
procedural knowledge. By demonstrating to the user the relationships among the ideas
and principles, the "summarizer" and "synthesizer" improve retention of learning. Except
for the "synthesizer" in the instruction, which build links of wider scope, all of the
instructional messages are given locally. In the other words, all of the instructional
messages, except messages of the "synthesizer", concern the problems at hand to satisfy
the users’ immrcdiate needs.

Figure 4 and Figure 5 show how the theoretical knowledge is embedded in and
supports the procedural-decision making tasks of "3. Choosing test item types" and "4.
Constructing test specifications” in the test design process respectively.

Prerequisite knowledge as supporting content. Because TAA is supposed to
support end-users with varying knowledge and experience, in addition to the theoretical

knowledge, the prerequisite knowledge is defined as the second supporting content to the

38

purpose of
choosing
test format

steps of
choosing
test format

advice on
how to choose
test format

comparision between
objective and essay
test format

(“peformance measured)
preparaion of questions
sampling of course content
control of response

scoring
influence of learning
kreliability)
3. Choose A
Test Format
For An Objective
characteristics
(explanation on),___, :335?1 tages
that test format limitations
A. Obiective T
syntherize with SUPPLY TYPE SELECTION TYPLE
other test formats 2. multiple choice
1. short answer .
3. .matching
4, true-false

B. Essay Test

5. Restricted Response
6. Extended Response

Figure 4. Assistance Given In Task 3. Choose Test Format

39

1. layout
2. requirement

1. focus

1. Bloom's level of
performance
2.content validity

3. type of the test

description of the

purpose of
constructing
test specification

;

&€ procedure of
constructing

test specification
matrix

advice on
constructing

2. difficulty level
3. scope

1. Validity

2. Reliability

3. Usability

4. Comparison of different
Types of Test

ktest specification

Synthesizer
synthesize the
related concepts

test specification

.

4. Construct Test
Specification

l

Summarizer
1. content validity
2. table of specification
3. types of test

{the type of the test)

1. Validity
a. content validity

2. Reliability
a. stability

b. criterion-related validity

c. construct validity

d. relation with other factors
e. factors influencing validity

3. Usability
a. easy to administrate
b. time for administration
c. easy to interpretation
d. equivalent forms
e. cost of testing

b. equivalence

c. internal consistency

d. relation with other factors

e. factors influencing reliability

4. Types of Test

1. placement
2. formative

3. summative
4. diagnostic

Figure 5. Assistance Given in Task 4. Construct Test Specification

40

]

procedural knowledge. The prerequisite knowledge is related to the knowledge that user
will learn during the process of completing the task: it refers to the minimum knowledge
that a user must possess before s/he is able to proceed with the task and its related
instructions. The prerequisite knowledge and learning hierarchy are specified and
structured within the boundary of each of the six major tasks of achievement test design
defined for TAA. Only the minimum essentials are given to the user in order to reduce the
load on the user to complete the task and at same time learn background knowledge.
Figure 4 and Figure 5 show how the prerequisite knowledge is used as a supporting
component for "3. Choosing test item types" and "4. Constructing a test specification".
Knowledge Representation

Representation of knowledge requires that relevant objects in the knowledge domain
be named, described, and organized, and that relationships between objects be expressed,
including constraining relationships that govern the storage and retrieval of object
properties (Parsaye & Chignell, 1988). The knowledge representation design of TAA is
based upon the following requirement: the knowledge representation should ensure that
the system functions are carried out in an efficient and effective manner (Parsaye &
Chignell, 1988; Walters & Nielsen, 1987); it should reduce the difficulty and efforts in
TAA's development and maintenance; and it should support TAA in giving the users
justifications of its advice and explanations of its actions. To meet these requirement, the
knowledge representation of TAA is seeking a psychologically validity with the
knowledge structure of a domain expert(s) (Clancy, 1988), and also sufficient pragmatic
utility to allow for manipulating the knowledge (Hartley, 1985).

TAA uses backward chaining rules, lists, frames, and canned text as the knowledge
representation methods. The backward chaining rules are used to carry the inference
process to accomplish the tasks and subtasks in the test design. These tasks and subtasks
(represented in Appendix 1) can be viewed as nodes in a decision tree or as goals which

have to be reached. Backward chaining rules are best for the focused inferences. The goal

41

of a group of rules reflects the purpose and direction of a particular task. Using backward
chaining rules clearly reveals the decision-making process in the test design and allows
easier modification of the program. Figure 1 in Appendix 2 shows how the decision
process is structured and inference is carried out through backward chaining production
rules.

The knowledge representation also uses meta rules in the form of backward
chaining rules. The meta rules do not make actual inferences but rather index production
rules for inference (See Figure 2 in Appendix 2). This approach increases the efficiency
of the implementation because it allows the development and revision done locally
without interfering with other parts of the coding.

In order to reduce the memory space required by TAA's operation, the system uses
the variable substitution method to code those procedure structures which will be used
more than once by TAA's operation. This type of coding is also represented through
backward chaining rules (See Figure 3 in Appendix 2).

Frames are used to store the information in which the facts can be grouped by a
certain category, e.g., the data about the testee will be stored under the frame named
Testee (See Figure 4 in Appendix 2), or to store the information which has an inheritable
nature (See Figure S in Appendix 2). For instance, both true-false and short answer share
their parent's nature of objective test item format, but they are distinctive in terms of that
true-false is select type and short answer is supply type; therefore, in storing this type of
information of "true-false" and the "short answer” are coded into two frames and they
share the same parent of "supply type". Using frames in the above situation will require
less programming effort than that of other information storing methods.

Lists are used to store the items which will be presented to users in menus. From a

menu a user may chose one or more items (See Figure 6 in Appendix 2).

42

Canned texts are used to store the static knowledge which may used as messages
displayed to the user. They include information, advice, solutions and instructions (See
Figure 7 in Appendix 2). Variable substitutions are used in many canned messages.

Generally speaking, the inference knowledge is represented by backward chaining
rules. Three types of backward chaining rules are coded in TAA's inference engine: the
productions rules are used to express the actual reasoning of TAA; meta rules are used to
index the productions rules; and a production rule with a variable substitution(s) is used
wherever the structure of a inference procedure will be used repeatedly. The factual
knowledge, which is the material for the inference of TAA, is represented in the form of
frames, lists and canned messages. If a group of concepts can be categorized or they
share a inheritable nature, then, they are stored in frames. Messages for the advice and
the instructions are canned messages. Lists of items presented to the user to choose from
are recorded. Please refer to Appendix 6 to see the objects and their values used in TAA.
Architecture of TAA

Figure 6 illustrates the architecture of TAA. At the most abstract level TAA has two
parts:

1. knowledge base

2. inference engine
In its knowledge base, four types of factual knowledge are kept in separate locations in
the form of lists, rules or frames. The first type is the facts of the domain knowledge
(e.g., taxonomy of purposes of achievement tests, types of item formats, classification of
verbs corresponding to levels of performance). The second type of factual knowledge is
the contextual information abcut a particular test which is either put in by the user, (e.g.,
purpose of the test, educational level of the testees), or generated by the machine, (e.g.,
test type, item format and number of items for each objective and score distribution
among levels of performance with topics). The third type of factual knowledge is

assistance messages to the user, including both instructions on theoretical knowledge and

43

2INJOAIYdLY WasLG g 9anIi |

20BJI3UI 3UI}BILD 10] SOOI
uorjonuajsut JuIaLd Joj sand
90UAI3JUT JO SAML

amduy 20uaIdyuy

uodINIIsul
‘aduape

adeIAUL

Jasn

adBJI9UT Jureald [euew
10} BB uondINIISul

3593 9y} jnoqe urewop ay}
uorjsuLIoul Jo spe) 3y

saLzNb

aseq odpojmouy]

‘syoey

suggestions for practical problem solving purposes. The fourth type of factual knowledgc
concerns interface design and it is of interest only to the programmer.

The inference knowledge is the knowledge on how the factual knowledge are to be
used. The inference knowledge is separated from the four above mentioned types of
factual knowledge and is recorded in the inference engine of TAA. Three types of
inferences defined for TAA's operation are in the form of backward chaining rules. The
first type is to make decisions aboui the tasks in designing a test. The second type
concerns when and what instructions should be given to the user. The third type relates to
the process of constructing the machine-user interface. These three types of inference
knowledge are indexed by the meta rules according to the tasks and their sequence of the
achievement test design. The goals of the meta rules reveal the nature of a particular
inference.

Problem Solvin i

According to Wolfgram (1987) problem solving strategies refers to the methods in
three categories: 1. search model, 2. control mechanism, 3. reasoning strategies. The
problem solving strategies should reflect the nature of the expertise in the field to enable
effective communication among the user, the expert and the program designer.

The nature of designing a test is basically a process of iterative refinement: the
previous decisions will be used as the input for the next one. In the iterative refinement
proress, some of the inferences are procedurally or sequentially oriented reflecting an
optimal sequencing in designing an achievement test that experts in this field can
commonly agree upon. While there is an optimal sequence in the supertasks of test
design, the design process is not linear. The true meaning of an optimal sequence is at a
very abstract level, (e.g., developing performance objectives first and then chcosing what
item format will be used for a particular objective). Appendix 1 shows an optimal task
sequence in achievement test design at an abstract level. Although those flow charts

reveal some of different possible paths and also parallel paths in the test design process, it

45

does not show how a decision is made in detail (e.g., it shows the conditions of the
branching in choosing an item format, but it does not show the conditions under which a
particular test item format will be finally chosen). To review the actual reasoning, refer to
the coding on two diskettes attached to this thesis.

According to the above mentioned two natures of solutions in a test design
process, the search model is composed of two aspects:one 1s the searching of procedure
oriented task and the other is the searching of situation dependent task. TA A mostly uses
a depth-first search strategy for the procedure oriented case in which no contextual
information is needed to decide which path (node) to search next. However, when
situational information is needed in an infernece, a thorough search down a single path
will sacrifice the efficiency of the operation if it finds the solution is not valid only at the
very end and has to backtrack to the beginning. To improve the efficiency of the
operation, when the search path is too long or there are too many possible solutions or
branches of the paths, the heuristics used by experts are built into the searching model
which reflect the experts' working style in their decision making. The search is very
similar to the 'best-first' notion where path selection is not arbitrarily sequential. During a
'best-first’ search the conditions of the possible paths are evaluated and the most
promising one will be selected for the next level of evaluation. The searching strategy
actually backtracks up the decision tree to a higher level and then repeats the process if
any constraint is met. For instance, when TAA chooses an item format for a particular
objective to be tested, it may first look at the level of performance that the tested behavior
belongs to. From there it will have a general idea of whether the essay form will be used
or not. If an essay form of item(s) should be used, then TAA will choose the item type
from extended response or restricted response. But if the performance level of an
objective is at the knowledge level which is not suitable to be tested by an essay item,

TAA will not go further along the essay type alternatives; rather it will check the

46

possibilities in other types of item format. Figure 7 in Appendix 2 shows how the
heuristics are build into the depth-first search in "4. Choosing Test Item Format".

The control mechanism is designed according to the nature of how the inference is
controlled in reality. From the technical and abstract point of view, the alternatives
(nodes) in each task of the test design are limited; therefore, the inference of TAA uses
only backward chaining rules as a control mechanism, even though it is a design problem
rather than a diagnostic problem. When the inference is sequence dependent, its rules are
grouped together under a goal according to the design algorithm which reflects the expert
search strategy. By isolating rules that are most relevant to the task at the moment, the
control strategy limits the search space: the operation proceeds at a particular level of
abstraction without the need to cope with the details at another level or branch,

To reflect the nature of test design, the procedurally oriented inference should be
enforced by a control mechanism. Equally important, the control mechanism should
ensure flexibility for an efficient operation. That means it should be give the flexibility
when alternatives must be made situationally. Where there are parallel alternatives in a
decision making process, the clauses of that set of rules are related by "or". For instance,
the user will be asked the question of "has quota?" (see task 1.1 in Figute 1 in Appendix
1) only when one of three conditions is true:

If

purpose of test = Job Assignment
or

purpose of test = Grading

or

purpose of test = Certifying.

Many expert systems use certainty factors, semi-exact rules or confidence factors as
their reasoning strategies to improve robustness. Robustness is a measure of an

application's ability to continue to produce correct judgments or outputs in the face of

47

deteriorating input (Summerville, 1989). Because the domain knowledge is reliable and
static, TAA use only a straight forward monotonic reasoning strategy, that means the
hypothesis of a rule will be returned a value of either true or false after an inference
without certainty factors, semi-exact rules or confidence factors being employed. The
reasoning strategy of TAA is consistent with that of the experts' in the field. In order to
make a definite and optimal decision in an achievement test design process, an expert
nceds two sets of data- one is the information concerning preconditions about the test and
the other is the information concerning tne subject matter to be tested. Both types
information requucd to design a good test instrument are easy to collect, i.e., few values
in basic parameters for achievement test design are unknown or difficult to obtain. On the
other hand, we have little knowledge about how a decision at one stage affects the quality
of decisions at subsequent stages in an expression of mathematical measurement: Are the
effects compounded? Are they additive or equal to the weakest? Therefore, more in-
depth studies are needed before certainty factors or inexact factors can appropriately be
used in computer assisted achievement test design.
Communication With User

Ideally, a comprehensive user's model should be built to monitor the user's
understanding of the domain, and then TAA will choose what should be communicated
with the user accordingly. However, no user's model is built for TAA's communication
with its users. This is because it is practically impossible to build a machine which can
accurately map users' intellectual activities. Many researchers have questioned both the
need for detailed student/user models and the practical possibility of building them
(Sanberg, 1987; Self, 1988). They considered that the student modeling problems
expand from computational questions, to representation issues, through plan recognition,
mental models, episodic memory to individual differences - to encompass almost all of

cognitive science.

48

As an alternative to building a learner's/user's model to de.cct his or her
misunderstanding or inappropriate decisions s/he made, TAA gives a user the opportunity
to make an informed decision concerning what concepts and principles s/he interested in
or needs. More specifically, using the simple-to-complex sequencing described by
Reigeluth-Merrill's Elaboration Theory of Instruction, TAA assists its users in forming a
proportional combination of advisory assistance needed to performing a particular task.
Figure 7 shows how the assistance will be provided based upon the user's requirements.

The type(s) and the amount of assistance are based upon three factors:

1. his/her familiarity with TAA,;

2. the amount of training in test design that the user has;

3. whether s/he wants assistance or not.

To evaluate the users' needs, the information on these three questions will be used
throughout the process of designing the test.

However, the information on the above three factors is not sufficient to give
appropriate assistance to the user. To know explicitly what a user needs with a particular
task that s/he is performing, additional information is collected from the user at the
beginning of each of the six major tasks. For instance, if the user indicates that s/he
wants to use the coaching function of TAA, then at the beginning of each of six
decomposed major tasks the user will be asked to choose the types of help from the
assistance menu . More specifically, the assistance is decomposed into the following
categories:

1. Procedure - (Steps)
describes the procedures and steps to complete a particular task, which is given
before the task is performed.

2. Purpose - (Why)

tells the user the purpose of performing the task.

49

Is the user

Give assistance on

familiar with
the system ?

Give no assistance on
how to use the system

Does the user

have training
test design
2

Does the user

No how touse the
system at each task
No Suggest user to
use coach function
No No assistance is given.

want coach
function ?

The system is used as
a book-keeper.

Information is gathered at the beginning of
operation only. It affects how the assistance
given throughout the six majore tasks.

v

fChoose Forms of Assistance
1. Task (What)

2. Procedure (Steps)

3. Purpose (Why)

4. Advice (How)

6. Examples

5. Instruction (Concepts & Principles)

\

_/

Information is gathered at the beginning of
each of the six major tasks. It affects
how the assistance will be given for that task.

Figur 7. How the assisstance is given

50

3. Advice - (How)
gives guidance or suggestions on how the task should be performed.
4. Instruction - (Concept and Principle)
explains the major concepts and principles in the test design.
5. Task - (What)
tells the user what TAA is doing at this moment and how to respond to it.
(This type of message is more relevant to the user who is not familiar with TAA.)
6. Examples

Among them the messages of Procedure, Task and Advice types assist the user in
performing the tasks at hand and messages of Purpose and Instruction are to enhance a
deeper understanding of test design; Examples back up both the Instruction and Coaching
parts of TAA.

TAA accommodates end users with various levels of experience. For instance, a
user may have experience in designing the test, but possesses little knowledge about how
to use this system. In this situation, the user only needs an explanation of particulars of
TAA, e.g., which key to press at this moment. In these circumstances, an experienced
test designer who is unfamiliar with TAA may choose only the assistance on how to use
TAA without assistance on test design. In an other circumstance, it may be that a user is
an inexperienced test designer who has no time to go through all of the instructions on the
related concepts and principles, but who needs advice on how to complete certain tasks in
an appropriate way. In this situation, the user may choose advice on the tasks at hand
without being instructed on the theoretical knowledge.

The messages on how to operate TAA at each particular stage are divided into two
types. One is easy-to-remember key strokes that the user will get familiar with very soon,
such as "press return” to proceed. Another type may be more confusing to the user,

(e.g., how to choose items from a menu). At the very beginning of an operation, if the

user tells the computer that s/he is not familiar with TAA, TAA will give him or her both

51

sets of assistance in how to use TAA, messages like "Press return to ..." will appear on
the occasions when the user may not to know second type of assistance is given during
the whole operation.

TAA not only can give its users the different types of assistance they need, but also
it is also flexible in its instructional quantity and branching. That means the theoretical
knowledge in the instructional part can be reviewed by a user in different degrees, from
everything to only certain areas, based upon the user's choices after TAA explains to
her/him how these concepts and principles aie related to the task at hand. what to do next.
If it is indicated that the user is familiar with TA A, then only the While the user can select
the content s/he wants to learn, one restriction is that the user can see the instruction of a
certain level only after s/he has entered one level above it. It is rather like the fact that one
has to enter Canada before s/he can visit either Ottawa or Montreal. To avoid trapping the
user in instruction that s/he may really want to discontinue, TAA allows the user to skip
chunks of content or discontinue the instruction on a certain topic before it is completed
and go back to continue her or his test design tasks. This approach is like a scope of
coverage on a big map where the center of the attention is the task at hand and the user
will choose how much s/he wants to be included in the converge for his or her review.

The user controls when the next message will replace the present one, so the user
controls the pace. TAA also gives the user the freedom to choose the instruction with or
without examples.

TAA's user interface regarding data collecting is designed to minimize difficulties
for the user in proceeding with the task and also the difficulties for TAA to interpret
users' input. There are two formats inputing data: onc is by giving the user a list of items
(a menu) so that s/he will make choice(s) from it and the other is by letting the user type
in whatever s/he wants to enter. TAA uses the menu type interface as much as possible
and during the TAA's operation the user can make her/his selections from a menu via the

arrow keys. The type-in format is used as little as possible, to reduce the burden of

52

typing on the user and the difficulties of interpreting the input by TAA. If a type-in input
is really necessary, the user will be given a message such as "type in". The user input
should be monitored and the user should be given a chance(s) to reenter the data after
feedback is given to an illegitimate input (not completed).
System Development

In choosing a development strategy, efficiency and effectiveness of TAA's
prototyping are two major considerations. If an application is large, as is the case with
TAA, and if it is developed as a whole entity from the very beginning, the efficiency of
its implementation will be hindered greatly resulting from system testing and revising.
Because it is not efficient to build it in one chunk, TAA is developed modularly in terms
of six knowledge bases that are built corresponding to the six major tasks of the test
design. cach knowledge base has its cwn inference engine and canned messages. To
increase the efficiency of system modification, the production rules within each inference
engine are indexed as rule sets by the tasks they perform so that the moditication can be
done locally.

When a system is developed via separate modules, the major problem is that the
data structure may not support all individual sections. In order to ensure the adequacy of
overall knowledge representation structure, the six knowledge bases are developed in
parallel and started with their skeletons. For the same purpose, frames and rules which
contain overall test design variables (e.g., the education level of the testees, content area
of a test and rules of coaching strategy) are coded in the files shared by the six knowledge
bases. As a result of sharing a single knowledge representation structure, the structures
of the individual knowledge bases are identical. Developing six knowledge bases in
parallel and using one shared data structure permits all six knowledge basis to be
integrated smoothly into the framework as a whole application, thus enhancing the

effectiveness of TAA development.

53

In terms of system operation capability, TAA development can be defined in three
stages. TAA, at the end of its first stage of development, in terms of performing test
design tasks (vs. coaching and explaining test design tasks), should be able to perform
the basic required tasks and show all of designated features of TAA. During the first
stage of the development the procedure-decision know'edge in the test design is
formalized and structured into a computable model. In the second stage, a coaching
function should be built into TAA. The coaching function consists of two types
knowledge: one is well researched and documented theoretical knowledge, and the other
is heuristics and rules of thumb. The theoretical knowledge is structured within the
instruction component and the heuristics are recorded under the advice component. As
result of second stage of development, TAA should be able to explain "How" and "Why
to the user and exhibit the basic capabilities and features of the final user interface. Also,
in this stage, the requirements specification of TAA should be finalized. In the third
stage, TAA should be integrated, validated and verified as a final product. Also all
documentation should be completed, including the user's manual.

At the completion of this thesis, procedure-decision making knowledge is
formalized into a computable model; and instructional and advisory models have been
constructed completely and can be applied to all six knowledge bases. The TAA can
operate well as a tool to build a test, yet it is unable to give high quality and
comprehensive advice and explanations on the actions it takes. Also TAA cannot be used
by a novice user because its interface is too crude. Therefore, TAA is half way through
the second development stage and needs to be revised in the areas of advice content and
user-interface format.

Regarding the advice contents and its inference capabilities, TAA has incorporated a
great proportion of the theoretical knowledge but few domain heuristics. In order to be
able to give deep and comprehensive explanation of the acticis it takes, TAA needs more

input from the experts, especially beuristic knowledge, rules of thumb and short cuts in

54

test design. In terms of its coaching capability, the advice is generally relevant to the task,
but often it does not hit the precise point, since the conditions for giving a particular
message are too general. For its instruction capability, TAA is not developed evenly
among the six knowledge bases. The theoretical knowledge is structured for the tasks of
"2. Formulating Performance Objectives”, "3. Choose Test Item Format" and "4.
Constructing Test Specifications".

Another aspect of TAA's advice contents and its inference capabilities is that most
of knowledge incorporated into the system is more relevant to test design in an
educational setting; there should be more knowledge identified for test design for
business and research purposes.

The user interface is adequate to perform the basic tasks if the user is very familiar
with TAA. The development of the user interface can be viewed in two aspects: one is
interface structure and the other is assistance on how to use TAA. The design of the
interface structure for individual tasks is completed, but it is developed unevenly among
the tasks. At a higher level than that of the test design task control, the design of the
interface structure for system control has not completed, (e.g., exiting the system
operation, going back to the previous point and printing file to a printer), because the
Intelligent Compiler shell does not directly support the development of such system
control.

Summing up, in order to maximizing the efficiency and effectiveness of TAA
development, several development strategies were employed:

1. partitioning the inference engine;
2. sharing the same knowledge presentation structure; and
3. using meta rules to group backward chaining rules as rule sets according

to the purpose they serves.

(9]
9}

Development of individual knowledge bases. The above discussion describes

TAA development as a whole, since the six knowledge bases were not developed evenly.
The following description focuses on the development of individual knowledge bases.

In the first knowledge base ("1. Get Information”), only procedure-decision
making knowledge has been coded. The grade scheme of testees' educational level is not
completed. There is no instructional material in this knowledge base yet and assistance in
how to use TAA is weak. Additional variables and their values, in the category of test
design preconditions, should be defined and incorporated into this knowledge base in
future TAA development (e.g., to define possible values of the research purpose).

In the second knowledge base ("2. Formulate Behavioral Objectives™),
instructional materials have not been coded completely into this knowledge base, for
instance prerequisite knowledge has not been defined for the task of formulating
behavioral objectives. With regard to the user interface, typing in a verb from a given
verb list for each level of performance should be changed into clicking a verb from a verb
list menu.

More inference knowledge shor'ld be incorporated into the third knowledge base
("3. Choose Item Format") so that the selection of an item format will be more sensitive
to various test conditions. The structure of the prerequisite knowledge for the task of
choosing item format is completed, but many slots need to be filled.

In the fourth knowledge base ("4. Construct Test Specifications"), task, advisory
and instructional functions are the most fully developed among the six knowledge bases.

In the fifth knowledge base ("S. Decide Length of a Test"), there are no
instructional materials constructed yet. Also, few justifications on TAA's actions at this
design phase are coded. Some areas of the user interface needs to be imrpoved, for
instance, two matrixes representing the planned test specification and the actual score
distribution are displayed on the screen. Among them, the actual score distribution matrix

should be given a matrix heading, like the one the planned test specification matrix. In the

56

future development, when an objective is added, the score calculation should be
connected with the inference done by the second knowledge base ("formulate behavioral
objectives"); at present these tw'v knowledge bases are separated.

In the sixth knowledge base ("6. Write Test Items"), procedure-decision making
knowledge is completed. A great proportion of the assistance concerns advice on how to

word a particular type of item and more theoretical knowledge for instructional purpose

should be added.

57

CHAPTER 6

Evaluation

Expent System Evaluation

Although there may be different definitions of evaluation in education and computer
science, it is defined here as the whole testing process in software design and
development.

There is common agreement among researchers and professionals in software
design as to which aspects of conventional software and expert system should be
evaluated. The two general questions asked in the evaluation process are (Beohm, 1979):
1. Are we building the right product?

2. Are we building the product right?
The first question concerns validation. Validation of the system determines whether or
not the designed system will solve the desired problems for worthwhile reasons. During
the validation phase the requirements of a system and the criteria for success or failure are
verified (Parsaye & Chignell, 1987, Sommerville, 1989) and validated. The second
concern in software evaluation is verification. Verification (Sommerville, 1989) or
Testing (Walters & Nielsen,1988) is to see whether the system is doing things properly.
This refers to whether or not the system is functioning efficiently and effectively all the
time. While a computer program may perform well during testing it is not necessarily a
validated one for it may be producing the right result for the wrong reasons. On the other
hand, if a program cannot perform well during its operation, there is no way that the
program can be validated.

Walters and Nielsen (1988) consider debugging as the third type of question in
software evaluation. Debugging involves checking the coding in order to find out the

reasons underlying the problems encountered in the verification test. I consider

debugging to be follow up corrections of errors found in the evaluation process, instead
of being within evaluation.

Smart (1987) outlines expert system evaluation in more detail. He stated that four
basic aspects should be checked during the evaluation of an expert system:
1. It does the right things which include the essential and desirable features.
2. It works all the time thus it is error free.
3. It is user-friendly.
4. It is well documented. It should have updated documentation of a user's manual and

development documentation.

These four questions are easily fit into the framework of the validation and verification,
because "user friendly" is one of desirable features in any man-machine system which is
a verification question, and "good documentation” is a means to efficient system
development.

Although evaluation in expert system development and in conventional softwarc
development share the same basic focii, several diffcrences should be noticed. For
instance, while conventional software evaluation may mainly verify the performance of a
systemn against the pre-specified system requirement, expert system evaluation has to
validate and refine its system specification. The difference results from the fact that, at the
very beginning of system development, we often have only a vague or skeletal idea of
how an expert system will solve the targeted problem. As a matter of fact, the
understanding of domain knowledge progresses along with the development of an expert
system. In other words, unlike conventional software development in which the design
and implementation is according to the system specification, the expert system starts from
very general objectives about what problems the system is going to solve, and system
specification is derived from the prototype (Sommerville, 1989). Along with a better
understanding of a targeted domain knowledge, the focus of an expert system evaluation

will be shifted from validation to verification.

59

A great deal of time and effort is required to specify how an expert will solve a
problem, so expert systems usually have long and unique apprenticeship in their life
cycles. The systems are tested extensively by the end-users and domain experts using
both prepared scenarios and real-life problems. Inevitably, a domain experts'
involvement with an expert system design process is much more intensive than that
required for conventional software development. As a result, another aspect of expert
system evaluation is introduced: evolution of the internal knowledge representation.

Internal knowledge representation affects the problem solving capability (validation)
and external performance (verification) of a system. The internal knowledge
representation of an expert system for teaching purposes should be validated in terms of
nsychological validity which refers the extent to which the structure, content and
expression of knowledge representation are similar to that of the experts. On the other
hand, appraising the internal adequacy of the knowledge representation, (without
reference to the real-world tasks), is a question of verification. The internal adequacy
means to what extent the structure and the expressions of knowledge representation
support efficient recording, retrieving and analyzing data. Without validating the internal
knowledge representation, the compilation of the knowledge for an expert system's
ongoing development may be off track.Therefore, in its prototype stage, the emphasis in
the evaluation of an expert system should be placed on the validation of the internal
knowledge representation, and the verification of the knowledge representation has its
meaning only when the knowledge representation is valid.

In certain aspects, the testing " the prototype of an expert system is very similar to
the formative evaluation of instructisnal materials in education. For instance, the
purposes of both are to improve the quality of the programs at their formative stages. To
identify directions and areas for programs' revision, the comments and suggestions are
collected from the target population and subject matter experts (domain experts) as

references. In both testing situations, testing starts with a very small population, (e.g., on

60

a one-to-one basis) and a participant is asked to go through the instructional materials or
system operations to detect problems in the products. When the tested population is
small, qualitative data analysis techniques are used for both types of products. There are
some dirferences between the data collecting and analysis techniques for testing two
products: While an evaluation of instructional materials may use quantitative statistical
analysis if pretests and posttests are employed, testing expert system capabilities almost
always uses qualitative case testing to determine whether the system can reach the proper
conclusions (Walters & Nielsen, 1988). Seldom is a big group of subjects involved for
expert system testing, so the comments given by the participants are not suitable to be
measured by scores.

Evaluation ion

Evaluation questions mainly concern pragmatic validation issues, and verification
questions are used to make the validation possible. Evaluation questions are classified
into three categories:

1. Problem solving (Validation)
2. External Performance (Verification)
3. Internal Representation (Validation and Verification)

To test the TAA's problem solving capabilities, questions conceming the purpose of
the system were asked, such as "Does the system solve non-trivial problems", "By using
the system can the quality of a design test be improved and ensured?" and "Can the
system improve the users’ understanding and competence in test design?".

To test the TAA's the reliability of extcrnal performance, questions concerning
meeting task requirements were asked, such as "Can the system ask questions in 4
consistent manner"”, "Can the system output results in a reasonable amount of time?" and
"Are the screen displays clear?" .

To validate the TAA's internal knowledge representation, questions concerning

adequacy of the knowledge representation structure were asked, such as "To what extent

61

the knowledge representation structure adequate to retrieve, store and analyze the data
efficiently?"

To answer the above questions, three types of questionnaires (See Appendix 3)
were designed, respectively, for subject matter experts, computer experts and end-users.
Some questions were asked in all three of questionnaires when the evaluations concerns
for the participants were overlapped among the subject matter experts, the computer
experts and the end-users.

The matrix in Figure 8 shows the system evaluation design and its relation to the
questions in the questionnaires.

Evaluation Design

The system was tested separately as six subsystems corresponding to the six
subtasks in the design process. This was necessary because integration of the six
knowledge bases of TAA into a single system was impossible, which is due to the
development stage of the TAA and memory limitations with the Intelligent Compiler
shell.

The evaluation was conducted by the system designer. The evaluation was done on
a one-to-one basis with the participatic- 1 of two subject matter experts, two computer
experts and four end-users as subjects. All of them went through the TAA's operation.

Before the operation started, the system designer gave the guidelines verbally,
indicating the focus and methods of evaluation. All of the problems arose during the
system operation were recorded by both the evaluation participants and the evaluator. A
discussion and a questionnaire were completed for each evaluation session. Because
some of the questions in the questionnaires were very general and sometimes speculative,
cach evaluation participant had a verbal discussion with the system designer on a one-to-
one basis during and at the end of the evaluation session. In the discussion, the

participants gave specific explanations of their answers to the open-ended questions, and

U31S3(] uonenjeAyq JO XA '8 2Inslg

. - - - pESI 01 ASES: SLETR)
x * * EIEP 9ZA[BUR 31018 "9ALIA: O] Ased ERITETRITIE]
. " . suadxa 9yl 01 [einieu Kupiea feordojoydhsd
* * - * 2IMIDONAOS 1UI3YOI pue jedls0] ASu31s1Su03]
* * x| UODB[31 'San[eA “S9jqeLIeA 's103lqo $S3UQI3dW0D
uoneIuISIIdIY 23pajmouy
* * ¥ * % 95N 01 ASL9 “IEd[d INOAR| UJAIDS
* * * JUBAJ[al [elmed “[NjSUlUEdW| SPaJdu $,135N 199W SIDUEBLSISSE
" - - - * 35N 01 ASed "9JUuelIsisse arenbepe AJpuUaLIj-195n
* * x * * pUEISIopuUn O] ASEJ "95U3S el JJIAPE pue duEping
- * * x| 8Ul 10S83I SUTA[IpUN MOUS “[edI50] uonedyynsnl
- . * * - AJUsI1SU0D SuOMISanD Iasn YSt
* * * * SIA1TBUIAE 01 $53I308 ASEd Aupqixay
X % * * * Ajiea13 awun ugisap dnpal Aduaniyja
UBWI0fI] [eudd)Xx

* N * x x| SUISSIUI 318 Sa1myed) juenodur Aue

* * * ¥ x| SUISSIW 3Ie SanssI juvuodwl Aue
* - * * * Sw3[qoid [BIALID-UOU 3A[OS SSQUIANIIFYYD
UDISSNOSIP[9p0d MIlA3l[uonelado| Iasn-pusdf1aindwod | utewop SUIAJOS-uR[qOI]
SpoYyN YREI TN JO S)JRdxy suonsan() S139dsSy

63

they also gave suggestions for further system revision. These comments were recorded
too.

The results of the evaluation were analyzed qualitatively and used to validate the
system design and reveal the directions for further modification.
Evaluation With Subject Matter Expents

Two domain experts participated in the evaluation. They were professors in the
Education Department, Concordia Universit,;. When the evaluation was done with a
domain expert, sthe was given all of the possible values of constants/objects, and from
them s/he chose a combination of these values as input forming a test case. While
monitoring the system operation, the subject matter expert and the system designer
discussed the effects, problems and possible improvements of the system. For the
questions related to the knowledge representation, the TAA's conceptual models and the
coding in computer language were given to the domain experts for their comments.
Evaluation With Computer E

Two compr =xperts, of Concordia University, participated the evaluation. One of
them was a professor in Computer Science and the other was a professor in Educational
Technology. The evaluation with a computer expert was quite similar to that with subject
matter experts, except that the testing issues were concerned more with the internal
knowledge representation category. Being given the names of the objects and their
possible values, the comrputer experts went through the system operation on a one-to-one
basis with the system designer. Also, they were given the TAA's conceptual models and
their coding 1n the computer language for their comments.
Evaluation With End-Users

The end-users were graduate students and professors in Educational Technology,
Concordia University. They were either then or future instructional designers and
instructors. The evaluation with them was mainly concerned with the questions on the

problem solving aspect and some in the external performance aspect. No questions were

64

asked about the TAA's internal knowledge representation. Information on the
appropriateness of the features and capabilities of the system were collected, such as "to
ease the difficulties in test design”, "to increase the quality of it" and "to teach deep
knowledge about the topic". After discussing the evaluation guidelines with the subject,
the system designer only observed user's performance. During the TAA's operation, an
end-user was not given a set of possible values of constants. Instead, s/he entered
whatever s/he thought was appropriate. Intervention from the evaluator was kept to a
minimum until the subject had difficulty proceeding or s/he initiated a comment. At the
end of the TAA's operation, the evaluator and an end-user discussed the confusions and
problems of the system and how it could be improved while s/he completed the

questionnaire .

65

CHAPTER 7

Results And Discussion

Results

The results of the evaluation were generated qualitatively based on observations
during TAA operations as well as on the verbal and written comments given by the
participants. Results recorded in this chapter are the comments given by the participants
during TAA's operation and their answers to the open-ended questions in the
questionnaires. Please refer to Appendix 4 for the participants’ ratings on the Likert scale
questions. A few questions in the questionnaires were not answered because the
participants felt it was too early to give definite judgement while TAA was still a
prototy pe.

During TA A's operation, there were no any interruptions due to bugs of TAA's
coding, but the operations were halted several times because there was not enough
memory. After the evaluation, only spelling and grammar mistakes found in the output
messages were corrected.

Regarding the stength of TAA, the end-users and subject matter experts rated TAA
as potentially a very useful tool to design and develop a test of high quality as well as to
improve user's understanding of test design process. The end-users stated that they liked
the structure of the assistance both in performing the tasks and in teaching theoretical
knowledge. The end-users also stated that TAA would greatly reduce the time required to
complete administrative tasks in test design, such as calculating score distributions, and
deciding which and how many test items would be included in a test.

The domain experts and computer expert perceived TAA as having potential for
accommodating multi-level user-machine interactivities. By using TAA, a high quality

test could be ensured, however, the overall efficiency of developing a test might be

decreased, because TAA would force the user to go through a thinking and planning
process that most classroom instructors did not go through in their test design process.
Asaresult, by using TAA, an instructor might spend more time in developing a test than
without using TAA to regulate the design process. In terms of TAA knowledge
representation, the domain expert considered that its structure was basically
psychologically valid, but the content should be enriched and fine tuned.

Weaknesses were found in two areas: one was the quality of the advice to the user
and the other was the quality of the user interface. Regarding the weaknesses in the
advice that TAA gave, the expert considered that the messages were relevant but not
directive enough. Also, the content of the advice was rather flat, which did not
accommodate different shades of a user's understanding and a test's circumstances. The
communication concerning learning was rigid and not interactive enough.

The weakness in the user interface was evident in that the evaluation participants had
difficulty communicating with TAA and they could not proceed through TAA operation
without extra help from TAA's designer. The difficulties resulted from insufficient and
sometimes misleading on-line assistance regarding how to use TAA. For instance, in the
“choosing from menu" tasks, TAA didn't explain to the user the implications and the
consequences of a particular choice. Without being aware of the consequences of his or
her action, an evaluation participant sometimes was bewildered at what s/he was doing
and how s/he should proceed. Another problem that the evaluation participants
encountered during TAA operation was the difficulty in seeing the patiern of flow of
messages. All of the participants, in various degrees and at different points, were
overwhelmed by a string of messages because the relationship of the messages and
transition between two tasks were not communicated clearly to them.

Some problems identified in the evaluation were due to TAA's developmental stage.
For instance, the assistance function was developed unevenly among the six knowledge

bases, which made the evaluation participants very uncomfortable when the reality did

67

not match what they were expecting during separated TAA operations. Occasionally, the
evaluation participants were trapped in a procedure because the system operation control
function was not built, (e.g., the functions of going back to the previous step and
terminating an operation). Also, because the function of retrieving files was not
developed, a participant could not always review what products s/he had created;
therefore s/he could not view where s/he stood in a test design process. Generally
speaking, TAA, at this developmental stage, is not capable of helping an end-user to
grasp the whole picture of the designed test.

To sum up, the evaluation participants considered TAA to have great potential to be
further developed into an effective and a practical tool, to assist instructors in achievement
test design and in developing their own test design skills. The domain experts considered
the conceptual model of the domain, generally speaking, to be psychologically valid; and
the computer experts observed that the knowledge representation supported efficient
system operations. The weaknesses identified in the evaluation were in the user interface
and the quality of the advice TAA output. In the following section, aspects and steps of
further development are recommended.

Recommendations

Based upon the results of the evaluation, TAA should be modified and further

developed in five major areas with the following sequence:

1. user interface at performing individual tasks level;

[£8]

. content of knowledge base;

‘>

. quality of advice to the user;

4. user interface at system operation level,

5. integration of six separated knowledge bases as a final product.

The modification should first focus on the user and machine interface at the task level

(vs. at system operation level). The following tasks should be completed not only in this

68

stage, but also being carried out when the new knowledge is compiled in the future
system development:

1.1. Give a definition to every technical term and key word that can be interpreted by
a user with various meanings (no definitions are given at present);

1.2. Give an explanation at every point when a user is supposed to make his or her
choices from a menu. The message should tell the user the main implications and the
consequences of a particular choice (no such message is given at present) ;

1.3. To make transitions between tasks smooth, at the end of each task insert
messages clearly stating what has been done and what will be done next (at present, such
messages exist unevenly among the six knowledge bases) ;

1.4. Label each output message with its message category title, such as "advice",
“instruction”, or "procedure”, etc., so that a user would know what category the message
belongs to and will not be overwhelmed by a flow the messages (all of the messages have
been labelled internally and some of message have been labelled externally in such a
way);

1.5. Monitor user's "type-in" (vs. "choose from a menu") input and give him or her
feedback when the input is in an illegitimate form and give the user an opportunity to re-
enter a legitimate one. For instance, to tell TAA the available testing time, a user may
overlook the instruction of input test time by minute, therefore, s/he may type in "1" for 1
hour instead of "60" for 1 hour. In this situation, TAA should be capable of asking the
user to re-enter the test time in minutes or convert the hour into minutes for the user
(only a few inputs are monitored at present).

At present, the inference knowledge is not sufficient, so in the second stage of the
modification, more inference knowledge should be addea and fine tuned. The main

concerns are as follows:

69

2.1. Heuristic knowledge compiled through field practice should be extracted from
domain experts. For instance, how to balance the reliability of a test and the reliability of
an item;

2.2 More variables in the achievement test design should be defined in order to
increase the sensitivity of the conclusions that TAA draws. For instance, right now there
is only one objective list that the user can choose from to formulate general objectives. It
is suggested that parallel objec*” .. lists be developed according to the subject matter of a
test. In this way, the objective list represented to the user can be more relevant to the test
content and the system inference will be more to the point. Please refer to Appendix 6 to
see the objects and their values that TAA uses at present,

After the knowledge bases are more or less completed for the design tasks, a user
model should be designed and built to monitor his or her understanding of a topic. With
the user model, conditions of a particular message to the user will be refined; thus, the
advice given to the user can be more relevant and directive. The following changes are
advisable:

3.1 The user model should be kept simple, and be structured around common
misunderstandings;

3.2 the user model should deal with misunderstandings locally instead of trying to
detect all misconceptions in the achievement test design process as « whole.

At the fourth stage of the modification, interface regarding system cperation control
(vs. performing individual tasks) should be incorporated as part of the interface. At the
moment, there is no such function. TAA control interface will override the execution of
e individual test design tasks. The interface might consist of certain key-strokes and
pull-down menus. The capabilities and functions of the system operation control are
defined as follows and may be constructed in the following sequence:

4.1. Allow a user to use TAA partiaily. For instance, if a user wants TAA to assist

him or her only in formulating performance objectives, TAA should be able to start the

70

operation at the task of formulating performance objectives instead at the very beginning
To serve this purpose, a menu, which has the six major tasks of the achievement test
design listed on it, may be built so that the user can make his or her choice. After a choice
is made, TAA should ask the user for all the information needed to complete the task(s).
The development of this function requires the system designer to thoroughly analyze the
logic of the paths that a user may choose. The analysis should look at the information
dependency among the six major tasks. For instance, if a user wants TAA to choose only
the item formats, s/he has to input the performance objectives in the forms that TAA
requires. In this circumnstance, if the user does not have a list of performance objectives
written yet, TAA should suggest that s/he use TAA to formulate performance objectives
first. From a completed objective list, TAA can select an item format for each objective.

4.2. Allow a user to make cross-reference of the concepts and principles of test
design. A pull-down menu of on-line help may serve this purpose. In the menu, the
topics of explanations and definitions of theoretical knowledge should be displayed. The
menu can be indexed by the theoretical knowledge structure and constructed according to
the levels of abstraction. The already designed theoretical knowledge structure may be
used for this task.

4.3. Allow a user to view where s/he is at a particular point. There are two
viewpoints regarding this type of information: one is from the procedure-decision point
of view and the other is from the theoretical structure of test design, either of which
should be available. The already designed structures of the procedure-decision
knowledge and the theoretical knowledge can be used for this purpose.

4.4. Allow a user to retrieve what s/he has created. To develop this capability
requires identifying the products a user has possibly made at each stage in a test design
process, such as a list of performance objectives.

4.5 Allow the user to control the system operation. The functions of the system

operation control includes:

71

a. terminating the operation completely at any point of the operation;

b. exiting a particular task and going back to the main menu to choose another task;

c. terminating the instruction session and going on with the design tasks;

d. saving/retrieving products that a user has created;

e. printing products that a user has created.

By using either key-strokes or a pull-down menu, TAA control will override the
operation of a particular task.To build these functions, one may have to use C language,
because the Intelligent Compiler shell does not directly support building such a system
control;

4.6 Allow a user to go back to the previous stage and revise the data s/he has put in.
However, the point at which the user is allowed to do so cannot be a free will choice, but
it must be well thought out. This is because test design is an iterative refinement process
and any changes at one point will cause a chain reaction in its following decisions. More
specifically, if a user freely revises the decisions that s/he has made, it might result in
heavy recursion and confusion in TAA operation. Therefore, it is suggested to select a
few of logical points where a user can revise what s/he has put into TAA.

In the last stage, the six separated knowledge bases should be integrated into one
entity. At the end of this stage, a stand alone application should completed. Please refer to
Appendix 6 to see the objects and their values for each knowledge base.

On-going formative evaluation is necessary in all phases in order to ensure that the
modification and development is on the right track. The focus of an evaluation should be
shifted gradually from validation to verification, along with TAA requirements becoming
more clear.

The requirements for the modifications and future development apply to all six
knowledge bases Since the six knowledge bases have been developed unevenly, some

of the knowledge bases need more effort in their modifications than others do.

72

The above recommrendations concern TAA as a stand alone application. Beyond that,
for practical pu.poses, TAA may be used as a subsystem incorporated into a system
which assists a user in instructional design. It can also be used with a parallel system
which analyzes the validity and reliability of an achievement test based upon the testees'
scores.

Future study may be directed developing a user model as an "intelligent” coaching
s) stem. It should reflect the differences between computer based on-the-job assistance
and computer aided learning.

To sum up the recommendation section, according to the system design, the TAA's
user-machine interface at performing individual tasks level should be modified and the
knowledge content incorporated into TAA should be enriched. To improve the quality of
advice and the user-machine interface, a user model and a system operation control
should be designed and implemented. The heuristics of the knowledge domain should be
fine tuned to increase the quality and sensitivity of TAA's inference. More studies should
be carried out to explore strategies and tactics of designing a user model as an
"intelligent” coaching expert system.

Di ion an nclusion

The purpose of this study was to explore practical design strategies for expert
systems development. The study focused on expert systems employed to deal with open-
ended design tasks. Ideally, such an expert system would communicate information
concerning the heuristic and theoretical knowledge of the domain, and the weight of each
type of knowledge assigned according to the purpose of TAA.

For the purpose of the study, a prototype of an expert "coaching" system assisting
the user in achievement test design has been constructed. TAA primarily deals with the
targeted problem, while also teaching the end-users the heuristic and theoretical
knowledge involved. As a result of the study, the domain knowledge (achievement test

design) has been formalized and constructed into a computable model. This model can be

73

further used as a subsystem of an instructional design application; or it can be used as a
parallel system to applications of the research design and evaluation.

Three expert system design strategies were employed in this study and may be very
useful for future expert systems development. The first design strategy was to control the
abstraction level of the output solutions in an application of design tasks. When
constructing such expert systems, we face the problem that explicit solutions are
impossible to be produced because -pecific goal states cannot be predetermined. In this
study, TAA was not expected to output explicit solutions; rather TAA was designed to
output solutions at an appropriate abstract level, keeping the conclusion abstract (but as
explicit as possible) and advisory (but as decisive as possible). The abstract and advisory
guidance was further backed up by examples so that the messages of such guidance could
be meaningful to the user in order to make proper decisions. This approach may be used
to reduce the required searching space in an application of design tasks, and to improve
the end user understanding of the domain knowledge in any expert system applications.

The second design strategy used in this study was to keep knowledge
representation structure consistent with the purpose of TAA. As a practical tool, TAA
was supposed to primarily solve the targeted design problem; and second, to
communicate heuristic and theoretical knowledge to the users. To serve the user in that
manner, TAA was designed from the perspectives of cognitive strategy (control strategy)
and procedural knowledge in the domain. The domain knowledge was modeled from
three angles. The first was from a procedural knowledge perspective which reveals the
procedural relationship among the subtasks in the achievement test design process. The
second was from heuristic knowledge consisting of rules of thumb and standard
practices in the field. This type of knowledge reveals how decisions and choices are made
in a professional test design process.The third was the control strategies or theoretical
knowledge of test design. To keep the primary purpose of the application and the primary

knowledge representation structure consistent, TAA used an algorithmic specification

74

|

representing the procedural knowledge as its prirnary knowledge representation structure,
The procedural knowledge in the domain was further coded in a form of meta rules to
ensure that TAA efficiently selects the most pertinent sets of rules in its inference. The
heuristic knowledge was then incorporated into the slots in a particular step expressed by
the procedural knowledge. Also, the procedural knowledge was used as an indicator to
partition the inference engine for efficient system development. By bringing different
types of knowledge into a coherent structure to fulfil different purposes, the coding of an
application is easy to comprehend by the experts and modified by TAA designer. The
above mentioned approach can be used in the design of any expert system.

The third design strategy used in the study was to design a flexible as well as
effective coaching scheme to meet different users' needs. The coaching function was
designed and developed according to the The Elaboration Theory of Instruction
(Reigeluth & Stein,1983). Although it was an excellent tool to design instructions at the
macro level, the scheme of the Elaboration Therry of Instruction was not well suited to
such a complicated problem-solving application. To remedy this, the assistance regarding
communication of the procedure and decision-making knowledge was further defined
into three categories:

a). purpose - The messages of the purpose were to answer the "why" questions that a
user might have in mind. It was not a goal of a set of backward chaining rules, but it was
the control strategy of an action, such as "the purpose of constructing test specifications
is to ensure content validity in a test design"”;

b). procedure - A procedure consists a set of steps to complete a task successfully. A
procedure answered a user's "how to” questions before s/he begun to perform a task;

c). advice - Advice was the output solutions which could be advisory or decisive. The
messages of the advice category were different from that of the procedure category:

although the messages of both categories concern "how to" questions, the messages of

75

the advice category only addressed inference knowledge (vs. procedural knowledge) in a
problem-solving process.

Backing up the design making in a test design, instructions were used as a supporting
component.

Partitioning types of knowledge not only enables a user to choose the type(s) and
quantity of coaching function s/he needs, but it also facilitates efficient system
maintenance and updating. This strategy can be used as an alternative to designing a
comprehensive user (learner's) model to monitor the user's understanding of the domain
knowledge, but further studies on this approach are necessary.

Given the purpose of TAA, it is concluded that an expert system approach is
appropriate to deal with this type of open-ended design problem. Because the application
purpose(s) and the end users' needs are different from system to system, it is
inappropriate to have a universal formula in the design an expert system application.
However, an expert system should have a minimum proportion of each problem-solving
function and coaching function. Beyond that minimuim, the weight and the structures of
these functions should be designed according to the purpose of a system. Again, the

main concept here is balance.

76

References

Alty, J. J., & Coombs. M. J. (1984). Expert systems Concepts and examples, England:
NCC Publications.

Bloom, B. S. (1956). Taxonomy of Educational Objectives: Handbook 1. Cognitive
Domain. New York: David McKay Co., Inc.

Brown, H., Tong, Tong, C., and Foyester, G. (1983) PALLADIO: an exploratory
environment for circuit design. IEEE Computer, December, 41-45

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue.In D.
Sleeman & J. 5. Brown (Ed.), Intelligent tutoring systems. (pp. 130-136).
New York: Academic Press.

Clancey, W. J. (1987). Methodology for building an intelligent tutoring system.In G.
Kerarsley (Ed.) Artificial intelligence and instruction: Applications and methods.
Massachusetts: Addison-Wesley Publishing Company.

Carlsen, S., & Stokke, G. (1987). Conceptual modelling + prototyping = functional
specification. In G. Guida. (Ed.), Proceedings of The Third International Expert
Systems Conference (pp49-53). Oxford: Learned Information.

Dincbas, M. (1980). A knowledge-based expert system for automatic analysis and
synthesis in CAD. Information Processing 80, IFIPS Proceeding, (pp. 705-710).

Fosrsyth, R. (1987) The architecture of expert system. In R. Forsyth (Ed.), Expert
systems; Principles and case studies (pp9-12). London, New York: Capman and
Hall.

Freksa, C. (1986). Knowledge representation for interactive aircraft design. In T.

Bernold (Ed.), Expert systems and knowledge engineering (pp221-229). North
Holland: Elservier Science Publishers P. V.

Gammack, J. G., (1987). Modelling expert knowledge using cognitively compatible
structures. In G. Guida. (Ed.), Proceedings of The Third International Expert
Systems Conference (pp191-200). Oxford: Learned Information.

Gilbert, T. (1978). Human competence . McGraw-Hill, Inc.

Graham, N. (1979). Artificial Intelligence: Making machine "think".
PA: Tab Books Inc.

Harmon, P. (1987). Intelligent job aids: How Al will change training in the next five

years. In G. P Kearsley (Ed.), Artificial intelligence and instruction: Applications and

methods (cha. 8) Addison-Wesley Publishing Company.

Hu, D. (1987). Programmer's reference guide to expert systems. Indiana: Howard W.
Sam & Company.

Hughes, S. (1987). Domains, tasks and questions: An approach to knowledge analysis
In G. Guida. (Ed.), Proceedings of The Third International Expert Systems
Conference (pp37-45).0Oxford: Leamed Information.

Keravnou, E. T., & Johnson, L. (1986). Competent expert system; A case study in f, ult

diagnosis. London: Kogna Page Ltd.

Grounlund, N.E. (1981). Measurement and evaluation in education and psychology

(2nd ed.). New York: Holt, Rinehart and Winston.

Hartely, R. T. (1985) Representation of procedural knowledge for expert systems. In
X ings of 2n nferen n AIA; ngineering of knowl -

systems, (pp.526-531). IEEE, Miami Beach,

Mitchell, T.M., Steinberg, L.I., An intelligent aid for circuit redesign. Proceedings
AAAL (pp. 274-278)

Oliver, A. {1987). How to make rapid prototyping effective when developing expert
systems. In G. Guida. (Ed.), Pr in f The Third International Ex

Systems Conference (pp45-48). Oxford: Learned Information.

Parsaye, K., & Chignell, M. (1988). Expert systems for experts, John Wiley & Sons,
Inc.

Rayment, P.J., & Thomas, S. (1987). Advanced embedded expert system techniques.
In G. Guida. (Ed.), Proceedings of The Third International Expert Systems
Conference (pp77-82). Oxford: leamed Information.

Reigeluth, CM., & Stein, F. S. (1983) The elaboration theory of instruction. In C. M.

Reigeluth (Ed.), Instructional-design theories and models: An overview of their
current status (pp335-381). London, New Jersey: Lawrence Erlbaum Associates,
Inc.

Self, J. A. (1988). Bypassing the intractable problem of student modelling. In

Proceedings of Intelligent Tutoring Systems (pp18-24). Montreal: University du

Montreal.

Shaw, M., & Gaines, B. (1987). Advances in interactive knowledge engineering. In N.
Shadbolt. (Ed.), Research and development in ex systems (pp111-118) England:
British Information Society Lid.

Steels, L. (1986). Research and development in expert systems III. In M. A.Bramer

(Ed.), Second generation expert systems.

Summerville, 1. (1989). Software engincering. Addison-Wesley Publishing Company.

Van Horn, M. (1986). Understanding expert systems Toronto: Bantam Books.

Walters, J. R., & Neilsen, N, R. (1988). Crafting knowl d
systems made easy/realistic New York: John Wiley & Sons.

Wolfram, D. D. (1987). Expert systems for the technical professional. New York:

John Willey & Sons, Inc.

78

Woolf, B. P. (1988). 20 years in the trenches: what have we leamed? Intelligent

tutoring systems June 1-3, 1988, (pp33-35), Association for Computing
Machinery

79

Appendix 1

Task Map of Test Design Process

general
objectives

521

Legend of Figures Cited In Appendix 1

represents transformation sentre where an input
data flow is transfored to an output.

represents a data store.

reprents user interactions with the system. The
interaction may provide input or receive output.

represents the start or exit point of the operation.

shows the direction of data flow.

Words on an arrow describe the name of data.

represents a screen display.

represents an evaluation action.

represents the number of a task. The digit
indicate the level of a task."5" reprents the
fifth task among the six major tasks of test
design. The '2" represent the second subtask
of "5" and the "1" represents the first subtask
of "2"‘

represents a variable.

81

1593} asn-03-Apeal e

o (o O
9yj Aum
p2sa} °q 03
saarpafqo
g P53} 9q 03 O
$3AI1323(qo ay3 aproap
an[ea
81008
v roacto.twa Aq uESU‘IO
:3N[BA 31005 IpLaAg
siseydwa
jndut 13sn

JeULIO) WA

uSisa(] 1S3, Ul SYSBISqNG XIG | aIn3L]

1s93 943 Jo
suorjipuodaid

1$33 IpLosp

- saajaalqo
2ouBuLI0yIad

$3A1323(qo sduBL0)iad
\ ay1oads aje[m w10} Aq«qalh uotjeuriojut 393

r 1

(4

82

uorjeuLIoju] 385 '] 3in3ig

(papasu 3s3392d
sotdoy

Juau0d
uoruajul
(;B30nb sBY)
asodund

9d09s oym
31098 MOy (apeds) (38e13A02)

159} jo Louanbaly 231S :ouﬁauavw MMMWM“
awny 359 21591 Jo ToqTH

)

7597 8y3 JnoqE
uorjeulIojul uorjBuLIgjul
ay) p40dal {e1aua3 pi0dal

¢l Tl

5593 943 I0q

1593 ayj noqe
soy13ads pa0dax

€1

jndut 4350 ndur 13sn

Judurt sasn

83

$941303(q0
Jyrdads

§9A1309{q() IUBULIOHMIJ BMULIO] ['Z i3ty

$Q494A JUBAI[IL
Jojood e

Juawalinbal
dduewrtopad Ljoads

€3

3pwap Jasn

saA108[qo sousuLIOMad
[e1auad s|qissod jo [ood B

saapaiqo
[el13ua3 auyap

saA1(qo
[Blauad

9ploap 1asn (X

wayy
auIquiod

3adueuLIojIad

so1doy

JO s[aAa[x18

saarafqQ) [e19uan) auya(g'g 3403L]

sak
2
auo js8[= d1doy
ou

sak
aduswopad
¢ 8uo jse| JO [9A9] 3x3U X0}
= D (s)aa13a3lqo
JouguLicjiad Jo [9Ad ou [e1aua3d 109[9s

UEWIL0LIgU U
[2A3] B J0J 59A1390(qO
[esouad 7oo9p9s $3A1393{qQ) [e1aUdL)

A, 9OUBULIOMAJ JO [3A]
X, :oudoy,

X, oudoy
youd

85

dumes 1599 ayj pue
BB JUIU0d 2}
03 3u1plodde sy
aoueultopzad
{esauad ayj 393

S3A1P(QQ dyadg aje[nuiio] g7 InSiy

awdoy X,
X, [2A9] dsueuLiopad 9xau je

aa1d9[qo e1ouald
B dn youd

auo 9sg| =
souruLiojad

SEYNVREIGT)
syads yum

» €3

10} 3[qe SI 39759] ayj Jt aarpalqo
[e13ua8 ayj aadIydB ay/s mouy KBW ap

SQIaA

p93s3ddns
3 Y3 709[[3S
.m_ V., 2A13[q() [esdusr)
..<.. A, 0UBULIOJI] JO [9A]
1V :oudo,
$q43A pajsanddn X, 0L aa1323[qo ay3 jo

doueuLIoyrad Jo [9a9]

ay3 03 duipaodoe
18I QI3A 3Y)

Y
adog x,
X, [943] aoueuwriopad 1B
2A10a(qo [eaouad
e dn yud

86

Z,9A1309{q0 IsB]

JeULI0] 3S3], 9PLod(] (¢ 4Ny

ay) suyy S

aanalqo ue 10§
Papaau awl} aeuLl)S?

¢t

°N

aA1pafqo ue 10
JBULIOJ JS3F B 3S0UYD

e

Jdusurtoprad jo [9A9]
aarpalqo
u® Jo JeuLI0] 1S3}

aa1da(qo jetauasd
aa1alqo ayjy ut qaaa
adueuLiojiad Jo [3A9]

7BUL10} £BSS? 9sSn 0}
Ayyqrssod sproap

0e

1539y}

Jo suorjipuodasd
$993593 ayy Jo
soysuLjIRIBYD

87

use
essay type
l’

Format := Essay

|

Format := Short answer

[

[

3.1.2

31.3 use Format ‘< multiole choi

o multiple choice ormat := multiple choice
f)

use

3.14 matching?

Format := matching

[

3.1.5 CFormat = tme-fa]se)

-l

Figure 3.1 Choose Test Format

88

adKy, aa1pafqQ snsaap eSS 9so0y) g'g ondLg

6
X, aA1)oa{qo

10j Jomsue
DIpUd)Xa 9S[)

"Jasn 9Y3 [[7
pue 3593 ayj uroly
X, 9A1303{qo apn[axd

13MSUB PIPUBXD
= jeulIoy

-
\

X, 9A1300(qo
10} Jamsue
pajoLIIsaL as[)

2 1591 9}
ut pasn aq
Kessa ue)

¢ Kessy
aq o[qssod
X, 9A1p3fqo

19MSUR PajILL}sal
=: JeuLIo]

I'Te

X, 3a10a[qo jo
[2A3] 2ouBwLIOpIad
2 JUIJUOD

X, aA1pd2iqo ue

89

4.1

construct a test, topics to be tested with |
specification matrix levels of performance

o

42
outline the user decides
test specification O

score values of
performance by topic

43

calculate cell score
value: topic by
performance level

Figure 4.1 Construct Test Specifications

90

42.1

input subtotal

score in the
topics of the test

+ matrix of test specifications

1 2 3 14 5 6
A ?
B ?
C ?
100

V. no objective in that performance
level and topic.

no
user input subtotal
? ina performance level
orin a topic.
input subtotal
O- score in the
performance levels
1 2 3 4 5 6
A X
B X
C X
? ? ? ? ? ? 100

no

Figure 4.2 Outline The Test Speficiation

91

T T T IR

//

4.3.1 adjust by topic

base of the

adjustment
f)

according to topic

4.3.2 calculate

according to performance (

cell value accordi
o performance

>

performance performance
(e lslals|e I Y ({alelalals]e [)
vyl]| y2| y3 |4 y6 Clxla | xa|xt x1 | x1
yl y3lyd|y5|y6 [x¥2 J—pm! B | x2 x1x2 | x2| x2 | x2
vl y2| y3lydly5 |y |x3 Al x3]1x3] x3]x3]x3]=x3 1] x3
_) _ sl [s2 s3|s4 | sb| s6 Y,

no objective in that performance

level and topic.

cell value = (y/s):D

get new subtotals
performance levels

(Edjust rounded)

IIOL. S

Figure 4.3 Calculate Cell Value According to Topics

92

/7

4.3.2 adjust by performance

performance performance
(123 Cf1l2]s]a |5 |6
Clxlx ﬂﬂ\ﬂ Clyi|y2]y3]y4 y6| sl
B |x2 x2{x2 | x| x2 | B| 31 y3|y4 |y5 | yB)| s2
A | x3]x3] x3|x3]| x3]| x3 Al yliy2|y3|yd1y5]y6] s3
_ [2 | 3|y | ¥5] 8)

t)

3

cell value = (x/s)y)

Cget new subtotals

performance levels

)

(zdjust rounde
LTOor.

no objective in that performance

level and topic.

D,

Figure 4.4 Calculate Cell Value According to Performance

93

decide the number
of test items for each
objective

5.2

estimate the actual score
value in each topic with
each level of performance

actual score value

5.3 in each cell

estimate the difference
between planned and
actual score value for
every cell

areas of
5.4 difference

decide objectives
to be tested

Figure 5.1 Decide Length of The Test

aoueuLioyiad jo
[2A9] 2p awdo3 yowa
an[BA 2l02s [ENJIB

oocaE.S.rwn JO [oa9]
29 21doy aures ut

an[BA 3100 wns

aArpalqo use 29
10} swajt [[® jJO
Jo an[BA 2103

Swajl Yy} Jo Jaqunu
*
aapdalqo uv Jo 9103s

LYY

2A13d9lqo yImvad jo
Swajl Jo laqunu

an[BA 103G [[3D [BNPPY djeMO[B) g G 9indig

wan 9593 ue
Jo an[eA 3103s

.

— wajt ue jJo aury 3yl

aarjalqo ue 10§

*
an[eA 3lI0ds

(AR

w>muomm30 ueg
Jo sy 359

ajhutw auo jo
an[eA a103s

1es

1593 9y} Jo
awyy 359}

95

pick up a

specific Objective: ‘A’
format: 'F'

topic: ‘X

level of performance: 'Y

Format: 'F'

Topic: 'X

Level of Performaitce: 'Y’
Specific Gbjective 'A'

sugguested item structure

no

pick up a

specific objective

of next topic X',

same performance level'
Qame test format.

pick upa
specific objective
of next performance level 'Y,
next topic,
same test format.

pick up a
specific objective
of next performance level 'Y,
next topic,

next test format.

Figure 6.1 Write Test Items

write a
test item

objective
= last one

topic = last one

performance
= last one

item format
= last one

Appendix 2

Samples of Knowledge Representation

3. ~_Choose Test Format”_
if
0.0 ~_Introduction”~_ Select Test Format, 30005 and
3.0 ~_Coaching”~_ and
3.0 ~_conditien Essay~_ and
~ tell~_ 30042, Task and ~_tell~_ 30043, Advice and ~_tell~_
30045, Unfamlllar and
'‘A' := (Objective Total of Test) and
'All' := 'A' + 1 and
'Obj' := 1 and
~_repeat~__ and
.1l ~_select-format~_ 'Obj' and

'Format' := (Format of 'Obj') and

~_tell~_ 30044, Unfamiliar and

3.2 ~ estlmate time needed~_ 'Obj', 'Format' and
1P s= (Test Time of 'Obj') “and

A_afterwordsA_ 'T', 'Format', 'Obj' and

'Obj' := 'Obj' + 1 and

~_ask to~_ see the test format for next objective and
A clsA and
0bj ' = 'All' ;

3.0 ~_condition Essay”_

if

~ _tell~_ 30040, Task and ~_tell~_ 30041, Task and
~_condition~_ 1 and
~ _condition”_ 2 and
~ condition”_ 3 and
(Essay of Test) = Yes
or

~ _Decide Essay~_ :

~ Decide Essay”_
if

~ _system”~_ 30036 and

~ tell~_ 30033, Advice and ~_move”~_ and

~_read-yes”_ "Would like to exclude the essay format from
the test?" and
(Essay of Test) :
or

(Essay of Test) :

No

Y

0

s 7

~_condition~_ 1

if

(How Score of Test) = Both or

(How Score of Test) = Mannual or

(Resource of Test) := No and (Essay of Test) := No and
A tell”~_ 30008, Advice ;

Figure 1. Backward Chaining Rules Used to Choose Item Format

98

~_condition~_ 2

if

'G' := (Grade of Testee) and 'G' < 4 and

~ _read-no’_ "Have the testees learnt how to write an essay?"
and

" _tell~_ 30009, Advice and

(Education of Test) := No and

(Essay of Test) := No or ~_true~_ ;

»_condition”_ 3

if

'N' := (Number of Testee) and 'W' := (Who Score of Test)
and

'A' := 'N' / 'W' and 'A' < 30

or

(Essay of Test) := No and

(Resource of Test) := No and

* _Advice3~_ ;

» Advice3”_

if

(Advice of User) = Yes and

*~_cls*_ and

IN' := (Number of Testee) and 'W' := (Who Score of Test)
and

~ write*_ "Number of Testee: ", 'N' and

~ write”_ "How many people to socre: ", ‘W' and
~_system”~_ 30010 ;

3.0 ~_Coaching”_

if

(Assistance of User) = Yes and

~ _tell~_ 30001, Instruction and

* _tell”_ 30002, Purpose and

~_tell"_ 30021, Procedure and

~_tell”_ 30003, Advice and

~ Example~ 30022, Example, Advice and

~_tell”_ 30015, Unfamiliar and ~_difference~_ or ~_true~_ ;

~_difference"_

if

(Instruction of User) = Yes and

~ system~_ 30023 and

* _read-yes*_"Would you like to know the features of
objective test & essay test?"

and *_system~_ 30016 and ~_system”_ 30017 and

Figure 1. Backward Chaining Rules Used to Choose Item Format

99

~_more concepts~_ Comparing Format, A and

~_a concept”_ 3comparel, Performance Measured, Comparing
Format and

~_a concept”_ 3compare2, Preparation of Questions, Comparing
Format and

~_a concept”~_ 3compare3, Sampling of Course Content,
Comparing Format and

~_a concept”_ 3compare4, Control of Response, Comparing
Format and

~A_a concept”_ 3compare5, Scoring, Comparing Format and
~_a concept”_ 3compare6, Influence of Learning, Comparing
Format and

~_a concept”_ 3compare7, Reliability, Comparing Format
or ~_true~_ ;

3.1 ~_select~-format”_ 'Obj'

if

It ~_is likely~_ Essay, 'Obj' and

A _Choose Essay”_ 'Obj' and ~_tell user”_ 'Obj'

or

It ~_is~_ Short Answer, 'Obj' and
(Format of 'Obj') := Short Answer and
(Include of 'Obj') := Yes

or

It ~_will be~_ Multiple Choice, 'Obj' and
(Format of 'Obj') := Multiple Choice and
(Incilude of 'Obj') := Yes

or

It ~_will be”_ Matching, 'Obj' and
(Include of 'Obj') := Yes

or

It ~_will be*_ True-False, 'Obj' and
(Format of 'Obj') := True-False and
(Include of 'Obj') := Yes

or

~_for reviser_ 'Obj' ;

~ _for reviser_ 'Obj'

if

'G' := (General of 'Obj') and
'L' := (Level of '0Obj') and
tS' ;= (Specific of 'Obj') and
'V' := (Verb of '0Obj') and

~_go*_ 28, 15 and

A _write”_ "Write down the information of this cbjective."
and

~ go*_ 1, 1 and

~ _write~_ "Performace level: ", 'L' and

Figure 1. Backward Chaining Rules Used to Choose Item Format

100

~_write”_ "Objective: ", 'G' and

» write~_"Specific objective: ", 'v' " ", 5! and
(Format of 'Obj') := unable to decide and “_go on”_ and
#_read”_ 'A' ;

& Khkkkkhhkkhkhkkkkhkkkhkhkkhkhkkhkhkhkhkhhkhkhkhkkhhki
It ~_is likely~_ Essay, 'Obj'

if

not (Level of 'Obj')
not (Level of 'Obj')

Knowledge or
Comprehension ;

*_Choose Essay”_ 'Obj'

if

It ~_is~_ Restricted Response, 'Obj', 'Format' and
(Format of 'Obj') := Restricted Response

or

It ~_is~_Extended Response, 'Obj', 'Format' and
(Format of 'Obj') := Extended Response ;

~_tell user~_ 'Obj'

if

(Essay of Test) = Yes and (Include of 'Obj') := Yes or
(Include of 'Obj') := No and

~_show test format~_ 'Obj' and

~_system”_ 30037 ;

It ~_will be~_ Multiple Choice, 'Obj'
if

(Verb of '0bj')
(Verb of '0bj') discover or

(Verb of '0Obj') identify or

(General of 'Obj') = justify methods/procedures or
(General of 'Obj') = interpret cause-effect relationships:;

select or

It ~_will be~_ Matching, 'Obj'
if

~_consider*_ Matching, 'Obj' and
~_make sure”_ Matching, 'Obj' ;

*_make sure”_ Matching, 'Ubj'
if
_cls _ and

'G' := (General of 'Obj') and

'S' := (Specific of '0bj') and

'V' := (Verb of 'Obj') and

A_writeﬁ— " 'Obj', ", " 'G' and

~_write~_ "Specific Objective: "™, 'y',6 u n_ 151 and

~_display~_ 30031, Instruction, 40, 1 and

Figure 1. Backward Chaining Rules Used to Choose Item Format

101

A_system”_ 30030 and

A _read-yes”

"Sufficient number of homogenous premises & responses can
obtained" and

(Format of 'Obj') := Matching or

~_tell~_ 30032, Task and (Format of 'OLJj') := Multiple
Choice ;

~_consider~_ Matching, 'Obj’

if

(Verb of '0Obj') match or

(Verb of 'Obj!') relate or

(General of 'Obj') = identify relationship between two
things ;

|||

It ~_is~_ Restricted Response, 'Obj', 'Format'
if

(Verb of 'Obj')
(Verb of 'Obj')
(Verb of '0bj')
(Verb of '0bj')
(Verb of '0bj')
(Verb of '0Obj!')

explain or
categorize or
describe or
present or
formulate or
state ;

It ~_is~_ Extended Response, 'Obj', 'Format'
if

(Verb of '0bj?')
(Verb of 'Obj')
(Verb of 'Obj"')
(Verb of 'Ob3j"')
(Verb of '0bj')
(Verb of 'Obj')
(Verb of '0bj!')
(Verb of 'Obj')
(Verb of 'Obj"')
(Verb of 'Obj')

compose or
write or
plan or
design or
produce or
organize or
express or
integrate or
create or
evaluate ;

LIS T | T (Y O |

It ~_is”~_ Short Answer, 'Obj!'
if

(Verb of '0Obj"')
(Verb of 'Obj"')

compute or
calculate or

(General of 'Obj') = interpret diagrams/graphs or
(General of 'Obj') = translate verbal material to
mathematical formulas or

(General of 'Obj') = solve mathematical problems ;

Ghkkkhhhhhkhhhkhhhhhkhkkhhhkkhhhhkhrkhkhkkkhkkk
~_afterwords~_ 'T', 'Fformat', 'Obj’

Figure 1. Backward Chaining Rules Used to Choose Item Format

102

if
~_show test format~_ 'Obj' and
'G' := (General of '0Obj') and

'L' := (Level of 'Obj') and

'V! := (Verbk of 'Obj') and

not 'Format' = unable to decide and

~_3tell~_ 30006, Task, 'L', 'G', 'V' and
~_may-want explanation”_ 'Format' or ~_true~_ ;

%~ _may change format®_ T'0bj' or ~ true~_ ;
~_show test format~_ 'Obj'

~_cls”_ and

'Format' := (Format of 'Obj') and

' (Test Time of 'Obj') and

'G! (General of 'Chj') and

LAVA (Verb of 'Obj') and

's! (Specific of '0bj') and

I {Include of '0bj') and

~A_write~_ "Objective ", 'Obj', ". ", 'G' and
~ _write~_ "Spefic Objective:", 'v', " u 151 and
~_write”_ "Format: ", 'Format' and

A_write~_ "Time Needed: ", 'T' , " min. " and
~_write~_ "Included in The Test: ", 'I' ;

o ee oo

I

~_may change format~_ 'Obj'

if
~_show test format~_ 'Obj' and
~_read-no”_ "Do you want to change the test format for the

objective?" or
~_change it~_ '0Obj' and
~_show test format~_ 'Obj' ;

~_may-want explanation®_ 'Format'
if

~_see this~_ 'Format' and

~_see other”_ 'Format' ;

~_see this”~_ 'Format'
if
(Instruction of User) = Yes and

('Format' of Format) = Yes and
~_ask again”~_ 'Format' ;

~_see cther~_ 'Format'
if
(Review of Format) = Yes and

~_may-want-all®_ or *_true~_ ;

Figure 1. Backward Chaining Rules Used to Choose Item Format

103

~_ask again”_ 'Format!'

if

~_read-yes”_ "Would you like the explanation on this test
format?" and

('Format' of Format) := Yes and

~ _give explanation on format~_ 'Format'
or

{'Format' of Format) := No ;

A_may-want-all”_

if

~_cls~_ and

~ read-yes”_ "Whould you like the explanation on the other
test formats?" and

~_show-the-user-all~_ or

(Review of Format) := No ;

~_show-the-user-all~_

if

~_clean slot~_ Overview Format or

0.0 ~_Choose Assistance”_ Explanation on Formats, F,
Overview Format and

~_for-every”_ Overview Format ~_has-a~_ 'Slot!
~_do~_ ~_search for Yes~_ 'Slot' ;

~_search for Yes”_ 'Slot!

if

'X' := ('Slot!' of Overview Format) and

'X' = Yes and

~_give explanation on format”_ 'Slot' or ~_true _ ;

~_give explanation on format”_ 'Format'

if

~_¢ls~r_ and ~_go”~_ 20, 1 and

~ wrlteA "Choose Aspects of Instruction On ", 'Format' and

~ clean slot~ 'Format' or
1, A _choose aspectsA 'Format' and
2. ~_give aspects”~_ 'Format' H

1. »_choose aspects”_ 'Format'
if
~ get the set”_ Explanation on Format, C and
~ llst-memberA 'M', C and
("M' of 'Format') := Yes and ~_fail®_ or “_no-backtrack’_

2. *_give aspects”_ 'Format'

Figure 1. Backward Chaining Rules Used to Choose Item Format

104

if

~_cls”_ and *_go~_ 20,
*#_write”_ "Explanation
'Format' = Multiple Cho
'Format' = Matching
'Format! = True-False
'Format' = Short Answer
'Format' = Restricted R
or

'Format.' = Extended Res
~» truer ;

~_Multiple Choice*

if

~_a concept”_ 3multil,
and

~_a concept”_ 3multi2,
and

~_a concept”_ 3multi3,
~_a concept”_ 3multis4,
#_a concept”_ 3multis,
and

~_a concept”_ 3multis,
»_a concept”_ 3format,

~_Matching”*_

if

*_a concept”_ 3format,
~_a concept”_ 3format,
~_a concept”_ 3format,
~_a concept”_3format,
~_a concept”_ 3format,
»_True~False ~

1

~_a concept”_ 3format,
»_a concept*_3format,
~_a concept”_3format,
~_a concept~_ 3format,
~_a concept”_3format,

~_Short Answver A
if
~_a concept”_ 3shortl,
a concept”_ 3short2,
a concept”_ 3short3,
a concept”_ 3short4,
a concept”_ 3short5,

Figure 1. Backward Chai

1 and

On ", 'Format' and

ice and ~_Multiple Choice*_ or
and ~_Matching”_ or
and ~_True-False”_ or

and ~_Short Answer”_ or
esponse and ~_Restricted Response~_

ponse and ~_Extended Response”_ or

Characteristics, Multiple Choice
Characteristics, Multiple Choice

Usage, Multiple Choice and
Usage, Multiple Choice and
Advantages, Multiple Choice

Limitations, Multiple Choice and
Constructing, Multiple Choice ;

Limitations and
Advantages and
Usage and
Characteristics and
Constructing ;

Limitations and
Advantages and
Usage and
Characteristics and
Constructing ;

Characteristics, Short Answer and
Usage, Short Answer and

Usage, Short Answer and

Usage, Short Answer and
Advantages, Short Answer and

ning Rules Used to Choose Item Format

105

a concept”_ 3short6, Advantages, Short Answer and
a concept”_ 3short?7, Limitations, Short Answer and
a concept”_ 3short8, Limitations, Short Answer and
a concept”_ 3short9, Limitations, Short Answer and
a concept”_ 3shortl0, Limitations, Short Answer ;

~ Restricted Response”_

—
]

if

~_a concept~_ 3format, Limitations and

~_a concept~_ 3format, Advantages and

~_a concept~_ 3format, Usage and

~_a concept”_ 3format, Characteristics and
~_a concept~_ 3format, Constructing ;

~ _Extended Response”_

—
]

if

~_a concept~_ 3format, Limitations and

~_a concept~_ 3format, Advantages and

~_a concept”_ 3format, Usage and

~_a concept”_ 3format, Characteristics and
A a concept” 3format, Constructing ;

Figure 1. Backward Chaining Rules Used to Choose Item Format

106

~ Test Specification”_

h

~_Types of Test”_ and
~_Introduction”_ Make A Plan For The Test and
~_Review”_ and

“draw”_ the matrix and
draw” test outline and

get” the planned score and ~_tell”_ 40004, Task and
s~ _ and

o}

-1

OCON WNFOOO

Summarize® and ~_cls*_ and
Synthesize~ ;

L A T N B Y

4.0 ~_Types of Test”_

if

'X' := (Purpose of Test) and
4.0 ~_Which Type~_ 'X' ;

4.0 ~_Which Type~_ 'X!

if

~ It is”_ Placement, 'X' and (Type of Test) := Placement or
~ It is~_ Formative, 'X' and (Type of Test) := Formative or
~ It is”_ Summative, 'X' and (Type of Test) := Summatove or
~ It is~_ Diagnostic, 'X' and (Type of Test) := Diagnostic

.
!

~ It is”_ Placement, 'X!

if

‘X' = Training Readiness or 'X' = Learning Readiness oxr
'X' = Job Assignment or

'X' = Certifying and

'Y' := (Has Quota of Test?) and 'Y'= No;

~ It is~_ Formative, 'X!

if

'X' = Training Evaluation and 'Y' := (Coverage of Test) and
'Y! = Instruction Unit or

'X' = Evaluation and 'Y' := (Coverage of Test) and 'Y' =
Instruction Unit;

~ It is*_ Summative, 'X'

if

'X' = Certifying and 'Y' := (Has Quota of Test?) and 'Y' =
Yes or

'X' = Grading and 'Y' := (Coverage of Test) and 'Y' = Term
Course or

'X' = Evaluation and 'Y' := (Coverage of Test) and 'Y' =

Term Course ;

Figure 2. Meta Rules Used to Index Production Rules

107

% Coaching *¥xkkkkdkkkhkdkkdhhkhkhhdhhkhhhkkhhdx

* Variables are marked by ',
~ _display~_ 'X', '¥', 'Col', 'Line’
if

('Y' of User) = Yes and

A msg~_ X', 'R' and

~_move-cursor-to~_ 'Col', 'Line' and
~_write-text~_'R' and ~_stop~_ or *_true~_ ;

~ _stay~_ 'X', 'Col', 'Line'

if

A_msg”~__ 'X', 'R' and
~_move-cursor-to~_ 'Col', 'Line' and
~_write-text~_'R' or ~_ture~_ ;

~_stop”~_

if

~ go~_ 19, 21 and

~ write~_ "Press Enter Key to Continue" and
~_read”~_ 'New' and

~_clear space”_ 21, 22;

~_Press”_

if

~_go~_ 19, 21 and

~ write~_ "Press Enter Key to Continue"

~e

~ _a concept”~_ 'num', 'item', 'concept'’

if

('item' of ‘'concept') = Yes and

~ msg”_ 'num', 'ref' and *_pop-text~_'ref' and ~_go on”_

or *_true*_ ;

~_Example~_ '1', 'Yy', 'X!

if

('Y' of User) = Yes and

('X' of User) = Yes and ~_go on”_ and
~ msg”~_ '1', 'Ref' and

~ _pop—text”__ 'Ref', '1' or *_truer_ ;

|

Figure 3. Production Rules with Variables

108

A_ltEllA_ lxl, lY!I "

if

('Y' of User) = Yes and “_go on~_ and
~ msg”_ 'X', 'Ref' and

~ pop-text~_ 'Ref', '1' or ~_true~_ ;
A—StellA— IXI' |Yl, lll, l2l, |3l’ l4l’ I5I
if

('Y' of User) = Yes and ~_go on”_ and
~ msg”_ 'X', 'Ref' and

+ _pop-text~_ 'Ref', '1', '2', '3', '4', '5' or *_true~_ ;
A-3tellA- IXI' IYI' '1', l2|r l3l
if

('Y' of User) = Yes and ~_go on”_ and
A~ _msg”_ 'X', 'Ref' and

~ pop-text~_ 'Ref', '1', '2', '3!' or ~_true~_ ;
~_tell~_ 'X*, 'Y!

if

('Y' of User) = Yes and ~_go on”_ and

~ msg”_ 'X', 'Ref' and
~_pop-text~_ 'Ref' or ~_true~_ ;

A _more~_ 'A!

if

~ read-yes”_ "Would you like further explanation on this
topic?" and

~ _msg”_ 'A', 'Ref' and

~_pop-text~_ 'Ref'! and ~_go on”_ or ~_true~_ ;

~ change it~_ 'Obj!

if

~ go”_ 45, 1 and ~_msg”~_ Format, 'R' and ~_write-text”_ 'R'
and

~_pop-text-input~_ 'F',1, (Please type in the number of the
format you choose.)

and *_translate~_ 'F' and

(Format of 'Obj') := 'F' and

3.2 ~_estimate time needed”_ 'Obj', 'F' ;

* _translate~_ 'F!

Figure 3. Production Rules with Variables

109

if

'F' = 1 and 'F' := Multiple Choice or
'F' = 2 and 'F' := Matching or

'F' = 3 and 'F' := True-False or

'F' = 4 and 'F' := Short Answer or

'F'* = 5 and 'F' := Restricted Response or
'FP' = 6 and 'F' := Extended Response ;
~_more concepts*_ 'Topic', 'Set List'

if

A _read-yes”_ "Would you like further explanation on it?" and

~ get the set”_ 'Topic', 'Set List' and
A _list-member~_ 'M', 'Set List' and
(*M' of 'Topic') := Yes and ~_fail”_ or ~_no-backtrack~”_ ;

~_system~_ ‘A’

if

A go on”_ and

A~ msg~_ 'A', 'Ref' and ~_pop-text”_ 'Ref' ;

% User Choose *kxkkkkkkkkkkkhkkkkhkkkkkkkkk

0.0 ~_Introduction~_ 'X', 'Y'

if

~ _ask to~_ 'X' and

~ tell”_ 'Y', Unfamiliar and ~_tell~_ 10008, Unfamiliar and

A _read~yes~_ "Would you like to have assistance for this
task?" and

(Assistance of User) := Yes and

~_display”~_ 10008, Unfamiliar, 1, 1 and

0.0 ~_Choose Assistance”_ Assistance, Item, User and *_cls”_
and

~ _read-yes”_ "Would you like to have examples to 1illustrate
the explanation?"

and (Example of User) := Yes or ~_true”_ ;

~ _clean slot~_ 'Frame'

if

~ for-every~_ 'Frame' ~_has-a”_ 'Slot!'
#_do”~_ ~_clean”_ 'Frame', 'Slot' ;

~ _clean”_ 'Frame', 'Slot'

if

('Slot' of 'Frame') := No ;

Figure 3. Production Rules with Variables

110

0.0 *_Choose Assistance”_ 'Screen', 'List', 'Frame'
if
get the set~ 'Screen', 'List' and
~ llst—memberA 'M', 'List' and
("M' of 'Frame') := Yes and ~_fail”_or *_no-backtrack”_ ;

~_get the set”_ 'Topic', 'Set List'
if
~ list-assign”__ "[]", Set List and

'X' ~_is a choice for~_ 'Topic' and
*_add to list~_ 'X', Set List and
~_fail~_

or

~ set”_ 'Topic', 'Set List' ;

~_add to list~_ 'M', 'L’
if
~ _list-member~_ 'M', 'L' or ~_list-add-member~_ 'M', 'L' ;

~_set~_ 'Topic', 'Set List!

if

4~ _move”_ and

~ dlalog -build~_Get Set and

~ _dialog- set—valueA_ Get Set, Topic, 'Topic' and
~_dialog-execute”_ Get Set, 'Exit Button' and
~~dialog-get-set”_ Get Set, Set, 'Set List' and
~ _dialog- dispose*_ Get Set and

» _no-backtrack~” and

not 'Exit Button' = Esc and “_no-backtrack”_ ;

* Variables are marked by ! ',

Figure 3. Production Rules with Variables

111

A _Frame~_: Test
A Parent" : Thing

n SlotA : Name ~_ Valuer _:
A Slot" : Setting ~ ValueA :
~ Slot" : Purpose A ValueA :
~_slot~_: Coverage A Value~_:
~~Slot~ : Has Quota? A _Value~_:
~_Slot~_: Content A _Value~_:
A Slot" : Time A _Value~_:
~_Slot~_: Min Score ~ Value~_

” Slot" : Frequency ~ Value* :
~ Slot’\ : Need Pretest? ~ Value" :
~_slot~_: How Score ~ Value~_
~_Slot~_: Who Score ~_Value~_:
~_slot~_: Content Area ~_Value~_:
~ Slot" : Type * _Value~_:
A SlotA ¢ Nature ~ Value" :
~ Slot" : Focus " ValueA :

~"slot~_: Difficulty Range ~_Value~_
~"slot~ _: Difficulty Level ~ _Value~__

~_Slot~_: Score A" Value~_
~"slot~ _: Objective Total A" Value~_
~_slot~_: Item Total ~ Value~ :
~_Slot~_: Explain ~_Value~ _
~_slot~_: Items ~_Value~_: O

~_Frame~_: Testee
~_Parent~_: Thing

~_Slot~_: Number A _Value” :
~ SlotA : Education ~ ValueA :
A Slot" : Grade ~ Va]ueA :
~~Slot~_: Age ~_Value~ :

Figure 4. Frames Used to Record Facts

112

~ _Frame”_: Table

~ Parent” _: Concept

Slot”: Test Types ~_Value”_:
~~Slot”_: Validity »_Value~_: Yes
. SlotA : Reliability ~_Value*_:
~“Slot”_: Usability A Value~ :

~_Frame~_: User

~_Parent”_: Thing

~ Slot~_: Training ~ Value”~_: No
~Slot”_: Unfamiliar ~_Value”~__: No

~~Slot” : Assistance A~ Value”_: No
‘_Slot‘_: Instruction ~ leueA ¢ No

Slot~: Purpose ~ Value~_: No
»_Slot~_: Procedure ~_Value*~_: No

A _Slot”_: Task ~ ValueA_: No

A _Slot~_: Advice ~_Value~_: No

* _Slot”_: Example ~ ValueA ¢ No

~ _Frame”_: Review4

~_Parent”_: Table

~ Slot~_: Content Validity ~_Value~_:
~“Slot*_: Test Types A~ _Value*_:
~_Frame~_: Types

~_Parent” : Table

~_Slot”_: Placement ~_Value”_

*_Slot~_: Formative ~_Value*_

” SlotA : Summative * ValueA

8 Slot* : Diagnostic * ValueA

~_Frame”_: Validity

~_Parent*_: Table

~ Slot* : Content Validity ~_Value~_:

8 Slot‘ : Criterion-Related Va11d1ty A_Value~_:
8 Slot‘ ¢ Construct Validity ~_Value*_:

A Slot* : Relation With Other Concepts ~ _Value~ :
A Slot‘ : Factors Influencing validity ~ Value~

~_Frame”_: Usablility
~_Parent”_: Table
" _Slot”_: Easy to Administrate A _Value~ :

" Slot‘ : Time for Administration ~ ValueA :
A SlotA : Easy to Score ~_Value*_:

" SlotA : Easy to Interpretation ~ _Value~ _
*_Slot*_: Equivalent Forms ~_Value*
*_Slot~_: Cost of Testing ~_Value~_

Figure 5. Frames Used to Store Information Which has
Inheritable Nature

113

~_Frame~_

~ _Parent~”

A Slot*
~ Slo'cA
A SlotA
~ SlotA
A SlotA

~_Frame”
~_Parent”_
A _Slot”_
A _Slot~_
~_Slot~_

~ _Slot”_
A SlotA
" SlotA
A SlotA
A SlotA

~_Frame”_

.
.
.
.
.
.
.

~_Parent~

~ SlotA
A SlotA
A Slot‘
A SlotA
~ SlotA
A SlotA
A SlotA
” SlotA

~_Frame”_

.
.

~_Parent”_

~ Slot”_
~ SlotA
A SlotA
A SlotA
A SlotA
” SlotA
~ SlotA

~_Frame®

.
.
.
.
.
.
.
.

~ Parent‘

A Slot‘
A SlotA
A SlotA
A SlotA
~ SlotA
~ SlotA

Figure 5.

Reliablity
: Table

“stability +~_Value*_:

.
.

Equlvalence ~ ValueA :

Internal Con51stency A Value~_:

Relation With Other Concepts ~ _Value~ :
Factors Influencing Reliability ~ ValueA

Comparing Format

: Concept

Phase ~_Value~_: 3
Performance Measured *_Value”_ :
Preparation of Questions ~ ValueA
Sampling of Course Content *~ Value* :
Control of Response A_ValueA_:
Scoring ~_Value~ _:

Influence of Learnlng A_Value~_:
Reliability ~_Value~_

Format

: Concept

Phase ~ _Value~_: 3
Short Answer ~_Value~_: Yes
True~-False ~_Value~_: Yes
Multiple Choice ~_Value* : Yes
Extended Response . Value _: Yes
Restricted Response ~ Value 3 Yes
Matching ~ Value*_: Yes
Review ~_Value~_: Yes

Overview Format

¢ Concept

Phase ~ Value~_: 3
Short Answer ~_Value~_:
True-False ~ ValueA :
Multiple Choice ~ ValueA
Extended Response . Value
Restricted Response ~_Value* :
Matching A _Valuer_
Short Answer

: Format

Phase ~ Value~_: 3
Advantages ~_Value~ :
Limitations A _Value* _:
Characteristics ~_Value*_:
Usage ~_Value~_:
Constructing *_Value~_:

Frames Used to Store Information Which has
Inheritable Nature

114

~ _Frame”__
~ Parent” _

~ Slot~_:
~ Slot‘ :
~ SlotA :
~ SlotA :
~ SlotA

~ SlotA :

~ _Frame~

~ Parent‘
~ SlotA :
~ S;otA :
~ Slot‘

~ Slot‘ :
~ SlotA :
*_SlotA_:

~ _Frame*
~ ParentA
~ SlotA
~ SlotA :
~ Slot‘
~ Slot‘
”_Slot“_:
~_Slot~_

~ _Frame©
~ Parent‘
A SlotA
~ Slot* :
~ Slot‘
~ SlotA
~ SlotA
A Slot‘

*_Frame _

~ _Parent”_
~_Slot~_

~_Frame*
~ ParentA
~ Slot“ :
~ SlotA :
< Slot“
~~slot*_:

Figure 5.

: Multiple Choice
Format
Phase
Advantages
Limitations
Characteristics
Usage
Constructing

: Short Answer
: Format
Phase
Advantages
Limitations
Characteristics
Usage
Constructing

True-False
Format
Phase
Advantages
Limitations
Characteristics
Usage
Constructing

: Matching

Format

Phase
Advantages
Limitations
Characteristics
Usage
Constructing
Concept

Thing

Number ~_Value®

A _Value”_: 3

~ Value”_
~ Value*
~ ValueA
A Value*

*_ValueA_

A Value~_: 3

A ValueA
A ValueA

A_Value“_
~_Value”_
~_Value”_

.
.

» _Value~_: 3

~ Value”_
n Value

~"Value”_

~_Value*

~ _Value~_

.
.

» _Value~_: 3

~ _Value~_
~_Value”_
~_Value”_
~_Value” _
» _Value”_

Extended Response

_: Format
Phase
Advantages
Limitations
Characteristics

Frames Used to Store Information Which has

A Value~_: 3

» _Valuer_
A ValueA

A_ValueA_

Inheritable Nature

115

~_Slot~_: Usage ~ _Valuer_
~_Slot~_: Constructing ~_Value~_:
~_Frame~_: Concept

~_Frame”~_: Restricted Response
~_Parent”_: Format

~_Slot~_: Phase A~ _Value~_: 3
~_Slot~_: Advantages ~ Value~_:
A _Slot~_: Limitations A Value*_:
~_Slot~_: Characteristics ~_Value~_:
~_Slot~_: Usage A _Value~_:
~_Slot~_: Constructing A Value~_:

~_Frame”~_: Concept
~_Parent”~_: Thing

~_Slot~_: Number ~_Value”_:
~ZNZ

Figure 5. Frames Used to Store Information Which has
Inheritable Nature

116

know common terms ~_ is a choice for”_ At Knowledge Level
know specific facts ~ _is a choice for” At Knowledge Level
know methods/procedures ~ is a choice forA At Knowledge

Level
know principles ~ is a choice for”_ At Knowledge Level
know basic concepts _is a choice for~_ At Knowledge Level

understand facts/principles ~_is a choice for~_ At
Comprehension Level

interpret charts/graphs ~_is a choice for~_ At Comprehersion
Level

interpret verbal material ~_is a choice for~_ At
Comprehension Level

translate verbal material to mathematical formulas *_is a~_
~ _choice for~_ At Comprehen51on Level

estimate consequences implied in data ~_is a choice for~_ At
Comprehension Level

justifiy methods/procedures ~_is a choice for~__ At
Comprehension Level

apply theories to pratical situations ~_is a choice for”_ At
Application Level

apply principles to new situations ~_is a choice for~_ At
Application Level

solve mathematical problems ~_is a choice for~_ At
Application Level

construct charts/graphs”_ is a choice for*_ At Application
Level

correctly use a procedure ~_is a choice for”~_ At Application
Level

recognize unstated assumptions ~_is a choice for~_ At
Analysis Level

recognize logical fallacies in reasoning ~_is a choice for”_
At Analysis Level

distinguishe between facts/inferences ~_is a choice for”_ At
Analysis Level

cvaluate the relevancy of data ~_is a choice for~_ At
Analysis Level

analyze organizational structure of a work ~_is a choice
for~_ AL Aralysis Level

propuse a plan for an experiment ~_is a choice for”_ At
Synthesis Level

write a creative short story ~_is a choice for~_ At
Synthesis Level

make a plan for solving a problem * is a choice for”_ At
Synthesis Level

propose a plan for an experiment ~_is a choice for~_ At

Figure 6. Items of Lists

117

Synthesis Level
formulate a scheme for classifying... *_is a choice for*_ At
Synthesis Level

judge the value of a work ~_is a choice for~_ At Evaluation
Level

judge the adequacy of a conclusion *_is a choice for~_ At
Evaluation Level

judge the value of a work/idea”_is a choice for~_ At
Evaluation ievel

Instruction ~_is a choice for~_ Assistance
Purpose ~_is a choice for~_ Assistance
Procedure * _is a choice for~ Assistance
Task ~_is a “choice for~ _ Assistance
Advice ~ _is a choice forA Assistance

% 3. Choose Test Format
Khhkkkkhkkhhhkhkhkkhkkhkhhhkhhhkkhrkhkkkhkrhkhkk

Performance Measured ~ is a choice for~_ Comparing Format
Preparation of Questions ~ is a choice for”~_ Comparing
Format

Sampling of Course Content ~_is a choice for~_ Comparing
Format

Control of Response ~ is a choice for~_ Comparing Format
Scoring ~_is a choice for”__ Comparing Format

Influence of Learning ~_is a choice for”_ Comparing Format

Reliability ~ _is a choice for”_ Comparing Format

Advantages ~_is a choice for”_Explanation on Format
Limitations ~ is a choice for* Explanation on Format
Characteristics ~_is a choice for~_ Explanation on Format
Usage ~_is a choice for~_ Explanation on Format

Multiple Choice ~_is a choice for~_ Explanation on Formats
Matching ~_is a choice for~_ Explanation on Formats
True~False ~_is a choice for~_ Explanation on Formats

Short Answer *_is a choice for”_ Explanation on Formats
Restricted Response ~_is a choice for*_ Explanation on
Formats

Extended Response #~_is a choice for~_ Explanation on Formats

Multiple Choice ~_is a choice for”_ Review on Formats
Matching ~_is a choice for~ Review on Formats
True-False * _is a choice for~ Review on Formats

Short Answer * _is a choice for~ Review on Formats
Restricted Response * is a choice for*_ Review on Formats

Figure 6. Items of Lists

118

Extended Response ~_is a choice for~_ Review on Formats

% 4. Table of Specification
hkhkhhkhhhhkhhhhkhkkhkhhhhhhkkkhkkkhhhk

Content Validity ~_is a choice for”_ Review Concept
Test Types ~_is a choice for”_ Review Concept

Content Validity ~_is a choice for~_ Validity
Criterion-Related Validity 2 _is a choice for~_ Validity
Construct Validity ~_is a choice for~_ Validity

Relation With Other Concepts ~_is a choice for~_ Validity

Stability ~_is a choice for”_ Reliability

Equlvalence 4 is a choice forA Reliability

Internal Consistency ~_is a choice for~_ Reliability
Relation With Other Concepts ~_is a choice for*_ Reliability

Easy to Administrate ~_is a choice for~_ Usability
Time for Administration~ is a choice for~ Usability
Easy to Score ~_is a choice for~_ Usablllty

Easy to Interpretation # _is a choice for~» Usability
Equivalent Forms ~_is a choice for* Usablllty

Cost of %esting *_is a choice for*_ Usability

Placement Test ~_is a choice for”_ Test Types
Formative Test ~_is a choice for”_ Test Types
Summative Test ~_is a choice for”_ Test Types
Diagnostic Test ~_is a choice for*_ Test Types

is a choice for~
~_is a choice for~_

Validity ~_is a choice for”_ Topics
Feliability ~_is a choice for~_ Topics
Usability ~_is a choice for~_ Topics
Test Types ~_is a choice for~_Topics

~_is a choice for*_

~_is a choice for~_

~_is a choice for~_

~_is a choice for~_

~_is a choice for~_

~_is a choice for~_
~ZrZ

Figure 6. Items of Lists

119

% Purpose Khkhkkkkhkhkhkkkkkhhkkkhkhhkhkkhkhkhhkhkhhkhhhkkhhkkhkk
~A_msg”~_ 400, {

Why Construct A Test Specification
A test, no matter how extensive, is almost always a sample
of the many possible test items that could be included. That
means that our limited samples must be selecte in such a way
that they provide as representative a smaple as possible in
each of the various areas for which the test is being
developed.
pur/400)

% Procedure khkkhkhkhkhhkhkhkhkhkhkhkhkhhkhkkhkkkhkhkhkkkhkhhkhkkhh ki
A_msg”_ 40040, ({ How to Build A Test Specification
A test specification is in the form of a table.
Building the table of test specification involves:
1. obtaining the list of instructional objectives
2. outlining course content
3. preparing a matrix specifying the nature of

the desired test sample
pPro/40040)

~ msg~_ 40001, {

The test specification is used a tool to obtain

a representative sample which include the objectives
with the greatest importance and reflect the purpose
of the test. It is the blue print of the test design.
in/40001)

% Intention
A~ _msg”_ 4tablel, ({
4tablel
What is Table of Test Specification
The table of specification is set up as
a general evaluation plan. It is a blueprint
of a test which indicates the relative
emphasis given to each aspect of evaluation.

}

~_msg”_ 4tablez2, (
4table2

Content Validity
The content of a course or curriculum may be
broadly defined to include both subject matter
content and performance objectives.

)

Figure 7. Canned Messages

120

~_msg”_ 4table3,
4table3

Content validity
The content area is concerned with the topics
to be learned, and the performance objectives
are concened with types of performance learners
testees are expected to demonstrated
(e.g., knows, comprehends, applies).

}

~_msg”_ 4tableq, ({
4table4

Content Vvalidity
Both of these aspects are of concern in determining
content validity. We would like to any test that
we construct, or select, to provide resutls that that
are representative of both the content areas and the
objectives we wish to measure.

)

A_msg”_ 4tableS5 , {

table5

Table of Test Specification with Content validity
Table of Specification is a device which is used
to obtain a representative sample of testees!'
performance in each of the areas to be measured,
so we say the table of specification is a device
to ensure content validity in test design.

)

~_msg”_ 4table6, {

tableé6

Table of Test Specification with Content Validity

The table indicates the sample of learning tasks to be
measured and the closer the test items correspond to
the specific sample, the greater the likelihood of
having satisfactory content validity.

)

% Procedure
~_msg”_ 40001 , ({
40001
How to Build A Test Specification
It is a two-way chart which relates the performance
objectives to the tested content area.

}

Figure 7. Canned Messages

121

A_msg~_ 40002, {
40002

How to Build A Test Specification
It is a matter of analyzing the content and
tasks included in the evaluation instrument
and the domain of outcomes to be measured and
judging the degree of correspondence between
them. }

~_msg”_ 40017,
400017
What Do You Need Before Build A Test Specification
To construct a table of specification, we need
1. a list of instruct.ional objectives
2. the course of content.

}

A_msg~_ 40003 , {
40003

How to Build A Test Specification
The performance level of the general objectives
are listed across the top of the table, the major
areas of content down the left side.

}
A_msg*_ 40004 , {

How to Build A Test Specification
The value of each cell indicate what proportion of
the test items should be devoted to each objective
and each area of content, which reflect the
emphysis and intention of the test designer.
}

[+

% Instruction
khkhXhkhkkkhkhhkkhkhkhhkhkkhhkkkkhkhkhhkkhkhkhkhkkkhkhhkkkkkkk

A msgr_ 40023, {

23 Syn

By developing a test plan using the test specification the
content validity is ensured. However, content validity is
only

one of several factors which effects the quality of a test
instrument.

)

Figure 7. Canned Messages

122

Appendix 3

Formative Evaluation Questionnaires

Evaluation Questions to Domain Experts

Problem Solving Aspect

1. The system deals with non-trivial problems.
2. It reduces difficulties in the design task.

3. By using the system an instructor
will develop a test of good quality.

4. Are there any important issues missing?
5. Are there any important features missing?
6. What are the best features of the system?

7. Where should it be modified ?

External Performance

8. It gives the user easy access to alternatives.
9. It asks questions in a consistent manner.

10. The advice is clear.

11. The advice is relevant and adequate.

12. The justification states underlying reasoning.
13. The justification is adequate.

14. It is easy to use as software.

15. The screen display is clear.

16. It reduces time of the administrative tasks.

Knowledge Representation Aspect
17. It depicts the expertise properly.

18. The objects, variables & their values are
complete

19. The structure of representation is similar to your
perception of the domain

124

Disagree 1 2 3 4 § Agree

Notatall 1 2 3 4 5 Significantly

Disagree 1 2 3 4 5 Agree

Not at all
Not at all
Not at all
Not at all
Not at all
Not at all
Not at all

Not at all

1 2 3 4 5 Significantly
12345 Very much
12345 Very
12345 Very

1 2345 Verymuch
12345 Very
12345 Very
12345 Very

Unlikely 1 2 3 4 5 Very likely

Not at all

12345 Verymuch

Disagree 1 2 3 4 5 Agree

Not at all

12345 Verymuch

Evaluation Questions to Computer Experts

Problem Solving Aspect

1. The system deals with non-trivial problems.
2. What are the best features of the system?

3. Where should it be modified ?

4. This content appears appropriate for
using an expert system.

Extemnal Performance

5. It outputs results in a reasonable amount of time.

6. It asks questions in a consistent manner.
7. The advice is clear.
8. It is easy to use as software.

9. The screen display is clear.

Knowl] Representation A

10. The structure of representation is coherent.

11. The structure of representation is adequate to retrieve,

store and analyze data easily.

12. The design of the inference engine is adequate for

efficient inference.

125

Disagree 1 2 3 4 5 Agree

Notatall 1 2 3 4 5 Very

Disagree 1 2 3 4 5 Agree
Notatall 1 2 3 4 5 Very
Notatall 1 2 3 4 5 Very
Notatall 1 2 3 4 5 Very
Notatall 1 2 3 4 5 Very

Notatall 1 2 3 4 5 Very
Notatall 1 2 3 4 5 Very

Notatall 1 2 3 4 5 Very

Evaluation Questions to End Users

Problem Solving Aspec

1. The system deals with non-trivial problems.
2. It reduces difficulties in the design task.

3. What are the best features of the system?

4, Where should it be modified?

5. I would like such a tool to assist me in my
test design work.

External Performance

6. It reduces design time of the administritive
tasks.

7. It gives me easy access to alternatives.
8. It asks questions in a consistent manner.

9. The advice is meaningful to me.

10. It improves my understanding of test design.

11. The assistance is tailored to my needs.
12. 1 like the structure of the assistance.
13. It is easy to use as software.

14. The screen display is clear.

126

Disagree 1 2 3 4 5 Agree

Notatall 1 2 3 4 5 Significantly

Notatall 1 2 3 4 5 Very much

Unlikely 1 2 3 4 5 Very likely

Notatall 1 2 3 4 5 Significantly

Not at all
Not at all
Not at all
Not at all
Not at all
Not at all

Not at all

1
1
1

2345 Very

345 Very

3 4 5 Significantly
3 4 5 Very much
3 45 Very much
345 Very

1SS R (R "N " I S

345 Very

Appendix 4

Evaluation Results

Evaluation Questions to Domain Expert 1

Problem Solving Aspect

1. The system deals with non-trivial problems.

2. It reduces difficulties in the design task .

3. By using the system an instructor will develop a

test of good quality.
4. Are there any important issues missing?
5. Are there any important features missing?
6. What are the best features of the system?

7. Where should it be modified ?

External Performance

8. It gives the user easy access to alternatives.
9. It asks questions in a consistent manner.
10. The advice is clear.

11. The advice is relevant and adequate.

12. The justification states underlying reasoning.

13. The justification is adequate.
14, It is easy to use as software.
15. The screen display is clear.

16. It reduces time of the administrative tasks.

Knowledge Representation Aspect

17. It depicts the expertise properly.

18. The objects, variables & their values are
complete

19. The structure of representation is similar to
your perception of the domain.

128

Disagree 1 2 3 4 § Agree
Notatall 1 2 3 4 5 Significantly
Disagree 1 2 3 4 § Agree

decision orientation requirement on
testing

step by step guidance

unclear yet

yes, not directive enough yet
sometimes

is relevant, not adequate yet
Notatall 1 2 3 4 5 Very much
Poorly 1 2 3 4 5 Very well
cannot determine yet

Notatall 12 3 4 5 Very

cannot determine yet

Notatall 12 3 4 5 Verymuch

earlier part - no; later part yes

Notatall 1 2 3.4 5 Very much

Evaluation Questions to Domain Expert 2

Problem Solving Aspect
1. The system deals with non-trivial problems.
2. It reduces difficulties in the design task .

3. By using the system an instructor will develop
a test of good quality.

4. Are there any important issues missing?
5. Are there any important features missing?
6. What are the best features of the system?

7. Where should it be modified ?

External Performance

8. It gives the user easy access to alternatives.
9. It asks questions in a consistent manner.

10. The advice is clear.

11. The advice is relevant and adequate.

12. The justification states underlying reasoning.
13. The justification is adequate.

14. It is easy to use as software.

15. The screen display is clear.

16. It reduces time of the administrative tasks.

Knowledge Representation Aspect

17. Tt depicts the expertise properly.

18. The objects, variables & their values are
complete

19 The structure of representation is similar to
your perception of the domain.

129

Disagree 1 2 3 4 3 Agree
Notatall 1 2 3 4 5 Significantly
Disagree 1 2 3 4 5 Agree

a dynamic map to show where you
are & doing what.

test data processing and reporting

Notatall 1 2 3 4 5 Significantly
Notatall 1 2 3 4 5 Very much
Notatall 1 2 3 4 5 Very much
Notatall 1 2 3 4 5 Very much
Notatall 1 2 3 4 5 Very well
Poorly 12 3 45 Very well
Notatall 1 2 3 4 5 Very well
Notatall 1 2.3 4 5 Very

cannot determine yet

Notatall 12 3 4 5 Very much
Notatall 12 3 4 5 Very much

Notatall 1 2 3 4 5 Very much

Evaluation Questions to Computer Expert 1

Problem Solving Aspect

1. The system deals with non-trivial problems.

2. What are the best features of the system?

3. Where should it be modified ?

4. This content appears appropriate for
using an expert system.

External Performance

5. It outputs results in a reasonable amount
of time.

6. It asks questions in a consistent manner.
7. The advice is clear.
8. It is easy to use as software.

9. The screen display is clear.

nowl Representation
10. The structure of representation is coherent.

11. The structure of representation is adequate
to retrieve, store and analyze data easily.

12. The design of the inference engine is
adequate for efficient inference.

130

Disagree 1 2 3 4 5 Agree

user interface and explanations

Notatall 1 2 3 4 5 Very

Disagree 1 2 3 4 5 Agree

Notaiall 1 2 3 45 Very
Notatall 1 2 3 4 5 Very
It is too early to judge.

Notatall 1 2 3 4 5 Very

It is too early to judge.

Notatall 1 2 3 4 5 Very

Notatall 1 2 3 45 Very

Evaluation Questions to Computer Expert 2

Prot'em Solving Aspect

1. The system deals with non-trivial problems.

2. What are the best features of the system?
3. Where should it be modified ?

4. This content appears appropriate for
using an expert system.

External Performance

5. It outputs results in a reasonable amount
of time

6. It asks questions in a consistent manner.
7. The advice is clear.
8. It is easy to use as software.

9. The screen display is clear.

nowledge Representation A
10. The structure of representation is coherent.

1. The structure of representation is adequate
to retrieve, store and analyze data easily.

12 The derign of the inference engine is
adequate for efficient inference.

131

Disagree 1 2 3 4 5 Agree

Notatall ' 2 345 Very

Disagree 1 2 3 4 5 Agree

Notatall 1 2 3 45 Very
Notatall 1 2 3 4 5 Very
Notatall 1 2 3 4 5 Very

Notatall 1 2 3 45 Very

Netatall 1 2 3 4 5 Very
Notatall 1 2 3 45 Very

did not know

Evaluation Questions to End User 1

Problem Solving Aspect

1. The system deals with non-trivial problems.
2. It reduces difficulties in the design task.

3. What are the best features of the system?

4. Where should it be modified?

5. I would like such a tool to assist me in my
test design work.

External Performance

6. It reduces design time of the administritive
tasks.

7. It gives me easy access to alternatives.
8. It asks questions in a consistent manner.

9. The advice is meaningful to me.

10. It improves my understanding of test design.

11. The assistance is tailored to my needs.
12. 1 like the structure of the assistance.
13. It is easy to use as software.

14. The screen display is clear.

132

Disagree 1 2 3 4 § Agree

Notatall 1 2 3 4 § Significantly

Notatall 1 2 3 4 § Very much

Unlikely 1 2 3 4.5 Very likely

Not at all
Not at all
Not at all
Not at all
Not at all
Not at all
Not at all

Not at all

1 2 3 43§ Significantly
12345 Very
12343 Very

1 2 3 43 Significantly
12345 Verymuch
12 3 43 Verymuch
12345 Very

12 345 Very

Evaluation Questions to End User 2

Problem Solving Aspect

1. The system deals with non-trivial problems.
2. It reduces difficulties in the design task.

3. What are the best features of the system?

4. Where should it be modified?

5.1 would like such a tool to assist me in my
test design work.

External Performance

6. It reduces design time of the administritive
tasks.

7. It gives me easy access to alternatives.
8. It asks questions in a consistent manner.

9. The advice is meaningful to me.

10. It improves my understanding of test design.

11. The assistance is tailored to my needs.
12.1 like the structure of the assistance.
13. It is easy to use as software.

14. The screen display is clear.

133

Disagree 1 2 3 4 5 Agree

Notatall 1 2 3 4 § Significantly

Not at all

1234 5 Very much

Unlikely 1 2 3 4 § Very likely

Not at all
Not at all
Not at all
Not at all
Not at all
Not at all
Not at all

Not at all

12 3 4 5 Significantly
12345 Very
12345 Very
12 3 4 5 Significantly

—

23 4 5 Very much
1234 5 Very much
1234 5 Very
12345 Very

Evaluation Questions to End User 3

Problem Solving Aspect

1. The system deals with non-trivial problems.
2. Itreduces difficulties in the design task.

3. What are the best features of the system?

4. Where should it be modified?

5. Iwould like such a tool to assist me in my
test design work.

External Performance

6. It reduces design time of the administritive
tasks.

7. 1t gives me easy access to alternatives.
8. It asks questions in a consistent manner.

9. The advice is meaningful to me.

10. It improves my understanding of test design.

11. The assistance is tailored to my needs.
12,1 like the structure of the assistance.
13.1tis easy to use as software.

14. The screen display is clear.

134

Disagree 1 2 3 4 § Agree

Notatall 1 2 3 4 § Significantly

Notatall 1 23 4 § Very much

Unlikely 1 2 3 4 5 Very likely

Notatall 1 2 3 4 § Significantly

Not at all
Not at all
Not at all
Not at all
Not at all
Not at all

Not at all

12345 Very

123
123
123
123
123
123

4 § Very

4 5 Significantly
4 5 Very much
4 5 Very much
4 5 Very
4 5 Very

Evaluation Questions to End User 4

lving A
1. The system deals with non-trivial problems.
2. Itreduces difficulties in the design task.
3. What are the best features of the system?
4. Where should it be modified?

5. I would like such a tool to assist me in my
test design work.

Extemal Performance

6. Itreduces design time of the administritive
tasks.

7. It gives me easy access to alternatives.
8. It asks questions in a consistent manner.

9. The advice is meaningful to me.

10. It improves my understanding of test design.

11. The assistance is tailored to my needs.
12. 1 like the structure of the assistance.
13. Itis easy to use as software,

14. The screen display s clear.

135

Disagree 1 2 34 § Agree
Notatall 1 2 3 4 5 Significantly

Notatall 1 2 34 5 Verymuch

Unlikely 1 2 3 4 5 Verylikely
Notatall 1 2 3 4 5 Significantly
Notatall 1 2 34 5 Very
Notatall 12 3 45 Very
Notatall 1 2 34 5 Significantly
Notatall 1 2 3 4 5 Verymuch
Notatall 1 2 34 5 Verymuch
Notatall 1 2 34 5 Very
Notatall 1 2 345 Very

Appendix 5

User's Manual

User's Manual

At present stage, TAA has not been wrapped up as a stand alone application,
therefore, it is to be run in its programming mode. This manual explains how to run the
six separated knowledge bases.

Figure 1 of this appendix is the algorithm for starting system operation.The
messages in the user's mannual are detailed explainations of the tasks indicated in Figure
1, and the number of the following messages corresponding to the task number in the
algorithm in Figure 1.

Figure 2 of this appendix is a list of files designated to each of the six knowledge
bases. You may use the list to check whether or not all of the files of a particular
knowledge base are loaded into that knowledge base before you can run the knowledge
base.

In the following messages, Bold characters are those which should be typed in or
pressed by you during an operation, and underlined ones are the Intelligent Compiler
operation messages or the operation commands of Intelligent Cornpiler displayed in the
pull dow menus.

If you want to know more about the operation of Intelligent Compliler, please
consult its user's manaual in Computer Lab of Education Department , Concordia
University.

1. Before run a knowledge base (application) make sure that the Intelligent Compiler
version 2.1 has been properly instailed on an IBM PC of = or > one megabyte memory and
with a monochrome monitor. If you want to see the coding of the program, then you need a
color monitor in order to tell the predicates from the other components of the program.

2.Please refer to the manual of Intelligent Compiler for the procedures on how to
install the application.

3. You can enter a knowledge base by typing ICE (representing Intelligent
Compiler Editor) at DOS level. Each of the knowledge bases is supposed to be named

137

uniquely and Intelligent Compiler will tell you the name of current knowledge base
already loaded for operation.

A knowledge base cannot be run unless the knowledge base is loaded. and please
make sure that the current knowledge base loaded is the one you want to run.

4. If the name under the current knowledge base is not the knowledge base you
want, press F10 key on the key board to go to the editing menu on the top of your
screen. Then pull down Quit menu and use an appropriate arrow key to point to New
knowledge base and press return (<--' or ret) to tell Intelligent Compiler that you
want to load a knowledge base. After that, Intelligent Compiler will ask you to type in the
name of the knowledge base you want to run under the title of Current Knowledge Base.

After you have tried to load a knowledge base, a message of Knowledge base
does not exist indicates either a typing mistake(s) is in the knowledge base name that you
just typed or no such a knowledge base has been established. If there is a typing
mistake(s) in the knowledge base name, you may retype the correct one; otherwise, go to
the step 4 to ‘establish’ a new knowledge base.

5. If a knowledge base is run for the first time on the machine you are using, you
need to 'establish’ that knowledge base there. To establish a knowledge you can type in
any thing as the name of the new knowledge base and press return (<--' or ret) on
your key board. Also, write down and remember that name for later operation.

6. To run a knowledge base you must have all of its files loaded, therefore, after
you have set up a knowledge base, you need to check whether or not all the files of the
knowledge base are loaded into the knowledge base.

Please refer to Figure 2 of this appendix to see the names of the files designated
to each knowledge base and press F2 on your key board to see which file(s) are already
loaded into the knowledge basc.

To load a file into the knowledge, please pull down the Eilg menu and use an
appropriate arrow key to point to Qpen File and press return (<--'orret). Typeina

138

file name of the knowledge base files when Intelligent Cornpiler asks you the File Name.
Repeat the above mentioned procedure until all of the files have been loaded into the
knowledge base. You need load the files into the knowledge base only once instead of
every time you run that knowledge base.

7. After you have loaded all of the files needed into a knowledge base, you should
exit the Edit mode and go to the Run mode. To go to the Run mode, you press F10 key
to go to the editing menu. Then pull down the Compiler in the menu, use an appropriate
arrow key to point to either Compile without saving or to Save and Compile and press
return (<--' or ret). During the transaction, Intelligent Compiler will automatically load
all the files into the compiling mode.

8. After the loading is completed, pull down the Compile menu on the top of the
screen, use an appropriate arrow key to point to Run and press return (<--' or ret).

9. If you want to run another knowledge base, you should go back to the Edit
mode to load the knowledge base into the operation. To go back to the Edit mode, use an
appropriate arrow key to point to Editor and press return (<--' orret).

10. If you want to run the knowledge base again, stay in the Run mode. Pull down
the Run menu, use an appropriate arrow key to point to Rerun and press return (<--' or
ret).

* To exit the operation in the Run mode, pull down the Quit menu, use an
appropriate arrow key to point to Done, exit and press return (<--' or ret).

* To exit the operation in the Edit mode, you press F10 key on the key board to

go to the menu, then pull down the Quit menu, use an appropriate arrow key to point to

Quit without saving and press return (<--' or ret).

139

Is Intelligence
Compiler installzd

install Intelligent
Compiler

go to the Edit mode to
see current knowledge base

Is this the first time
you are going to run
he knowledge base

establish a knowledge
base for the application

.

load all of the files into
the knowledge base

go to the Run mode
torun the application

8. ¥
Crun the application)“

yes Do you want to
run another

knowledge base

Do you want to
run the knowledge
base again

yes

Figure 1. Algorithm for Starting System Operation

140

KB | TOP BWD BWD FBS FRM LST
1 1 P WHOLE 1 TEST1
[P2 L o)
COACH
KB | TOP BWD BWD FBS FRM LST
2 2 OBJ CONCEPT| 2 TEST2 CHOICE
SPECIFIC WHOLE L 0 SET
SET | COACH
VERB
22
T 222
KB | TOP BWD BWD FBS FRM LST
3 333 FORMAT WHOLE 3 o SET
TIME L 01
SET TEST3
B COACH
KB | TOP BWD BWD FBS FRM LST
4 4 LLO WHOLE L COACH4 SET
SET TEST4
4 0
- 44 03
KB | TOP " BWD BWD FBS FRM LST
Newd | 4 LL WHOLE 4 TEST4 SET
- LL1 L 0
T LL2 44 01
LL3 SET | COACH4
T LL4
TOPIC
KB | TOP BWD BWD FBS FRM LST
5 5 A OBJ 5 TEST5 SET
i Al TIME L 0
- i A2 WHOLE | SET 5
o COACH5
KB | TOP BWD BWD FBS FRM LST
6 | 6 w WHOLE 6 0
e wi 06
- w2 COACHS6
w3 TEST6
1 W4
N w5
| wé
- KB*~ = |knowledge base FBS = fact base file
__TOP| = top file FRM = frame file
~BWD| = ibackward chaining rule file LST = list file
L I
Figure 2. Files in Knowledge Bases

141

Appendix 6

Objects and Their Values

Objects and Their Values

TAA uses frames and lists to record factual knowledge for its inference and
operation. Most of the objects are represented in a form of frames and other are
represented in a form of list; therefor, in the following description, an object is equivalent
to a list, and the values of an object in a frame are equivalent to the items in a particular
list.

In the next six pages, there are six matrixes exhibiting the objects and their values
used in TAA's inference. The objects and their values are displayed according to a
input/out classification which does not reveal how the objects and their values interact
with each other during the inference.

The six matrixes correspond to the six knowledge bases respectively. On the top
of each matrixes is the description of the major task of a knowledge base. For instance,
on the top of the first matrix, "1. Get Information" means the matrix describes objects
and their values of the first knowledge base for getting information before developing a
test. The number and title of each matrix are consistent with the figures in the appendix 1
(Task Map of Achievement Test Design Process)

Iterns following User input of the column A represent the information which
will be put into TAA by the user.

Items following Internal input of the column A represent the information that
the machine will retrieve from the fact base for its inference.

ltems following Internal output of the column A represent the conclusions that
TAA draw. The conclusions will be recorded into the fact base of the system, but they
will not necessary be represented to a user upon the conclusions are formulated.

ltems following External output of the column A represent the in.ormation or

conclusions which will be represented to the user.

143

Bold Characters, such as "purpose" in the column B of "1. Get Information"
sheet, is the name of an object. The items under an object are the values that the object
takes.

An object may have a description in a bracket, for instance, in "purpose
(training)", the values under it are restricted to a training environment and "training
readiness, training evaluation, job assignment, and certify" are the four possible values
assigned to the object "purpose (training)". An objective may take "yes" or "no" as
its values. For instance, "yes" or "no" under the object of "training of user" indicatcs
whether or not a user has had training in the achievement test design. For an object may
take any value that a user puts in, such as giving a name to a test. The value of such an
object will be indicated by a question mark (?). An object may take a value of "not

defined yet" where the values of the object are not defined yet.

144

soR[BA Liol], 9 590 S¢
ve
£e
¢t
L€
ou 0¢
CELY 6¢
1893 J3aod|ndino pwnyuf g Z
I X4
poods 92
JBpormouy s2Z
uopjuajuy] ndul [euwruif p g
[X4
518 (44
yioq 9Apo[mouy [BUOISEIjoId ogendus| (WA
[enuusw " ¥'eTn uotsiatodns DUIIIB [BIDOS 02
surpsw| (semyumu) ¢ apeld ¢ P 704 pauyjop j0u UOoIBIEIUNLDE ESITETE 61l
{31008 moy oIy} 18 Uoj8ONpapayes) Jo I3qUnU| (Yaredsal) 8aIe JUIU0D BIIY JUIFUOCD vaIe JUITUOD 8t
1
510112 asousdelp 9]
FYEYES) A0 [
Juipesd juswIudisss qof vi
ou ou poads uonen[sad] uollenjeas Juiuied) tl
(b'e'g 1) sown 83A £3 - odpojmouy j9X pauijep jou S60UIPEaL JoUJBI[| seeUlpeal JUIUiel} ZL
Aduenbagy;389131d poav ceyonb suy uopjuRuy ~ (Yoaeasad) asodind] (uopgwonpa) asodand| (Bujuren) esodind | [y
| 0

PEYTTEN] 6

Juuen| jun uoPRI3SUl ou ou oul)

uoljednpa I8IN00 UL 7 534 (Y] CEXS 1 7

— Bupios 8BepAo0d| (1997) Joowwu | (VVL YItM) J8(jiurejun Z28n J6 Bufujer) 38N JO ADUBIS|EEB, ndulJasn| g

! S

' v

€

UOLIBULIOJU] 155 | Z

3

H C 3 3 a) I 8 T v

145

san[BA 119U, ¥ 5PIMO ! Ve
i £¢
[X4
L2
0¢
61
8l
i
¢ ¢ 9l
X178 J0 I3quInu M04 §9A1039[qo Jo Joquina] jndjno pwul| 6 |
vi
SISOYJUAS £t
Toen[eAd it
uoiyedI[dds [
sisA[euB ol
uotsuayaiduiod L6
aBpajmouy i é A 8
[PA3] @ousmIoaad| (38]] qI2A B UIOL] 38001D) qIOA aapoalqo agroods 2an09[qo rexouad ndut dasn] 2
9
S
v
£
§0AA[qQ MB[NULIOY g z
L
3 a o)) v

146

8008 1100], pus 512910 OM
6
;1
LE
9t
St
ve
133
. . - o 2sn oyjndino ZzE
LE
asjoj-ann ot
Juipjvw 62
Jomsue poys 8¢e
3oy adiy|aw ou ou ou Le
2euodsal pajoLsal 82 834] [9
(TET 1)U} esuodsoa popudXd| (Aust?d J0])[papnjou) 2q 03)| (Xessad asn 03) —_ |se
wN} 1833 O8I Jo 2wy 18N jyeuLlo} w3} uopyedInpe Xe$3 3833 Jo aaanosad|ndino pwnulf 2
X4
aduiod| nes FX 3
BN[BAD] 278|0ULI0) ¥4
EZCEYE) juasaad 0¢
ayBIdnull aquBIp| 61
ssaudxa; szuodnes 8ila1qoad [BaBWay B OA (00 8t
azwwadio| um|dxd) §E[RULI0) [BINBWIA18W 0] [BLNVW [eqQlaA J)B[UBL) 85 UAS Li
adnpod EZCIEY sydeidpuresdeip ja1diatut uonen[ead 91
udsap| ynew s3UTYy oMy usamiaq dnysUOGE[AL Ajguapl uofeoijdde St
und] Ajquapi TonEn}is mau 8 UL 8poyjawW 3y} asn sgifaue vl
(gg Naded jj aum] Jaacostp 3 8dI{eUonB[ad 199]j3-98NB3 0141701 Golsuayaldwoo [enuusw L
{Awssa uw jo)| awodurcd) 133[38|(3A1329[qo) saunaoaid/epoqjall AjGen STpamotn HE 2 e Z _ ETToRTT FA
qIas] Q13a qQdaa] oypdads PA13199[q0 [edausy| [9A9] souwmIoIad spwaB| oaa:sas jo -oul 733008 Moy, ndu eudaut| [1
o 1 oL
ou 6
83k 1 ou ou 8
(wayy Sugazed ajqissod ¥ 10j) THAKT CELY z
sasuodsal p sasiwaad snouaSowoy (ued §229527)(papnau| 3q 03)' 9
Jo 1aguuna Jaa[I{ns vey 1 £es83 NjIM Aussa jndutdewn] ¢
t ! '
' . ; ; €
w I JOWI0] 3951 960UD) €, =
_ P b
r | 1 | H 5 | 3 T 3 [a 3] 8] v 1

147

Son[ey 194], pue salqQ

oy

6€

8¢

3>

- 4

9¢t

St

ve

1%

(4

‘€

0¢

. .. |s6¢

iesnoyindino| g¢

LT

dnysoudurp

9

2

dABWUINS

§¢

¢

(@dusmaoizad Jo [2A3] YyoB2

aAljeULLIO)

[2
(182 B JO)

[
(1823 8 jo)

(159} B Jo)

{174 91do} {089 18 YON[UA 21008)

Juswaosid

M0j

BAd[JMIYIP

efe1on00

SOT[BA [[92

1597 Jo ad4)

ndino [swinul

SISOUIUAS

uonen{eAd

610119 asouZe(p

uonedijdde

AU

LYTETES)

sisA[eUE

Buipeid

Juawudisse qol

uorsuayasdwod

oa

1IN aoldnsul

uolen[Bad

uoljenjeas Butureny

24pajmouy

§3A

9BIN0O U1}

SSaUIpBal 19UI83|

ssoulpeal Juiurey

[2A3] 3ouBmLIOLI>d

c8yonb sey

ofBIoA0D

osodand

asodmd

Tyndut Wizl

001

001

4

¢

(aduswuiojtod

JO S[2A3[JO)

(551403 jo)

Te109qNs

TeI0qns

Jndui 1asn

UoEdIIdadg 189], PPNIIBUCY

QlrinN|™einoi~olo/olmicio|e
FNnvmwhmeFFFPPFFFFNNNN“

a

148

Son|BA JBL[], pud 2]AQQ

. . * . «}§3) 3Y) Uj pN8a3) 8aa323[qo] 1asn o7 Indyno
E-BEVETINS
dEc T Tt T Ty Uy
...vunqNH.— uo.ascgm ...v-nqNﬂﬁ 03 .V-M.Ndﬂ eee -v ﬂmw -N - .o.:l-v m -N q— v m N ~
POUMIIPIP [199) SI|qE)| JIOW [qO[AW W)} INTVA A0S "BIN |833 Jo sman} *Jqo jo (“ou) wa}| Indino puinul
8183y uis
Uolen[BAd ~'Are[nqesoA mouy -
uonjuwijdde Swajqold [EaljEWa v aA (08
[T H /)
UoiBUaYaIdLoo %82 e 1) Ui ou N UoQINIsuL ¢ '§R[NULIO) [BI1jBWaY BT,
G ~adpa[mouYpAIOlQO Qowd)| smunu 1ad] (qo u¥)| { -0¢) UM [T 551003 Wim| (33AR23M0)| 07 [SUSEW [6qieA dje(suen]
TR G YETIE g STy T E. § ou wANj| Infea onoonwn:« Bupsaj| 3593 joamupy| isapaad afviaand %10} $2AP303[qo e33ual| ndul euwinui
]
ou”
1 [E) 84 B3R
M T -fqo ppel ‘[qo fajap uopedyoads ay) aBuvyo ;\leaﬂ: %8

8uoryisa] apux] ¢

149

sanje J1aY] pue sRIQO

jemIo] Aq sWa)| 1893

Jasn 03 (ndinc

EFCINEED

SUIaN! JO Joquinu

Wi} Wanl

18U 10)

[@A3] ousuLIopOd

[eloudd

POsN QIoA

...* -m .N ~.H

Jidoy

Aussd jo a3ud

353) o) JO [$103 W3]

aN59[q0

seapoalqo

ndut [suaul

¢

suia7] 159}

ndug Josn

SWa 169, 91N 9

e[| || 0|~ ||| 2

a

150

