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Abstract

A Multi-Level Nearest-Neighbour Aigorithm for Predicting Protein
Secondary Structure

Iustin Lazar

A thesis on machine learning and prediction of protein secondary structure.

We develop a variation of the nearest-neighbour algoritlLra that adopts a multi-
level strategy together with a variable window size. The algorithm is applied to the
problem of predicting the secondary structure of a protein given its primary structure:
that is, given a sequence of amino-acids, output a sequence of secondary structures
(helix, sheet, or coil).

A new training set is developed that is orthogonal, and covers the known classes
of proteins.

Overall accuracy is 65.0%, with 68.7% accuracy for helices, 66.3% accuracy for
sheets, and 61.4% for coils. This compares well with existing methods, in that the
best results for a single nearest-neighbour classifier is 65.1% by Salzberg and Cost in
1992. Our accuracy rate for sheets is better than known methods, but our accuracy

rate for coils is much lower than existing methods.
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Chapter 1. INTRODUCTION

1.1. Problem Statement

The rapid develop.aent of powerful biochemical
concepts and techniques in recent vyears has enabled
investigators to tackle some of the most challenging and
fundamental prcblems in biocology and medicine. For exemple,
it is now known that common molecular patterns and
principles underlie the diverse expressions of life. These
patterns of chemical transformations in biological systems
are determined by proteins. That 1is why the study of

structure and function of proteins are so important.

Proteins are a unique <lass of macromolecules being
able to specifically recognize and interact with highly
diverse molecules; they are built of amino acids, playing
various and crucial roles in wvirtually all Dbiological
processes ([Str82]).

Amino acids are the basic structural units of proteins.

Each protein is built of a unique, precisely defined amino

acid sequence; these sequences are genetically determined.
An a-amino acid consists of an amino group, a hydrogen atom,

and a distinctive R group bonded to a carbon atom, which 1is



called the o-carbon becuse it is adjacent to the carboxyl

(acidic) group. The R group is referred to as a side chain.

There are twenty amino acids (or twenty two,
considering the variations in two of them) varying in size,
shape, charge, hydrogen-bonding capacity and chemical
reactivity. All proteins in all species, from bacteria to
humans, are constructed from the same set of twenty amino
acids ([Str8s]). The remarkable range of functions
performed by proteins is the result of the diversity and

versatility of this twenty kinds of building blocks.

Proteins are made of a sequence of amino acids, which
interact due to their positions and chemical and physical
properties. This sequence uniquely determines the three-
dimensional structure of the proteins which is, in 1ts turn,

in a one-to-one relationship with the protein functionality.

Secondary structure refers to the spatial arrangement
of amino acid residues that are near one another 1in the
linear sequence. Some of these relations are of a regular

kind, giving rise to a periodic structure. In such cases,

the chain o¢f amino acids folds into regular repeating

structures called a-helix, B-sheet, PB-turn and coil.



Tertiary structure refers to the spatial arrangement of
amino acid residues that are far apart in the linear
sequence (see Fig.l.l). Proteins have well defined three
dimensional structures, but their computation is extremely
expensive 1in terms of time and resources. Function arises
from conformation, which is the three-dimensional
arrangement of atoms.

The problem 1is to determine the functicnality of a
protein, starting from its sequence of amino acids. In order
to determine its functionality, we must know the three-
dimensiocnal structure of the protein. Hence, the problem can
be re-formulated: knowing the sequence of amino acids of a
protein, determine its three—-dimensional structure (also
called tertiary structure) - see Fig.1.1l.

The above statement constitutes one of the fundamental
problems that are still incompletely solved: classical
methods, as spectroscopy and crystallography are very
expensive and provide a low productivity, in the context of
an exploding number of known protein sequences ( produced by
large scale sequencing projects), in contrast to the much

slower increase in the number of known protein structures.



Primary structure (sequence of amino acids)

Tertiary
Structure

Secondary
Structure

Fig.1l.1l. Problem definition

A key in finding the "hidden" relation between the
primary and tertiary structure of a ©protein is the
prediction of its secondary structure. The latter can be
defined as being the spatial arrangement of amino acid

residues that are near one another in the linear sequence.

Predicting the secondary structure of proteins is an
important and necessary stage in predicting and
understanding the tertiary structure of proteins. Secondary
structure information can be incorporated into simulations

that attempt to fold proteins. This information can also be



used to enhance the accuracy of programs designed to

identify proteins that are homologous to a gquery sequence.

This is the subject of our thesis: an attempt to use an
artificial intelligence method in order to predict the
secondary structure of a protein. The method we chose is the

nearest neighbeor algorithm.

The nearest neighbor method was already used by several
authors, either by 1itself or in combination with other
methods (in nhybrid systems) . Each time a peculiar
implementation was adopted, and some improvements
/specialization were considered. We adopted our own approach

both in implementation details and at a strategic level.

1.2. Overview of the Work

The protein secondary structure prediction is a typiceal
classification problem: based on the sequence of amino acids
of a protein, one tries to predict the secondary structure
(its class). A given data set of proteins with known
secondary structures is 'learned' by an algorithm. Then, an
unknown protein is analysed by the same algorithm and,

comparing it with the learned structures, similarities are



searched. The structure of the new protein 1is predicted,

based on the similarities found with the learned patterns.

We chose the nearest-neighbor algorithm. The
nearest-neighbor classifiers can be used to predict the

secondary structure of proteins, with good results, compared

to the other methods. The nearest-neighbor rule states that
a test instance is classified according to the
classifications of "nearby" training examples from a

database of known secondary structures. An instance-based
algorithm stores a series of training instances in its
memory and uses a distance metric to compare new instances
to those stored. New instances are classified according to

the closest exemplar from memory.

There are several differences between the wvaricus

nearest-neighbor algorithms used in different works and our

approach. We started using a pure nearest—-neighbor
algorithm, cleaned from experimentally determined
coefficients (as we encountered in some articles ([Cos93])).

Instead of a fixed window size, we adopted an
extensible one, which we considered to be a natural way of
allowing the algorithm to extend by itself the width of a

found secondary structure. In our approach, more learned



secondary structures may simultaneously contribute to
determine a new secondary structure in a tested protein.

We also attempt to predict the group of classes of the
protein, using statistical information (the percentage of
amino acids having preferences for certain secondary
structures) .

These are the two main differences between cur version

of the method and the others used by different authors.

We used two main groups of classes of proteins for our
tests: o proteins and B proteins. Within each group, almost

each class was represented by 2 or 3 proteins. The latter
have different functionality, such that the data
orthogonality requirement was guaranteed: there are no
similarities between the proteins. One protein at a time was
used as test protein and all the others were used as
training set. The fact that there are nc similarities
between proteins ensures that the quality of the result is
not influenced by high similarities of the test and training

set.



1.3. Summary of the State of the Art

Best results were ©obtained with hybrid systems,
especially by those using multiple sequence alignments -

[Sal95], [RosS3] - see Tab.l1.3. Different accuracy rates

were reached for each secondary structure type, a-helix

being predicted better than -sheet. The B-sheets are mcre
difficult to discover, and improving this factor is one of
the goals of any approach. Not all authors specify the -

sheet accuracy.

Salamov & Solovyev [Sal®5] reached 72.22 of accuracy
with a system combining multiple sequence alignment and a
nearest-neighbor algorithm, using a majority vote. This 1is
the best known result. Rost & Sander ({Ros93]) used a system
combining multiple sequence alignments and artificial neureal

networks (ANN), obtaining an accuracy of 70.8%; they reached

65.4% for PB-sheet.

Cost & Salzberg [Cos92], [Cos93] achieved 71.0:
accuracy with a nearest-neighbor algorithm (N-N) using a
weighting scheme. This is the best single classifier. But
this result was obtained on a particular data set, while on

different data sets, the overall accuracy was 65.1% [Ros93].

Zhang ([Zha%2]) reached 66.4% by combining neural

networks with nearest-neighbor (called memory-based



reasoning) and statistical methods. Yi & Lander [Yi93]
obtained 68: of accuracy with a hybrid system made of six
nearest-neighbor modules and an artificial neural network as
combiner. Maclin [Mac93] reached on overall accuracy of
63.6- using multi-layered network approach, while the

Ccmbine program ([Bio88]) reached 65.8 .

Tab.1.3. Summary of the State of the Art

Author N-N ANN | Stati Sequence | Induc 2 to | iB
stics | Alignment tion
[Sal85] Yes Yes 72.2
[CosS2] Yes 71.0
65.1
[Ros93] Yes Yes 70.8 65
[Yige3)] Yes Yes cc.0
[Zhat2] Yes Yes Yes 66.4
[BioBgd] Yes 65.8 45
[Mac93] Yes 63.6
[KinS80] Yes 60.0




1.4. Summary of Results

The average result accuracy of the tests on a-proteins

was 68.7 for o-helix and 65.4: for coil, using a set of 14

proteins from 5 classes.
The result accuracy of the tests on B-proteins was
66.3° for B-sheet and 59.0% for coil.

The overall per-residue accuracy 1is 65%. These results
are an improvement for prediction of B-sheets and are

competitive with overall accuracy results obtained by more
sophisticated systems, it being known that the best results

were obtained by authors using hybrid systems.

1.5. Overview of Chapters to Come

Chapter 2 on background has 4 parts. First, we describe
our domein of application: biochemistry. We present basic

notions of proteins and their components (amino acids) and

structures: primary, secondary, tertiary, quaternary
structures. We briefly detail our exact field of
application: secondary structures, a-helices, B~sheets,

coils, turns.

10



In the second part of this chapter we make a general
presentation of Machine Learning. We define the learning
process and the relation between Knowledge Acquisition and
Machine Learning. We present the Machine Learning approaches
and systems which are classified according to:

¢ the underlying learning strategy,

e the type of the knowledge acguired, and

e the domain of applicatiocn.

The third part presents training and testing techniques
used in Machine Learning, especially 1in our domain,
underlying the «criteria which guide the construction of
learn and test sets. Different approaches are described, as
well as measures of performance in classification.

=

The fourth part of chapter 2 contains the problem
description and Machine Learning methcds presently used in
different systems for the prediction of secondary structure

of proteins.

Chapter 3 describes basic principles of the Nearest

Neighbor Method and significant details of our

implementation.

11



Chapter 4 starts presenting the data format (Protein
DataBase - Brookhaven University) of the protein files. Then
we describe the structure of the data set, the test strategy
and the results we obtained. At the end of this chapter, we

interpret our results.

Chapter 5 presents the conclusions o©of the present
thesis: after a summary of the work, we add a summary of
results and results interpretation. At the end, we suggest

future improvements.

12



Chapter 2. BACKGROUND

2.1. Domain Description

2.1.1. Biochemistry

Biochemistry 1is the study of the molecular basis c¢f
life. The amazing diversity of 1life relies on common
molecular patterns and principles: organisms as different as

A

a bacteria and human beings use the same building blocks to
construct macromolecules. The flow of genetic information
from DNA (deoxyribonucleic acid) to RNA (ribonucleic acid)

is the same in all organisms [Strdg].

The chemical basis o©of many central processes being
understood, secrets of the medical domain could  be
elucidated: molecular mechanisms of many diseases, inborn

errors of metabolism, and clinical diagnosis.

Biochemistry is also a basis for the rational design of
new drugs and agriculture benefits from recombinant DNA
technology. Powerful biochemical concepts and techniques
allow investigators to tackle some of the most challenging
problems in biology and medicine: the control of growth cf

cells, the causes of cancer, the mechanism of memory, the

13



mechanism by which cells find each other when forming a

complex organ, &and many more.

2.1.2. Proteins

Proteins are a unique class of macromolecules in being

.

able to specifically recognize and interact with highly
diverse molecules. Proteins (a word coined by J.J.Berzelius
in 1838 to emphasize the importance of this «class of

molecules, derived from the Greek word ‘proteios' which

means 'of the first rank') are molecules built of amino

'—.J

aclds, playing various and crucial roles in virtuelly a
biolcgical processes ([Str88]1): enzyvmatic catalysis,
transport and storage, coordinated metion, mechanical
support, immune protection, generation and transmission of

nerve impulses, and control of growth and differentiation.

2.1.3. Amino Acids

Amino acids are the basic structural units of proteins.
Each protein is built of a unique, precisely defined amino
acid sequence. A series of studies in the late 1950s and
early 1960s revealed that the amino acid segquences of

proteins are genetically determined. The sequence of

14



nucleotides in DNA, specifies a complementary sequence of

nucleotides in RNA, which in turn specifies the amino acid
sequence of a protein ([Str88]). An a-amino acid consists of
an amino group, a hydrogen atom, and a distinctive R group
bonded to a carbon atom, which is called the a-carbon becuse

it 1s adjacent to the carboxyl (acidic) group. The R group

is referred to as a side chain.

There are twenty amino acids varying in size, shape,
charge, hydrogen-bonding capacity and chemical reactivity.
A1l proteins in &all species, from bacteria to humans, are
constructed from the same set of twenty amino

acids([Str28]) .

There are two amino acids - Aspartic acid (Asp) and
Glutamic acid (Glu) - presenting light wvariations -
Aspargine (Asx) and Glutamine (Glx). Aspargine and Glutamihe
are uncharged derivatives, co.itaining a terminal amide group
in place of a carboxylate. Including the latter amino acids,
the total number reaches 22. Even i1f Aspargine and Glutamine
are extremely rare 1n proteins, we consider them in the
basic set of amino acids, in order to respect the exact
composition of proteins, as it 1is presented in the PDB

protein files (see chapter 4.1).

Amino acids are often designated by either a three-

letter abbreviation or a one-letter symbol to facilitate

15



concise communication - see Tab.2.1.3. ([Str881]) . The
abbreviations for amino acids are the first three letters
of their names, except for trvptophan (Trp), aspargine
(Asn), glutamine (Gln) and isoleucine (Ile). The symbols for
the smeall amino acids are the first letters of their names
(e.g. G for glvcine and L for leucine). The other symbols
have been agreed upon by convention. We use the three-letter
abbreviation because it is clearer for all users
(bicchemists or programmers) and because it is also used in

the PDB files (cur data).

16



Tab.2.1.3. Abbreviations for amino acids

Amino acid

Three letter abbreviation

One-letter symbol

Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Aspargine or aspartic Asx B
acid
Cysteine Cys c
Glutamine Gln Q
Glutamic acid Glu E
Glutamine or glutamic Glx Z
acid
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenvlalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val %

17




2.1.4. Protein Structures

2.1.4.1_Primary Structure.

Each protein has a unique, precisely defined amino
acid sequence. This 1is called the primary structure c¢f the
protein {(see Fig.2.1.4.1.). The primary structure 1is thus a
complete descripticon of the covalent connections of the

protein.

Fig. 2.1.4.1. The primary structure of a protein

The amino acid sequence 1is the link between the genetic
message 1in DNA and the three-dimensional structure that

guides a protein's biological function.

18



2.1.4.2. Secondary Structure.

A segment of the primary structure ¢f a protein has &
local spatial arrangement, due to local amino acid
interactions. These local arrangements have a regular form

anc are known as secondary structure types, Pbeing classified
as a~helix, B-sheet, P-turn or coil.

The secondary structure of a protein 1is the linear
sequence of such local conformation classifications (e.g.
fcr a primary sequence Ala-Val-Leu-Glu-Cys-His-Val-Ile-Ala-
Pro-His-Ile-Alg, the secondary structure might be
acoaafBBTCCCC, where o stands for a-helix, B for B-sheet, T
for B-turn and C fcr coil).

Secondary structure types have a spatial arrangement
and their interconnection generates the three dimensional

form of a protein (see Fig.2.%.4.2.a.).

19



Fig.2.1.4.2.a. The secondary structures of a protein

(2fx2: Electron transport)

Some of these relations are of a regular kind, giving
rise to a periodic structure. In such case, the chain of

amino acids folds into regularly repeating structures.

Pauling and Corey (1951) called these structures a-helix

and B-sheet - see Fig.2.1.4.2.b.



Fig.2.1.4.2.b. a-helix and PB-sheet

of the 3lzm PDB-protein

Other structures are called fB-turn and coil.

bonds of the

structures.

amino

acids

(HYDROLASE

o-helix

determine
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2.1.4.21.  a-helix

The o-helix is a rodlike structure (see Fig.2.1.4.2.1).
It is stabilized by hydrogen bonds between the NH and CO
groups of the main chain. The CO group of each amino acid is
hydrogen bonded to the NH group of the amino acid that is
situated four residues ahead in the linear sequence. The a-
helices found in proteins are right-handed, that is, the

screw sense of the helix is clockwise.

Fig.2.1.4.2.1. Two a-helix secondary structures

22



The o-helix content of proteins of known three-
dimensional structure is highly variable. In some, such as
myoglobin and hemoglobin, the a-helix is the major
structural motif. Other proteins are virtually deveid of a-
helix. In most proteins, the single-stranded <«a-helix
discussed above 1is wusually a rather short rod, typically
less than 27 residues. In some proteins, the a helical theme
is extended to much longer rods, as long as 700 amino acids
Oor more (see Fig.2.1.4.2.2.). Two or more such o helices can

entwine to form & cable. The helical cables 1in these

proteins serve a mechanical role.

The elucidation of the structure of o-helix 1is &
landmark in mclecular biclogy because it demonstrated that
the conformation of a polypentide chain can be predicted if
the properties of 1its components are rigorously and

precisely known.
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2.1.4.2.2. pB-sheet

In 1951, Pauling and Corey discovered another periodic

structural motif, the P-pleated-sheet (see Fig. 2.1.4.2.2.).

Fig.2.1.4.2.2. The f-sheet secondary structure

A polypeptide chain in the f-sheet 1is almost fully

extended (flat). The axial distance between adjacent amino
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acids 1s 3.5 A, in contrast with 1.5 A for the o-helix.
Another difference is that the B-pleated-sheet is stabilized
by hydrogen bonds between NH and CO groups in different
polypeptide chains. Adjacent chains in a PB-pleated-sheet can
run in the same direction, called a parallel B-sheet or in
opposite directions, called an antiparallel PB-sheet. B-sheet

regions are a recurring structural motif in many proteins.

21423 pturns

Most proteins have compact, glokbular shapes due tc
numercus reversals of the direction of their polypeptide

chains. Many of these chain reversals are accomplished by a
commoen structural element called a B-turn (see
Fig.2.1.4.2.3.). The essence is that the CO group of residue
n in a polypeptide is hydrogen bonded toc the NH group of
residue n + 3. A polypeptide chain can thus abruptly reverse
its direction. B-turns often connect antiparallel B strands:

hence their name.
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Fig. 2.1.4.2.3. B-turns reversing the direction of fB-
sheets into a B-Greek-key protein (lcob:

Oxidoreductase)

2.1.4.3. Super-secondary Structure

Super-secondary structure refers to clusters of
secondary structure. For example, a PB-strand separated from
another P-strand by an a-helix is found in many proteins.

This motif is «called a B-a-f unit. Super-secondary
structures are intermediates between secondary and tertiary

structure.
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2.1.4.4. Tertiary Structure.

Tertiary structure, or 3D conformation, refers to the
spatial arrangement of all amino acid residues of a protein
(see Fig.2.1.4.4.). The divicding line between secondary and
tertiary structure 1s a matter of taste, because secondary
structures alsc have a spatial arrangement. From our peoint
of view - the prediction of protein seccondary structures -
only the sequences of secondary structure classes are
significant and we neglect their spatial arrangement.
Proteins have well-defined three-dimensional structures.
Function arises from conformation, which is the three-
dimensicnal arrangement of atoms in a structure. Amino acid
sequences are important because they codify the conformation
of proteins ([Str88]). Weak, noncovalent bonds play key
roles in the faithful replication of DNA, the folding of
proteins into intincate three-dimensional ~ forms, the

specific recognition of substrates by enzymes, and the

detection of signal molecules.
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Fig.2.1.4.4. The tertiary structure of a protein

(lcob - Oxidoreductase)

2.1.4.5. Quaternary Structure

Proteins containing more than one polypeptide
chain exhibit an adiitional 1level of structural
organization. Each polypeptide chain in such a protein
is called a subunit. Quaternary structure refers to the
spatial arrangement of subunits and the nature of their

contact.



2.1.5. Protein Classes

Levitt & Chothia [Lev76] classified proteins in four
major classes. Their method uses topology/packing diagrams
which are two-dimensional representations of the three-
dimensional structure of a protein. They identified

e all-a proteins, which have only oa-helix secondary

structures;

e all-f proteins, which have mainly B-sheet secondary

structures;

e o+ proteins, having a-helix and B-strand secondary

-

structure segments that do not mix but tend to

segregate alcng the polypeptide chain. These proteins
consist of a mixture of all-a and all-fB regions; and
o a/f proteins, having mixed or approximately
alternating segments o©of <o-helical and [p-strand
secondary structure. o-helices and B-strands occur
cne after the other so that most o-helices are
separated by B-strands along the sequence and vice

versa.



2.2. Machine Learning (General Presentation)

The abilitys to learn 1is one of the most important
attributes of intelligent behaviour. This is also one of
the most striking differences between how people and
computers work: humans, while performing any kind of
activity, wusually simultanecusly expend effcrts to improve
the way they perform it. In other words, human performance
of any task 1s 1inseparably intertwined with & learning
process, while computers are typically only executors of

procedures supplied to them. They may execute very

’

efficiently, but they do not 1improve themselves wit

experience.

Computer programs able to construct new knowledge or
improve existing stored knowledge are under research. But
=

typically, the input information (examples, facts, etc.) is

typed in by the human instructor.

Machine learning offers an immense diversity of
research tasks and testing grounds. This diversity 1is due to
the fact that learning can accompany any kind of problem

solving and hence it may be studied in many different

contexts (e.g. decision making, planning, control, task
execution, signal recognition, classification) - see
[Kodeo0].



Fields concerned with understanding intelligence
include cognitive science, artificial intelligence, pattern
recognition, information science, psychology, education,
epistemology, and related disciplines. Progress 1in the
theory and computer modeling of learning processes is of
great interest to all these fields - see [Mic83]. Machine
learning progress 1is central to the development of
artificial intelligence, affecting most of its areas: expert
systems, problem solving, computer vision, speech
understanding, autonomous robotics, intelligent tutoring

systems, conceptual analysis of databases, etc.

Learning processes 1include the acguisition of new
declarative knowledge, the development of motor anc
cognitive skills through instruction or practice, the
organization o©f new knowledge intc general, effective
representations, and the discovery of new facts and

theories through observation and experimentation.

The study and computer modeling of learning processes
in their multiple manifestaticns constitutes the subject

matter of machine learning [Mic83].

Learning denotes changes 1in the system that are
adaptive in the sense that they enable the system to do the
same task or tasks drawn from the same population more

efficiently and more effectively the next time.
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Knowledge Acgquisition and Machine Learning represent
two complementary approaches to the acquisition, improving
and organization of knowledge for knowledge-based systems.
Knowledge Acquisition has focused on improving and
partially automating the acquisition of knowledge from human
experts by knowledge engineers. In contrast, Machine
Learning has focused on developing autonomous algorithms
fcr acquiring knowledge from data, and for knowledge
compilation and organization. Currently, both fields are
moving toward an integrated approach, using machine
learning techniques to automate knowledge acquisition from
experts, and knowledge acquisition techniques to guide and
assist the learning process. This is one of the central
research directions in AI, and also one of the most rapidly
growing, due to 1its applicability to & wide range of

practical problems - [TecS85].

Verification of the learned knowledge 1is thrcugh
experimental testing on other data sets, the goal being the
improvement of the Knowledge Base system's competence and/or

efficiency in problem solving - [Tec95].

Machine Learning assumes that there already exists a
representation language and background knowledge before any

learning will take place.
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2.2.1. Machine Learning Approaches

One may classify machines learning systems along many

different dimensions (see [Mic83]), on the basis of:

e the underlying learning strategies used,
e the representation c¢f knowledge, and

e the application domain.

Each point in the space defined bky the above
dimensions corresponds to a particular learning strategy,
employing a particular knowledge representation, applied to
a particular domain. Since eristing learning systems emplocy
multiple representations and proccesses, and many have been
applied to more than one domain, such systems are

characterized by several points in the space.

In every learning situation, the 1learner transforms
information provided by a teacher (or environment) into some
new form in which it is stored for future use. The nature of
this transformation determines the type of learning strategy

used - [Mic86].

The classification based on the underlying learning
Strategy includes: rote learning and direct implementation
of new knowledge; learning by instruction; learning by

deduction; learning by analogy; learning by induction
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(learning from examples, learning from observation and
discovery); learning by abduction; neural net learning;
genetic algorithms and evolutionary computation;

multistrategy learning (see [Tec95], [Mic86]).

The classification according to the type of knowledge
representaticn ccntains: parameters in algebraic expressions
(e.qg. perceptrons) ; decision trees; formal grammars;
production rules; logic-based expressions and related
formalisms; graphs and networks:; frames and schemas:;
computer programs and other procedural encodings; taxonomies

(hierarchies); multiple representations.

The domain of application may be, for instance, one of

the following:

agriculture; biology; chemistry: cognitive modeling
(simulating human learning processes); computer programming;
education; expert systems (high-performance, domain-specific
Al programs); game playing; general methods (no specific
domain); image recognition; mathematics; medical diagnosis;
music; natural language processing; physics; planning and
problem-solving; robotics: sequence prediction; speech

recognition.



Kodrztoff & Michalski [Kod90] proposed a classification

of learning based on a few interreiated criteria, giving =a

rt

general view of the whole field (see Fig.2.2.1). I
illustrates important distinctions among various categories,
which should not be viewed as having precise, sharp
boundaries, but rather as labels for central tendencies that
can be transformed from one to another. The criteria ifor

ication include the primary purpose of the learning

(i}

gssi

'_..l

c
method, the type of input information, the tvpe of primary
inference employed, and finally, the role of the learner's

prior knocwledge in the learning process.
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Classification
Criteria

Primary
Purpose

Type of Input

LEARNING PROCESSES

/

SYNTHETIC

/

S~

—

ANALYTIC

PN

[LEARN FROM
EXAMPLES

LEARN FROM
OBSERVATION

EXAMPLE
GUIDED

SPECIFICATION
GUIDED

~

/

\/

Type of Primary - -
Inference INDUCTIVE — e DEDUCTIVE
ANALOGY
Role of Prior \
Knowledge B ~ .
EMPIRICAL CONSTRUCTIVE MULTI- CONSTRUCTIVE AXIOMATIC
INDUCTION STRATEGY DEDUCTION
- I
Empirical Generalization Abduction
Integrated Abs . Explanation-
— - Empirical & straction based Learning
Qualitative Discovery Constructive Explgnation-
Generalization ased. Deductive
Conceptual Clustering carmmg Generalization Automatic
Program
Neural Nets Mulustrategy Svnthesis
Constructive -
Genetic Algorithms Learning

A multicriteria classification of

machine learning methods

[Kod90]

Learning prccesses can be classified into synthetic and

analytic on the basis of their main goal

[Kod90].

Synthetic

learning aims primarily at creating new cr better knowledge,

and analytic learning aims at reformulating given knowledge




into a better form. Synthetic learning employs induction as
the primary inference, while analytic learning employs

deduction.

Induction is a process »>f hypothesizing premises that
entail given consequents, while deducticn is a derivation of
consequents from given premises. The following relationship

states that P and BK entails C:

P& BK » C (1)

where P 1s a premise, BK 1is the reasoner's background
knowledge, and C is a consequent. If the reasoner observes
C, then it may hypothesize P, by entailing (explain or
generalize) the observation. This is an inductive inference.
Its type depends on the natire and the role of background

knowledge [Kod90].

From the point of view of machine learning (artificial
intelligence), secondary structure prediction is an instance
of inductive learning, generalizing from known examples to
solve new cases. Different algorithms may work according to
different principles and can generalize in different ways: a
concept description can be matched with examples in a simple
and direct way, or can employ a substantial amount of

background knowledge and inference [Kod20]. The matching
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procedures are gquite sophisticated in order to allow the

system to recognize new examples.



2.3. Training and testing

We will approach this chapter only from the point of
view of exemplar-based learning, since this is the method we
are developing and because different learning processes have
completely different particulars. We will illustrate with
examples from our domain, protein secondary structure

prediction.

£

The training phase consists of learning a set of
classified examples (i.e. of proteins with known seccndary

structures, in our case) which form the training set.

The testing phase consists of finding the class to
which & new example belongs, using the learned examples,
memorized during the training phase. In protein secondary
structure prediction terms, testing means finding the type
of the secondary structures of a new ©protein (see

Fig.2.4.b.).
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2.3.1. Criteria for Building the Training and Testing Sets

The training exemplars must not have very close
similarities with the data in the testing set. This
guarantees that the quality of results is not due to such
similarities. We called this independence between learning

and testing sets, orthogonality.

At the same time, the testing set must contain samples
from the whole spectrum of the domain. We <called this
quality coverage and it guarantees that the result accuracy
is very 1likely to be the same for most randomly chosen

examples to be tested.

2.3.2. Approaches

Several approaches are possible. Each of them can not
be judged without considering the orthogonality principle,
which was introduced above and which is also developed in

the chapter dedicated to the Data Set.

In the standard approach, ideally, the training and
testing sets are disjoint. If the training set is L = (1. ,1-

...1-} and the testing set is T = (t., t-...t-}, then the



number of tests to be done will be the cardinality of T

(i.e. n). There is a single training set.

The jack-knife approach builds more training sets: if

the data set is L = (1. ,1- .1-}, one protein at a time 1is

selected as test set: T. = (1.} while the remaining proteins

are used as training set: L. = L - T.. There are m training

sets and m tests.

The bulk version of jack-knife (also called k-way cross

validation) randomly partitions the data set L = (1. ,1:
..1-} into k£ subsets L., L-,...L. of equal size; the
training set is L - L. and the test set is L.. . There are k

training sets and m tests.

In & blind test, test data is previously unclassified.
The real secondary structures of a test protein being
unknown, the results can only be compared to those obtained
by using other methods, on the same test protein. One can
compare the results of our method with the results obtained
by Combine [Bio88], GORIII ([Gib87] or PEBLS ([Cos%3], for

example.
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2.3.3. Measures of Performance

Different measures of performance are possible. For
exemplar-based reasoning, the most obvious metric is the
percentage of correctly classified instances. In our case,
since secondary structures - which must be predicted - are
not points, but rather segmerts, a mocre precise performance
metric is needed: we must also determine to which degree a
secondary structure 1is correctly predicted, that is, whict

ercentage of its entire length is discovered.
g

Hence, our metric 1is concerned with efficiencyv rather
than correcteness, because we deal with the percentage of
correctly classified instances. In a classification domain,
the predictive accuracy of a learning algorithm depends on
predicting properties of unknown instances and not on

summarizing aspects of alread; processed instances.
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2.3.4. Performance in Classification

Fig.2.3.4 presents the learning curve of a
classification process, NTGrowth, a variant of the nearest
nelighbor algorithm which selectively retains only some
instances in memory. This classification method was
evaluated by Aha and Kibler [Aha®9l]. NTGrowth bases 1its
decision on whether to save an instance on that instance's
predictive accuracy and its contribution to overall
accuracy. The test domain consists of 300 cardiology cases
containing 138 positive instances of heart disease. Each
case has an associlated class and is described by 13 numeric
attributes. The data set was roughly divided in two, one

half being used for training and the other for testing.

Kibler and Langely [Kib90] conclude from the experiment
that most learning occurs early, after the algorithm has
processed a moderate number of training instances, say 25.
A slight increase in the classification accuracy occurs with
additional instances added to the training set. The system
reaches its asymptotic performance just before 50 instances
in the training set. Thus, the learning curve shows the
benefit of inspecting new training instances and estimates

wether the improved predictive accuracy is worth the cost.
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Fig. 2.3.4. The learning curve

A training set which is enhanced with new instances can
increase the performance of a method, within certain limits.
Gibrat & Garnier showed that improvements of the order of 7-
over the original method ([Gar87]) could be obtained by
increasing the number of proteins stored in the database
[(Gib27]. This is natural, since a rich training set is able
to offer more useful information than a less complete set.
Most authors used data sets around 50 proteins or even above
100 (107-[Zha%9l]; 128-[Co0s93]; 130-[Ros93]; 110-[Yi93]). Yi
and Lander obtained best results for a data set of 530 to 80
proteins, while the predictive accuracy for 100 exemplars

was as low as for 20.



2.4. Machine Learning and Protein Structures

In the field of artificial intelligence (&I), secondary

structure prediction 1s a typical classification problem:

n

based on the sequence of amino acids of a protein (it
features), one tries to predict the secondary structure of

A

the protein (its class) - see Fig. 2.4.a.

Predicted structure

Secondary s e CCCC hhhhhhéccccccbbbccccccccccc".

T

Primary we «. LFTUQQTEGRIDDNLHVAMVLLGQAA.. ..

centra[ residue

slides———

window

Fig.2.4.a. Secondary structure prediction uses

the primary structure of the protein

A window 1s moved along an amino acid sequence to
extract correlations between the residues and the secondary

structure state ¢f the central residue.



A machine learning approach uses a training set to
learn its known structures and then classifies an unknown
protein based on the similarities it finds with the training

set (see Fig.2.4.b).

Unknolwn Protein

Machine Learning ] >( Classifier
Algorithm
Classification of the
Unknown
Fig.2.4.b. The Machine Learning Approach

Traditional classification methods have been used tc

predict protein secondary structure:

] statistical methods - [Nag73]; [Cho74]; ([Nag75];
[Gar78]; [Sch79]; [Levde]; [Gib87]:; [BioB88];
[Kan&51; [Lev88]; [Fas89]; [Gar2l]; [Sto%2]; [MugS2]:
[Cos®93]: [Yi93].

o neural networks - [QiaB8]; [Bon88]; [BohS0];
{Hol89); [Bos90]; [Kne90]:; [Hir®92]:; [Mac93]: [Sto92]:
[ZhaS92], [Ros93].

e pattern—-matching - [CohB83], [Coh86]; (Tay83];

[RooS81]; [Roo89]; [Room@91l]; [Ste90]; [Pred92].



e evolutionary conservation (seguence alignment) -
(Max79]}; [Zve87]; [Fra89]; [Ben90]; [Bar9l]; [Nie9lj];

[OuzS1]; [MusS2]; [Rusu82]; [Gib%3].

e induction - [Kin90].

All these methods achieve aproximately the same
accuracy level. This is due to the fact that these methods
are obliged, because of the complexity of the problem, to
neglect the multitude of properties of amino acids and
their combinations. The formation of secondary structures is
only to a certain degree due to local interaction of amino
acids ([Nag75]; [Tayg&8]; [Zho%2]). Physical and chemical
properties of amino acids and bonds can be described by the
ALCHA system [Pin%0] which is mainly conceived for knowledge
acquisition by learning. King & Sternberg [Kin90] classify
amino acids based on their properties and use induction to

predict the secondary structures.

During 1983-1993 these methods reached from 60 to 64-=
in overall three-state accuracy [Ros93]. Some methods had

poor results in predicting certain secondary structures,
such as 45% for B-sheet ([Bio88]), which 1is not

significantly (just 12%) above the chance value (33%).
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The real power of these methods should be checked by
having no significant similarities between test and training

sets and by using severe validation techniques.

Some of the most enthusiastic results reached an
overall acuracy of 66.4 = ([{Zha%2]) or between 63 and 65
(64.3x: [QiaB8]; 63.2%: [Hol89]; [KneS0]; [Sto92]). It 1is
even claimed that predictions can not be better than 65 +/-
2 = ([Gar923]). Rost & Sander ([Ros93]) observed that 7C.8%

of the three states are predicted accurately.

The best results were obtained by authors using hybrid
systems (see Fig.2.4.c.):
e multiple sequence alignments + neural networks: 70.2-
[Ros93]
e multiple sequence &alignments + nearest neighbor:
72.2% [Salgs]
e neural network + memory based reasoning +

statistical: 66.4+ [Zha%2]



...... ccchhhhhecccebbbbeccce ... ...
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ANN
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Classifier Classifier

Statistical + Neural Networks + Nearest-Neighbour

Fig.2.4.c. Hybrid System

Rigocrous cross-validation improved the confidence in
the accuracy of the results: Maclin [MacS83] reached on
overall accuracy of 63.6= using multi-layered network

approach, and Ccst & Salzberg ([Cos92], [Cos93] obtained

65.1%, while Zhang ([Zha®92]) combining networks with other
methods, reached 66.4:. Their test and training sets present
sequential homologies. The Combine program ([Bio88]) reached
65.8., SIMPA ([Lev83]) obtained 63.2°, GORIII (([Gib87})

achieved 62.4-, all three being reported to have had no
significant similarities between test and training sets (no
sequential homology). ALB ([Pti83]) reached 63.8%, also on
sets without sequential homology. Rost ([Ros93]) who

obtained the best results, using a two-layered feed-forward
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neural network, also used a non-redundant database (of 130

proteins) .

The accuracy of prediction of each secondary structure

type 1s also an important factor: GORIII ([Gib87]) poorly
predicted B strands (46=), while Rost & Sander ([Ros93])
reached 65.4% for the same secondary structure type.

AT methods that use & database of known examples to
classify the test instance, known as nearest-neighbor

systems, achieved good results in different domains

([Aha®9l]).

2.4.1. Statistical Methods

These methods rely on probabilities derived from the

training set. For example, for each secondary state S.,

given a window (&-,...a.) of n residues, we might consider
the conditional probability p(S- | a:,...a.) of S., given
(g:y...2.). The prediction will be the secondary state

having the probability with the maximum value in the set:



prediction = {s} | max p(s, |aa,...a, )}, 5, € {a — helix, f — sheer, coil }
] J

Bayes Theorem could Dbe used to compute the above
probabilities:

_p)p@aa,...a,ls)
p(ala2 "‘an)

p(slaa,..a))

Zhang et zl. [Zha92] eliminated third and higher order

correlations, thus postulating:

L plaa,ls) -
plaa....a, |s) = Uﬁ@“’ﬁ”3§f{mammMAwlﬂ

where C. (x1.5)is a compensation factor and £f.. is the

reliability.

P :J pa, | s)pa, |s)
YV A= pla, | )1 - pla, | s))

But there 1is not currently enough protein structure
data available to compute the frequencies of (a:,...a.) in
each state S.. We need a simpler estimation, e.g. by using
the Bahadur-Lazarsfeld expansion (see [Zha92]). Due to the
limited sample size, third and higher order correlations are

ignored.

Another approach that also uses statistical information

is known as "exemplar-based reasoning" or "nearest neighbour
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method" or "memory-based reasoning”. The nearest—-neighbor
rule states that a test instance is classified according to
the classifications of "the nearest" training examples from
a database of known secondary structures. In order to
compute the distance between the test instance and the
training examples, the relative frequency of occurrence of
amino acids in secondary structures is used. More details

are provided in Chapter 3.

2.4.2. Neural Networks

Artificial neural networks have been used in many
applications, including protein seondary structure
prediction ([{Qiaf8]; [Kne90]). An artificial neural network
usually consists of a large number of simple processing
units, called basic perceptrons - see Fig.2.4.2.a, connected

by weighted links. The output is computed by each unit by

applyving an activation function to each input.
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output

activation function

wk wieghts

ik inputs

Fig.2.4.2.a. Basic perceptron

A layered neural network contains an input layer, an output
layer and one or mcre "hidden layers" placed between the

input and the output layers - see Fig.2.4.2.b.

Helix Sheet Coil

output layer

hidden layer

input layer

Fig.2.4.2.b. A layered neural network
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A feed-forward network computes its output in the
following fashion: the input pattern sets the input layer:
the outputs of this layer, computed by the activation
function will be applied tc the input of the next hidden
layer; thus, one layer at a time, from the input to the
hidden to the cutput layer, the units compute their outputs
by applying the activation function to the weighted sum of
the outputs from the units of the lower layer. The weights
are associated to the 1links between units. Often, the

sigmocid function is used as activation function:

oa. j) =

O being the output of unit j at layer i; x 1is the weighted

sum oI outputs from nodes (units) at one layer below:

k
X = ZWI’[

1=1

A complex system for protein structure classification
may contain several neural networks, the results of which
are used by & combiner to compute the output, 1.e. the

secondary structure (see Fig.2.4.2.c).



...... ccchhhhhccccebbbbecccce ...

ccchhhhbbbbccce cccchhhbbbhhhcee

ANN3
Classifier

ccchhhhhcececcbbbbece

ANN2
Classifie:
3

ANNI1
Classifier

Fig.2.4.2.c. A multiple neural network.

The back-propagation algorithm trains a lavered network
by adjusting the 1link weights of the net, using a set of

training examples.

The major limitation of neural networks (as well as of
genetic algecrithms) 1is the difficulty of introducing large
amounts of domain specific knowledge to them and explicitly
exploiting that knowledge or any feedback information in the
learning process. To 1illustrate, let us suppose that a
neural network incorrectly classifies some examples. To
correct the mistake, the system modifies 1its knowledge
representation by stepwise corrections, rather than by an
explicit analysis of the reasons for the mistake. This might
explain why such systems tend tc exhibit relatively slow

rates of 1learning. Another weakness 1is the lack of
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transparency of the results of learning. The knowledge
acquired by neural networks is not in the form that people
can easily understand. The comprehensibility principle has
not been viewed as a major issue in implementing such

systems. For that reason, they are called subsymbolic

learning systems - see [Kod90].

2.4.3. Pattern Matching and Induction

A systematic and comprehensive analysis of- the
relations Dbetween amino acid sequence and secondary
structure has shown ([Roo88]) that short amino acid sequence
patterns that predict secondary structure with high level of
accuracy can be found. The ability of finding such patterns
is limited by the size of the available databases, since
the frequency of sequence patterns is generally too low to

produce enough non-random sequence-structure relations.

The databases are scanned for simple amino acid
patterns of the type Gly-X-Ala-X-X-Val, e.g., where X
denotes any residue. An association between structural
families and patterns in amino acid sequence 1is also

searched.

King & Sternberg [Kin90] overcame the 1limitation of

only being able to specify 3 residues in a pattern (due to



the low frequency of occurence of larger patterns) by
grouping residues into classes. These classes are then used
to specify patterns. Amino acids can be grouped into the
following classes, according to their physico-chemical
properties: hydrophobic, hydrophilic, polar, small,
positive, charged, negative, small or polar, charged or
hydrophilic, charged minus h, large minus aliphatic, etc
This scheme allows more complex patterns to be
described as each class specifies several residues; for

example:

hydrophobic = C = {h, w, v, £, m, 1, i, v, ¢, a, g, t, ki

positive = D = {h, k, r}
negative = E = {d, e}
charged = F = {d, e, r, k, h}.

The patterns can be expressed in terms of such classes
and in terms of their position relative to the central

residue:

[C DE F] is a sequence of classes as defined above. King &
Sternberg [KinS0] use symbolic induction to produce rules
that are meaningful in terms of chemical properties of the

residues. The rules are in the form:

'if the sequence of classes [C D E] ocurs, then they are all

in the secondary structure type S'



That is, a sequence of residues [w x y] occurs where
the 1st position residue w belongs to the class C, where the
2nd positicn residue x belongs to the class D, where the 3rd

position residue y belongs to the class E.

For example, the rule '[positive negative charged]->
Helix' means that the primary sequence [h d r] 1is predicted
TOo have [Helix Helix Helix] as a corresponding secondary
structure. This type of rule used by [KinS0] resembles that
used by [Coh83]. An implicit assumption of this form of
rule, 1s that what 1is important 1in forming secondary
Structure from primary structure 1s not the particular
residues at each position, but some specific chemical

property cor combination of properties.

The advantage of the pattern representation 1is that it
is a hint to the rules based on chemical properties that

govern protein folding.

2.4.4. Evolutionary Conservation

Other authors developed algorithms based on the
secondary structure propensities for aligned residues and
on the observation that insertions and high sequence
variability tend to occur in loop regions between secondary

structures ([Zve887], [Gib93]}, etc.)—- see Fig.2.4.4.a.
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Fig.2.4.4.a. Combining with alignment information

The first step is to obtain the alignments. A standard
method is the dynamic programming approach of Needleman &

Wunsch (1970).

There 1s, however, more information about secondary
structure @availlable from aligned sequences than that
obtained by averaging the residue propensities. The crystal
structures of protein families show that sequence insertion
and sections of high sequence wvariability occur in 1loop
regions Dbetween the secondary structures. In addition,

residues involved in secondary structure packing tend to be

hydrophobic.

A sequence relationship is searched between the test
sequence and the learned sequences, by computing a matrix of

similarity for the compared sequences: amino acids with
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similar physico-chemical properties in the corresponding
positions of the two sequences will have greater weights,
while amino acids with different properties will have lower
weights. Based on a Venn diagram representation of the
chemical properties of the amino acids (see Fig.2.4.4.b.),
one can quantify the extent of sequence conservation at any
position 1 along the chain by a conservation number. The aim
is to have a high conservation number when similar chemical
types of amino acids occur at a position, and low value when
there is a high variability ¢f corresponding residues or an

insertion. The prediction of a secondary structure 1is

penalized where there is a low conservation number.

Aliphatic
P
C
A
I S
L ) D N ~~Tinv
\
M [ E | Q
Y| } Polar Small
P\W\( /
R Charged
Hvdrophobic
Aromatic Positive
Fig.2.4.4.b. Venn diagram representation of the

chemical properties of amino acids [Pin92]



Chapter 3. THE NEAREST-NEIGHBOR ALGORITHM

3.1. Problem Description

Given the aminoc aci sequence (the primary structure)
of & preotein, we wish to predict its secondary structure.
The experimental analysis of the amino acid sequence cf a
protein 1s & much simpler task than the experimental
determination of 1ts tertiary structure. An intermediate
step between the primary and the tertiary structure 1is the
prediction o©f the secondary structure. This intermediate
step 1s valuable because the prediction of tertiary

structure is still a computationally intensive task.

3.2. Method Description - Nearest-Neighbor

Nearest-neighbor classifiers can be used to predict the
secondary structure of proteins with good results. The
nearest-neighbor rule states that a test 1instance 1is
classified according to the <classifications of "nearby"

training examples. The training examples are taken from a
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database of proteins with known secondary structures. This
method uses a distance metric to compute how far the test

instance is from the learned structures.

3.2.1. Basic Principles

=
i

An instance-based algorithm stores a series of
training instances in 1its memory and uses & distance metric
to compare new instances to those stored. New instances are

classified according tco the closest exemplar from memory.

In 198¢, Stanfill and Waltz presented & powerful method

ct

[
*

for measuring the distance between values of features 1

cdomains with svmbolic feature values. They applied their
technique to the English pronunciation problem with
impressive initial results ([Stag6]). Their Value Difference
Metric (VDM) takes 1into account the overall similarity of
classification of 2ll instances for each possible value of
each feature. Being svmbolic features, their posssiktle
values are in & finite domain. Their metric 1s represented

by & matrix that is derived statistically by defining the

distance between all values of a feature.

In our case, the features are the secondary structure

tvpes at a certain sequence position and the possible values
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are the amino acid symbols. The distance 8§ between two amino

acids V:, V: for a specific feature is defined as:

n

GWISEDY

=1

c, C.

!

' )

b

C, C,

The distance between the values 1is a sum over all n
classes; for the protein data, there might be 3 classes
(Helix, Sheet, Turn) or 4 classes (Helix, Sheet, Turn,
Coil). The matrix entry C.. is the number of times V- was
classified into category i, and C. is the total number of
times value V. occurred. The constant k is set to 1/2, 1, or
2, depending on the kind cf metric desired: for k=1, it is

& Manhattan distance; for k=2, it is an Euclidean distance.

The idea of this metric is tc compute a matrix of value
differences for each feature 1in the input data in the
following way: values are s.milar if they occur with the
same relative frequency for all classifications. The term
C:. /C. represents the likelihood that the central residue
will be classified as class 1 given that the feature in
question has the value V.. Two values are similar if they
give similar likelihoods for all classifications. Equation

(1) finds overall similarity between two values by computing
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the sum of differences of these likelihocods over all

classifications.

We constuct a separate value difference matrix for each
feature, by counting the number of occurrences of each value

for each class.

Equation (1) defines a geometric distance on a fixed,
finite set of values. It is a metric. That is, it has the
properties that a value has a distance zero to itself; it
has a positive distance to all the other values; the
distances are symmetric; and the distances obey the laws of

triangle inequality:

}.J
’._1
(04]
v
o
]
(0]
o)
)

Stanfill and Waltz's VDM also used a weighted term w.
which makes their total distance metric A non-symmetric:

A(X, YY) = A(Y, X). The tctal distance A between two

instances 1is given by:



A, VY= wow, Y 8(x,, ) (2)
1=1

where X and Y represent two windows, X=(x:..x.) and
Y=(y...y.) for the protein folding domain, and where Y is a
learned exemplar and X is a new example. The variables x.
and y. are the values for the ith feature for X and Y, each
example having N features. Weights w. and w. are assigned to

exemplars. In our method, these weights are always 1.

In the ciassical approach, a fixed sized window is used
to identify the class (secondary structure) of each residue
in the test sequence (see Fig.3.2.l.a.). At the end of this
process, a prost processing-algorithm based on the minimal
sequence length restrictions 1s used to decide if the

residues c¢f the test sequence belong to the found class.
Cost and Salzberg [Cos93] used the minimal sequence

length restrictions of Holley and Karplus (1989): the fB-

sheet must consist of a contiguous sequence of no fewer than

two such residues, and an o-helix must consist of a

contiguous sequence of no fewer than four residues. If the
residues do not conform to these restrictions, they are re-
classified as coil. Qian and Sejnowski [Qia88] used another

type of post-processing, called "cascaded neural net": the
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output of a lower-level network was fed into the input of an

upper-level network which re-classifies scome residues.

Predicted structure

Secondary e . €CCC hhhhhhéccccccbbbccccccccccc...

T

Primary we «. LFTIQQTEGRLDNLHVAMVLLGQAA..

central residue

slides——»
window
—
Fig.2.2.1.a.Classical approach
Nc nearest-neighbour method can ©redict fB-turns,

because these structures are very short (3..4 aminc acids)
and the patterns which build them are found with equal

frequency in a-helices and B-sheets.



3.2.2. Modifying Parameters

Different parameters must be adjusted 1in order to
meximize the prediction accuracy. This task involves a lot
of preliminary tests. Some of the parameters are pre-
established before the start of the required test (e.g the
training set, the window size). Some others are adjusted as
the test proceeds (e.g. the weights). Not all of these
parameters must be used: some methods may noct use certain
parameters (e.g. our method does not use weights, ncr pre-

fixed window size).

3.2.2.1. Training set

Both the number and the content o©of the traininc
examples strongly influence the gquality of the prediction,
because the amino acid distribution statistics rely on these
factors. Ideally, the training set should reflect the
distribution of amino acids in secondary structures as they
occur 1in real life. If the training set has an amino acid
distribution in secondary structures different from that of
the real 1life, then, statistically, the prediction will be
deformed according to the particular distribution of the

training set. For example, let us say some of the amino
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acids clearly favoring the a-helix in real life - ALA, LEU,
GLU - have relative frequencies of occurence in protein
secondary structures that favor B-sheet in our training set

(due to more numerous PB-sheet secondary structures in the
training set, containing the three amino acids: ALA, LEU,
GLU}. In this case, a window in a test protein, containing

(ALA, LEU, GLU, XXX) - where XXX is any amino acid - may be
estimated as & PB-sheet instead of an oa-helix.

Even adding proteins containing only turns and coils to
our training set will influence the prediction of a-helix
and PB-sheet, because the relative frequency of occurence of

amino acids in oa-helix and PB-sheet will change.

3.2.2.2. Window size

The window is a fixed length sequence of residues from

& protein chain for which we must classify the central

residue in the window &as a-helix, B-sheet or coil (see Fig.

3.2.2.2.).



window

..... TDY&NDVA(QEGTPALNFW”
cemrI residue

Fig.3.2.2.2. The central residue and the window

The window size influences the accuracy of the results.
Cian and Sejnowski [Qia88] found the optimal window size to
be approximately 17 residues, while Cost and Salzberg
(Cos33] fcund that best results were obtained with window
sizes of 17 and 19. Yi and Lander [Yi93] determined that
their nearest-neighbor method operated best with a window
size of 19, but good results were also achieved with window
sizes as large as n = 25 or n = 41. Zhang [ZhaS2] used a
window length c¢f 13 for a hybrid system including a nearest-
neighbor subsystem. Salamov and Solovyev ([Sal95] used a
window length of 19. Rooman [Roo%90] used patterns of most 7

residues for their rule-based systems.

Our window 1is variable, that is it dynamically expends
itself at run-time (starting at a size of 4), trying to
maximize the length of the predicted secondary structure.
This expansion occurs as long as the distance between the
two windows (the learned one and the tested one) is below a

threshold value.
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3.2.2.3. Exponents

Stanfill and Waltz [Sta86] used the wvalue k = 2 in

their version of equation (1), while Cost and Salzberg

[Cos93] equally obtained good performance for k = 1 and r =
1. Salamov and Solcvyev [SalS5] used k = 2 and r = 2, while
Zhang [Zha%92] used k = 1 and r = 1, but with a metric

considering the second degree conditional probabilities too
(the conditional probability of a secondary structure given
poth the current amino acid and its neighbor occur). In
general, exponents of value 2 improve the precision. If the

improvement 1is not significant, exponents equal to 1 are

prefered for simplicity.

3.2.2.4. Weights

The exemplars which are used more freguently to
classify new protein sequences are called 'reliable', while
those exemplars used less frequently are callec

'unreliable'.

In order to 1increase the influence of ‘'reliable'
exemplars relative to 'unreliable' exemplars, each instance

in the training set receives a weight: reliable exemplars
are given smaller weights (w. = 1), making them appear

closer to a test example. A weight w. is the ratio of the
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number of uses of an exemplar to the number of correct uses
of the exemplar. If the exemplar is accurate, it will have a
weight w. 1, while unreliable exemplars will get a weight

w. > 1.

Exceptions are thus seen quite far, while noise may
even be eliminated. Reliable exemplars remain the 'rule' for
examining the test instances. Without this capability, mcre
instances would be reguired for learning, according to Cost
and Salzberg [Cos93]. Yi and Lander [Yi93] also used this
principle, known in the artificial intelligence literature
as the Alien Identification Pule. We did not use weights in

our approach.
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3.3. Method Description - Multi-Level Nearest-Neighbor

3.3.1. Differences from other Similar Approaches

There are three main differences between our method and
those we encountered in our research, which we will describe
starting with low-level equation details and ending with
high-level sterategy approaches

e First, our equations present some differences

compared with the Stanfill-Waltz or other approaches:
there are no weights and no distance coefficients (k
= 1, r = 1); the distance between two amino-acids
only considers the searched secondary structure type.
e Second, our  window is variable, that is it
dyvnamically expands itself at run-time (starting at a
size of 4), trying to maximize the 1length of the
predicted secondary structure. This expansion occurs
as long as the distance between the two windows (the
learned one and the tested one) 1s below a threshold
value. At the same time, a whole window in the test
sequence must be similar (that 1is quite close) to a
subwindow of a learned secondary structure, in order

to be considered as a round secondary structure. More
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such whele windows will form a longer found secondary
structure if they overlap or are adjacent. From this
point of view, the classical approcach might be seen
as an extreme case, where the preliminary found
window may have a length of one (the central residue)
and more such preliminary found windows may form &
found window. In our approach, the preliminary found
window may not be shorter than four (the value of
HELIX WIN_ SIZE, SHEET WIN_SIZE) residues.

e Third, we predict a-helix first and then B-sheet
(this crder can Dbe reversed, since the Twe
predictions are independent), solving the eventual
conflicts (amino acids found in both classes) based
on the computed distances associated to the found
secondary structures.

¢ Finally, there is an attempt to predict the group cf
classes toc which the protein belongs, by using

statistical information on the distribution of the a-

helix, p-sheet and fB-turn preferring amino acids.

This 1s also useful in building the training set.

The distance is computed between the window of the new
example Y and a window of a learned exemplar X, if the

distance is below a threshold vwvalue, the windows are
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increased and the distance is computed again. As long as the
distance is below the threshold value, we decide that a
secondary structure is found in the test sequence (having
the same type as the matching window of the learned
secondary structure and the same length) and we continue the

expansion process of the window. All windows of the learned

«Q

exemplars X, are used 1in the scanning process of findin
the nearest neighbours. The final secondary structure might

be close to more than one subwindows of the exemplars X..
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3.3.2. Implementation Details

We will describe the implementation details of our
approach, comparing them with the classical nearest-neighbor

method.

3.3.2.1. Distance Between Amino Acids

Our approcach is based on a modified nearest-neighbour

method. Our equations are based on those of Stanfill and
Waltz, but having several s‘mplifications. The distance o
between two amino acids V:, V: (i.e. between two values) for

& specific feature is defined as:

c, C
5(70)= - Sa
L FalYa)

That is, we use & symmetric Manhattan metric, where I
is the secondary structure type for which we are computing

the distance. Since our approach 1is centered more on
searching a certain class type (e.g.a-helix), we considered
that it was not significant if the two amino acids have
different distributions for the other classes (B-sheet, B-

turnj).
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3.3.2.2. Threshold Value

The nearest-neighbocr rule states that a test instance
is classified according to the classifications of "nearby"
training examples. In our approach, there is a supplementary
condition: "nearby" means tha* the distance between the test
instance and the training example is (equal or) smaller than

a threshold wvalue.

By increasing the threshold value, we admit farther
training examples to be taken into consideration in the
classification process. If the threshold value is too high,
too many examples are considered as "nearby" and we have an

overprediction.

By diminishing the threshold value, we consider only
the nearest examples in the classification process. If the
threshold value is too low (but there are still enough
training examples in our training set), an underprediction

will result.

3.3.2.3. Distance Between Two Windows

The total basic distance A between two instances X =

(X:..%-) and ¥ = (y:...y.) 1s given by:
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AX. V)= 8(x,, ¥,) (4)

=1

Our window is variable: it dymnamically expands itself
at run-time (starting at a size of 4), trying to maximize
the length of the predicted secondary structure. This
expansion occurs as long as the distance between the two
windows (the learned one and the tested one) is below a

threshold value.

In our approach, an initial window win- (see
Fig.3.3.2.3.a.) of HELIX WIN SIZE or SHEET_WIN_SIZE residues
(established to a value of 4) of the test sequence 1s
compared with a window of the same size of a learned
secondary structure. If the distance between the two windows
is below the threshold value, we consider that a secondary
structure is found in the test sequence, in the position of
the window win-.. This window is then expanded (both for the
learned seccndary structure and for the test sequence) and
the comparison is made on the increased windows (win_ ). If
the distance is still below the threshold value, the window
expansion process continues. Otherwise, it ends. All our
distances are normalized: the distance between two windows

is divided by the window length.
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Fig.3.3.2.3.a. Our approach

The expansion process can also occur due to more
subwindows win- from different learned structures (see
Fig.3.3.2.3.b.}. More subwindows of the learned protein
secondary structures of the same type (e.g. a-helix) each
contribute to the decisicon that the window of the test
protein belongs to their type. For each subwindow we use the
closest distances (computed with equation 4) to the training
set, which are together concluding the result: in
Fig.3.3.2.3.b., three windows of different learned secondary
structures (a-helix., marked h.h.h.h...., where i=1..3) are

the closest to one of the subwindows of the discovered

secondary structure.
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Fig.2.3.2.3.b. Finding secondary structures
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The distance between the found secondary structure

the test sequence) and the training set is:

n lengthi{indow ;

ALY AN =D > 8(x, ) (5)
7l 1=

where X is the new example, A is the training set with a
cardinality of L: A = (Y- ,..., Y.}; x. and y... are the
values for the ith feature (amino acid) for X and Y; Jj 1is
the subwindow index; 1 1s the training set index; n is the
number of subwindows; 'lengthWindow j' is the length c¢f the
j-th window; and N 1s the number of features being

considered (the window size):
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N = lengthWindow (6)
gt

Both n and lengthWindow- are variables, not constants;
they are dynamically ccmputed during the program execution.
The program is trying to ninimize the distance and to

maximize the window length of the found secondary structure.

All learned secondary structures are used during this
process and the scanning continues inside each such

secondary structure (Fig. 3.3.2.3.c.):

—p
Learned Secondary Structure #1
(sliding window)

Test (New) Secondary Structure
Window

Fig.3.3.2.3.¢c. The scanning process

In terms of pseudo-code, the function which detects

secondary structures is as follows:



for each position of the whole sequence of the Test Protein

for all learned secondary structures of all Learned
Proteins

distance = ComputeDistance,
if (distance <= smallestDistance)
smallestDistance = distance;

if smallestDistance > thresholdValue // not a
// secondary structure (any more)

if it was already a secondary structure
end it,
else // it is a secondary structure
if it is a new secondary structure
initialize it;,
else // it is an old one

expand it; // increase its size

There are some consequences of our approach:
e 2 whole secondary structure (window) is found from
the first stage without post-processing;
e smaller granularity smilarities can be found
(resulting in smaller distances between the test

protein window and the training set); and

e overprediction may occur due to the smaller found
distances, which may lead to false similarities. This

effect can be counter-balanced by a higher threshold

value, especially in the case of B-sheet.
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3.3.2.4 Degree of Confidence. Conflict Resolution

The distance between a learned secondary structure and
a test window having the same class type represents our

degree of confidence in the learning process. If an amino
acid in the test sequence is predicted as belonging to an a-
helix in the first phase and alsoc predicted as belonging to
a P-sheet during the second phase ¢f our program, then this

conflict of contradictory prediction must be solved.

If two examples of different types - e.g. an a-helix
and a B-sheet - are close to the test instance, but the o-
helix is closer (de < dp), then we will conclude that the

test instance is an o-helix, with a degree of confidence of

d, +d,

3.3.2.5. Groups of Classes

At the highest, strategic level, we attempt to predict
the group of <classes the protein belongs to by using
statistical information: the percentage of amino acids in
the protein sequence having certain affinities. This

decision should be improved by using specific biochemical
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information (i.e. amino acids properties). In our opinion,
this is an important direction to be considered in a multi-
level approach. At the first stage, the general group of
classes of the protein has to be discovered and at a second
stage, the secondary structure of the protein 1is predicted.

We concentreated our efforts on two large groups of protein

classes: a and B.

As Fig.3.3.2.6. shows, 803 of the a proteins have o-

preferring amino acids in a percentage dJgreater than 44:=,

F=

which clearly distinguishes them from the other groups of

classes. The a group of protein classes also has a low
percentage of B preferring amino acids (below 23z). The J3
group of protein classes overlaps with a/ff and a+p groups:
only 75+ of the B proteins have B preferring amino acids in
a percentage Jgreater than 24%, while their oa-preferring
amino acids do not represent more than 38%. These statistics
also suggest why o structures are easier to predict than B

structures.
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Fig.3.3.2.6. The distribution of o and f preferring
amino acids inside the protein groups of classes (pure

o, pure B, a+B, a/B}

These statistics are essential in constructing the
training set, because they show the distribution of a and B

preferring amino acids inside the protein groups of classes.

3.3.2.6. Parameter tuning

For each class (a-helix, B-sheet) we adopted a
different threshold value: ThresholdValueqg..: ..,
ThresholdValuep--..... The threshold values were established

during the program development and were not modified later

on.



The training set was built using the statistics on the
distribution of a and B preferring amino acids 1inside the
protein grcups of classes, as explained above. More details
are provided in the next chapter.

The initial window size (win:) was chosen to be the
same for o-helix and B-sheet: HELIX WIN SIZE=4,
SHEET WIN SIZE=4. It could be set to independent values for

each class.

A finer tuning of the above parameters, based on more

tests, 1s still possible.
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Chapter 4. TRAINING, TESTING AND TEST RESULTS

Proteins in solution form globular structures, the net
result of which is that residues which are sequentially very
far from each other may be physically quite close, and have
significant effects on each other. For this reason,
secondary structures cannot be completely determined from
primary structure, with the present methods. Qian and
Sejnowski [Qia88] say that no method incorporating only
local information <can perform much better than current

results in the 60%..70% range (for non-homologous proteins).

There are also membrane proteins which have a different
physical environment from water-soluble globular proteins
and hence, different rules have to be 1learned to predict

thelr structures.

Before performing training and testing, one must
construct the learning and testing sets, accofding to the
following principles:

e the training set must be well balanced, that is it

should reflect the distribution of amino acids 1in
secondary structures in the same ratio as 1in real

life; and



e the training set and the test set must have a low

degree of similarity.

The first principle will guarantee good predictions
(within the limits of performance of the methcd) for an
"average" protein. Rost and Sander [Ros93] also mention in
their article the importance of "balanced prediction by
balanced training", which is an elegant way to improve poor

predicting performance.

The second principle will guarantee that good results
are not due to similarities between learned proteins and
test proteins. It is known that functional similarity and
structural similarity are equivalent, that 1s one implies
the other. Hence, we wish that learned and test proteins

have different functionalities, in order to respect this

principle.

4.1. Data Description (PDB files)

The Protein Data Bank (PDB) of the Brockhaven
University is used by most of the biochemistry specialists
involved in protein secondary structure prediction. PDB
contains several thousand proteins with identified

structures, which are updated as techniques evolve.
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A PDB file is an ASCII labeled text file. The labels
accompany each line and they identify the file sections:

e the HEADER line contains the protein name and the
date

e the COMPND line

e the SOURCE line contains the biological medium

e the AUTHOR, REVDAT, JRNL lines c¢ontain the auther
name, the journal date and name where the protein
structure was presented

e the REMARK lines contain different supplementary
information

e the SEQRES lines contain the protein amino acid
sequence

e the HELIX, SHEET, TURN 1lines contain the discovered

ng spectroscepy and

[

secondary sStructures (us

crystallography):

e the secondary structure type (the name o¢f the
label: e.g. TURN), an ordinal number of <the
secondary structure (H1, H2, H3, ... for helices:
si, S2,... for sheets, T1, T2,... for turns; or
TURN 1 for the first turn in the example below),
the name and position of the first amino acid in
the structure (e.g. VAL 13), the name and position
of the last amino acid in the sequence (e.g. LYS

16).



e other lines (SSBOND, ORIGXn, SCALEn, etc) contain

additional infcrmation on amino acid positions, etc.

The PDB code (4 letters and/or digits) is written on each
line ¢f a PDB file, as well as the line number. We only use
the information contained in the HEADER, SEQRES, HELIX,
SHEET, TURN lines; some other labels are used as delimiters.

We present below the lcse PDRBR file:

HEADER COMPLEX (SERINE PROTEINASE-INHIBITOR) 03-JUN-838 1CsE
REMARK 9 CORRECT E.C. CODE ON COMPND RECORD. 15-JAN-G5. 1CsE
SEQRES 1 I 71 ACE THR GLU PHE GLY SER GLU LEU LYS SER PHE PRO GLU 1CSE
SEQRES 2 I 71 VAL VAL GLY LYS THR VAL ASP GLN ALA ARG GLU TYR PHE 1CSE
SEQRES 3 I 71 THR LEU HIS TYR PRO GLN TYR ASN VAL TYR PHE LEU PRO 1CSE
SEQRES 4 I 71 GLU GLY SER PRC VAL THR LEU ASP LEU ARG TYR ASN ARG 1CSEB
SEQRES 5 I 71 VAL ARG VAL PHE TYR ASN PRC GLY THR ASN VAL VAL ASN 1CSE
SEQRES &€ I 71 HIS VAL PRO HIS VAL GLY 1CSE
FTNOTE 1TsSE
FORMUL3 CA 2 (CAl ++) iCcsE
FORMU4 HOH *432(H2 01 1CsE
HELIX IA PEE I 10 VAL I 14 5 1CSE
HELIX IB TER I 17 TYR I 28 1 1CsSE
SHEET S1I 4 LYS I 8 PHEI 10 O 1CSE
SHEET S1I 4 HIS I 85 GLY I 70 -1 1CsE
SHEET S1I 4 ARG I 51 TYR I 56 -1 1CcsE
SHEET S1I 4 ASN I 33 LEU I 37 1 ICsE
TURN 1I VAL I 13 LYS I 16 TYPE II 1CSE
TURN 2I TYR I 2% TYR I 32 TYPE I 1CSE
TURM 3I PRO I € SER I 41 TYPE II 1CSE
TURN 4I ARG I 48 ARG I 51 TYPE I 1CSE
TURN 5I ASN I 57 THR I 60 TYPE II 1CSE
SITE 1 RSB 2 LEU I 45 ASP I 46 ICSE
CRYST1 38.300 41.500 57.000 111.80 85.80 104.70 P 1 1 1CsE
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4.2. Data Set

The data set is built upon three principles:
representativeness, orthogonality and coverage.
Representativeness is a property of the training set, while
orthogenality is a property of the relation c¢f similarity
between the training and the test sets. Coverage should

characterize the test set.

The training set must be representative, that 1s it
should reflect the distribution ©of amino acids in secondary
structures in the same ratio as in real life. We call such =z
set "well Dbalanced". This will guarantee good predictions
(within the limits of performance of the method) for an

1”

average" protein.

By orthogonality we mean that proteins in the training
set and those in the test set are functionally independent,
hence structurally independent. That is, we do not have two
proteins with similar structures. Hence, the quality of the
results 1is not influenced by the similarity of the proteirs

in the data set.



By coverage we mean that (almost) all protein classes
of a group (o,B) are represented into the test set. This
guarantees the diversity of the test set by covering a large
spectrum of proteins to be tested. Where missing, the
proteins specified by Orengo et al. [QOreS3] - our reference

- where either not available in PDB, or they contained
severe errors. For example, for the a group of classes, we
have the following representation (see [0re93]):

e a: Globin: 1lmbc, 1lthb, 21h3

e a: Orthogonal: lutg, 1fia, 3sdp
e o: EFHand: 4cpv, 2scp, 4icb

e a: Up/Down: 256b, 2hmz, 2tmv

e oa: Complex Up/Down: (none)

e a: Metal Rich: 1lycc, 451c
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Tak.4.2.a.

The o data set

Group | Class PDB | Len # # $H | $S | 8T | %C
file | gth | yprrx | SHEET
a globin | Imbc | 153 8 - 78 | 0= | 0% | 22~
a globin | 1thb | 141 8 - 78 | 0% | 0% | 22*%
a globin | 21h3 | 153 7 - 82 (0= 0% | 18=
a orthog | lutg | 70 4 - 61 | 0=z | 62| 33=
onal =
a orthog | 1fia | 98 4 - 55 | 0=z |25 | 20
onal z =
a orthog | 3sdp | 195 S 3 40 |13 | 0% | 47"
onal E E
o EFhand | 4cpv | 109 6 - 64 | 0= |24 | 12-
a EFhand | 2scp | 174 8 4 64 | 7= 23| 27"
a EFhand | 4icb | 76 5 - 74 | 0= 0= | 26=
a Up/Dow | 256b | 106 5 - 80 | 0% |15 5=
n = &
a Up/Dow | 2hmz | 113 4 - €2 | 0z | 0= | 38=
n =
a Up/Dow | 2tmv | 158 6 - 53 | 0% | 5% | 42+=
n z
a Metal | lycc | 107 5 2 59 | 7% |23 | 11°
Rich E 2
a Metal | 451c | 82 5 - 51 | 0% |24 | 25=
Rich E =
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Tab.4.2.b. The B Test Set

Group Class PDB Lengt { #H | #S | #T | %H | %S | $T | %C
file h

B Orthogonal l1ifc 132 2 11 8 12 | 58| 23 7
Barrel

B Orthogonal 1rbp 182 2 9 8 9 44 | 17 30
Barrel

B Orthogonal 1bbp 173 4 11 8 11 142} 20| 27
Barrel

B Greek Key 2sga 181 - 15 - 0 50| 50 0

B Greek Key lcob 151 1 8 13 4 36| 34 26

B Greek Key 2rhe 114 1 7 7 7 45 | 24 24

B Greek Key Tpcy g8 1 8 7 7 60 | 28 5

B Jelly ltnf 157 1 10| - 3 53] 0O 44
Rolls

B Jelly 2cna 237 1 17 | 29 2 50| 48 ¢
Rolls

B Complex S5hvp o9 1 11 4 ) 54| 16 24

Sandwich
B Complex 2rsp 124 1 7 - 7 48 | O 45
Sandwich

B Trefoil 3fgf 146 - 121 7 0 49| 19 32

B Trefoil 2ilb 152 1 12 9 4 48 | 26 | 22

B Disulfide 1pi2 63 - 4 - o; 4% 1 0O 51
Rich

B Disulfide 3ebx 62 - 5 5 0 53| 32 15
Rich

Zhang & al. [Zha®2] used a database of 107 proteins

having 19,861 residues. Their sequence homology is less

than 50%, as 1is that of Rooman [Roo90]. Rooman defines

sequence identity in terms of common patterns, e.g. A-A-X-X-
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K. Rost & Sander [Ros93] underline that for chains of more
than 80 residues, the mutual similarity should be less than
25°. They used 130 chains. King & Sternberg [KinS0] used 43
proteins for the training set and 18 for the test set; the
proteins they used were "selected to remove homologous
proteins”. We built our data set kased cn the latter idea:
selecting proteins without similarities. Our data set 1is
smaller. In spite of the reduced &and non-homologous data

set, we obtained encouraging results.

Using the statistics of relative frequencies of
occurrence of amino acid residues in secondary structures of
proteins - from ([Str88] ( see Tab.4.2.c) - we considerec
three groups of amino acids:

e a-helix favoring amino acids: ALA, CYS, LEU, MET,

GLU, GLN,HIS, LYS.
e B-sheet favoring amino acids: VAL, ILE, PHE, TYR,
TRP, THR.

e B-turn favoring amino acids: GLY, SER, ASP, ASN, PRC.

ARG does not have any preference for any secondary

structure, hence it was not included in our three groups.



Tab.4.2.c. Amino acids preferences

Amino acid a-helix B-sheet B-turn
ALA 1.29 0.90 0.78
CYs 1.11 0.74 0.80
LEU 1.30 1.02 0.59
MET 1.47 0.97 0.39
GLU 1.44 0.75 1.00
GLN 1.27 0.8¢C 5.97
HIS 1.22 1.08 0.69
LYs 1.23 0.77 0.96
VAL 0.91 1.49 0.47
ILE 0.97 1.45 0.51
PHE 1.07 1.32 0.58
TYR 0.72 1.25 1.05
TRP 0.99 1.14 0.75
THR 0.82 1.21 1.03
GLY 0.56 0.92 1.64
SER 0.82 0.95 1.33
ASP 1.04 G.72 1.41
ASN 0.90 0.76 1.28
PRO 0.52 0.64 1.91
ARG 0.9¢6 0.99 0.88

Based on the three groups of amino acids, we computed

the statistics (shown in Tab.4.2.d.,

set. The difference from 100%

the Arg amino acid.

Tab.4.2.e.) on our data

is due to the non-occurence of



Tab.4.2.d. Amino acids preferences of the a data set

Group Protein a-helix B-sheet B-turn
favo;ing favo;ing favqring
amino amino amino
acids acilds acids
o Imbc 563 21z 18%
o l1thb 48% 23% 26%
a 21h3 47% 30+ 213z
o lutg 47% 2235 27%
o 1fia 44= 223 23%
o 3sdp 44= 23% 25%
o 4cpv 48% 23= 27>
o 2scp 35% 28= 332
a 4icb 55% 17¢ 27%
o 256b 55= 15= 25=%
o 2hmz 39+ 30= 26%
a 2tmv 282 34= 30«
a lycc 45% 23:= 287
o 451c 48% 20= 29=

The majority (77%)

of the o proteins are made of a-

helix favoring amino acids in a proportion greater than 44:.




Tab.4.2.e. Aminc acids preferences of the B Test Set

Group Protein a-helix B-sheet B-turn
favoring favoring favoring
amino acids | amino acids | amino acids
B lifc 38= 311 253
B 1rbp 362 26% 29%
B 1bbp 33.5% 34.5% 31=
B 2sga 24 .8% 31z 40%
B lcob 33: 27= 33%
§ 2rhe 31% 24% 42%
B Tocy 30% 31z 36%
B ltnt 39.5% 25.5% 29.3%
B 2cnea 29% 30% 38%
B Shvp 36.3% 32.33 27.3%
B 2rsp 36.3% 24.2% 31.5=
B 3fgt 39= 22: 31.5%
B 8ilb 41.5= 25% 31
B lpi2 46% 11z 35=
B 3ebx 37% 24.2= 33.9>
Most of our f3 proteins (86.5%) are made of B-sheet
favoring amino acids in a propotion greater than 24=.
Equally, most of them (also 86.5%) present a-helix favoring

amino acids in a percentage lower than 40+,

We had to use a PB-training

initial B-data set

set different

(which remained only as B-test set)

g7

from our



the case of the B proteins,

latter

35.5-)

had

because

too strong a-preferring presence

a better amino acid preference distribution

toc many proteins in the
(greater than

- 9 out of 15 3 proteins - while our training set has

(only 2 proteins

cut of 10 have such a strong o-preferring presence)- see
Tab.4.2.f. and Fig.3.3.2.6.
Tab.4.2.f. Aminc acids preferences of the B Training set
Group Protein a-helix B-sheet B~-turn
favoring favoring favoring
amino acids amino acids amino acids
B lacx 32.4~ 25.9: 40.7:
B latx 32.6= 21.7+= 41 .3+
B lhoe 33.8= 33.8= 28.4+%
B lpaz 43.9- 28.4%= 26.8:
B 2aza 46.5% 25.6% 27.1%
§ 2er’ 23% 38.2+ 38.5%
B 2pab 35.4% 32.3% 29.1%
B 2por 34.5% 27.9= 35.2=
B 2stv 32.8=% 30.2% 30.2=
B 3hla 35.3% 30.3= 29.3¢




4.3. Error sources

The errors in prediction are either intrinsic to the

method,

or general to all methods, due to the simplification

done to such a complex problem, in order to manage it. There

are alsc input errors (of PDB files), which

we tried to eliminate.

4.3.1. Errors of PDB files

The following types cf errors exist in the PDB files.

measurement errors: crystallography and other
methods present an inherent imprecisicn, which in
turn influences the learning process and hence the

results.

overlapping structures: some secondary structures of
PDB files are overlapping - normally, this should noct
occur. The consequence is that the statistics are not
accurately reflecting the real distribution of amino
acids 1into secondary structures and hence, the

prediction is affected.



rough errors: secondary structures of some PDB files
are beyond the limits of the protein seguence. We

eliminated such files from the learn and test sets.

4.3.2. Errors of our method

Our method has the following kinds of errors.

e errors of this type of algorithms: it does not take

into account other properties of the amino acids such
as polarity, charge, dimension, hydrophobicity, etc.
The consequence 1s that the precision of the
prediction cannot be better than the experimental

threshold of 70-.

learn/test errors: the limited number of learned
proteins and the distribution of their amino acids
into secondary structures generally leads to
imperfect statistics, from the point of view of the

test proteins.

4.3.3. General errors (common to most methods)

Most machine learning methods suffer the following

common kinds of errors.
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e completely new proteins (without any equivalent into
the training set), having peculiar structures (e.qg.
protein inhibitors) will lead to less precise

predictions.

e the distant secondary structures slightly influence

the positions of amino acids around a central
residue.
e the protein spatial (3D) configuration also

influences the secondary arrangement. Being difficult

to take it into account, it is negleted.

4.4. Results

The 14 pure a proteins we included in our data set (see
Tab.4.2.a.) were used as both Training set and Test Set:
one protein at a time was excluded from the a Set and used

as test protein, while the rest of 13 proteins were used as

Training set for the former protein. That is, we used a

jack-knife testing for the a proteins.

The results of the prediction are shown in Tab.4.4.a.
We present the helix prediction accuracy and coil prediction

accuracy. Based on these results, we built the average
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prediction accuracy on the o set for all results

helix

per-residue basis

(68.7%)

and for

(see

coil

(65.4%) .

Tab.4.4.b.).

for o-

All are computed on a

Tab.4.4.a.Results of the prediction on the a data set
Group Class PDB Length $H $C
file prediction | prediction
a globin | 1lmbc 153 63.6% 65.23
a globin | 1thb 141 61.6% 68.6%
a globin | 21h3 153 74.5=% 64 .3%
a orthog lutg 70 77.2% 75.6%
onal
a orthog 1fia 98 79.52 45.4=
onal
a orthog 3sdp 195 64 .52 58.9
onal
a EFhand | 4cpv 109 62.8% 62.5%
a EFhand | 2scp 174 56.7% 72.9%
a EFhand | 4icb 76 65.4% 77.5%
o Up/Dow | 256b 106 85.9% 75.7=
n
a Up/Dow | 2hmz 113 85.7z 73.6%
n
a Up/Dow | 2tmv 158 78.3% 59.1:
n
a Metal lycc 107 42 .32 77.9=
Rich
a Metal 451c 82 71.4- 67.3%
Rich
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Tab. 4.4.b. Average prediction accuracy on the a set
Average predction $HELIX $COIL
accuracy for the top n prediction prediction

results
n = 14 68.7% 65.4%
{all results)
Tab. 4.4.c Results of the prediction on the B test set
Group Class PDB | Length %S $C
file prediction | prediction
B Orthogonal lifc 132 85.7= 31.9=
Barrel
B Orthogonal | lrbp 182 55.5¢= 62.7%
Barrel
B Orthogonal 1bbp 173 65.2 51.6>
Barrel
B Greek Key 2sga 131 81.5% 68.67°
B Greek Key l1cob 151 62.5= 60.3%
B Greek Key 2rhe 114 80.4° 63%
B Greek Key Tpcy e3 51.6% 73.1%
B Jelly Rolls | 1tnf 157 54.2% 50=
B Jelly Rolls | 2cna 237 56.2% 69.8=:
B Complex Shvp 99 62.2% 42.4%=
Sandwich
B Complex 2rsp 124 74.6% 63.7%
Sandwich
B Trefoil 3fgf 146 73.2= 504
§ Trefoil 8ilb 152 69.8% 54.4%
B Disulfide lpi2 63 53.832 6l1.2%
Rich
B Disulfide 3ebx 62 69.7= 64.1=
Rich
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The results of the prediction on the B set are shown in
Tab.4.4.c. The average results accuracy 1is printed in
Tab.4.4.d. - it 1is 66.3% for pB-sheet. Three results are
better than 8032 and seven results are better than 69.7z.

The overall prediction accuracy is 65= (including coil
prediction). These results are competitive with those
obtained by more sophisticated systems like the hybrid
system of Rost & Sander ([Recs93]) who combined multiple

sequence alignments and neural networks, obtaining an

accuracy of 70.87%; they reached 65.4> for B-sheet.

Tab.4.4.d. Average prediction accuracy for the B set.

Average predction $SHEET $COIL
accuracy for the n prediction prediction
results
n =15 (all) 66.3% 52.0=

The computation time 1s 10 minutes for each secondary
structure type (a-helix, [-sheet) for a protein of length

140, using a training set of 15 proteins. We used an IBM PC

386DX (40MHz, 16M RAM).
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4.5. Results Interpretation

Like &all methods, we obtained better results in
predicting a-helix than f-sheet. That 1is because of the
biochemical particularities of the f-sheet, which make it
more difficult to predict - the diversity of the
combinations of amino acids in PB-sheets is even greater than
that for a-helices and remote amino acids interactions are
alsc important [Str88].

The prediction accuracy of the coil is slightly smaller
than that of o-helix; in the case of B proteins, the coil
prediction is 6.6% below that of f-sheet. Both can be
explained by the over-prediction which we already mentioned

when describing our method.

We underline that these results were obtained on data
sets with & good orthogonality and in spite of the

relatively small number of proteins we used as training set.
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Chapter 5. CONCLUSIONS

The nearest-neighbor algorithm is a method that behaves
well in the field of protein secondary structure prediction.
Our nearest-neighbor <classifier achieves 652 accuracy
without using any weights, on a set of 29 proteins having a
good orthogonality (by construction) and in spite of the
relatively small number of proteins involved in the training

set.

The nearest-neighbor algocrithm allows one to embed
domain knowledge 1in its structure (thus transforming the
method into a hvbrid one). The performance of our
approach could be enhanced by including environment class
information into the algorithm, such as physical and
chemical properties of amino acids and patterns having known

behaviour, such as:

e [X, tiny or (small and polar) or p, X, tiny or (polar

minus aromatic) or p] -> COIL [Kin90]

o A-A-X~-X-K -> HELIX [RooS%80]

where X is any amino acid.

The present approcach can also be used in a hybrid

system, together with multiple sequence alignments. The best
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predictors to date use hybrid systems, with knowledge of

environment classes, and multiple alignment.

More work must be done in both creating larger training

sets and testing more proteins, including those of a/f and

o+ groups of classes. The training sets must be well
balanced, in order to be near the natural distribution of
amino acids in secondary structure types, as we explained in
the previous chapter. The construction of the training set
is facilitated by statistics provided by our method, but
domain knowledge 1is still crucial. A larger training set
might improve the performance of the system, as Kibler and
Langely [Kib©0] conclude from their experiment that even if
most learning occurs early, after the algorithm has
processed a moderate number of training instances, a slight
increase of the classification accuracy occurs with
additional instances added to the training set. The system
reaches its asymptotic performance using about 50 instances

in the training set.
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